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Abstract

Desert mound springs of the Great Artesian Basin in central Australia maintain an endemic fauna that have historically been
considered ubiquitous throughout all of the springs. Recent studies, however, have shown that several endemic
invertebrate species are genetically highly structured and contain previously unrecognised species, suggesting that
individuals may be geographically ‘stranded in desert islands’. Here we further tested the generality of this hypothesis by
conducting genetic analyses of the obligate aquatic phreatoicid isopod Phreatomerus latipes. Phylogenetic and
phylogeographic relationships amongst P. latipes individuals were examined using a multilocus approach comprising
allozymes and mtDNA sequence data. From the Lake Eyre region in South Australia we collected data for 476 individuals
from 69 springs for the mtDNA gene COI; in addition, allozyme electrophoresis was conducted on 331 individuals from 19
sites for 25 putative loci. Phylogenetic and population genetic analyses showed three major clades in both allozyme and
mtDNA data, with a further nine mtDNA sub-clades, largely supported by the allozymes. Generally, each of these sub-clades
was concordant with a traditional geographic grouping known as spring complexes. We observed a coalescent time
between ,2–15 million years ago for haplotypes within each of the nine mtDNA sub-clades, whilst an older total time to
coalescence (.15 mya) was observed for the three major clades. Overall we observed that multiple layers of
phylogeographic history are exemplified by Phreatomerus, suggesting that major climate events and their impact on the
landscape have shaped the observed high levels of diversity and endemism. Our results show that this genus reflects
a diverse fauna that existed during the early Miocene and appears to have been regionally restricted. Subsequent
aridification events have led to substantial contraction of the original habitat, possibly over repeated Pleistocene ice age
cycles, with P. latipes populations becoming restricted in the distribution to desert springs.
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Introduction

Australia’s arid zone, as defined by Byrne et al. 2008 [1],

comprises one of the largest desert regions in the world. Despite its

low average rainfall of 100–250 mm per year, this region

nevertheless harbours a multitude of diverse and endemic faunal

groups, such as lizards [2], birds [3], ants [4], and even aquatic

animals [5,6]. The origins of this biome date back to the late

Tertiary, since central Australia was considered ‘‘warm and wet’’

until the Miocene [1,7]. However, two periods of aridification

during the Late Miocene and subsequently the early Pliocene and

Pleistocene [7,8,9] are thought to have led to significant

contraction of mesic habitats, with major evolutionary conse-

quences for its inhabitants. In aquatic habitats especially,

fragmentation and the resultant isolation of populations is believed

to have occurred during aridification, leading to a suite of relictual

fauna and high levels of endemism (e. g. [1,10].

Phylogeographic studies have played a major role in helping

untangle the origins of this diversity and the impact of aridification

processes on the evolution of Australian taxa (reviewed in [1,11]).

In particular, several studies have revealed high levels of un-

acknowledged species richness and shared biogeographic histories

of fauna within remnant aquatic habitats [12,13,14,15]. However,

the immensity and complexity of Australia’s arid region means

that additional phylogeographic studies are required for other taxa

that have survived aridification before we can fully understand the

impact of aridity and the nature of the environment that preceded

it. Reflecting this need, extant taxa found in relictual, aquatic,

arid-land ecosystems are ideally suited for this purpose, since they

have survived despite enduring arguably the most dramatic

climate shifts experienced by any of the desert faunas [16].

A remnant aquatic habitat that continues to harbour thriving

populations of relict fauna from a wetter period in Australia’s

history is a distinctive spring super-system known as Great

Artesian Basin (GAB) mound springs in the stony desert of South

Australia. These groundwater-fed, island-like, wetland habitats are

surrounded by sparse desert and sit on the edges of Australia’s
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largest inland catchment, the Lake Eyre Basin (Fig. 1). Their

characteristic mound shape is formed when water is released from

the GAB to the surface via geological pressure points where

minerals and carbonates are deposited. Protected federally as an

‘endangered ecological community’ (Commonwealth Environ-

mental Protection and Biodiversity Conservation Act 1999), these

habitats harbour a suite of endemic spring species including plants

[17], vertebrates (e.g. fish [18]) and invertebrates (e.g. snails [19]

and especially crustaceans [20,21]). Springs on the southern side of

Lake Eyre (i.e. Lake Eyre supergroup) are some of the most intact

and least disturbed environmentally. These Lake Eyre springs are

the geographic focus of the current study.

Early studies of endemic aquatic GAB spring taxa suggested

that several endemic monotypic genera existed throughout the

entire range of these mound springs [22]. However, recent

morphological and genetic appraisals have shown that several of

the GAB spring endemic taxa comprise numerous phylogenetic

lineages, each generally confined to geographically isolated groups

of springs (i.e., snails [19,23,24], amphipods [15,25,26] and wolf

spiders [27]). Nevertheless, temporal frameworks for this ecosys-

tem remain rare, with molecular clock estimates of the divergence

time among incipient species being investigated for amphipods

[15] and more recently snails [28]. In those studies, lineage

diversification was estimated to coincide with post-Miocene

aridification of the Australian continent [15]. Under this scenario,

previously widespread species in rainforest environments of the

Miocene are thought to have become stranded in isolated

groundwater-fed wetlands, following the drying of inland swamps

and lakes. Thereafter, these relict populations persisted throughout

the Plio-Pleistocene and, as a direct consequence of the isolation

and contraction of their habitats and adaptation to their modified

spring environments, experienced in situ genetic diversification

followed by allopatric speciation. Under this view, groups of GAB

springs are equivalent to aquatic islands in a surrounding ‘‘sea’’ of

desert. A similar hypothesis has been proposed to explain the

diverse subterranean invertebrate fauna (e.g. amphipods [12];

bathynellids [29]; beetles [30,31,32]; isopods [14]) in groundwater

calcretes of arid Western Australia. Our primary question

therefore, is whether there is a possibility that widespread species,

in the strict sense, exist throughout the mound spring region.

Relicts, as defined by Habel et al. [33] describe descendents of

a once widespread fauna that currently have a narrow geographic

distribution, and often originate from wide-scale climate and

environment changes. One possible relict taxon of post-aridifica-

tion isolation and subsequent diversification in the Lake Eyre GAB

springs is the endemic phreatoicid isopod, Phreatomerus latipes

Nicholls 1924. A monotypic genus, P. latipes is one of the largest

(1–2 cm) and most conspicuous endemics restricted solely to these

springs. With no congeners, P. latipes is considered a biogeographic

relict species in the true sense of the term. Interestingly, P. latipes is

considered to be ‘widespread’ throughout the southern Lake Eyre

mound springs [34], inferring that gene flow exists among all

populations throughout its range. However, as an obligate aquatic

invertebrate without a dispersive life stage [35], P. latipes does not

appear capable of dispersal across the desert landscape in the

absence of aquatic connections [36,37]. As such, P. latipes may

exhibit strong genetic sub-structuring in this region [15,38].

Alternatively, dispersal of P. latipes among GAB springs may occur

along ephemeral river systems. The springs are located on the

edges of the large ephemeral river drainage catchment, the Lake

Eyre Basin. Water feeds into this giant inland lake from tributaries

coming from all directions and it has been a permanent water

feature at various times in Australia’s history [39,40]. Today, the

saline Lake Eyre is only close to full during major monsoonal

events in Australia’s north, at which time the inland rivers flow.

The impact of these seasonal river systems on mound springs

fauna are yet to be investigated in detail, but broader scale studies

of inter-specific relationships have found that closely related

species are often clustered geographically in line with river

catchments [15,19,23,26,27]. Five primary river systems are

known to intersect the mound springs prior to arriving in Lake

Eyre: Margaret Creek, Warriner Creek, Neales Creek, Hermit

Hills drainage (numerous tributaries) and Umbum Creek. These

river drainages may provide vital aquatic dispersal corridors

between otherwise fragmented mound springs habitats. Therefore,

any studies of phylogeographic structure amongst mound spring

populations must consider river drainages (e.g. [41]).

Here we used a multilocus genetic approach using mtDNA and

allozymes to investigate the phylogenetic and phylogeographic

history of P. latipes throughout the highly fragmented Lake Eyre

mound springs. Our aim was to investigate whether major climatic

events during the history of the Australian arid region have

impacted on the spatio-temporal history of a single, supposedly

widespread species from freshwater springs in the Australian

desert. Based on previous studies of spring invertebrates we

hypothesised that a) major periods of aridification are likely to

have isolated taxa in the GAB mound springs, in particular during

the period of aridification following the late Miocene after which

there was a return to wet and the subsequent Pliocene aridification

and b) the island-like GAB mound springs have promoted a high

degree of genetic isolation among spring groups, leading to

substantial genetic diversification within P. latipes.

Materials and Methods

Ethics Statement
None of the aforementioned field studies involved endangered

or protected species, all sites were on private land or in National

Parks, and we comprehensively obtained permission to access and

sample all sites. For collections in National Parks we obtained

a permit to ‘undertake scientific research’ (permit number Z25519

to Dr Nicholas Murphy) using appropriate methods and ethics

approval from The Government of South Australia, Department

for Environment and Heritage signed for the Minister for

Environment and Conservation. For collection on private property

we obtained general permission from Greg Campbell (Chief

Executive Officer) of S. Kidman & Co Ltd and also directly from

a number of station managers to carry out our field collections.

The station managers were: Randall Crozier for Anna Creek

Station, Peter Paisley for Stuart Creek Station, Bobby Hunter for

The Peak Station. We also received permission to access culturally

sensitive land at Hermit Hills Springs (Reg Dodd). At the privately

owned properties we used the same methods as those in the

national parks.

Animals and the Environment
Little biological information (i.e. desiccation tolerance, habitat

preference, etc.) is available for P. latipes. The species is known to

brood ,10 live young, born as miniature adults, in a pouch

carried by the female [35]. The taxon is also restricted to

freshwater for respiration. Population sizes within flowing springs

are typically very high throughout the spring habitat, although

little is known about the effective population sizes and their

susceptibility to environmental change. Springs vary in size from

large wetlands (300 m2) to small seeps (0.5 m2) both of which may

contain endemic invertebrates. This study was undertaken on the

Lake Eyre supergroup of GAB mound springs, located throughout

the southern and western portion of the Lake Eyre Basin in central

Phylogeography in Desert Springs
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Figure 1. Map of Australian Southern Lake Eyre GAB springs by river catchment (named), spring complex (named) and spring
group (denoted by crosses and abbreviated names). Colours denote three major clades observed in mtDNA and allozyme data (Figures 2, 3
and 4) that match geographic regions: Red= ‘Central’, Blue = ‘Northern’, Green= ‘Southern’. Inset is the location of springs relative to Australian
continent and image of study organism Phreatomerus latipes.
doi:10.1371/journal.pone.0037642.g001
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Australia (Fig. 1). These individual springs occur around areas of

geological weakness (i.e. faults) and as such form large clusters of

directly connected spring outlets, known as spring groups (Fig. 1).

These spring groups can be hierarchically categorized further as

spring complexes (Fig. 1) based on their hydrogeological and broader

geographic location.

Despite relying on groundwater flows for spring existence, the

ephemeral rivers and streams of the Lake Eyre Basin may provide

an aquatic medium for connectivity between fragmented spring

habitats. Major river drainages flow from a number of directions

into Lake Eyre, a giant (,9,690 km2) inland lake that infrequently

receives water during major rainfall events, and historically

contained large amounts of water [39,40]. The extant river

drainages are shown in Fig. 1 and can be used to delineate the

spring complexes. The major drainages and the spring complexes

that they potentially connect are: Margaret Creek (Billa Kalina,

Coward spring complexes (excluding Elizabeth North, South,

Jersey, Kewson Hill spring groups), Lake Eyre South); Warriner

Creek (Elizabeth North, South, Jersey, Kewson Hill spring groups,

Beresford, Francis Swamp Lake Eyre South, Strangways spring

complexes); Umbum Creek (Neales River spring complex); Neales

Creek (Freeling spring complex). Finally, the spring complexes of

Hermit Hills and Wangianna are independently connected to

several tributaries that intersect at Lake Eyre.

Individuals were collected using fine mesh nets during 2008–9.

Nets were rinsed with water and ethanol between springs to

prevent contamination and all specimens were stored in 100%

ethanol. Not all springs yielded P. latipes, but most did in high

numbers. Some samples used in this study were obtained from

‘historical’ archived material from the frozen tissue collection of

the South Australian Museum. These specimens were collected in

1985 and kept at 280uC since that time. Allozyme analyses were

conducted solely on these frozen samples and were completed by

1987. However, the limited number of historic sites plus a lack of

precision in their geographic coordinates necessitated the collec-

tion of fresh material for mtDNA analysis. Any discrepancies

observed between the allozyme and mtDNA profiles of a spring

group were explored by further sequencing a selection of the

‘historical’ samples. Finally, an ‘historical’ representative from

most key clades was sequenced to ensure consistency of results

between the disparate (.20 years) sampling periods.

DNA Isolation and Amplification of Mitochondrial DNA
We used partial DNA sequences of the mtDNA gene, Cytochrome

Oxidase subunit 1 (COI) to examine the phylogeographic structure ofP.

latipes. This mtDNA gene has been used to successfully elucidate

phylogeographic and population genetic relationships within

crustacean taxa in previous studies (e.g. [42]). DNA was extracted

from legs or whole animals using Chelex beads according to the

standard protocol [43]. A 597 base pair (bp) region of the COI gene

was amplified with the new primers M1070 (Forward)

(59TATTTTGTAYTAGGATCATGAGCGGGTG39) and

M1058 (Reverse) (59CCTAAAATWCCAATTCCRAT-

TATTGC39) and crustacean primers LCO1490 (59-GGTCAA-

CAAATCATAAAGATATTGG-39) and HCO2198 (59-

TAAACTTCAGGGTGACCAAAAAATCA-39) [44]. Polymerase

Chain Reaction (PCR) amplification of all sequences involved an

initial cycle of denaturation at 95uC for 2 min, and 35 subsequent

cycles of 94uC for 30 seconds (s), 50uC for 30 s and 72uC for 1 min.

PCR was carried out in 25 ml reactions containing 106Eppendorf

HotmasterH Taq Buffer (Eppendorf, Westbury, NY, USA) contain-

ing 2.5 mMMg2+, 2.5 mM of each dNTP, 5.0 mM of each primer,

0.1 units of Eppendorf HotmasterH Taq Polymerase and ,1 ng of

DNA. These PCR products were sequenced using the ABI PRISM

Big Dye Terminator Cycle Sequencing kit (Applied Biosystems,

Foster City, CA, USA) and the ABI PRISM 3700 DNA analyzer.

All sequences were edited with reference to chromatograms using

BioEdit version 7.0.1 [45] and aligned using Clustal W [46]. A

number of Genbank sequences were also added to the data set from

Hermit Hills and Wangianna spring complexes: PLH1-29 amd

PLD1, 2 (HM068160-91) [26].

Outgroup sequences for phylogenetic analysis were chosen from

the same family as Phreatomerus (Phreatoicidea: Amphisopidae),

namely Amphisopus lintoni Nicholls 1924 (Genbank accession

EF203063 [47]) and one haplotype of Paramphisopus palustris

Glauert, 1924 (Genbank accession EF203022 [47]). However,

the higher level relationships of genera within the family

Amphisopididae, whilst recently revised [48], are yet to be

formally explored using DNA sequence data and the long

branches of these outgroups confounded our own assessments of

fine-scale phylogeography within Phreatomerus. Therefore, sub-

sequent analyses employed unrooted trees, although a rooted tree

is presented for completeness in Figure S1.

Phylogenetic Analysis of mtDNA Sequences
The phylogenetic relationships among individual COI haplo-

types were analysed using a Bayesian approach, as implemented

with MrBayes 3.1.2 [49]. The model that best fitted the data was

estimated with Modeltest 3.7 [50] for nucleotide data under an

Akaike Information Criterion framework. Models were tested for

all three codon positions; the GTR+G model was favoured for

first, F81 for the second, and GTR+G for the third position. The

nucleotide sequence data were partitioned by codon position and

each partition was started independently with a different model

(listed above). All parameters were unlinked and the rates were

allowed to vary over the partitions. Four chains were run

simultaneously for 10,000,000 generations in two independent

runs, sampling trees every 100 generations. To evaluate conver-

gence to the stationary distribution the program Tracer 1.4 [51]

was used. The likelihood values converged to relative stationarity

after about 10,000 generations. A burn-in of 10,000 was chosen

and a 50% consensus tree was constructed from the remaining

trees.

ARLEQUIN v.3.1 [52] was used to carry out population

analyses of diversity and the demographic history, by computing

Fu’s Fs (Fs) [53], Tajima’s D (D) [54], parameters for the model of

population expansion (time since expansion (t), and relative

population sizes before (h0) and after (h1) expansion) and for the

continent-island model of demographic expansion (t=2 Tm,
h=2 Nm and M= 2 Nm, where T=number of generations before

spatial expansion, m=mutation rate, N= size of deme (assumed

constant) and m= fraction of individuals from a deme exchanging

with other demes). The generalized least-squares approach [55] in

ARLEQUIN was used to test the empirical mismatch distribution

against a model of Demographic or Spatial expansion.

To examine the relationships among haplotypes more closely

than the phylogenetic approach used above, we estimated

haplotype networks within each of the nine sub-clades. MtDNA

COI sequences were analysed using a parsimony approach with

TCS v.1.21 [56] to generate and arrange haplotype networks at

a 95% connection limit.

Estimating Coalescent Time of mtDNA Sequences
BEAST v1.4.7 [57] was used to estimate the coalescence time of

COI sequences among sub-clades and major clades. The subpro-

gram BEAUti v1.4.7 [57] was used to create input.xml files, and

Tracer v1.4 [51] was used to analyse the parameter distributions

estimated from BEAST. An UPGMA starting tree was estimated

Phylogeography in Desert Springs
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under the HKY+I+G model in which (a) base frequencies were

estimated, (b) codon positions were partitioned (positions 1+2, 3)
and (c) the parameters, substitution model across codon positions

and rate heterogeneity model were unlinked. The substitution rate

was fixed at 0.0115 (standard arthropod mtDNA molecular clock

of 2.3% divergence per million years [58]), and a relaxed clock

(uncorrelated lognormal) was used. A number of different tree

prior models were subsequently implemented separately on the

complete Phreatomerus data set using BEAST (for example,

constant, exponential, logistic, expansion and Yule speciation).

Each analysis was run for 10,000,000 generations, with sampling

every 100 generations, and the burn-in was 25% of the total

sampled trees (that is, 25,000). Each analysis was run multiple

times and all estimated dates were found to be consistent among

different runs.

Allozyme Laboratory Procedures
Allozyme electrophoresis of whole animal homogenates was

undertaken on cellulose acetate gels (CellogelTM) according to the

principles and procedures of Richardson et al. [59]. The following

enzymes or non-enzymatic proteins produced zymograms of

sufficient quality to permit allozymic interpretation: ACYC,

ARGK, DIA, ENOL, FDP, GOT, GP, GPI, GPT, HK, IPP,

MDH, MPI, PEP-A, PEP-B, PEP-C, PEP-D, PGM, PK,

SORDH, and TPI. Details of enzyme/locus abbreviations,

enzyme commission numbers, electrophoretic conditions, and

stain recipes are presented elsewhere [59]. Allozymes were labelled

alphabetically and multiple loci, where present, were labelled

numerically in order of increasing electrophoretic mobility (e.g.

Acyca , Acycb; Got1, Got2).

Allozyme Data Analyses
We initially used Principal CO-ordinates Analysis (PCO) to

assess the genetic affinities among all individuals, independent of

any a priori grouping by spring, spring group, or mtDNA profile.

Where discrete PCO groups were evident and diagnosable from

one another by fixed differences (i.e. no alleles in common) and/or

near-fixed differences (the cumulative frequency of shared alleles is

no more than 10%) at two or more loci, individuals within each

distinct PCO group were subsequently subjected to a further

round of PCO to assess whether significant additional heteroge-

neity was present in deeper dimensions. Horner & Adams [60]

present the rationale and methodological details underlying the

use of ‘‘stepwise’’ PCO.

We also undertook a range of standard population genetic

analyses, using the procedures and software employed by Horner

& Adams [60]. The genotypic data were examined for statistical

evidence of any deviation from Hardy Weinberg expectations or

linkage disequilibrium within sites, plus any heterogeneity of allele

frequencies between sites within each taxon (using the program

‘GENEPOP v3.4’ [61]). All probability values were adjusted for

multiple tests using the sequential Bonferroni correction factor. In

addition, the genetic affinities among sites were assessed by

constructing an unrooted NJ network from a matrix of pairwise

Nei D values among sites.

A final set of Bayesian analyses involved using the R statistical

package ‘Geneland’ (R, Development Core team, 2005; [62]) to

assess the number of discrete subpopulations (k) in those PCO

groups represented by more than a single site. A series of 10

replicate runs, one for each of the ‘‘uncorrelated’’ and ‘‘correlat-

ed’’ frequency models, was undertaken without imposing limits on

k (i.e. k was allowed to vary between 1 and the maximum number

of individual springs). Each individual run permitted the existence

of null alleles and involved 100,000 iterations, with thinning every

1000 iterations. As discussed by Guillot [62], the ‘‘correlated

frequency’’ model is likely to be more sensitive in detecting subtle

population differentiation, but may also be more prone to

algorithm instabilities. As there was no evidence of the latter in

our analyses, we ultimately chose this model for determining the

value of k.

Results

Phylogenetic Analyses Based on MtDNA
Overall 597 bp of the mtDNA gene COI were sequenced for

476 individuals from a total of 69 springs from southern Lake

Eyre, South Australia (Table S1). Ninety-two unique haplotypes

were detected (labelled with the initial of the spring complex):

Beresford (B1–B2) Coward (C1–C2, C6–C25,); one haplotype

shared between Beresford and Coward (BC1); Lake Eyre South

(L1–L2); Billa Kalina (K1); Neales (N1–N10, N12–N15, N17–

N21, N23); Hermit Hills (H1–H20, H22–H27, H29, H31);

Davenport (D1–D6); FRAncis Swamp only haplotypes (FRA1–

FRA3); Strangways (S1); one haplotype shared between Francis
Swamp + Strangways (FS1); and FREeling (FRE1–FRE5). All

haplotype sequences have been submitted to Genbank

(JQ612592–JQ612655).

The phylogenetic analysis of COI haplotypes among P. latipes of

the mound springs revealed three primary clades, hereafter

referred to by their rough geographic position relative to Lake

Eyre: C (Central), S (Southern) and N (Northern) (Fig. 2). While

clades S and N were geographically restricted to single regions,

clade C was present in all central springs plus the geographically

disjunct Freeling spring complex, the most northerly of all the

spring complexes. The mtDNA tree further partitioned these

primary clades into nine major sub-clades (I-IX, Fig. 2), most of

which were either concordant with the traditional geographic

grouping of spring complexes or had connections with adjacent

spring complexes or matched spring groups within complexes.

Thus clade C comprised four sub-clades (I = Strangways + Francis,

II = Freeling, III = unique to Strangways, IV=Coward + Billa

Kalina + Beresford + Lake Eyre South, clade N contained three

sub-clades (V=Outside + Milne spring groups, VI =Twelve Mile

spring group, VII = all other clade N spring groups), and clade S

contained two sub-clades VIII (Wangianna) and IX (Hermit Hills).

Molecular Diversity
Haplotype diversity (Hd) was generally moderate to high for all

spring complexes of P. latipes (Table 1) with the lowest estimates

observed at Freeling and Beresford (Hd= 0.35–0.39). In contrast,

nucleotide diversity (polymorphism) represented by the mean

number of pairwise differences (p) was consistently low to

moderate with the highest nucleotide diversity at Strangways

and Neales River (p=11.5–12.9) even though only two haplotypes

were sampled at Strangways.

Haplotype Networks
All nine sub-clades showed typical patterns of expansion (or

selection) in haplotype networks where a single dominant

haplotype had a few single point mutations leading to novel and

rare haplotypes (Fig. 2). Additionally, subclades from clade N were

significantly structured but did join the networks at 95%

confidence in parsimony analyses (Fig. 2). Importantly, all but

two of the 92 haplotypes were restricted to a single spring complex,

the exceptions being haplotype FS1 (sub-clade I; shared between

Strangways and Francis Swamp across a ,25 km gap) and

haplotype BC1 (sub-clade IV; shared at low frequency over

,19 km between the Beresford and Coward complexes). Howev-
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er, the majority of haplotypes present in each of these four spring

complexes were unique to that complex.

Historical Demography
Some evidence for a departure from neutrality and population

expansion in COI was observed in the Lake Eyre GAB mound

spring system. Negative and significant estimates of Fs, D were

observed in Freeling, Beresford and Hermit Hills spring complexes

(Table 1). Selection is typically indicated by an excess of identical

haplotypes, which is seen in only a few of these populations,

although these tests are not able to distinguish between selection/

genetic hitch hiking and demographic processes [63]. Estimates of

the time since expansion parameter (t) and relative population

sizes before (h0) and after (h1) expansion under the Demographic

Expansion model (Table 1) indicated most of the spring complexes

showed relatively recent (low) demographic expansion events

(t=0–8.13), excluding Neales (t=16.72) which showed evidence

of an older demographic expansion. The Spatial Expansion model

showed a similar pattern to the Demographic Expansion model

with only Strangways revealing an older spatial expansion overall

(t=24.12). Each of the spring complexes generally showed spatial

expansion in this species with low effective population size and low

gene exchange between demes (h=0–1.82; M=14.0) with a few

exceptions (e.g. Francis Swamp, Beresford, etc.).

Coalescent Timing
The BEAST analyses all reached convergence, with effective

sample size values well above 100. Here we present the results of

the Yule model tree prior analyses in Table 2, including the lower

and upper bounds of the highest posterior density (HPD) interval

(HPD being a credible set that contains 95% of the sampled

values). The Yule model tree prior was favoured because it is most

suitable for trees describing the relationships between individuals

from different species, however results for other tree model priors

are shown in Table S2. We observed a total coalescent time of

,2.2 (0.2–5.1 95% HPD)–12.3 (7.2–17.7 95% HPD) for

haplotypes within the nine sub-clades (Table 2 and Table S2),

whilst an older total time to coalescence of .15 mya was observed

for the three major clades (C, S and N).

Allozyme Support for mtDNA Clades
The final allozyme dataset comprised genotypes at 25 putative

loci for 331 individuals from 19 sites. An initial PCO on all

individuals (Fig. 3) identified three primary genetic groups,

diagnosable from each other by fixed or near-fixed differences at

four loci (Table 3) and corresponding to the C, S and N primary

mtDNA clades. Henceforth, we refer to the three genetic groups as

‘Clades’, here representing groups of individuals, sharing homol-

ogous genetic characteristics and a single common ancestor.

Further exploration using stepwise PCO on the individuals within

each PCO group provided different outcomes for each primary

clade (raw analyses not presented). Clade N comprised two

genetically divergent populations, displaying five fixed differences

(Table 3) (Outside =V; Fountain =VII; also displayed in Fig. 2).

Although some substructure was evident in clade C, its three PCO

subgroups differed by only 1–2 near-fixed differences and none

were concordant with any of the four mtDNA sub-clades (I-IV).

Finally, clade S displayed no obvious PCO sub-groups and no

Figure 2. Consensus phylogeny estimated using a Bayesian approach that employed the GTR +I +G model of nucleotide evolution
for haplotypes of Phreatomerus latipes. Posterior probability support is listed as a percentage next to the corresponding node. Lists of specimens
and haplotypes are listed in Table S1. Colours denote three major clades that match geographic regions shown in Figure 1: Red= ‘Central’,
Green= ‘Southern’, Blue = ‘Northern’ and subclades I-IX (boxed) represent phylogenetic structure amongst haplotypes. Bold font represents
haplotypes shared between spring complexes (FS1 and BC1). Corresponding haplotype networks for each of the sub-clades are shown and
haplotypes with a hatched (Lake Eyre South complex), straight line (Beresford complex) or horizontal line (Billa Kalina complex) patterns differentiate
distinct spring complexes from the Coward complex.
doi:10.1371/journal.pone.0037642.g002

Table 1. Molecular diversity indices and population demographic parameters under two models of population expansion for
Phreatomerus latipes from spring complexes throughout the Lake Eyre region.

Demographic expansion Spatial expansion

Complex (Sub-clade) n h S Hd p D Fs t h0 h1 SSD t h M SSD

Strangways (I) 38 2 23 0.560.03 11.5 3.7 24.6 0 0 Inf. 0.50 24.1 0 1.1 0.22

Francis Swamp (I) 23 4 5 0.660.06 0.9 21.1 20.3 0.8 0 Inf. 0.03 0.8 0 Inf. 0.03

Freeling (II) 19 5 7 0.460.14 1.1 21.5 20.9 3.0 0 0.6 0.03 4.9 0.4 0.3 0.01

Coward (IV) 126 20 30 0.960.01 6.1 0.3 20.1 8.1 0.005 24.6 0.02 7.7 0. 10.0 0.02

Beresford (IV) 11 3 2 0.460.17 0.4 21.4 21.3 0.4 0 Inf. 0.00 0.4 0 Inf. 0.00

Lake Eyre South (IV) 8 2 2 0.560.12 1.1 1.5 2.1 2.6 0.004 2.2 0.20 2.3 0 2.0 0.16

Billa Kalina (IV) 6 1 - - - - - - - - - - - - -

Neales (V+VI+VII) 131 20 45 0.960.01 12.9 1.7 6.3 16.7 0.002 50.6 0.01 14.7 1.8 7.1 0.01

Wangianna (VIII) 32 5 5 0.560.09 0.7 21.2 21.6 0.7 0 Inf. 0.01 0.7 0 Inf. 0.01

Hermit Hills (IX) 82 24 31 0.960.03 2.4 21.9 215.2 2.8 0 12.3 0.00 2.6 0 14.1 0.00

Abbreviations: n, sample size; h, number of haplotypes, S, number of polymorphic sites; Hd, gene diversity; p, nucleotide diversity as mean number of pairwise
differences in the population; Tajima’s D; Fu’s Fs. Model of demographic expansion parameters, where t is an index of time since the expansion expressed in units of
mutational time; h0 and h1 are pre- and post-expansion values for the mutation parameter (that is, 2 Nm, where N is the effective female population size and m is the
mutation rate per gene per generation); SSD, Sum of Squared Deviations between the observed and the expected mismatch as a test statistic; Model of spatial
expansion parameters where: h, the effective size of each deme; M, relative rate of gene exchange between demes; -, not estimated; bold font represents significance
tests where P,0.05; inf, infinite estimate.
doi:10.1371/journal.pone.0037642.t001
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association between mtDNA sub-clade (VIII or IX) and PCO

score. In addition to further confirming the extent to which the

allozyme and mtDNA profiles of each spring population were

concordant, a NJ network among individual springs (Fig. 4)

visually demonstrates the disparity in levels of within-clade genetic

divergence between clades C, S and N.

Quantitative Allozyme Perspectives on Population
Structure
Statistical tests for each of the 19 sites found no evidence for

genotypic departure from Hardy Weinberg expectations and for

linkage disequilibrium. We therefore considered it appropriate to

undertake site-based analyses of population genetic structure for

those taxa which have been sampled from multiple spring

complexes such as clades S and C (the two clade N sites represent

very distinctive genetic lineages; Fig. 4).

Both statistical analyses of between-site heterogeneity (Table S3,

Table S4) recovered (Geneland) or supported (GENEPOP) the

same number of subpopulations in each taxon, namely k = 3 for

the eight sites representing clade S and k= 8 for the eight included

sites in clade C (Emerald site excluded due to its low sample size).

Moreover, not only were more subpopulations identified in clade

C, the levels of genetic differentiation among these subpopulations

were almost always considerably higher than in clade S (Fig. 4; see

also FST values in Table S3 and Table S4).

Discussion

The GAB mound springs in Australia’s arid zone are proving to

be complex and dynamic ecological systems with multiple layers to

their history. The endemic fauna that are restricted to these

springs are considered to be ecologically and evolutionarily

relictual from a time when central Australia comprised a wet

and temperate habitat [15,28]. Our observations of deep

phylogenetic divergences within the mound springs endemic

isopod, P. latipes, challenge the current status of Phreatomerus as

a monotypic genus with a wide distribution throughout the Lake

Eyre mound springs. Striking phylogeographic structure at

a regional scale has shown that multiple levels of genetic diversity

exist in this taxon throughout the region, at ancient through to

more recent time-scales. In light of the complexity encountered,

we examined three aspects of the evolutionary history of

Phreatomerus with respect to the geological and climatic history of

the Lake Eyre catchment. These were: a) the deep, older,

relationships amongst three primary phylogenetic clades (C, S,

N), where the distribution of historical lineages was examined, b)

the intermediate genetic relationships, where nine sub-clades (I-

IX) were examined with respect to the influence of a changing

landscape on lineage divergence, and c) the potential influence of

Lake Eyre drainages on gene flow between P. latipes sub-clades.

Phylogenetic Relationships Among Major Clades
The oldest relationships amongst the mound spring faunas pose

a challenge for reconstructing historic biogeography and un-

derstanding species distributions because of the complex climatic

and geological history of the region. In particular, repeated

climatic changes in aridification since the mid-late Miocene are

likely to have regularly overwritten some previous features of the

landscape, especially for aquatic habitats. Here we identified three

major clades, concordant for both mtDNA (mean estimate 18.7

(12.2–25.8 95% HPD)–13.5 (8.0–19.6 95% HPD) million years

divergent) and allozyme profiles (4 diagnostic allozyme differences

between each). These clades (C, S, N) were found to be completely

allopatric. Nevertheless, clade C included an intriguing geographic

outlier, namely the Freeling spring complex. As the most northern

spring complex, Freeling is geographically much closer to the

spring complexes within the Umbum Creek drainage, albeit in the

separate Neales Creek drainage. This pattern, observed in both

mtDNA and allozymes, is inconsistent with a simple hypothesis of

multiple species originating from a single common ancestor and

subsequent isolation by distance. Instead it suggests a more

complex phylogeographic history for clade C and, by inference,

clade N.

The geological history of the mound springs dates back to the

late Pliocene, early Pleistocene [9,64] with the oldest ‘known’

springs estimated to be 7406120 thousand years old (Elizabeth

Table 2. Estimates of time since most recent common
ancestor of haplotypes from individual sub-clade/clades of
Phreatomerus latipes from the Lake Eyre region based on
a Yule Prior coalescent model using a Bayesian coalescent
approach with BEAST [57].

Clade/Sub-clade Yule Prior

Mean (my)
95% HPD
lower upper

I Francis/Strangways 3.2 0.9 6.0

II Freeling 5.2 1.9 9.1

IV Coward 8.8 5.7 12.6

Clade C (I+II+III+IV) Total 18.7 12.2 25.8

V [ = V Neales1] 2.2 0.2 5.1

VI [ = V Neales2] 12.3 7.2 17.7

VII [ = V Neales3] 4.5 2.1 7.3

Clade N (V+VI+VII) Total 15.7 10.2 21.5

VIII Wangianna 3.8 1.2 6.7

IX Hermit Hills 6.9 4.1 10.0

Clade S (VIII + IX) Total 13.5 8.0 19.6

Both mean date estimates and highest posterior density (HPD) intervals (lower
and upper) are presented as numbers of million years (my).
doi:10.1371/journal.pone.0037642.t002

Figure 3. Results of the initial PCO on all 331 individuals. The
relative PCO scores have been plotted for the first (X-axis) and second
(Y-axis) dimensions, which individually explained 44% and 16%
respectively of the total multivariate variation. Individuals are identified
using symbols reflecting their mtDNA sub-clade (legend within figure).
doi:10.1371/journal.pone.0037642.g003
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Table 3. Allele frequencies at all variable loci for the four taxa diagnosed by stepwise PCO.

Locus Southern (142) Central (144) Northern:Fountain (20) Northern:Outside (25)

Acyc b99,a b b b

Dia* b97,a b c d

Got1 a a a a

Got2 c98,e c48,b46,d5,a c62,b c98,b

Gpi* c e84,d10,c b c92,a

Gpt b b95,c b97,a b

Hk* b b99,a b a

Mdh1 b b66,a b b

Mdh2* c b (a ,1%) c c

Mpi* d98,c1,e c78,b12,d9,a c c

Pep-A b97,a b71,c16,a12,d b b

Pep-B b87,a b99,a b b

Pep-C* a b88,d6,c4,a d c

Pep-D b b b b98,a

Pgk a98,b a97,b a a

Pgm c98,b c90,e9,b c97,a c

Sordh* c d45,a23,b20,c b d

Tpi b b98,a1,c b83,c b

For polymorphic loci, the frequencies of all but the rarer/rarest alleles are expressed as percentages and shown as superscripts (allowing the frequency of each rare allele
to be calculated by subtraction from 100%). The maximum sample size is shown in brackets for each taxon. * Loci diagnostic for distinct clades. The following loci were
invariant: Argk, Enol, Fdp, Gp1, Gp2, Ipp, and Pk.
doi:10.1371/journal.pone.0037642.t003

Figure 4. NJ network among sites, based on pairwise Nei Ds. Sites are labelled by spring group and by mtDNA sub-clade, plus coloured by
mtDNA clade (as per Fig. 2), as are the branches leading to nodes. The four major taxa identified by PCO as being diagnosable at four or more
allozyme loci are also delineated by rectangles.
doi:10.1371/journal.pone.0037642.g004
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Springs [64]). Activation and formation of the springs is

considered to have occurred up to 1–2 million years ago (mya)

at most [65,66], making the GAB mound springs relatively young

in the history of the region. Current date estimates among the

three major clades placed their divergence firmly into the Miocene

era, with the earliest divergence between clade C and clades N+S
given a mean estimate of 18.7 (12.2–25.8 95% HPD) mya and

subsequent splits between N and S given a mean estimate of 15.7

(10.2–21.5 95% HPD) mya. Both sets of dates precede formation

of springs and the stony deserts by more than 15 mya, suggesting

that the origins of these three lineages pre-date major aridification

events in the Lake Eyre region. Instead, it is likely that these major

clades represent an ancient and diverse fauna in Australia’s arid

zone prehistory. Subsequent regional isolation of fauna is thought

to have led to the relict populations we now see (see further below).

Evidence for such an hypothesis has been presented for other

endemic mound springs taxa (i.e. amphipods [15] and snails [28]),

including, ancient phylogenetic connections with other relictual

aquatic regions of Australia [15] that fit with our date estimates.

Those authors have proposed that during the Miocene, central

Australia comprised a warm-wet habitat that extended throughout

what is currently known as the arid zone and comprised a rich

fauna, both aquatic and terrestrial. Subsequent major aridification

events [1] are thought to have led to widespread extinction events

except in those instances where pockets of remnant habitat

retained a relict fauna [12,13,14,15]. We consider that this

hypothesis also applies to the endemic phreatoicid found in the

mound springs in which three lineages remain extant today, but

where many now-extinct lineages probably once existed. A

scenario of widespread genetic lineages formerly found throughout

the Lake Eyre region also explains the occurrence of clade C

individuals in both the geographically northernmost spring

complex (Freeling) and in central Lake Eyre springs.

Origins of mtDNA Sub-clades
Recent work on spring snails in Lake Eyre mound springs has

led to a proposal known as the ‘stranded in desert springs’

hypothesis which states that widespread spring endemics have

historically become stranded in GAB spring refugia due to

Miocene aridification [28]. Here we have been able to examine

this hypothesis in further detail for another spring endemic

invertebrate, P. latipes with contrasting results. In addition to three

major relict clades, indicated by both sets of markers, we also

observed nine well-supported mtDNA lineages (i.e. clade C: I

Strangways/Francis, II Freeling, III Strangways-only, IV Central

(Coward + Billa Kalina + Beresford + Lake Eyre South), clade S:

VIII Wangianna and IX Hermit Hills, clade N: V, VI and VII

Neales River). Each of the mtDNA sub-clades within the three

major clades displayed similarity in coalescent dates (8.8 (5.7–12.6

95% HPD)–2.2 (0.2–5.1 95% HPD) mya, excluding Neales sub-

clade VI which had a date of 12.3 (7.2–17.7 95% HPD) mya). We

also observed a match between geographic locality and genetic

structure within the Lake Eyre mound spring system, with each of

these clades corresponding largely to the grouping of spring

complex. This historical grouping defines spatially close springs

(1 km between individual springs) situated within a similar geo-

morphic setting and relative position to Lake Eyre. However, two

exceptions were observed; clade N (also the Neales complex),

which was split into three sub-clades, suggesting substantial sub-

structuring within the Neales complex (concordant with the

allozyme data), plus two sympatric sub-clades at Strangways (not

detectable allozymically). Despite several modest differences

between the allozyme and mtDNA perspectives for some spring

complexes, a general concordance was observed between all of the

sub-clades and the natural groupings of spring complexes for both

allozyme data and mtDNA. We therefore consider our findings to

be robust enough to support the hypothesis that the intervening

landscape and isolation between spring complexes has played an

important role in the evolutionary patterns observed where strong

genetic structure exists. In particular, these sub-clades likely reflect

the geomorphic proximity and similarity in physico-chemical

composition of the area, but overall a climate and landscape

mediated contraction and subsequent diversification event during

the history of P. latipes in the mound springs is predicted to reflect

its present day divergences.

A major period of aridification 15–7 mya and a ‘return to wet’

is thought to have occurred around 6 mya in the Australian arid

zone [1]. This period is invoked widely as a key timescale during

which habitats and relictual populations were isolated and

subsequently trapped in situ, notably the calcrete aquifers in

Western Australia [14,32], riparian woodland [1] and mesic forest

habitats [13]. Here we see that the 12.3 (7.2–17.7 95% HPD) and

8.8 (5.7–12.6 95% HPD)–2.2 (0.2–5.1 95% HPD) mya coalescent

timescale for the diversification of the nine sub-clades of P. latipes

coincides with dates listed for aridification, a return to wet and

subsequent Pleistocene aridification. However, the sub-clade dates

are substantially earlier than those estimated for a) formation of

mound springs (,1 mya) and the stony deserts (4-2 mya) [9,64]

and also the b) intraspecific divergences of spring snails (0.8–

1.5 mya) [28]. We take into account that the latter could also be

due to a difference in the calibration times where a Protostomia

COI substitution rate of 1.76% per million years was used to

calibrate the clock tree [67] for snails compared with the standard

arthropod mtDNA molecular clock of 2.3% divergence per million

years [58] used here. However, the time differences are substantial

and most likely reflect some real differences in divergence timing.

Therefore, we hypothesise that P. latipes was stranded in wetland

habitats in the Lake Eyre region earlier than that estimated for

snails and that events spanning the mid Miocene-Pleistocene were

probably most influential. Under this scenario each sub-clade in P.

latipes is thought to represent a contraction of populations within

the nine sub-clades to regional habitats (i.e. rivers, wetlands, etc.)

during mid-Miocene aridification, at which time a contraction of

aquatic habitats and a fall in water tables are likely to have

occurred [65]. However, the true climatic conditions around

14 mya are unknown and this time period is often referred to as

the ‘‘Hill Gap’’ due to the lack of information in the geological and

sedimentary record [1,68,69]. A subsequent return to wet during

the Pliocene probably led to substantial lineage expansion. We

consider direct colonisation of the mound springs to be a conse-

quence of the final contraction of, and adaptation to the newly

isolated habitat for, these freshwater limited P. latipes as the arid

zone habitat became more inhospitable, particularly during the

100 ka glacial cycles of the late Pleistocene. Subsequently, these

fragmented pockets of relictual aquatic habitat were able to

maintain large populations of invertebrates and thus have more

recently promoted and maintained genetic differentiation across

the arid landscape. While our date estimates are consistent with

the beginning of lineage diversification following Miocene

aridification of Australia, it must be noted that our molecular

clock analyses were limited by the use of a standard rate

calibration [58], due to the absence of fossils that could be used

to calibrate a molecular clock. The only fossil phreatoicid that

currently exists is the distant relative Protamphisopus wianamattensis

[48]. Nevertheless, a substantially reduced (22.8 fold) slower rate

than our standard would be required to obtain lineage di-

versification consistent with the proposed ,1 my time period for

the formation of mound springs.
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Importance of the Surface Drainages: Aquatic
Connections between Sub-clades
For desert spring species that lack terrestrial dispersal abilities

and are unable to disperse passively via phoresy [70,71], river

drainages may provide vital dispersal highways between these

otherwise fragmented environments [38]. A major influence on

the population structure of springs and their fauna is likely to be

river catchments that flow intermittently inland towards Lake

Eyre. A number of major river drainages flow among southern

Lake Eyre mound springs and many contain catchment-specific

mtDNA sub-clades, e.g. Margaret and Warriner Creeks (I and III

Strangways/Francis, IV Coward (including Billa Kalina, Beres-

ford, Lake Eyre South), Neales Creek (II Freeling); a number of

rivers around the Hermit Hills drainage (i.e. VIII Wangianna, IX

Hermit Hills) and Umbum Creek (V, VI, and VII Neales River).

Each of these rivers could possibly link and structure springs as

seen in other mound springs invertebrates [23,27] and predicted

by Murphy et al. [26] for P. latipes. With few exceptions, we

observed little evidence in either dataset of present day gene flow

(i.e. shared haplotypes) especially between major clades, which

were completely allopatric, or between sub-clades. The only

evidence of contemporary migration across the desert we observed

was between the Central spring complexes: Francis Swamp «
Strangways complexes (sub-clade I, haplotype FS1) and Beresford

« Coward complexes. River mediated gene flow is a likely

explanation for these shared haplotypes with individuals able to

move between spring complexes during periods of major flooding.

Interestingly, population genetic structure remains very strong

amongst these populations based on allozymes and mostly

allopatric mtDNA sub-clades suggesting that typically such

migration events are likely to be rare and either do not contribute

substantially to the population’s gene pool or mostly involve males.

Conservation Implications
Here we have identified three major layers of evolutionary

diversity in P. latipes, one operating at a broad regional scale (i.e.

three clades C, S, and N) and the others at the mid scale with nine

sub-clades (i.e. I-IX) and at the local population level of rivers.

While future work will investigate the latter in more detail, all of

these levels are relevant for conservation of biodiversity within the

nationally protected mound spring community around Lake Eyre.

Our results are particularly pertinent given the general phylogeo-

graphic patterns observed here for P. latipes mirror those displayed

in co-occurring mound spring endemics such as amphipods

[15,28] and wolf spiders [27]. For example, amongst amphipods

[15] three major geographic clades were also observed: southern/

central (Clade A), northern (Clade B) and Strangways and Francis

Swamp (Clade C), each of which contained sub-clades of likely

candidate species (n = 4, n = 3 and n= 1, respectively) (after

Murphy et al. [15]). Both of these taxon groups have revealed

little to no evidence of gene flow at large geographic scales,

suggesting that most mound spring endemics disperse between

populations, sometimes at moderate distances (e.g. Francis-

Strangways, Beresford-Coward complexes), probably along major

river drainages [15,23,24,27,28]. The presence of many geneti-

cally distinct lineages, and in some cases sympatric lineages within

a single spring, strongly suggest extraordinary diversity at multiple

geographic scales. Overall therefore, a case is emerging for

phylogeographic management units throughout the Lake Eyre

supergroup that aim to conserve both taxa and springs that have

a shared phylogeographic history, which has been suggested for

North American spring systems [16]. Extinction and reactivation

of springs is a naturally occurring phenomenon, but water

extraction from the GAB for mining and pastoral activities has

reduced the flow of many Lake Eyre springs in large areas. For

conservation purposes, identification of broad geographic regions

would prevent micro-management of individual springs and would

instead encourage large-scale preservation of bioregions with some

flexibility for stochastic habitat loss amongst the individual mound

spring groups.

Taken together, our mtDNA and allozyme data argue strongly

that clades C, S and N should each be regarded as separate

species. The number of independent and concordant taxonomic

characters (four allozyme loci plus mtDNA), levels of genetic

divergence encountered (mtDNA divergence estimates .15 mya),

and overall geographic patterns encountered are, when combined,

consistent with the standard operating criteria employed under

most modern species concepts (including biological, evolutionary,

and phylogenetic versions; [72]). Morphological examination has

revealed some evidence for morphological differences concordant

with the three major clades, but these data are still preliminary (R.

King pers. comm.). Importantly, our preliminary allozyme data

for clade N revealed levels of allozyme divergence between the

only two springs for which frozen tissues were available (i.e.

Outside and Fountain) that were comparable to those found

between the three candidate species. Given these two spring

populations also fell into different mtDNA sub-clades, our genetic

data also infer that additional candidate species may be present in

the little-sampled northern mound springs surrounding Lake Eyre.

Further intensive sampling, followed by additional mtDNA and

nuclear genetic characterization, is required to test this and other

working hypotheses, including the phylogeographic history that

led to the genetic similarity of the northern Freeling and central

Lake Eyre spring complexes.

Regardless of how many species will ultimately be described, all

will qualify as short-range endemics [73] and be restricted solely to

certain spring complexes of mound springs. Further, most

relatively widespread species are likely to comprise two or more

distinctive genetic lineages and significant geographic sub-struc-

turing. These findings already have an immediate impact on the

conservation perspective afforded to P. latipes, which only comes in

the form of protection at the spring community level, given the

genus can no longer be regarded as monotypic and the ‘‘species’’

no longer considered widespread. Clearly, the continuation of the

mound springs as protected areas of high conservation value is

essential for the continued existence of its unique diversity of

freshwater endemics.

Conclusions
Overall, we conclude that the phylogenetic history of the

ancient relict taxon, P. latipes, has highlighted the process of

aridification in central Australia from a time when it previously

comprised a wet and swamp-like environment. The genus reflects

a diverse fauna that existed during the early Miocene and appears

to have been regionally restricted. Subsequent aridification events

have led to substantial contraction of the habitat, and isolation of

P. latipes at a local geographic scale has remained stable, with only

some evidence of long-distance dispersal by extant populations

indicating that they represent relictual species. The multiple layers

of phylogeographic history that are exemplified by P. latipes have

been similarly observed in other mound springs taxa. This

concordance suggests that major climate events and landscape

structure have clearly shaped the high levels of diversity and

endemism seen here, in particular, isolation of springs. Conser-

vation of the GAB mound springs habitats is of utmost importance

for preserving a fauna that reflects the ancient history of the

Australian arid landscape.
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Figure S1 Consensus phylogeny estimated using a Bayesian

approach that employed the GTR +I +G model of nucleotide

evolution for haplotypes of Phreatomerus latipes. The tree is rooted

with three outgroups. Posterior probability support is listed as

a percentage next to the corresponding node.

(PDF)

Table S1 Data table containing locality data for Phreatomerus

latipes including the collection number (GAB#), the number of

specimens sequenced from a particular location (n), the number of

haplotypes (h) and their names (name and frequency in

parentheses) and their respective position in the final phylogenetic

analysis from Figure 1 (clades = S, Southern, C, Central,

Northern, and sub-clades = I–IX).

(DOCX)

Table S2 Estimates of time since most recent common ancestor

(time per million years) of haplotypes from individual sub-clade/

clades based on five coalescent models using a Bayesian coalescent

approach with BEAST [57].

(DOCX)

Table S3 Summary of between-site assessments of heterogeneity

for clade S sites. The lower triangle indicates which pairwise

comparisons among sites were statistically significant across all

loci, calculated using Fisher’s method; * = 0.01,P,0.05;

*** = P,0.001; ns = not significant (exact P values, after Bonfer-

roni correction, as calculated using GENEPOP). The upper

triangle presents the FST value obtained using Geneland. None of

the analyses found any statistical evidence of heterogeneity among

the five sites included in ‘‘all other sites’’.

(DOCX)

Table S4 Summary of between-site assessments of heterogeneity

for clade C sites (excluding Emerald).

(DOCX)
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