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I. LIST OF FIGURES 
 

Figure 2.1. A cross sectional illustration of the human head and neck region displaying many of 

the constituent sites affected by squamous cell carcinoma (www.macmillan.org.uk). 

 

Figure 2.2. Epithelial non-keratinised stratified squamous cell structure (Henrikson 1997). 

 

Figure 2.3. Carcinogenesis of carcinomas from a single mutated cell to a malignant and invasive 

tumour (Le 2004, Hall 2006). 

 

Figure 2.4. Development of hypoxia in tissue, comparing chronic hypoxia which arises due to 

limited oxygen diffusion, with  acute hypoxia arising from temporarily non-functioning blood 

vessels (Brown 1990, Hall 2006). 

 

Figure 2.5.  Human in vivo Eppendorf tumour oxygenation (pO2) measurement data from 

HNSCC patients prior to radiotherapy (adapted from pO2 data reported from the references 

provided in the legend). 

 

Figure 2.6.  The four main phases of the cell cycle starting with the first gap phase (G1), 

followed by the DNA synthesis phase (S), the second gap phase (G2), and with completion in the 

Mitosis phase (M). 

 

Figure 2.7. An illustration of two ionising radiation cell damage processes with DNA as the 

target (Hall 2006).  The indirect process involves liberation of an atomic electron which then 

reacts, producing highly reactive free radicals that can cause DNA damage.  With oxygen 

present, this damage is “fixed”. Other damage mechanisms are also shown which involve 

liberation of an electron followed by direct DNA damage. 

 

Figure 2.8. The oxygen enhancement ratio of irradiated cells of increasing oxygenation (pO2) for 

the conventional (2 Gy) dose per fraction and for decreasing dose per fraction (Dasu 1998, 

1999, Kirkpatrick 2004). 
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Figure 2.9. The fractionation effect on cell survival in Radiotherapy, where four dose fractions 

are compared to a single dose fraction (Dasu 1998, 1999, Kirkpatrick 2004). 

 

Figure 4.1.  The epithelial cell proliferative hierarchy used in the model, outlining the different 

cell types modelled, and the daughter cell products of these cell types upon division. 

 

Figure 4.2. The probability distributions used for cell cycle time allocation in the model for 

transit and stem cells.  The “Stem total” curve represents the overall lifetime probability of stem 

cells which first undergo a resting G0 phase followed by a cell cycle. 

 

Figure 4.3. The distribution of oxygen levels used to simulate moderate and severe tumour 

hypoxia and oxic tumours, compared to published data. The modelled distributions represent the 

pO2 histograms outputs from the model using a log-normal, normal or uniform random number 

probability distribution of pO2 values to allocate cellular oxygenation. 

 

Figure 4.4.  The CCT adjustment factor used to increase the duration of the cell cycle with 

decreasing pO2, adapted from published data and fitted to an exponential curve (Alarcon 2004). 

 

Figure 4.5. An outline of the HYP-RT tumour growth algorithm, where a single stem cell is 

propagated up to tumour consisting of 108 cells. The “Cellarray” is the cell storage vector and 

“cellmax” is the final number of cells.   

 

Figure 4.6. The graphical user interface, developed in the Java programming language to enable 

simple tumour and treatment related parameter value setting, and the initiation of multiple 

“batch” runs iterating over different random seed numbers and parameter values. 

 

Figure 4.7. a) The average percentages of cell types within simulated tumours of 108 cells for a 

variety of Spercent values between 2% and 30%, and b) oxic versus moderately hypoxic tumour 

cell types in the population using an Spercent value of 3%.  

 

Figure 4.8. Simulation results of a) tumour doubling times (TD), and b) total tumour growth 

times, varying the stem cell symmetrical division probability (Spercent) for oxic and moderately 

hypoxic tumours up to 108 cells. Note that the error bars in a) were smaller than the scale used. 
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Figure 4.9.  Oxic tumour growth curves for a range of stem cell symmetrical division 

probabilities (Spercent).  

 

Figure 4.10. Hypoxic tumour growth curves for a range of stem cell symmetrical division 

probabilities (Spercent).  

 

Figure 4.11. Oxic tumour doubling times (TD) throughout growth, varying the stem cell 

symmetrical division probability (Spercent). 

 

Figure 4.12. Hypoxic tumour doubling times (TD) throughout growth, varying the stem cell 

symmetrical division probability (Spercent). 

 

Figure 4.13.  The stem cell percentages in simulated tumours of three oxygenation levels, 

varying the stem cell symmetrical division probability (Spercent) from 2%, up to the maximum 

possible value of 30% (the latter is applicable during accelerated repopulation). Note that the 

standard deviations are not visible on this scale. 

 

Figure 4.14. Tumour growth and doubling times (TD) for three different tumour oxygenation 

levels. Note that there is no data for hypoxic tumours for Spercent = 1% because of a lack of 

tumour growth using this value. 

 

Figure 4.15.  The impact of the hypoxia induced quiescent cell percentage on tumour doubling 

times (TD), controlling the number of cells that cease to cycle when their pO2 value fall to 1 mm 

Hg.  

 

Figure 4.16.  Oxic tumour doubling times (TD) for five different random seed numbers, showing 

the change in TD over the entire period of growth. The Spercent stem cell parameter was held 

constant at 3%. 

 

Figure 4.17.  Hypoxic tumour doubling times (TD) for five different tumour random seed 

numbers, showing the change in TD over the entire period of growth. The Spercent stem cell 

parameter was held constant at 3%.  
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Figure 5.1. a) Oxygen enhancement ratio (OER) curves implemented in the model for adjusting 

the radiosensitivity of cells during radiotherapy, based on cellular pO2 and dose per fraction 

(Dasu 1998, 1999, Kirkpatrick 2004), and b) conversion of the OER curves into a cell death 

probability function. 

 

Figure 5.2. The irradiation and pO2 measurement schedule for the tumour xenografts (n=42), 

where pO2 measurements were performed after 0, 3, 9, 20, 30 or 40 Gy in 20 mice, with the 

remaining xenografts used in immunohistochemical hypoxia staining work.  

 

Figure 5.3. a) the animal irradiation tray and a 2 x 35 cm2 radiation field aligned over the pelvis 

and hind leg, for a group of mice in restraining bags with adjacent wax bolus, and b) the plastic 

heat pressed bag used for animal restraint during radiotherapy. The plastic was perforated to 

prevent perspiration build up and overheating, and pinned to the tray during irradiation.  

 

Figure 5.4. The OxyLab system fibre optic probe manufactured Oxford Optronix Ltd (230 µm 

width shaft and 280 um tip diameter) used for in vivo pO2 measurement. 

 

Figure 5.5. The set up of the mouse and hind leg FaDu xenograft for OxyLab pO2 probe 

measurements using a micromanipulator, with the probe entering the tissue in the inferior to 

superior direction. 

 

Figure 5.6. A transverse slice and Pinnacle3 TPS isodose curves (6 MV x-ray beam from a 6/100 

Varian linear accelerator) for three mice, set up in the irradiation position, indicating the 95% 

and 100% isodose curves and the approximate tumour positions. 

 

Figure 5.7. Preliminary experiment tumour diameter and volume, during 15 days of tumour 

growth (grey, n=12, 2 diameter measurements per tumour), followed by five daily fractions of 3 

Gy irradiation starting at day 15 (n=9). 

 

Figure 5.8. Average change in tumour volume (n=40) during radiotherapy starting 8 days after 

xenograft cell injection (note that animal numbers reduced to 10 by day 19 due to elimination of 

mice proceeding pO2 measurements). Two control tumours received no irradiation and were left 

to grow until day 15. No treatment occurred on days 13 and 14 because of the weekend break. 
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Figure 5.9.  Oxygenation measurements indicating, a) a significant increase in pO2 with 

increasing dose of fractionated radiotherapy from 0 to 30 Gy to 40 Gy (p<0.05), and b) no 

significant difference between the periphery, centre and total average pO2 of the tumours. 

 

Figure 5.10. Plots for a) oxygenation data (pO2) for small, medium and large tumours (n=10, 

n=9, n=1, with up to 12 points measured per tumour), b) the ranges of tumour volumes within 

each volume group. 

 

Figure  5.11. A comparison of the pO2 readings after 2 and 5 minutes, for all mice involved in 

the OxyLab procedure (n=20), with an average of six points measured per tumour and three 

tumours per dose group from 0 to 40 Gy, for a) all 2 minute data compared to all 5 minute data, 

and b) the plot of the 2 minute vs. the 5 minute measurements corresponding to each tumour 

point (96 pairs of measurements). 

 

Figure 5.12. Analysis of a selection of immunohistochemical cross sections of a sample of 

tumours receiving, a) 0 Gy, b) 0 Gy, c) 1x3 Gy, d) 3x3 Gy, e) 5x3+3x5 =30 Gy, and f)5x3+5x5 = 

40 Gy. Fluoroscopic imaging shows the hypoxic green cells (Pimonidazole hypoxia marker), red 

endothelial/vessel cells and blue proliferating cells.  Note that xenograft B grew for an extended 

15 day period before excision of the tumour, hence the larger volume of the tumour. 

 

Figure  5.13. The relative percentage of green hypoxic cells using Pimonidazole compared to all 

stained cell pixels (including red vessel and blue proliferating cell pixels, based on the 

Immunohistochemical staining tumour cross sectional images of 17 tumours receiving between 0 

and 40 Gy, plotted against a) tumour volume, and  b) total dose. 

 

Figure 5.14. The relationships among the relative percentage of the green hypoxic cells, red 

vessel cells and blue proliferating cells and pixel count with total dose or tumour volume, in 17 

immunohistochemical stained xenografts cross-sections.  

 

Figure 5.15. The percentages of red, green and blue pixels (representing vessel cells, hypoxic 

cells and proliferating cells) in order of smallest to largest tumour volume (tumour received 

between 0 and 45 Gy) in 17 immunohistochemically stained xenograft cross sections, excluding 

tumours with folding artefacts in the 7 µm and with tumour volumes less than 15 mm3.  
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Figure 5.16. A flow diagram of the radiation effect algorithm, where initiation of treatment is 

followed by continual cell growth between subsequent treatment fractions. Accelerated 

repopulation is initiated once, and reoxygenation “events” are initiated and then repeated until 

the tumour is fully oxygenated.  Treatment is complete when either the number of desired 

fractions has been delivered or total cell death has occurred. 

 

Figure 5.17. Comparison of the number of 2 Gy fractions required in the HYP-RT model to kill 

all “basal” or all “stem” cells compared to the linear quadratic (LQ) model in which the cell 

population is reduced to less than 1 cell (the first fraction that achieves <1.000 cells remaining), 

for oxic tumour conventional radiotherapy. 

 

Figure 5.18. The increased doses per fraction (d/#) required during conventional radiotherapy 

of oxic tumours to account for accelerated repopulation (AR), assuming a fixed total treatment 

time of 6 weeks and the increase in d/# coinciding with the onset of AR, for various onset times of 

AR and AR boost factors . A dotted line is shown at the standard 2 Gy/# level.   

 

Figure 5.19. The number of conventional radiotherapy fractions required to model 100% TCP in 

oxic tumours, varying the AR boost factor from 3 to 15 in a) a column graph, and b) in a plot of 

fraction number versus AR onset time.  Note that treatment simulations with no AR considered 

took 6 weeks of tumour time (30 fractions). 

 

Figure 5.20. Cell survival curves of two oxic virtual tumours undergoing conventional 

radiotherapy, simulating no onset of AR and onset of AR at 2 weeks into treatment. 

 

Figure 5.21. The increased doses per fraction (d/#) required during conventional radiotherapy 

of hypoxic tumours to account for accelerated repopulation (AR), assuming a fixed total 

treatment time of 8 weeks and the increase in d/# coinciding with the onset of AR, for various 

onset times of AR and AR boost factor values . A dotted line is shown at the standard 2 Gy per 

fraction level.   

 

Figure 5.22. The increased doses per fraction (d/#) required during conventional radiotherapy 

of hypoxic tumours to account for accelerated repopulation (AR), assuming a fixed total 

treatment time of 8 weeks and the increase in d/# coinciding with the onset of AR, for various 

onset times of AR and ROx. A dotted line is shown at the standard 2 Gy per fraction level.   
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Figure 5.23. A comparison of the average number of conventional radiotherapy fractions 

required for moderately hypoxic tumours with no reoxygenation (ROx), varying the onset of 

accelerated repopulation (AR) and AR boost factor from a) 3 to 15, and b) from 7 to 15 in a plot 

of fraction number vs. AR onset time. A dotted line represents the standard number of fractions 

for the case of no AR and no ROx. 

 

Figure 5.24. A comparison of the average number of conventional (2 Gy) radiotherapy fractions 

required for cell kill and the timing of full tumour reoxygenation (ROx) for moderately hypoxic 

tumours, varying the half life of hypoxia induced cell quiescence, with ROx onset at the start of 

treatment. 

 

Figure 5.25. Oxygenation histograms after fractions of conventional radiotherapy (fraction 1 to 

8 only) for a moderately hypoxic tumour, with reoxygenation (ROx) initiated four hours after 

each dose fraction.   

 

Figure 5.26. A comparison of the average number of conventional radiotherapy fractions 

required for moderately hypoxic tumours, with increasing reoxygenation (ROx) onset times, with 

no accelerated repopulation considered. 

 

Figure 5.27. The number of treatment fraction required to model 100% TCP for moderately 

hypoxic tumour conventional radiotherapy, varying the onset times of accelerated repopulation 

(AR) and reoxygenation (ROx). A dotted line represents the standard number of fractions for the 

case of no AR and no ROx. 

 

Figure 5.28.  Cell survival curves from simulations of conventional radiotherapy of moderately 

hypoxic tumours, varying the onset times of accelerated repopulation (AR) and reoxygenation 

(ROx).  

 

Figure 5.29.  The relative influences of accelerated repopulation (AR) on oxic and moderately 

hypoxic tumour simulations, for various onset times of AR and using the default AR boost factor 

of 10. 
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Figure 5.30. A comparison of the average number of radiotherapy fractions required for 

severely hypoxic and moderately hypoxic tumours for onset times of accelerated repopulation 

(AR) and reoxygenation (ROx) of between 0 to 2 weeks.   

 

Figure 5.31.  The effects of moderate, severe and extreme hypoxia on tumour control, varying 

the onset times of accelerated repopulation (AR) and reoxygenation (ROx), outlining the 

combination for which extreme hypoxia required an increased dose. 

 

Figure 6.1. The number of fractions simulated to achieve 100% tumour control probability 

(TCP) in the model for hypoxic tumours for 11 fractionation schedules (Table 6.1), compared to 

the number of fractions delivered in clinical trials. 

 

Figure 6.2. The total doses simulated to achieve 100% tumour control probability (TCP) in the 

model for hypoxic tumours for 11 fractionation schedules (Table 6.1), compared to the number 

of fractions delivered in clinical trials. 

 

Figure 6.3.  The total doses simulated to achieve 100% tumour control probability (TCP) in the 

model, based on stem cell elimination only for hypoxic tumours for 11 fractionation schedules 

(Table 6.1), compared to the number of fractions delivered in clinical trials. 

 

Figure 6.4. Total dose requirements in the model to achieve 100% TCP, for the elimination of all 

stem cells versus the elimination of all “basal” cells which includes all stem, transit and level 1 

differentiating cells, for 11 fractionations schedules (Table 6.1). 

 

Figure 6.5. Cell survival curves throughout treatment from simulations of 8 different 

fractionation schedules (Table 6.1), with onset of accelerated repopulation (AR) at 2 weeks and 

onset of ROx at 0 weeks. 

 

Figure 6.6. The total doses simulated to achieve 100% TCP in the model for oxic tumours for 11 

fractionation schedules (Table 6.1), compared to the number of fractions delivered in clinical 

trials. 
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Figure 6.7. The total doses simulated to achieve 100% TCP in the model for oxic versus hypoxic 

tumours, varying the onset of AR for 11 fractionation schedules. No reoxygenation (ROx) was 

implemented during these simulations. 

 

Figure 6.8. Total treatment times required to achieve 100% TCP in the model for 11 

fractionation schedules with various onset times of accelerated repopulation (AR), for a) oxic 

tumours, and b) hypoxic tumour simulations. No reoxygenation (ROx) was implemented for these 

simulations. 

 

Figure 6.9. The effects on total dose required for 100% TCP when modifying the OER curve with 

dose per fraction compared to modelling one fixed OER curve with a maximum value of 3.0,  

during simulations of 8 various fractionation schedules (Table 6.1) for various onset times of 

accelerated repopulation (AR) and reoxygenation (ROx). 

 

Figure 6.10.  Rankings of acute normal tissue biological effective doses (BED) based on the total 

dose required for 100% for 11 fractionation schedules in a) oxic tumours, and b) hypoxic tumour 

simulations (in both cases the lowest BED ranking is optimal for acute normal tissue effects). 

 

Figure 6.11. Late reacting normal tissue biological effective dose (BED) rankings based on the 

total dose required for 100% TCP for 11 fractionation schedules (Table 6.1), for a) oxic 

tumours, and b) hypoxic tumour simulations (in both cases the lowest ranking is optimal for late 

normal tissue effects). 

 

Figure 6.12. Comparisons of tumour control probability (TCP) using a) a zero cell threshold and 

b) a five cell threshold with varying accelerated repopulation (AR) and reoxygenation (ROx) 

onset times and corresponding clinical trial fraction numbers for 11 schedules with reported 

clinical trial local control (LC) percentages. 

 

Figure 6.13. Comparisons of tumour control probability (TCP) using modelled cell kill data and 

Poisson theory for varying AR and ROx onset times and corresponding clinical trial fraction 

numbers for 11 schedules with reported clinical trial local control (LC) percentages. 
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Figure 7.1. Oxic tumour simulations with varying onset times of AR comparing the total doses 

required for 100% tumour control probability (TCP) for four new altered fractionation 

schedules and five clinical trial schedules. 

 

Figure 7.2. Hypoxic tumour simulations varying the onset times of AR and ROx comparing the 

dose required for 100% tumour control probability (TCP) for four new altered fractionation 

schedules and five clinical trial schedules. 

 

Figure 7.3. BED calculations based on the modelled 100% TCP dose, for predictions of a) acute 

normal tissue effects and b) late normal tissues effects in oxic tumour simulations for four new 

and five clinically trialled schedules and various onset times of AR. The red circles indicate the 

worst schedules and the green circles the most beneficial schedules in terms of the predicted a) 

acute and b) late normal tissue tolerances. 

 

Figure 7.4. BED calculations based on the modelled 100% TCP dose, for predictions of a) acute 

normal tissue effects and b) late normal tissues effects in moderately hypoxic tumour simulations 

for four new and five clinically trialled schedules and various onset times of accelerated 

repopulation (AR) and reoxygenation (ROx). The red circles indicate the worst schedules and the 

green circles the most beneficial schedules in terms of the predicted a) acute and b) late normal 

tissue tolerances. 

 

Figure 7.5. Total doses for the specific case of onset of accelerated repopulation (AR) at 2 weeks 
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accelerated repopulation (AR) onset times. 

 

 



xiii    

ii) Oxic tumour Conventional Schedule simulation total cell kill results in terms of the number of 

2 Gy fractions required to achieve total “basal” (stem, transit and level 1 differentiating cell) 

and stem cell only elimination, for accelerated repopulation (AR) onset times, and alpha beta 

ratios 

 

APPENDIX C: 

i) Moderately Hypoxic tumour simulation cell kill results for the total elimination of all stem 

transit and level 1 differentiating cells, for various onset times of accelerated repopulation (AR) 

and reoxygenation (ROx). Schedule numbers can be referred to in Tables 6.1 and 7.1 of this 

report. 

 

ii) Oxic tumour simulation cell kill results for the total elimination of all stem transit and level 1 

differentiating cells, for various onset times of accelerated repopulation (AR). Schedule numbers 

can be referred to in Tables 6.1 and 7.1 of this report. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiv 

 

 

 

 

 

 

 

 

 

 



  xv 

III. ABREVIATIONS 
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IV. ABSTRACT  
 

Tumour hypoxia is the inadequate supply of oxygen in living tissue. Hypoxia is a major problem in 

the treatment cancer with ionising radiation because of the associated increase in radioresistance of 

hypoxic tumour cells.  This effect can cause up to a three fold increase in the radiation dose 

required to kill the hypoxic cells compared to well oxygenated cells. Many locally advanced head 

and neck tumours exhibit hypoxia to some degree, and there is direct evidence that hypoxic tumour 

sub-volumes and their associated mean oxygenation levels have a direct influence on local tumour 

control after radiotherapy (Nordsmark 2005).  

 

Currently, head and neck cancer radiotherapy local control rates lie at approximately 80% for early 

stage disease, but reduce significantly (often below 50%) for locally advanced tumours. Efforts to 

improve these statistics through dose and fractionation modifications in randomised clinical trials 

have been made in recent decades using alternate fractionation schedules, but the average 

prognosis has not improved significantly. 

 

The effects of tumour reoxygenation during fractionated radiotherapy can assist in re-sensitising 

previously hypoxic tissue; however the complex dynamics and patient dependent characteristics of 

this phenomenon make the benefits difficult to quantify. Head and neck cancers, specifically head 

and neck squamous cell carcinoma (HNSCC), have also been shown to experience the 

phenomenon of accelerated repopulation during fractionated radiotherapy. Accelerated 

repopulation enhances cellular proliferation as a response to the trauma caused by treatment, and 

contributes to the low HNSCC local control rates after radiotherapy. 

 

The modelling work developed for this report was undertaken to better understand the mechanisms 

and quantitative effects of HNSCC cellular kinetics and tumour oxygenation during growth and 

radiotherapy.  The goal of individualising treatment planning for this disease was the motivation 

for developing the model.  A key aim was to produce an end product to be used as an efficient and 

user-friendly radiobiological tool for the input on tumour specific properties such as tumour 

oxygenation and reoxygenation onset time, to investigate their effects on cell kill during 

radiotherapy. 
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To this end, a Monte Carlo model, named HYP-RT (for HYPoxic-RadioTherapy simulation), was 

developed.  HYP-RT simulates the tumour cell division process according to epithelial proliferative 

hierarchy, starting from a single stem cell.  Monte Carlo methods were used to simulate the 

probabilistic nature of the biological and radiobiological mechanisms and parameters incorporated 

into the model, e.g. the distribution of cell cycle times (normal or exponential) and oxygenation 

levels (normal or log-normal), and the randomised methods of cell kill and oxygenation increase 

during treatment.  Probabilistic methods were also used to make decisions during cell division, as 

to the type of daughter cell products that would emerge after the division of a mother cell.   

 

After the growth of a 108 cell tumour, an algorithm was developed to model the effects of 

fractionated radiotherapy.  This algorithm was designed to simulate the oxygen dependent 

radiosensitivity of individual tumour cells, as well as the effects of gradual reoxygenation and 

accelerated repopulation (through loss of stem cell division asymmetry). Both reoxygenation and 

accelerated repopulation could be onset at varying times after the start of treatment.  Experimental 

animal work using HNSCC (FaDu cell line) xenografts was undertaken during this research, and 

showed that reoxygenation occurred very late in an accelerated radiation schedule (40 Gy in 2 

weeks), indicating the need to investigate a range of reoxygenation onset times in the model (0 to 3 

weeks). 

 

Dynamic cell data was stored in a pre-allocated vector (the Cellarray) containing just over 108 

object elements, with each element representing one tumour cell. This enabled efficient random 

access to the data. Linked list methods were used to chronologically order cells in the Cellarray 

based on their times of division.  Model efficiency was paramount during model development, to 

ensure convenient use of the model for the current work and potential future research. Using linked 

list methods, the goal of a one hour maximum computation time to grow and treat a tumour was 

successfully achieved.  

 

The model source code was written with the FORTRAN 95 programming language (complier 

v7.1.0, Lahey Computer Systems Inc.), within the Visual Studio (2003, Microsoft Corporation) 

framework. Two additional graphical user interface programs were developed using the JAVA 

programming language (Java SE Development Kit 6.17), to 1) read in and interpret tumour data 

files, and 2) allow for the input of key tumour parameters before a simulation (or batches of 

simulations) and iteration over multiple parameter sets.   
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Cellular data and key algorithm parameters were written out to file at regular intervals (1000 hours 

by default), during tumour growth and before and after every dose fraction during treatment, for 

retrospective analysis. This data included the tumour pO2 distribution, the instantaneous tumour 

growth rate and the number of cells of various types comprising the tumour. 

 

Simulation results showed that tumour growth rate was strongly dependent on the percentage of 

stem cells in the tumour (modelled to be approximately 1% during growth).  Incorporating a 

“moderately” hypoxic oxygen distribution increased tumour doubling times significantly, from 37 

days for oxic tumours up to 65 days for moderately hypoxic tumours.  This was attributed to the 

effects of oxygen dependent cell cycle slowing, cellular quiescence and necrosis.  

 

Simulated conventional radiotherapy (5x2 Gy/wk) required on average an extra 16 Gy in total to 

achieve tumour control for moderately hypoxic compared to well oxygenated tumours. The effects 

of both accelerated repopulation and reoxygenation significantly altered the total doses required 

for tumour control, with accelerated repopulation effects dominating model outcomes. Accelerated 

repopulation and reoxygenation were found to be dependent on one another, making simulations of 

every combination of onset time for each effect necessary during model analysis. 

 

During accelerated repopulation, a dose per fraction of 2.5 to 3.0 Gy was required to control the 

extra cell growth in an otherwise 2 Gy per fraction schedule.  This equated to an extra 5 Gy being 

requiring to maintain tumour control for every week that the onset accelerated repopulation was 

brought toward the start of treatment.  The benefits of reoxygenation reduced as the time of onset 

was delayed, with +1 Gy required to maintain tumour control for every week that reoxygenation 

was delayed.   

 

Conventional fractionation simulation results had good agreement with standard Linear Quadratic 

theory, for the dose required to control well oxygenated tumours.  However, comparison results 

were mixed for more complex cases involving hypoxic tumours with and without accelerated 

repopulation. When modelling altered fractionation schedules, simulation outcomes in terms of the 

total doses required for tumour control, agreed well with the prescriptions from published clinical 

trials.  The most beneficial schedule, based on predicted total dose as well as biological effective 

doses (BED’s) calculations for normal tissues, was the 10x1.1 Gy/week schedule (Pinto et al. 

1991). However, there were up to 30 Gy differences in total dose and BED results when simulating 
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specific sets of tumour parameters for the same radiation schedule, highlighting the need for 

individualisation of treatment planning to improve the therapeutic ratio.  

 

Four newly designed altered schedules were also simulated with the HYP-RT model. Results 

showed that using a concomitant boost at the beginning, rather than at the end of treatment, or 

using a “less aggressive” continuous hyper-accelerated radiotherapy (CHART) schedule 

(compared to the UK CHART schedule) may have potential therapeutic benefits compared to 

existing clinical schedules. Altering the oxygen enhancement ratio (OER) curve based on dose per 

fraction for the altered fractionation schedules, changed model results significantly for 

hyperfractionated schedules (up to 20 Gy). This highlighted the critical nature of the OER curve in 

predictive radiobiological tumour models.  

 

In summary, the current research has involved the development, analysis and use of an efficient 

Monte Carlo tumour growth and radiotherapy model (HYP-RT).  The model simulates a 

biologically plausible epithelial cell hierarchy, a large number of individual cells, tumour hypoxia, 

and the dynamics of reoxygenation and accelerated repopulation during radiotherapy.  The user 

can input the desired oxygen distribution to describe the degree of tumour hypoxia as well as and 

the times of onset of treatment related effects, among many other cellular parameters. The model 

provides quantitative results regarding the total dose required to control a tumour, for a given 

fractionation schedule and tumour parameter set.  It is hoped that computer models such as HYP-

RT will be used in the near future as a tool to aid in the individualisation of radiotherapy planning, 

based on specific tumour experimental/imaging information, to improve prognosis for patients 

with HNSCC. 
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