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Abstract 

The injection of carbon dioxide (CO2) into oil reservoirs for the purpose of enhancing recovery has 

been performed for decades. Conversely, the injection of CO2 into natural gas reservoirs has 

received very little attention, primarily due to the typically high recovery achievable under primary 

depletion. This high recovery is however associated with volumetric gas reservoirs only. If the 

reservoir is in the presence of an active water-drive, recovery can be considerably lowered. This is 

caused by pressure maintenance and the trapping of gas, rendering a volume of gas immobile. 

Consequently, any technique that reduces reservoir pressure and/or retards the influx of the aquifer 

will enable natural gas recovery to be enhanced.  

In this thesis, the injection of CO2 has been proposed as a method of retarding the influx of the 

aquifer. Favourable fluid properties between the injected CO2 and natural gas also allow the 

displacement of natural gas towards the production wells with minimal mixing. This thesis 

investigates the nature of the effects of a number of parameters deemed potentially influential on 

the displacement of natural gas by CO2 and the ability to produce and enhance recovery with as low 

a producing CO2 concentration as possible. Parameters chosen include uncontrollable reservoir and 

fluid properties such as permeability, thickness, diffusion coefficients and salinity. Controllable 

factors are also investigated, such as the timing of injection, production and injection rates and the 

type of wells employed. This investigation was conducted through the use of numerical simulation. 

Simulations were first performed on a simple, conceptual model in order to understand the key 

processes involved in the CO2 enhanced gas recovery process. The results of these studies were then 

applied to a more complex numerical investigation involving a model of the Naylor gas field. 

The results of the initial studies found that the parameters which determined the extent of viscous 

and gravity forces, such as permeability, thickness and formation dip, were the most influential in 

determining the stability of the displacement, and consequently the recovery achievable at the 

breakthrough of CO2 at the production well. The fluid properties, such as water salinity and the 

diffusion coefficient, were found to have less of an impact than the reservoir properties. Efficient 

displacement in a non-dipping reservoir was possible with either viscous or gravity dominated 

displacement, while only gravity stable displacement was preferred in a dipping reservoir. The 

primary recovery efficiency did however dictate where the injection of CO2 should be targeted in 

order to achieve incremental recovery with the lowest producing CO2 concentration. Due to the low 

primary recovery efficiency, the injection of CO2 should be targeted in high permeability, non-

dipping reservoirs.  



 

 

The presence of heterogeneity accelerated the breakthrough of CO2, and so it was shown that 

delaying the injection of CO2 was beneficial in maximising the recovery at the initial breakthrough of 

CO2. However, once CO2 had reached the production well, the rate of increase in CO2 production was 

considerably more rapid if injection was delayed. The choice of the timing of injection and the ability 

to maximise incremental recovery is therefore heavily influenced by the maximum allowable 

producing CO2 concentration, which will be determined by the economics of the project. The 

investigation into the other controllable parameters showed that the operational strategies which 

either lowered the susceptibility for CO2 to cone into the production well, or which mitigated against 

the uneven advancement of CO2 due to heterogeneity were preferred.  

Ultimately this study showed that the injection of CO2 can effectively retard the influx of the aquifer 

and efficiently displace natural gas towards the production well. By understanding the mechanisms 

involved in this displacement process, operational parameters can be optimised accordingly to 

maximise natural gas recovery with the lowest producing CO2 concentration. The extent of 

incremental recovery is subsequently determined by the maximum producing CO2 concentration 

allowable, as determined by the economics of the project.  
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Nomenclature 

Symbol   Description 

φ    porosity 

λ    mobility of the fluid 

λ    exponent (relative permeability correlation) 

μ   viscosity 

ρ   density 

A   area 

Bg   formation volume factor 

Bgi   initial formation volume factor 

Bga   formation volume factor at abandonment conditions 

C   concentration 

C   Land’s trapping constant 

ct   total aquifer compressibility 

D   diffusion coefficient 

E   expansion factor 

g   gravity constant 

G    gas volume initially in place 

Gp    gas volume produced 

h    thickness  

k    permeability 

kr    relative permeability 

krg    gas relative permeability 

krl    liquid relative permeability 

l    length 

M    mobility ratio 

n    number of moles 

p    pressure 

Pc    capillary pressure 

P0    strength coefficient 

q    flow rate 

R    universal gas constant 

R2    correlation coefficient 

R2
adjusted   adjusted correlation coefficient 



 

 

Rv/g    viscous to gravity ratio 

sc    standard conditions 

Sg    gas saturation 

Sgr    residual gas saturation 

Sgt    trapped gas saturation 

Slr    residual liquid saturation 

Sw    water saturation 

Swi    initial water saturation 

Swir    irreducible water saturation 

t    time 

T   temperature  

u    Darcy velocity 

V    volume 

W    total water volume 

We    cumulative volume of water influx 

x    distance 

xg    gas phase concentration 

xl    aqueous phase concentration 

Z    compressibility factor 

 

Acronyms  Description 

ANOVA    ANalysis Of VAriance 

CCD    Central Composite Design 

CCS    Carbon Capture and Storage 

CH4    Methane 

CO2    Carbon dioxide 

CO2CRC   Co-operative Research Centre for Greenhouse Gas Technologies 

CSEGR    Carbon Sequestration with Enhanced Gas Recovery 

ED    Experimental Design 

EGR    Enhanced Gas Recovery 

EOR    Enhanced Oil Recovery 

GWC   Gas Water Contact 

HCPV   Hydrocarbon Pore Volume 

MM    Million  



 

 

NPV    Net Present Value 

OBPP    Otway Basin Pilot Project 

OGIP    Original Gas in Place 

PDE    Partial Differential Equations 

PVT   Pressure Volume Temperature 

RF    Recovery Factor 

RMSE   Root Mean Square Error 

Scf    Standard Cubic Feet 

SGS    Sequential Gaussian Simulation 

STB    Stock Tank Barrel 
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