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ABSTRACT

The food and pharmaceutical industries are generally a nation's largest manufacturing

sector - and importantly one of the most stable. Fermentationr will continue to grow in

importance as a unit operation as the range of potentially bio-engineered micro organisms

(for either extra-cellular or intra-cellular product) increases. In these industries plarifailure

can be costly - and sometimes catastrophic to public health with survival of unwanted

pathogenic micro organisms in the plant or product. Plant failure can't always be attributed

to human effor, sometimes the failure can be a result of changes inside the system itself.

Davey and Cerf (2003) introduced the notion of Friday l3th Syndrome, i.e. the unexpected

failure of a well-operated plant, by novel application of Quantitative Risk Assessment

(QRA) to a UHT milk bioprocess.

In this thesis the notion of Friday 13th Syndrome is used to develop a new and rigorous

mathematical model of a generalised, continuous fermenter to gain insight into the

likelihood of bioprocess failure in an otherwise well-operated plant. Unexpected failure is

defined as washout of microbial cells from the fermenter. This new model is developed for

a continuous, anaerobic fermenter based on widely employed Monod process model. All

the cells in fermenter are in their exponential growth phase. Continuous fermentation has a

number of advantages over batch, or batch-continuous, such as reduced operating costs.

The model developed requires input values of maximum specific growth rate (¡tn*), yield

coefficient (I,r") and Monod constant (K") for a selected micro organism. The output

values of particular interest from the model include: the productivity of the continuous

fermentation (xD ), the maximum dilution rate (D,,,*) and the dilution rate at maximum

productivity (Dn,*o,,tp,.,). Simulations for continuous operation from the fermenter model

are carried out using a Microsoft ExcelrM spreadsheet with an add-in @Rist{M

(pronounced at risk) version 4.5 (Palisade Corporation) with some 100,000 iterations'frottt

Monte Carlo sampling of input parameters. Values of the input parameters took one of two

forms. The first was a traditional or Single Value Assessmenl (SVA) as defined by Cerf and

Davey (2001) in which a single, "best guess" or mean value of the parameter is used. The

I 
see Appendix A for a definition of some important terms used in this research.

2 experience with the model highlighted that stable output values were obtained with 100,000 iterations
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simulation output therefore is a single value of a required parameter. A sensitivity analysis

is carried out with SVA values abstracted from the published literature plus each of:

1, 5, 10 or 15 Yo Variability. The alternate form was aMonte Carlo Assessmenl (MCA)

(Cerf and Davey 2001) in which the "best guess" values take the form of a probability

distribution around the mean value. Many thousands of randomly sampled values for each

input parameter are obtained using this Monte Carlo sampling. In other words, in the QRA

the input values of the parameters take the form of a distribution of values. The output

therefore is a distribution of values with each assigned aprobability of acfially occurring.

The micro organism selected for this study was Escherichia coli. This is a Gram negative,

vegetative and non-spore forming bacterium is widely used in fermentation. Values for the

model input parameters K" , þn,* and Y,,, were selected from the published bioprocess

literature and used to define a RiskNormal distribution for each.

A comparison of simulation results from SVA and QRA with MCA sampling underscored

that the combined effect of small variations in the bacterial growth parameters (K,, lt,,*

and Y,,,) has a highly significant effect on de-stabilising a well-operated fermenter - and

sometimes can lead to catastrophic failure i.e. washout. These findings highlighted that a

more accurate determination of the natural microbiological Variability in ¡tn,^ for E. coli

was needed for a more realistic simulation. To do this, extensive published data (n : 191)

for E. coli growth, over a range of temperature 10 oC < T < 45oC, were collated. The

predictive model for growth of E. coli that was selected was the cardinal temperature

model of Rosso (Rosso et. al. 1993) - because it is widely used and generally gives a good

fit to growth data. In this model þn,^ is a function of four parameters. These are the three

cardinal temperatures (4,,¡, Too, and Tu,^) and the optimum specific growth rate (¡t"0,).

Non-linear regressions to fit the Rosso model to the data for E. coli growth were carried

out using R software version 2.2.0 (R Foundation for Statistical Computing). Resulting

estimates and standard deviations of each of the four parameters of the Rosso model for

growth were used to define a RiskNormøl distribution for each data set collated. With the

E. coli growth now more accurately defined, a more realistic MCA simulation of the

fermenter model was carried out.
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Findings of the resulting MCA simulations of the continuous fermenter underscored that

the fermenter could exhibit Friday 13th Slmdrome - i.e. failure due to washout - despite a

better knowledge of the value of the input fermenter parameters for E. coli. This is because

of the naturally occurring Uncertainty and Variability in the microbiological input

parameters for any micro organism. This practical insight into an otherwise well-operated

continuous fermenter contrasts sharply with the frequently adopted traditional or SVA

analysis in which the natural Variability in microbiological parameters is simply not

accounted for. The sensitivity analyses used with SVA does not account for the combined

effect of changes in the input parameters. A QRA with MCA sampling therefore gives the

more realistic, and indeed, practical, insight into fermenter operation.

The results of simulation of continuous fermentation suggest that Variability in the input

microbiological parameters has a highly significant effect on productivity of the

fermentation process - and sometimes can lead to washout. However, a low rate of failures

may be obtained if the relative importance of input variables on the process performance

can be accurately identified.

This research is the first application of its kind using an QRA, and although only one micro

organism and one model for micro organism growth on a particular medium within the

fermenter is used, a general principle has been illuminated - i.e. despite the best possible

estimates of growth rate parameterc, Cltance carr lead to failure of well-operated plant.

The potential of applying this approach to a global þod process has been glimpsed through

this research. A global food process is one in which there are two or more process unit

operations combined (pers. comm. K R Davey). The analyses and approach outlined here

could, in principle, be applied to a range of single or connected unit operations such as the

sterilisation of the fermentation media (and equipment surfaces), and downstream

processing operations of fermented products - or perhaps more widely - to the pressure

vessels. What will be required is a measure, or very clear definition, of what constitutes

failure in the unit operation - together with realistic values of all operating parameters.
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The food and pharmaceutical industries are generally a nation's largest manufacturing

sector, and importantly, one of the most stable (Davey 2001). These industries are

especially important to Australia as a major food exporter. One of the most important and

widely used unit operations is fermentation.

Of particular research interest is the practical notion that no matter how good the design

and operation of plant there will be an occasional failure (Davey and Cerf 2003). Failure in

these industries can be a serious risk to public health. Most often there is too small a data

set for detailed analyses however - especially if failure is simply put down to operator

error. Additionally, data for plant failure are often not available for analyses by researchers

because of "commercial in confidence" restrictions (Davey 2001). In recent years, new

mathematical approaches have been pioneered that can offer insight into process operation

and bioprocess plant failure (Cerf and Davey 2001; Davey and Cerf 2003). These

approaches are based on the input parameter being a distribution of values selected from

Monte Carlo Assessment (MCA) sampling, rather than on the traditional or Single Value

Assessment (SVA).

The principal aim of the research presented here is to assess the novel application of a

Quantitative Risk Assessment (QRA) methodology to a continuous fermenter. A

continuous fermenter is selected because it has advantages over a batch, in that greater

control over product quality and cost can be maintained. Process failure is defined as

unexpected fermenter washout, or Friday 13th Slmdrome (Davey and Cerf 2003).

The justification for this research is that it will aid a greater understanding of factors that

contribute to fermenter washout, and, highlight the impact of the combined effect of

Uncertainty and Variability in the microbiological input parameters that define the micro

organism and its growth in the fermenter.

A logical and step-wise approach to this research was adopted.

The relevant literature is reviewed in Chapter 2. This chapter introduces both SVA and

MCA approaches and highlights that there is no published literature on the novel

application of QRA to a continuous fermenter. This is despite the obvious importance of

this unit operation to the food and pharmaceutical industries and the possible practical
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insights that might be gained. Within the MCA approach the notion of Uncertainty,

Variability and Chance are introduced and defined. A fermenter model based on that of

Monod growth kinetics is selected for a model of a continuous fermenter. In the

microbiological literature a continuous fermenter is described as a Chemostat. To the

biochemical engineers it is a Continuous Stined Tank Reactor (CSTR).

Chapter 3 describes in detail the development of the Monod process model for the

continuous fermenter. This chapter begins with an SVA approach to the model

development. The MCA model is then presented. Limited published data for the growth of

Escherichia coli are used to specify fermenter input growth parameters. A number of

illustrative simulations are presented and discussed. The role of Uncertainty and

Variability in de-stabilising a well-operated continuous fermenter is illustrated. This

chapter concludes with a discussion of the need for greater accuracy in input E. coli growth

parameters.

In Chapter 4 extensive published data are collated for the growth kinetics of E. coli. The

predictive growth model of Rosso (Rosso et. al. 1993) is fitted to these data using non-liner

regression techniques. This growth model was selected as it is widely used and generally

gives a good fit to growth data. Resulting estimates from the non-linear regression analyses

are presented and discussed.

Chapter 5 presents QRA of the continuous fermenter with MCA random sampling carried

out using the more accurate revised data for growth of E. coli, A more realistic simulation

output obtained using the revised data is presented and discussed.

Chapter 6 is a summary of the findings and conclusions of this research together with the

recommendations for future work.

The definition of some important terms used in this research is given in Appendix A. All

notation used is listed and defined at the back of this thesis. A list of refereed publications

arising from this research is presented in Appendix E.
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2.1 Introduction

The food and pharmaceutical industries are some of the most important industries world-

wide. Fermentation as a unit operation is widely used in these important industries. Failure

of fermentation in the food'and pharmaceutical industries could have catastrophic impact

on public health.

Mathematical models are widely used to define, control and optimise unit operations. The

application of mathematical modelling to unit operations is widely used in engineering

research.

In the mathematical modelling of fermentation, process parameters describing growth

characteristics of the selected micro organism must be combined with other parameters

such as fermenter dilution (feed) rate, yield coefficient and productivity.

In this chapter the principles in design of a continuous fermenter are first reviewed. The

Monod process model for a continuous fermenter is selected as it is widely used and

understood. A summary and collation of predictive growth models used in fermentation is

then presented and discussed. Predictive models are conveniently classified into two

groups: those simulating the number of micro organisms as a function of time, and; those

simulating the growth rate as a function of temperature. The mathematical notions of

Uncertainty (i.e. level of ignorance) and Variability (i.e. effect of Chance) inherent in QRA

are then introduced and defined. The principles in applying QRA are then reviewed, and

the potential for application to a continuous fermenter discussed. Although there are

numerous examples in the literature of analyses of a continuous fermenter, it is shown that

a Quantitative Risk Assessment (QRA) has not been applied however.

2.2 Continuousfermentation

Fcrmentation is defined as the enzymatically controlled transformation of an organic

compound.

Foods have known to be fermented since Neolithic times (Shurtleff and Aoyagi 2004). The

earliest types were beer, wine, and leavened bread (made primarily by yeasts).



6

Fermentation of fruits was also discovered in antiquity. The ancient Greeks believed wine

had been invented by the god Dionysus (Ruck 1982). Methods for the fermentation of

milks, meats and vegetables have been described with earliest records dating back to 6000

BC and the civilisations of the Fertile Crescent in the Middle East

(Caplice and Fitzgerald 1999} There is strong evidence that people were fermenting

beverages in Babylon as early as 5000 BC and in ancient Egypt about 3000 BC.

In the late 1700's Lavoisier illustrated that in the process of transforming sugar to alcohol

and carbon dioxide (as in wine), the weight of the sugar that was consumed in the process

equaled the weight of the alcohol produced (Shurtleff and Aoyagi 2004). In 1810 the

fermentation process was accurately summarizedby Guy-Lussac, namely as:

C6H,O6 + 2CO2+2C,H6O (2.r)

By the middle of the 19th century, Caplice and Fitzgerald (1999) stated that two events -
the "industrial revolution and blossoming of microbiology as a science", had occurred

which had a very signihcant impact on the manner in which food fermentations were

performed and understood. According to these authors, the industrial revolution resulted in

the concentration of large masses of populations in towns and cities. Consequently, the

ability to provide service to the new markets required products to be made in large

quantities necessitating the industrialisation of the manufacturing process, as highlighted

by Caplice and Fitzgerald (1999).

Caplice and Fitzgerald (1999) highlighted that the beginning of microbiology as a science

from the 1850's onwárds resulted in the biological basis of fermentation being understood

for the first time. According to these researchers the essential role of bacteria, yeasts and

moulds in the food fermentation came to be understood that resulted in more controlled

and effi cient fermentations.

However it was in 1857 that the French chemist Louis Pasteur (1522-1895), in a series of
now classic investigations, proved conclusively that fermentation was initiated by living

organisms (Snewin 1999; Bordenave 2003). Pasteur proved that alcoholic fermentation

was brought about by yeasts (Bordenave 2003).
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Sir Alexander Fleming was the individual who serendipitously "discovered" penicillin

(Ligon 2004).In 1928, while working on influenza virus, he observed that a mould had

developed accidently on a Staphylococcus aureus culture plate and that the mould had

created a bacteria-free circle around itself. The mould culture prevented the growth of the

bacterium, even when diluted many times. He named the active substance as "Penicillin".

Ligon (2004) highlights that despite the determination displayed by Fleming, little notice

was given to his discovery for more than a decade, and the active substance was not

isolated. According to Ligon (2004), in 1939 Florey along with Chain, led a team of British

scientists who successfully manufactured the drug from the liquid broth in which penicillin

grows. The Australian, Howard Florey (later Lord Florey) and a graduate of the University

of Adelaide, developed methods for mass production.

In 1958, the use of continuous fermentation in New Zealand sparked a revolution in the

way beer was brewed around the world by (Kennedy 1996). New Zealand was the first to

exclusively brew beer using a continuous fermenter.

Continuous fermentation is carried out in a Continuous Stirred-Tank Reactor (CSTR3).In

the field of microbiology, a CSTR is referred to as a Chemostat. From a biochemical

engineering view, a continuous fermenter is actually a bioreactor where the

transformations are carried out by the action of living cells (Lee 1992).

In addition to a continuous fermenter, the transformations can be carried out in either batch

or fed-batch operation. A continuous fermenter offers advantages over a batch, or fed-

batch operation. In a continuous fermenter, the parameters such as cell concentration,

substrate concentration, pH, viscosity and other physicochemical properties within the

fermenter, remain constant with time, and permit greater control than is possible as with a

batch process where these properties change with time (Aiba et. al. l9l3; Blanch and Clark

1997). Continuous operation is used for higher production rates as compared to batch

operations in which large-scale production is more difficult. Continuous operation can

reduce operating costs over a batch operation, which requires higher labour costs, and

therefore is widely used in most of the food and pharmaceutical industries. One

disadvantage however with continuous operation is a high risk of strain mutations in

comparison with batch or fed-batch operation.

3 sometimes in the literature referred to as CSTF- Continuous Stined Tank Fermenter.
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A continuous fermentation aims to provide constant environmental conditions for growth,

product formation and generally supplies uniform-quality product (Shuler and Kargi 2002).

Figure 2.1 is a schematic diagram of a continuous, stined-tank, fermenter. In this

fermenter, fresh medium is fed continuously with a feed rate ( F ) to the fermenter of

volume ( Z ). Fermented product is removed continuously. The products, metabolic waste

and micro organisms are removed in the effluent stream, where, x is the concentration of

the micro organisms, s is the concentration of the substrate, and x o is the concentration of

the product. The feed stream (x¡), where suffix/represents the feed, is usually sterile so

that x :0.

In a successful continuous fermenter, the micro organisms are always in the exponential

growth phase. During the exponential growth, the entire metabolic effort of the micro

organisms is directed to reproduction (McMeekin et. al. 1993). The exponential growth of
a microbial population is preceded by a period called lag phase (Baranyi and Pin 200I:

Kutalik et. aL.2005). A lag phase in micro organism growth model means no product i.e.

by having the micro organisms in the growth phase, product formation is initiated

immediately in the fermenter. A microbial growth curve shows at least four identifiable

phases: the lag phase, growth (or exponential) phase, stationary phase, and death (or

decline) phase (Monod 1949;Davey 2001; Zwieterin g et. al. 1991). Although the lag phase

of the micro organisms is important in food microbiology, it has no importance in the

operation of a continuous fermenter (Baranyi and Roberts 1994; Davey 2001).

The micro organisms in a continuous fermenter can also be immobilised to maximize their

retention within the fermenter and thereby increase productivity, for e.g. yeast immobilised

in thread-type, gel particles in a continuous beer fermentation (Que 1993); Candida

tropicalis immobilised on porous glass and cultivated in a continuous fermenter to produce

xylitol from xylose (Silva and Afschar 1994), yeast immobilised on alginate beads to

convert ethanol to glucose (Gilson and Thomas 1.994), and Saccharomyces cerevisiae

immobilised in calcium alginate gel beads were used for continuous ethanol fermentation

from cane molasses and other sugar sources (Nagashima et. al. 2004).
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feed, and p represents the product (after Lee 1992).
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The specific growth rute (¡t) of a micro organism is a measure of how fast the micro

organisms grows. The units of ¡t arc time-t . The greater the value of the specific growth

rate, the faster is the growth of the micro organisms.

The specific growth rate also depends on the substrate concentration within the fermenter.

The specific growth rate (¡t) decreases as the substrate concentration decreases and

eventually lead to no growth i.". tt = 0. The value of the specific growth rate is relatively

constant during exponential growth (McMeekin et. al. 1993). However, according to

McMeekin et. al. (1993), exponential growth can be inhibited either by the availability of

oxygen in an aerobic fermentation, or poor mixing within the fermenter in an anaerobic

fermentation. In which case, growth of micro organisms is mass transfer limited rather than

limited by kinetics.

2.3 Modellingcontinuousfermentation

2.3.1 Monod model

ln 1949, Monod published a "milestone contribution" to studies of micro organisms that

gave a systematic description of the growth of the micro organisms and led to the notion

that a limited number of growth constants define the behaviour of the micro organism

(Ferenci 1999).

The work of Monod (1942) underpins CSTR theory

The Monod process model form is one of the most widely used models for predicting the

effect of the substrate concentration on the specific growth rate of the micro organism. One

key reason is that it includes a term for substrate concentration.

The Monod process model is empirical. It is a functional relationship between the specific

growth rate of a micro organism and the substrate concentration within the continuous

fermenter.
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The assumptions of the Monod model are that the:

1. Growth rate is limited by deficiency of a single chemical species

2. Fermenter is well-mixed i.e. the sterile feed is uniformly dispersed throughout the

working volume of the fermenter

3. Kinetics follow Langmuir-Hinshelwood kinetics or Michaelis-Menten kinetics for

enzpereactions (Blanch and Clark 1997; Shuler and Kargi 2002).

When applied to growth of micro organisms in a continuous fermenter the Monod process

model is given by:

þ= þn^s
K" +"

(2.2)

where, ¡r is the specific growth rate of the micro organism (h-r), lt,,* is the maximum

specific growth rate (h-1), K" is the limiting nutrient concentration at which þ = lt,,^ I 2,

and s is the substrate concentration (kg --').

The Monod process model, together with a number of other growth rate models can be

conveniently described by a single differential equation (Shuler and Kargi 2002):

(:2.3)

where, a¡= þlll,,*, s is the limiting substrate concentration, and K, L and M are

constants.

Table 2.1 summarises those constants that apply for the Monod, and a number of other,

related growth rate models. These values of the constants, given in the Table 2.1, when

incorporated in the generalised differential equation describe the other forms of Monod

process model such as Tessier, Moser and Contois.

# = KotL çr- a))'
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Bailey and Ollis (1986) pointed out that, in some instances, these later three Monod related

model forms, Tessier, Moser and Contois give a better fit to the experimental data than the

Monod form.

The Monod form is however the most widely used as it is "sufficient" for most kinetic

studies (Hoskisson and Hobbs 2005) and it is conveniently easy to use. Application of the

Monod form requires a growth model for the particular micro organism that it is, a

functional relationship of the form:

¡r u, * : f (environmental factors) (2.4)

where, the environmental factors include: temperature, pH, water activity, oxygen

availability, etc. (Davey and Daughtry 1995; Davey 2001). The relationship('s) of

Equation (2.4) canbe substituted into Equation (2.2).

2.3.2 Growth models

A number of predictive modelling approaches to the growth of micro organisms in a

continuous fermenter have been published in the literature. Predictive growth models are

used to describe the behaviour of micro organisms under different physical or chemical

conditions such as temperature, pH, and water activity. In engineering applications

predictive models are widely used to approach optimal operation.

A number of categorisations and comparisons between these growth models can be made

(Adair et. al. 1989; Davey 1989b; Davey 2001). Models of interest to this research can be

conveniently classified into two groups - Models used for simulating the number of micro

organisms as a function of time, and; Models used for simulating the growth rate of the

micro organism as a function of temperature. These two model types are summarised in

Table2.2.

Those models used for simulating the number of micro organisms as a function of time

(logN ) are presented in the upper part of Table 2.2. Those for simulating the growth rate

(1t,,*) as a function of temperature are presented in the lower part, The growth models of

the upper part of the Table 2.2 arc reviewed first.
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Table 2.1 Constants for a generalised differential rate equation:

dt 
- xaL (t- a))'

ds

for different process models for fermentation (after Shuler and Kargi 2002)

Model L M K

Monod

Tessier

Moser

Contois

l-lln

0

l+ll n

2

UK,

UK

nl Kl/'

u K,,

2

1

0

0
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The Logistic, Gompertz, Richards, Schnute and Stannard models for simulating the

number of micro organisms as a function of time were extensively reviewed by

Zwietenng et. al. (1990). These researchers reported that it was difficult to calculate the

95 % confidence intervals for the microbiological parameters: lag time, asymptote and

maximum specific growth rate. Therefore they reported that they found it necessary to

modifu these models. The Modified Logistic, Modified Gompertz, Modified Richards,

Modified Schnute and Modified Stannard models are shown in Table 2.2, where,

y [: ln(l//¡/r)] is the population density, a and b arc mathematical parameters, 2 is

the lag time, A is the asymptote [: ln(ÀL /¡ir)] i.e. the maximal value reached, l/_ is

the maximum population density and i/o is the population density at time (/) equal to

zero.

McMeekin et. al. (1993) reported that the Gompertz model was actually formulated for

actuarial science for fitting human mortality data but it has also been applied to

deterministic to organ growth.

Fujikawa et. al. (2004) also reviewed these models for simulating the number of micro

organisms (logN) as a function of time. Fujikawa et. al. highlighted that the microbial

growth curves are generally sigmoid on a semi-logarithmic plot. However, they

underscored that the Logistic model generates a convex curve that consists of a

monotonically increasing portion and a stabilising portion without a lag phase at the initial

period, and therefore cannot generate a sigmoid curve on a semi-logarithmic plot.

Fujikawa et. al. (2004) actually suggested therefore that the Logistic model might not be

applicable to microbial growth.

McKellar and Lu (2004b) demonstrated that the original Logistic and the Gompertz model

are considered as "mechanistic", whereas the modified forms of these two models are

considered as "empirical". They also highlighted that the Gompertz model is generally

preferred over the Logistic model because of its asymmetric nature about the point of
inflection unlike the Logistic model. However, McKellar and Lu (2004b) underscored the

limitations of using the Gompertz model, such as - the generation time can be

underestimated by 13 yo, and a wide range of experimental growth data was required over

the entire growth range (Membre et. al. 1999).
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Trble?.2 Summary of predictive growth models used in fermentation [where e : exp(l)]

1. Models used for simulating the number of micro organisms (logl/ ) as a function of time

A
Modified
Logistic

Modified
Gompertz

Modified
Richards

Modified
Schnute

Modified
Stannard

(u,^
(r+ó)

a

y= McMeekin et. al. (1993)
Zwiele;ing et. al. (1990)
McKellar and Lu (2004b)

McMeekin et. al. (1993)
Zwietering et. al. (1990)
McKellar and Lu (2004b)

Richards (1959)
Zwietering et. al. (1990)

Schnute (1981)
Zwietering et. al. (1990)

Stannaid et. al. (1985)
McMeekin et. al. (1993)
Zwietering et. al. (1990)

{t.*{+('-').']]
y = A 

"*p{- 
*nl!'; Ø- r, . t]}

, = 
{, 

*r. exp(t +u). *rl+ {l +u¡".*) . e - r)
(-llu)

lb

v

y=
{r+ 

u. 
"^ntr+ 

r, *nlT. {t+u;('.*)' (, -r)l}

2. Models used for simulating the growth rate ( lt,,^) as a function of temperature

Square-Root
(Ratkowsþ-
Belehradek 1) þ^n, =14(T -T.)12

Modified
Square-Root
(Ratkowsþ-
Belehradek 3)

Schoolfield lt,u, =

Hinshelwood

Davey Linear-
Arrhenius

tt,u,r = kr -r[- #)- r, -r(-#)

r2,,", = "*R[c o +f{c r,-,r, + c,7,2 )

Ratkowsky et. al. (1982)
McMeekin et. al. (1993)
Ross and Dalgaard (2004)

Ratkowsky et. al. (1983)
Belehradek (1930)

Schoollreld et. al. (1981)
McMeekin et. al. (1993)
Ross and Dalgaard (2004)

McMeekin et. al. (1993)
Ross and Dalgaard (2004)

Davey (1989a)
Davey and Daughtry (1995)
Davey (2001)
McMeekin et. al. (1993)
Ross and Dalgaard (2004)

Expanded
Square-Root
(Ratkowsky- þ,0, =(brlf -f,r¡.{1-exp[c, (T -7,,)]])'
Belehradek 2)

þ,^ =14(T -T,)lt .{l - exp[c, (Z -T,,^)]] McMeekin et. al. (1993)

T
lzs ,9g

H, ll
R 298 T

l+ a,(t r

Ã [r' 
-t +

H,( 1 I

T[t-7

Rosso
þ,,or= Rosso ef. al. (1993)

Rosso el. al. (1995)
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Zwietenng et. al. (1991) underscored that models with a greater number of parameters

usually give a lower Residual Sum-of-Squares (RSS) that can be obtained using more

parameters. Therefore, they added the shape parameter (u) in the Modified Richards and

Modified Stannard models to define the shape of the growth curve. However, this extra

parameter used in these two models did not provide any useful improvement in goodness-

oÊfit to the growth data. It can be observed that the Modified Stannard and the Modified

Richards models appear to be the same. These researchers highlighted that, in some cases,

the Modified Stannard and the Modified Richards models did not fit the data accurately

and predicted large value of the parameter estimates that resulted in large error.

In the study conducted by Zwietenng et. al. (1991), the Modified Logistic, Modified

Gompertz, Modified Richards, Modified Schnute and Modified Stannard models were

found to give a statistically acceptable goodness-of-fit those with few parameters

(McMeekin et. al. 1993). Zwietenng et. al. (1990) compared each of these models and

concluded that the Modified Gompertz model was "statistically sufficient and easy to use"

and could be regarded as the best model to describe the growth data in terms of the

goodness-oÊfit to the data (V/hiting and Cygnarowicz-Provost 1992). However,

Zwietering et, al. pointed out that these models are of limited use as they assess only the

number of micro organisms (,n/ ) or a logarithm of the number of micro organisms (log.lf )

as a function of time, and do not include the substrate consumption (s) in comparison to

that as given by Monod (1949).

Stannard et. al. (1985) reviewed these models for simulating the growth rate ( ¡1,,,^) as a

function of temperature. These researchers highlighted that knowledge of the relationship

between temperature and growth rate is important in the prediction of the likely levels of

micro organisms after a known time at a specific temperature. They concluded that the

Square-Root (Ratkowsky-Belehradek 1) model proposed by Ratkowsky et. al. (1982) is a

better description of the microbial growth and temperature relationships than is the widely

used Arrhenius Lawa. However, Ratkowsky et. al. (1982) highlighted that the Arrhenius

4 
Th" A.rh"nius Law was originally proposed by Van't Hoff and Arrhenius to describe the temperature dependence of

the specific reaction rate constant in chemical tï1i:-". (Ratkowsky et. al. 1982). The Arrhenius Law is given by:

x = xtexp(-E / RT)

where, fr is the specific reaction rate constant (s-l (rnole 
^-t\-'), ko is the collision factor or frequency factor, ^E is the

activation energy (-/rnole '), -R i* the universal gas constant having a value (= 8.314 J rnole I K-l), and !n is the absolute
temperature (K).
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Law does not adequately describe the effect of temperature on the growth of the micro

organisms. Adair et. al. (1989) also pointed out that the Arrhenius Law has been widely

applied to growth of the micro organisms as well as to the chemical reactions, however, the

Arrhenius relationship is nonlinear or atleast linear over only a portion of the temperature

range.

The models used for simulating the growth as a function of temperature, presented in the

lower part of Table 2.2 can be reviewed. The first of these is the Ratkowsky-Belehradek 1

model. In that b, is the Ratkowsky parameter (oc-l h-0'), aîd Tn,u is the minimum

temperature at which growth is observed loC¡. fnis model gives a linear relation between

the square root of the growth rate of the micro organism, and the temperature of growth.

However, a number of researchers (McMeekin et. al. 7993; Zwietenng et. al. 1991)

demonstrated that the Ratkowsky-Belehradek 1 model does not have a biological basis and

is based on the observation that at lower temperatures the square root of the specific

growth rate is linear with temperature.

Ratkowsky et. al. (1983) noted that the Square-Root model was especially useful for

modelling the growth rate of the micro organisms below the optimum growth temperature.

An Expanded Square-Root (Ratkowsky-Belehradek2) model was therefore proposed.

The Expanded Square-Root Ratkowsky-Belehradek 2 model is shown in Table 2.2, where,

c, is the Ratkowsky parameter (oC-'), and Tn,o, is the maximum temperature at which

some very limited growth can still be observed fC). This model describes the growth of

the micro organisms throughout the entire temperature range (Ratkowsky et. al. 1933).

However, Zwietering et. al. (1991) highlighted that at temperatures above f,,* this model

will predict values of growth rate greater than zero - and therefore it cannot be reliably

used. The Expanded Square-Root Ratkowsky-Belehradek 2 model was then modified by

Zwietenng et. al. (1991) to avoid positive values of growth rate above 7,,* .

The readers should note that the Ratkowsky-Belehradek 3 has as the square term

l4(T -T,¡,)1'? .{1-exp[cr(T -7,o,)]] , in contrast to the square term of Ratkowsky-Belehradek

2, (br1r -r,,, ) . {l - exp[c ,(T -7,^)]\)' .
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In the Schoolfield et. al. (1931) model of Table 2.2, Itzs is the growth rate at Z5 oC 
th-t¡,

{ is the temperature (K) at which the enzyme is 50 % inactivated due to low temperature,

11 is the enthalpy of activation (J mole-l), and f, is the temperature (K) at which the

enzyme is 50% inactivated due to high temperature. Adair et. al. (1989) demonstrated the

effect of temperature on the growth of the micro organisms by comparing both - the

Schoolfield model and the Square Root model - and recommended that the Schoolfield

model makes realistic predictions of growth and is more reliable at low temperatures.

Adair et. al. (1989) recommended that the Schoolfield model should therefore be adopted

to develop predictive models from the growth data. However, McMeekin ¿t. al. (1989)

argued that the procedure used by Adair et. al. (1989) to compare the models, which

contradicted the use of the Square-Root model, was inappropriate and was then justified by

McMeekin et. al. (1989).

The Hinshelwood model (Table 2.2) was elaborated from a mechanistic approach by

Rosso et. al. (1993) to the growth of the micro organism based on a single growth rate-

determining reaction. Zwíetenng et. al. (1991) in their study on modelling of microbial

growth as a function of temperature discussed the fact that the Hinshelwood model shows

an Arrhenius type of temperature dependency, where, k, and k, arc frequency factors (h-l)

and E, and E, are the activation energies (J mole-l). McMeekin et. al. (1993) underscored

that, in comparison with the other growth rate models, the Hinshelwood model does not fit

the data well at low temperature due to the lack of a cold denaturation term in the equation.

Zwietenng et. al. (1991) compared the growth models as a function of temperature,

Ratkowsky-Belehradek 1, Ratkowsky-Belehradek2, Ratkowsky-Belehradek 3, Schoolfield

and Hinshelwood models, and concluded that the modified forms of Ratkowsky model are

the most suitable model for both the growth rate of the micro organism and the asymptote

(l ) as a function of temperature.

Davey (1989a) proposed a linear Arrhenius (DL-A) model to describe the effects of

temperature and water activity on microbial growth rate in the exponential phase. He also

applied this model to describe the lag phase of the microbial growth in situations where

either temperature or water activity or both were the rate controlling factors. Ross and

Dalgaard (2004) highlighted that Davey (1994) extended his earlier linear Arrhenius model
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(Davey 1989a) to account for the effect of multiple environmental factors affecting the

microbial growth rate. The DL-A model is shown in Table 2.2, where, T is the

temperature, and Co to C, are the coefficients of the DL-A model to be determined withT

environmental factors. The proposed DL-A model gives a better fit when compared to the

Square-Root model and the Arrhenius relationship (Davey 1989b). Although successfully

applied to a wide range of growth data, the DL-A model has not been used in continuous

fermentation.

Rosso et. al. (1993) showed that the popular Ratkowsky-Belehradek 2 model is badly

conditioned as it is difficult to estimate the parameters accurately. Therefore, these

researchers proposed a new model. They pointed out that the three cardinal temperatures

were found to be independent of specific growth rate at the optimum temperature, and a

very strong and an unexpected linear correlation was observed between the cardinal

temperatures for the specific growth rate of the micro organisms as a function of

temperature. These three cardinal temperatures are: the temperature below which growth is

no longer observed T,,,,, (oC), the temperature above which no growth occurs Tn,* (oC),

and the temperature T*, 1oc¡ at which the maximum specific growth rate ¡1,,^ th-t) is

equal to its optimum value p"p, (h'\.

The Rosso model is easy to use. It seems to satisff an intuitive feel for the environmental

envelope, of the effect of temperature, inside which growth can be observed.

It should be added that throughout the 1990's the literature reveals that there was a lively

debate between those researchers who approached microbial growth from a biochemical

engineering and fermentation viewpoint, and, those who viewed microbial growth from a

statistical or microbiological aspect, on the correct use of associated terminologies,

definitions and assumptions for predictive modelling that could be reliably made - see for

e.g. the correspondence between Baranyi and Roberts (1992), Davey (1992) and Whiting

and Buchanan (1993), In fermentation, it is the biochemical engineering process

terminology that is widely used. In predictive growth models, the microbiological

terminology appears entrenched. It is after-all the microbiologists that produce the more

fundamental data for predictive growth models.
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The solution to the growth models that are coupled with the continuous fermenter process

model can be carried out effectively using one or two ways. The first of these is the SVA

or Single Value Assessment modelling. This is widespread in the literature where a single

"best guess" estimate or a mean value of an input parameter is used. The alternate way is

MCA or Monte Carlo Assessment modelling. In this approach, the input parameter values

take the form of a distribution.

The SVA or Single Value Assessment modelling is reviewed first in the following section.

2.4 SVA or Single Value Assessment modelling

The usual solution to the Monod process model taken by biochemical engineers (and

others) is a single point stochastic and deterministic approach. Cerf and Davey (2001)

defined this approach as a Single Value Assessment (SVA).

SVA involves using a single value or "best guess" estimate of the value of each parameter

such as growth rate, yield coefficient, substrate concentration and feed concentration

within a process model to obtain a single value predictive outcome for the output

parameter such as maximum dilution rate, dilution rate at maximum output, and maximum

productivity. It can be seen that this is another way of saying the usual approach is using a

sensitivity analysis for each input parameter - in which a small amount of variability

(say + 1%) is introduced around the mean value.

In the SVA, the model input parameters are linked with each other as well as with the

output parameters via the usual mathematical functions e.g. multiplication, addition,

subtraction, exponentiation etc. The equations are then solved. This can be done using

software for mathematical modelling for e.g. Microsoft ExcelrM spreadsheet.

2.5 MCA or Monte Carlo Assessment modelling

In contrast to the SVA is the Monte Carlo Assessment (MCA). This takes into account all

possible values that the input parameters may take. Input parameters for the MCA are a

distribution therefore of possible values (with the probability of each occurring). These are

linked via the usual mathematical functions as is the case in SVA. This is because a



2l

distribution of values together with the probability of each occurring is given. The mean

value of MCA will often be the SVA. Cerf and Davey (2001) used MCA sampling in a

QRA of a sterilisation unit operation.

2.6 Quantitative Risk Assessment (QRA)

A Quantitative Risk Assessment (QRA), can be defined as "A stepwise analysis of hazards

that may be associated with a particular type of food product, permitting an estimation of

the probability of occuffence of adverse effects on health from consuming the product in

question" (Notermans and Mead 1996).

QRA is a relatively new field - and one that is almost certain to grow rapidly in chemical

and biochemical engineering (K RDavey pers. comm.)t. QR,A. was tried out in 1960's - but

because of limitations in available software and computer programming, and necessary

hardware, it all but died out (Vose 2000). However, it re-emerged in the mid 1990's when

computing became more widespread and available (Vose 2000).

Importantly for engineers and applied researchers, QRA is not to be considered as the same

thing as }IAZOP Studies or HACCP.

Hazard and Operability Studies (HAZOP) is a "systematic, structured approach to

questioning the sequential stages of a proposed operation in order to optimise the efficiency

and the management of risk" (Swann and Preston 1995). However, Swann and Preston

(1995) underscored the problem with HAZOP actions is that they are created at a stage

when detailed design is under way, and to make a number of changes at this stage is

inevitably expensive and causes potential delay, and these changes could be expensive.

Whiting and Buchanan (1997) highlighted that HACCP is the more widely recognised. It

focuses on identifring and controlling the key process steps that most significantly affect

the safety of production.

s There are significant opportunities for biochemical engineers - not least because ofa strong background in
mathematical and process orientation that bioengineers can bring.
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HACCP, Hazard Analysis Critical Control Point is a systematic approach to produce

acceptable, safe product based on identification and management of critical control points6

(Notermans et. al. 1996). HACCP was apparently developed by NASA in the 1960's to

help prevent food poisoning with astronauts (Backeburg et. al. 2005). However, Whiting

and Buchanan (1997) pointed out that as HACCP has become more widely adopted, it has

become evident there are areas within this approach that could be strengthened if
researchers were better able to quantitatively link product attributes with public health

concerns

In 1999, Nauta assessed both HAZOP and HACCP. He highlighted that potential microbial

growth can be incorporated into both by applying predictive microbial modelling methods.

Nauta suggested that new types of predictive models that incorporate modelling of

Uncertainty and Variability in microbial growth are needed.

The fundamental principle of QRA is that Uncertainty and Variability are the two

components that will enable precise prediction of future events.

2.6,1 Uncertainty

This is defined as a lack of knowledge, or level of ignorance, about the parameters that

characterise the physical.(process) system. Uncertainty is sometimes reducible through

further measurement or careful study, or through consulting more experts.

Uncertainty is essentially a statement with which any logical person should agree - given

the same information.

2.6.2 Variability

This is the effect of Chance - and is a function of the system. Variability is not reducible

through further study or careful measurement, and can be only be reduced by changing the

physical system (Vose 2000).

6 A Criticql Control Poinl is defined as any point or procedure in a specific food system where loss of control
may result in an unacceptable health risk. A Control Poinl is a point where loss of control may result in
failure to meet (non-critical) quality specifications.
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2.6.3 Total Uncertainty

This is a combination of the two ideas i.e. Uncertainty and Variability, which influence the

ability to predict future events.

Uncertainty and Variability might be called Fact and Chance respectively (Vose 2000).

Why separate the two? The two components - Uncertainty and Variability are separated in

risk modeling so as to observe how both contribute to the risk model (Vose 2000).

Separating Fact and Chance is therefore important to understand process behaviour - and to

avoid large errors that could easily result in unexpected process failure.

2.6.4 Insight offered by QRA

The key insight offered through QRA modelling of a unit operation is the idea that the

process output can be significantly affected by the combined effect of a series of small

changes in the input parameters and attaches a practical likelihood, or probability, of the

Chance occurring. These will be allocated to Chance in this way the probability, however

small, of an unexpected failure of the process plant.

QRA approach accounts for Uncertainty and Variability in the model input parameters by

using repeated sampling from a distribution of values of an input parameter, and provides a

framework to evaluate the influence of a variety of input parameters on the process

efficacy.

Models that account for Uncertainty and Variability in a system are referred as stochqstic

models (McKellar and Lu 2004a).lnmiuobiological process modelling (Davey 1993), the

stochastic predictive models are used to define the growth kinetics of the micro organism

and predict behavior of the micro organism under various environmental conditions.

The different components and stages of risk assessment are linked together by the usual

mathematical relationships and Variability in inputs at each stage is propagated throughout

to the final ouþut.
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The output is also expressed in the form of a probability distribution. This may give a better

and more practical representation of the risk being assessed than is the current use of a

SVA or "best guess" estimate.

Repeated sampling of values of the distribution of input parameters is carried out using the

Monte Carlo sampling method.

2.7 Quantitative Risk Assessment (QRA) using Monte Carlo Assessment (MCA)

random sampling techniques

Within a QRA, Monte Carlo approach is used as a random sampling technique for solving

deterministic equations. MCA originated during 1940's at Los Alamos from the work of

Ulam, von Neumann and Fermi (Cullen and Frey 1998). MCA replaces single value inputs

with probability distributions, of the input parameters. This involves random sampling of

each probability distribution within a parameter to produce hundred's or even thousand's of

iterations. Each probability distribution is sampled in a manner that reproduces the shape of

the distribution. The distribution of the values calculated for the parameter outcome

therefore reflects the probability of the values that could occur practically in plant

operation. The effect of distributions of the values in each of the model parameters is

therefore highlighted through MCA with a consequent distribution of practical values. The

characterisation of Uncertainty using MCA allows the decision-makers to choose whether

to actively reduce an exposure or to conduct an additional research to study the impact of

Variability in the risk factors on the output (Cullen and Frey 1998). The main advantage of

using MCA is that the simulations are carried out in a repeated manner. This yields

important insights into the sensitivity of the model to the variations in the model input

parameters, as well as into the likelihood of occuffence of any particular outcome. It is

therefore possible to represent Uncertainty in the output of a model by generating sample

values for the model inputs, and running the model in a repetitive marurer.

There are a number of examples of QRA with MCA sampling in the literature. These

however, almost invariably deal with either animal health (Canon and Roe t982), human

health (Burmaster and Anderson 1994) or economics (Cramer I97l) and forecasting

methods in management (Makridakis and Wheelwright 1989). Further similar examples

can be found in Vose (2000) and McKellar and Lu (2004).
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A QRA was first applied to a unit operation in the chemical - biochemical engineering

literature by Cerf and Davey (2001) to explain the unexpected failure of a well-operated

Ultra-High Temperature (UHT) process plant (This appears in fact to be the only example

applied to process plant in the chemical - biochemical engineering literature as at February

2006). Failure was defined as a non-sterile milk pack. Bacillus stearothermophilus and

Bacillus thermodural,s were used as contaminant spores. Failure of sterilisation with these

micro organisms could be a serious risk to public health. The concentration of contaminant

spores, thermal resistance of the spores, heating temperature and the residence time of the

milk in the steriliser were identified as the process input parameters. Davey and Cerf

(2003) illustrated the effect of distributions of values in each of those in the UHT process.

This was highlighted with a distribution of practical values of the process input parameters.

In 2003, Davey and Cerf described unexpected failure as Friday 13tl' Syndrome. By this

was meant that there will be failures despite all efforts in a well-operated plant due to

Chance. Davey and Cerf noted that one reason that these Friday 13tl' Slmdrome events are

rare is that most commercial sterilisations involve over-treatment (which is not only

wasteful in terms of cost and energy, but also diminishes the nutritional and sensory

qualities of the product).

A practical upshot of the QRA was that the predictions showed that a higher proportion of

the number of milk packs would be non-sterile than was predicted by the SVA. This

number of non-sterile packs was more or less the number that was anecdotally known to be

found non-sterile in well-operated UHT process plant, between 1 and 4 in 104. Davey and

Cerf (2003) concluded that the occuffence of a fixed number of non-sterile milk operations

associated worldwide with the UHT process plant, and greater than that predicted by the

SVA, is the failure to take into account a distribution of values for each of the process

parameters.
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2.8 Summary

From a critical review of the literature, the following important factors emerge which are

relevant to this research:

1. Fermentation is one of the most widely used unit operations worldwide. A continuous

fermenter is usually preferred over a batch, or, a fed-batch, fermenter.

2. The Monod process model for the process performance of a continuous fermenter is

one of the most widely used and readily employed. The Monod model requires

integration of a predictive model for micro organism growth. These micro organism

predictive growth models can be categorised into two groups: Models used for

simulating the number of micro organisms as a function of time, and; Models used for

simulating the growth rate of the micro organism as a function of temperature. The

Rosso form has the advantages of giving a good f,rt to the growth data and therefore is

widely used.

3. In biochemical engineering, the solution of process models for continuous

fermentation are usually via a Single Value Assessment (SVA) in which "best guess"

estimates or a mean value of input parameters are used. The output is a single value. In

contrast to an SVA is the Quantitative Risk Assessment (QRA). The Quantitative Risk

Assessment (QRA) accounts for the Uncertainty and Variability in the input

parameters and uses Monte Carlo sampling, or Monte Carlo Assessment (MCA). The

output prediction is a probability distribution of values in which the mean is nearly

always equal to the SVA value. The mathematics for both the approaches - SVA and

MCA - are similar i.e. all the mathematical formulations such as addition, subtraction,

multiplication, and exponentiation remain the same - except in MCA the inputs are

required to be a distribution of values. For the QRA in the MCA, output is also a

distribution of likely values, in contrast to a single, or a mean, value from SVA

4. Despite the apparent utility of a QRA for gaining potential insights into the practical

operation of a continuous fermenter, none has been reported.
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In the next chapter, a novel QRA is applied to a continuous fermenter based on the Monod

process model. The importance of Uncertainty and Variability in the microbiological input

parameters in de-stabilising a continuous fermenter is highlighted.



CHAPTER THREE

DEVELOPMENT OF A QRA MODEL OF A CONTINUOUS FERMENTER

Parts of this chapter have beçn published as:

Patil, R. 4., Davey, K. R, and Daughtry, B. J. 2005. A new quantitative risk assessment of

a fermenter for Friday l3tl' Slmdrome, In: Proc. 32'd Australasian Chemical Engineering

Conference (Smart Solutions - Doing More wíth Less), CHEMECA 2005, Brisbane,

Queensland, Australia, September 25-29, paper 79 (ISBN 1864998326).
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3.1 Introduction

A review of the literature (Chapter 2) showed that continuous fermentation is an important

unit operation used worldwide. Failure in product efficacy can be catastrophic to public

health - and costly. Attempts have been made by a number of researchers to model

continuous fermentation with varying levels of sophistication.

What is of particular interest, however, is why a well-operated process plant fails

unexpectedly - and sometimes catastrophically.

Davey and Cerf (2003) illustrated that a Quantitative Risk Assessment (QRA) can give

insight into unexpected process failure. They titled this unexpected failure of an otherwise

well-operated process plant as "Friday 13tl' Syndrome". This expression strongly conjures

the reality of the notion of the sum of the combined effect of small changes in the value of

process parameters having an adverse effect, i.e. failure, on the process. Cerf and Davey

(2001) demonstrated the practical insights into failure that can be gained using an alternate

modelling approach, that of QRA, QRA, in contrast to Single Value Assessment (SVA), is

based on a distribution of input and output values and the probability of these occurring.

The probability distribution is used to highlight the likelihood of occurrence of failure in a

unit operation.

For a continuous fermenter, failure is defined as washout. Cerf and Davey (2001) defined

failure of continuous sterilisation of milk as non-sterile packs.

In this chapter a new Quantitative Risk Assessment (QRA) of a well-operated continuous

fermenter based on Monod kinetics is carried out. The Monod process model is selected as

it is widely used, and of a form that can be readily employed.

A continuous fermenter process model is developed and initially established using the

traditional or SVA approach. The QRA is then presented. The Rosso model is selected for

the predictive growth kinetics. The traditional SVA approach is contrasted with the new

MCA approach within the QRA.
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3.2 Methodology

A logical and step-wise methodology to the Quantitative Risk Assessment (QRA) is used

1. A Monod process model of a generalised continuous fermenter is developed in

Microsoft ExcelrM spreadsheet using the Single Value Assessment (SVA) modelling

approach

2. The micro organism selected for this study is E. coli - a Gram negative, vegetative and

non-spore forming bacterium that is widely used in fermentation

3. A Monte Carlo Assessment (MCA) model of a continuous fermenter is then developed

in a Microsoft ExcelrM spreadsheet with an add-in @Ríst{M version 4.5 (Palisade

Corporation)

4. The outputs of the MCA simulations are assessed to predict the probability of failure

(i.e. washout) in a continuous fermenter. This is done to evaluate the combined effect

of Uncertainty and Variability in the E. coli microbiological growth parameters in

de-stabilising an otherwise a well-operated continuous fermenter.

This methodology was adapted from Vose (2000), namely:

Identify the risk to be analysed and potentially controlled; Qualitatively describe the risk

(Why it might happen? V/hat one might do to reduce the risk?); Quantitatively analyse the

risk (What is the optimal strategy for controlling that risk?); Implement the risk strategy;

and, Predict the probability of failure.

3.3 Monod process model of a continuous fermenter

Consider a continuous fermentation process as shown in Figure 3.1 - in whiòh viable

microbial cells consume substrate and grow and divide to produce daughter cells. The

continuous fermenter is assumed to be well-mixed and to operate at steady state

(Bailey and Ollis 1986; Blanch and Clark 1997).
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Schematic of a generalised continuous fermenter, where F is the feed, Z is

the fermenter volume, x is the concentration of the micro organism, s is the

concentration of the substrate, K" is the Monod constant, þn,* is the

maximum specific growth rate of the micro organism, and suffix/represents

the feed and o represents the output. It is usual for x.,. to be zero. This is to

indicate a sterile feed stream to the continuous fermenter.
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Mass balances can be established using the general conservation statement:

Rate of accumulation= Input rate - Output rate t Generation (3.1)

For the Monod process, the relationship between the specific growth rate and substrate

concentration is given by (Aiba et. al. 1973):

p- þrr*s
(K, + s)

(3.2)

where, þu,* : maximum specific growth rate achievable when s )) K" and, K" is the

value of limiting nutrient concentration at which the specific growth rate is half its

maximum value.

The Monod (CSTR) model can be stated as

(3.3)

where, x, is the concentration of the cells, and, D is the dilution rate (- F ll/) at which

the continuous fermenter operates.

In a continuous fermenter, the steady state dependence of the cell concentration ( x, ) and

the substrate concentration in the feed (s, ) on the dilution rcte (D ) yields:

For sterile feed i.e. x | :0, Equation (3.4) reduces to

DKx.¡=Y,l,ftr-ffi) (3.4)

(3.s)
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Equations (3.4) and (3.5) show that when the value of the dilution rate increases, the value

of the substrate concentration initially increases linearly with D and then increases more

rapidly as D approaches ¡1,,*. The cell concentration exhibits an opposite behaviour; it

decreases first linearly it D and then diminishes rapidly as D approaches ¡tn*.

'When the dilution rate surpasses the maximum possible growth rate, cell washout occurs

i.e. failure.

The maximal cell output (Dn*o,,p,t ) is obtained from:

Dn*ortp,t = ltr,*(l- (3.6)

The maximum dilution rate (D,,*) at which a complete washout occurs from the fermenter

is given by:

(3.7)

If sr. >> K" the'value of Du,*or,,,,, approachês þ,,*- and consequently is near fermenter

washout. Intriguingly, washout is sometimes observed to occur at values of D < Dnuontput.

This could be because of variability in the values of microbiological parameters K, , þn,*

and Y,l, - and also importantly because of the effect of chance (Aiba et. al. 1973:'

Blanch and Clark 1997).

3.4 Selected micro organism for fermentation

The micro organism selected for this research was Escherichia coli. This is a Gram

negative, vegetative and non-spore forming bacterium widely used in fermentation.

Advantages of this micro organism for study include that it is very well documented and

Dr,^ =
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exists as discrete cells (not filaments). Importantly, it is readily homogenised for extraction

of intra-cellular product.

3.5 Single Value Assessment (SVA) solution to a continuous fermenter model

The Monod-based model with the usual Single Value Assessment (SVA) solution

(Davey and Cerf 2003) was written in Microsoft ExcelrM using values for the process

model parameters from Bailey and Ollis (1986): K" : 0.2 gL-t, sr.: 10 EL-r , þn,^:1.0 h-l

atd Y,¡,: 0.5. The SVA solution to a continuous fermenter model is shown in Figure 3.2.

From the f,rgure it can be seen that with an increase in the value of the dilution rute (D),

there is an increase in the value of the substrate concentration (s) and a decrease in the

value of the cell concentration (.r). The productivity (xD) of a continuous fermenter is

also observed to increase with an increase in the value of the dilution rate. However, in

rcality, the input microbiological process parameters are not single values. This can be due

to Uncertainty and natural biological Variability in the microbiological process parameters.

3.6 Quantitative Risk Assessment (QRA) model of a continuous fermenter

A Quantitative Risk Assessment (QRA) uses Monte Carlo Assessment (MCA) modelling

to express the Uncertainty and Variability in an input parameter as a probability

distribution. This distribution can be thought of as a frequency diagram of all the possible

values of a parameter in relation to the probability of each value occurring. MCA therefore

contrasts with the traditional or SVA approach.

A stochastic-predictive model was written over the SVA solution using a Microsoft

ExcelrM spreadsheet with an add-in @Rist{M. The model was formed by linking together

the mathematical relationships and the Variability in the inputs at each stage. Variability

propagates throughout to the final ouþut parameter, which is also expressed in the form of

a probability distribution. This might give a better description of reality of the risk than the

usual practice of SVA single value.

A number of types of distributions can be used, for example, Binomial, Beta,

BetaSubjective, Chi Squared, Cumulative, Exponential, Logistic, Lognormal, Normal,
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Pearson, Pareto, Pert, Poisson, Triangular, Uniform, and Weibull (Vose 2000). The Normal

distribution can be seen in a wide range of applications due to the results of Central Limit

Theorem (CLÐ7 (Vose 2000). The amount of Variability in a Normal distribution can be

varied easily. It is therefore simple and convenient to use. The other distribution types

converge to a Normal distribution as the coefficient of Variability that is a ratio of standard

deviation to the mean approaches zero (Vose 2000). Therefore, a Normal distribution has

been used to represent the mean and the standard deviation in the microbiological input

process parameters.

Experience with the @RßldM software for these simulations showed that stable outputs

were always obtained with 100,000 iterations.

3.7 Results and Discussion

Table 3.1 presents a comparison between the SVA and MCA of risk. The input process

parameters of continuous fermentation are given in the Column 1 of Table 3.1. The SVA

values calculated are shown in the Column 2 of Table 3.1 . Column 3 of the table lists the

MCA value of each process parameter. However, the MCA values in bold in Columns 3

and 4 show an assumed standard deviation of 15 % RiskNormal on the mean value of the

input process parameters. The MCA input therefore are not single values but are a

probability distribution.

Figure 3.3 arc the MCA simulations of the fermenter with a 15 o/orcndom variation in the

value of the microbiological input parameters - K, , 11,,,^ and Y,l, .It can be seen from the

figure that as a result of this Variability, the productivity varies with a factor of 2.16 for

different values of the microbiological input parameters.

It can be seen from the figure that there are a number of simulations that end before the

dilution rate at which maximum productivity is obtained (D < 0.86 h-t¡ i.e. productivity

(xD) falls to a value below zero. The MCA results therefore highlight the number of

fermentation failures or washouts with a 15 Yo Variability in the microbiological input

process parameters.

t CLT states that the mean will be Normally distributed in a set of variables, when the number of variables is

large.
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Figure 3.4 shows MCA simulations for a 5 0/o random variation in the value of the

microbiological input parameters. It can be seen from the figure that the productivity varies

with a factor of 1.25. When compared with Figure 3.3 it can be highlighted that as the

Variability in the input process parameters increases, the range of productivity in a

fermenter widens, however with an increase in the number of failures.

The simulation results of Figure 3.4 show that the decrease in the natural biological

Variability in the microbiological input process parameters reduces the number of

simulated failures over a 15 %o vanation (Figure 3.3) in the process parameters - as might

be expected.

Table 3.2 summarises the predicted failure rates in a continuous fermentation when the

microbiological input process parameters have the selected values of variability shown.

The table highlighted that as the Variability in the input process parameters increases, so

too does the number of predicted failures. With a value of Variability equal to zero, MCA

reduces to SVA. The MCA productivity is expressed as the expected value, with a range of

90th percentile values shown in the parentheses as (5th percentile, 95th percentile).

Figures 3.5 and 3.6 present the correlation coefficients for a 15 Yo and 5 o/o random

variation respectively in each of the key input parameters - the Monod constant (K" ),

maximum specific growth rate ( þ,,*), and yield (Yil) from @,RrsÉM software. These

correlation coefficients determine the influence of each of the key input parameters on the

maximum productivity that is obtained from the continuous fermenter. The correlation

coefficients range in the value between -l and 1.

A value of 0 indicates that there is no correlation between the two variables - i.e. they are

independent. A value of 1 is a complete positive correlation between the input variables

whereas -1 indicates a complete inverse correlation. 'When the input parameter shows a

positive correlation, an increase in the value of that input parameter increases the value of

the output parameter; whereas, with a negative correlation coefficient the value of the

output parameter decreases with an increase in the value of that input parameter.
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It can be seen from Figures 3.5 and 3.6 that for a random variation of 15 o/o and 5 %o,

respectively, the correlation coefficient for ¡t^* is greater than that of Y,¡,, and K, . That

is lt,,* has a highly significant influence on the predicted number of failures and the

productivity (xD ) of a continuous fermenter. The Monod constant (K" ) is of less

significance because of its negative correlation with ¡1,* and Y4,.

Table 3.3 presents a summary of simulations that show the MCA predicted failure rate in a

continuous fermenter as a result of inclusion of the Variability in the true value of ¡tn,*,the

maximum specific growth rate of E. coli.lt can be seen from the table that MCA reduces

to SVA when the Variability in E. coli is 0 %. It should be noted also that the mean value

of lt,,* obtained from MCA is observed to be the same as that of the SVA value.

Variability associated with the three key input parameters i.e. K,,þn*, I,7" is important.

The more accurate the random Variability in each of these is known, the better is the

quality of the predictions of the QRA model for failure of a continuous fermenter i.e.

washout.

Therefore, research resources should be allocated to determining an accurate Variability in

the true value of the growth rate to enhance the predictive value of the QRA model for a

continuous fermenter.
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Figure 3.2 SVA simulations of substrate concentration (s), cell concentration (x), and

cell production rate (xD) on continuous culture dilution lø;te (D ) from the

Monod process model for E. coli plotted on Microsoft Excelru spreadsheet

with: K, :0'2 gL-1, sr: 10 g L-1, þ.*:1'0 h-1 and Yr,,: 0'5'
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Table 3.1 Comparison of SVA with MCA for E. coli using initial growth data from

Bailey and Ollis (1986). Column 2 gives SVA values and Column 3 gives

MCA values for each of the process parameters. The bold values in Column 4

give selected distributions used in calculations for MCA. The distribution is

defined as: .R¡sfrNormal(mean, standard deviation). The value of the standard

deviation shown in bold in Column 4 is 15 o/o on the mean.

Process Parameters SVAs MCA9

, -tx¡,EL

K,, gL-l

. -t
s.t ,gL

þn,* rh-l

Dr,*oturrr rh-l

Yr/,

. -l
Xu,*orrpru, E L

(xD) n,*ortpr, , g L-l h-l

D,rrnrrh-l

0.00 0.00

0.20

10.0 10.0

1.00

0.86

0.s0

4.39

3.77 3.71

0.98 0.98

0.20 RìskNormø(O.2,0.03)

1.00 RískNormal(l.0,0.15)

0.86

4.39

0.50 RìskNormal(0.5,0.075)

8 Single Value Assessment of risk.
e Monte Carlo Assessment of risk.
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Table 3.2 Summary of predicted failure rates in a continuous fermentation unit operation

when key input microbiological parameters - K,, p^* and Y*,, have 1, 5, 10,

75 YoYanability in each respectively.

Variability, To Productivityl, gl.-lh-l Failurer To

0 (svA)- 3.77 0

1 3.77 (3.68,3.86) < 0.001

5 3.14 (2.97,4.15) 0.71

10 3.64 (0.00,4.47) 11

15 3.50 (0.00, 4.78) 27

with a Variability of zero, MCA reduces to SVA.

I The MCA productivþ is expressed as: expected value (5ú percentile, 95ù percentile)
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Figure 3.6 Correlation coefficients between key input parametors - K, , þ.* ffid Y,,, for

maximum productivitywith a 5 7o random variation in the input values.
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Table 3.3 Summary of predicted failure rates in a continuous fermentation unit operation

where a random Variability iî lt,,* is stepped from 0 to 15 o/o - with K" and

Y,¡, having a I o/o random Variability in each.

Variability,7o þ^* Failure, %o

o (svA)-

11, ¡-1

J

6

9

1.00

1.00 (0.95, 1.0s)

1.00 (0.90, 1.09)

1.00 (0.85, 1.15)

1.00 (0.80, 1.19)

1.00 (0.75, t.24)

0.00

< 0.01

2.04

8.62

15.33l2

2l

with a Variability of zero, MCA reduces to SVA.

15

ll The MCA productivity is expressed as: expected value (5th percentile, 95tl' percentile).
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3.8 Summary and Conclusions

1. Simulations from a novel Quantitative Risk Assessment (QRA) model of a continuous

fermenter developed from Monod process kinetics for growth of E. coli showed that in

some instances the naturally occurring and combined effect of small changes (i.e.

random Variability) in key microbiological input parameters,K", þn* and Y,,,, led to

a catastrophic failure - this is defined as washout.

2. With an assumed natural Variability in each of the key microbiological input

parameters of 15 Yo, the predicted number of failures from the model of the continuous

fermenter is 21 in every 100 unit operations. For a 5 Yo Yanability, the predicted

number of failures is less than 1 in every 100 unit operations.

3. Findings highlighted that the more accurate the value of the natural microbiological

Variability in the maximum specific growth rate (¡t,,*) of E. coli was known, the

closer the true number of actual practical failures of the continuous fermenter could be

predicted using the novel QR.A. modelling.

4. An "accurate value" of Variability in þ,,* for E. coli can be gleaned from

appropriately collated data from published sources.

In the next chapter, extensive data for growth of E. coli is collated from various published

sources. The widely used cardinal temperature model of Rosso (Rosso et. al. 1993) is

selected to predict ¡1,,* for the Monod process model of a continuous fermenter. A non-

linear regression analysis of the collated data is used to fit the Rosso predictive model for

an "accurate value" of þr,*.



CHAPTER FOUR

A PREDICTIVE MODEL FOR GROWTII OF ESCHENTCHI¿, COLI

IN A CONTINUOUS FERMENTER

Parts of this chapter are beine prepared for publication as

Patil, R. 4., Davey, K. R, and Daughtry, B. J. 2006. Assessment of cardinal - temperature

predictive model for growth of Escherichia coli in a Monod continuous fermenteg Food

R e,g e ar ch Int ernational - in preparation.
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4,1 Introduction

Findings from Chapter 3 highlighted that a more accurate value of the natural microbiological

Variability iÍt lt,,* for E. coli was needed for more realistic predictions from the novel QRA

for a continuous fermenter.

In this chapter, appropriate extensive and published data (n: 191) for E. coli growth, over a

range of temperature are collated. The Rosso et. al. (1993) predictive model for bacterial

growth is assessed against these data. The Rosso model is selected because it is widely used

and generally gives a good fit to growth data. In this model lt,* is a function of four

parameters. These are, the three cardinal temperatures (T,,n,, Too, and 7,,*), and the optimum

specific growth rate ( lt"o,). The range of temperature to fit the Rosso model must cover these

cardinal temperatures. Therefore data for entire range of growth temperature from 10 oC to

45ocwill be needed.

An estimate of the maximum specific growth rate ( lt,,*) is obtained from the Rosso model

using the mean value of each of the four input parameters obtained from the non-linear

regression analyses of 18 independent growth data sets for growth of E. coli. This value is

rejected, however, in favour of a value that is determined by including Uncertainty from a

defined RiskNormal distribution for þ,,* ifl each of the four Rosso model parameters, and

including Variability by addition of the residual standard error (RSE) to þn*. This value is

the best estimate or "accurate value" of þn,n .

In the next chapter, the Rosso predictive model is used with this "accurate value" of ¡1,,,* in a

QRA of the Monod process model of a continuous fermenter. Results are presented and

discussed.

4.2 Methodology

The methodology adopted for research in this chapter is as follows:

1. Collate extensive data for growth of E. coli from various, published sources



49

2. Assess a best fit Rosso predictive growth model for ¡r,,* for E. coli from extensive non-

linear regression analyses of the collated data

3. Define a Rislcl,{ormøl distribution to each of the four Rosso model parameters to include

the Uncertainty and add the residual standard error to lt^* to include the Variability to

obtain a best estimate or "accurate value" of lt,,* for each data set for growth of E. coli.

4,3 Collation of growth data

A summary of the extensive growth data for E. coli collated from published and appropriate

literature is tabulated in Table 4.1. As shown, there are 18 data sets from 10 researchers.

These data cover a range of appropriate liquid media that can be reasonably assessed to be

applicable for fermentation broths. Growth data for solid mediâ, €.8. unblended meat, was

rejected as inappropriate.

The E. coli growthdata collated from various published sources is shown in Appendix B

4.4 Model selection

Various predictive models to describe the effects of temperature on microbial growth have

been proposed - these have been critically reviewed inChapter 2.

The predictive growth model selected for growth is that of Rosso et. al. (1993). This is

because it is widely used and generally gives a good fit to growth data (McMeekin et. al.

1993; Ross and Dalgaard2004; Rosso et. al.1993).

The model is given by:

p*,(T -7,,*)(T -Tnu,)' (4.1)þ,,*
(Top, - T, ¡,)l(T"p, - T, ¡,)(T - Too,) - (Top, - Tn,*)(Too, + 7,,,¡,, - 2T)f
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where, T^n is the temperature below which growth is no longer observed, 7,,* is the

temperature above which no growth occurs, T*, is the temperature at which the maximum

specific growth Íate ¡1,,* is equal to its optimum value ¡too, .

The Rosso model is a function of four parameters. These are the three cardinal temperatures

(Tn¡,, Topt and T^*) and the optimum specific growth rate (¡t"0,). Rosso et. al. (1993)

underscored that the three cardinal temperatures were found to be independent of specific

growth rcte atthe optimum temperature. Also, an unexpected linear correlation between these

three cardinal temperatures was obseryed by these researchers.

Although the Rosso model assists in estimating the three cardinal temperatures and the

optimum specific growth rate, the justification of the linear correlation between each of the

model input parameters is unknown (Rosso et. aL.1993).

4.5 Non-linear regression analysis of data

A non-linear regression analysis was used for fitting the growth data and to estimate accurate

values of the model cardinal temperatures and optimum specific growth rate

(Snedecor and Cochran 1969). Software used for this was R software (R Foundation for

Statistical Computing) version 2.2.0 - this produces an optimum goodness of fit between the

data and the function. An advantage of this software is that it fits the input functions to the

data.

As an example of the generalised R program that was written for the non-linear regression

analyses of the published data sets is presented in Appendix C for the data of Ross ef. a/.

(2003). This same program was used for all data sets of Table 4.1 .

The Rosso model fit for each of the collated data for E. coli growth was plotted - and is

presented in Figures 4.1 through to 4.Il as ¡1,,* (mu.max) vs growth temperature (Temp).

Each of these figures consists of: a fit to the original growth data; a histogram; a residuals

plot, and; a quantile-quantile plot for each of the 18 growth sets.
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Table 4.1 Description of the strain of E. coli and its growth in various media.

Micro organism Strain Media T, Source

Escherichiacoli C-600-1

K-I-01 (high
temperature
mutant)

Escherichia coli C-600-l

K-tr-27

Escherichiscoli C-600-1

KJI-27 (high
temperature
mutant)

K-lÍ-27 +
histidine

Escherichia coli ML 30
replicatel

Escherichia colí ML 30
replicate2

Escherichia coli ML 30 G

ML30G

Escherichia coli Bh

Escherichia coli (Not defined)

Minimal medium
(supplomented with glueoso)

Minimal medium
(supplemented with glucose)

(Nutrient broth)
Complex medium

(Nutrient broth)
Complex medium

glucose-minimal medium

glucose-minimal medium

glucose-minimal medium plus

10 pg mL-tof histidine

Basal medium 56
(Monod et. al.l95l)

Basal medium 56
(Monod et. øl.l95l)

Minimal medium (Basal medium
supplemented w ith 0 .2Yo gluco se)

Complex medium (Basal medium
supplemented with 0.2% glucose
and 0.8% nutrient broth)

MOPS medium (Neidhardt er. a/.

1977) supplemented with 0.4 %
glucose (wt/vol), amino acids
(minus leucine; 0.12mM valine
and 0.08 mM isoleucine), five
vitamins, and four bases in
concentrations given previously
by Wanner et. al. (1977).

Nutrient broth
(Oxoid, London)

Meat blended

Complex medium (Brain Heart
Infusion)

t0 -37 (Ng 1969)

9 - 3s (Ne 1969)

(O'Donovan et. al.
1965a)

(O'Donovan e/. a/.
1965a)

(O'Donovanet. al.
le6sb)

(O'Donovanet. al.
r965b)

(O'Donovanet. al.
le6sb)

(O'Donovan et. al.
196sb)

(O'Donovanet. al
re65b)

(Shehata and Marr
re7s)

(Shehata and Marr
re7s)

(Herendeen et. al.
te7e)

(Ratkowsky el. ø/.
1e83)

(smith le85)

pers. comm.
(Buchanan 1992)

Escherichia coli

Escherichia coli

SF

t5-37

20-37

9.5 - 44

r0-44

tt.8 - 44

20-44

tt.8 - 44

9-35

t4-40

t3.5 - 46

2t-47

8,2 - 40

t0-42Ol57:H7
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Table 4.1 continued...

Escherichia coli ML 30

Escherichia coli M 23 and
sBl

Escherichia coli OlS7:Hj

Mineral medium supplemented

with glucose (100 pg Lr in a

chemostat; 500 ¡rg Lr in batch
culture) or with a mixture of
glucose and galactose (each 50

pg Lt in chemostat).

Complexmedium

Brain Heart Infusion (BHI, Difco
Laboratories, Detroit, MI) broth
diluted in peptone water and then
added to ground beef for a final
conoentration of3-4 log cfi¡ g-1.

'l - 48 (Ross e/. al.2003)

5-46 (Tamplinet. ø1.

200s)

l7.4, 28.4,
37 and 40
(dilution
rate of 0.2,
0.3,0.4 and
0.5 h-r

resp.)

(Kovarova et. al.
19e6)
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It is not usual to put so much information into a diagram of a model fit to the experimental

data shown in Figures 4.1 - 4.11. This was done to achieve the best and accurate values for

¡t^* for E. coli to predict accurate number of actual practical failures in a continuous

fermenter.

A quantile-quantile (a-a) plot is a graphical technique for determining if two data sets come

from populations with a common distribution. It is a plot of the quantiles of the first data set

against the quantiles of the second data set. A quantile means the fraction (or percent) of

points lying below the given value i.e. 0.5 (or 50 %) quantile is the point (median) at which

50 o/o percent of the data fall below and 50 % fall above that value. A quantile-quantile plot

has two components - the quantile points themselves and a 45o reference line. A Q-Q plot

checks for the fit of a theoretical distribution to the observed data, where, the observed values

of a variable are plotted against the theoretical quantiles. A good fit of the theoretical

distribution to the observed values would be indicated by this Q-Q plot if the plotted values

fall on a straight line.

It can be seen from Figures 4.1 - 4.lI that overall the Rosso model gives a good fit to the

growth data.

For example, Figure 4.1 shows that a good fit is obtained using the growth data over the entire

temperature range 9 oC - 45 oC. The residual plot, the histogram, and the Q-Q plot, and

highlight that there are two outliers i.e. the points located far away from the line of zero error.

The residual plot shows the difference between the observed values and the predicted values

of growth rate as function of temperature. The histogram of residuals shows that the residuals

are "skewed left" i.e. most of the frequency counts are clustered on the right side and the tail

is on the left side. The Q-Q plot highlights the "goodness" of the fit. The fit is "good" if most

of the points lie on the 45o reference line. A deviation from this straight line indicates the

deviation from linearity.

Similarly in Figures 4.2 - 4.11, the growth data gives a good fit over the entire temperature

range as shown in the Column 4 of the Table 4,1 respectively. The corresponding residual

plots, the histograms, and the Q-Q plots show how the residuals are distributed with a fixed

location and scale, and highlight the number of outliers. The histogram of residuals shows that
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the residuals are either "skewed left", "skewed right", or normally distributed. It ean be seen

that the histogram of residuals for the Figures 4.1, 4.2, 4.4, 4.6 and 4.8 are "skewed left", and

those for the Figures 4.3,4.5,4.7,4.9,4.10 and 4.Il are "skewed right".

Figures 4.1 - 4.ll highlight that the Rosso model gives a good fit to the collated growth data

and therefore accurate estimates of the model input parameters can be obtained using non-

linear regression analyses.

(The results for the data of O'Donovan et. al. (I965a) (for E. coli C-600-1 and K-I-01 growth

in a minimal medium), Ng (1969) (for .E'. coli ML 30 replicates 1 and 2), Shehata and Marr

(1975) (for E coliML 30 G growth in a complex medium), Smith (1985) (for E coli SF), and

Buchanan (1992) (for E coli Ol57:H7 growth in a complex medium) are not presented. This

is because these were unsatisfactory data in that either there were too few data, or what data

there was, did not include ¡1,,* for temperatures greater than T"o,).

A summary of the non-linear regression analyses is presented as Table 4.2. This table gives

thevalue for each of the fourparameters of the Rosso model, Þoptt Tnti,r, Too, arrd Tu,*,fot

each of the 18 data sets for growth of E. coli of Table 4.1. These growth data cover awide

range of media, from minimal media supplemented with glucose to complex media, such as

nutrient broths, and blended meat.

Column 2 of Table 4.2 shows the range of þopt - this varies from a minimum value of

0.565 h-t to a maximum value o12.578 h-1, with an overall mean of 1.256 h-r on all data sets.

Column 3 gives the range of To,u, - this is seen to vary from a minimum value of 3.47 oC to a

maximum value of 16.65 oC, *ith an overall mean of 7.l2oC. Top, is presented in Column 4.

These values vary from a minimum value of 37.67 oC to a maximum value of 42.47 oC, with

an overall mean of 40.16 oC. Column 5 shows the value of T,* - varying from a minimum

value of 41.19 
oC to a maximum value of 48.30 oC - with an overall mean of 45.14 oC.

For completeness, the reader is directed to Table D.l of Appendix D where the initial

estimates of the value of the model parameters required for the regression analyses for each of

the four parameters of the Rosso model are presented. Table D.2 of this Appendix gives the
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mean and standard deviation for each of the four parameters of the l8 data sets. Table D.3 of

the Appendix presents residual sum-of-squares and residual standard enor (RSE) for each of

these 18 data sets. The correlation estimates that provide an empirical measure of association

between the four parameters of the Rosso model for each of these 18 data sets are presented in

Table D.4 of Appendix D.

4,6 Results and Discussion

Substitution of the value of the parameters from Table 4.2 into the Rosso et. al. (1993) model,

Equation 4.1, and solving, gives the value of þn,*. This value is summarised in Table 4.3 for

each of the 18 data sets.

However, the values of þn,* in Table 4.3 do not account for Uncertainty and Variability in the

four input parameters t flopt ¡ Tnìtt, Tor, and 7,,^ of the model. The Uncertainty can best be

quantified by defìning a RiskNormal distnbution for each of the four parameters. The

RiskNormal distribution for each of the four model input parameters can be defined using the

mean and the standard deviation from Table D.2 of Appendix D. The Variability can be best

quantified by adding the RSE to the value of þn,n,.

Results of ltn,^ forE. coligrowthforeachofthelsdatasetsaresummarisedinTable4.4.

Column 2 of the table shows these values of llu,* expressed as: expected value (2.5t1'

percentile, gl.srh percentile) for all data sets. Column 3 gives the standard deviation in the

expected value of ltn,^ for the corresponding 18 growth data sets. Total Uncertainty that is a

combination of Uncertainty and Variability in the value of þ,,*, ãrtd is calculated as the

percentage of the ratio of standard deviation to the expected value. These values of % Total

Uncertainty that are presented in the Column 4 are comparable with the assumed values of the

% Yaiabílity ranging from 1 Yo to 15 % in Chapter 3 (see Table 3.3). The inclusion of

Uncertainty and Variability therefore give a best estimate or "accurate value" of ¡1,,* for

E. coli growth for all independent data sets.
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Table 4,2 Summary of values of the parameters of the Rosso et. al. (1993) model from the

non-linear regression analyses of l8 data sets for growth of E. coli:

It "r,(T - 
T,^)(T - T^,n)'

(h-')
(7.p, - T,)l(T"p, - T,,,)(T - Tou) - (7.p, - T,o,)(Tor, + T,¡, - 2T)]

þ^^

E. colì, medium (source) Itop, rh'l TrurroC roo, roC T^,nroC

C-600-1, minimal (O'Donovan et. al. 1965a)

K-I-01, minimal (O'Donovan et. al,1965a)

C-600-1, complex (O'Donovan et. al.1965b) l'224 9.23 39.24 4s.48

K-lI-27, complex (O'Donovan et. al. 1965b) 1.224 6.78 40.t6 44.96

C-600-1, minimal (O'Donovan et. al.1965b) 0.604 7.35 40.11 44,46

K-II-27, minimal (O'Donovan et. al. 1965b) 0.565 16.65 40.89 44.42

ML 30 replicatel, minimal (Ng 1969)

ML 30 replicate2, minimal (Ng 1969)

ML 30 G, minimal (Shehata and Man 1975) 1.063 3.47 37.61 41.19

ML 30 G, complex (Shehata and Man 1975)

B/r, complex (Herendeen et. al. 1979) 1.7 5l LJt 39.97 48.30

K-Il-27 plus 10 Fg ml.-r of histidine, minimal
(O'Donovan et. al. 1965b)

(Not defined), complex
(Ratkowsky et. al. 1983)

SF, meat (Smith 1985)

OI57:H7, complex

Qters. comm. Buchanan 1992)

ML 30, minimal (Kovarova et. al. 1996)

M 23 and SB 1, complex (Ross et. a|.2003)

OI57:H7, meat (Tamplin et. al. 2005)

0.622 6.41 40,s6 44.37

L421 5.05 40.28 47.3t

0.909 5.09 38.70 42.12

1.853 4.95 41.69 47 .96

2.578 5.99 42.47 46.03

Overall mean: 1.256 7.12

- not presented because data for regression analyses inappropriate - see text.

40.16 4s.14
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Table 4.3 Summary of the predieted value of maximum specific growth rate (p.,,*) for

E. coli at37 oC for the Rosso et. al. (1993) model for 18 independent data sets.

E, coli, medium (source) þnuo, h't

C-600-1, minimal (O'Donovan el. ø1.1965a)

K-I-01, minimal (O'Donovan et. al.1965a)

C-600-1, complex (O'Donovan et. al.l965b) t.t1'l

K-IÍ-21, complex (O'Donovan et. al.l965b) 1.133

C-600-1, minimal (O'Donovan et. al.l965b) 0.554

K-II-27, minimal (O'Donovan et. al. 1965b) 0.469

K-lI-27 plus 10 p.g ml.-r of histidine, minimal
(O'Donovan et. al. 1965b)

0.560

ML 30 replicatel, minimal (Ng 1969)

ML 30 replicate2, minimal (Ng 1969)

ML 30 G, minimal (Shehata and Marr 1975) 1.0s7

ML 30 G, complex (Shehata and Man 1975)

B/r, complex (Herendeen et. ø1, 1979) 1.670

(Not defined), complex (Ratkowsky et. al. 1983) r.338

SF, meat (Smith 1985)

Ol57:H7, complex Qters. comm. Buchanan 1992)

ML 30, minimal (Kovarova et. al. 1996) 0.878

M 23 and SB l, complex (Ross et. a\.2003) 1.620

Ol57:IJ7, meat (Tamplin et. al. 2005) 2.112

Overall mean: 1.142

- not presented because data for regression analyses inappropriate - see text.
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Table 4.4 Summary of the RislNormal (Mean, Standard deviation) simulations for the

"accurate value" of maximum specific growth rate, ¡In* th 
l¡, of ,E'. coli, at37 oC

for 18 independent data sets.

E. colì, medium (source)
Standard
deviation

p,,* (Rìs kNo rm al¡tz, h-r To tal Uncer t aínily, o/o

C-600-1, minimal (O'Donovan et. al. 1965a)

K-I-O1, minimal (O'Donovan et. al. 1965a)

C-600-1, complex (O'Donovan et. al. 1965b)

K-II-27, complex (O'Donovan et. al. 1965b)

C-600-1, minimal (O'Donovan el. al. 1965b)

K-II-27, minimal (O'Donovan et. al. 1965b)

K-II-2'7 plus l0 þg ml.r of histidine, minimal
(O'Donovan et. al. 1965b)

ML 30 replicatel, minimal (Ng 1969)

ML 30 replicate2,minimal (Ng 1969)

ML 30 G, minimal (Shehata and Marr 1975)

ML 30 G, complex (Shehata and Marr 1975)

B/r, complex (Herendeen et. al. 1979)

(Not defined), complex (Ratkowsky e/. a/.
1983)

SF, meat (Smith 1985)

Ol57:H7, complex Qters. comm. Buchanan
r992)

ML 30, minimal (Kovarova et. al.1996)

M 23 and SB l, complex (Ross et. a|.2003)

Ol57 :H7, meat (Tamplin et. al. 2005)

1.054 (0.990, 1.107) 0.029

1.174 (1.044, 1.303)

1.129 (0.980, 1.298)

0,554 (0.504, 0.604)

0,469 (0.436,0.502)

0.559 (0.493, 0.624)

1.669 (1.478, 1.859)

1.337 (1.163, 1.510)

0.878 (0.841,0.915)

1,651 (1.563, 1.738)

2.106 (t.713,2.500)

0.064

0.079

0.025

0.016

0.032

0.095

0.086

0.018

0.043

0.196

5.45

6.99

4.5t

3.41

5.72

2.75

s.69

6.43

2.10

2.60

9.30

- not presented because data for regression analyses inappropriate - see text.

12 The values of ltn,o, obtained from .RisÆMo rmal simulations are expressed as:

expected value (2.5th percentile, 97.5th percentile).
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4.7 Summary and Conclusion

1. The Rosso predictive model for growth of E. coli was fitted to 18 appropriate

independent data sets (n : 191) using non-linear regression analyses. Estimates for each

of the four input parameters of the model, Fopt t Tnrn , Too, aîd To,*, ftom the regressions

for each data set were used to determine a value for pn,*. These values of þn* ranged

from 0.469 h-l to 2.112 h-l over a temperature range of 10 oC to 45 oC for growth of

E. coli on a range of media that included: minimal media supplemented with glucose,

complex media such as nutrient broths, and unblended meat. However, these values for

Itn* do not take into account the importance of Uncertainty and Variability on each of

the model parameters. Uncertainty is expressed as a standard deviation on the mean from

the regression analyses and Variability is expressed by adding residual standard error to

lr,,^.

2. To obtain a best estimate or "accurate value" of ltn,* for growth of E. coli, Uncertainty

and Variability were included for each of the data sets. The value obtained after the

inclusion of Uncertainty and Variability is a more "accurate value" of lt,,* than is

obtained from the non-linear regression analyses (with substitution of the values of the

four parameters in the Rosso model to obtain a value for ¡t,,*).

In the next chapter, a QRA of a Monod continuous fermenter using the "accurate value" of

¡1,,,n that includes Uncertainty and Variability is presented. Results of simulations of the

QRA model are presented and discussed.



CHAPTER FIVE

A REVISED QRA MODEL OF THE MONOD CONTINUOUS FERMENTER

Parts of this chapter are beinq prepared for publication as

Davey, K.R., Patil, R. A. and Daughtry, B. J. 2006. A new quantitative risk assessment of

a Monod continuous fermenter, Transactions of the Institution of Chemical Engineers,

Part C, Food and Bio products Processing - in preparation.
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5.1 Introduction

In this chapter, a revised QRA of the Monod process model for a continuous fermenter is

presented.

With the revised QRA model a realistic simulation can be carried out to predict an

"accurate value" of the number of actual practical failures that could occur in a continuous

fermenter.

Results of simulations of the revised QRA model are presented and discussed, and a

comparison made with the prediction of the QRA model of Chapter 3.

5,2 QRA model using the revised data

The revised QRA model of the Monod continuous fermenter uses the best estimate or

"accurate value" of ltn,* for growth of E. coli. The "accurate value" of þn,^ was obtained

by defining the RiskNormal distributions for each of the four Rosso model parameters,

ilopt , T,,iu, Too, aîd 7,,^, and by adding the residual standard error (RSE) to lt,,^ that were

obtained from the non-linear regression analyses (Table 4.4 of Chapter 4).

QRA simulations with the more "accurate value" of ltn,* for each of the 18 data sets were

carried out using @Rist{M software with 100,000 iterations.

5.3 Results and Discussion

Simulation results from the revised QRA model of the Monod continuous fermenter for

E. coli growth for each of the 18 independent data sets are summarised in Tables 5.1 and

5.2.

Table 5.1 presents predictions for failure of the continuous fermenter from the revised

QRA model. The table shows that the number of QRA predicted failures varies from

0.01 % to 5 Yo for E. coli grown in a minimal or complex medium, to 10.27 0/o in case of

E. coli grown on meat. It can be seen from the table that there is an overall mean value for
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predictecl failure rate of 2.43 % for E. coli grown in a minimal or complex media, or, on

meat.

A plot of % Failure vs o/o Total Uncertainty is presented in Figure 5.1. The values for Yo

Failure were taken from Table 5.1 and for those oîo/oTotal Uncertainty were taken from

Column 4 of Table 4.4. This plot highlights that the number of failures in the Monod

continuous fermenter increases with an increase in the Total Uncertainty in the value of

¡ln* for E. coli growth.

Figure 5.2 presents a plot of % Failure vs o/o Total Uncertainty with the values of assumed

Variability ranging from 1 Yo to 15 Yo about the means (see Table 3.3 of Chapter 3). It can

be seen from the figure that the assumed values of % Variability from the Chapter 3 lie on

the curve that is obtained by plotting the o/o Failure vs Yo Total Uncertainty. Therefore it

can be concluded that these assumptions are reasonable.

Table 5.2 presents a comparison of predicted results fot ¡tn* @-t) and failure (%) from the

revised QRA model - with those from a QRA model (Chapter 3) of the Monod continuous

fermenter with assumed Variability ranging from 1 o/o to 15 o/o about the means.

It can be seen from Table 5.2 that a failure rate of 2.43 % is predicted from the revised

("accurate value") QRA model over the 18 independent data sets collated from various

published sources for growth of E. coli. This compares with 8.18 % from the initial QRA

model of Chapter 3. That is, the number of predicted failures has been reduced by a factor

of about 3 over the QRA model of Chapter 3 in the revised QRA model with an accurate

estimate of þu,^.

A close inspection of Table 5.2 shows that the mean value of þu,* is nearly the same for

both QRA models: i.e. the revised and initial (Chapter 3) models. However, the number of

failures predicted to actually occur in the Monod continuous fermenter is reduced by about

70 % (i.e. 8'18- -?'43 x 100 ) in the revised QRA model. This underscores the need for the' 8.18

best estimate, i.e. "accurate value" of þ,,^ for QRA modelling of the continuous fermenter

and justifies the effort expended in determining its value.
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Table 5.1 Summary of the number of predicted failures (%) from a revised QRA model

of the Monod continuous fermenter for each of 18 independent data sets.

E, colì, medium (source) Failure, To

C-600-1, minimal (O'Donovan et. al. 1965a)

K-I-01, minimal (O'Donovan et. al. 1965a)

C-600-1, complex (O'Donovan et. al. 1965b)

K-lI-27, complex (O'Donovan et. al. 1965b)

C-600-1, minimal (O'Donovan et. al.l965b)

K-lI-27, minimal (O'Donovan et. al. 1965b)

K-lI-27 plus l0 þg ml,-r of histidine, minimal
(O'Donovan et. al. 1965b)

ML 30 replicatel, minimal (Ng 1969)

ML 30 replicate2, minimal (Ng 1969)

ML 30 G, minimal (Shehata and Marr 1975)

ML 30 G, complex (Shehata and Man 1975)

B/r, complex (Herendeen et. al. 1979)

(Not defined), complex (Ratkowsky et. al. 1983)

SF, meat (Smith 1985)

Ol57:H7, complex þers. comm. Buchanan 1992)

ML 30, minimal (Kovarova et. al. 1996)

M23 and SB l, complex (Ross et. a|.2003)

Ol57:H7, meat (Tamplin et. al. 2005)

Overall mean: 2.43

- notpresented because regression analyses inappropriate - see Chaptet 4

l.87

5

0.6

0. t4

3.32

< 0.1

2

3.53

< 0.01

< 0.01

10.27
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Table 5.2 Comparison of the mean maximum specific growth rate (¡t^*) for E coli and

resulting predicted failures (%) from a revised QRA model of the Monod

continuous fermenter - with those obtained from a QRA model (chapter 3) of

the continuous fermenter where ¡t,,* has an assumed variability ranging from

I o/o to 15 % about the means'

þr,** rh
-1 Failure*, 7o

Revised or "accurate value" QRA model

Initial QRA model from ChaPter 3

t.t4

1.00

2.43

8.18

results expressed as mean values
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5,4 Summary and Conclusions

1. A revised QRA model of a Monod continuous fermenter for E. coli growth with an

"accurate value" of the maximum specific growth tate (¡t,,^) predicted an overall

mean of 2.43 Yo of ac.f'ial practical fermentations will fail. The number of predicted

failures ranged about this mean value from 0.01 Yo to 10.27 %. The "accurate value"

of lln,* was determined from non-linear regression analyses of 18 independent data

sets collated from various published sources

2. This number of predicted failures is about one-third that predicted from an initial QRA

model of a continuous fermenter based on estimated values of Variability in the mean

value of þn,*.

3. Small changes in the value of þn,^ have a highly significant effect on predicted failure

rates of growth of E. coli in a Monod continuous fermenter. The effort expended in

determining the best estimate of þ,,n is justified by more reliable prediction of failure

of the continuous fermenter.

In the following chapter the conclusions that can be reached from this research are

presented.



CHAPTER SIX

CONCLUSIONS
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From this research the following can be concluded:

1. A novel Quantitative Risk Assessment (QRA) model of a Monod continuous

fermenter can be carried out. Failure of the fermenter is defined as washout.

2. Predictions from the novel QRA model of the Monod continuous fermenter for growth

of Escherichia coli at the dilution rate for maximum productivity highlighted that the

maximum specific growth rate ( ¡1,,*) was the input parameter that most influenced

de-stabilising of an otherwise well-operated plant that led to failure. A comparison of

simulation results from the QRA model with a traditional Single Value Assessment,

underscored the need for a more "accurate value" of þn * to accurately predict the

practical failures that could occur in the Monod continuous fermenter.

3. An "accurate value" of the natural Variability in the value of lt,,* for E. coli canbe

obtained from collation and analyses of published (18) independent growth data sets

over a range of growth temperature from 10 oC to 45 oC and wide range of growth

media (minimal, complex, and blended meat).

4. Simulations with the revised QRA model of the Monod continuous fermenter at the

dilution rate for maximum productivity with an "accurate value" of ltu,^ for E. coli

growth predicted that 2.43 %o of actual practical failures can occur. The rate of

fermentation failures was reduced from 8.18 % to 2.43 o/o orby about 70 Yo inthe

revised QRA model. That is, the number of predicted failures was reduced by a factor

of about 3 over the initial QRA model of the continuous fermenter for growth of

E. coli. This finding underscores that effort should be expended in determining the

best estimate of ¡1,,,^ for reliable predictions.

5. The notion of global food process can be glimpsed through the successful application

of this novel QRA modelling approach to a continuous fermenter and earlier a UHT

plant (Cerf and Davey 2001), and could, in principle, be applied to a range of single or

connected unit operations.
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6.1 Recommendations for further research

The novel application of QRA modelling to a continuous fermenter, in principle, can be

applied to a wide range of a standard single or connected unit operations such as the

sterilisation of the fermentation media (and equipment surfaces), and downstream

processing operations of fermented products - or perhaps more widely - to the pressure

vessels (K R Davey pers. comm.). What will be required is a measure, or very clear

definition, of what constitutes failure in the unit operation - together with realistic values of

all operating parameters. The success of this research strongly supports this. The benefits

of using QRA will assist in evaluating the risk involved in any unit operation together with

the Uncertainty and Variability in the model input parameters.



APPENDICES

APPENDICES A - E
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APPENDIX A - A defïnition of some important terms used in this research

Chance

Chemostat

CSTR

Fact

Failure

Fermentation

Friday 13th Syndrome

Generation time

Global food process

Inactivation

see Yariabílity

see CSTR

Continuous Stined Tank Reactor - defined as a

Chemostat in general microbiology or as a CSTF in

biochemical engineering literature (see Lee 1992)

seeUncertainty

s¿¿ Washout

An enzymatically controlled transformation of an

organic compound usually carried out in a CSTR

Events defined by where just about all the bad in

everlhing seems to combine to make a failure of

plans and opportunities despite all good design and

operation (defined by Cerf and Davey 2003)

Time required to double the population for a micro

organism

A food process in which there are two or more

process unit operations interconnected (dehned by

Cerf and Davey 2003)

Rendering of the inability of viable cells to reproduce

Phase in a microbial growth curve in which there is

no significant increase in cell numbers

Lag time



Mean

Median

Monte Carlo Assessment

(MCA)

Predictive (microbial)

Modelling, Predictive

Microbiology,

Microbiological Process

Modelling

19

The value of a random variable for which the

weighted probability mass for all values less than the

mean is equal to the weighted probability mass for all

values greater than the mean. The mean can be

regarded as the center of gravity of a probability

density function. Also, the mean is the first moment

of the distribution with respect to the origin

It is a point such that exactly half of the probability is

associated with values less than the median and half

of the probability is associated with values greater

than the median. It is also regarded as the mid-point

or 50th percentile of the distribution

MCA involves the random sampling of each

probability distribution within a parameter to produce

hundred's or even thousand's of iterations. Each

probability distribution is sampled in a manner that

reproduces the shape of the distribution. The

distribution of the values calculated for the parameter

outcome therefore reflects the probability of the

values that could occur practically in plant operation.

This methodology is referred to as Monte Carlo

Assessment (MCA) (Cerf and Davey 2001)

A description of the microbial response to a particular

environmental condition, using models as a basis on

which predictions are made. A term widely used by

microbiologists. The models use experimental data,

and equations to produce a prediction. A prediction

should be used as a guide to the response of a micro

organism to a particular set of conditions. Predictive

microbiology is too broad a title. For chemical
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Probability

Probability distribution

Quantile

Single Value Assessment

(svA)

Standard deviation

Sterilisation

Stochastic process

engineers, biochemical engineers a more accurate

descriptor is: microbiological process modelling (søe

Davey 1993)

A numerical measure of the likelihood of a particular

outcome of a stochaslic process

A distribution of probable values a parameter may

take, with the likelihood that the parameter will take a

unique value

The fraction (or percent) of points lying below the

given value i.e. 0.5 (or 50 %) quantile is the point

(median) at which 50 o/o percent of the data fall below

and 50 Yo fall above that value

Assessment of a desired model output using a single

value input (defined by Cerf and Davey 2001)

It is the square root of variance. It is used to estimate

probability bands for many standard probability

distributions

Inactivation of all living matter. However, a working

definition is a given reduction in the number of viable

micro organisms

A system of countable events to a well defined

random process

A group of micro organisms of the same species,

having distinctive characteristics but not usually

considered a separate breed or variety

Strain



Uncertainty

Unit operation

Variability

Viable

Washout

81

A lack of knowledge, or level of ignorance, about the

parameters that characterise the physical system. It is

also referred to as a Fact. Uncertainty is sometimes

reducible through further measurement or careful

study, or through consulting more experts

(Vose 2000)

The operation in which chemical as well as physical

changes take place e.g. fermentation, sterilisation,

dryrng, mixing, etc

The effect of chance on an outcome. It is a function

of the system. Variability is not reducible through

further study or careful measurement. It can be

reduced through changing the physical system

(Vose 2000)

Living or active in terms of microbiology

A condition of loss of all viable cells from the

fermenter



APPENDIX B - Collated growth data for Escheríchía colí from various published

sources

Data collated in this appendix for maximum specific growth rate (¡tn,*) for Escherichia

coli werc either: taken from tabulated data directly from the published sources (e.g.

Table 8.18), taken from tabulated data expressed as generation time (ro) and converted to

give ¡1,,^ (e.g. Table 8.14 and B.l7), or taken from graphical data and converted to give

þn* by linear interpolation of suitably enlarged diagrams (e.g. Table B.1-8.13, 8.15 and

B.16).

All data sets were converted to give consistent units of ¡tn* of h-r. Each strain of E. coli ts

identilred except the data of Ratkowsky et. al. (1983), (seeTable B'13).



83

Table 8.1 E. coli C-600-1 growth in glucose-minimal medium over a range of

temperature 15 < T < 37 oC 
1o'Dottovaî et. at. 1965a).

T,oC þ^*,hr
15

20

22.5

25

27.5

30

35

37

0.049

0.102

0.160

0.199

0.244

0.315

0.465

0.572

Table 8.2 E. coli K-I-01 growth in glucose-minimal medium over a range of

temperature2} 3T < 37 oC 
1o'Donovanet. al. 1965a).

TroC ll ro*,h-l

20

22.5

25

27.5

30

35

37

0,028

0.056

0.r29

0.1 78

0.269

0.444

0.482
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Table 8.3 E. coli C-600-l growth in nutrient broth over a range of temperature

9.5 < T < 44oC 1O'Donovan et. at. 1965b),

T,oC ll ^or,h-r
9.5

15

20

22.5

26

30

37

39

42

44

0.014

0.081

0.258

0.388

0.4t9

0.799

r.202

1.235

1.071

0.712

Table 8.4 E. colí K-Il-27 growth in nutrient broth over a range of temperature

l0 < f < 44oC (O'Donovan et. a\.1965b).

T,oC þ ror,n*l

10

15

20

22.5

26

30

37

39

42

44

0.014

0.078

0.258

0.410

0.4t9

0.799

1.07t

r.261

t.146

0.712
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Table 8.5 E. coli C-600-1 growth in glucose-minimal medium over a range of

temperature 15 < T < 37 oC 
1o'Donovan et. at. 1965b).

TroC It ^*,h-l
11.8

15

20

26

30

37

39

42

44

0.015

0.041

0.120

0.24s

0.335

0.589

0.568

0.568

0.240

Table 8.6 E. coli K-II-27 growth in glucose-minimal medium over a raîge of

temperature2} < T < 44 oC 
1o'Donovan et. at. 1965b).

T,oC It ^ ,hl
20

22.5

26

30

37

39

42

44

0.014

0.055

0.117

0.r97

0.4't8

0.535

0.s42

0.228
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Table 8.7 E. coliK-ll-27 plus 10 pg ml--l histidine growth in glucose-minimal medium

over arange of temperature 11.8 <T < 44oC (O'Donovan et. al.1965b).

TroC It ^*,h-l
11.8

l5

20

26

30

37

39

42

44

0.015

0.043

0.128

0.257

0.335

0.602

0.568

0.602

0.245

Table 8.8 E. coli ML 30 replicate 1 growth data in a glucose-minimal medium over a

range of temperatureg.2g <T < 34.96 oC (Ng 1969).

TroC þ^*,h-l
9.29

15.07

17.07

20.25

25.21

30,77

34.96

0.042

0.141

0.183

0.272

0.485

0.678

0.862
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Table 8.9 E. colí ML 30 replicate 2 growth data in a glucose-minimal medium over a

range of temperatureg.2g <T < 34.96 oC (Ng 1969).

TroC þ^*,hl
9.29

t2.68

15.07

20.34

25.21

30.37

34.96

0.037

0.086

0.148

0.290

0.427

0.625

0.809

TableB.lO E. coli ML 30 G growth data in a minimal medium over a range of

temperature 11 < T < 40 oC 
lShehata and Marr 1975).

TroC It ^*,h-r
11

l5

20

25

30

35

40

0.058

0.154

0.306

0.48s

0.756

0.99

0.866
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TableB.ll E. coli ML 30 G growth data in a complex medium over a range of

temperature 14 < T < 40 oC 
lshehata and Marr 1975).

TroC ll *or,h-r

t4

20

25

30

35

40

0.194

0.507

0.835

t.26

1.8

2.08

TableB.12 E. coli B/r growth data in a complex medium over a range of temperature

13.5 < T < 48 oC 
lHerendeen et. al. 1979).

T,OC ll ^or,h-l
13.5

15

t7

t9

2I

23

28

30

33

36

37

39

42

45

46

47

48

0.149

0.1 95

0.298

0.367

0.518

0.587

0.87s

1.160

1.298

1.546

1.776

1.866

1.808

t.t91

0.992

0.690

0.238
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Table 8.13 E. coli (strain not defined) growth data over a range of temperature

2l <T < 47 oC (Ratkowsky et. at.1983).

TroC ll ^or,Ít-l
0.2s

0.56

0.61

0.79

0.94

1.04

1.16

1.23

1.36

1.32

1.36

1.34

0.96

0.83

0.16

Table B.l4 E. coli SF growth data on meat over araîge of temperature 8.2 < T < 40oC

(Smith 198s).

2t

23

25

21

29

31

33

35

37

39

47

43

45

46

47

T,oC It ^or,hl
8.2

10

15

20

25

30

35

40

0.04

0.10

0.27

0.50

0.89

1.33

1,.87

2.31
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Table 8.15 E. coli Ol57:H7 growth data in a complex medium over a range of

temperature 1l < T < 40oC ç"rt. comm. Buchanan 1gg2).

TroC It ro*,h-r
0.112

0.108

0,11s

0.1 63

0.584

0.s61

0.s61

1.254

1.303

1.227

2.288

2.309

2.3r4

2.387

2.507

2.323

Tab1eB.16 E. coli ML 30 growth data in a glucose-minimal medium over a range of

temperature 10.6 < T < 39.83 oC 
lKovarova et. al. 1996).

T,oC ll ^or,h-l

10

10

10

T2

t9

t9

l9

28

28

28

37

37

37

42

42

42

10.06

20.10

25.93

28.54

30.1 5

31.43

32.72

34.83

37.58

38.s4

39.83

42.72

0.021

0.2t1

0.445

0.529

0.s78

0.639

0.690

0.789

0.9r2

0.924

0.868

0
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Tab1eB.17 E. coliM23 and SB I growth data in a complex medium over a range of

temperatureT.63 <T < 47.43 
oC 

lRoss et. a\.2003).

TroC þ^*,h-r
7.63

10.30

12.03

13.20

14.48

16.03

17.38

20.18

21.50

22.68

24.0s

25.00

25.00

25.43

26.70

27.90

29.30

30.60

32.08

33.60

34.98

36.70

38.03

40.08

41.85

43.63

45.55

47.43

0.011

0.036

0.074

0.105

0.t43

0.200

0.256

0.415

0,471

0.587

0.693

0.718

0.745

0.796

0.855

1.066

1.034

1.195

1.307

1.386

t.474

1.611

1.6s0

1.824

1.t77

1.824

1.506

0.521
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Table 8.18 E. coli Ol57:H7 growth data on meat over a range of temperature

6 <T < 45 oC (Tamplin et. a1.2005),

T,oC It ^*,hr
6

8

10

10.5

11

12.5

l5

t7

l8

20

25

30

35

40

42

44

45

0.003

0.022

0.107

0.068

0.109

0.1 58

0.245

0.254

0.404

0.471

0.878

1,.07

1.79

2.45

2.93

2.16

2.07



APPENDIX C - R software for non-linear regression analysis of fÏt of Rosso model to

data for growth of E. colí

C.1 R program for published E. coli data sets

Before starting the program, save the E. coli growth data on the C:ll (as filename.dat)

filename <- read.table ("C:\\ filename.dat", header=T)
attach ( filename )

filename
rosso. func <- function (temp, mu. opt, tmin, topt, tmax) {mu. opt* ( temp-
tmax) * (temp-tmLn) ^2/
( ( Lopt-tmin ) * ( ( topt-tmin ) * ( temp-topt ) - ( Lopt-tmax) * ( topt+tmin-
2*temp) ) ) )
f ilename. func <- function (temp, b, tmín, c, tmax) {b* (temp-tmin) * (l--
exp (c* (temp-tmax) ) ) )

# Rosso model

f ilename.nlsl- <- nls (mu.max - rosso. func (Temp,

topt, tmax) , data= filename, start=fist (mu .opL=2,
tmax=49 ) , t.race=T)

mu. opt,
tmin=5,

tmin,
topt=41,

filename . nlsl

sunmary (f ilename. nlsl- )

shapiro . test (resid ( f ilename . nls1) )

vcov (f ilenarne . nls1- )

plot (Temp,mu.max, xlim=c (coef (f ilename.nlsll l2l ,

coef (f if ename. nl-s1 ) t 4l ) )

x <- seq(coef (filename.nlsl) 12) , coef (filename.nlsl) [4] , len=101)
lines (x, rosso. func (x, coef (filename.nIsl) [1] ,

coef (filename.nlsll l2l, coef (filename.nlsl) [3],
coef (f ilename.nlsl-) t4l ))
mean (resid ( f ilename . nls1 ) )

sd (resid ( f ilename . nlsl ) )

hist (resid(filename.nlsl-), breaks=11)
plot ( fitted ( filename. nlsl ) , resid ( filename. nlsl ) )

abline (h=0 )

qqnorm (resid ( f ilename . nlsl ) )

qqline (resid (f ilename . nlsl- ) )

par (mf row=c (2 ,2) )

plot (Temp,mu.max, xlim=c (coef ( filename.nlsl-) l2l,
coef (filename.nlsl) t4l ) )

x <- seq(coef (filename.nlsl_)l2l , coef (filename.nlsl)[4], Ien=l-01)
lines (x, rosso. func (x, coef (filename'nls1) [1] ,

coef (fiIename.n1s1) l2l , coef (filename.nlsl) [3] ,

coef ( filename.nlsl- ) t4l ) )



94

hist ( resid ( f ilename . nlsl ) , breaks=l-l- )

plot (fitted(filename.nlsl), resid(filename.nlsl) )

abline (h=0 )

qqnorm (resid ( f ilename . nlsl ) )

qqline ( resid ( filename. nlsl- ) )

C.2 R program output for E coliM23 and SBI growth data

> rossecoli <- read.table ("C: \\rossecoli.dat", head.er=T)
> attach(rossecoli)
> rossecoli

Temp mu.max
1, 1.63 0.01-14
2 1-0.30 0.0362
3 L2.03 0.0144
4 L3 .20 0.1058
5 L4.48 0.1-438
6 16.03 0.2003
7 1-7 .38 0.2561
I t-8.s3 0.3108
9 20 .1-8 0.4150
10 21_.s0 0.47Ls
LL 22.68 0. s874
L2 24.05 0.6931
l_3 2s.00 0.7788
t4 25 .00 0 .7 453
15 25.43 0.1961
L6 26.70 0.8557
L] 27 .90 1.0663
L8 29 .30 1.0345
L9 30.60 1.1950
20 32.08 1.3078
2L 33 .60 1- .3862
22 34 .98 L .47 41
23 36.70 L.61,L9
24 38.03 1.6503
25 40.08 1-.8240
26 4L.85 L.7713
27 43.63 L.8240
28 45.55 1.5068
29 41 .43 0.52LL
> rosso. func <- funcLion(temp,mu.opt, tmin, topl, Lmax) {mu.opt* (temp-
tmax) * ( temp-tmin ) ^2 / ( ( topt-tmin ) * ( ( topt -tmin ) * ( temp-topt ) - ( topt-
tmax) * (topt+tmin-2*tenp) ) ) )
> ratkowsky. func <- function(Lemp,b, tmin, c, tmax) {b* (temp-tmin) * (1-
exp(c*(temp-tmax))))
> # Rosso model



95

> rossecoli.nlsl <- n1s(mu.max- - rosso=frrnc (Temp, mu'opt, Lmin,
topt, tmax),data= rosSecoli,Start=liSt(mu.opt=2, tmin=5, topt= 1,
tmax=49), trace=T)
0.1840829: 2 54t49
O -1.LL4702 : 1 .852255 4.885935 4L.53681-2 41 .685596
0.04495153 : l-.853621 4.899539 41'-704921- 47.932771'
0.04432389 : 1.853268 4.945065 4L.698292 41.967508
0.04432206 : l-.853091- 4.953393 41'.69442L 41 .969654
0.04432204 : l-.853071 4.954204 4L.693983 47 .969824
O .04432204 : l- .853069 4.954282 41' .69394L 47 . 969840
> rossecolí.n]s1

Nonlinear regression model
model: mu.max - rosso.func(Temp, mu.opt, tmin, topt, tmax)
data: rossecoli
mu.opt tmin topt tmax

1 .853069 4.954282 4L.693941- 41 .969840
residual sum-of-squares: 0.04432204

> sunmary (rossecoli .nls1 )

Formula: mu.max - rosso.func(Temp, mu.opt, tmin, topt, tmax)
Parameters:

Estimate Std
mu . opt 1- . 8531
tmin 4.9543
topt 41, .6939
tmax 47.9698

Error
0.0179
0. ss65
0.1708
0.0719

t vafue Pr(>ltl)
1-03.515 < 2e-1-6

8.903 3 .17e-09
244 .064 < 2e-1-6
661 .1-44 < 2e-L6

***
***

tr**

signif . codes: 0 r*'k'kr 0.001- r*)kt 0.01 r*t 0.05 '.' 0.1 |

Residuat standard error: 0.04211 on 25 degrees of freedom
Correlation of Parameter Estimates:

mu. opt tmin toPt
tmin 0.1,832
topt 0.3462 -0.5838
tmax -0.3303 0.3823 -0.5545
> shapiro. test (resid(rossecoli.nls1) )

Shapiro-WiIk normalitY test
data: resid(rossecoli.nlsl)
W = 0.9276, P-vâIue = 0.04761
> vcov (rossecoli . nlsl )

mu.oPt tmin
mu.opt 0. 0003204623 0 -001'825312
tmin 0.00L8253725 0.309674769
topt 0.001-0587519 -0.055501388
tmax -0.0004252L01 0.015298334
> plot (Temp,mu.max, xlim=c (coef (rossecoli.nlsl) l2l ,

coef (rossecoli.nlsl) t4l ) )

> x <- seq(coef (rossecoli.nlsl) 121 , coef (rossecol-i.n]s1)
len=101 )

> lines (x, rosso. func(x, coef (rossecoli.nlsl-) [1] ,

coef (rossecoli.nlsl-) [2] , coef (rossecoli.nlsl) [3] ,

coef (rossecoli.nlsl) t4l ) )

> mean (resid(rossecoli.nlsl) )

t1l -0.002642282
> sd(resid(rossecoli.nlsl) )

t1l 0.03969s08
> hist (resid(rossecoli.nlsl) , breaks=11)

'1

0

-0
0

-0

topt Lmax
001058752 -0 . 00042521,07
055501388 0.0L52983342
029L83661 -0 . 0068111-900
006811190 0.00s1-700744

t4t ,
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> Dlot(fitted(rosseeo1i.nls1), resid(rosseco1i.nlsl) )- E--

> abline(h=0)
> qqnorm(resid (rossecoli.nlsl-) )

> qqline (resid(rossecoli.nlsl) )

> par (mf row=c (2 ,21 \

> plot. (Temp,mu.max, xlim=c (coef (rossecoli.nlsl-', l2l ,

coef (rossecoli.nlsl-) t4l ) )

> x <- seq(coef (rossecoli.nlsl-t' l2l , coef (rossecoli.nlsl-) [4] ,

Ien=l-01)
> lines (x, rosso. func (x, coef (rossecoli.nlsl) [1] ,

coef (rossecoli.nlsl-l l2l , coef (rossecoli.nlsl) [3] ,

coef (rossecoli.nlsl) t4l ) )

> hist (resid.(rossecoli.nlsL) , breaks=11-)
> plot (fitted(rossecoli.nlsl-), resid-(rossecoli -nls1) )

> abline (h=0 )

> qqnorm (resid (rossecoli . ntsl ) )

> qqline (resid (rossecoli.nlsl) )
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APPENDIX D - Output estimates of non-linear regression fit of the Rosso model to

E. colì growth data

Table D.1 Initial parameter estimates of the Rosso model.

E. coli, medium (source) Fop, ,h' Tn,,u,oC Too, ,oC 7,,* oc

C-600-1, minimal
(O'Donovan et. al. 7965a)

K-I-01, minimal
(O'Donovan et. al. 1965a)

C-600-1, complex
(O'Donovan et. al. 7965b)

K-II-2'| , complex
(O'Donovan et. al. 1965b)

C-ó00-1, minimal
(O'Donovan et. al. 1965b)

K-Il-27, minimal
(O'Donovan et. al. 1965b)

K-lI-27 plus l0 þB ml--r of histidine,
minimal (O'Donovan et. al.1965b)

ML 30 replicatel, minimal (Ng 1969)

ML 30 replicate2, minimal (Ng 1969)

ML 30 G, minimal
(Shehata and Man 1975)

ML 30 G, complex
(Shehata and Man 1975)

B/r, complex (Herendeen et. al. 1979)

(Not dehned), complex
(Ratkowsky et. al. 1983)

SF, meot (Smith 1985)

Ol57:H7, complex

Qters. comm. Buchanan 1992)

ML 30, minimal (Kovarova et. al. 1996)

M23 and SB 1, complex
(Ross el. a1.2003)

Ol57:H7 , meat (Tamplin et. al. 2005)

t.23

t.26

0.5

0.s4

0.6

1.2

0.92

2

2.9

l0

19

ll

10

l0

37

39

4t

38

4t

50

49

9 45

45

45

45

45

39

39

40

42

37

9

42

2

2 5

10

5

43

49

465

- not presented because data for regression analyses inappropriate - see Chapter 4

42
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Table D.2 Mean and standard Deviation of the parameter estimates

E. coli, medium (source) Parameters Mean Standard Deviation

C-600-1, minimal
(O'Donovan et. al. 1965a)

Fop,,hl

Tn r, ,oC

Too, 'oc
Trr* roc

K-I-01, minimal
(O'Donovan ef. al. 1965a)

Fop, 'hl
Tn ur roc

Too, 'oc
Tr,* roC

C-600-1, complex
(O'Donovan et. al. 1965b)

Fop, 'hl
T,n ,oC

Too, 'oc
Tn *,oC

7.2242

9.23

39,24

4s.48

0.034

1.8293

0.s416

0.4756

K-II-27, complex
(O'Donovan et. al. 1965b)

Fop,'lhl

Turn,

Top,

Tu,^

1.2249

6.78

40.16

44.96

0.0407

2.1783

0.6200

0.4093

,oC

,oC

,oC

C-600-1, minimal
(O'Donovan et. al. 1965b)

llop, ,hl
Tr,,r,oC

Too, 'oc
Tr,* roc

0,6043

7.3s

40.17

44.69

0.0t32

r.4690

0.37s6

0.1223

K-II-27, minimal
(O'Donovan et. al. 1965b)

Fop,,hl

Tr,,r,oC

Too, 'oc
T*n, roC

0.5651

16.6s

40.89

44.42

0.0095

0.7582

0.2265

0.0789

K-lI-2'7 plus l0 ¡rg ml.-t of
histidine, minimal
(O'Donovan et. al. 1965b)

ilop,'hl
Tr,r,,oC

T*, 'oC
Tn,* roC

0,6228

6.41

40.56

44.37

0.0178

1.9304

0.4991

0.1366

ML 30 replicatel, minimal
(Ng 196e)

Fop,'hl
T,ur,oC

Too, 'oc
Trr* roC

- not presented because data for regression analyses inappropriate - see Chapter 4.



99

ML 30 replicate2, minimal
(Ne le69)

llop, ,hl
Tn,n,oC

Too, 'oc
Tr,* roc

ML 30 G, minimal
(Shehata and Man 1975)

llop, ,hl
Tr,,r,oC

Tor,,oc

Tn,*,oC

1.0638

3.47

37.67

41.19

0.0347

0.7927

0.3461

0.5504

ML 30 G, complex
(Shehata and Marr 1975)

Fop,,ht

Tr,,u,oC

Too, 'oc
Trr*,oC

B/r, complex
(Herendeen et. al. 1979)

Foo,,ht

Tn,,u roC

Too, 'oc
Tn,* roC

1.7513

7.37

39.7

48.30

0.0398

L3523

0.37s6

0. I 595

(Not defined), complex
(Ratkowsþ et. al.1983)

Fop,,hl

Tn,u,oC

Too, 'oc
Tn,* 'oc

t.4212

5.05

40.28

47.3t

0.0362

2.3820

0.4t21

0.t544

SF, meat (Smith 1985)
llop, ,El

Tn,,u roC

Too, 'oc
Tr,^ roc

Ol57:H7, complex

Qters. comm. Buchanan 1992)
Fop, , h*l

Tu,r,,oC

Too, 'oc
Tn,^ roC

ML 30, minimal
(Kovarova et. al.1996) Fop¡,hl

Tu,,u,oC

Too, 'oc
Trr*,oC

0.9093

5.09

38.70

42.12

0.0089

0.9472

0.19 19

0.0106

M 23 and SB 1, complex
(Ross e/. al.2003)

Fop,,hl

Tr,,u,oC

Too, 'oc
Tr,*,oC

1 .8531

4.95

41.69

47.96

0.0179

0,5565

0.1708

0.0719

- not presentod because data for regression analyses inappropriate - see Chapter 4.
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O157:H7, meat
(Tamplin et. a|.2005)

Fop,,El

Tn,r,oC

Too, 'oc
Tn* roc

2.5786

5.99

42.47

46.03

0.0990

0.0602

0.6059

0.6963
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Table D.3 Residual Sum-of-Squares (RSS) and Residual Standard Enor (RSE).

E. coli, medium (source)
Residual Sum-of- S quares

(Rss)
Residual Standard Error

(RSE)

C-600-1, minimal (O'Donovan et. al. 1965a)

K-I-O1, minimal (O'Donovan et. ø1.1965a)

C-600-1, complex (O'Donovan et. al.l965b)

K-lI-27, complex (O'Donovan el. al. 1965b)

C-600-1, minimal (O'Donovan et. al. 1965b)

K-II-27, minimal (O'Donovan et. al. 1965b)

K-II-27 plus l0 pg ml.-r of histidine, minimal
(O'Donovan et. al. 1965b)

ML 30 replicatel, minimal (Ng 1969)

ML 30 replicate2, minimal (Ng 1969)

ML 30 G, minimal
(Shehata and Marr 1975)

ML 30 G, complex
(Shehata and Man 1975)

B/r, complex (Herendeen et. al. 1979)

(Not defined), complex
(Ratkowsky et. al. 1983)

SF, meat (Smith 1985)

Ol57:H'7, complex

Qters. comm. Buchanan 1992)

ML 30, minimal (Kovarova et. al. 1996)

M 23 and SB 1, complex (Ross et. al. 2003)

Ol57:H7, meat (Tamplin et. ø1. 2005)

0.0182

0.0243

0.0022

0.0007

0.0039

0.0005

0.1023

0.0712

0.0022

0.0443

0,3040

0.0551

0.0636

0.0213

0.0137

0.0279

0.0133

0.0887

0.0805

0.0168

0.0421

0.t529

- not presented because data for regression analyses inappropriate - see Chapter 4
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Table D.4 Correlation of Parameter Estimates for:E coli,medium (source).

Table D.4.1 Correlation of Parameter Estimates for C-600-1, complex
(O'Donovan et. al. 1965b).

Correlations Fop,,hl Tn,u, roC Too, 'oc
Fop,'hl

Tr,r,,oC

Too, 'oc
Tn,*roc

Table D.4.2 Correlation of Parameter Estimates for K-II-27, complex
(O'Donovan et. al. 1965b).

Correlations Fop,,hl Tr,,r,oC oc

Fop,,hl

Tr,,u,oC

Too, 'oc
Tn,*,oC

llop¡ ,hI
Tn,nr,oC

Too, 'oc
Trr*,oC

I

0.214s

0.2001

-0.2790

I

-0.s 1 86

0.4882

1

-0.8099

Table D.4.4 Correlation of Parameter Estimates for K-II-27, minimal
(O'Donovan et. al. 1965b).

Correlations Tn,r,,oC Top,
oc

Tr,* roc

I

0.1183

0.1724

-0.3623

I

0.0937

0.2904

-0.4158

1

-0.6905

0.6129

1

-0.6352

0.5829

I

-0.49s7

0.478t

1

-0.786s

I

-0,8406

I

-0.8283

I

Tn,*Top,

I

Tn,*h-r

1

I

oc

oc

Table D.4.3 Correlation of Parameter Estimates for C-600-1, minimal
(O'Donovan et. al. 1965b).

Correlations Fop,,h-t Tr,,r,oC Too, 'oc Tr,*,oc

lloo, '

Fop,,hl

Tr,r,,oC

Tor, 'oc
Tn,*,oc

1

0.1183

0.3321

-0.3941
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Table D.4.5 Correlation of Parameter Estimates for K-II-27 plus 10 pg ml,-r of histidine,
minimal (O'Donovan et. al. 1965b).

Correlations Fop,' Trr,n,oC Too,
oc

Fop,,hl

Tr,,r,oC

Too, 'oc
Tn*roc

Table D.4.6 Correlation of Parameter Estimates for ML 30 G, minimal
(Shehata and Marr 1975).

Correlations Fop,,h-' Tn,,u,oC Tor, 
'oC Tn,^

ocTn,*h-r

Fop¡,hl

Tu,,u,oC

Too, 'oc
T,*,oC

Fop,'hl

Tn,rr,oC

Too, 'oc
Tr,^ toc

I

0.1776

0.2778

-0.3312

I

-0,6005

0.9168

-0,9540

I

0.3003

0.tt'76

-0.2489

1

0.4462

0.0185

-0,1317

I

-0.5172

0.4990

I

-0.7777

0.7430

I

-0.4436

0.3000

I

-0.s339

0.3795

I

-0.8477

I

-0.9702

I

-0,5194

I

-0.5557

I

oc

I

Table D.4.7 Correlation of Parameter Estimates for B/r, complex (Herendeen et. al. 1979).

Correlations Fop, , n-l Tu,,r,oC Too, 'oc Tr,*,oC

Þop, 'hl
Tn,r,,oC

Too, 'oc
Tr,*,oc

Table D.4.8 Correlation of Parameter Estimates for (Not defined), complex
(Ratkowsky et. al. 1 983).

Correlations Fop¡ 'hl Tu,,u,oC Too, 'oc Tr,*,oc

I

I
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Table D.4.9 Correlation of Parameter Estimates for ML 30, minimal
(Kovarova et. al. 1996).

Correlations Foo, 'hl Tn ur roc

Fop,,hl

Tn,r,oC

Too, 'oc
Trr* roc

I

0. I 504

0.3746

-0.0085

I

0,1832

0.3462

-0.3303

1

-0,6330

0.0071

1

-0.583 8

0.3823

Too, 'oc Tn*

I

0.0076

oc

Tr,*,oC

1

Table D.4.10 Correlation of Parameter Estimates for M 23 and SB 1, complex
(Ross et. aL.2003).

Correlations lloo, '
Tn,,r,oC Too, 'oc

Fop,,El

Tnrr, toC

Too, 'oc
Tr,*,oC

1

0.005

0.3882

-0.s821

1

-0.557s

0.4897

I

-0.8155

h-r

I

-0,5545

Table D.4.11 Correlation of Parameter Estimates for Ol57:H7,meat
(Tamplin et. aL.2005).

Correlations !op,,hl Tn,,u,oC Tor, 'oc Tn,n,

Foo,,h-'

Tu,rr,oC

Too, 'oc
T,n ,oC

oc

I
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NOMENCLATURE

Symbol Definition Unit

A

a,b,c

aw

K

¡/

¡/t

N

R

.r

mathematical parameters (Chapter 2)

water activity (Chapter 2)

asymptote [: ln(N- / Nr) ] i.e. the maximal value reached

(Chapter 2)

Ratkowsky parameters (Chapter 2)

Ratkowsky parameters (Chapter 2)

dilution rate (Chapter 3)

maximum dilution rate (Chapter 3)

dilution rale at maximum output (Chapter 3)

activation energy (Chapter 2)

feed (Chapter 3)

enthalpy of activation (Chapter 2)

rate constant (Chapter 2)

collision factors or frequency factors (Chapter 2)

constants (Chapter 2)

limiting nutrient concentrati on at ¡t = ry (Chapter 2,3)

mmber of micro organisms (Chapter 2)

initial population density (Chapter 2)

maximum population density (Chapter 2)

universal gas constant (Chapter 2)

concentration of the substrate (Chapter 3)

concentration of the substrate in feed (Chapter 3)

dimensionless

dimensionless

dimensionless

oc-l 
h-0.s

oc-t

h-r

h-1

h-r

J mole-l

-3 h-t

J mole-l

s-r (mole --')-t

s-l (mole *-')-t

dimensionless

dimensionless

cfu ml--l

cfu ml--l

cfu ml--l

J mole-l K-_l

kg --'
. -,1kgm"

bt, b2, b3

C2t C3

D

Dnr*

Dnaxoutput

E

F

H

k

ko, kt, k2

K, L, M

s./



tt2

t time

temperatur e (Chapter 2, 4)

temperature at which the enzyme is 50% inactivated
(Chapter 2)

temperature at which the enzyme is 50 % inactivated
(Chapter 2)

temperature above which no growth occurs (Chapter 2,4, oC

s)

temperature below which growth is no longer observed
(Chapter 2,4,5)

optimum temperature (Chapter 2,4, 5)

shape parameter (Chapter 2)

reactor volume (Chapter 3)

concentration of cells (Chapter 3) kg --'
g L-r¡-tproductivity of the continuous fermenter at maximum

output dilution rate (Chapter 3)

[: ln(N / ¡/o ) ] is the population density (Chapter 2) dimensionless

Y,l, yield factor (Chapter 3) dimensionless

Greek letters

s

oc

oc

oc

oc

oc

T

7,,

Tt

Tr,*

Tn,¡,,

Top,

1)

V

x

dimensionless

3m

(xD) rorou,ou,

v

1

p

þ,,*

llopt

lag time (Chapter 2)

specific growth rate (Chapter 2,3)

maximum specific growth rate (Chapter 2,3,4,5)

optimum specific growth rate (Chapter 2,4,5)

: ltl lt,,* (Chapter 2)

h

h-r

h-r

h-l

dimensionless(t)
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Subscripts

f
h

i

I

mqx

input or feed (Chapter 2,3)

high (Chapter 2)

initial condition (Chapter 2, 3)

low (Chapter 2)

maximum (Chapter 2,3, 4,5\

minimum (Chapter 2, 4, 5)

output (Chapter 3)

optimum (Chapter 2, 4, 5)

product (Chapter 2)

substrate (Chapter 2)

cells (Chapter 2)

mtn

o

opt

p

s

)c
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