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Generalized index for spatial data sets as a measure of complete spatial randomness

Emily J. Hackett-Jones,1 Kale J. Davies,2 Benjamin J. Binder,2 and Kerry A. Landman1,*

1Department of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia
2School of Mathematical Sciences, University of Adelaide, South Australia 5005, Australia

(Received 21 March 2012; published 8 June 2012)

Spatial data sets, generated from a wide range of physical systems can be analyzed by counting the number
of objects in a set of bins. Previous work has been limited to equal-sized bins, which are inappropriate for some
domains (e.g., circular). We consider a nonequal size bin configuration whereby overlapping or nonoverlapping
bins cover the domain. A generalized index, defined in terms of a variance between bin counts, is developed to
indicate whether or not a spatial data set, generated from exclusion or nonexclusion processes, is at the complete
spatial randomness (CSR) state. Limiting values of the index are determined. Using examples, we investigate
trends in the generalized index as a function of density and compare the results with those using equal size
bins. The smallest bin size must be much larger than the mean size of the objects. We can determine whether
a spatial data set is at the CSR state or not by comparing the values of a generalized index for different bin
configurations—the values will be approximately the same if the data is at the CSR state, while the values will
differ if the data set is not at the CSR state. In general, the generalized index is lower than the limiting value of
the index, since objects do not have access to the entire region due to blocking by other objects. These methods
are applied to two applications: (i) spatial data sets generated from a cellular automata model of cell aggregation
in the enteric nervous system and (ii) a known plant data distribution.

DOI: 10.1103/PhysRevE.85.061908 PACS number(s): 87.10.−e, 87.18.Ed, 87.18.Hf

I. INTRODUCTION

The spatial distribution of a set of objects arises throughout
physical, biological, and social processes, for example, in fluid
mixing [1–5], cell biology [6–9], plant ecology [10–14], and
pedestrian and traffic flow [15,16]. They also arise naturally in
agent-based models, known as cellular automata (CA) models
[17–21]. The objects can be either (i) pointlike objects which
only represent the locations of some quantity of interest within
the spatial domain (e.g., fluid particles) or (ii) finite-sized
objects that exclude volume at locations within the domain
(e.g., cells, plants, pedestrians, cars, and CA agents). In the
first case, many objects can be colocated at the same point,
whereas in the latter, only one object can be located in the
same space in the domain. The finite size of the objects is
important to many applications (e.g., traffic flow and cellular
tumor invasion), giving rise to excluded volume effects—these
are known as simple exclusion processes [22].

Measures have been developed which indicate whether or
not a spatial data set is at the complete spatial randomness
(CSR) state [23,24]—this state occurs when each object is
equally likely to lie in any part of the spatial domain. For
example, objects dispersed uniformly at random throughout
the domain (e.g., as the result of a diffusive process) are at the
CSR state. Binder and Landman [25] derived a CSR limiting
value for an index [5], when objects exclude volume from the
domain. The index was defined by partitioning the domain
into equal size bins and calculating a scaled variance of the
bin counts. The CSR limiting value was an approximation
based on the assumption that the bin counts followed a Pólya-
Eggenberger (Pólya) distribution [26], with the bin size being
much larger than the size of the object [25,27].

*kerryl@unimelb.edu.au

Some spatial domains are not easily partitioned into equal
size bins. The spatial distribution of fluid particles in a circular
batch mixer mixed by a stirring rod [3,4], and the position
of bacteria on the surface of a circular Petri dish are two
examples where the circular domain is readily partitioned
into bins which are concentric circles [see Fig. 1(c)]. With
such a bin configuration, the bin counts are easily recorded
by simply measuring the object’s distance from the center of
the domain. Here we generalize the index and CSR limiting
value by considering an arrangement of nonequal size bins
that may either overlap each other (for example, in a nested
arrangement) or partition the domain. When bins of equal
size are used, this generalized index reduces to the previously
discussed index [25]. Using examples with single sized objects
and different sized objects, we investigate trends in the
generalized index as a function of density and compare the
results with those using equal size bins.

For a set of objects known to be placed uniformly at
random throughout a domain, we calculate values of the
generalized index and compare them to the CSR limiting
value. We determine that the CSR limiting value is an excellent
predictor of when the CSR state has been attained, provided
all the current unoccupied space within the spatial domain
is accessible to each object as it is placed in the domain.
This is always the case for pointlike objects, as they do not
exclude volume and therefore the entire spatial domain is
always accessible for every object placement. However, when
objects exclude volume, a group of neighboring objects may
render unoccupied space between them inaccessible to the
subsequent placement of objects. This phenomenon is known
as “blocking” [28–34] and leads to calculated values of the
generalized index that are lower than those predicted by the
CSR limiting value. In this case the CSR limit is still a useful
indicator of a spatial data set’s proximity to the CSR state. By
examining the trend in the calculated values of the generalized
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index for two or more bin configurations, we can ascertain
whether or not a data set is at the CSR state.

Aggregation patterns, arising from widely different mech-
anisms, are observed in many biological and ecological
applications [35–38]. For example, during the development
of the enteric nervous system (ENS), aggregates of neuronal
cells (known as ganglia) form behind a fast-moving invasion
wave of neuronal precursor cells [18]. Adhesion molecules on
the cell surface are responsible for the clustering of the cells
into aggregates. CA agent-based modeling has successfully
replicated many of the features of the formation of ganglia in
the developing gut [18]. We implement the CA model [18] to
generate spatial data sets of agent aggregates, from an initially
dispersed population of CA agents. The generalized index and
CSR limiting value are used to analyze the spatial distribution
of these aggregates.

We also use the generalized index to investigate a spatial
data set from plant ecology. These applications demonstrate
that the generalized index is an easy to use measure, useful to
many biological and physical contexts.

II. GENERALIZED INDEX

In this theory section we discuss three-dimensional data
sets, bin volumes, and excluded volume of objects. This can be
replaced by two-dimensional data sets, bin areas, and excluded
area of objects. The examples in later sections are in two
dimensions.

Consider a domain of volume A which is populated with a
total of n objects, each of volume s. The domain is divided into
M bins, each with volume Sj for j = 1, . . . ,M . The bins can
either overlap each other or are nonoverlapping and partition
the domain. If the objects are evenly distributed throughout
the domain we expect to observe b̄j = nSj/A of them in each
bin. This is simply the product of the total number of objects
with the j th bin volume fraction. Therefore, we quantify the
deviation between each bin count bj and the evenly distributed
state by the statistic

σ 2 = 1

M

M∑
j=1

(bj − b̄j )2. (1)

The statistical measure (1) is scaled by

σ 2
0 = n2

M

M∑
j=1

Sj

A

(
1 − Sj

A

)
. (2)

The reason for this choice will become clear when we take
the CSR limit. Note that for equal-sized bins (Sj = S for j =
1, . . . M) this is the same scaling as in Binder and Landman
[25]. This defines a generalized index

I = σ 2

σ 2
0

. (3)

When the bins are equal in size (with Sj = S and b̄j = b̄

for j = 1, . . . ,M), Eqs. (1)–(3) reduce to those of Phelps
and Tucker [5]. Therefore our formulation generalizes their
index. For an even distribution of objects σ 2 = I = 0. The
generalized index (3) therefore quantifies the deviation of a
spatial data set from the evenly distributed state. However, this

state is not often realized. A more likely scenario is one where
each of the objects is equally likely to lie in any part of the
domain, termed the CSR state [2,23,24]. We note in passing
that, in contrast to the index for equal size bins, the maximum
value of the generalized index, corresponding to a completely
segregated state, is no longer unity but is typically greater than
unity (Appendix A). Next, we approximate the CSR limiting
value for the generalized index (3).

A. CSR limit

The bin counts can be represented by a random variable Bj

with observed values bj and expected value

E[Bj ] = b̄j . (4)

Taking the expectation of (1) we find

E[σ 2] = 1

M

M∑
j=1

Var(Bj ). (5)

To proceed further we need to determine the distribution
of Bj ’s. Binder and Landman [25] showed that, for equal
size bins, the bin counts can be approximated by the Pólya
distribution [26], provided the object size is much smaller
than the bin size [25,27]. In this more general case, we assume
that each random variable Bj follows a Pólya distribution with
parameters n, Sj , A − Sj , −s, and mean b̄j . Using the formula
for the variance of the Pólya distribution and the assumption
that s � Sj for j = 1, . . . ,M , we find

Var(Bj ) = nSj

A

(
1 − Sj

A

)(
1 − ns

A

)
, j = 1, . . . ,M. (6)

Equations (5) and (6) then give

σ 2
CSR = E[σ 2] = n

M

(
1 − ns

A

) M∑
j=1

Sj

A

(
1 − Sj

A

)
. (7)

Scaling (7) by σ 2
0 we obtain the CSR limit

ICSR = σ 2
CSR

σ 2
0

= 1

n

(
1 − ns

A

)
= 1 − d

n
, (8)

where

d = ns

A
(9)

is the volume fraction (density) of the domain that is occupied
by objects. Note that the choice of scaling σ 2

0 in (8) gives
the same CSR limiting value as determined by Binder and
Landman [25] for equal size bins.

Next, for specified values of the density d, we simulate
the CSR state and calculate the index for each simulation.
We average over N simulations and calculate the average
generalized index

〈I 〉 = 1

N

N∑
i=1

Ii, (10)

where Ii is the index of the ith realization. The average
generalized index is compared to the CSR limiting value (8).
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B. Single species simulation of the CSR state

The CSR state is simulated by placing equal size objects
uniformly at random onto a two-dimensional domain, as is
shown in Figs. 1(a) and 1(c) and Figs. 2(a) and 2(c). Calculated
values of the generalized index and CSR limiting values are
plotted in Figs. 1(b) and 1(d) and Figs. 2(b) and 2(d).

First consider the results in the first row of Fig. 1. Unit
square objects with s = 1 are placed uniformly at random
on unit square lattice sites. Only one object is allowed
to occupy a lattice site—an example of a simple volume
exclusion process [22]. The maximum density of these objects
occurs when each lattice site is populated with one object,
corresponding to d = 1. The generalized index is calculated
using an overlapping square bin configuration, with the origin
being the position of the lower leftmost corner of each bin
[Fig. 1(a)]. The CSR limiting value (8) accurately predicts the
state of the system [Fig. 1(b)].

The results in the second row of Fig. 1 are for pointlike
objects with s = 0, placed (off lattice) on a circular domain.
Pointlike objects do not exclude volume from the domain (d =
0). Consequently it can be populated with any finite number
of objects n < ∞. The generalized index is calculated using a
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FIG. 1. (Color online) Simulations of the CSR state with over-
lapping bins. The results show that the CSR limiting value (8)
accurately predicts the CSR state. (a) and (b) Overlapping (nested)
bins of sizes Sj = 25j 2 for j = 1, . . . ,5 with object size s = 1 and
A = 625. (a) Typical simulation for density d = 0.25. (b) The average
generalized index from N = 10 simulations [blue (dark gray) curve]
plotted as a function of the density d , and the CSR limiting value
(dashed red curve). (c) and (d) Overlapping (nested) bins of sizes
Sj = (j/10)2π for j = 1, . . . ,10, with object size s = 0 and A = π .
(c) Typical simulation for n = 1000 pointlike objects. (d) The average
generalized index from N = 10 simulations [blue (dark gray) curve]
plotted as a function of the number of objects n, and the CSR limiting
value [dashed red (medium gray) curve]. Note that the smallest (or
average) bin size in (a) and (b) is equal to the constant size bins for
the results shown in (c) and (d). The dashed and solid lines in (b) and
(d) are more or less indistinguishable.
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FIG. 2. (Color online) Simulations of the CSR state with objects
of size s = 3 and A = 3600. The average generalized index tends
to a limiting value lower than the predicted CSR limiting value (8).
(a) and (b) Centered overlapping square bins. (a) Typical arrange-
ment of bins and simulation for density d = 0.1. (b) The average
generalized index from N = 200 simulations, plotted as a function of
the density d [two blue (dark gray) curves] and the CSR limiting
value (dashed red curve). The two configurations of overlapping
square bins are Sj = (10j )2 with j = 1, . . . ,6 and Sj = (6j )2 with
j = 1, . . . ,10. (c) and (d) Nonoverlapping equal size square bins.
(c) Typical arrangement of bins and simulation for density d = 0.2.
(d) The average generalized index from N = 200 simulations, plotted
as a function of the density d [two blue (dark gray) curves] and the
CSR limiting value (dashed red curve). The two configurations of
nonoverlapping equal size bins are Sj = 225 with j = 1, . . . ,16 and
Sj = 900 with j = 1, . . . ,4. The two blue (solid) lines in (b) and (d)
are more or less indistinguishable.

configuration of concentric circular bins centered at the origin
[Fig. 1(c)]. The CSR limiting value accurately predicts the
state of the system [Fig. 1(d)].

The average generalized index in Fig. 1 was also calculated
for other configurations of (nonequal size) bins, for example
bins that partitioned the two domains. The black lines and
curves in Figs. 1(a) and 1(c) illustrate the boundaries of the
partitioning. In Fig. 1(a) the nonoverlapping bins are one
square bin and four L-shaped bins increasing with size as
their distance increases from the lower leftmost corner of the
domain. In Fig. 1(c) the nonoverlapping bins are one circle and
nine annuli that increase in size with distance from the
origin. The average generalized indices calculated with these
nonoverlapping bins are indistinguishable from those shown in
Figs. 1(b) and 1(d). This demonstrates that the results shown in
Fig. 1 are independent of the bin configuration we have used.

Next, we consider the placement of rectangular objects with
s = 3 on unit square lattice sites, as illustrated in Figs. 2(a)
and 2(c). The objects are not allowed to overlap—the objects
exclude volume from the domain. The central position (on the
lattice) of each object is blue (dark gray) with the remaining
volume being green (light gray). The object is included into
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the bin count of the bin containing the position of the blue
central part. (Note that if a bin boundary lay precisely in
the center of the object, then the object would be assigned
randomly to one of the bins on either side. This cannot
occur for our bin configurations.) The average generalized
index for two configurations of centered overlapping square
bins are more or less indistinguishable [Fig. 2(b)], suggesting
that the average generalized index is independent of the size
and number of bins used in each of these configurations.
However, the average generalized index is lower than the CSR
limiting value [Fig. 2(b)]. A similar set of results is found
using two configurations of nonoverlapping equal size bins
[Fig. 2(d)]. Therefore the generalized index gives consistent
results irrespective of whether unequal or equal size bins are
used for the bin counts. Furthermore, we deduce that the CSR
limiting value (8) is overestimating the true CSR limiting value
for this system, recalling that the spatial data set is known to
be at the CSR state. This can be explained as follows.

In the derivation of the CSR limiting value (8), it is
assumed that each object placement has access to all the
current unoccupied space within the domain. This was indeed
true for the results shown in Fig. 1, where square objects size
s = 1 are placed on a square lattice and point objects size s = 0
are placed on a circular domain. Hence for these two cases,
the CSR limiting value (8) accurately predicts the CSR state.
However, this not true for the simulations with objects of size
s = 3 shown in Fig. 2. For example, two objects placed with
central positions at (x − 2,y) and (x + 2,y) render the volume
in between them at (x,y) inaccessible to the subsequent
placement of objects. Effectively, an extra unoccupied lattice
site as well as the six occupied lattice sites have been removed
from the domain. [Note that eight places would be removed if
the two objects were placed with central positions at (x − 3,y)
and (x + 2,y).] This phenomenon of extra volume removal
is well known in the random sequential adsorption literature
[28–34] where it is called blocking. The continued placement
of objects ultimately leads to the so-called “jamming limit.”
This is the density at which no further objects can be placed in
the domain. The jamming limit (or jamming density) causes the
blue curves in Figs. 2(b) and 2(d) to terminate at a density djam

strictly less than unity. This explains the increasing difference
between the calculated average generalized index and the
CSR limiting value [Figs. 2(b) and 2(d)], where the blocking
becomes more prevalent as the jamming density is reached.

When blocking occurs in the spatial system being analyzed,
the CSR state can be predicted by examining the trend in the
calculated values of the generalized index for different bin
sizes and configurations. For some sufficiently small bin sizes
Sj , the generalized index can be greater than or equal to the
CSR limiting value. [Note, if all the bins are exactly size s, then
the index is exactly the CSR value, an artifact of the choice
of bin size; see Appendix B.] As the bin sizes Sj increase, the
average generalized index falls below the CSR limit. As this
process is continued, for all bin configurations where the bin
sizes are all sufficiently large, the values of the average general-
ized index converge to a limiting value. In the examples here,
we illustrate this with two bin configurations—the average
generalized index is approximately the same for each of these
[blue curves, Figs. 2(b) and 2(d)], and the curves are lower than
that of the CSR limiting value (8) [dashed red curves, Figs. 2(b)

and 2(d)]. Comparisons between the average generalized
index calculated from different bin configurations are more
or less indistinguishable when s � min{Sj , j = 1, . . . ,M}
[the condition used in deriving the CSR limiting value (8)].

Therefore, we must determine and compare the general-
ized index calculated from at least two bin configurations
(satisfying s � min{Sj , j = 1, . . . ,M}); if their values are
approximately the same, then we might conclude that the
single species spatial data set is at the CSR state. The density of
objects in the domain is only needed if we wish to calculate the
CSR limiting value, which will be larger than the calculated
values of the generalized index due to blocking effects. We
now investigate spatial data sets that consist of objects with
different sizes; that is, multiple species of objects.

C. Multispecies simulations

The CSR state is simulated by placing different size objects
uniformly at random onto a two-dimensional domain, with
unit square lattice sites, as is shown in Figs. 3(a) and 3(c).
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FIG. 3. (Color online) Simulations of the CSR state with a
distribution (11) of different size objects. The mean object size is
α = 5 with β = 0.2 and A = 25 600. The average generalized index
tends to a limiting value lower than predicted CSR limiting value (8).
(a) and (b) Centered overlapping (nested) square bins. (a) Typical
arrangement of bins and simulation for density d = 0.1. (b) The
average generalized index from N = 200 simulations, plotted as a
function of the density d (two blue curves) and the CSR limiting
value [dashed red (medium gray) curve]. The two configurations
of overlapping square bins are Sj = (40j )2 with j = 1, . . . ,4 and
Sj = (16j )2 with j = 1, . . . ,10. (c) and (d) Nonoverlapping equal
size square bins. (c) Typical arrangement of bins and simulation for
density d = 0.1. Note that this is a portion of the domain which
more clearly illustrates the spatial distribution of the objects. (d) The
average generalized index from N = 200 simulations, plotted as a
function of the density d [two blue (dark gray) curves] and the
CSR limiting value [dashed red (medium gray) curve]. The two
configurations of nonoverlapping equal size bins are for Sj = 1600
with j = 1, . . . ,16 and Sj = 6400 with j = 1, . . . ,4. The two blue
(solid) lines in (b) and (d) are more or less indistinguishable.
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Calculated values of the average generalized index and CSR
limiting values are plotted in Figs. 3(b) and 3(d).

The algorithm for populating the domain is described as
follows. (i) A finite number or set of discrete size objects G

with varying size {s|s = 1, . . . ,9} is chosen, using the discrete
(Gaussian type) probability mass function

P (s) = e−β(s−α)2

∑2α−1
j=1 e−β(j−α)2

. (11)

Here, α is the mean object size and β is related to the variance
of the distribution of object sizes. (ii) A size s object is selected
at random from the set of objects G. (iii) An unoccupied
lattice site (x,y) is chosen randomly from the domain. The
placement of the size s object onto this site and up to eight
of its neighbors in the Moore neighborhood is considered,
and if successful, the object is included into the bin count
of the bin containing the position (x,y) [blue in Figs. 3(a)
and 3(c)]. The shape of the object is determined by selecting
at random with equal probability s − 1 Moore neighbors
[green in Figs. 3(a) and 3(c)] of the lattice site (x,y). The
object is placed onto the lattice only if all s − 1 neighboring
lattice sites are unoccupied; otherwise the process is aborted.
(iv) Steps (ii)–(iv) are repeated until the set of objects G is
empty.

The multispecies results [Figs. 3(b) and 3(d)] are similar
to those found for a single species of objects (Fig. 2). The
average generalized index for different configurations of both
overlapping unequal size bins and nonoverlapping equal size
bins give the same limiting curves as a function of density for
sufficiently large bin sizes. These curves are lower than the
CSR value, because of the blocking property in this spatial
system. Qualitatively similar results are found for changes
in the precise rules of the algorithm (i)–(iv), provided the
unoccupied lattice site (x,y) is chosen uniformly at random
from the domain [stage (ii) of the algorithm].

To summarize, if the generalized indices for at least two
bin configurations are approximately the same, then we may
conclude that a multispecies spatial data set is at the CSR state.
The average density of objects in the domain is only needed

if we wish to calculate the CSR limiting value, which will be
larger than the calculated values of the generalized index.

So far we have only considered spatial data sets known to be
distributed uniformly at random. For these cases, the average
generalized index is consistent for different bin arrangements
(as long as s � min{Sj , j = 1, . . . ,M}), but the values are
below the predicted CSR limiting value (8). However, we
recognize these properties as a measure of the CSR state. To
be a useful measure, the generalized index must also be able
to detect whether a spatial data set is not distributed randomly.

For spatial data sets known to be distributed nonuniformly
at random throughout the domain, we checked that calculated
values of the generalized index do not incorrectly predict that
the CSR state has been attained. One example is presented
where a (Gaussian type) distribution [Eq. (11)] of different
size objects is placed nonuniformly at random onto two-
dimensional unit square lattice sites (Fig. 4). The algorithm
is essentially the same as the one above, but with a change in
the rule at stage (ii). Now the unoccupied lattice site (x,y) is no
longer chosen uniformly at random, but instead with a higher
probability of being placed at the center of the domain. In
particular, a Gaussian type spatial distribution was used. Visual
examination of a simulation [Fig. 4(a)] makes it clear that the
spatial data is not at the CSR state. However, this deduction
is not made so easily when considering a smaller central
portion of the domain [Fig. 4(b)]. The average generalized
index for two bin configurations is considerably higher than the
CSR limiting value [Fig. 4(c)]. Other bin configurations give
different values of the average index—they do not converge, as
in the case of randomly placed objects. These results indicate
that the spatial data set is not at the CSR state. Next we compare
values of the average generalized index to the CSR limiting
value for spatial data sets that are generated from a CA model,
which simulates the formation of cell aggregates in the ENS.

III. APPLICATION: CELL AGGREGATION IN THE
ENTERIC NERVOUS SYSTEM

Agent-based modeling has an important role to play in the
understanding of mechanisms that govern mesoscale spatial
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FIG. 4. (Color online) Simulations of a non-CSR state with a distribution (11) of different size objects. The objects were placed using a
Gaussian spatial distribution [centered at (80.5,80.5) and variance 1000]. The mean object size is α = 5 with β = 0.2 and A = 25 600. The
average generalized index [using centered overlapping (nested) square bins] is above the CSR limiting value (8). (a) Typical simulation with
density d = 0.1. (b) Typical simulation of the central region of the domain in (a) with (local) density d = 0.3. (c) The average generalized index
from N = 200 simulations of the central region as shown in (b), plotted as a function of the density d [two blue (dark gray) curves] and the
CSR limiting value pdashed red (medium gray) curve]. The two configurations of overlapping square bins are Sj = (10j )2 with j = 1, . . . ,8
(upper blue curve) and nonoverlapping equal size bins Sj = 400 with j = 1, . . . ,16 (lower blue curve).
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patterning and the emergence of ganglionic groups or ganglia
in the developing ENS [17,18]. Hackett-Jones et al. [18]
showed that CA agent-based models can predict the formation
of aggregates which resemble ganglia. We analyze spatial
data sets of different size agent aggregates (i.e., multispecies)
generated by the time evolution of the algorithm used for
the ENS application. Only the most important details of the
algorithm are provided here.

At time t = 0 a two-dimensional domain (area A) con-
sisting of unit square lattice sites is populated randomly
with N (unit square) CA agents, giving a density d = N /A.
Consequently, the spatial distribution of CA agents is at the
CSR state initially. Each lattice site is either unoccupied
or occupied by at most one agent. The agents undergo a
biased random walk to one of their four nearest neighbor
sites, according to the occupancy of their local neighborhood.
During each time step of the algorithm,N agents are randomly
and sequentially selected to move. When an agent at site
v = (x,y) is chosen to move it inspects its immediate Moore
neighborhood (comprising the eight adjoining lattice sites), as
well as the Moore neighborhood of the four potential new sites,
v′ = {(x ± 1,y),(x,y ± 1)}. The scaled local coordination
number K at each of the potential new sites is calculated and
used to compute a probability of moving and a probability of
not moving, in terms of a binding function f (K). Let P (v′|v)
be the conditional transition probability that an agent will move
from site v to a site v′ ∈ T (v), its set of unoccupied nearest
neighbor sites. An agent also assesses its current site based on
the scaled coordination number. Then

P (v′|v) =
⎧⎨
⎩

f (Kv′ )
f (Kv)+∑

v′∈T {v} f (Kv′′ ) , v′ ∈ T {v},
f (Kv)

f (Kv)+∑
v′′∈T {v} f (Kv′′ ) , v′ = v.

Boundary conditions must be imposed—both no flux boundary
conditions and periodic boundary conditions are implemented.

Here the binding function f (K) = eγK is chosen to reflect
whether agents prefer to move to regions of low agent density
(γ < 0) or high agent density (γ > 0). When γ > 2, the agents
cluster and form aggregates [17]. After a number of time steps
of the algorithm a quasisteady state is reached, with agent
aggregates (green) dispersed throughout the domain.

Typical aggregate patterns are illustrated at two densities
[Figs. 5(a) and 5(c)]. The Hoshen-Kopelman algorithm [39]
is used to determine the size of each aggregate and the
center of mass of each aggregate. The aggregate is included
into the bin count of the bin containing the center of mass.
The corresponding distribution of aggregate sizes over 100
realizations is given [Figs. 5(b) and 5(d)].

To analyze the spatial distribution of the CA agent aggre-
gates we calculate the average generalized index and compare
it to the CSR limiting value with no flux boundary conditions
[Fig. 6(a)] and periodic boundary conditions [Fig. 6(b)]. We
begin by examining the no flux boundary condition case.

The average generalized index calculated using an overlap-
ping square bin configuration telescoping from the left hand
corner [as in Fig. 1(a)] gives values which are lower than
the CSR limiting value for densities d < 0.3 [Fig. 6(a), lower
blue curve]. This suggests that the spatial domain may be at
the CSR state. However, we obtain larger values of the average
generalized index [Fig. 6(a), upper blue curve] when using an
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FIG. 5. (Color online) Quasisteady state (at time t = 20) of the
CA agent aggregation model γ = 8, A = 22 500 and no flux bound-
ary conditions. The resulting spatial distribution of agent aggregates
and variability in agent aggregate sizes are evident. (a) and (c) Single
realizations with densities d = 0.1 and d = 0.35, respectively. The
blue (dark gray) markers represent the position of the center of mass of
each aggregate; note that some very irregular shaped aggregates have
their center of mass lying outside the aggregate. (b) and (d) Frequency
distributions of agent aggregate sizes from N = 100 simulations with
densities d = 0.1 and d = 0.35, respectively. The frequency axis has
been truncated in the main plot of (d).

overlapping square bin configuration setup telescoping from
the center [as in Fig. 2(a)]. If the spatial domain is at the CSR
state for a specified d, the two calculations of the generalized
index using different bin configurations should tend to the
same value that is lower than the CSR limiting value.

On closer inspection of the CA agent aggregate data, we
find that there is a tendency for aggregates to accumulate more
frequently along the boundary of domain. This is due to the
no flux boundary conditions implemented in the simulations.
This explains why the central telescoping overlapping square
bin configuration results are generally above the CSR limiting
value in Fig. 6(a), as all the interior bins are underpopulated.
This bin configuration correctly predicts that the data set is not
at the CSR state. The overlapping bin configuration telescoping
from the left corner [lower blue curve in Fig. 6(a)] incorrectly
predicts that the spatial data may be at the CSR state. This
occurs because each bin contains the same proportion of the
domain boundaries relative to its total size. In other words,
the bins are not underpopulated with this configuration. This
finding underscores the importance of performing at least two
bin configurations, as discussed in the previous section.

Next we examine the results from simulations with periodic
boundary conditions. Both types of overlapping square bin
configurations are considered. The average generalized index
is more or less indistinguishable [Fig. 6(b)], suggesting that
the values of the generalized index are independent of the
bin configuration used. For values of the density d < 0.3 the
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FIG. 6. (Color online) Various quantitative measures for the
CA agent aggregation model at time t = 20 (quasisteady state)
with γ = 8, A = 22 500, and N = 100. (a) and (b) The average
generalized index with Sj = (30j )2 for j = 1, . . . ,5 [blue (dark gray)
curves], compared to the CSR limiting value [dashed red (medium
gray) curve]. (a) No flux boundary conditions. The lower blue curve
is for an overlapping (nested) bin configuration telescoping from
the domain origin [as in Fig. 1(a)]. The upper blue curve is for an
overlapping bin configuration, telescoping from the domain center
[as in Figs. 2(a) and 3(a)]. (b) Periodic boundary conditions. The
blue curves are for the two different bin configurations described
in (a). Note that nonoverlapping equal-sized bin (S = 900) results
match those of the lower blue curve (not shown). (c) and (d) Plots of
the average agent aggregate size and average number of agents as a
function of density d . The mean agent aggregate size increases and
the mean number of agents decreases as the density increases.

blue curves tend to a limiting value that is lower than the
CSR limiting value. Consequently, we deduce that the spatial
domain is at the CSR state. When periodic boundary conditions
are implemented, there is no longer an accumulation of agent
aggregates along the boundary of the domain.

We see that for increasing values of the density d > 0.3
the blue curves approach the CSR limiting value from below
[Fig. 6(b)]. This is due to the increasing number of agent
aggregates that are larger than the smallest bin size [Figs. 5(a)
and 5(d)] used in the calculations of the generalized index, at
these larger values of density. The average aggregate size 〈s〉
increases with density [Fig. 6(c)] but the average number of
aggregates 〈n〉 decreases with density [Fig. 6(d)]. When the
average aggregate size is comparable to the bin size, the CSR
limiting value is no longer valid, as the assumption that 〈s〉 �
min{Sj , j = 1, . . . ,M} made in its derivation is no longer true.
For these large densities, our test for determining whether or
not a spatial data set is at the CSR state, which compares
calculated values of the generalized index to the CSR limiting
value, is therefore inconclusive.

IV. DISCUSSION

We have generalized a statistical measure, called a gen-
eralized index, and its limiting value. Whether a spatial data
set is at the CSR state or not [2,23,24] can be determined by

calculating the generalized index in terms of object counts
within an arrangement of nonequal size bins that may either
overlap each other or partition the domain. This is especially
useful for domains which do not easily divide into equal size
bins; for example, circular or spherical domains. However, if
bins of equal size are used, the generalized index reduces to
the previously discussed index [25]. The generalized index and
its limiting value are defined for exclusion and nonexclusion
processes, which is when the volume of objects cannot overlap
and when the objects are pointlike.

A number of examples of spatial data sets where objects are
known to be randomly placed were investigated. Consistent
results were obtained if the objects were all the same size
or had different sizes. We have shown that the generalized
index is a well-defined quantity which is independent of the
bin configuration as long as the mean size of the objects is
much smaller than the smallest bin size 〈s〉 � min{Sj , j =
1, . . . ,M}.

For randomly placed objects, the generalized index exactly
matches the CSR limiting value for some special cases:
(i) when the objects are points and take up no volume and
(ii) when the objects have unit volume and they populate a
lattice structure with bonds of unit length. In the latter case,
any unoccupied space is available to any additional objects
placed randomly in the domain. The CSR limiting value may
also occur if the objects are deformable or can rearrange
on shaking. More generally, when objects exclude volume,
the current object placement may render unoccupied space
between them inaccessible to the subsequent placement of
objects. This blocking phenomena leads to the generalized
index being lower than those predicted by the CSR limiting
value. The differences are small for low densities, and they
increase as the density d increases, as the blocking is enhanced.
In this case the CSR limit still proves to be a useful indicator
of whether a spatial data set is close to the CSR state. We can
distinguish between a spatial data set being at the CSR state or
not by comparing the values of generalized index for different
bin configurations—the values will be approximately the same
if the data is at the CSR state, while the values will differ if
the data set is not at the CSR state.

Furthermore, we have demonstrated that the generalized
index is able to detect subtle biases in the data. Our example
concerned biases due to the boundary conditions used in
generating the data, which were undetected by visual inspec-
tion. These differences were made apparent using a centered
overlapping bin configuration.

Besides constructing data sets, we also applied the gener-
alized index to an agent-based model used to simulate cell
aggregation in the ENS. The index will of course be useful
in many other applications. We conclude by analyzing a
published data set for a plant species. Spatial distributions
for plants are studied extensively in the ecological literature
[10–14] to provide important information about the system’s
history, the underlying inter- and intraspecific competition,
and the population dynamics of the system. Many statistical
methods have been used to analyze such systems.

For example, a range of statistical methods have been
applied to the distribution of Mediterranean subshrub Anthyllis
cytisoides L. [Fig. 7(a)]. Using Ripley’s K function (a
point-to-point distance method) [23,40,41] with various edge
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FIG. 7. Distribution pattern of Mediterranean subshrub Anthyllis cytisoides L. (a) Spatial arrangement on a 10 × 10 m domain (adapted
from [10]). (b) Generalized index for various bin arrangements.

corrections, the natural stand of Anthyllis cytisoides is shown
to be clumped at distances of up to 0.8 m and again at 3–5 m,
and therefore is not at the CSR state. We investigate the data
using our generalized index. The index varies for different
bin sizes and is above the CSR state (estimated for point-size
objects) [Fig. 7(b)]. This trend in the generalized index values
matches that of the nonrandom/patchy example discussed in
Sec. II C. We therefore conclude that the distribution is not
at the CSR state, which agrees with the results of Haase [10]
obtained using alternate techniques. The generalized index is
an easy to use quantitative measure for establishing whether
objects are at their completely spatial random state and will be
useful for many biological, physical, and social applications.

APPENDIX A: MAXIMAL INDEX FOR
OVERLAPPING BINS

We show that the maximum value of the generalized index
(3), corresponding to the completely segregated states, is
typically greater than unity. Consider a set of overlapping bins
{Aj , j = 1, . . . ,M}, where A1 ⊂ A2 ⊂ . . . ⊂ AM−1 ⊂ AM ,
where AM is the whole domain with volume A and each bin Aj

has volume Sj . There are M possible completely segregated
states, corresponding to the placement of all n objects in one
of A1,A2 − A1, . . . ,AM − AM−1. We determine the variance
for each of these cases.

If all n objects are placed in A1, we denote the variance
in Eq. (1) by σ 2

1 = n2 ∑M−1
j=1 (1 − Sj

A
)2, while if all objects are

placed in the bin A2 − A1, the variance is σ 2
2 = n2[

∑M−1
j=2 (1 −

Sj

A
)2 + ( S1

A
)2]. It is easy to show that σ 2

1 = σ 2
2 − 2n2 S1

A
+ n2.

In a similar fashion, if all the objects are in Ai − Ai−1,
for some i ∈ {3, . . . ,M}, the associated variance is σ 2

i =
n2[

∑M−1
j=i (1 − Sj

A
)2 + ∑i−1

j=1( Sj

A
)2]. In general, we can write

σ 2
i−1 = σ 2

i − 2n2 Si−1

A
+ n2.

Since S1
A

< S2
A

< . . . <
SM−1

A
< 1, either σ 2

1 or σ 2
M must

give the maximal variance σ 2 and therefore the corresponding
maximal index. If all the partial volumes satisfy Si

A
< 1

2 for all
i = 1, . . . ,M − 1, then the variance σ 2

1 is maximal. Therefore,
if SM−1

A
< 1

2 , the maximal index occurs when all objects are in
the most internal bin A1. Otherwise, if SM−1

A
> 1

2 , the maximal
index occurs when all objects are in the outer bin AM − AM−1.
In both cases, the maximal index is greater than unity.

APPENDIX B: GENERALIZED INDEX WHEN Sj ≈ s

For simplicity we consider the case of equal-sized bins
when Sj = S for all j = 1, . . . ,M . We show that if small bins
are used, with S ≈ s, the index is close to or above the CSR
limiting value, whether or not the distribution is uniformly at
random or not, and therefore is an artefact of the bin choice.
Suppose small bins of size S are chosen so that at most one
object size s can be in each bin. Then σ 2 = 1

M
[n(1 − n

M
)2 +

(M − n)( n
M

)2] = n
M

(1 − n
M

). Using A = MS, σ 2
0 ≈ n2/M

for M 
 1, so that I = 1
n

(1 − n
M

) = 1
n

(1 − dS
s

). If S = s,
the index will be precisely at the CSR value, generalizing
the known result for s = 1 and S = 1 [25]. If S < s then the
index will lie above the CSR value. However, we note that the
condition s � Sj for all j is necessary in deriving the CSR
limiting value in Sec. II A.
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