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Spatial-point data sets, generated from a wide range of physical systems and mathematical models, can be
analyzed by counting the number of objects in equally sized bins. We find that the bin counts are related to the
Pólya distribution. New measures are developed which indicate whether or not a spatial data set, generated from
an exclusion process, is at its most evenly distributed state, the complete spatial randomness (CSR) state. To
this end, we define an index in terms of the variance between the bin counts. Limiting values of the index are
determined when objects have access to the entire domain and when there are subregions of the domain that
are inaccessible to objects. Using three case studies (Lagrangian fluid particles in chaotic laminar flows, cellular
automata agents in discrete models, and biological cells within colonies), we calculate the indexes and verify
that our theoretical CSR limit accurately predicts the state of the system. These measures should prove useful in
many biological applications.
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I. INTRODUCTION

Spatial-point data sets can be generated from a wide range
of physical systems and mathematical models. Examples
include the spatial positioning of Lagrangian fluid particles in
chaotic laminar flows [1–8], cellular automata (CA) agents in
discrete models [9–15], and cells within colonies in biological
experiments [16–19]. The spatial distribution of a group of
such objects can then be analyzed in a variety of ways. These
include quadrant analysis of grid data sets, radial distribution
functions, and correlation coefficients [20–22], or alternatively
counting the number of objects in equally sized bins covering
the spatial domain [3,6]. In this paper we focus on using bin
counts: we derive new indexes to quantify spatial distributions
for both exclusion and nonexclusion processes, based on the
variance between the bin counts.

When each bin contains an equal (the average) number of
objects, naturally the variance is zero. In this case, the state
is evenly distributed. The most segregated state occurs when
all objects reside in a single bin. In practical terms, an even
distribution is an idealized state that is not often realized.
Instead, the more realistic scenario occurs when each object is
equally likely to lie in any bin. Such a state is termed complete
spatial randomness (CSR) [3,6,21]. Once the CSR state is
achieved the distribution of objects cannot be made any more
even.

Phelps and Tucker [6] derived several indexes and their
corresponding limiting values to ascertain when a distribution
of tracked fluid particles in a chaotic flow reached the CSR
state. This is an example of a nonexclusion process. The fluid
particle positions are idealized points within the flow, they
have no size, and there are no nearest-neighbor (exclusion)
interactions. In contrast, for a simple exclusion process [23],
an object’s attempted movement within the domain is restricted
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and depends on whether the target space is already occupied
or not (as for CA agents [10,12]). We are interested in
generalizing the Phelps and Tucker indexes and their limiting
values [6] to exclusion processes. This will allow us to
determine when a distribution of objects generated from an
exclusion process has attained the CSR state. The key feature in
our derivation for an exclusion process is a Pólya-Eggenberger
(Pólya [24]) probability mass function (PMF) of the bin counts.
This differs from a nonexclusion process where there is a
binomial PMF of the bin counts [3,6,21].

We derive the index and CSR limit for a nonexclusion and an
exclusion process. Two simple discrete models are presented to
illustrate the differences between these two types of processes.
Using three case studies, we calculate the indexes and verify
that our theoretical CSR limit accurately predicts the state of
the system.

II. THEORY

We discuss two-dimensional data sets with two-
dimensional bins. This work generalizes in a natural way to
three dimensions.

A. Variance

Consider a X × Y rectangular domain which is populated
with a total of n objects each of area s using either a
nonexclusion or exclusion process. Following Phelps and
Tucker [6], the domain is divided into M equal-sized bins
each of area S. If bj is the number of objects in bin j ,
(j = 1, . . . ,M), then the average bin count is n/M and the
variance is

σ 2 = 1

M

M∑
j=1

(
bj − n

M

)2

. (1)

There are two limiting cases.

041914-11539-3755/2011/83(4)/041914(9) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.83.041914


BENJAMIN J. BINDER AND KERRY A. LANDMAN PHYSICAL REVIEW E 83, 041914 (2011)

(1) The state is an even distribution where each bin contains
the average number of objects. Then σ 2 = 0.

(2) The state is completely segregated where all objects
reside in a single bin. Without any loss of generality, we can
write this as

bj =
{

n, j = 1,

0, otherwise
(2)

Then Eq. (1) becomes

σ 2
0 = n2

(
M − 1

M2

)
. (3)

It is convenient to define a scaled variance, called an index [6],
given by

I = σ 2

σ 2
0

, (4)

which ranges from unity (maximum segregation) to zero (even
distribution). Note that for an exclusion process, a completely
segregated state is only possible if n is sufficiently small
since it is limited by the size of the region. Therefore, if n

is sufficiently high, in practice, it is not possible to have a
completely segregated state in an exclusion process. However,
σ 2

0 can still be used as a scaling in the definition of the index.

B. CSR limits

Randomly distributed objects do not necessarily result in an
even distribution, but rather the CSR state, where each object
is equally likely to lie in any bin. We derive the CSR limits for
both nonexclusion and exclusion processes, thereby extending
the work of Phelps and Tucker [6].

We find that the bin counts are related to the Pólya
distribution. If n objects are randomly distributed throughout
the domain, and K represents the bin count bj in any one of
the M bins, then the distribution of K is the Pólya distribution
with parameters n, S, XY − S, and −s, namely

Pr(K = k,n) =
(
n

k

) ∏k−1
i=0 (P + iα)

∏n−k−1
i=0 (Q + iα)∏n−1

i=0 (1 + iα)
, (5)

where

P = S

XY
= 1

M
, Q = 1 − 1

M
, α = − s

XY
. (6)

The variance is

σ 2 = n

M

(
1 − 1

M

)
1 + nα

1 + α
. (7)

For a nonexclusion process the objects have no size or area,
so s = 0. The result is a binomial PMF of the bin counts
[3,6,21], with variance

σ 2
csr = n

M

(
1 − 1

M

)
. (8)

Using Eqs. (3)–(8), the CSR limiting value is

Icsr = 1

n
, (9)

for a nonexclusion process.

It is worthwhile mentioning that the limiting value in Eq. (9)
is the same as the one reported in Phelps and Tucker [6], but
we have derived ours in a slightly different way. The Phelps
and Tucker derivation assumes that both M � 1 and n � 1.
Under these assumptions the binomial PMF asymptotes to a
Poisson PMF [25] with variance σ 2

csr = n/M . Combining this
with their approximation of σ 2

0 = n2/M (for M � 1) gives
the same Icsr value as ours. The subtle difference in the way
we choose to calculate the index in Eq. (4), using Eq. (3), is
important for moderate values of M and n, even though the
CSR limiting value is the same when both M and n are large.

For an exclusion process s > 0, with variance

σ 2
xcsr =

n
M

(
1 − 1

M

) (
1 − ns

XY

)
1 − s

XY

≈ n

M

(
1 − 1

M

) (
1 − ns

XY

)
,

(XY � s). (10)

Note, when s = 1 the result is a hypergeometric PMF of the
bin counts. The CSR limiting value is

Ixcsr = 1 − ns
XY

n
(
1 − s

XY

) ≈ 1

n

(
1 − ns

XY

)
, (XY � s), (11)

where the subscript x denotes an exclusion process. Here, it
is convenient to define the average density or occupied area
fraction of the domain to be

d = ns

XY
. (12)

This parameter can also be viewed as an average probability
of occupancy of each bin. Equation (11) then becomes

Ixcsr = 1 − d

n
. (13)

C. Example

We consider two simple discrete models to help illustrate
the differences between the nonexclusion (s = 0) and exclu-
sion (s = 1) process CSR limits as the number of objects n

increases, for two values of bin number M . We will plot the
index I for different values of d. It should be noted that for
a nonexclusion process d cannot be interpreted as a density;
instead it is a rescaling of the number of objects within area XY

and, as such, there is no limiting value of d. However, for an
exclusion process, it is a scaled density or average occupancy,
and so 0 � d � 1.

We use a two-dimensional rectangular lattice with unit
spacing. Each site is indexed (i,j ) where i, j ∈ Z. For both
models we randomly select a lattice site within the domain that
may already be populated with objects. If the selected lattice
site is unoccupied, place the object on the site. If the selected
lattice is already occupied, then (i) for the nonexclusion
model, an object is added to the total number of objects
already residing on the lattice site and (ii) for the exclusion
model, the selected lattice site is rejected, and another one
is randomly chosen. These processes are repeated (for both
models) until the total number of objects in the lattice reaches
a predetermined value n.

Figure 1(a) illustrates a single realization of the exclusion
model, where occupied sites are blue and empty sites are
yellow; a single realization of a nonexclusion process is not
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FIG. 1. (Color online) Nonexclusion and exclusion models on a 20 × 10 lattice (X = 20, Y = 10) with M bins. (a) Single realization of
the exclusion model with n = 100, M = 50, and d = 0.5, showing occupied sites [blue (dark gray)] and empty sites [yellow (light gray)].
(b) Calculated values of the index I (from single realizations) for a nonexclusion [green (light gray)] and exclusion [blue (dark gray)] process
versus d . The dashed red curves are the limiting CSR values Icsr [Eq. (9)] (upper) and Ixcsr [Eq. (11)] (lower) with M = 50. The arrow in (b)
on the blue curve corresponds to the realization in (a). (c) As in (b) with M = 8. (d) Average index Ī (from N = 25 realizations) versus d for
M = 8. The dashed red curves are Icsr (upper) and Ixcsr (lower).

shown. Values of the index I are calculated using Eq. (4) for a
single realization of the nonexclusion and exclusion models
as a function of d, shown in Fig. 1(b). Even for a single
realization, the I curves compare well with the corresponding
limiting CSR values Icsr and Ixcsr, respectively. This is no
surprise, as by construction (randomly choosing lattice sites
to be populated with objects) we expect the distribution of
objects to be at the CSR state. However, the simple discrete
models provide a check that our analysis is correct.

When the density of the lattice is low, nearest-neighbor
interactions in exclusion processes are less significant, so that
we expect Ixcsr to be close to Icsr [Figs. 1(b) and 1(c)]. However,
the two CSR limiting values deviate sharply as d increases.
This can be explained by considering their values when n =
XY . In this case, the nonexclusion process limiting value is
Icsr = 1/XY , but for the exclusion process, the domain is fully
occupied (or at carrying capacity) with d = 1 and Ixcsr = 0 –
this is the evenly distributed state. Note that for a nonexclusion
process the evenly distributed state is approached more slowly,
only as n → ∞ does Icsr → 0.

For a single realization, it would be expected that reducing
the number of bins M (or number of samples) in calculating
the index I would increase the fluctuations about the CSR
limits; this is demonstrated in Figs. 1(b) and 1(c). To decrease
the fluctuations, we sum over N realizations and define the

average index as

Ī = 1

N

N∑
i=1

Ii, (14)

where Ii is the ith realization of the index for a specified value
of d. As expected, comparison between a single realization
[Fig. 1(c)] and the average over 25 realizations [Fig. 1(d)]
reduces the fluctuations about the CSR limits. The average
index compares very well with both CSR limits. Similar results
hold for other lattice dimensions with various values of M ,
when the values of MN are the same.

Although the number of bins M does not appear in either
formulas of the CSR limits (9) and (13), some care is needed
when interpreting results which may depend on M . For
example, consider a situation in which the number of bins
M equals the size of the domain XY . For an exclusion process
each bin count bj either has only one or no objects within it.
Equation (1) can then be rewritten as

σ 2 = 1

XY

⎛
⎝ n∑

j=1

(
1 − n

XY

)2

+
XY−n∑
j=1

(
n

XY

)2
⎞
⎠

= n

XY

(
1 − n

XY

)
. (15)
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FIG. 2. (Color online) Nonexclusion and exclusion models on a 20 × 10 lattice (X = 20, Y = 10) with M bins. (a) Single realization of the
exclusion model with n = 75, M = 8, Mp = 6, and d = 0.5, showing occupied sites [blue (dark gray)] and empty sites [yellow (light gray)].
The red (midgray on right) sites are inaccessible to (and therefore unoccupied by) blue (dark gray) objects. (b) As in (a) with M = 50 and
Mp = 40. (c) Average index Ī (from N = 25 realizations) for both nonexclusion [green (light gray)] and exclusion [blue (dark gray)] processes
versus dp , with M = 8 and Mp = 6. The dashed red curves are Iisl (upper) and Ixisl (lower). (d) As in (c) with M = 50 and Mp = 40.

The corresponding value of the index (4) is

I = 1 − d

n
, (XY � 1), (16)

which is the same as the CSR limiting value (13). According
to the calculation the distribution of objects is at the CSR
state, regardless of how they are spatially organized within
the domain, which is clearly not always the case. Typically
we find the index (4) and average index (14) to be a reliable
indicator of when the CSR state is reached if n � M . When
this is not the case we check that our calculations are
independent of M .

In the previous example, the whole region X × Y is
accessible to distributed objects. Now consider the case when
there is a subregion of the whole region which is inaccessible
to the objects. This can occur, for example, when tracked fluid
particles are distributed in a chaotic region of a laminar fluid
flow possessing periodic islands in which no fluid particles are
being tracked [6]. Hence there will be a number of occupied
or populated bins, denoted Mp, and a number of unoccupied
or unpopulated bins M − Mp. The variance of object counts
among the occupied bins is

σ 2
p = 1

Mp

Mp∑
j=1

(
bj − n

Mp

)2

. (17)

It is simple to confirm that the variance over the M bins
[Eq. (1)] can be expressed in terms of σ 2

p as

σ 2 = n2

M

(
1

Mp

− 1

M

)
+ Mp

M
σ 2

p. (18)

Assuming the populated bins are at the CSR state, new
limiting indexes can be obtained with a little algebra. For
the nonexclusion process replace σ 2

p with n
Mp

(1 − 1
Mp

) from
Eq. (8), then Eq. (18) together with Eqs. (3) through (4)
defines a limiting index for a nonexclusion process with island
regions [6], as

Iisl = M

M − 1

(
1

Mp

− 1

M
+ 1

n

Mp − 1

Mp

)
≈

(
1

Mp

− 1

M
+ 1

n

)
,

when Mp � 1. (19)

Similarly, for the exclusion process we replace σ 2
p with

n
Mp

(1 − 1
Mp

)(1 − dp), where dp = dM/Mp is the occupancy
within the fraction of bins occupied (0 � dp � 1). Using
Eq. (10), a limiting index for an exclusion process with island
regions is

Ixisl = M

M − 1

(
1

Mp

− 1

M
+ 1 − dp

n

Mp − 1

Mp

)

≈
(

1

Mp

− 1

M
+ 1 − dp

n

)
, when Mp � 1. (20)
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Since (1/Mp − 1/M) > 0, these limiting values are larger than
their corresponding limiting CSR values [Eqs. (9) and (11),
respectively].

Figure 2(a) is a realization of the exclusion model, where
the part of the domain shown in red is inaccessible to the
placement of objects. With the illustrated setup of bins and
restriction on the domain, the average index Ī is determined
for different object number n for both a nonexclusion and
exclusion process. Figure 2(c) shows that the computed values
of Ī as a function of dp compares well with the limiting values
Iisl and Ixisl, respectively. Similar to the two CSR limits, we see
that Iisl and Ixisl are close for small dp values. However, as dp

increases, the deviation between the two limits is much smaller
than for the CSR limits. This occurs because Iisl and Ixisl are
primarily controlled by the (same) area fraction of the domain
which is unoccupied, rather than when dp = 1 or n → ∞ for
the exclusion and nonexclusion processes, respectively.

Although this example enabled us to check our analysis,
it is a rather artificial situation. It is far more likely, in
practice, that the inaccessible part of the domain will overlap
a number of bins in the calculation, as illustrated with the
simple configuration in Fig. 2(b). The partially populated bins
are now no longer at the CSR state. Hence, the limiting values
Eqs. (19) and (20) become lower bounds for a calculation of
the index, as demonstrated in Fig. 2(d).

III. CASE STUDIES

We consider three case studies drawn from different areas:
fluid mechanics, agent-based models and cell colonies.

A. Nonexclusion process: Lagragian fluid particles

Laminar fluid flows occur in fluid mixing applications, for
example, in a batch mixing process [5,7,8], where a vat of fluid
is stirred by a number of rods. The stirring motion of the rods
is usually executed periodically; it is called a stirring protocol.
The mixing is known to be particularly effective provided that
the Lagrangian particle paths are chaotic [1]. Nevertheless,
even in a chaotic flow, there may be small [6] or large periodic
islands [7,8], prohibiting an even spatial distribution of a
passive tracer (tracked Lagrangian fluid particles) within the
entire fluid flow domain.

Often the goal is to assess the quality of the fluid mixing for
a given device, such as a stirring protocol for a batch mixer. A
variety of mixing measures can be used [5]. Instead of these,
we choose to use the index I and the limiting values Icsr and
Iisl. This extends the work of Phelps and Tucker [6], where
fluid particles were tracked in a time-periodic sine flow [26],
on a two-dimensional rectangular domain, where the velocity
field can be integrated analytically.

Here we consider a more complicated situation, where
the geometry of the flow domain changes with time as the
stirring rods move through a very viscous fluid in a circular
vat (or domain). A slow viscous flow (Stokes flow) is simulated
using the solution of Finn et al. [4] to determine the velocity
field numerically. We choose the origin at the center of the
circular vat and scale the lengths so that the vat has unit radius.
Furthermore, we assume that the fluid particles, in addition to
being advected with the flow, also diffuse, with diffusivity D.

t=0, M=1168, n =10000Stirring protocol (b)(a) t

FIG. 3. (Color online) Stirring protocol and initial condition for
fluid particle simulations in a vat of (scaled) unit radius. (a) Time-
periodic stirring protocol, the stirring rod (red, small open circle)
has radius r = 0.02. (b) The vat is partially covered with a total of
M = 1168 square bins, each with equal area A = 0.052. A total of
nt = 104 particles are chosen to be tracked, initially evenly distributed
among Mp = 4 bins, indicated by a blue square.

Following Aref et al. [2] and Finn et al. [5], we replace
the usual advection equations with the stochastic differential
equations

dx = u(x,y,t)dt + dNx, (21)

dy = v(x,y,t)dt + dNy, (22)

where (u,v) is the fluid velocity, while dNx and dNy are in-
dependent, identically distributed, Gaussian random variables
with mean zero and variance 2Ddt .

We examine the stirring protocol illustrated in Fig. 3(a),
where a single stirring rod (red) moves through the fluid
along a prescribed path. The time-periodic stirring protocol
is normalized to have unit period. This stirring protocol is
known to have visible periodic islands within the flow when
there is no diffusion [8], making it an excellent candidate for
us to analyze here.

Some further analysis is required to overcome the problem
of dealing with a circular domain (the vat) in the calculation
of the index and the CSR limit. Therefore, we partially grid
most of the vat into M square bins each with equal area A,
shown in Fig. 3(b). The gridded region (with area MA) used
in the calculations is now a patchwork of square bins, rather
than a rectangular domain. Let nt denote the total number of
fluid particles tracked in the vat. Of course, they may not all
lie within the gridded region, and furthermore, the number
within the gridded region, denoted by n, may change with
time, affecting the calculation of the index in Eq. (4).

This also means that the CSR limit in Eq. (9) varies since
it also depends on n. Of course, this is not an issue if we are
content with calculating the CSR limit for each calculation of
the index. However, we choose not to proceed this way and
instead make an approximation to the CSR limit. Assuming
that the entire fluid flow domain is at the CSR state, the number
particles within the gridded region can be approximated by a
constant, determined by the area fraction which is gridded,
namely, n ≈ (MAnt )/π . Hence, the CSR limit in Eq. (9)
becomes

Icsr = π

MAnt

. (23)
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FIG. 4. (Color online) Particle simulations and evolution of the
index I . (a–d) Simulations of the initial condition shown in Fig. 3(b).
(e) Values of the index plotted as a function of time are given by the
blue (dark gray) curves: D = 0 (upper) and D = 0.001 (lower). The
dashed lines are limiting values of Iisl [Eq. (24)] for Mp = 4 [green,
top (light gray) line] and Mp = 742 (red, middle line). The lowest
dashed red line is Icsr from Eq. (23).

Typically in our calculations nt � n � M > Mp � 1, and so
the limiting value in Eq. (19) just simplifies to

Iisl = 1

Mp

− 1

M
. (24)

The initial condition for our simulations has 104 fluid
particles evenly distributed among four bins as in Fig. 3(b).
This makes nt = 104 and Mp = 4. The initial position of the
particles is in a region of the fluid flow which is known to
be chaotic (see the iterated mapping plots in Binder [8]).
Using Eqs. (21) and (22), we track the particles as they move
within the fluid for two values of the diffusivity, D = 0 and
D = 0.001. We illustrate the resulting fluid particle positions
at two times in Fig. 4(a–d).

When there is no diffusion, the particles eventually (after
about 50 periods) appear randomly distributed throughout a
chaotic region of the fluid flow, and the number of populated
bins levels to a constant value of 742, giving Mp = 742. There
are six visible periodic islands and an outer annular region in
which there are no particles [Fig. 4(b)]. The upper blue curve in

Fig. 4(e) shows how the index decays with time. It asympototes
to a value which is slightly greater than the limiting value,
Iisl, obtained from Eq. (24) with Mp = 742. Interestingly, for
early time, the index increases above the other limiting value
of Iisl ≈ 1/4 [Eq. (24)] with Mp = 4, illustrated by the dashed
green curve in Fig. 4(e). This means, at early times, the number
of occupied bins will decrease from four so that the mixing
becomes more segregated.

In contrast, when there is diffusion, the particle positions
(after about 70 periods) appear to be randomly distributed
throughout the entire domain, as seen in Fig. 4(d). The time
evolution of the index (lower blue curve) tends to the CSR
limit given by Eq. (23). This indicates when the fluid mixture
has reached an homogenized state.

B. Exclusion process: Cellular automata agents

Discrete CA models can assist in the understanding of
underlying mechanisms in biological systems; for example,
neural crest cell (NCC) invasion in the developing enteric
nervous system [9,11,12], and designing tissue engineered
scaffolds [15,27]. The agents follow simple rules governed by
probabilities. The resulting agent distributions are stochastic
and illustrative of real biological observations and experi-
ments. This means that information regarding the distribution
of CA agents is a crucial part of the analysis.

In some circumstances, the average occupancy of the
CA model can be intimately linked to a continuum model
[9–11,28], providing an understanding of the variety of scales
of interest in a biological process. A continuum model’s
predictions can also be compared to the average index Ī

for a simple exclusion process. Therefore, we choose to
investigate the motility mechanism in the CA model for the
NCC invasion process [9,10], which, on average, satisfies the
linear one-dimensional diffusion equation.

Consider a domain (X × Y rectangular lattice of integers)
which contains n agents at any time t . During a single time step
of CA model from t to t + 1, the agents are selected randomly
and given the opportunity to move. An agent at (x,y) that
is chosen to be motile attempts to move to one of the four
nearest neighbours (x ± 1,y), (x,y ± 1) each with probability
1/4. If the target site is occupied for any attempted move, it is
aborted, as required in an exclusion process. With the initial
condition given in Fig. 5(a), Figures 5(b) and 5(c) illustrate a
single realization at two times (t = 10 and t = 150).

To compare the CA model’s results with the continuum
model, we first define ci(x,t) to be the total number of agents
in column x of the lattice after t steps of the ith realization.
Then for N realizations with the same initial condition, the
average CA agent concentration (or average agent column
density) is

C(x,t) = 1

NY

N∑
i=1

ci(x,t). (25)

The corresponding continuum model [9,10] is the linear one-
dimensional diffusion equation

∂C(x,t)

∂t
= D

∂2C(x,t)

∂x2
, (26)
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FIG. 5. (Color online) CA exclusion model results. (a) The initial condition with n = 100,M = 8,d = 0.5,Mp = 4,dp = 1. (b–c) Typical
realizations of the CA model at time t = 10 and t = 150. (d) Plots of the (average) CA concentration [blue (dark gray) line] compared with
continuum solution to Eq. (26) with D = 1/4 (dashed red line). (e) Evolution of the average index Ī [blue (dark gray) line] with time over
50 realizations. The upper dashed red line is the limit Ixisl (at t = 0 with Mp = 4). The lower dashed red line is Ixcsr in Eq. (10). The middle
dashed green curve is the time evolution of the index computed with the asymptotic form given by Eq. (27).

with diffusivity D = 1/4 (when the agent movement probabil-
ity is unity, as chosen here). With the initial condition given in
Fig. 5(a), a comparison between the average CA concentration
and the solution of Eq. (26) is illustrated in Fig. 5(d). We find
that the CA concentration C(x,t) ≈ 0.5 = d for all values
of x when t > 150. Therefore, we expect the distribution
of agents to be at the CSR state at this time. Furthermore,
standard separation of variable techniques can be used to solve
Eq. (26). We expect the long-time solution to be asymptotic to
the first term of this series expansion. The concentration can
be converted into a number bj in each bin, by multiplying by
bin height and integrating the concentration over the width of
each bin. For the initial data and geometry in Fig. 5(a), it is
simple to verify that

I (t) ∼ Ixcsr + 1

σ 2
0

(
Lx

Ak

ωk

e−ωk
2Dt

)2

,

Ak = 2

kπ

(
sin

3kπ

4
− sin

kπ

4

)
, ωk = kπ

X
. (27)

Here X = 20, Lx = 5 is the height of each bin, D = 1/4 and
k = 2 corresponds to the leading term in the series expansion
for C(x,t). The first term in Eq. (27) accounts for random
fluctuations in the discrete approach versus the continuum
approach.

Figure 5(e) shows the evolution with time (blue curve) of
the average index Ī . The upper dashed curve is the limiting
value Ixisl from Eq. (20) with Mp = 4, dp = 1, similar to what
we have seen in the fluid mixing study. The lower dashed red
curve is the limiting value Ixcsr from Eq. (11), which indicates
the distribution of agents is at the CSR state when t > 150. The

dashed green curve is the time evolution of the index computed
with the asymptotic form of the continuum solution to Eq. (26),
given by Eq. (27). Just the first term (with k = 2) in the series
expansion gives an excellent fit to the evolving index, again
verifying that the continuum model provides the appropriate
approximation to the average behavior of randomly moving
objects in an exclusion process.

Although only the motility mechanism has been inves-
tigated here, we have demonstrated that the index and
limiting values can, in principle, be used to assess the spatial
distribution of agents in more sophisticated CA models.

C. Exclusion process: Colony of Escherichia coli cells

The spatial distribution and organization of many cell
colonies have been analyzed [16–19]. Here we calculate the
index for a colony of Escherichia coli (E. coli) cells growing in

FIG. 6. (Color online) Typical image of a colony of E. coli cells
[reprinted from Volfson et al. [16] Fig. 1(c); with permission from
NAS]. On top of this image, a grid of equal sized bins has been placed,
here M = 102 and n = 1020.
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a microfluidic chemostat [16], such as the one shown in Fig. 6,
where equal-sized bins have been placed over the image. We
counted the number of cells in each bin. When an individual
cell overlapped with a number of bins, it was included in the
bin count which contained the majority of the cell. Notice also
that individual cells vary in size. We calculate the index I

for the cells in Fig. 6. Assuming that the distribution of
cells is at the exclusion CSR state, this provides us with an
estimate of the area fraction or density of the cells since
d = 1 − nIxcsr = 0.85, from Eq. (13). This compares well with
value of the area fraction d ≈ 0.84 obtained by Volfson et al.
( [16], Fig. 1G).

This demonstrates that our index I can be used in a
simple straightforward way to approximate the density of a
population of cells, provided it is at the CSR state. Of course,
we recognize that our formulations do not explicitly account
for the variation in cell size or cells overlapping with a number
of bins. Heuristically though, these effects cancel each other
out, on average, as shown next.

First we investigate a case when an object may overlap with
a number of bins. We consider the following exclusion model
which corresponds to s = 3, in contrast with our previous
exclusion models with s = 1. We randomly select a lattice site
(x,y) within the domain. If the selected lattice site [Fig. 7(a),
blue markers] and two neighboring sites (x ± 1,y) [Fig. 7(a),
green markers] are unoccupied they are populated with the
three markers (one blue and two green markers) denoting the

object. If any of the selected sites is already occupied, then the
process is rejected. This process is repeated until the total num-
ber of objects in the lattice reaches a predetermined value n.
A typical simulation is shown in Fig. 7(a) with n = 24. Values
of the average index Ī (blue line) are calculated as a function
of d, shown in Fig. 7(b). Any given object is included in the
bin count in which its blue marker lies. The results compare
well with the Ixcsr limiting value. Notice that for this particular
exclusion process (with s = 3), we are only able to simulate
results when d < 0.72.

Finally, we consider an exclusion process where there are
multiple species of different size objects. By way of example,
consider objects with s = 3 and others with s = 1 [Fig. 7(c)].
Each subspecies can be considered individually, and their
computed index matches their Ixcsr limiting values [Fig. 7(e)].
Treating all the objects together [Fig. 7(d)], we find that an
average d̄ = d1 + d2 gives the correct Ixcsr limiting value
[Fig. 7(e)]. In general, K species can be considered, and
the total density is just d̄ = ∑K

i=1 di = ∑K
i=1 nisi/(XY ) =

ns̄/(XY ), where ni is the number of objects with area
si , di = nisi/(XY ) and s̄ is the area of an average
object.

IV. DISCUSSION

We have developed new measures which indicate whether
or not a spatial data set, generated from an exclusion process,
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FIG. 7. (Color online) Exclusion models
with different sized objects. (a) Typical real-
ization with d = 0.36 and M = 8. (b) Calcu-
lated values of the average index [blue (dark
gray)line], N = 25. The dashed red curves are
the limiting values of Ixcsr. (c) Typical realiza-
tion with multiple species with d1(s = 3) = 0.3
(black markers) d2(s = 1) = 0.3 [green (light
gray) markers], where n2 = 3n1. (d) The same
realization as in (c), but all markers now blue
(dark gray and lighter gray) with d̄ = d1 + d2 =
0.6. (e) Calculated values of the average index for
black objects (s = 3) (black, top curve), green
(light gray, lowest curve) objects (s = 1), and
totality of objects (d̄ = 0.6, s̄ = 1.5) [blue (dark
gray), middle curve], N = 25. The dashed red
curves are the limiting values of Ixcsr. Here,
where n2 = 3n1.

041914-8



QUANTIFYING EVENLY DISTRIBUTED STATES IN . . . PHYSICAL REVIEW E 83, 041914 (2011)

is at its most evenly distributed state, the complete spatial ran-
domness (CSR) state. This generalizes the work of Phelps and
Tucker [6] for chaotic laminar flows, which is a nonexclusion
process. The fundamental difference between the distribution
of objects from a nonexclusion and an exclusion process is
characterized by their limiting CSR values. There are fewer
ways in which objects can organize themselves (spatially) in
an exclusion process than for a nonexclusion process, which
leads to the corresponding CSR limit being equal to the
evenly distributed state when the density d = 1. Nonexclusion
processes only approach the evenly distributed state when the
number of objects n → ∞ since there is no (exclusion) spatial
restriction imposed on them.

Using three case studies, we have demonstrated the ease in
which our measures can be implemented. For the nonexclusion
process, we considered a chaotic laminar flow, as did Phelps
and Tucker [6]. We have extended their work from a square to
a circular domain, either with or without molecular diffusion,

and used the index measures and limits to determine the time
evolution of the mixing state. For the exclusion processes, the
demonstrated versatility of the index in determining the spatial
state opens up many new areas. For example, in future studies
of the CA model, we will extend the derivations of the indexes
by incorporating additional mechanisms such as domain
growth and agent proliferation [28]. In addition, refinements
to the formulations accounting for cell-size variation and cells
that occupy more than one bin (e.g., E. coli cell study) is an
interesting topic for future research.
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