A Numerical Investigation into the Potential to Enhance Natural Gas Recovery in Water-drive Gas Reservoirs through the Injection of CO₂

Myles L. M. Regan

A thesis submitted for the degree of

Doctor in Philosophy in Petroleum Engineering

Australian School of Petroleum

The University of Adelaide

December 2010

Abstract

The injection of carbon dioxide (CO₂) into oil reservoirs for the purpose of enhancing recovery has been performed for decades. Conversely, the injection of CO₂ into natural gas reservoirs has received very little attention, primarily due to the typically high recovery achievable under primary depletion. This high recovery is however associated with volumetric gas reservoirs only. If the reservoir is in the presence of an active water-drive, recovery can be considerably lowered. This is caused by pressure maintenance and the trapping of gas, rendering a volume of gas immobile. Consequently, any technique that reduces reservoir pressure and/or retards the influx of the aquifer will enable natural gas recovery to be enhanced.

In this thesis, the injection of CO_2 has been proposed as a method of retarding the influx of the aquifer. Favourable fluid properties between the injected CO_2 and natural gas also allow the displacement of natural gas towards the production wells with minimal mixing. This thesis investigates the nature of the effects of a number of parameters deemed potentially influential on the displacement of natural gas by CO_2 and the ability to produce and enhance recovery with as low a producing CO_2 concentration as possible. Parameters chosen include uncontrollable reservoir and fluid properties such as permeability, thickness, diffusion coefficients and salinity. Controllable factors are also investigated, such as the timing of injection, production and injection rates and the type of wells employed. This investigation was conducted through the use of numerical simulation. Simulations were first performed on a simple, conceptual model in order to understand the key processes involved in the CO_2 enhanced gas recovery process. The results of these studies were then applied to a more complex numerical investigation involving a model of the Naylor gas field.

The results of the initial studies found that the parameters which determined the extent of viscous and gravity forces, such as permeability, thickness and formation dip, were the most influential in determining the stability of the displacement, and consequently the recovery achievable at the breakthrough of CO₂ at the production well. The fluid properties, such as water salinity and the diffusion coefficient, were found to have less of an impact than the reservoir properties. Efficient displacement in a non-dipping reservoir was possible with either viscous or gravity dominated displacement, while only gravity stable displacement was preferred in a dipping reservoir. The primary recovery efficiency did however dictate where the injection of CO₂ should be targeted in order to achieve incremental recovery with the lowest producing CO₂ concentration. Due to the low primary recovery efficiency, the injection of CO₂ should be targeted in high permeability, non-dipping reservoirs.

The presence of heterogeneity accelerated the breakthrough of CO_2 , and so it was shown that delaying the injection of CO_2 was beneficial in maximising the recovery at the initial breakthrough of CO_2 . However, once CO_2 had reached the production well, the rate of increase in CO_2 production was considerably more rapid if injection was delayed. The choice of the timing of injection and the ability to maximise incremental recovery is therefore heavily influenced by the maximum allowable producing CO_2 concentration, which will be determined by the economics of the project. The investigation into the other controllable parameters showed that the operational strategies which either lowered the susceptibility for CO_2 to cone into the production well, or which mitigated against the uneven advancement of CO_2 due to heterogeneity were preferred.

Ultimately this study showed that the injection of CO₂ can effectively retard the influx of the aquifer and efficiently displace natural gas towards the production well. By understanding the mechanisms involved in this displacement process, operational parameters can be optimised accordingly to maximise natural gas recovery with the lowest producing CO₂ concentration. The extent of incremental recovery is subsequently determined by the maximum producing CO₂ concentration allowable, as determined by the economics of the project.

Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution.

To the best of my knowledge and belief, it contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signature:

Date:

Acknowledgements

Firstly, after the bumpy start to my PhD studies, I would like to thank my two supervisors, **Prof. Richard Hillis** and **Dr. Geoff Weir**. Amongst other things, Richard assisted me in setting the foundations to successfully conduct my studies, while Geoff provided excellent and extremely valuable technical knowledge which assisted me greatly, at times under very trying conditions. I would particularly like to thank Geoff and of late Richard for taking time out of their day jobs to supervise my studies and assist me in being able to complete my studies.

I would also like to thank my two previous supervisors, Hemanta Sarma and Seung Ihl Kam for their supervision and guidance during the initial stages of my studies, and for laying the foundations during my undergraduate days. I would particularly like to thank Hemanta Sarma for introducing the idea of furthering my studies with an option to conduct a PhD and assisting in the realisation of this.

I would like to thank the Co-operative Research Centre for Greenhouse Gas Technologies (CO2CRC) for both the financial support they have given me to complete my studies, as well as providing a broad range of experiences and opportunities within and outside of my studies. I would like to thank all my colleagues within the CO2CRC (too many to name) for making my time within the CO2CRC fun, interesting and a very worthwhile experience. In particular I would like to thank Prof. John Kaldi for providing the opportunity to be a part of the CO2CRC and for the guidance and support during my time with the organisation.

I would like to acknowledge Fiona Johnston for providing professional editing services for the preparation of this thesis.

I would like to thank all of the staff and students, both past and present, from the Australian School of Petroleum for providing the necessary support to complete both my undergraduate and now postgraduate studies. Without their expertise and support, my task of completing would have been made considerably harder, if not impossible.

Last but not least, I would like to thank my family and friends. In particular I would like to thank my mum and dad for all of the love, help and support they have given me and for the sacrifices they have made to give me all of the opportunities I have had. I can never repay the debt I owe you but I will give it a go. I would like to thank my brohan, Courtney, for all the help he has given me and for all of the shenanigans we have got up to, and for being considerably shorter than me. I would like to thank the female one, Nina, for all of the love and support she has given me over these long, long 8 years and also to the rest of the Rudduck family for making me feel very welcome. Finally I would like to thank all of my friends, one is not going to name you all as the list would be super massive

because one is so popular, but without them I would not have received as many scars and injuries as I have through various, at times drunken, escapades and for providing much needed stress relief, andy how.

Table of Contents

A	BSTRACT	·	I
D	ECLARAT	10N	
A	CKNOWI	EDGEMENTS	IV
T/	ABLE OF	CONTENTS	VI
			v
LI		JUKES	A
LI	ST OF TA	BLES	XVII
Ν	OMENCI	ATURE	XIX
1	INTR	ODUCTION	1
	1.1	BACKGROUND	1
	1.2	RESEARCH OBJECTIVES	4
	1.3	METHODOLOGY	5
	1.4	REVIEW OF CHAPTERS	5
	1.5	SIGNIFICANCE	6
2	LITEF	ATURE REVIEW	7
	2.1	Fluid Properties of CO_2 and CH_4	7
	2.2	NATURAL GAS RESERVOIRS	13
	2.3	ENHANCED GAS RECOVERY	21
	2.3.1	Accelerated Gas Production	
	2.3.2	Co-production of Gas and Water	25
	2.4	LABORATORY AND NUMERICAL STUDIES INTO $CO_2 EGR$	27
	2.5	FIELD TRIALS OF CO ₂ EGR	
	2.6	SUMMARY	
3	GEO	LOGICAL CO2 STORAGE CODE COMPARISON STUDY	38
	3.1	INTRODUCTION	
	3.2	LBNL CODE COMPARISON STUDY: PROBLEM 1	
	3.2.1	Discussion of Results	
	3.3	LBNL CODE COMPARISON STUDY: PROBLEM 2	
	3.3.1	Discussion of Results	46
	3.4	LBNL CODE COMPARISON STUDY: PROBLEM 3	47
	3.5	CONCLUSION	64
4	EXPE	RIMENTAL DESIGN METHODOLOGY AND ITS USE IN THE OIL AND GAS INDUSTRY	66
	4.1	INTRODUCTION	66

	Scr	eening Designs	67
	Two	p-level Full Factorial Designs	67
	Two	p-level Fractional Factorial Designs	67
	Thr	ee-level Full Factorial Design	68
	Cer	tral Composite Design (CCD)	68
	Вох	-Behnken Design	69
	Cor	nputer Generated Designs	70
	And	Ilysis of Experimental Designs	70
	4.2	THE USE OF EXPERIMENTAL DESIGN IN THE OIL AND GAS INDUSTRY	70
5	STL	IDY 1: THE INJECTION OF CO_2 AT THE COMMENCEMENT OF CH_4 PRODUCTION	74
	5.1	INTRODUCTION	74
	5.2	Model Description	75
	5.3	Experimental Design Study	79
	5.3	1 Design Selection	79
	5.3	2 Parameter and Range Selection	79
	5.4	STUDY 1 RESPONSES (METRICS)	83
	5.4	1 Response 1: CH ₄ Recovery Efficiency at a CO ₂ Breakthrough Limit of 10%	83
	5.4	2 Response 2: Minimum producing CO_2 concentration required to achieve incremental CH_4 recov	very
		83	
	5.5	STUDY 1 D-OPTIMAL DESIGN	84
	5.6	Results and Discussion of Response 1: CH_4 Recovery Efficiency at a CO_2 Breakthrough Limit of 10%	85
	5.7	Results and discussion of Response 2: Minimum producing CO_2 concentration required to achieve	
	INCREM	IENTAL RECOVERY	102
	5.8	SUMMARY OF THE EXPERIMENTAL DESIGN	111
	5.8	1 Response 1	111
	5.8	2 Response 2	111
	5.9	FOLLOW-UP SIMULATIONS	112
	5.9	1 Impact of Heterogeneity	112
	5.9	2 Impact of Operational Strategy	115
	5.9	3 Summary	123
6	STL	IDY 2: THE EFFECT OF DELAYING CO $_2$ INJECTION	125
	6.1	INTRODUCTION	125
	6.2	Study 2A: The Injection of CO_2 into an Anisotropic, Homogenous Reservoir	126
	6.2	1 Design, Parameter and Range Selection	126
	6.2	2 Study 2A Responses	127
	6.2	3 Response 1 Results and Discussion	128
	6.2	4 Response 2 Results and Discussion	139

	6.2.5	Response 3: Results and Discussion	147
	6.2.6	Summary	155
	6.3	STUDY 2B: THE COMPARISON OF THE TIMING OF CO ₂ INJECTION INTO A SIMPLE, HETEROGENEOUS RESERVOI	R 156
	6.3.1	Reservoir Model	156
	6.3.2	Design, Parameter and Range Selection	157
	6.3.3	Study 2B Responses (Metrics)	158
	6.3.4	Response 1 Results and Discussion	158
	6.3.5	Response 2 Results and Discussion	167
	6.3.6	Response 3 Results and Discussion	
	6.3.7	Summary	
7	CASE	STUDY: THE NAYLOR GAS FIELD, OTWAY BASIN, VICTORIA	181
	7.1	Field Location and Background	181
	7.2	RESERVOIR MODEL CHARACTERISATION	184
	7.3	INITIAL INVESTIGATIONS	187
	7.4	Experimental Design Study	193
	7.4.1	Results and discussion for Response 1: Natural Gas Recovery Efficiency at a 10% CO $_{ m 2}$	
	Brea	kthrough Limit	195
	7.4.2	Results and discussion of Response 2: Natural Gas Recovery Efficiency at a 50% CO $_2$ Brea	kthrough
	Limit	205	
	7.4.3	Results and Discussion of Response 3: Minimum Production Stream CO $_2$ Concentration Re	equired
	to Ac	hieve Incremental Natural Gas Recovery	
	7.4.4	Optimisation of the Responses	
	7.5	COMPOSITION OF THE INJECTION GAS	223
	7.6	SUMMARY OF RESULTS	225
8	SCRE		
		ENING CRITERIA	227
	8.1	ENING CRITERIA Criteria for an Efficient Displacement of CH_4 by CO_2	227
	8.1 <i>8.1.1</i>	ENING CRITERIA CRITERIA FOR AN EFFICIENT DISPLACEMENT OF CH4 BY CO2 Fluid properties	227 227 228
	8.1 <i>8.1.1</i> <i>8.1.2</i>	ENING CRITERIA CRITERIA FOR AN EFFICIENT DISPLACEMENT OF CH4 BY CO2 Fluid properties Non-dipping reservoirs	227 227 228 228
	8.1 <i>8.1.1</i> <i>8.1.2</i> <i>8.1.3</i>	ENING CRITERIA CRITERIA FOR AN EFFICIENT DISPLACEMENT OF CH4 BY CO2 Fluid properties Non-dipping reservoirs Dipping reservoirs	227 227 228 228 229
	8.1 <i>8.1.1</i> <i>8.1.2</i> <i>8.1.3</i> 8.2	ENING CRITERIA CRITERIA FOR AN EFFICIENT DISPLACEMENT OF CH4 BY CO2 Fluid properties Non-dipping reservoirs Dipping reservoirs THE EFFECT OF THE TIMING OF CO2 INJECTION	227 227 228 228 229 230
	8.1 <i>8.1.1</i> <i>8.1.2</i> <i>8.1.3</i> 8.2 8.3	ENING CRITERIA CRITERIA FOR AN EFFICIENT DISPLACEMENT OF CH4 BY CO2. Fluid properties Non-dipping reservoirs. Dipping reservoirs THE EFFECT OF THE TIMING OF CO2 INJECTION KEY CRITERIA TO MAXIMISE THE BENEFIT OF CO2 INJECTION OVER PRIMARY DEPLETION	227 227 228 228 229 230 231
9	8.1 8.1.1 8.1.2 8.1.3 8.2 8.3 CON	ENING CRITERIA CRITERIA FOR AN EFFICIENT DISPLACEMENT OF CH4 BY CO2 Fluid properties Non-dipping reservoirs. Dipping reservoirs THE EFFECT OF THE TIMING OF CO2 INJECTION KEY CRITERIA TO MAXIMISE THE BENEFIT OF CO2 INJECTION OVER PRIMARY DEPLETION CLUSIONS AND FUTURE WORK.	227 227 228 228 228 229 230 231 233
9	8.1 8.1.1 8.1.2 8.1.3 8.2 8.3 CON	ENING CRITERIA CRITERIA FOR AN EFFICIENT DISPLACEMENT OF CH4 BY CO2. Fluid properties Non-dipping reservoirs. Dipping reservoirs THE EFFECT OF THE TIMING OF CO2 INJECTION Key CRITERIA TO MAXIMISE THE BENEFIT OF CO2 INJECTION OVER PRIMARY DEPLETION CLUSIONS AND FUTURE WORK. CONCLUSIONS	227 227 227 228 228 229 230 231 233
9	8.1 8.1.1 8.1.2 8.1.3 8.2 8.3 CON 9.1 9.2	ENING CRITERIA CRITERIA FOR AN EFFICIENT DISPLACEMENT OF CH₄ BY CO₂ Fluid properties Non-dipping reservoirs Dipping reservoirs THE EFFECT OF THE TIMING OF CO₂ INJECTION Key CRITERIA TO MAXIMISE THE BENEFIT OF CO₂ INJECTION OVER PRIMARY DEPLETION CLUSIONS AND FUTURE WORK CONCLUSIONS FUTURE WORK	227 227 228 228 229 230 231 233 233 233

APPENDIX A – REGRESSION ANALYSIS	250
APPENDIX B – ANOVA TABLES	
APPENDIX C – EXPERIMENTAL DESIGN DATA FOR PRIMARY DEPLETION RESPONSES FOR STU	JDY 1, 2A AND 2B
	271

List of Figures

FIGURE 2.1: CO ₂ PHASE DIAGRAM
Figure 2.2: Density of CO_2 and CH_4 as a function of pressure and temperature (data sourced from Lemmon,
McLinden, and Friend)8
Figure 2.3: Viscosity of CO_2 and CH_4 as a function of pressure and temperature (data sourced from Lemmon,
McLinden, and Friend)9
Figure 2.4: Solubility of CO_2 in pure water as a function of pressure and temperature (modified from Chang et al.
1998)
FIGURE 2.5: CO ₂ SOLUBILITY AS A FUNCTION OF TEMPERATURE AND PRESSURE, INDICATING THE VARIABLE TRENDS WITH RESPECT TO
TEMPERATURE
FIGURE 2.6: SOLUBILITY OF CH ₄ IN PURE WATER AS A FUNCTION OF TEMPERATURE AND PRESSURE (MODIFIED FROM CULBERSON &
МсКетта 1951)
FIGURE 2.7: SOLUBILITY OF CO ₂ AS A FUNCTION OF SALINITY (MODIFIED FROM BACHU & ADAMS 2003)
FIGURE 2.8: A PHASE DIAGRAM
FIGURE 2.9: P/Z VERSUS GP PLOT FOR A VOLUMETRIC RESERVOIR, INDICATING THE LINEAR RELATIONSHIP BETWEEN P/Z AND GP 16
FIGURE 2.10: P/Z VERSUS GP GRAPH FOR A GAS RESERVOIR WITH VARYING STRENGTH WATER-DRIVES
FIGURE 2.11: SCHEMATIC OF GAS TRAPPING IN A SINGULAR CAPILLARY
FIGURE 2.12: SCHEMATIC OF GAS TRAPPING IN A PORE DOUBLET MODEL
Figure 2.13: P/Z vs cumulative gas production (G $_{\scriptscriptstyle P}$) plot indicating the effect of variable production rates on the
RECOVERY OF NATURAL GAS UNDER WATER-DRIVE CONDITIONS (MODIFIED FROM AGARWAL ET AL. 1965)
FIGURE 2.14: TYPICAL GAS FIELD DEVELOPMENT RATE-TIME PROFILE WHEN UNDER CONTRACTUAL OBLIGATIONS
FIGURE 2.15: SCHEMATIC OF THE CONING OF WATER DUE TO INSTABILITY AT THE GWC
FIGURE 3.1: INITIAL FLUID DISTRIBUTION (PROBLEM 1)
FIGURE 3.2: GRAPH OF CO2 MOLE FRACTION AS A FUNCTION OF DEPTH FOR FOUR CODES PRESENTED IN LBNL REPORT (PRUESS ET
AL. 2002. REPRINTED WITH PERMISSION)
FIGURE 3.3: GRAPH OF CO2 MOLE FRACTION AS A FUNCTION OF DEPTH FOR THE E300 SIMULATION CODE
FIGURE 3.4: INITIAL FLUID DISTRIBUTION (PROBLEM 2)
Figure 3.5: CO_2 mole fraction at a depth of 50 metres with respect to time for the four codes presented in the LBNL
REPORT (PRUESS ET AL. 2002. REPRINTED WITH PERMISSION)
Figure 3.6: CO_2 mole fraction at a depth of 50 metres with respect to time for the E300 code
FIGURE 3.7: CO ₂ DENSITY AFTER 365 DAYS PREDICTED BY THE GEM CODE (PRUESS ET AL. 2002. REPRINTED WITH PERMISSION) 45
Figure 3.8: CO_2 density after 365 days predicted by the E300 code
Figure 3.9: Problem 3
FIGURE 3.10: PRESSURE VERSUS THE SIMILARITY VARIABLE FOR THE 6 CODES PRESENTED IN THE LBNL REPORT (PRUESS ET AL. 2002.
Reprinted with permission)
FIGURE 3.11: PRESSURE VERSUS THE SIMILARITY VARIABLE FOR THE E300 CODE

FIGURE 3.12: GAS SATURATION VERSUS THE SIMILARITY VARIABLE FOR THE 6 CODES PRESENTED IN THE LBNL REPORT (PRUESS ET AL.
2002. Reprinted with Permission)
FIGURE 3.13: GAS SATURATION VERSUS THE SIMILARITY VARIABLE FOR THE E300 CODE
Figure 3.14: Dissolved CO_2 mass fraction versus the similarity variable for the 6 codespresented in the LBNL report
(Pruess et al. 2002. Reprinted with permission)
Figure 3.15: Dissolved CO_2 mass fraction versus the similarity variable for the E300 code
Figure 3.16: Comparison of H_2O density as a function of pressure (zero salinity) for E300 and the codes presented in
THE LBNL REPORT (MODIFIED FROM PRUESS ET AL. 2002)
Figure 3.17: Comparison of H_2O viscosity as a function of pressure (zero salinity) for E300 and the codes presented
IN THE LBNL REPORT (MODIFIED FROM PRUESS ET AL. 2002)
Figure 3.18: Comparison of CO_2 density as a function of pressure for E300 and the codes presented in the LBNL
REPORT (MODIFIED FROM PRUESS ET AL. 2002)56
Figure 3.19: Comparison of CO_2 viscosity as a function of pressure for E300 and the codes presented in the LBNL
REPORT (MODIFIED FROM PRUESS ET AL. 2002)
Figure 3.20: Comparison of Aqueous ($H_2O + CO_2$) density as a function of pressure (zero salinity) for E300 and the
CODES PRESENTED IN THE LBNL REPORT (MODIFIED FROM PRUESS ET AL. 2002)
FIGURE 3.21: COMPARISON OF AQUEOUS ($H_2O + CO_2$) VISCOSITY AS A FUNCTION OF PRESSURE (ZERO SALINITY) FOR E300 AND THE
CODES PRESENTED IN THE LBNL REPORT (MODIFIED FROM PRUESS ET AL. 2002)
FIGURE 3.22: COMPARISON OF DISSOLVED CO ₂ MASS FRACTION IN LIQUID PHASE AS A FUNCTION OF PRESSURE (ZERO SALINITY) FOR
E300 and the codes presented in the LBNL report (Modified from Pruess et al. 2002)
FIGURE 3.23: PRESSURE VERSUS SIMILARITY VARIABLE FOR THE 4 CODES PRESENTED IN THE LBNL REPORT (PRUESS ET AL. 2002.
Reprinted with permission)
FIGURE 3.24: PRESSURE VERSUS SIMILARITY VARIABLE FOR THE E300 CODE
FIGURE 3.25: CO ₂ MASS FRACTION IN THE LIQUID PHASE FOR THE 4 CODES PRESENTED IN THE LBNL REPORT (PRUESS ET AL. 2002.
Reprinted with permission)
Figure 3.26: CO ₂ Mass fraction in the liquid phase for the E300 code
FIGURE 3.27: COMPARISON OF BRINE DENSITY AS A FUNCTION OF PRESSURE (15 WEIGHT PERCENT SALINITY) FOR E300 AND THE
CODES PRESENTED IN THE LBNL REPORT (MODIFIED FROM PRUESS ET AL. 2002)
FIGURE 3.28: COMPARISON OF BRINE VISCOSITY AS A FUNCTION OF PRESSURE (15 WEIGHT PERCENT SALINITY) FOR E300 AND THE
CODES PRESENTED IN THE LBNL REPORT (MODIFIED FROM PRUESS ET AL. 2002)
FIGURE 3.29: COMPARISON OF AQUEOUS (BRINE + CO ₂) DENSITY AS A FUNCTION OF PRESSURE (15 WEIGHT PERCENT SALINITY) FOR
E300 and the codes presented in the LBNL report (Modified from Pruess et al. 2002)
FIGURE 3.30: COMPARISON OF AQUEOUS (BRINE + CO ₂) VISCOSITY AS A FUNCTION OF PRESSURE (15 WEIGHT PERCENT SALINITY) FOR
E300 and the codes presented in the LBNL report (Modified from Pruess et al. 2002)
FIGURE 3.31: COMPARISON OF DISSOLVED CO_2 mass fraction in the liquid phase as a function of pressure (15 weight
percent salinity) for E300 and the codes presented in the LBNL report (Modified from Pruess et al. 2002) 64
FIGURE 4.1: GRAPHICAL REPRESENTATION OF THE CENTRAL COMPOSITE DESIGN (CCD)
FIGURE 4.2: GRAPHICAL REPRESENTATION OF THE BOX-BEHNKEN DESIGN

FIGURE 5.1: RELATIVE PERMEABILITY DATA USED IN MODEL	75
FIGURE 5.2: SCHEMATIC OF NON-DIPPING MODEL	76
FIGURE 5.3: MOLE FRACTION OF CO_2 in production stream for variable grid block sizes	78
FIGURE 5.4: DISPLACEMENT PROFILES FOR (TOP) DOMINANT GRAVITY FORCES CAUSING GRAVITY UNDER-RIDE, AND (BOTTOM)	
DOMINANT VISCOUS FORCES.	81
FIGURE 5.5: RESULTS FOR EACH DESIGN RUN AND THE AVERAGE OF ALL RUNS (BLACK LINE) FOR RESPONSE 1	85
FIGURE 5.6: NORMAL PROBABILITY PLOT FOR RESPONSE 1	87
FIGURE 5.7: EFFECT GRAPH FOR THE PERMEABILITY - FORMATION DIP INTERACTION FOR RESPONSE 1	88
Figure 5.8: Side-view of CO_2 saturation after 2620 days in a non-dipping reservoir with a permeability of 10mD.	
INJECTION WELLS LOCATED ON THE LEFT WITH THE PRODUCTION WELL ON THE RIGHT	89
Figure 5.9: Side view of CO_2 saturation after 2620 days in a non-dipping reservoir with a permeability of 100mD	89
Figure 5.10: Side-view of CO $_2$ saturation once the 10% CO $_2$ limit has been reached in an 11° dip reservoir.	
Permeability is equal to 10mD	90
Figure 5.11: Side-view of CO $_2$ saturation once the 10% CO $_2$ limit has been reached in an 11° dip reservoir.	
Permeability is equal to 100mD	91
Figure 5.12: Effect graph for the permeability - $\kappa_v/\kappa_{ m H}$ ratio interaction for Response 1	91
Figure 5.13: Effect graph for the K_v/K_H ratio – formation dip interaction for Response 1	93
FIGURE 5.14: CO ₂ SATURATION AFTER 2276 DAYS IN A NON-DIPPING RESERVOIR. THE VERTICAL TO HORIZONTAL PERMEABILITY R	ατιο
IS EQUAL TO 100%	94
FIGURE 5.15: CO ₂ SATURATION AFTER 2276 DAYS IN A NON-DIPPING RESERVOIR. THE VERTICAL TO HORIZONTAL PERMEABILITY R	ατιο
IS EQUAL TO 1%	94
Figure 5.16: CO $_2$ saturation after the 10% CO $_2$ limit has been reached. Formation dip is equal to 21° with the	
VERTICAL TO HORIZONTAL PERMEABILITY RATIO EQUAL TO 1%	95
Figure 5.17: CO $_2$ saturation after the 10% CO $_2$ limit has been reached. Formation dip is equal to 21° with the	
VERTICAL TO HORIZONTAL PERMEABILITY RATIO EQUAL TO 100%	95
FIGURE 5.18: EFFECT GRAPH FOR THE MAIN EFFECT OF THICKNESS FOR RESPONSE 1	96
FIGURE 5.19: EFFECT GRAPH FOR THE THICKNESS - FORMATION DIP INTERACTION FOR RESPONSE 1	97
Figure 5.20:Schematic of displacement profiles between CO_2 and CH_4 in a non-dipping reservoir with increasing	
THICKNESS	98
FIGURE 5.21: RESULTS OF STAND ALONE SIMULATIONS WHERE THICKNESS WAS ALTERED WITH PERMEABILITY IN A 21° DIP RESERV	/OIR
	99
FIGURE 5.22: SCHEMATIC OF THE PROGRESSION OF THE DISPLACEMENT PROFILE IN LOW PERMEABILITY, DIPPING RESERVOIR WITH	
RESPECT TO THICKNESS	99
FIGURE 5.23: EFFECT GRAPH FOR THE MAIN EFFECT OF THE AQUIFER SIZE FOR RESPONSE 1	100
FIGURE 5.24: RESULT FOR EACH DESIGN RUN AND THE AVERAGE FOR ALL RUNS (BLACK LINE) FOR RESPONSE 2	102
Figure 5.25: Normal probability plot for Response 2	103
FIGURE 5.26: EFFECT GRAPH FOR THE MAIN EFFECT OF FORMATION DIP FOR RESPONSE 2	104

Figure 5.27: Effect graph of the main effect of formation dip for the third response: CH_4 recovery under
CONVENTIONAL PRIMARY DEPLETION (AT WATER BREAKTHROUGH)
FIGURE 5.28: SCHEMATIC OF THE DIFFERENCE IN SWEEP EFFICIENCY BETWEEN (A) NON-DIPPING AND (B) DIPPING RESERVOIRS 105
FIGURE 5.29: EFFECT GRAPH FOR THE MAIN EFFECT OF FORMATION DIP FOR RESPONSE 1
FIGURE 5.30: EFFECT GRAPH FOR THE PERMEABILITY - FORMATION DIP INTERACTION FOR RESPONSE 2
Figure 5.31: Effect graph for the permeability - κ_v/κ_h ratio interaction for Response 2
FIGURE 5.32: SCATTER PLOT OF THE RESULTS FROM THE ED FOR RESPONSE 2 FOR A NON-DIPPING AND DIPPING RESERVOIR WITH
RESPECT TO ISOTROPIC PERMEABILITY
FIGURE 5.33: EFFECT GRAPH FOR THE MAIN EFFECT OF PERMEABILITY FOR RESPONSE 2
FIGURE 5.34: PERMEABILITY DISTRIBUTION SHOWING THE HIGH PERMEABILITY LAYER (1000mD) IN A LOW PERMEABILITY RESERVOIR
(10MD)
FIGURE 5.35: CO ₂ SATURATION OF THE HIGH PERMEABILITY HETEROGENEITY MODEL DISPLAYING THE POOR SWEEP EFFICIENCY AT THE
10% CO ₂ breakthrough limit
FIGURE 5.36: CO ₂ SATURATION AT THE 10% CO ₂ BREAKTHROUGH LIMIT FOR A MEDIUM PERMEABILITY (100MD) RESERVOIR WITH A
HIGH PERMEABILITY (1000mD) LAYER
FIGURE 5.37: CO ₂ SATURATION FOR A LOW PERMEABILITY DIPPING RESERVOIR WITH RATES EQUAL TO 1 MMSCF/DAY
FIGURE 5.38: SCHEMATIC OF THE INJECTION WELL COMPLETION LOCATION, WHERE RED INDICATES THE DEFAULT LOCATION AND
BLACK REPRESENTS THE ALTERED LOCATION
FIGURE 5.39: CO ₂ SATURATION FOR THE LOW PERMEABILITY (10MD) MODEL WITH INJECTION WELL COMPLETIONS LOCATED AT THE
BOTTOM OF THE RESERVOIR
FIGURE 5.40: CO ₂ SATURATION FOR THE DEFAULT LOW PERMEABILITY (10MD) MODEL WITH INJECTION WELL COMPLETIONS LOCATED
AT THE TOP OF THE RESERVOIR
Figure 5.41: CO_2 saturation for rates equal to 2.5 MMscf/day
Figure 5.42: CO_2 saturation for rates equal to 10 MMscf/day
FIGURE 5.43: SCHEMATIC OF HORIZONTAL WELL LOCATION. INJECTION WELLS LOCATED ON THE EDGE, WITH THE PRODUCTION WELL
LOCATED IN THE MIDDLE OF THE RESERVOIR
FIGURE 5.44: CO ₂ SATURATION WHERE INJECTION AND PRODUCTION OCCUR THROUGH HORIZONTAL WELLS
FIGURE 6.1: RESPONSE 1 RESULTS FOR EACH DESIGN RUN. THE AVERAGE OF ALL RUNS IS SHOWN AS THE BLACK LINE
FIGURE 6.2: THE NORMAL PROBABILITY PLOT FOR RESPONSE 1
FIGURE 6.3: THE EFFECT GRAPH FOR THE THICKNESS FORMATION DIP INTERACTION FOR RESPONSE 1
Figure 6.4: Schematic of the displacement process when the injection of CO_2 is delayed in a non-dipping reservoir.
Figure 6.5: Screenshots of a thin (50m), non-dipping reservoir at the point of 10% CO ₂ breakthrough showing CO ₂
saturation (top) and CH_4 saturation (bottom). Injection has been delayed132
Figure 6.6: CO_2 saturation for a thin (50m) dipping reservoir (top) and a thick (150m) dipping reservoir (bottom),
DISPLAYING SIMILAR DISPLACEMENT PROFILES IN THE FREE GAS ZONE, BUT WITH GREATER OVER-RIDE OF THE INVADED ZONE AS
THICKNESS INCREASES
FIGURE 6.7: THE EFFECT GRAPH FOR THE PERMEABILITY THICKNESS INTERACTION FOR RESPONSE 1

FIGURE 6.8: THE EFFECT GRAPH FOR THE MAIN EFFECT OF THICKNESS FOR RESPONSE 1	135
Figure 6.9: The effect graph for the κ_v/κ_h ratio injection rate interaction for Response 1	136
FIGURE 6.10: THE EFFECT GRAPH FOR THE QUADRATIC EFFECT OF FORMATION DIP FOR RESPONSE 1	137
FIGURE 6.11: SUMMARY OF THE RESULTS FOR EACH RUN FOR RESPONSE 1 AS A FUNCTION OF FORMATION DIP AND THICKNESS	s. Note
THE OPPOSING TRENDS FOR THE LEVELS OF THICKNESS AS FORMATION DIP INCREASES.	138
FIGURE 6.12: THE EFFECT GRAPH FOR THE THICKNESS TIMING OF INJECTION INTERACTION FOR RESPONSE 1	138
FIGURE 6.13: RESPONSE 2 RESULTS FOR EACH DESIGN RUN. THE AVERAGE OF ALL RUNS IS SHOWN AS THE BLACK LINE	140
FIGURE 6.14: THE NORMAL PROBABILITY PLOT FOR RESPONSE 2.	141
FIGURE 6.15: THE EFFECT GRAPH FOR THE MAIN EFFECT OF TIMING OF INJECTION FOR RESPONSE 2.	141
FIGURE 6.16: THE COMPARISON OF PRODUCING CO_2 concentration profiles where the injection of CO_2 has either b	EEN
DELAYED OR NOT DELAYED.	142
FIGURE 6.17: THE CH_4 saturation for two models where injection has not been delayed (top), and where inject	ION HAS
BEEN DELAYED (BOTTOM). THE REDUCTION IN THE THICKNESS OF THE FREE GAS ZONE (AND THEREFORE EFFECTIVELY THE	Ē
RESERVOIR) IS CLEARLY VISIBLE	144
FIGURE 6.18: THE EFFECT GRAPH FOR THE THICKNESS FORMATION DIP INTERACTION FOR RESPONSE 2.	145
FIGURE 6.19: THE EFFECT GRAPH FOR THE PERMEABILITY THICKNESS INTERACTION FOR RESPONSE 2.	146
Figure 6.20: The effect graph for the K_v/K_H ratio injection rate interaction for Response 2.	146
FIGURE 6.21: THE EFFECT GRAPH FOR THE MAIN EFFECT OF FORMATION DIP FOR RESPONSE 2.	147
FIGURE 6.22: RESPONSE 3 RESULTS FOR EACH DESIGN RUN. THE AVERAGE OF ALL RUNS IS SHOWN AS THE BLACK LINE	148
FIGURE 6.23: THE NORMAL PROBABILITY PLOT FOR RESPONSE 3.	149
FIGURE 6.24: THE EFFECT GRAPH FOR THE MAIN EFFECT OF FORMATION DIP FOR RESPONSE 3.	149
FIGURE 6.25: THE EFFECT GRAPH FOR THE MAIN EFFECT OF PERMEABILITY FOR RESPONSE 3.	150
Figure 6.26: The effect graph for the permeability K_v/K_H ratio interaction for Response 3.	151
Figure 6.27: The effect graph for the main effect of κ_v/κ_h ratio for Response 3	152
FIGURE 6.28: THE EFFECT GRAPH FOR THE PERMEABILITY FORMATION DIP INTERACTION FOR RESPONSE 3	152
Figure 6.29: The effect graph for the K_v/K_H ratio formation dip interaction for Response 3	153
FIGURE 6.30: THE EFFECT GRAPH FOR THE FORMATION DIP TIMING OF INJECTION INTERACTION FOR RESPONSE 3.	154
FIGURE 6.31: RESPONSE 1 RESULTS FOR EACH DESIGN RUN. THE AVERAGE OF ALL RUNS IS INDICATED BY THE BLACK LINE	159
FIGURE 6.32: THE NORMAL PROBABILITY PLOT FOR RESPONSE 1.	160
FIGURE 6.33: THE EFFECT GRAPH FOR THE MAIN EFFECT OF THICKNESS FOR RESPONSE 1	160
FIGURE 6.34: THE EFFECT GRAPH FOR THE THICKNESS TIMING OF INJECTION INTERACTION FOR RESPONSE 1.	161
FIGURE 6.35: SCHEMATIC OF THE INFLUENCE OF GRAVITY FORCES ON MITIGATING AGAINST THE NEGATIVE EFFECTS OF THE HIG	HER
PERMEABILITY LAYER IN A NON-DIPPING RESERVOIR	162
FIGURE 6.36: SCHEMATIC OF THE EFFECT OF VISCOUS AND GRAVITY FORCES ON THE DISPLACEMENT IN A DIPPING RESERVOIR.	
STRONGER VISCOUS FORCES (TOP) LEAD TO MORE SEVERE UNEVEN ADVANCEMENT OF THE DISPLACEMENT FRONT. INCR	EASED
GRAVITY FORCES (BOTTOM) ACT TO SUPPRESS THE UNEVEN ADVANCEMENT	162
FIGURE 6.37: THE EFFECT OF GRAVITY OVER-RIDE IN A NON-DIPPING RESERVOIR WITH HETEROGENEITY. OVER-RIDING OF THE	
INVADED ZONE DIRECTS THE CO_2 TOWARDS THE HIGHER PERMEABILITY LAYER	163

FIGURE 6.38: THE EFFECT GRAPH FOR THE PERMEABILITY MULTIPLIER TIMING OF INJECTION INTERACTION FOR RESPONSE 1	.64
FIGURE 6.39: THE EFFECT GRAPH OF THE THICKNESS FORMATION DIP INTERACTION FOR RESPONSE 1	.65
FIGURE 6.40: SCHEMATIC OF THE EFFECT OF THICKNESS IN A NON-DIPPING RESERVOIR. DISPLACEMENTS CONTROLLED BY VISCOUS	
FORCES (TOP) LEAD TO MAXIMUM CONTACT WITH THE HETEROGENEITY, LEADING TO THE SEVERE UNEVEN ADVANCEMENT OF	
THE DISPLACEMENT FRONT. INCREASING THICKNESS AND ALLOWING FOR GRAVITY TO INFLUENCE THE DISPLACEMENT (BOTTO	м)
ENSURES THE RESERVOIR FILLS FROM THE BOTTOM UP (INDICATED BY THE DASHED LINES), NEGATING THE EFFECT OF THE	
HETEROGENEITY	.66
FIGURE 6.41: THE EFFECT GRAPH FOR THE MAIN EFFECT OF TIMING OF INJECTION FOR RESPONSE 1	.66
FIGURE 6.42: RESPONSE 2 RESULTS FOR EACH DESIGN RUN. THE AVERAGE FOR ALL RUNS IS INDICATED BY THE BLACK LINE	.67
FIGURE 6.43: THE NORMAL PROBABILITY PLOT FOR RESPONSE 2	.68
FIGURE 6.44: THE EFFECT GRAPH FOR THE MAIN EFFECT OF TIMING OF INJECTION FOR RESPONSE 2	.69
FIGURE 6.45: THE EFFECT GRAPH FOR THE MAIN EFFECT OF THICKNESS FOR RESPONSE 21	.70
FIGURE 6.46: THE EFFECT GRAPH FOR THE THICKNESS FORMATION DIP INTERACTION FOR RESPONSE 2	.71
FIGURE 6.47: THE EFFECT GRAPH FOR THE PERMEABILITY MULTIPLIER TIMING OF INJECTION INTERACTION FOR RESPONSE 2	.72
FIGURE 6.48: THE EFFECT GRAPH FOR THE THICKNESS TIMING OF INJECTION INTERACTION FOR RESPONSE 2	.73
FIGURE 6.49: RESPONSE 3 RESULTS FOR EACH DESIGN RUN. THE AVERAGE OF ALL RUNS IS INDICATED BY THE BLACK LINE	.74
FIGURE 6.50: THE NORMAL PROBABILITY PLOT FOR RESPONSE 3	.75
FIGURE 6.51: THE EFFECT GRAPH FOR THE MAIN EFFECT OF FORMATION DIP FOR RESPONSE 3	.75
FIGURE 6.52: THE EFFECT GRAPH FOR THE FORMATION DIP TIMING OF INJECTION INTERACTION FOR RESPONSE 3	.76
FIGURE 6.53: THE EFFECT GRAPH FOR THE MAIN EFFECT OF THE PERMEABILITY MULTIPLIER FOR RESPONSE 3	.78
FIGURE 6.54: THE EFFECT GRAPH FOR THE PERMEABILITY MULTIPLIER FORMATION DIP INTERACTION FOR RESPONSE 3	.78
FIGURE 7.1: LOCATION OF THE NAYLOR FIELD IN SOUTH-WESTERN VICTORIA, AUSTRALIA	.81
FIGURE 7.2: PLAN VIEW OF THE MODEL OF THE NAYLOR FIELD. THE GAS RESERVOIR (RED) IS ENCLOSED BY THREE BOUNDING FAULT	s.
	.82
FIGURE 7.3: HISTORICAL GAS PRODUCTION RATE FOR THE NAYLOR FIELD	.83
FIGURE 7.4: RELATIVE PERMEABILITY DATA USED FOR THE DYNAMIC MODEL	.85
FIGURE 7.5: LOCATION OF THE NUMERICAL AQUIFERS USED TO HISTORY MATCH THE HISTORICAL PRODUCTION	.86
FIGURE 7.6: LOCATION OF THE CRC-1 WELL DRILLED BY THE CO2CRC FOR USE IN A CO ₂ STORAGE PILOT PROJECT1	.87
FIGURE 7.7: CROSS-SECTION OF THE RESERVOIR SHOWING THE FLAT NATURE OF THE GAS ZONE	.88
FIGURE 7.8: CROSS-SECTION OF THE RESERVOIR DISPLAYING THE PERMEABILITY HETEROGENEITY PRESENT IN THE MODEL	.89
FIGURE 7.9: PLAN VIEW OF THE RESERVOIR INDICATING THE LOCATION OF THE FIVE INJECTION WELLS.	.90
Figure 7.10: Comparison of CO_2 concentration for a production/injection rate of 100,000 sm3/day (top) and	
250,000 sm3/day (bottom) when the producing CO_2 concentration reaches 5 mole percent1	.92
FIGURE 7.11: THE RESULT FOR INDIVIDUAL DESIGN RUNS WITH REGARD TO RESPONSE 1. THE AVERAGE OF ALL RUNS IS SHOWN IN	
BLACK	.96
FIGURE 7.12: THE NORMAL PROBABILITY PLOT FOR THE ANALYSIS OF RESPONSE 1	.97
Figure 7.13: Effect graph for the main effect of the timing of CO_2 injection1	.97
FIGURE 7.14: EFFECT GRAPH FOR THE MAIN EFFECT OF THE PRODUCTION RATE	.98

Figure 7.15: Effect graph for the interaction between the timing of CO_2 injection and the Y location of the injection
WELL
FIGURE 7.16: CROSS-SECTION FROM THE PRODUCTION WELL TO THE INJECTION WELL LOCATED IN THE SOUTH OF THE RESERVOIR. THE
CONTINUOUS HIGHER PERMEABILITY STREAK CAN BE SEEN IN GREEN IN THE LOWER SECTION OF THE CROSS-SECTION
FIGURE 7.17: SCHEMATIC OF THE EFFECT OF THE HIGH PERMEABILITY LAYER WHEN (A) INJECTION IS NOT DELAYED (TOP) AND (B)
INJECTION IS DELAYED (BOTTOM) WHERE THE INVADED ZONE IS REPRESENTED IN BLUE. IF INJECTION IS DELAYED, GRAVITY
SEGREGATION LEADS TO THE BYPASSING OF THE HIGH PERMEABILITY LAYER
Figure 7.18: Effect graph for the interaction between the timing of CO_2 injection and the production rate201
FIGURE 7.19: EFFECT GRAPH FOR THE INTERACTION BETWEEN THE Y LOCATION OF THE INJECTION WELL AND THE PRODUCTION RATE.
FIGURE 7.20: EFFECT GRAPH FOR THE MAIN EFFECT OF THE X LOCATION OF THE INJECTION WELL
FIGURE 7.21: THE RESULT FOR INDIVIDUAL DESIGN RUNS WITH REGARD TO RESPONSE 2. THE AVERAGE OF ALL RUNS IS SHOWN IN
BLACK
FIGURE 7.22: THE NORMAL PROBABILITY PLOT FROM THE ANALYSIS OF RESPONSE 2
FIGURE 7.23: THE EFFECT GRAPH FOR THE MAIN EFFECT OF THE PRODUCTION RATE FOR RESPONSE 2
FIGURE 7.24: THE EFFECT GRAPH FOR THE MAIN EFFECT OF THE TIMING OF CO ₂ INJECTION FOR RESPONSE 2
FIGURE 7.25: THE EFFECT GRAPH FOR THE MAIN EFFECT OF THE Y LOCATION FOR RESPONSE 2
Figure 7.26: The effect graph for the interaction between the timing of CO_2 injection and the production rate for
RESPONSE 2
FIGURE 7.27: THE RESULT FOR INDIVIDUAL DESIGN RUNS WITH REGARD TO RESPONSE 3. THE AVERAGE OF ALL RUNS IS SHOWN IN
BLACK
FIGURE 7.28: THE NORMAL PROBABILITY PLOT DISPLAYING THE DEVIATION FROM THE NORMALITY ASSUMPTION, REQUIRING A
TRANSFORMATION
FIGURE 7.29: A GRAPH OF THE RESIDUALS VERSUS THE PREDICTED VALUES, WITH THE FUNNEL PATTERN INDICATING NON-CONSTANT
VARIANCE
FIGURE 7.30: BOX-COX DIAGNOSTIC PLOT INDICATING A TRANSFORM WOULD IMPROVE THE FIT OF THE REGRESSION MODEL TO THE
INPUT DATA
FIGURE 7.31: THE NORMAL PROBABILITY PLOT AFTER THE TRANSFORMATION TO THE DATA HAS BEEN APPLIED
FIGURE 7.32: THE PLOT OF RESIDUALS VERSUS THE PREDICTED VALUES AFTER THE TRANSFORMATION TO THE DATA HAS BEEN APPLIED,
DISPLAYING NO OBVIOUS PATTERN
FIGURE 7.33: THE EFFECT GRAPH FOR THE MAIN EFFECT OF THE PRODUCTION RATE FOR RESPONSE 3
FIGURE 7.34: THE EFFECT GRAPH FOR THE MAIN EFFECT OF THE Y LOCATION OF THE INJECTION WELL FOR RESPONSE 3
FIGURE 7.35: THE EFFECT GRAPH FOR THE MAIN EFFECT OF THE TIMING OF CO ₂ INJECTION FOR RESPONSE 3
Figure 7.36: The effect graph for the interaction between the timing of CO_2 injection and the production rate for
RESPONSE 3
5

List of Tables

TABLE 3-1: PARTICIPATING ORGANISATIONS AND THE NUMERICAL CODES EMPLOYED IN THE CODE COMPARISON STUDY	39
TABLE 3-2: MODEL PROPERTIES (PROBLEM 1)	40
TABLE 3-3: PROPERTIES OF $CO_2 - CH_4$ mixtures and aqueous solubility at a pressure of 40 bar	41
TABLE 3-4: PROPERTIES OF CO2 – CH4 MIXTURES AND AQUEOUS SOLUBILITY AT A PRESSURE OF 100 BAR	42
TABLE 3-5: MODEL PROPERTIES (PROBLEM 3)	48
TABLE 4-1: USE OF THE ED METHODOLOGY IN THE OIL AND GAS INDUSTRY	72
TABLE 5-1: BASE CASE MODEL PROPERTIES	75
TABLE 5-2: COMPUTATIONAL TIME REQUIRED TO COMPLETE EACH SIMULATION RUN FOR VARIABLE GRID BLOCK SIZES	78
TABLE 5-3: EXPERIMENTAL DESIGN PARAMETERS AND RANGES	79
TABLE 5-4: EXPERIMENTAL DESIGN MATRIX AND RESULTS	84
TABLE 5-5: RANKING OF STATISTICALLY SIGNIFICANT COEFFICIENTS FROM THE ANALYSIS OF RESPONSE 1	86
TABLE 5-6: CO ₂ BREAKTHROUGH TIMES AND CORRESPONDING CH ₄ RECOVERY EFFICIENCIES FOR VARIABLE, ISOTROPIC PERMEA	BILITY
MODELS IN AN 11° dipping formation	92
TABLE 5-7: Comparison of the effect of the κ_v/κ_h ratio and the diffusion coefficient on the CH ₄ recovery factor	AT A
10% CO ₂ breakthrough limit	101
TABLE 5-8: RANKING OF STATISTICALLY SIGNIFICANT COEFFICIENTS FROM THE ANALYSIS OF RESPONSE 2	103
TABLE 5-9: RESULTS OF SIMULATIONS INVESTIGATING THE IMPACT OF A HIGH PERMEABILITY (1000mD) LAYER IN A LOW	
PERMEABILITY (10MD) RESERVOIR	114
TABLE 5-10: RESULTS OF SIMULATIONS INVESTIGATING THE IMPACT OF A HIGH PERMEABILITY (1000MD) LAYER IN A MEDIUM	
PERMEABILITY (100mD) RESERVOIR	115
TABLE 5-11: RESULTS OF SIMULATIONS INVESTIGATING VARIABLE RATES IN A LOW PERMEABILITY (10MD) DIPPING RESERVOR.	117
TABLE 5-12: RESULTS OF SIMULATIONS INVESTIGATING THE LOCATION OF COMPLETIONS IN A LOW PERMEABILITY (10MD) DIPP	ING
RESERVOIR	118
TABLE 5-13: RESULT OF SIMULATIONS INVESTIGATING VARIABLE RATES AND THE USE OF HORIZONTAL WELLS IN A THIN, NON DIF	PING
RESERVOIR	120
TABLE 5-14: RESULTS OF SIMULATIONS COMPARING THE USE OF VERTICAL AND HORIZONTAL WELLS	122
TABLE 6-1: PARAMETER AND RANGE SELECTION FOR STUDY 2A	126
TABLE 6-2: D-OPTIMAL DESIGN FOR STUDY 2A	127
TABLE 6-3: RANKING OF STATISTICALLY SIGNIFICANT COEFFICIENTS FOR RESPONSE 1	129
TABLE 6-4: RANKING OF STATISTICALLY SIGNIFICANT COEFFICIENTS FOR RESPONSE 2	140
TABLE 6-5: ANOVA TABLE FOR RESPONSE 3	148
TABLE 6-6: DESIGN PARAMETERS AND THE CORRESPONDING LOW, MID AND HIGH VALUES.	157
TABLE 6-7: D-OPTIMAL DESIGN FOR STUDY 2B	157
TABLE 6-8: ANOVA TABLE FOR RESPONSE 1	159
TABLE 6-9: ANOVA TABLE FOR RESPONSE 2	168
TABLE 6-10: ANOVA TABLE FOR RESPONSE 3	174

TABLE 6-11: COMPARISON OF RESULTS BETWEEN EQUIVALENT NON-DIPPING MODELS, INVESTIGATING THE DIFFERENCE BETWEEN T	ΉE
TIMING OF INJECTION	.77
TABLE 6-12: COMPARISON OF RESULTS BETWEEN EQUIVALENT DIPPING MODELS, INVESTIGATING THE DIFFERENCE BETWEEN THE	
TIMING OF INJECTION1	.78
TABLE 7-1: BASIC PROPERTIES OF THE NAYLOR FIELD	.82
TABLE 7-2: THE RESULTS FROM THE TESTING OF THE INJECTION WELL LOCATION. 1	.91
TABLE 7-3: THE RESULTS OF THE TESTING OF THE INJECTION AND PRODUCTION RATES. 1	.91
TABLE 7-4: PARAMETERS AND THE CORRESPONDING LEVELS FOR THE EXPERIMENTAL DESIGN. 1	.93
TABLE 7-5: EXPERIMENTAL DESIGN RUNS INDICATING PARAMETER LEVEL COMBINATIONS. 1	.94
TABLE 7-6: RANKING OF STATISTICALLY SIGNIFICANT COEFFICIENTS FROM THE ANALYSIS OF RESPONSE 1. 1	.96
TABLE 7-7: THE PARAMETER LEVEL COMBINATION WHICH OPTIMISES RESPONSE 1. 2	:04
TABLE 7-8: THE COMPARISON OF THE ERROR BETWEEN PREDICTED AND SIMULATED (CALCULATED) RESULTS FOR RESPONSE 12	:05
TABLE 7-9: RANKING OF STATISTICALLY SIGNIFICANT COEFFICIENTS FROM THE ANALYSIS OF RESPONSE 2. 2	:06
TABLE 7-10: THE PARAMETER LEVEL COMBINATION WHICH OPTIMISES THE NATURAL GAS RECOVERY FOR RESPONSE 2	11
TABLE 7-11: THE PARAMETER LEVEL COMBINATION THAT MINIMISES THE NATURAL GAS RECOVERY FOR RESPONSE 2	11
TABLE 7-12: THE COMPARISON OF THE ERROR BETWEEN PREDICTED AND SIMULATED (CALCULATED) RESULTS FOR RESPONSE 22	12
TABLE 7-13: RANKING OF STATISTICALLY SIGNIFICANT COEFFICIENTS FROM THE ANALYSIS OF RESPONSE 3	13
TABLE 7-14: PRIMARY RECOVERY EFFICIENCIES FOR PRODUCTION RATES EMPLOYED IN THE EXPERIMENTAL DESIGN	17
TABLE 7-15: THE PARAMETER LEVEL COMBINATION THAT OPTIMISES RESPONSE 3. 2	21
TABLE 7-16: THE COMPARISON OF THE ERROR BETWEEN THE PREDICTED AND SIMULATED (CALCULATED) RESULTS FOR RESPONSE 3	
2	22
TABLE 7-17: COMPARISON OF CALCULATED AND PREDICTED RESULTS FOR THE OPTIMISED MODEL 2	23
TABLE 8-1: SUMMARY OF KEY CRITERIA TO MAXIMISE THE EFFICIENCY OF THE DISPLACEMENT OF CH ₄ By CO ₂ 2	29

Nomenclature

<u>Symbol</u>	Description	
φ	porosity	
λ	mobility of the fluid	
λ	exponent (relative permeability correlation)	
μ	viscosity	
ρ	density	
А	area	
B _g	formation volume factor	
B _{gi}	initial formation volume factor	
B_ga	formation volume factor at abandonment conditions	
С	concentration	
С	Land's trapping constant	
Ct	total aquifer compressibility	
D	diffusion coefficient	
E	expansion factor	
g	gravity constant	
G	gas volume initially in place	
G _p	gas volume produced	
h	thickness	
k	permeability	
k _r	relative permeability	
k _{rg}	gas relative permeability	
k _{rl}	liquid relative permeability	
I	length	
Μ	mobility ratio	
n	number of moles	
р	pressure	
P _c	capillary pressure	
P ₀	strength coefficient	
q	flow rate	
R	universal gas constant	
R ²	correlation coefficient	
$R^2_{adjusted}$	adjusted correlation coefficient	

R _{v/g}	viscous to gravity ratio
SC	standard conditions
S _g	gas saturation
S _{gr}	residual gas saturation
S _{gt}	trapped gas saturation
S _{Ir}	residual liquid saturation
S _w	water saturation
S _{wi}	initial water saturation
S _{wir}	irreducible water saturation
t	time
т	temperature
u	Darcy velocity
V	volume
W	total water volume
W _e	cumulative volume of water influx
x	distance
Xg	gas phase concentration
xı	aqueous phase concentration
Z	compressibility factor
<u>Acronyms</u>	Description
ANOVA	ANalysis Of VAriance
CCD	Central Composite Design
CCS	Carbon Capture and Storage
CH ₄	Methane
CO ₂	Carbon dioxide
CO2CRC	Co-operative Research Centre for Greenhouse Gas Technologies
CSEGR	Carbon Sequestration with Enhanced Gas Recovery
ED	Experimental Design
EGR	Enhanced Gas Recovery
EOR	Enhanced Oil Recovery
GWC	Gas Water Contact
HCPV	Hydrocarbon Pore Volume
MM	Million

NPV	Net Present Value
OBPP	Otway Basin Pilot Project
OGIP	Original Gas in Place
PDE	Partial Differential Equations
PVT	Pressure Volume Temperature
RF	Recovery Factor
RMSE	Root Mean Square Error
Scf	Standard Cubic Feet
SGS	Sequential Gaussian Simulation
STB	Stock Tank Barrel