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Dominant modes of interannual variability in Australian rainfall

analyzed using wavelets

Seth Westra1 and Ashish Sharma1

Received 20 March 2005; revised 20 October 2005; accepted 9 November 2005; published 2 March 2006.

[1] One of the key aspects to better managing water resources in Australia is to
understand the causes of medium- to long-term rainfall variability, which results in both
droughts and periods of above average rainfall and flooding. Much of the research on this
variability has focused on the El Niño–Southern Oscillation (ENSO) phenomenon, using
methods that assume the relationships between ENSO and Australian rainfall are both
linear and stationary. In this paper we present an alternative approach based on wavelets to
analyze the dominant modes of variability in three rainfall characteristics: (1) the total
annual rainfall, (2) the annual number of wet days, and (3) the maximum annual daily
rainfall. We then use a wavelet regression approach to examine the extent of the variability
that can be associated with ENSO. The results show that time series of total annual rainfall
and annual number of wet days exhibit significant variability at periods of 2.6, 4.6, 7 and
13 years in various locations throughout the country and that these periodicities are not
caused directly by the ENSO phenomenon. While maintaining that ENSO still plays a
significant role in influencing rainfall variability in Australia, these results highlight the
importance of looking beyond ENSO to identify dominant sources of variability in the
characteristics of annual Australian rainfall that were studied. In contrast, no coherent
modes of variability could be found for the maximum annual daily rainfall time series,
highlighting the greater level of random behavior in the intensity of larger rainfall events
compared with the long-term averages.

Citation: Westra, S., and A. Sharma (2006), Dominant modes of interannual variability in Australian rainfall analyzed using

wavelets, J. Geophys. Res., 111, D05102, doi:10.1029/2005JD005996.

1. Introduction

[2] One of the significant challenges to water resource
managers around the world is to balance an uncertain and
variable supply of precipitation with an ever increasing
demand for a stable source of fresh water. This is particu-
larly difficult for countries such as Australia, in which the
climate is frequently characterized by cycles of severe and
sustained drought followed by periods of above average
rainfall and widespread flooding. In response, a significant
quantity of research has been undertaken with the aim of
better understanding and forecasting this variability so that
water resource managers can be informed about the poten-
tial for water supply shortages or extreme flooding.
[3] Much of the early research on Australian climate

variability has focused on the El Niño Southern Oscillation
(ENSO) phenomenon [Quayle, 1929; Pittock, 1975;
Nicholls and Woodcock, 1981], which has been shown to
influence aspects of the climate such as seasonally averaged
rainfall, streamflow and drought across much of the Aus-
tralian continent [Nicholls et al., 1996; Chiew et al., 1998].
Despite the initial optimism of using ENSO to predict

Australian rainfall, recent studies have demonstrated that
the ENSO phenomenon provides just a part of the picture of
what causes the rainfall to be so variable. For instance, it is
now known that the impact of ENSO on Australian rainfall
varies over time [e.g., McBride and Nicholls, 1983; Cordery
and Opoku-Ankomah, 1994], and may be modulated by the
lower-frequency Interdecadal Pacific Oscillation [Mantua et
al., 1997; Zhang et al., 1997; Power et al., 1998, 1999a,
1999b; Verdon et al., 2004]. The impact of long-term
variability in the Indian Ocean is also known to be impor-
tant, particularly in the western parts of the continent
[Nicholls, 1989; Drosdowsky, 1993], and it is hypothesized
that Indian Ocean sea surface temperatures (SSTs) may have
a modulating influence on the ENSO-rainfall relationship
over the southeast of the country [Drosdowsky, 2002].
[4] The results of these and other studies suggest that any

method that aims to characterize the long-term variability of
rainfall in Australia must take into account the highly
nonstationary relationship between climatic phenomena
such as ENSO, and Australian rainfall [e.g., Cordery and
Opoku-Ankomah, 1994]. Nevertheless, some of the com-
monly used methods of analyzing Australian rainfall such as
correlation analysis or Fourier methods have only limited
ability at interpreting relationships that change over time. In
contrast, this study uses a method based on wavelets theory
to analyze long-term records of Australian point rainfall, so
that the nonstationary and nonlinear characteristics of cli-
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matic time series may be analyzed. Wavelets are used in this
analysis as they are able break the time series into both the
time and frequency domains. Thus the approach is related to
windowed Fourier transforms, except that whereas win-
dowed Fourier transforms use a constant window size to
analyze both high- and low-frequency components, the
wavelet analysis is scale-independent, and is therefore better
suited to analyses where a wide range of frequencies may be
present. The wavelets approach is therefore a much more
efficient method of capturing not only the dominant fre-
quency modes of a given time series, but also the manner in
which these frequency modes change over time [Torrence
and Compo, 1998].
[5] To illustrate this, we examine the relationship between

the Niño 3.4 time series, an indicator of the ENSO phe-
nomenon, and a total annual rainfall time series from a
gauging station located along the east coast of Australia, as
shown in Figures 1a and 1b, respectively. Traditional
correlation analysis reveals that these time series are corre-
lated concurrently at the 95% significance level, which
agrees with earlier studies that show a strong relationship
between rainfall and ENSO along much of eastern Australia
[Cai et al., 2001]. Now consider the global wavelet spectra
for both time series in Figures 1c and 1d. These plots show
the wavelet power averaged over the entire time series for
frequencies ranging from 2 to 32 years, and are able to show
how two time series compare with each other in the
frequency domain. The 95% significance levels for the
wavelet analysis are represented as dashed lines, and have
been derived using a Monte Carlo approach described in
more detail in section 2.2 below. Examining the Niño

3.4 time series first, it can be seen that there is significant
variability with a period of about 5 years, which is within
the 3 to 6 year frequency band that is traditionally associ-
ated with ENSO variability [Trenberth, 1997]. In contrast,
the global wavelet spectrum of the total annual rainfall time
series shows the presence of significant variability with a
period of 13 years, and therefore cannot be directly related
to the ENSO phenomenon, but may be linked to an
interdecadal phenomenon such as the Interdecadal Pacific
Oscillation (IPO) [Power et al., 1999a].
[6] Finally, the scale-averaged wavelet spectra for both

time series are provided in Figures 1e and 1f, and show the
wavelet power averaged over the 3 to 6 year band. If the
relationship between ENSO and the total annual rainfall
time series is as strong as is suggested by the correlation
analysis, then the timing associated with the maximum
ENSO variability in the 3 to 6 year band should be reflected
in the rainfall time series. This is not the case, however, with
the variability associated with the rainfall time series in this
band shown to be statistically insignificant for the full
duration analyzed.
[7] These results and others presented later in this paper

raise a number of interesting questions regarding the links
between ENSO and Australian rainfall. For example, what
does a statistically significant correlation suggest about the
strength of the link between the ENSO time series and
Australian rainfall? Similarly, what does variability in the 3
to 6 year band suggest about the presence or absence of a
relationship between a particular rainfall time series and
ENSO? Are there distinct regions in Australia whose
rainfall time series exhibit significant variability at specific

Figure 1. Normalized time series of (a) the Niño 3.4 SST data set and (b) total annual rainfall from a
gauging station located in Jervis Bay, along the east coast of Australia. (c and d) Global wavelet spectra
for these series, which represent the wavelet power averaged in time. (e and f) Scale-averaged wavelet
spectra, which represent the wavelet power in the 3 to 6 year band. Confidence intervals for Figures 1c–
1f are represented as dashed lines and are at the 95% significance level.
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frequency levels? Does one note the same type of
variability in annual rainfall as in the maximum daily
rainfall? Finally, is it possible to identify other long-term
climatic trends in Australian rainfall that are not directly
associated with ENSO? This study will show how wave-
let theory can assist in answering these questions, so that
the contributing factors to rainfall variability in Australia
can be better understood.
[8] The rest of this paper is organized as follows. A

description of the wavelet analysis method is provided in
section 2. The rainfall and climate (ENSO) data used in this
study are outlined in section 3. In section 4, we present the
results of the wavelet analysis, with a focus on identifying
regions of coherent variability and examining the degree to
which this variability is influenced by ENSO. The conclu-
sions from this study are presented in section 5.

2. Wavelets Methodology

2.1. An Introduction to Wavelets

[9] Wavelets are becoming an increasingly popular math-
ematical tool for the analysis of time series that have
nonstationary power at a range of frequencies [Torrence
and Compo, 1998], and the technique has already been
successfully applied in the analysis of a wide range of
climatic time series [e.g., Gu and Philander, 1995; Lau and
Weng, 1995; Torrence and Webster, 1998; Jain and Lall,
2001]. Their popularity stems from their ability to provide
localized information on a time series in both the time and
the frequency domains, by representing the series using
scaled and translated versions of a wavelet basis function. A
wide variety of such wavelet functions are available, which
can be tailored to the specific time series to be analyzed.
This contrasts with the more traditional Fourier methods,
which are based on a single sinusoidal function. A further
difference between wavelet and Fourier methods is that the
time and frequency localization of the wavelet transform
allows the efficient representation of a time series with
changing frequencies, as illustrated through a synthetic
example presented by Wang and Wang [1996].
[10] A variety of wavelet transforms are discussed in the

literature, and are classified as either continuous or discrete
[Daubechies, 1992]. We will show that both types of
transforms are useful in the study of climatic time series,
with the continuous wavelet transform (CWT) being the
most suited to time series analysis as it contains information
over a continuous domain of scales and times, and the
discrete wavelet transform (DWT) being more suited for
noise reduction and the compact representation of the time
series. An extension of the DWT that has received less
attention in the literature is as a preprocessing step to
regression, and we will use this approach as an alternative
to standard linear regression to evaluate the influence of
ENSO on Australian rainfall time series.

2.2. Using Wavelets for Analysis

[11] If the time series can be represented as some contin-
uous function f(t), then the CWT can be represented as a
function of two continuous variables by:

F s; nð Þ ¼ sj j�1=2

Z
f tð Þjs;n tð Þdt ð1Þ

with

js;n tð Þ ¼ j
t � n

s

� �
ð2Þ

where js,n are scaled and translated versions of the mother
wavelet (j), s is the wavelet scale and n is the localized time
index, with both s and n defined as continuous real
variables. The original signal can then be recovered through
the inverse wavelet transform, which is defined as:

f tð Þ ¼
Z Z

F s; nð Þjs;ndsdn ð3Þ

In practice the time series is not represented as a continuous
function but as a sequence of numbers denoted as xt, so that
the integrals can be evaluated as a summation over each
data point in the signal. This is usually achieved as a
convolution performed in Fourier space, with additional
details provided in [Torrence and Compo, 1998]. The
Morlet wavelet function was used for this study, since it has
been shown to be well localized in both time and frequency
[Jevrejeva et al., 2003]. Note that since this wavelet is
complex, the complex conjugate js;n should be used instead
of js,n in equation (1).
[12] The CWT allows for the construction of a wavelet

spectrum which shows wavelet power (defined as jF(s,n)j2)
plotted against both time and frequency. This provides a
large quantity of information about a time series, and for
this reason can be difficult to interpret. To facilitate inter-
pretation, the global wavelet spectrum may be used, and is
defined as the time averaged power at a given frequency.
Similarly, the scale average of the wavelet power is defined
as the sum of the wavelet power spectrum between two
scales, and can be useful to determine how wavelet power
changes with time within a particular band [Torrence and
Compo, 1998].
[13] Because of the non-Gaussian nature of many of the

rainfall time series, a Monte Carlo approach was used to
compute significance levels, which involved boot-strapping
each rainfall time series to obtain new time series of the
same duration (in this case 80 years) so that the underlying
probability structure is preserved, and then conducting the
wavelet analysis on each of the boot-strapped time series.
This was repeated 10,000 times for each time series, so that
consistent 95% confidence intervals could be obtained. No
adjustment was made for red noise in the time series, as we
found that statistically significant autocorrelation was not
present at the 95% confidence level for the majority of time
series analyzed.

2.3. Using Wavelets for Regression

[14] Like the CWT, the DWT provides a complete repre-
sentation of the original time series using basis functions
that are localized in both the time and the frequency
domains. The difference is that for the DWT, the choice
of scales s and translations n are restricted so that the
wavelet function constitutes an orthonormal basis
[Daubechies, 1992]. The advantage is that it provides a
compact representation of the original time series, with the
maximum number of wavelet basis functions equal to the
number of data points in the original time series, N. This is
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useful as a preprocessing step to regression, which is used
here to isolate the influence of ENSO from the Australian
rainfall time series as described in following sections. A
flowchart of the general procedure followed is presented in
Figure 2. Note that the logic in Figure 2 is meant to be
inferred in conjunction with the description below.
[15] The relationship between the original time series and

the scaled and translated wavelet function can now be
written as:

xt ¼
X
s;n

us;njs;n tð Þ ð4Þ

where xt represents the time series of length N, us,n
represents the set of wavelet coefficients, and js,n represents
scaled and translated versions of the mother wavelet
function as in equation (2), except that in this case we set:

s ¼ 2j ð5Þ

n ¼ i2j ð6Þ

where i and j are indices that can be any positive integer value
defined over the time series. The Daubechies d4 transform is
used as the wavelet function, since it is compactly supported
and therefore lends itself well to the DWT, and comparison
with several other wavelet functions showed that it provides
an efficient representation of the original time series. The
wavelet coefficients, us,n, can be calculated using the Mallat
algorithm [Alsberg et al., 1998], which involves applying a
high-pass and a low-pass filter at each scale, s. The output
from the high-pass filter at each scale is recorded as the
wavelet coefficients. The low-pass filter extracts the low-
frequency components for the next scale where another set of
high- and low-pass filters are used. At each successive scale
the number of wavelet basis functions (and hence the
corresponding number of wavelet coefficients) is halved, in
a process known as decimation [Alsberg et al., 1998].
[16] Once the wavelet coefficients are obtained, it is

possible to apply some form of noise reduction to the
signal, with thresholding being one of the most popular
methods currently available. The basis of this approach is
that the low-energy wavelet coefficients represent white
noise, while the underlying signal is represented by the
high-energy coefficients. A number of thresholding meth-
ods are available, with universal thresholding being com-
monly used [Johnstone and Silverman, 1997]. This involves
calculating a value of l, and then setting to zero all wavelet
coefficients that are lower than l. A unique l is calculated
for each wavelet scale as follows:

ls ¼ ss
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logN

p
ð7Þ

where ss is a the standard deviation of the noise. This can be
estimated as:

s2s ¼ MADfus;n; n ¼ 1; . . . ; 2sg=0:6745 ð8Þ

where MAD means the median absolute deviation and the
constant 0.6745 is derived for Gaussian errors. This not

only allows for the reduction in noise, but also ensures that
the majority of the information of a time series is
represented using only a limited number of wavelet
coefficients.
[17] Once the original time series has been transformed

to the time-frequency domain and the noise has been
reduced, it is now possible to commence wavelet regres-
sion, by applying standard linear regression techniques to
the wavelet coefficients. Consider, for example, two time
series denoted as xt and yt, with wavelet coefficients after
thresholding given as u0s,n and v0s,n. It is now possible to
use standard linear regression methods, except that in this
case the regression is performed over the frequency
domain:

b̂s ¼ u0
T

s u
0
s

� ��1

u0
T

s v
0
s ð9Þ

where b̂s represents an estimate of the least squares
regression coefficient for the scale s. Note that the
subscript n has been omitted as the regression is
performed over the full coefficient vector for each scale.
This provides a separate regression model at each scale,
which may then be combined to form the full regression
model. The limitation of this approach is that it does not
consider variation in time, however this was considered
necessary to avoid overparameterization of the regression
model. For more sophisticated wavelet regression meth-
ods and extensions to multiple linear regression, refer to
Alsberg et al. [1998].
[18] All that now remains is to calculate the new wavelet

coefficients from the regression model, and to use an
inverse DWT to convert the wavelet coefficients back to
the time domain. This approach to wavelet regression is

Figure 2. Approach used for wavelets regression, using a
regression of an Australian rainfall time series against the
Niño 3.4 time series as an example.
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used to determine the contribution of ENSO on Australian
rainfall time series, as summarized in Figure 2.

3. Data

3.1. Australian Rainfall

[19] The rainfall data used in this analysis are based on a
set of high-quality rain gauges throughout Australia that
were identified by Lavery et al. [1997]. For the purpose of
this study, only those locations that contain records between
1922 and 2001 were used for this analysis. In regions where
the records were sparse, some infilling of data was under-
taken using nearby rain gauges, so that the final time series
consisted of less than 1% missing data.
[20] In total, rainfall time series from 216 gauging sta-

tions were used, the locations of which are shown in
Figure 3. These time series were broken down into (1) max-
imum annual daily rainfall, (2) the annual number of wet
days (defined as >1 mm rainfall), and (3) the total annual
rainfall, these variables being selected so as to provide
inferences on the impact of climate variability on floods,
droughts and the annual water budget. The analysis was
conducted at the annual scale so as to focus on longer-term
climatic variability and to remain consistent with the time-
scale used for the maximum annual daily rainfall time
series, and any conclusions drawn from the analysis are
limited to rainfall variability at this scale.

3.2. Climate

[21] The Niño 3.4 sea surface temperature (SST) data set
was used as an indicator of the oceanic component of
ENSO, and is defined as the seasonally averaged SST over
the central-eastern equatorial Pacific (5�S–5�N, 120�W–
170�W [Trenberth, 1997]). The extracted data set is from
1922 to 2001 to coincide with the duration of the rainfall
data sets, and has been reconstructed using an optimal
smoother of the raw sea surface temperature values as
detailed by Kaplan et al. [1998]. These data were obtained
from the International Research Institute for Climate Pre-
diction (http://iri.columbia.edu). The annual average of this

time series was used to facilitate comparison between the
climatic data and the rainfall data series. Since the analysis
considers rainfall variability over periods greater than
2 years, it is unlikely that the coarse resolution of this time
series will significantly alter the wavelet results.

4. Results and Discussion

4.1. Relationship Between Australian Rainfall and
ENSO

[22] Following the approach of a number of earlier
studies [Pittock, 1975; Nicholls and Woodcock, 1981], we
commenced the analysis by establishing the link between
Australian rainfall and ENSO by examining the concurrent
correlation between three series of Australian rainfall: the
total annual rainfall, the maximum annual daily rainfall and
the annual number of wet days, with the Niño 3.4 time
series. The relationship between the Niño 3.4 time series
and time series of Australian rainfall was considered to be
statistically significant at the 95% confidence level for cases
where the correlation coefficient was greater than 0.22. The
results are presented in Figure 4, and show that statistically
significant correlations are present between ENSO and both
the total annual rainfall and the annual number of wet days
in much of the eastern third of the continent. In contrast, the
maximum annual daily rainfall did not exhibit any signif-
icant correlation with the Niño 3.4 time series for the
majority of stations, with the stations that did exhibit
significant correlations not showing any spatial trends. It
is possible that the lower correlation coefficients for the
latter time series are due to the more localized nature of
large storm events, which are therefore more likely to
appear as random time series when looking over the whole
of Australia.
[23] The total annual rainfall results confirm the much

more detailed correlation analysis presented by Cai et al.
[2001] who found statistically significant correlation be-
tween Niño 3.4 and total annual rainfall for much of the
eastern third of the continent over the period between 1889
and 1998. When Cai et al. [2001] broke these time series
down into 10 year increments, however, the results showed
that the regions of significant correlation were not consistent
over time, but varied from year to year.
[24] These results highlight some of the limitations of

correlation analysis, in that it is not able to easily capture the
temporal and spatial variations of any linkages between
ENSO and Australian rainfall. For example, the correlation
results do not show how the strength of the relationship
between ENSO and Australian rainfall is influenced by the
IPO or Indian Ocean SSTs, as is suggested in the literature
[e.g., Nicholls, 1989; Drosdowsky, 1993; Power et al.,
1999a]. In addition, it is known that correlation analysis is
not very robust to outliers [Wilks, 1995], which means that it
is difficult to establish whether statistically significant
correlation reflects links between a large number of points
over the time series, or whether it is simply an artifact of a
relatively small number of extreme events.
[25] The wavelet analysis results presented in the subse-

quent sections aim to overcome these issues, by first
examining how the dominant modes of variability change
from one region to the next over the Australian continent
using the global wavelet spectra for each time series, and

Figure 3. Location of rain gauge sites.
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then by examining how these frequency modes change over
time with the scale-averaged wavelet spectra.

4.2. Global Wavelet Spectrum of Australian Rainfall

[26] Having established the correlation between ENSO
and several aspects of Australian rainfall time series, we will
now examine whether a similar relationship can be found in
the frequency domain using the global wavelet spectrum.
The global wavelet spectrum for the Niño 3.4 time series
was provided in Figure 1c, and shows that this time series
has a spectral signature which is statistically significant with
a period of 5 years. This is consistent with a range of
previous studies, which generally place the ENSO spectra
within bands such as the 3 to 6 year band [e.g., Trenberth,
1997] or the 2 to 8.5 year band [Rodbell et al., 1999]. If the
linkage between ENSO and Australian rainfall is as strong
as is suggested by the correlation analysis, then similar
spectra should be apparent for the total annual rainfall and
the annual number of wet days over at least the eastern third
of the continent.
[27] To verify whether this is the case, the global wavelet

spectra were calculated for the total annual rainfall, the
annual number of wet days and the maximum annual daily
rainfall, for periods ranging between 2 years and 32 years.
Of these periods, distinct regions of statistically significant
variability were found at periods of 2.6, 4.6, 7 and 13 years
for both the total annual rainfall and the annual number of
wet days, with the remaining periods providing only limited
additional information. A Fourier analysis was performed to
verify the validity of the wavelets results, and the two

methods were found to be in agreement for the vast majority
of rainfall gauging stations.
[28] For each of these periods, an examination of the

regions of statistical significance for the total annual rainfall
time series is presented in Figure 5. On the basis of these
results it is immediately apparent that, of the region on the
eastern third of the continent in which there is significant
correlation with the Niño 3.4 time series, there are only two
areas – one in the southern part of the continent with a
period of 4.6 years and the other in the east with a period of
7 years – that operate at a periodicity that is similar to the
Niño 3.4 time series. In contrast, there is also an area along
the east coast of Australia with a period of 13 years that
exhibits a distinctly different spectral signature to that of the
Niño 3.4 time series. Although the figures are not shown
here, it is interesting to note that very similar results were
obtained for the annual number of wet days, which is also
correlated with the Niño 3.4 time series. Readers should
note that significance is assessed on the basis of the results
for individual point locations, and not on a regional basis.
While results at individual stations may be affected by the
proportion of the noise that is present in each time series,
identification of distinct regions where similar patterns are
observed imparts greater confidence in the results than is
represented by the confidence intervals indicated.
[29] In the analysis of maximum annual daily rainfall, it

was found that although some individual time series were
significant at various periods within the 2 to 32 year band, it
was not possible to identify any regions of coherent vari-
ability. Furthermore, the number of such time series gener-

Figure 4. Concurrent correlation between the Niño 3.4 time series with (a) total annual rainfall, (b)
annual number of wet days, and (c) maximum annual daily rainfall. Large open circles represent stations
with correlations at or above the 95% significance level.
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ally did not exceed 5% of the total number of time series
analyzed, thereby reflecting the number of statistically sig-
nificant time series expected by random chance when using
95% significance levels. Therefore, as the maximum annual
daily rainfall is the time series that is commonly used for flood
frequency analysis, these results suggest that the larger storm
events are not influenced by long-term climatic phenomena to
the same extent as the long-term averages. It is interesting to
note that a range of studies [Jain and Lall, 2001; Kiem et al.,
2003; Verdon et al., 2004] have discussed evidence of long-
term climate variability in maximum annual daily streamflow
time series, suggesting that streamflow variability is largely
due factors such as moisture conditions in the catchment
rather than the more intense bursts of rainfall captured in the
maximum annual daily rainfall time series. This is in agree-
ment with the studies ofChen andKumar [2002]who suggest
that the storage effects of soil moisture can have a significant
influence on the low-frequency variability of streamflow in
North America.

4.3. Rainfall Variability Over Time

[30] It is clear from the preceding analysis that the regions
of coherent variability using the global wavelet spectra do
not coincide with the region of significant correlation on the
eastern third of the continent, suggesting that the wavelet
analysis and the correlation analysis highlight different
aspects of climate variability in Australia. We now examine
whether similar results can be found in the time domain, by
examining the wavelet spectra of several representative time
series in more detail. These representative time series were

constructed for each of the regions circled in Figure 5, and
were calculated using the mean of all the time series which
exhibited variability at or above the 95% confidence level.
The focus on mean rainfall across a number of gauging
stations within a given region was necessary to simplify the
presentation, and ensured that the analysis focused on those
aspects that are common to all the time series within that
region. Only the total annual rainfall time series is presented
here, with similar results obtained for the annual number of
wet days. The maximum annual daily rainfall time series
were not considered, as regions of coherent variability could
not be identified in either the correlation or the global
wavelet analyses.
[31] The scale-averaged wavelet spectra were calculated

for the 3 to 6 year band for each region. While we
acknowledge that this band is relatively narrow and that
the ENSO phenomenon may operate at a wider range of
periodicities such as in the 2 to 8.5 year band [Rodbell et al.,
1999], we selected a narrow band as we consider this band
to be most strongly influenced by ENSO, so that the results
are least likely to be distorted by variability that is not due to
ENSO. We have also calculated the results for some of these
wider bands (such as the 2 to 8.5 year band), and we have
found these results to be consistent with the results in the 3
to 6 year band presented here. These results are presented in
Figure 6, and may be compared with the scale-averaged
Niño 3.4 spectrum that was presented in Figure 1e. An
examination of the peaks and troughs of each time series
reveals that important differences can be observed between
each region of coherent variability, as well as between the

Figure 5. Regions of significant variability for series of total annual rainfall with periods of
(a) 2.6 years, (b) 4.6 years, (c) 7 years, and (d) 13 years. Large open circles represent stations with
correlations at or above the 95% significance level.
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rainfall time series and Niño 3.4. It is therefore apparent that
the times when the ENSO phenomenon exhibits the highest
variability in the 3 to 6 year frequency range do not coincide
with the times when the Australian rainfall exhibits the
highest variability.

4.4. Regions of Coherent Variability After Excluding
the Influence of ENSO

[32] On the basis of the wavelets results presented above,
it is apparent that the regions of coherent variability exhibit
both a significantly different spatial pattern to the region of
statistically significant correlation with the Niño 3.4 index
as depicted in Figure 4, and a different temporal structure to
the Niño 3.4 index in the 3 to 6 year band. It still is not
evident, however, whether these results are due to complex
nonlinear interactions between ENSO and Australian rain-
fall at a range of different frequencies, or whether the
coherent climate variability derived from the wavelet anal-
ysis is not related to ENSO at all.
[33] One method to determine which of these hypotheses

are correct is to extract the influence of ENSO from the
Australian rainfall time series through some regression
model, and then perform the wavelet analysis on the
residual time series. If the regions of coherent variability
are still present, then it is unlikely that these regions could
be attributable to ENSO, while the removal of variability
would suggest that the wavelet spectra are somehow linked
to ENSO.
[34] The wavelet regression methodology that was out-

lined in section 2.3 was used for the analysis, and contains
some important advantages over standard linear regression,
including the ability of the method (1) to account for any

noise in the signal, (2) to account for some of the non-
stationarity that is present in the relationship between ENSO
and Australian rainfall, and (3) to ensure that the regression
parameters are less sensitive to any extreme values in the
original data.
[35] After the regression in the wavelet domain, a con-

tinuous wavelet transform was applied to the residuals, and
the global wavelet spectra were calculated using the same
approach that was used in section 4.2. The results for the
residuals from the total annual rainfall time series at periods
of 2.6, 4.6, 7 and 13 years are shown in Figure 7, these
periods being selected so that they can be compared directly
to the global wavelet spectra of the original time series. A
comparison of Figures 5 and 7 shows that, for the over-
whelming majority of rainfall time series, the wavelet
regression did not have a significant impact on the variabil-
ity at each period, suggesting that the variability was not
directly linked to the ENSO phenomenon. While this could
be expected for the regions with periods not directly
associated with the ENSO (such as region along the east
coast with a period of 13 years), the results for the ENSO
related periodicities are further indication of the low corre-
spondence the ENSO signal has with the 3 to 6 year
variability observed in Australian rainfall. A similar analysis
was also conducted using standard linear regression, and the
results from this alternative method yielded very similar
results to the wavelets regression approach.
[36] The close agreement between two conceptually dif-

ferent methods of extracting the influence of ENSO from
the rainfall time series adds further weight to the hypothesis
that the periodicities in each of the regions distinct from
ENSO, suggesting that any method to forecast rainfall in

Figure 6. Scale-averaged wavelet power spectra for the 3 to 6 year band, corresponding to the regions
identified in Figures 5a, 5b, 5c and 5d, respectively. Dashed line represents the confidence limits at the
95% significance level.
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Australia at the annual scale should look beyond ENSO if it
to be successful in accounting for all the major sources of
variability in Australian rainfall.

5. Conclusions

[37] One of the key aspects to better managing water
resources in Australia is to understand the causes of
medium- to long-term rainfall variability, which is known
to result in both droughts and periods of above average
rainfall and flooding. This variability is frequently regarded
as being caused by climatic phenomena such as ENSO,
which has been shown previously to exert a highly nonsta-
tionary influence on Australian rainfall [e.g., McBride and
Nicholls, 1983; Power et al., 1998]. In this study, we used
the method of wavelets to analyze time series of maximum
annual daily rainfall, the annual number of wet days, and
the total annual rainfall, with the aim of examining whether
wavelets could assist in identifying dominant modes of
rainfall variability, and determining the extent to which this
variability could be explained by the ENSO phenomenon.
[38] In the case of the maximum annual daily rainfall time

series, it was not possible to identify any regions of coherent
variability using the wavelet analysis, thus confirming the
results of the correlation analysis which was unable to find a
statistically significant relationship between this time series
and ENSO. This has important implications for flood
frequency analysis, since the long-term variability that is
known to occur in streamflow is not adequately represented
in the maximum annual daily rainfall time series, and may

therefore be attributable to other factors such as antecedent
moisture content.
[39] In contrast, using the wavelet analysis on the total

annual rainfall and the annual number of wet days
showed four regions of coherent variability over the
Australian continent, which are summarized as follows:
(1) a region in the southwest of Australia with a
dominant mode of variability with a period of 2.6 years,
(2) a region in the south of Australia with a dominant
mode of variability with a period of 4.6 years, (3) a
region in central and eastern Australia with a dominant
mode of variability with a period of 7 years, and (4) a
region along the east coast of Australia with a dominant
mode of variability with a period of 13 years.
[40] When comparing this to the results from the corre-

lation analysis with ENSO, it was observed that, while the
variability at the 4.6 year period in the south of Australia
and possibly the variability with a period of 7 years in
eastern Australia operated at a similar frequency to ENSO,
the remaining rainfall time series contained variability
which was outside the ENSO band. An analysis of the
scale-averaged wavelet spectra from the regionally averaged
time series was also unable to establish a link between
ENSO and the rainfall variability in each of these regions,
by showing that the times of maximum variability in the 3
to 6 year band for the Niño 3.4 time series did not
correspond to the times of maximum variability in the same
frequency for Australian rainfall.
[41] To test whether the discrepancy between the corre-

lation and the wavelet results was due to the nonstationary

Figure 7. Regions of significant variability after the effects of ENSO have been removed, with periods
of (a) 2.6 years, (b) 4.6 years, (c) 7 years, and (d) 13 years. Large open circles represent stations with
correlations at or above the 95% significance level.
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nature of the ENSO phenomenon on Australian rainfall or
due to some as yet unknown influence, a wavelet regression
was performed to extract the ENSO signal from the Aus-
tralian rainfall time series. The residuals from the regression
were then reanalyzed, and it was shown that the regions of
coherent variability remained unchanged and therefore are
not attributable to ENSO.
[42] The results of this study clearly show that, not only is

the ENSO phenomenon not captured by the spectral anal-
ysis for each of the time series examined here, but that there
are regions of significant variability that are not accounted
for by ENSO. It is therefore necessary to look beyond
ENSO if we are to obtain a more complete picture of what
causes the medium- to long-term variability in Australian
rainfall at the annual scale.
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