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Abstract

This research focuses on the estimation of a class of econometric models for involved

unknown nonlinear functionals of nonstationary processes. The proxy of nonstationary

processes studied here is Lévy processes including Brownian motion as a particular one.

A Lévy process is a càdlàg1 stochastic process which starts at zero almost surely, which has

independent increments over disjoint intervals, which has stationary increment distribution

meaning that under shift the distributions of increments are identical, which has stochastic

continuous trajectory. Obviously, Brownian motion, Poisson process, Gamma process and

Pascal process are fundamental examples of Lévy processes. Lévy processes (Z(t), t ≥ 0)

studied in this thesis possess density or probability distribution functions which verify

some properties stated in the text.

Why do we care about the functionals of Lévy processes?

Starting with Brownian motion

In the galaxy of stochastic processes used to model random phenomena in disciplines such

as economics, finance and engineering, Brownian motion is undoubtedly the brightest

star. Brownian motion is the most widely studied stochastic process and the mother of

the modern stochastic analysis. Brownian motion, for example, and financial modelling

have been tied together from the very beginning when Bachelier (1900) proposed to model

the price S(t) of an asset at the Paris Bourse as S(t) = S(0) + σB(t) where B(t) is a

standard Brownian motion. The multiplicative version of Bachelier’s model led to the

celebrated Black-Scholes option pricing model2 where log-price lnS(t) follows a Brownian

1right continuous with left limits.
2The Black-Scholes model is one of the most important concepts in modern financial theory. It was

developed in 1973 by Fisher Black, Robert Merton and Myron Scholes and is still widely used today, and
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motion S(t) = S(0) exp(µt+ σB(t)) (see Black and Scholes, 1973).

Of course, the Black-Scholes model is not the only continuous time model built on

Brownian motion. Nonlinear Markov diffusion where instantaneous volatility can de-

pend on the price and time via a local volatility function have been proposed by Der-

man and Kani (1994) and Dupire (1994): 1
S(t)dS(t) = µdt + σ(t, S(t))dB(t). Another

possibility is given by stochastic volatility models (see Hull and White, 1987; Heston,

1993) where the price S(t) is the component of a bivariate diffusion (S(t), σ(t)) driven

by a two-dimensional Brownian motion (B(1)(t), B(2)(t)): 1
S(t)dS(t) = µdt+ σ(t)dB(1)(t),

σ(t) = f(Y (t)), dY (t) = α(t)dt + γ(t)dB(2)(t). While these models have more flexible

statistical properties, they share with Brownian motion the property of continuity, which

does not seem to be shared by the real price over time scales of interest. Assuming that

prices move in a continuous manner amounts to neglecting the abrupt movements in which

most of the risk is concentrated.

Let us take an example from economics. Let Q denote the customer’s total wealth and

K the value of their house. The price of housing is constant, and the service flow from

a house is equal to its value. For now there is no adjustment cost, so the customer can

adjust K continuously and costlessly.

There are two assets, one safe and one risky. Assume that short sales of risky asset

are not allowed, and let A > 0 be the customer’s holding of the risky asset. Then Q− A
is the wealth of the safe asset. The mortgage interest rate is the same as the return of the

bond, so holdings of the safe asset are the sum of equity in the house and bond holdings.

Let r > 0 be the riskless rate of return, let µ > r and σ2 > 0 be the mean return and

variance of risky asset, and let δ ≥ 0 be the maintenance cost per unit of housing. Then

given K and A, the law of motion for total wealth is

dQ = [rQ+ (µ− r)A− (r + δ)K]dt+ σAdB

= a(Q,Θ)dt+ b(Q,Θ)dB

where Θ = (µ, σ, r, δ) and B stands for Brownian motion. In the equation, function a is

the total return constituting safe assets, risky assets, mortgage payments and maintenance

cost, which are considered as a function of the time in question; while function b measures

regarded as one of the best ways of determining fair prices of options. The seminal work brought a Nobel

prize in economics for Robert Merton and Myron Scholes in 1997.
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the risky return from risky assets due to fluctuation of the stock market. More examples

can be found in Stoke (2009).

One thing of note is that, more often than not, the processes depicted by stochastic

differential equations involving Brownian motion take the form of the functional of the

underlying process B(t) as the solutions of the equations (Mikosch, 1998).

From Brownian motion to the Lévy process

In the end, a theory is accepted not because it is confirmed by conventional

empirical tests, but because researchers persuade one another that the theory

is correct and relevant.

Fischer Black (1986)

The Black-Scholes model stipulates that the log returns of an asset in question follow

normal distribution. However, as suggested by empirical researches, e.g. Cont (2001) and

Schoutens (2003), this assumption is not supported by real-world data. The following

table tells that the daily log returns have significant (negative) skewness; the daily log

returns have kurtosis bigger than 3; the P -values of the χ̂2 statistics in the table show

that the normal distribution is always rejected. The first dataset (S& P 500 (1970-2001))

contains all daily log returns of the S& P 500 Index over the period 1970-2001. The

second dataset (*S&P 500(1970-2001)) contains the same data except for the exceptional

log return (-0.2280) of the crash of 19 October 1987. All other datasets are over the period

1997-1999.

Table 1 Skewness, kurtosis and PNormal-value of major indices

Index Skewness Kurtosis PNormal-value

S&P 500(1970-2001) -1.6663 43.36 0.0000

*S&P 500(1970-2001) -0.1099 7.17 -

S&P 500(1997-1999) -0.4409 6.94 0.0421

Nasdaq-Composite -0.5439 5.78 0.0049

DAX -0.4314 4.65 0.0366

SMI -0.3584 5.35 0.0479

CAC-40 -0.2116 4.63 0.0285
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Moreover, another failure of the Black-Scholes model is that it does not capture the

feature of heavy tail for the distribution of the real-world data sets. Figure 1 compares

the five-minute returns on the Yen/Deutschemark (DM) exchange rate to increments of

a Brownian motion with the same average volatility. While both return series have the

same variance, the Brownian model achieves it by generating returns which always have

roughly the same amplitude whereas the Yen/DM returns are widely dispersed in their

amplitude and manifest frequent large peaks corresponding to ‘jumps’ in the price. This

Figure 1: Five-minute log-returns for Yen/DM exchange rate, 1992-1995, compared with

log-returns of a Black-Scholes model with the same annualised mean and variance

high variability is a constantly observed feature of financial asset returns. In statistical

terms this results in heavy tails in the empirical distribution returns: the tails of the

distribution decay slowly at infinity and very large moves have a significant probability

of occurring. This well-known fact leads to a poor representation of the distribution of

returns by a normal distribution. No book on financial risk is nowadays complete without

a reference to the traditional six standard deviation market moves which are commonly

observed on all markets, even the largest and the most liquid ones. Since for a normal

random variable the probability of occurrence of a value six times the standard deviation is

less than 10−8, in a Gaussian model a daily return of such magnitude occurs less than once

in a million years! Saying that such a model underestimates risk is a polite understatement.

For detailed discussion, see Schoutens (2003, Chapter 4) and Cont and Tankov (2004).

Another observation is that many empirical datasets show non-linearity and non-

stationarity. For example, in Gao (2007), there is strong evidence that the short rate

is not stationary and normally distributed. The graph in Figure 2 shows the data of three
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Figure 2: Left: three month Treasury bill rates 1963,1-1998,12; right: the estimated

density

month Treasury bill rates between January 1963 and December 1998 (432 observations)

and the estimated density function. It is clear that the density function is not normal dis-

tributed, and at 1% significance level it is acceptable that the set of data is non-stationary

(see Gao et al., 2009).

Thanks to the aforementioned reasons, for a number of years, researchers have focused

on developing a richer class of asset price models that include jumps as well as stochastic

parameters; see Erakar et al. (2003) and Kou (2002). Meanwhile, several works realise that

more sophisticated processes, Lévy processes, are able to represent skewness and excess

kurtosis. See, for example, Schoutens (2003, Chapter 5) and Leblane and Yor (1998). In

addition, several particular choices for non-Brownian Lévy processes have been proposed

in the last few decades. Madan and Seneta (1990) have proposed a Lévy process with

variance gamma distributed increments. We mention also the hyperbolic model proposed

by Eberlein and Keller (1995), and in the same year the normal inverse Gaussian Lévy

process proposed by Barndorff-Nielson (1995). Carr et al. (2000) introduced the CMGY

model. Finally, we mention the Meixner model (see Grigelionis 1999 and Schoutens 2001).

Obviously, by Theorem 7 on Protter (2004, p.253), under some conditions, a stochastic

differential equation driven by a Lévy process (Z(t), t ≥ 0) has a solution f(Z(t)). See,

for example, Lim (2005) and Brockwell et al. (2007, 2011).
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Both time-homogeneous and time-inhomogeneous functionals matter

It then makes sense to consider Lévy process functionals for modelling stochastic phe-

nomena. Note that it is quite reasonable to consider time-inhomogeneous functionals of

Lévy processes like f(t, Z(t)), instead of only dealing with the homogeneous functionals

f(Z(t)). Since Hamilton and Susmel (1994) and Mikosch and Starica (2004) pointed out

that invariant parametric specifications are often inconvenient to model long return series,

in recent years the literature has naturally evolved towards the inclusion of multiple vari-

ables in continuous-time models. One example is that in Mercurio and Spokoiny (2004)

the returns Rt of the asset process are stipulated as a heteroscedastic model Rt = σtξt

where ξt are standard Gaussian independent innovations and σt is a time-varying volatility

coefficient. The relevant works include Fan et al. (2003), Ait-Sahalia (2002), Hardle et al.

(2003) and so forth.

About orthogonal expansions

Due to its extensive use in science, economics, finance and engineering and its central posi-

tion within stochastic processes, the starting point of this research is to expand Brownian

motion functionals including f(B(t)) and f(t, B(t)) where B(t) is a standard Brownian

motion into orthogonal series.

Notice that in the literature, albeit there exist some expansions of Brownian motion

in terms of i.i.d. N(0,1) sequence, (see, for example, Yeh 1973 and Mikosch 1998), few

researchers are working in the area of general form of Brownian motion functionals.

There are two papers which are close to our topic in some sense in the literature

about orthogonal expansion of nonlinear functionals of some processes. To understand

the relevant results, let us introduce some notations in the corresponding papers. Denote

by C the space of real functions x(t) which are continuous on the interval 0 ≤ t ≤ 1 and

which vanish at t = 0. Let {αp(t)} be any orthonormal set of real functions in L2(0, 1),

and define

Φm,p(x) = Hm

(∫ 1

0
αp(t)dx(t)

)
; m = 0, 1, 2, · · · , p = 1, 2, · · · ,

where Hm(·) is the sequence of Hermite orthogonal polynomials and

Ψm1,··· ,mp(x) ≡Ψm1,··· ,mp,0,··· ,0(x)
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=Φm1,1(x) · · ·Φmp,p(x),

in which the index p may be any positive number; the subscripts m1, · · · ,mp may be any

nonnegative numbers.

Using the Wiener measure on C and completeness properties of Hermite polynomials

over (−∞,∞), Cameron and Martin (1947) introduced a complete orthonormal set of

functionals on C so that every real or complex valued functional F [x(·)] which belongs to

L2(C), ∫ w

c
|F [x]|2dwx <∞,

has a Fourier development in terms of this set which converges in the L2(C) sense to

functional F [x]:

∫ w

c

∣∣∣∣∣∣F [x]−
N∑

m1,··· ,mN=0

Am1,··· ,mNΨm1,··· ,mN (x)

∣∣∣∣∣∣
2

dwx→ 0,

as N →∞, where Am1,··· ,mN is the Fourier-Hermite coefficient

Am1,··· ,mN =

∫ w

c
F [x]Ψm1,··· ,mN (x)dwx.

Ogura (1972) did an analogous job as Cameron and Martin (1947) but expanded

functionals of the Poisson process F [D(·)] in a series of multiple Poisson-Wiener integrals:

F [D(·)] =

∞∑
n=0

∫ ∞
−∞
· · ·
∫ ∞
−∞

fn(t1, · · · , tn)c(n)[dD(t1), · · · , dD(tn)],

where D(·) stands for a Poisson process.

Clearly, the bases in both papers for expansion of functionals are highly complicated

since, as discussed in Ogura (1972), they are all multiple Hermite polynomials having

the number of arguments increasing to infinity. By contrast, the expansions proposed in

Chapter 2 and 4 in this study are quite simple thanks to the simplicity of the bases. This

difference gives convenience in calculation of the coefficients and application in practice.

Notice that the expansions in the literature have coefficients which are actually functions

in the time variable, which would hamstring the applicability of the expansion in econo-

metrics. Nonetheless, from the econometrical applicability perspective, we tackle this issue

by expanding time-inhomogeneous functionals, so that coefficients in our expansion are all

pure constants which can be estimated by econometric methods. Furthermore, another
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huge difference between the proposed method in this research and the literature is that we

are going to expand functionals of a general class of Lévy processes, not just for Brownian

motion or the Poisson process. Additionally, due to the reasons mentioned above our

expansion method may be used to estimate unknown functional forms in a general class

of econometric models.

The methodology undertaken here, for both Brownian motion functionals and general

Lévy process functionals is about to expand the functional in some Hilbert space into

Fourier series in terms of a particular orthonormal polynomial basis in the aforementioned

space. The basis is actually a sequence of polynomial solutions of hypergeometric differen-

tial equations. It is noteworthy that the correspondence between the Lévy process and the

orthonormal polynomial system is one–one. The key link between them is the density or

probability function of the process. From the Hilbert space theory standpoint, the Fourier

series expansion gives the coordinates of a functional in infinite dimensional space, and

thereby characterises the functional in nature.

Econometric applications of Fourier expansion

Nevertheless, the Fourier series expansion of Lévy process functionals is by no means our

destination. We are interested in estimating an unknown functional form in a general

model

Y (t) = m(t, Z(t)) + ε(t),

where Z(t) is a Lévy process, and ε(t) is an error process with zero mean and finite

variance, given that we have discrete observations of Y (t).

It is known that existing literature already discusses how to estimate unknown func-

tions of nonlinear time series using nonparametric and semiparametric methods. For the

stationary case, recent studies include Fan and Yao (2003), Gao (2007) and Li and Racine

(2007). It should also be pointed out that the literature shows that many economic and

financial data exhibit both nonlinearity and nonstationarity. Consequently, some non-

parametric and semiparametric models and kernel–based methods have been proposed to

deal with both nonlinearity and nonstationarity simultaneously. Existing studies mainly

discuss the employment of nonparametric kernel estimation methods. Such studies include

Phillips and Park (1998), Park and Phillips (1999, 2001), Karlsen and Tjøstheim (2001),

Karlsen et al. (2007), Cai et al. (2009), Phillips (2009), Wang and Phillips (2009a,b), Xiao
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(2009), and Gao and Phillips (2010). Observe that such kernel–based estimation methods

are not applicable to establish closed–form expansions of Brownian motion/Lévy process

functionals. In the stationary case, the literature already discusses how series approxi-

mations may be used in dealing with stationary time series models, such as Ai and Chen

(2003), Chapter 2 of Gao (2007) and Li and Racine (2007). Therefore, it is reasonable to

seek its counterpart in the nonstationary scenario to tackle the nonstationary problems.

An inevitable question of doing so is on what time horizon we shall estimate the

functional m(·, ·). The intuitive choices of time horizon are no more than two cases, viz.,

a compact interval [0, T ] and an infinite interval (0,∞). However, apart from these two

options, we consider the third case, that is, on [0, Tn] with Tn approaching to infinity as

sample size goes to infinity. In technical terms, allowing T = Tn →∞ and Tn
n → 0 amounts

to both infill and long span asymptotics. Meanwhile, the two-fold limit theory keeps one

away from the so-called aliasing problem (i.e. different continuous-time processes may be

indistinguishable when sampled at discrete time). Phillips (1973) and Hansen and Sargent

(1983) are early references on the aliasing phenomenon in econometric literature.

A pivotal asymptotic theory

Of the most importance is an asymptotic theory as it is a tool, also a bottleneck, for

obtaining the limit distribution of estimators. Without a more general asymptotic theory,

our method would be extremely restricted. In order to obtain the asymptotic distribution

of the estimators of m(·, ·) estimated from the model mentioned before, we have to study

an asymptotic theory for different classes of functionals f(·, ·) for their sample mean and

sample covariance.

Note that in last decade or so, several studies have been devoted to developing an

asymptotic theory of a general class of functionals of integrated time series. The relevant

researchers have noticed that the absence of such a limit distribution theory has ham-

strung time series application. See Park and Phillips (1999, 2001) and Wang and Phillips

(2009a,b). However, the existing theory in the literature cannot furnish an answer for

the limit problems arising from the scenarios in this study since f(·, ·) includes not only a

random walk with a unit root but also the time variable, while in literature only a single

random walk is involved. Whence, a new asymptotic theory needs to be established. The

asymptotic theory developed in this research depends heavily on the local–time process of

xii



a Brownian motion defined as a limit by the underlying process and shows that the limit

distribution of the estimators on infinity horizon (0,∞) and on compact interval [0, Tn]

with Tn approaching infinity are a mixed normal,(∫ 1

0

∫
R
f2(t, x)dxdLW (t, 0)

) 1
2

N

where LW (t, 0) is the local–time process of the limiting Brownian motion W (r) on [0, 1]

standing for the sojourn time at origin over [0, t] by W (r) and N is a standard normal

random variable independent of W , f is some suitable function defined on [0, 1]× R.

By contrast, in the situation where the time variable lies in [0, T ] with T fixed, the

asymptotic distribution of the estimator is a stochastic integral,∫ 1

0
f(Tr, Tµr +

√
TσzW (r))dU(r)

where (W (r), U(r)) is a vector of Brownian motion which is a limit of some process vector

(Wn(r), Un(r)) constructed from Lévy processes Z(t) and error process ε(t), µ = E[Z(1)]

and σ2
z = V ar[Z(1)], f is some suitable function defined on [0, T ] × R. It is noteworthy

to point out that W and U may not be independent which gives more flexibility for the

models used in practice.

Outline

The thesis is not presented according to the chronology of the research. We display

the asymptotic theory in Chapter 1, which provides an essential tool for the following

development. At the same time, as can be seen from the text, since the framework is

quite general the results in asymptotic theory of Chapter 1 are applicable even beyond

the ambit of this research.

Chapter 2 is devoted to a special case for expansions where Lévy process Z(t) reduces

to Brownian motion B(t). Restricted within Brownian motion, the setup in Chapter 2 is

concrete. For example, the polynomial system in terms of which we expand functionals is

the Hermite polynomial system. In addition, many ideas and methods which are used in

the general situation are fostered in this period.

Chapter 3 studies the estimation of an unknown functional form in a general econo-

metric model which involves Brownian motion. The estimators are obtained according to

xiii



different time horizons and sampling styles. Meanwhile, their asymptotic distributions are

obtained and from the results we can see that the rates of convergence are affected by not

only sample size but also many other factors.

Chapter 4 dwells on the general situation where the underlying process is a Lévy

process Z(t) whose density or probability function ρ(t, x) satisfies the so-called boundary

condition. Every such process admits a so-called classical orthonormal polynomial system

with weight ρ(t, x), with which the functional of Z(t) can be expanded in the corresponding

Hilbert space into Fourier series.

As an application of the orthogonal expansion and asymptotic theory in the previous

chapters, Chapter 5 estimates the unknown functional m(τ, z) by m̂(τ, z) in the model

aforementioned with the help of OLS (ordinary least squares). After obtaining the esti-

mators in three types of time horizon, their asymptotic distributions are investigated.

The last chapter concludes what we did and discusses potential applications of the

proposed expansion method for Lévy process functionals.

Appendix A, entitled Miscellaneous, states an alternative expansion method for the

quadratic Brownian motion form using stochastic integral method. Without doubt, it has

a kind of quaint charm although comparing with the text it is difficult to be extended to

general situations.
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Chapter 1

Asymptotic theory

In the last few decades, nonstationary time series arising from autoregressive models with

roots on the unit circle has been an intensive research interest. As a result, the asymp-

totic behaviour of regression statistics including integrated time series has received the

most attention. Although a fairly complete theory is now available for linear time series

regressions, asymptotic theory for nonlinear regressions with integrated time series is in

the process of development and in a great deal of situations the demand for the theory

becomes a bottleneck for both econometric theory and application. Recent studies include

Park and Phillips (1999, 2001), Karlsen et al. (2007), and Wang and Phillips (2009a,b)

among others.

This chapter dwells on a more general setting, that is, the asymptotic theory of statis-

tics involving f(s, xs,n) where xs,n is a triangular array constructed from some underlying

time series. Clearly, this theory includes the existing literature as a special case. The

results show the limit distributions are mixed normal distribution in one case, relying

on local time of a limiting Brownian motion, while in another case stochastic integrals

involving a correlated vector of Brownian motion.

1.1 Local time and assumptions

In what follows our asymptotic theory depends heavily on a local–time process of Brownian

motion. The following three lemmas are basic definition and properties for the local–time

process which can be found in a standard reference book Revuz and Yor (1999).
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Lemma 1.1.1 (The Tanaka Formula). For any real number a, there exists a non-decreasing

continuous process L(·, a) called the local time of a continuous semimartigale (SMG) Mt

at a such that

|Mt − a| = |M0 − a|+
∫ t

0
sgn(Ms − a)dMs + LM (t, a)

(Mt − a)+ = (M0 − a)+ +

∫ t

0
1(Ms>a)dMs +

1

2
LM (a, t)

(Mt − a)− = (M0 − a)− −
∫ t

0
1(Ms≤a)dMs +

1

2
LM (a, t)

In particular, |Mt − a|, (Mt − a)+ and (Mt − a)− are SMGs.

Lemma 1.1.2 (Continuity of the Local Time of SMG). For any continuous SMG Mt,

there exists a version of the local time such that the map (t, a) 7→ LM (t, a) is almost surely

continuous in t and càdlàg in a.

Lemma 1.1.3 (The Occupation Time Formula). Let Mt be a continuous SMG with

quadratic variation process [M ]t. Then,∫ t

0
f(s,Ms)d[M ]s =

∫ ∞
−∞

da

∫ t

0
f(s, a)dLM (s, a) (1.1.1)

for every positive Borel measurable function f(t, x).

Given a triangular array xs,n (x0,n = 0 by definition), 1 ≤ s ≤ n, constructed from

some underlying time series, we assume that x[nr],n (0 ≤ r ≤ 1) converges in distribution to

a stochastic process W (r) on D[0, 1] with respect to the Skorohod topology which admits

a continuous local time process, where D[0, 1] stands for the space of real-valued functions

that are right continuous with left limits. It is known that there are many cases in which

{xs,n} satisfies this condition, and in some suitable probability space it can be improved

as sup0≤r≤1 |x[nr],n −W (r)| = oP (1). Readers are referred to Phillips (1987), Park and

Phillips (1999, 2001) and Wang and Phillips (2009a) for detailed discussions.

We now impose the following assumption on xs,n.

Assumption A

(a) Suppose that x[nr],n (0 ≤ r ≤ 1) converges in distribution to a stochastic process

W (r) on D[0, 1] with respect to the Skorohod topology. Let W (r) admit a continuous

local–time LW (r, s).
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(b) In some suitable probability space there exists a stochastic process W (r) that admits

a continuous local–time LW (r, s) such that sup0≤r≤1 |x[nr],n −W (r)| = oP (1).

(c) Denote for ε (0 < ε < 1) that Ωn(ε) = {(l, k) : εn ≤ k ≤ (1− ε)n, k+ εn ≤ l ≤ n}. For

all 0 ≤ k < l ≤ n, there exist a sequence of constants dl,k,n and a sequence of σ-fields

Fn,k where Fn,0 = {∅,Ω}, such that

(i) for some m0 > 0 and C > 0, inf(l,k)∈Ωn(ε) dl,k,n ≥ εm0/C as n→∞,

lim
ε→0

lim
n→∞

1

n

n∑
l=(1−ε)n

1

dl,0,n
= 0, (1.1.2)

lim
ε→0

lim
n→∞

1

n
max

0≤k≤(1−ε)n

k+εn∑
l=k+1

1

dl,k,n
= 0, (1.1.3)

lim sup
n→∞

1

n
max

0≤k≤n−1

n∑
l=k+1

1

dl,k,n
<∞. (1.1.4)

(ii) Suppose that xk,n are adapted to Fn,k. Moreover, if xk,n are continuous variables,

conditional on Fn,k, (xl,n − xk,n)/dl,k,n has a density hl,k,n which is uniformly

bounded by a constant K and

lim
δ→0

lim
n→∞

sup
(l,k)∈Ωn(δ1/(2m0))

sup
|u|<δ

|hl,k,n(u)− hl,k,n(0)| = 0. (1.1.5)

If xk,n are discrete variables, conditional on Fn,k, (xl,n − xk,n)/dl,k,n has a prob-

ability distribution Pl,k,n(x) and its distribution function Fl,k,n(x) satisfies

lim
δ→0

lim
n→∞

sup
(l,k)∈Ωn(δ1/(2m0))

sup
|u|<δ

|Fl,k,n(u)− Fl,k,n(0)| = 0. (1.1.6)

Remark 1.1.1. Assumption A is almost the same as the conditions in the univariate func-

tion case in Wang and Phillips (2009a) except that we concern both continuous and discrete

variables in A (c). We shall discuss the condition (1.1.6) later. Note that Assumption A

(except the discrete case in A (c)) is quite weak which is discussed in the literature. As a

consequence, the following theorems are generally applicable.

Also, we remark that this situation particularly accommodates any Lévy process. Ac-

cording to infinite divisibility, a Lévy process Z(t) at point positive integer s can be

rephrased as Z(s) = µs + v1 + · · · + vs in distribution where vi = Z(i) − Z(i − 1) − µ
(i = 1, · · · , s) form an i.i.d. sequence, and µ = E(Z(1)). Whence, define xs,n = 1√

nσz
Z(s)

3



for s = 1, · · · , n and n ≥ 1 where σ2
z = V ar(Z(1)), then by virtue of functional cen-

tral limit theorem xs,n converges in distribution to a Brownian motion W (r) on [0, 1] as

n → ∞. In addition, with dl,k,n =
√

(l − k)/n, xs,n and dl,k,n satisfy Assumption A (a)

and (c), and also A (b) can be achieved by the Skorohod representation theorem.

Take an example to verify the condition (1.1.6). Suppose now that Z(t) is a Poisson

process, viz., Z(t) ∼ Poi(µt). Because 1
dl,k,n

(xl,n − xk,n) =D
1√

l−kσz
(Z(l − k)− (l − k)µ),

Fl,k,n(0) =
∑

i≤(l−k)µ

[(l − k)µ]i

i!
e−(l−k)µ

Fl,k,n(u) =
∑

i≤(l−k)µ+u
√
l−kσz

[(l − k)µ]i

i!
e−(l−k)µ.

Thus, if u > 0

Fl,k,n(u)− Fl,k,n(0) = e−(l−k)µ
∑

(l−k)µ<i≤(l−k)µ+u
√
l−kσz

[(l − k)µ]i

i!
,

if u < 0,

|Fl,k,n(u)− Fl,k,n(0)| = e−(l−k)µ
∑

(l−k)µ+u
√
l−kσz<i≤(l−k)µ

[(l − k)µ]i

i!
.

Because e−(l−k)µ → 0 as (l, k) ∈ Ωn(ε), n → ∞ and the sums are less than the tail of a

convergent series, the condition (1.1.6) is fulfilled.

Notice also that in some situation, for continuous process the condition (1.1.6) implies

the requirement (1.1.5), so that they merge as (1.1.6) which harbours both continuous and

discrete cases.

Since we study the asymptotic theory of not only the sample mean but also the sample

covariance, the following assumption stipulates some necessary conditions for xs,n and es.

Assumption B

(a) There is a martingale difference sequence (es,Fn,s) with E(e2
s|Fn,s−1) = σ2

e a.s. for all

s = 1, 2, . . . , n and sup1≤s≤nE(|es|p|Fn,s−1) <∞ a.s. for some p > 2.

(b) {xs+1,n} is adapted to Fn,s, s ≥ 0.
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(c) Let, for r ∈ [0, 1],

Un(r) =
1√
n

[nr]∑
s=1

es and Wn(r) = x[nr],n.

Suppose that (Un,Wn) converges in distribution to (U,W ) on D[0, 1]2 as n → ∞,

where (U,W ) is a correlated Brownian motion vector.

Remark 1.1.2. As mentioned for Assumption A, Assumption B is also quite general and

applicable in many situations. For example, condition (c) holds when {es} is a sequence

of independent errors and Fn,s = σ(e1, · · · , es, xs+1,n).

The trajectories of the stochastic process (Un,Wn) for each ω ∈ Ω are in D[0, 1]2. The

space D[0, 1]1 is usually equipped with the Skorohod topology. It then follows from the

so-called Skorohod representation theorem that there exists a common probability space

(Ω,F , P ) supporting (U0
n,W

0
n) and (U,W ) such that

(Un,Wn)
D
= (U0

n,W
0
n), and (U0

n,W
0
n)→a.s. (U,W ) (1.1.7)

in D[0, 1]2 with the uniform topology in a suitable space.

1.2 Time-normalised and integrable functionals

This section establishes an asymptotic theory whose results extend existing literature, such

as Park and Phillips (1999, 2001) and Wang and Phillips (2009a), from the univariate case

to the bivariate case.

Let us now define the class of functionals for which we will establish an important

theorem. Such a theorem is of general interest.

Assumption C

(a) Suppose that f(t, x) is defined on [0, 1]×(−∞,∞). Suppose further that both |f(t, x)|
and f2(t, x) are Lebesgue integrable with respect to x on (−∞,∞).

(b) There exists a function cf (x) : R → R+ such that |f(t, x)| ≤ cf (x) uniformly in

t ∈ [0, 1] and cf (x) is integrable on R.

1D[0, 1] designates the space of càdlàg functions (French, means the function at every point who is right

continuous and possesses finite left limit) on unit interval [0, 1].
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(c) For each x ∈ R, f(t, x) is continuous in t and there are at most a finite number of

points for t at which
∫
f(t, x)dx = 0.

Remark 1.2.1. We shall denote G1(t) =
∫∞
−∞ f(t, x)dx, G2(t) =

∫∞
−∞ |f(t, x)|dx and

G3(t) =
∫∞
−∞ f

2(t, x)dx for universal convenience. Notice that they are all continuous

functions by the dominated convergence theorem.

Condition (a) is an extension of Assumption 2.1 in Wang and Phillips (2009a). Require-

ment on integrability of functions is a basic need to deal with this kind of problems. Note

that if f(t, x) = f(x) becomes time-homogeneous, condition (a) reduces to Assumption

2.1 in Wang and Phillips (2009a).

Condition (b) requires that the function f(t, x) be dominated uniformly in t over

compact interval [0, 1] by an integrable function cf (x). In the situations where f(t, x) is the

product of a continuous function of t and an integrable function of x or the superposition

of such products, the condition is automatically fulfilled.

Condition (c) also excludes the situation where there are infinite many points tj ∈ [0, 1]

such that G1(tj) = 0.

The functionals of interest Ln and Mn are defined as follows:

Ln =
cn
n

n∑
s=1

f
( s
n
, cnxs,n

)
,

Mn =

√
cn
n

n∑
s=1

f
( s
n
, cnxs,n

)
es,

where cn is a sequence of positive constants, and f satisfies Assumption C. When the

underlying time series is a random walk, cn may take an explicit form of
√
n. We are

interested in the general situation in this section that n → ∞, cn → ∞ and n/cn → ∞.

Note that if f(t, x) = f(x), Ln and Mn reduce to the forms of the functionals discussed

in Wang and Phillips (2009a) and Jeganathan (2004) respectively.

Before stating the main result of the section, there are three crucial lemmas. One

of them is the existing one in the literature, while the other two are new and rigorously

proved. we introduce the following notations for any ε > 0 and 0 ≤ r ≤ 1,

L(r)
n =

cn
n

[nr]∑
k=1

f

(
k

n
, cnxk,n

)

6



L(r)
n,ε =

cn
n

[nr]∑
k=1

∫ ∞
−∞

f

(
k

n
, cn(xk,n + zε)

)
φ(z)dz,

where φ(z) = 1√
2π
e−z

2/2.

For later use in this section we also define φε(z) = 1√
2πε

exp
(
− z2

2ε2

)
for some ε > 0.

Lemma 1.2.1. Let Assumptions B (a) and (c) hold. We may represent U0
n introduced in

(1.1.7) as

U0
n

(
t

n

)
= U

(τnt
n

)
,

with an increasing sequence of stopping times τnt in (Ω,F , P ) with τn0 = 0 such that as

n→∞
sup

1≤t≤n

∣∣∣∣τnt − tnδ

∣∣∣∣→a.s. 0, (1.2.1)

for any δ > max{1
2 ,

2
p}, where p is the moment exponent in Assumption B for {et}.

This lemma is exactly Lemma 2.1 in Park and Phillips (2001). Readers can find the

proof there.

Lemma 1.2.2. Suppose that Assumptions A (c) and C hold. Then

lim
ε→0

lim
n→∞

sup
0≤r≤1

E|L(r)
n − L(r)

n,ε| = 0. (1.2.2)

Proof. The proof consists of two parts according to xk,n being continuous and discrete

respectively in A (c).

The following arguments about the continuous case naturally treat those used for the

univariate case in Wang and Phillips (2009a) as a special case.

Denote Yk,n(z) = f
(
k
n , cnxk,n

)
− f

(
k
n , cn(xk,n + zε)

)
. We have

sup
0≤r≤1

E|L(r)
n − L(r)

n,ε| = sup
0≤r≤1

E

∣∣∣∣∣∣cnn
∫ ∞
−∞

[nr]∑
k=1

Yk,n(z)φ(z)dz

∣∣∣∣∣∣
≤ cn

n

∫ ∞
−∞

sup
0≤r≤1

E

∣∣∣∣∣∣
[nr]∑
k=1

Yk,n(z)

∣∣∣∣∣∣φ(z)dz,

by the fact that
∫
φ(z)dz = 1. Notice that, by Assumption A (c),

E|Yk,n(z)| =
∫ ∞
−∞

∣∣∣∣f (kn, cndk,0,nx
)
− f

(
k

n
, cndk,0,nx+ cnzε

)∣∣∣∣hk,0,n(x)dx
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≤ K

cndk,0,n

[∫ ∞
−∞

∣∣∣∣f (kn, x
)∣∣∣∣ dx+

∫ ∞
−∞

∣∣∣∣f (kn, x+ cnzε

)∣∣∣∣ dx]
=

2K

cndk,0,n
G2

(
k

n

)
, (1.2.3)

where G2(·) =
∫∞
−∞ |f(·, x)|dx and K is the uniform upper bound of the density hl,k,n.

Accordingly, for each z ∈ R,

cn
n

sup
0≤r≤1

E

∣∣∣∣∣∣
[nr]∑
k=1

Yk,n(z)

∣∣∣∣∣∣ ≤cnn
n∑
k=1

2K

cndk,0,n
G2

(
k

n

)
= 2KK2

1

n

n∑
t=1

1

dk,0,n
<∞

by virtue of (1.1.4), where K2 = supt∈[0,1]G2(t) < ∞ due to the continuity of G2(t). It

therefore follows from the dominated convergence theorem that, to prove the lemma, it

suffices to show that for any fixed z,

Λn(ε) =
c2
n

n2
sup

0≤r≤1
E

 [nr]∑
k=1

Yk,n(z)

2

→ 0,

as n→∞ first and then ε→ 0. Meanwhile, we have

Λn(ε) ≤ c
2
n

n2

n∑
k=1

EY 2
k,n(z) +

2c2
n

n2

n−1∑
k=1

n∑
l=k+1

|E[Yk,n(z)Yl,n(z)]|

:=Λ1n(ε) + Λ2n(ε).

We next investigate Λ1n(ε) and Λ2n(ε) separately.

In view of Assumption A (c), we have as n→∞

Λ1n(ε) =
c2
n

n2

n∑
k=1

EY 2
k,n(z) =

c2
n

n2

n∑
k=1

E

[
f

(
k

n
, cnxk,n

)
− f

(
k

n
, cn(xk,n + zε)

)]2

=
c2
n

n2

n∑
k=1

∫ ∞
−∞

[
f

(
k

n
, cndk,0,nx

)
− f

(
k

n
, cndk,0,nx+ cnzε

)]2

hk,0,n(x)dx

≤ c
2
n

n2

n∑
k=1

K

cndk,0,n

∫ ∞
−∞

[
f

(
k

n
, x

)
− f

(
k

n
, x+ cnzε

)]2

dx

≤4Kcn
n2

n∑
k=1

1

dk,0,n

∫ ∞
−∞

∣∣∣∣f (kn, x
)∣∣∣∣2 dx =

4Kcn
n2

n∑
k=1

1

dk,0,n
G3

(
k

n

)

≤4KK3
cn
n

1

n

n∑
k=1

1

dk,0,n
→ 0,
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where K3 = supt∈[0,1]G3(t) and G3(·) is continuous on the interval in question.

We then prove that Λ2n(ε)→ 0 as n→∞. Because

Λ2n(ε) =
2c2
n

n2

n−1∑
k=1

n∑
l=k+1

|E[Yk,n(z)Yl,n(z)]|

=
2c2
n

n2

n−1∑
k=1

n∑
l=k+1

|E[Yk,n(z)E(Yl,n(z)|Fk,n)]|,

For k < l, we begin with the following calculation of the conditional expectation:

|E(Yl,n(z)|Fk,n)| =
∣∣∣∣E [f ( ln , cnxl,n

)
− f

(
l

n
, cn(xl,n + zε)

) ∣∣∣Fk,n]∣∣∣∣
=

∣∣∣∣E [f ( ln , cnxk,n + cn(xl,n − xk,n)

)
− f

(
l

n
, cnxk,n + cn(xl,n − xk,n) + cnzε)

) ∣∣∣Fk,n]∣∣∣∣
=

∣∣∣∣∫ ∞
−∞

[
f

(
l

n
, cnxk,n + cndl,k,ny

)
− f

(
l

n
, cnxk,n + cndl,k,ny + cnzε

)]
hl,k,n(y)dy

∣∣∣∣
=

1

cndl,k,n

∣∣∣∣∫ ∞
−∞

[
f

(
l

n
, y

)
hl,k,n

(
y − cnxk,n
cndl,k,n

)
− f

(
l

n
, y

)
hl,k,n

(
y − cnxk,n − cnεz

cndl,k,n

)]
dy

∣∣∣∣
=

1

cndl,k,n

∣∣∣∣∫ ∞
−∞

f

(
l

n
, y

)[
hl,k,n

(
y − cnxk,n
cndl,k,n

)
− hl,k,n

(
y − cnxk,n − cnεz

cndl,k,n

)]
dy

∣∣∣∣
≤ 1

cndl,k,n

∫ ∞
−∞

∣∣∣∣f ( ln , y
)∣∣∣∣ |V (y, cnxk,n)| dy,

where V (y, cnxk,n) = hl,k,n

(
y−cnxk,n
cndl,k,n

)
− hl,k,n

(
y−cnxk,n−cnεz

cndl,k,n

)
.

Recall the definition of Ωn(ε) in Assumption A(c) and note that a pair (l, k) (l > k)

belongs to either Ωn(ε1/2m0) or its complement. It follows that

|E(Yl,n(z)|Fk,n)|

≤


2K

cndl,k,n

∫∞
−∞

∣∣f ( ln , y)∣∣ dy = 2K
cndl,k,n

G2

(
l
n

)
, if (l, k) 6∈ Ωn,

2K
cndl,k,n

∫
|y|>√cn

∣∣f ( ln , y)∣∣ dy + 1
cndl,k,n

∫
|y|≤√cn

∣∣f ( ln , y)∣∣ |V (y, cnxk,n)|dy, otherwise.

According to Assumption A (c), inf(l,k)∈Ωn(ε1/2m0 ) dl,k,n ≥
√
ε
C , and at the same time

we can choose n large enough such that
√
cnε > 1. For |y| ≤ √cn and |x| ≤ √cn + cn|z|ε,

when (l, k) ∈ Ωn(ε1/2m0), we have

|V (y, x)| =
∣∣∣∣hl,k,n( y − x

cndl,k,n

)
− hl,k,n

(
y − x− cnεz
cndl,k,n

)∣∣∣∣
≤
∣∣∣∣hl,k,n( y − x

cndl,k,n

)
− hl,k,n(0)

∣∣∣∣+

∣∣∣∣hl,k,n(y − x− cnεzcndl,k,n

)
− hl,k,n(0)

∣∣∣∣
9



≤2 sup
|u|<2C(1+|z|)

√
ε

|hl,k,n(u)− hl,k,n(0)| . (1.2.4)

Therefore, when |y| ≤ √cn, n is large enough and (l, k) ∈ Ωn(ε1/2m0), we have

E|Yk,n(z)||V (y, cnxk,n)|

=

∫ ∞
−∞

∣∣∣∣f (kn, cndk,0,nx
)
− f

(
k

n
, cndk,0,nx+ cnzε

)∣∣∣∣ |V (y, cndk,0,nx)|hk,0,n(x)dx

≤ K

cndk,0,n

∫ ∞
−∞

∣∣∣∣f (kn, x
)
− f

(
k

n
, x+ cnzε

)∣∣∣∣ |V (y, x)|dx

≤ K

cndk,0,n

[∫ ∞
−∞

∣∣∣∣f (kn, x
)∣∣∣∣ |V (y, x)|dx+

∫ ∞
−∞

∣∣∣∣f (kn, x+ cnzε

)∣∣∣∣ |V (y, x)|dx
]

=
K

cndk,0,n

∫ ∞
−∞

∣∣∣∣f (kn, x
)∣∣∣∣ [|V (y, x)|+ |V (y, x− cnzε)|]dx

=
K

cndk,0,n

[∫
|x|>√cn

+

∫
|x|≤√cn

∣∣∣∣f (kn, x
)∣∣∣∣ [|V (y, x)|+ |V (y, x− cnzε)|]dx

]

≤ 2K2

cndk,0,n

∫
|x|>√cn

∣∣∣∣f (kn, x
)∣∣∣∣ dx

+
K

cndk,0,n

∫
|x|≤√cn

∣∣∣∣f (kn, x
)∣∣∣∣ [|V (y, x)|+ |V (y, x− cnzε)|]dx

≤ 2K2

cndk,0,n

∫
|x|>√cn

∣∣∣∣f (kn, x
)∣∣∣∣ dx

+
4K

cndk,0,n
sup

|u|<2C(1+|z|)
√
ε

|hl,k,n(u)− hl,k,n(0)|
∫
|x|≤√cn

∣∣∣∣f (kn, x
)∣∣∣∣ dx.

We summarise that if (l, k) 6∈ Ωn, equation (1.2.3) yields

|E(Yk,n(z)Yl,n(z))| = |E[Yk,n(z)E(Yl,n(z)|Fk,n)]|

≤ 2K

cndl,k,n
G2

(
l

n

)
|EYk,n(z)|

≤ 4K2

c2
ndl,k,ndk,0,n

G2

(
l

n

)
G2

(
k

n

)
,

while if (l, k) ∈ Ωn,

|E(Yk,n(z)Yl,n(z))| = |E[Yk,n(z)E(Yl,n(z)|Fk,n)]|

≤ E[|Yk,n(z)||E(Yl,n(z)|Fk,n)|]

≤ 2K

cndl,k,n

∫
|y|>√cn

∣∣∣∣f ( ln , y
)∣∣∣∣ dyE|Yk,n(z)|

10



+
1

cndl,k,n

∫
|y|≤√cn

∣∣∣∣f ( ln , y
)∣∣∣∣E[|Yk,n(z)||V (y, cnxk,n)|]dy

≤ 4K2

c2
ndl,k,ndk,0,n

G2

(
k

n

)∫
|y|>√cn

∣∣∣∣f ( ln , y
)∣∣∣∣ dy

+
2K2

c2
ndl,k,ndk,0,n

∫
|y|≤√cn

∣∣∣∣f ( ln , y
)∣∣∣∣ dy ∫

|x|>√cn

∣∣∣∣f (kn, x
)∣∣∣∣ dx

+
4K

c2
ndl,k,ndk,0,n

∫
|y|≤√cn

∣∣∣∣f ( ln , y
)∣∣∣∣ dy ∫

|x|≤√cn

∣∣∣∣f (kn, x
)∣∣∣∣ dx

× sup
|u|<2C(1+|z|)

√
ε

|hl,k,n(u)− hl,k,n(0)| .

Finally, we have

|Λ2n(ε)| ≤2c2
n

n2

 ∑
l>k, (l,k)6∈Ωn

+
∑

(l,k)∈Ωn

E|Ys,n(z)Yt,n(z)|

≤2c2
n

n2

n∑
k=(1−ε)n

n∑
l=k+1

E|Yk,n(z)Yl,n(z)|+ 2c2
n

n2

n−1∑
k=1

k+εn∑
l=k+1

E|Yk,n(z)Yl,n(z)|

+
2c2
n

n2

εn∑
k=1

n∑
l=k+1

E|Yk,n(z)Yl,n(z)|+ 2c2
n

n2

n−1∑
k=1

n∑
l=k+εn

E|Yk,n(z)Yl,n(z)|

≤8K2K2
2

1

n

n∑
k=(1−ε)n

1

dk,0,n
max

1≤k≤n−1

1

n

n∑
l=k+1

1

dl,k,n

+ 8K2K2
2

1

n

n−1∑
k=1

1

dk,0,n
max

1≤k≤n−1

1

n

k+εn∑
l=k+1

1

dl,k,n

+ 8K2K2
2

1

n

εn∑
k=1

1

dk,0,n
max

1≤k≤n−1

1

n

n∑
l=k+1

1

dl,k,n

+ 8K2K2

∫
|y|>√cn

cf (y)dy
1

n2

n−1∑
k=1

1

dk,0,n
max

1≤k≤n−1

n∑
l=k+1

1

dl,k,n

+ 4K2K2

∫
|x|>√cn

cf (x)dx
1

n2

n−1∑
k=1

1

dk,0,n
max

1≤k≤n−1

n∑
l=k+1

1

dl,k,n

+ 8KK2
2

1

n2

n−1∑
k=1

1

dk,0,n
max

1≤k≤n−1

n∑
l=k+1

1

dl,k,n
sup

|u|<2C(1+|z|)
√
ε

|hl,k,n(u)− hl,k,n(0)| ,

in which we have used Assumption C (c) that
∣∣f ( ln , y)∣∣ ≤ cf (y) and the fact that∫

|y|≤√cn

∣∣∣∣f ( ln , y
)∣∣∣∣ dy ≤ G2

(
l

n

)
≤ K2.

11



In view of Assumptions A (c) and C, by virtue of the dominated convergence theorem,

Λ2n(ε)→ 0 as n→∞ and then ε→ 0. This finishes the proof of the continuous case.

The proof of the discrete case is quite similar to that of the continuous case. Some

critical steps are shown as follows.

Let Ak,n be the set of points that xk,n assumes. Suppose the points are equally dis-

tributed on R with distance 4. In what follows, define Bk,n := cndk,0,nAk,n := {cndk,0,na :

a ∈ Ak,n}. Then,

E|Yk,n(z)| =E
∣∣∣∣f (kn, cnxk,n

)
− f

(
k

n
, cn(xk,n + zε)

)∣∣∣∣
=
∑

x∈Ak,n

∣∣∣∣f (kn, cndk,0,nx
)
− f

(
k

n
, cn(dk,0,nx+ zε)

)∣∣∣∣Pk,0,n(x)

=
∑

x∈Bk,n

∣∣∣∣f (kn, x
)
− f

(
k

n
, x+ cnzε

)∣∣∣∣Pk,0,n( x

cndk,0,n

)

≤
∑

x∈Bk,n

∣∣∣∣f (kn, x
)∣∣∣∣+

∑
x∈Bk,n

∣∣∣∣f (kn, x+ cnzε

)∣∣∣∣
=

1

cndk,0,n4
∑

x∈Bk,n

∣∣∣∣f (kn, x
)∣∣∣∣ cndk,0,n4

+
1

cndk,0,n4
∑

x∈Bk,n

∣∣∣∣f (kn, x+ cnzε

)∣∣∣∣ cndk,0,n4
≤ 1

cndk,0,n4

(∫ ∣∣∣∣f (kn, x
)∣∣∣∣ dx+

∫ ∣∣∣∣f (kn, x+ cnzε

)∣∣∣∣ dx)
=

2

cndk,0,n4

∫ ∣∣∣∣f (kn, x
)∣∣∣∣ dx =

2

cndk,0,n4
G2

(
k

n

)
≤ 2

cndk,0,n4
K2,

where we may modify the function f , e.g. fo(·, x) = maxy≥x |f(·, y)| for x > 0 to get the

inequality in the derivation and note that the result above is similar to (1.2.3). Following

the same arguments as before, to complete the proof, it suffices to show both Λ1n(ε) and

Λ2n(ε) converge to zero. Nevertheless, Λ1n(ε)→ 0 is easy to obtain, while the key step in

the proof of Λ2n(ε)→ 0 is the evaluation of the following conditional expectation.

|E(Yl,n(z)|Fk,n)| =
∣∣∣∣E [f ( ln , cnxl,n

)
− f

(
l

n
, cn(xl,n + zε)

) ∣∣∣Fk,n]∣∣∣∣
=

∣∣∣∣E [f ( ln , cnxk,n + cn(xl,n − xk,n)

)
− f

(
l

n
, cnxk,n + cn(xl,n − xk,n) + cnzε)

) ∣∣∣Fk,n]∣∣∣∣
12



=

∣∣∣∣∫ [f ( ln , cnxk,n + cndl,k,ny

)
− f

(
l

n
, cnxk,n + cndl,k,ny + cnzε

)]
dFl,k,n(y)

∣∣∣∣
=

∣∣∣∣∫ f

(
l

n
, y

)
dFl,k,n

(
y − cnxk,n
cndl,k,n

)
−
∫
f

(
l

n
, y

)
dFl,k,n

(
y − cnxk,n − cnεz

cndl,k,n

)∣∣∣∣
=

∣∣∣∣∫ f

(
l

n
, y

)
d

[
Fl,k,n

(
y − cnxk,n
cndl,k,n

)
− Fl,k,n

(
y − cnxk,n − cnεz

cndl,k,n

)]∣∣∣∣
=

∣∣∣∣∫ f

(
l

n
, y

)
dQ(y, cnxk,n)

∣∣∣∣ ,
where Q(y, cnxk,n) = Fl,k,n

(
y−cnxk,n
cndl,k,n

)
− Fl,k,n

(
y−cnxk,n−cnεz

cndl,k,n

)
.

Thus,

|E(Yl,n(z)|Fk,n)|

≤


2

cndl,k,n4
∫ ∣∣f ( ln , y)∣∣ dy = 2

cndl,k,n
G2

(
l
n

)
, if (l, k) 6∈ Ωn,

2
cndl,k,n4

∫
|y|>√cn

∣∣f ( ln , y)∣∣ dy +
∣∣∣∫|y|≤√cn f ( ln , y) dQ(y, cnxk,n)

∣∣∣ , if (l, k) ∈ Ωn.

Then the important ingredient is to deal with the following expectation.

E|Yk,n|

∣∣∣∣∣
∫
|y|≤√cn

f

(
l

n
, y

)
dQ(y, cnxk,n)

∣∣∣∣∣
=E

∣∣∣∣f (kn, cnxk,n
)
− f

(
k

n
, cn(xk,n + zε)

)∣∣∣∣
∣∣∣∣∣
∫
|y|≤√cn

f

(
l

n
, y

)
dQ(y, cnxk,n)

∣∣∣∣∣
=

∫ ∣∣∣∣f (kn, cndk,0,nx
)
− f

(
k

n
, cn(dk,0,nx+ zε)

)∣∣∣∣
×

∣∣∣∣∣
∫
|y|≤√cn

f

(
l

n
, y

)
dQ(y, cndk,0,nx)

∣∣∣∣∣ dFk,0,n(x)

=

∫ ∣∣∣∣f (kn, x
)
− f

(
k

n
, x+ cnzε

)∣∣∣∣
∣∣∣∣∣
∫
|y|≤√cn

f

(
l

n
, y

)
dQ(y, x)

∣∣∣∣∣ dFk,0,n
(

x

cndk,0,n

)

≤
∫ ∣∣∣∣f (kn, x

)∣∣∣∣
∣∣∣∣∣
∫
|y|≤√cn

f

(
l

n
, y

)
dQ(y, x)

∣∣∣∣∣ dFk,0,n
(

x

cndk,0,n

)

+

∫ ∣∣∣∣f (kn, x+ cnzε

)∣∣∣∣
∣∣∣∣∣
∫
|y|≤√cn

f

(
l

n
, y

)
dQ(y, x)

∣∣∣∣∣ dFk,0,n
(

x

cndk,0,n

)

=

∫ ∣∣∣∣f (kn, x
)∣∣∣∣
∣∣∣∣∣
∫
|y|≤√cn

f

(
l

n
, y

)
dQ(y, x)

∣∣∣∣∣ dFk,0,n
(

x

cndk,0,n

)

+

∫ ∣∣∣∣f (kn, x
)∣∣∣∣
∣∣∣∣∣
∫
|y|≤√cn

f

(
l

n
, y

)
dQ(y, x− cnzε)

∣∣∣∣∣ dFk,0,n
(
x− cnzε
cndk,0,n

)
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=

∫
|x|≤√cn

∣∣∣∣f (kn, x
)∣∣∣∣
∣∣∣∣∣
∫
|y|≤√cn

f

(
l

n
, y

)
dQ(y, x)

∣∣∣∣∣ dFk,0,n
(

x

cndk,0,n

)

+

∫
|x|>√cn

∣∣∣∣f (kn, x
)∣∣∣∣
∣∣∣∣∣
∫
|y|≤√cn

f

(
l

n
, y

)
dQ(y, x)

∣∣∣∣∣ dFk,0,n
(

x

cndk,0,n

)

+

∫
|x|≤√cn

∣∣∣∣f (kn, x
)∣∣∣∣
∣∣∣∣∣
∫
|y|≤√cn

f

(
l

n
, y

)
dQ(y, x− cnzε)

∣∣∣∣∣ dFk,0,n
(
x− cnzε
cndk,0,n

)

+

∫
|x|>√cn

∣∣∣∣f (kn, x
)∣∣∣∣
∣∣∣∣∣
∫
|y|≤√cn

f

(
l

n
, y

)
dQ(y, x− cnzε)

∣∣∣∣∣ dFk,0,n
(
x− cnzε
cndk,0,n

)

:=
4∑
1

Ti(l, k;n).

For T1(l, k;n) is similar to T3(l, k;n), and T2(l, k;n) is similar to T4(l, k;n), we only

explain T1(l, k;n) and T2(l, k;n).

T1(l, k;n) =

∫
|x|≤√cn

∣∣∣∣f (kn, x
)∣∣∣∣
∣∣∣∣∣
∫
|y|≤√cn

f

(
l

n
, y

)
dQ(y, x)

∣∣∣∣∣ dFk,0,n
(

x

cndk,0,n

)

=
∑
|x|≤√cn
x∈Bk,n

∣∣∣∣f (kn, x
)∣∣∣∣
∣∣∣∣∣∣∣∣∣

∑
|y|≤√cn

y∈x+cnzεBl,k,n

f

(
l

n
, y

)
P (y, x)

∣∣∣∣∣∣∣∣∣Pk,0,n
(

x

cndk,0,n

)
,

where Bl,k,n = {cndl,k,na : a ∈ Al,k,n}, in which Al,k,n is the set of points that (xl,n −
xk,n)/dl,k,n assumes; meanwhile, P (y, x) = Pl,k,n

(
y−cnxk,n
cndl,k,n

)
− Pl,k,n

(
y−cnxk,n−cnεz

cndl,k,n

)
.

Notice that when |x| ≤ √cn, |y| ≤ √cn and (l, k) ∈ Ωn(ε), we have

|P (y, x)| =
∣∣∣∣Pl,k,n(y − cnxk,ncndl,k,n

)
− Pl,k,n

(
y − cnxk,n − cnεz

cndl,k,n

)∣∣∣∣
=

∣∣∣∣Fl,k,n(y − cnxk,ncndl,k,n

)
− F−l,k,n

(
y − cnxk,n
cndl,k,n

)
−Fl,k,n

(
y − cnxk,n − cnεz

cndl,k,n

)
+ F−l,k,n

(
y − cnxk,n − cnεz

cndl,k,n

)∣∣∣∣
≤4 sup
|u|<2C(1+|z|)

√
ε

|Fl,k,n(u)− Fl,k,n(0)|.

Here F−l,k,n(·) denotes the left limit of the function at the point.

Therefore, we have

T1(l, k;n) ≤ 4

cndk,0,n4
1

cndl,k,n4
G2

(
k

n

)
G2

(
l

n

)
sup

|u|<2C(1+|z|)
√
ε

|Fl,k,n(u)− Fl,k,n(0)|.
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Regarding T2(l, k;n), we directly have

T2(l, k;n) ≤ 2

cndk,0,n4
1

cndl,k,n4

∫
|x|≥√cn

∣∣∣∣f (kn, x
)∣∣∣∣ dx ∫

|y|≤√cn

∣∣∣∣f (kn, y
)∣∣∣∣ dy

≤ 2

cndk,0,n4
1

cndl,k,n4
G2

(
l

n

)∫
|x|≥√cn

∣∣∣∣f (kn, x
)∣∣∣∣ dx.

As can be seen, every term in Λ2n(ε) has the similar evaluation, so that we obtain the

vanish of Λ2n(ε). As yet, the whole proof is finished.

Lemma 1.2.3. Let Assumption C hold. Then we have for any fixed ε > 0,

L(r)
n,ε −

∫ ∞
−∞

1

n

[nr]∑
k=1

f

(
k

n
, y

)
φε(xk,n)dy →a.s. 0

uniformly in r ∈ [0, 1] as n→∞.

Proof. Observe that

L(r)
n,ε =

cn
n

[nr]∑
k=1

∫ ∞
−∞

f

(
k

n
, cn(xt,n + zε)

)
φ(z)dz

=
cn
n

[nr]∑
k=1

∫ ∞
−∞

f

(
k

n
, y

)
φ

(
y − cnxt,n

cnε

)
1

cnε
dy

=

∫ ∞
−∞

1

n

[nr]∑
k=1

f

(
k

n
, y

)
φε

(
y

cn
− xt,n

)
dy.

It follows that for any M > 0,∣∣∣∣∣∣L(r)
n,ε −

∫ ∞
−∞

1

n

[nr]∑
k=1

f

(
k

n
, y

)
φε(xk,n)dy

∣∣∣∣∣∣
≤
∫ ∞
−∞

1

n

n∑
k=1

∣∣∣∣f (kn, y
)∣∣∣∣ ∣∣∣∣φε( y

cn
− xt,n

)
− φε(xk,n)

∣∣∣∣ dy
=

∫
|y|>M

+

∫
|y|≤M

1

n

n∑
k=1

∣∣∣∣f (kn, y
)∣∣∣∣ ∣∣∣∣φε( y

cn
− xt,n

)
− φε(xk,n)

∣∣∣∣ dy
:=Γ1n + Γ2n.

Notice that,

Γ1n ≤
2√
2πε

∫
|y|>M

1

n

n∑
k=1

∣∣∣∣f (kn, y
)∣∣∣∣ dy ≤ 2√

2πε

∫
|y|>M

cf (y)dy,
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using Assumption C (c). Due to the integrability of cf (y) on R, one can choose large

enough M such that Γ1n < ε for any given ε > 0.

Moreover, since φ′ε(x) = − x√
2πε3

e−x
2/2ε2 and |φ′ε(x)| is bounded by 1√

2πeε2
on R, we

have ∣∣∣∣φε( y

cn
− xt,n

)
− φε(xt,n)

∣∣∣∣ =

∣∣∣∣φ′ε(ξ)(− y

cn

)∣∣∣∣ ≤ |y|√
2πeε2cn

,

where ξ is in between xt,n − y
cn

and xt.n. Therefore,

Γ2n ≤
∫
|y|≤M

1

n

n∑
k=1

∣∣∣∣f (kn, y
)∣∣∣∣ |y|√

2πeε2cn
dy

≤ M√
2πeε2cn

1

n

n∑
k=1

∫
|y|≤M

∣∣∣∣f (kn, y
)∣∣∣∣ dy ≤ M√

2πeε2cn

1

n

n∑
k=1

G2

(
k

n

)
.

As 1
n

∑n
k=1G2

(
k
n

)
≤ K2 and cn →∞ as n→∞, Γ2n → 0. The assertion follows.

Theorem 1.2.1. If Assumptions C and A (a) and (c) hold, we have for any cn → ∞,

n/cn →∞ and r ∈ [0, 1],

cn
n

[nr]∑
s=1

f
( s
n
, cnxs,n

)
→D

∫ r

0
G1(t)dLW (t, 0), (1.2.5)

where G1(·) =
∫
f(·, x)dx and LW (t, 0) is the local-time process of W at origin over time

interval [0, t].

If, in addition, Assumption A (a) is replaced by Assumption A(b), then for any cn →
∞, n/cn →∞, and r ∈ [0, 1],

sup
0≤r≤1

∣∣∣∣∣∣cnn
[nr]∑
s=1

f
( s
n
, cnxs,n

)
−
∫ r

0
G1(t)dLW (t, 0)

∣∣∣∣∣∣ = oP (1), (1.2.6)

under the same probability space as defined in Assumption A(b).

Moreover, suppose that f2(t, x) satisfies Assumption C, and that {es} and {xs,n} satisfy

Assumption B. We have for n→∞, cn →∞ and cn/n→ 0, and r ∈ [0, 1],√
cn
n

[nr]∑
s=1

f
( s
n
, cnxs,n

)
es →D

(∫ r

0
G3(t)dLW (t, 0)

) 1
2

N, (1.2.7)

where G3(·) =
∫
f2(·, x)dx and N is a standard normal random variable independent of

W .
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Remark 1.2.2. Note that if the function f(t, x) reduces to f(x), (1.2.5) and (1.2.6) reduce to

Theorem 2.1 of Wang and Phillips (2009a) and with cn =
√
n to Theorem 5.1 of Park and

Phillips (1999), since G1(t) =
∫
f(x)dx becomes a constant and

∫ 1
0 dLW (r, 0) = LW (1, 0).

Also, these reduced cases of (1.2.6) and (1.2.7) can be viewed as a special case of Theorem

3.2 in Park and Phillips (2001) by taking parameter set Π as singleton since in the situation

G3 =
∫
f2(x)dx is a constant.

Proof. In view of Lemmas 1.2.2 and 1.2.3, we start to investigate the convergence of∫ ∞
−∞

1

n

[nr]∑
k=1

f

(
k

n
, y

)
φε(xk,n)dy.

It follows from Assumptions A (a) and C, the continuous mapping theorem and the

occupation time formula in Lemma 1.1.3 that∫ ∞
−∞

1

n

[nr]∑
k=1

f

(
k

n
, y

)
φε(xk,n)dy

=
1

n

[nr]∑
k=1

φε(xk,n)

∫ ∞
−∞

f

(
k

n
, y

)
dy =

1

n

[nr]∑
k=1

φε(xk,n)G1

(
k

n

)
=

∫ r

0
G1

(
[nt]

n

)
φε(x[nt],n)dt− 1

n
G1(0)φε(0) +

1

n
G1

(
[nr]

n

)
φε(x[nr],n)

→D

∫ r

0
G1 (t)φε(W (t))dt as n→∞

=

∫ ∞
−∞

dy

∫ r

0
G1(t)φε(y)dLW (t, y)

=

∫ ∞
−∞

dy

∫ r

0
G1(t)φ(y)dLW (t, εy) and then as ε→ 0

→a.s.

∫ ∞
−∞

dy

∫ r

0
G1(t)φ(y)dLW (t, 0)

=

∫ r

0
G1(t)dLW (t, 0).

This finishes the proof of (1.2.5). To prove (1.2.6), we need only to show the following:

sup
0≤r≤1

∣∣∣∣∣∣
∫ ∞
−∞

1

n

[nr]∑
k=1

f

(
k

n
, y

)
φε(xk,n)dy −

∫ r

0
G1 (t)φε(W (t))dt

∣∣∣∣∣∣ (1.2.8)

= sup
0≤r≤1

∣∣∣∣∣∣ 1n
[nr]∑
k=1

φε(xk,n)G1

(
k

n

)
−
∫ r

0
G1 (t)φε(W (t))dt

∣∣∣∣∣∣
17



= sup
0≤r≤1

∣∣∣∣∫ r

0
G1

(
[nt]

n

)
φε(x[nt],n)dt− 1

n
G1(0)φε(0) +

1

n
G1

(
[nr]

n

)
φε(x[nr],n)

−
∫ r

0
G1 (t)φε(W (t))dt

∣∣∣∣
≤
∫ 1

0

∣∣∣∣G1

(
[nt]

n

)
φε(x[nt],n)−G1(t)φε(W (t))

∣∣∣∣ dt+
A

n
,

where A comes from the bounds of G1 on [0, 1] and φε on R. It follows that∫ 1

0

∣∣∣∣G1

(
[nt]

n

)
φε(x[nt],n)−G1(t)φε(W (t))

∣∣∣∣ dt
≤
∫ 1

0

∣∣∣∣G1

(
[nt]

n

)
−G1(t)

∣∣∣∣ ∣∣φε(x[nt],n)
∣∣ dt+

∫ 1

0
|G1(t)|

∣∣φε(x[nt],n)− φε(W (t))
∣∣ dt

≤ 1√
2πε

∫ 1

0

∣∣∣∣G1

(
[nt]

n

)
−G1(t)

∣∣∣∣ dt+ max
0≤t≤1

|G1(t)|
∫ 1

0

∣∣φε(x[nt],n)− φε(W (t))
∣∣ dt

≤ 1√
2πε

∫ 1

0

∣∣∣∣G1

(
[nt]

n

)
−G1(t)

∣∣∣∣ dt+
1√

2πeε2
max
0≤t≤1

|G1(t)| sup
0≤t≤1

∣∣x[nt],n −W (t)
∣∣ .

Hence, using the dominated convergence theorem and Assumption A(b), as n → ∞,

equation (1.2.8) converges in probability to zero. Then the assertion follows as ε→ 0.

Now we turn to prove (1.2.7). Define, for
τn,i−1

n < t ≤ τn,i
n ,

Mn(t) =
√
cn

i−1∑
k=1

f

(
k

n
, cnxk,n

)(
U
(τnk
n

)
− U

(τn,k−1

n

))
+
√
cnf

(
i

n
, cnxi,n

)(
U(t)− U

(τn,i−1

n

))
, (1.2.9)

where τnk (k = 1, . . . , n) are the stopping times in Lemma 1.2.1. It follows that, for

any n ≥ 1, Mn(t) is a continuous martingale with respect to the filtration Fn(t) :=

σ(x1,n, . . . , xi,n, U(s) |s ≤ t, τn,i−1

n < t ≤ τn,i
n ). We can then derive that√

cn
n

[nr]∑
k=1

f

(
k

n
, cnxk,n

)
ek

D
= Mn

(τn,i
n

)
, if

τn,i−1

n
< r ≤ τn,i

n
, (1.2.10)

and deduct from (1.2.1) that

sup
1≤k≤n

∣∣∣∣(τnkn − τn,k−1

n

)
− 1

n

∣∣∣∣ = o(1), a.s.. (1.2.11)

The quadratic variation process [Mn] of Mn(t) is that

[Mn]t =cn

i−1∑
k=1

f2

(
k

n
, cnxk,n

)(τnk
n
−
τn,k−1

n

)
+ cnf

2

(
i

n
, cnxi,n

)(
t− τn,i−1

n

)

18



=
cn
n

i−1∑
k=1

f2

(
k

n
, cnxk,n

)
(1 + oa.s.(1)) + cnf

2

(
i

n
, cnxi,n

)(
t− τn,i−1

n

)
.

Because

E

∣∣∣∣cnf2

(
i

n
, cnxi,n

)(
t− τn,i−1

n

)∣∣∣∣ ≤ cn
n
Ef2

(
i

n
, cnxi,n

)
=
cn
n

∫ ∞
−∞

f2

(
i

n
, cndnx

)
hi,0,n(x)dx ≤ K

ndn

∫ ∞
−∞

f2

(
i

n
, x

)
dx

=
K

ndn
G3

(
i

n

)
≤ KK3

ndn
→ 0,

where K3 = max0≤t≤1G3(t) and by Assumption 4.3, dn = o(n) → ∞, we have that

cnf
2
(
i
n , cnxi,n

) (
r − τn,i−1

n

)
→P 0.

It therefore follows from (1.2.5) that

[Mn]t →D

∫ t

0
G3(a)dLW (a, 0), (1.2.12)

as n→∞.

Moreover, the covariance process [Mn,W ] of (Mn,W ) is

[Mn,W ]t =
√
cn

i−1∑
k=1

f

(
k

n
, cnxk,n

)(τnk
n
−
τn,k−1

n

)
σuw

+
√
cnf

(
i

n
, cnxi,n

)(
t− τn,i−1

n

)
σuw

=σuw(1 + o(1))

√
cn
n

i−1∑
k=1

f

(
k

n
, cnxk,n

)
+ σuw

√
cnf

(
i

n
, cnxi,n

)(
t− τn,i−1

n

)
,

for any t ∈ [0, 1], where σuw = Cov(U,W ). Meanwhile, using argument in Example 25.7

on Billingsley (1995, p.332),∣∣∣∣∣
√
cn
n

i−1∑
k=1

f

(
k

n
, cnxk,n

)∣∣∣∣∣ ≤ 1
√
cn

cn
n

n∑
k=1

∣∣∣∣f (kn, cnxk,n
)∣∣∣∣→P 0,

because cn →∞ and using (1.2.6), we have

cn
n

n∑
k=1

∣∣∣∣f (kn, cnxk,n
)∣∣∣∣→D

∫ 1

0
G2(t)dLW (t, 0).
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Additionally,
∣∣√cnf ( in , cnxi,n) (t− τn,i−1

n

)∣∣ ≤ √cnn cf (cnxi,n) → 0 a.s. by the integrability

of function cf (·) on R and
√
cn
n → 0 as n→∞. Thus,

[Mn,W ]Tn(t) →P 0, (1.2.13)

where Tn(t) = inf{s ∈ [0, 1], [Mn]s > t} be the sequence of time changes. Then, in virtue of

DDS (Dambis, Dubins-Schwarz) theorem (see, for example, Revuz and Yor, 1999, p.181),

it follows that the process defined by

Bn(t) = Mn(Tn(t))

becomes a so-called DDS Brownian motion. Also, Mn(t) = Bn([Mn]t), and it follows from

Theorem 2.3 of Revuz and Yor (1999, p.524) that (W,Bn) converges in distribution jointly

to two independent Brownian motions (W,B). Therefore, we have as n→∞√
cn
n

[nr]∑
k=1

f

(
k

n
, cnxk,n

)
ek

D
= Mn

(τn,i
n

)
=Mn(r) + oa.s.(1) = Bn([Mn]r) + oa.s.(1)

→DB

(∫ r

0
G3(a)dLW (a, 0)

)
=

(∫ r

0
G3(a)dLW (a, 0)

) 1
2

B(1).

This finishes the whole proof.

1.3 Time-homogeneous and integrable functionals

Since in most cases we encounter in reality the interested statistic quantities are Ln =∑n
s=1 F (s, cnxs,n) and Mn =

∑n
s=1 F (s, cnxs,n)es, the results in the last section could

not be used directly. To tackle this issue, the key point is how can we normalise the

time variable in the functionals. Noting that if s in function F is in the form of some

polynomial, we would be able to deal with the normalisation issue of time variable given

that the F has some convenient form. Motivated by this idea, we propose the following

definition of asymptotical homogeneity with respect to t.

Definition 1.3.1. Let F (t, x) be defined on t ≥ 0 and x ∈ R. Suppose for every x ∈ R,

∀η > 0, and t ∈ [0, 1],

F (ηt, x) = υ(η)f(t, x) +Rη(t, x),

where
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(a) f(t, x) satisfies Assumption C.

(b) Rη(t, x) is such that one of the following holds:

(i) |Rη(t, x)| ≤ qη(t)P (x) where both P (x) and P 2(x) are Lebesgue integrable, and

qη(t)/υ(η)→ 0 uniformly in t ∈ [0, 1] as η →∞.

(ii) |Rη(t, x)| ≤ qη(t)Q(ηt)P (x) where both P (x) and P 2(x) are Lebesgue integrable,

limη→∞
qη(t)
v(η) = l(t) which is bounded on [0,1] and Q(y) that is bounded on any

compact interval and limy→+∞Q(y) = 0.

Such functions F (t, x) are asymptotic homogeneous with respect to t and integrable

with respect to x, thus called homogeneous-integrable functions, said to be in Class (HI),

denoted by T (HI). Functions υ and f are called homogeneity power and normal function

respectively. Function F (t, x) with R(t, x) satisfying (i) and (ii) is said to be in T (HI1)

and T (HI2) respectively.

Theorem 1.3.1. Suppose that F (t, x) is in Class T (HI) with homogeneity power υ and

normal function f . Then, when Assumption A(a) and (c) hold, for any cn →∞, n/cn →
∞, and r ∈ [0, 1],

cn
nυ(n)

[nr]∑
s=1

F (s, cnxs,n)→D

∫ r

0
G1(t)dLW (t, 0), (1.3.1)

where G1(·) =
∫
f(·, x)dx and LW is the local–time process of W .

If A (a) is replaced by A (b), then for any cn →∞, n/cn →∞, and r ∈ [0, 1],

cn
nυ(n)

[nr]∑
s=1

F (s, cnxs,n)→P

∫ r

0
G1(t)dLW (t, 0), (1.3.2)

uniformly in r ∈ [0, 1] as n→∞ under the same probability space defined in Assumption

A (b).

Moreover, if {es} and {xs,n} satisfy Assumption B, and f2(t, x) satisfies Assumption

C. We have for n→∞, cn →∞, cn/n→ 0, and r ∈ [0, 1],√
cn
n

1

υ(n)

[nr]∑
s=1

F (s, cnxs,n) es →D

(∫ r

0
G3(t)dLW (t, 0)

) 1
2

N, (1.3.3)

where G3(·) =
∫
f2(·, x)dx and N is a standard normal random variable independent of

W .
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Proof. It follows from the definition of Class T (HI) that

cn
nυ(n)

[nr]∑
s=1

F (s, cnxs,n) =
cn
n

[nr]∑
s=1

f
( s
n
, cnxs,n

)
+

cn
nυ(n)

[nr]∑
s=1

Rn

( s
n
, cnxs,n

)
:=Π1 + Π2.

As suggested by Theorem 1.2.1, if A (a) and (c) are fulfilled, Π1 →D

∫ r
0 G1(t)dLW (t, 0);

while if A (b) and (c) are fulfilled, Π1 →P

∫ r
0 G1(t)dLW (t, 0) uniformly in r. It thus suffices

to prove that Π2 →P 0 uniformly in r under the condition A (c) in order to complete (1.3.1)

and (1.3.2).

If F (t, x) is in the class T (HI1), qn(t)/υ(n) → 0 uniformly in t ∈ [0, 1] as n → ∞,

then for a given ε > 0, when n is large, 0 < qn(t)/υ(n) < ε for all t. Thus, we have from

Assumption A(c) that

sup
0≤r≤1

E|Π2| ≤
cn

nυ(n)
sup

0≤r≤1

[nr]∑
s=1

E
∣∣∣Rn ( s

n
, cnxs,n

)∣∣∣
≤ cn
nυ(n)

sup
0≤r≤1

[nr]∑
s=1

qn

( s
n

)
E[P (cnxs,n)]

≤ cn
nυ(n)

n∑
s=1

qn

( s
n

)
E[P (cnxs,n)]

≤εcn
n

n∑
s=1

∫ ∞
−∞

P (cnds,0,nx)hs,0,n(x)dx

=ε
1

n

n∑
s=1

1

ds,0,n

∫ ∞
−∞

P (x)hs,0,n

(
1

cnds,0,n
x

)
dx

≤εK
∫ ∞
−∞

P (x)dx
1

n

n∑
s=1

1

ds,0,n
,

where K is the uniform upper bound of the densities hl,k,n(x). Thus, the desired result of

Π2 →P 0 uniformly in r follows from (1.1.4) and ε→ 0.

If F (t, x) is in the class T (HI2), |Rn
(
s
n , cnxs,n

)
| ≤ qn(t)Q(nt)P (cnxs,n) with P (x)

and P (x)2 integrable, limn→∞ qn(t)/υ(n) = l(t) which is bounded on [0,1] and Q(y) that

is bounded on any compact interval and limy→+∞Q(y) = 0. We have when n is large,

qn(t)/υ(n) = l(t)(1+o(1)) and for a given ε > 0, there exists s0 > 0 such that 0 < Q(s) < ε
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whenever s > s0. Whence,

sup
0≤r≤1

E|Π2| ≤
cn

nυ(n)
sup

0≤r≤1

[nr]∑
s=1

E
∣∣∣Rn ( s

n
, cnxs,n

)∣∣∣
≤ cn
nυ(n)

sup
0≤r≤1

[nr]∑
s=1

qn

( s
n

)
Q(s)E[P (cnxs,n)]

≤ cn
nυ(n)

n∑
s=1

qn

( s
n

)
Q(s)E[P (cnxs,n)]

≤cn
n

max
0≤t≤1

l(t)
n∑
s=1

Q(s)

∫ ∞
−∞

P (cnds,0,nx)hs,0,n(x)dx

≤K max
0≤t≤1

l(t)

∫ ∞
−∞

P (x)dx
1

n

n∑
s=1

1

ds,0,n
Q(s)

=K max
0≤t≤1

l(t)

∫ ∞
−∞

P (x)dx

[
1

n

s0∑
s=1

1

ds,0,n
Q(s) +

1

n

n∑
s=s0

1

ds,0,n
Q(s)

]

≤K max
0≤t≤1

l(t)

∫ ∞
−∞

P (x)dx

[
KQ(s0)

1

n

s0∑
s=1

1

ds,0,n
+ ε

1

n

n∑
s=1

1

ds,0,n

]
→0,

as n→∞ and then ε→ 0 due to (1.1.3) and (1.1.4) whereKQ(s0) = max(Q(1), · · · , Q(s0)).

This finishes the proof of (1.3.1) and (1.3.2). Now we turn to prove (1.3.3).

By virtue of the definition of the class T (HI),

√
cn
n

1

υ(n)

[nr]∑
s=1

F (s, cnxs,n) es

=

√
cn
n

[nr]∑
s=1

f
( s
n
, cnxs,n

)
es +

√
cn
n

1

υ(n)

[nr]∑
s=1

Rn

( s
n
, cnxs,n

)
es

:=Π3 + Π4.

It follows from Theorem 1.2.1 that

Π3 →D

(∫ r

0
G3(t)dLW (t, 0)

) 1
2

N,

as n → ∞ where N is a standard normal distributed variable independent of W . Hence,

it is sufficient to show Π4 →P 0 in order to complete the proof.
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The structure of martingale difference of (es,Fn.s) and the adaptivity between es and

xs,n give

E[Π4]2 = σ2
e

cn
n

1

υ(n)2

[nr]∑
s=1

ER2
n

( s
n
, cnxs,n

)
.

If F (t, x) is in the class T (HI1) and qn(t)
υ(n) → 0 uniformly in t ∈ [0, 1] as n→∞, for a

given ε > 0, when n is large, 0 < qn(t)/υ(n) < ε for all t. Therefore,

E[Π4]2 ≤σ2
e

cn
n

1

υ(n)2

n∑
s=1

q2
n

( s
n

)
EP 2(cnxs,n)

≤ε2σ2
e

cn
n

n∑
s=1

∫ ∞
−∞

P 2(cnds,0,nx)hs,0,n(x)dx

=ε2σ2
e

1

n

n∑
s=1

1

ds,0,n

∫ ∞
−∞

P 2(x)hs,0,n

(
1

cnds,0,n
x

)
dx

≤ε2σ2
eK

∫ ∞
−∞

P 2(x)dx
1

n

n∑
s=1

1

ds,0,n

→0,

as n→∞ and ε→ 0 on account of (1.1.4).

If F (t, x) is in the class T (HI2), then |Rn
(
s
n , cnxs,n

)
| ≤ qn

(
s
n

)
Q(s)P (cnxs,n) with

P (x) square integrable, limn→∞ qn(t)/υ(n) = l(t) which is bounded on [0,1] and Q(y) that

is bounded on any compact interval and limy→+∞Q(y) = 0. We have when n is large,

qn(t)/υ(n) = l(t)(1+o(1)) and for a given ε > 0, there exists s0 > 0 such that 0 < Q(s) < ε

whenever s > s0. Whence,

E[Π4]2 ≤σ2
e

cn
n

1

υ(n)2

n∑
s=1

q2
n

( s
n

)
Q2(s)EP 2(cnxs,n)

≤σ2
e max

0≤t≤1
l2(t)

cn
n

n∑
s=1

Q2(s)

∫ ∞
−∞

P 2(cnds,0,nx)hs,0,n(x)dx

=σ2
e max

0≤t≤1
l2(t)

1

n

n∑
s=1

1

ds,0,n
Q2(s)

∫ ∞
−∞

P 2(x)hs,0,n

(
1

cnds,0,n
x

)
dx

≤σ2
eK max

0≤t≤1
l2(t)

∫ ∞
−∞

P 2(x)dx
1

n

n∑
s=1

1

ds,0,n
Q2(s)

=σ2
eK max

0≤t≤1
l2(t)

∫ ∞
−∞

P 2(x)dx

[
1

n

s0∑
s=1

1

ds,0,n
Q2(s) +

1

n

n∑
s=s0

1

ds,0,n
Q2(s)

]
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≤σ2
eK max

0≤t≤1
l2(t)

∫ ∞
−∞

P 2(x)dx

[
KQ(s0)

1

n

s0∑
s=1

1

ds,0,n
+ ε2

1

n

n∑
s=1

1

ds,0,n

]
→0,

when n→∞ and ε→ 0. This completes the proof.

1.4 Regular functionals

In this section, we discuss an asymptotic theory about sample mean and sample covariance

for regular functionals f(t, x) to be defined below which treats the corresponding definition

and results in the literature as a special case.

The following definition of regularity of functional f(t, x) extends that of T (x) in

Park and Phillips (1999, 2001) for univariate functions. However, it also depends on the

definition of regularity for univariate functions in the literature. Therefore, when we say

a univariate function is regular, we mean that in the sense of the definition in Park and

Phillips (2001) with Π singleton.

Definition 1.4.1. Let f(t, x) be defined on [0, 1]× R. We say f(t, x) is regular, if

(a) for each x ∈ R, f(t, x) is Lipschitz with respect to t, that is, there exists a constant

L(x) relative to x such that for any t1, t2 ∈ [0, 1],

|f(t1, x)− f(t2, x)| ≤ L(x)|t1 − t2|, (1.4.1)

where when x varies L(x) is regular;

(b) for each t ∈ [0, 1], f(t, x) is continuous in x in a neighbourhood of infinity;

(c) on any compact interval K of R, for any given ε > 0 there exist functions f
ε
(t, x),

f ε(t, x), which are continuous in x, and δε such that whenever |y− x| < δε on K, for each

t ∈ [0, 1],

f
ε
(t, x) ≤ f(t, y) ≤ f ε(t, x), (1.4.2)

and ∫
K

sup
t∈[0,1]

(f ε(t, x)− f
ε
(t, x))dx→ 0, (1.4.3)

as ε→ 0.

Remark 1.4.1. Notice that if f(t, x) reduces to f(x), the regularity of f(t, x) would reduce

to that of f(x) in the sense of Definition 3.1 in Park and Phillips (1999, 2001). In addition,
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since t is in [0,1], any type of functions f(t, x) = q(t)P (x) with q(t) ∈ C1[0, 1] and P (x) is

regular in the sense of reference in the literature is regular in this paper.

Notice also that the main difference between this definition for f(t, x) and Definition

3.2 in Park and Phillips (2001) for function F (x, π), π ∈ Π, is that π is a parameter in

a compact set Π, while t ∈ [0, 1] is not a parameter, which is involved in the following

asymptotic theory as a variable.

Theorem 1.4.1. Let f(t, x) be regular. For the triangular array xs,n, 1 ≤ s ≤ n, n =

1, 2, · · · , and martingale difference (es,Fn,s) satisfying Assumption B,

1

n

n∑
s=1

f
( s
n
, xs,n

)
→D

∫ 1

0
f(r,W (r))dr, (1.4.4)

1√
n

n∑
s=1

f
( s
n
, xs,n

)
es →D

∫ 1

0
f(r,W (r))dU(r), (1.4.5)

as n→∞.

Proof. Observe that with the condition B (d) in Assumption B that (Un,Wn)→D (U,W )

on D[0, 1]2, it follows from the so-called Skorohod-Dudley-Wichura representation theorem

that there is a common probability space (Ω,F ,P) supporting (U0
n,W

0
n) and (Un,Wn) such

that

(U0
n,W

0
n) =D (Un,Wn) and (U0

n,W
0
n)→a.s. (U,W ), (1.4.6)

in D[0, 1]2 with uniform topology.

Moreover, under conditions B(a), (c) in Assumption B, as indicated by Lemma 1.2.1,

there exists an increasing sequence of stopping times τnk (k = 1, · · · , n) with τn0 = 0 on

the space (Ω,F ,P) such that

U0

(
k

n

)
=D U

(τnk
n

)
and W 0

(
k

n

)
=D W

(τnk
n

)
, (1.4.7)

for k = 1, · · · , n, and

sup
1≤k≤n

∣∣∣∣τnk − knδ

∣∣∣∣→a.s. 0 (1.4.8)

as n→∞ for any δ > max(1
2 ,

2
p) where p is the moment exponent given in condition B(a).

Such a schedule of consideration, referred to as the embedding schedule2 in the sequel,

allows us to rewrite any statistic about Un and Wn equivalently in distribution into an

2We emphasise that the embedding schedule applies in the subsequent proofs. We shall mention it

without showing the details whenever it is used.
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expression of U0
n and W 0

n , so that we can obtain the weak convergence of the statistic by

studying the latter with almost sure convergence of (U0
n,W

0
n)→a.s. (U,W ). It therefore is

reasonable in the sequel to assume without loss of generality that (Un,Wn) →a.s. (U,W )

in order to avoid notational complication. To prove the result in (1.4.4) we first write that

1

n

n∑
s=1

f
( s
n
, xs,n

)
=

1

n

n∑
s=1

f

(
s− 1

n
+

1

n
,Wn

(
s− 1

n
+

1

n

))

=

n∑
s=1

∫ s
n

s−1
n

f(r + o(1),Wn(r + o(1)))dr =

∫ 1

0
f(r + o(1),Wn(r + o(1)))dr.

Thus, to complete the result in (1.4.4), it therefore suffices to show∫ 1

0
f(r + o(1),Wn(r + o(1)))dr →a.s.

∫ 1

0
f(r,W (r))dr.

Because of the condition (b) in regularity definition, there exists a constant c > 0 such

that f(t, x) is continuous in x whenever |x| > c. Let J = [−c − 2, c + 2]. For any given

ε > 0, it follows from the regularity of f that there exist continuous functions f
ε
(r, x),

f ε(r, x) in x and δ > 0 such that whenever |x− y| < δ on J , for each r ∈ [0, 1],

f
ε
(r, x) ≤ f(r, y) ≤ f ε(r, x).

Note that when x = y ∈ J , we always have f
ε
(r, x) ≤ f(r, x) ≤ f ε(r, x).

Since sup0≤r≤1 |Wn(r)−W (r)| = oa.s.(1), let n large enough such that sup0≤r≤1 |Wn(r)−
W (r)| < 1

2δ almost surely. Without loss of generality, assume that δ < 1.

Observe that for large n, |Wn(r + o(1)) −W (r)| ≤ |Wn(r + o(1)) −W (r + o(1))| +
|W (r+ o(1))−W (r)| < δ almost surely uniformly in r where we exploit the fact that the

Brownian motion sample path is almost surely continuous, hence almost surely uniformly

continuous on [0, 1].

Denote A(r) = {|W (r)| < c+1}. It follows that on A(r), when n is large, Wn(r+o(1)) ∈
J , W (r) ∈ J ; while on Ā(r), |Wn(r + o(1))| > c, |W (r)| > c.

Notice that from Condition (a) of regularity,∣∣∣∣∫ 1

0
f(r + o(1),Wn(r + o(1)))dr −

∫ 1

0
f(r,W (r))dr

∣∣∣∣
≤
∫ 1

0
|f(r + o(1),Wn(r + o(1)))− f(r,Wn(r + o(1)))| dr

+

∣∣∣∣∫ 1

0
[f(r,Wn(r + o(1)))− f(r,W (r))]dr

∣∣∣∣
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≤o(1)

∫ 1

0
L(Wn(r + o(1)))dr +

∣∣∣∣∫ 1

0
[f(r,Wn(r + o(1)))− f(r,W (r))]dr

∣∣∣∣ .
However, ∣∣∣∣∫ 1

0
[f(r,Wn(r + o(1)))− f(r,W (r))]dr

∣∣∣∣
≤
∫ 1

0
|f(r,Wn(r + o(1)))dr − f(r,W (r))|I(A(r))dr

+

∣∣∣∣∫ 1

0
[f(r,Wn(r + o(1)))− f(r,W (r))]I(Ā(r))dr

∣∣∣∣
≤
∫ 1

0
|f ε(r,W (r))− f

ε
(r,W (r))|I(A(r))dr

+

∣∣∣∣∫ 1

0
[f(r,Wn(r + o(1)))dr − f(r,W (r))]I(Ā(r))dr

∣∣∣∣
:=∆1 + ∆2.

where I(·) is the indicator function.

Moreover, it follows from the occupation time formula for the bivariate Brownian

functional that

∆1 =

∫ 1

0
[f ε(r,W (r))− f

ε
(r,W (r))]I(|W (r)| < c+ 1)dr

=

∫ c+1

−c−1
da

∫ 1

0

[
f ε(r, a)− f

ε
(r, a)

]
dLW (r, a)

≤
∫
J

sup
0≤r≤1

[
f ε(r, a)− f

ε
(r, a)

]
da

∫ 1

0
dLW (r, a)

=

∫
J
LW (1, a) sup

0≤r≤1

[
f ε(r, a)− f

ε
(r, a)

]
da

≤ sup
a∈J

LW (1, a)

∫
J

sup
0≤r≤1

[
f ε(r, a)− f

ε
(r, a)

]
da→a.s. 0,

as ε→ 0, due to regularity of f and supa∈J LW (1, a) ≤ 1 almost surely.

Furthermore, because f(r, ·) is continuous on |x| > c, the continuous mapping theorem

implies that ∆2 → 0 a.s.

Regarding
∫ 1

0 L(Wn(r+o(1)))dr, since L(·) satisfies Condition (b) and (c) in regularity,

similar derivation as above yields the result that it approaches
∫ 1

0 L(W (r))dr almost surely.

Hence, the proof of (1.4.4) is completed.

We are ready to prove (1.4.5). Once again the embedding schedule described in the

first part permits us to derive it under a stronger condition that (Un,Wn) →a.s. (W,U).
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Let us write

1√
n

n∑
s=1

f
( s
n
, xs,n

)
es =

n∑
s=1

f
( s
n
, xs,n

) 1√
n
es

=
n∑
s=1

f

(
s− 1

n
+ o(1),Wn

(
s− 1

n
+ o(1)

))(
Un

( s
n

)
− Un

(
s− 1

n

))

=

n∑
s=1

∫ s
n

s−1
n

f(r + o(1),Wn(r + o(1)))dUn(r)

=

∫ 1

0
f(r + o(1),Wn(r + o(1)))dUn(r) :=

4∑
k=1

Πk,

where

Π1 =

∫ 1

0
[f(r + o(1),Wn(r + o(1)))− f(r,Wn(r + o(1)))]dUn(r)

Π2 =

∫ 1

0
[f(r,Wn(r + o(1)))− fε(r,Wn(r + o(1)))]dUn(r)

Π3 =

∫ 1

0
fε(r,Wn(r + o(1)))dUn(r)−

∫ 1

0
fε(r,W (r))dU(r)

Π4 =

∫ 1

0
fε(r,W (r))dU(r),

in which denote fε(r, x) = f ε(r, x) or f
ε
(r, x) for notational convenience. Observe that

(fε(r,Wn(r + o(1))), Un(r)) → (fε(r,W (r)), U(r)) almost surely due to continuity in x of

fε. It follows from Theorem 2.2 in Kurtz and Protter (1991) that Π3 →P 0 as n→∞.

Therefore, in order to finish the proof, we need to show (1) Π1 →P 0 when n→∞; (2)

for all large n, Π2 →P 0 and Π4 →P

∫ 1
0 f(r,W (r))dU(r) when ε → 0. Let us investigate

them term by term.

It follows from Assumption B (a), (c) and regularity that

E[Π1]2 =E

{∫ 1

0
[f(r + o(1),Wn(r + o(1)))− f(r,Wn(r + o(1)))]dUn(r)

}2

=σ2
eE

∫ 1

0
[f(r + o(1),Wn(r + o(1)))− f(r,Wn(r + o(1)))]2dr

≤o(1)σ2
eE

∫ 1

0
L2(Wn(r + o(1)))dr → 0,

as n → ∞ because we have
∫ 1

0 L
2(Wn(r + o(1)))dr →a.s.

∫ 1
0 L

2(W (r))dr similar to the

counterpart in first part, and by virtue of the regularity, L2(Wn(r)) can be dominated by
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L2
ε (W (r)) when n is large for some ε > 0 and Lε(·) is continuous, E

∫ 1
0 L

2(Wn(r))dr →
E
∫ 1

0 L
2(W (r))dr <∞. This finishes the proof of (1).

The convergence of Π2 and Π4 can be proven at the same time if we show∫ 1

0
[f(r,Wn(r + o(1)))− fε(r,Wn(r + o(1)))]dUn(r)→P 0,

as ε → 0 for all large n including n = ∞ that means conventionally (U∞(r), V∞(r)) =

(U(r), V (r)).

Let real c be defined as before. All notations ε, δ, J , A(r), f ε(t, x) and f
ε
(t, x) keep

the same meanings as in the first part. In view of regularity condition (b), we may

find f ε(r, x) and f
ε
(r, x) such that they are continuous in x on R for each r ∈ [0, 1],

since beyond [−c, c], we can take f ε(r, x) = f
ε
(r, x) = f(t, x) and due to this reason,

f ε(r, x)− f
ε
(r, x) is bounded on R. Consequently, supr∈[0,1](f ε(r, x)− f

ε
(r, x)) is bounded

on R because it is continuous and beyond [−c, c] it is zero. Let C be the upper bound of

supr∈[0,1][f ε(r, x)− f
ε
(r, x)].

By the adaptivity of (Un(r),Wn(r + o(1))), for large n,

E

{∫ 1

0
[f(r,Wn(r + o(1)))− fε(r,Wn(r + o(1)))]dUn(r)

}2

=σ2
eE

∫ 1

0
[f(r,Wn(r + o(1)))− fε(r,Wn(r + o(1)))]2dr

=σ2
eE

∫ 1

0
[f(r,Wn(r + o(1)))− fε(r,Wn(r + o(1)))]2I(A(r))dr

≤σ2
eE

∫ 1

0
[f ε(r,Wn(r + o(1)))− f

ε
(r,Wn(r + o(1)))]2I(A(r))dr

→a.s.σ
2
eE

∫ 1

0
[f ε(r,W (r))− f

ε
(r,W (r))]2I(A(r))dr,

by virtue of continuity and boundedness of f ε(t, x)−f
ε
(t, x) in x and the fact that indicator

function is bounded as n→∞. Observe that by the occupation formula∫ 1

0
[f ε(r,W (r))− f

ε
(r,W (r))]2I(|W (r)| ≤ c+ 1)dr

=

∫ ∞
−∞

da

∫ 1

0
[f ε(r, a)− f

ε
(r, a)]2I(|a| ≤ c+ 1)dLW (r, a)

=

∫ c+1

−c−1
da

∫ 1

0
[f ε(r, a)− f

ε
(r, a)]2dLW (r, a)
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≤C
∫
J

sup
0≤r≤1

[f ε(r, a)− f
ε
(r, a)]da

∫ 1

0
dLW (r, a)

≤C sup
a
LW (1, a)

∫
J

sup
0≤r≤1

[f ε(r, a)− f
ε
(r, a)]da→a.s. 0,

as ε→ 0.

It follows from the dominated convergence theorem that Π2 →P 0 and Π4 converges

to the desired variable in probability as ε→ 0. This finishes the proof.

The following lemma gives the closure of the usual operation: addition, multiply by a

scalar and product for regular functionals.

Lemma 1.4.1. Suppose that both f(t, x) and g(t, x) are regular, then f(t, x) + g(t, x),

cf(t, x) for any c ∈ R and f(t, x)g(t, x) are regular.

Proof. For the sake of convenience, we firstly denote the components in the definition of

regularity for f(t, x) and g(t, x). There exist function Lf (x) and Lg(x) which are regular

such that for any t1, t2 ∈ [0, 1] we have

|f(t1, x)− f(t2, x)| ≤ Lf (x)|t1 − t2|, |g(t1, x)− g(t2, x)| ≤ Lg(x)|t1 − t2|.

On any compact interval K of R, for any given ε > 0 there exist functions f
ε
(t, x), f ε(t, x),

g
ε
(t, x), gε(t, x) which are continuous in x, and δε such that whenever |y − x| < δε on K,

for each t ∈ [0, 1],

f
ε
(t, x) ≤ f(t, y) ≤ f ε(t, x), g

ε
(t, x) ≤ g(t, y) ≤ gε(t, x)

and ∫
K

sup
t∈[0,1]

(f ε(t, x)− f
ε
(t, x))dx→ 0,

∫
K

sup
t∈[0,1]

(gε(t, x)− g
ε
(t, x))dx→ 0

as ε→ 0.

We shall prove the statements one by one.

(1) Evidently f(t, x) + g(t, x) is Lipschitz with regular function Lf (x) +Lg(x) because

of Lemma A1 of Park and Phillips (2001). Whenever |y − x| < δε, we have

f
ε
(t, x) + g

ε
(t, x) ≤ f(t, y) + g(t, y) ≤ f ε(t, x) + gε(t, x),

and ∫
K

sup
t∈[0,1]

[f ε(t, x) + gε(t, x)− f
ε
(t, x)− g

ε
(t, x)]dx
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≤
∫
K

sup
t∈[0,1]

(f ε(t, x)− f
ε
(t, x))dx+

∫
K

sup
t∈[0,1]

(gε(t, x)− g
ε
(t, x))dx→ 0,

as ε→ 0. Thus, f(t, x) + g(t, x) is regular.

(2) It is obviously valid.

(3) For any t1, t2 ∈ [0, 1], we have

|f(t1, x)g(t1, x)− f(t2, x)g(t2, x)|

≤|g(t1, x)||f(t1, x)− f(t2, x)|+ |f(t2, x)||g(t1, x)− g(t2, x)|

≤|g(t1, x)|Lf (x)|t1 − t2|+ |f(t2, x)|Lg(x)|t1 − t2|

≤(t1Lg(x) + g(0, x))Lf (x)|t1 − t2|+ (t2Lf (x) + f(0, x))Lg(x)|t1 − t2|

≤[(t1Lg(x) + g(0, x))Lf (x) + (t2Lf (x) + f(0, x))Lg(x)]|t1 − t2|

≤[(Lg(x) + gε(0, x))Lf (x) + (Lf (x) + f ε(0, x))Lg(x)]|t1 − t2|,

and since both gε(0, x) and f ε(0, x) are continuous function, by Lemma A1 of Park and

Phillips (2001) the term in the square brackets is regular.

Meanwhile, M1(t, x) ≤ f(t, y)g(t, y) ≤M2(t, x) where

M1(t, x) = min(f
ε
(t, x)g

ε
(t, x), f

ε
(t, x)gε(t, x), f ε(t, x)g

ε
(t, x), f ε(t, x)gε(t, x)),

M2(t, x) = max(f
ε
(t, x)g

ε
(t, x), f

ε
(t, x)gε(t, x), f ε(t, x)g

ε
(t, x), f ε(t, x)gε(t, x)).

Because all components in the min and max are continuous in x, on compact set

K they are bounded in absolute value by Γ(t), say. Meanwhile, M1(t, x) and M2(t, x)

are continuous in x as well due to the same reason. Thus, 0 ≤ M2(t, x) −M1(t, x) ≤
Γ(t)[|gε(t, x)− g

ε
(t, x)|+ |f ε(t, x)− f

ε
(t, x)|]. We then have

0 ≤
∫
K

sup
0≤t≤1

[M2(t, x)−M1(t, x)]dx

≤ sup
0≤t≤1

Γ(t)

[∫
K

sup
0≤t≤1

(gε(t, x)− g
ε
(t, x))dx+

∫
K

sup
0≤t≤1

(f ε(t, x)− f
ε
(t, x))dx

]
→ 0

as ε→ 0. The proof is completed.

1.5 Homogeneous regular functionals

We borrow some notations from Park and Phillips (2001) for convenience. Let TLB denote

the class of locally bounded transformations on R; let T 0
LB be a subclass of TLB consisting
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only of locally bounded transformations which are exponential bounded, i.e. transforma-

tions P such that P (x) = O(ec|x|) for some c > 0; the class of bounded transformations on

R is denoted by TB, and a subclass T 0
B of TB is the collection of transformations that are

bounded and vanish at infinity, i.e. transformations P such that P (x) → 0 as |x| → ∞.

Clearly, T 0
B ⊂ TB ⊂ T 0

LB ⊂ TLB.

Definition 1.5.1. We say function F (t, x) is asymptotic homogeneous regular with respect

to both t and x, if for all ξ, η > 0 and t ∈ [0, 1],

F (ξt, ηx) = υ1(ξ)υ2(η)f(t, x) +R(ξ, η; t, x), (1.5.1)

where f(t, x) is regular on [0, 1] × R, and |R(ξ, η; t, x)| ≤ Aξ(t)a(η)P (x) + q(t)b(ξ)Bη(x)

with positive functions A, a, P,B, q, b such that

a) P (x) ∈ T 0
LB, lim supη→∞

a(η)
υ2(η) < ∞ and either lim supξ→∞

Aξ(t)
υ1(ξ) = 0 uniformly in

t ∈ [0, 1]; or υ1(ξ) → ∞ as ξ → ∞ and Aξ(t) = A(t) which is Riemann integrable on

[0, 1]; or Aξ(t) = Āξ(t)Q(ξt) with lim supξ→∞
Āξ(t)
υ1(ξ) = l(t) which is bounded on [0, 1]

and Q(·) ∈ T 0
B . And,

b) q(t) is bounded on [0, 1], lim supξ→∞
b(ξ)
υ1(ξ) < ∞ and either Bη(x) = B̄(η)V (x) with

lim supη→∞
B̄(η)
υ2(η) = 0 and V (x) ∈ T 0

LB, or Bη(x) = B̄(η)V (ηx) where V (·) ∈ T 0
B and

lim supη→∞
B̄(η)
υ2(η) <∞.

In the definition of asymptotic homogeneity, we denote F (t, x) ∈ T (HH) and call

f(t, x) the normal function of F (t, x), and υ1(·) and υ2(·) the homogeneity powers with

respect to t and x respectively.

Remark 1.5.1. (a) If the functions involved in the definition reduce to univariate functions

without time variable, i.e., F (t, x) ≡ F (x), υ1(ξ) = 1, f(t, x) ≡ f(x) and R(ξ, η; t, x) ≡
R(η;x) with q(t) ≡ 1, b(ξ) = 1, it becomes the Class (H) in Park and Phillips (1999, 2001).

(b) In practice, often one of the two dominate terms of R appears. The only appearance

of the first term implies that q(t) = 0, while that of the second term indicates that

P (x) = 0.

(c) There are many functions which have asymptotic homogeneity. For example,

(1). F (t, x) = a1t
m1xl1 + · · · + akt

mkxlk with m1 ≥ · · · ≥ mk ≥ 0, m1 ≥ 1 and

l1 ≥ · · · ≥ lm ≥ 0, is homogeneous where f(t, x) = a1t
m1xl1 , υ1(ξ) = ξm1 , υ2(η) = ηl1 ,

and if m1 > m2, |R(ξ, η; t, x)| ≤ Aξ(t)a(η)P (x) where Aξ(t) = a2ξ
m2tm2 + · · ·+ akξ

mktm2 ,
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a(η) = ηl2 and P (x) = 1 + |x|l2 . Clearly, limξ→∞
Aξ(t)
υ1(ξ) = 0 uniformly in t. If l2 < l1,

|R(ξ, η; t, x)| ≤ q(t)b(ξ)Bη(x) where q(t) = 1 + tm2 , b(ξ) = ξm2 , Bη(x) = ηl2(1 + |x|l2).

Palpably, limη→∞
ηl2
υ2(η) = 0 and 1 + |x|l2 ∈ T 0

LB.

(2). F (t, x) = tα log(1 + |x|) with α ≥ 1. The normal function f(t, x) = tα and

υ1(ξ) = ξα, υ2(η) = log(η), while R(ξ, η; t, x) ≤ ξαtα log(1 + |x|). Notice that b(ξ) = ξα,

q(t) = tα, Bη(x) = log(1 + |x|) with B̄(η) = 1 and log(1 + |x|) ∈ T 0
LB.

(3). F (t, x) = t2x+
√

1 + t4 1
1+| ln t|x. The normal function is f(t, x) = t2x, the homo-

geneous powers are υ1(ξ) = ξ2 and υ2(η) = η; while R(ξ, η; t, x) ≤ Aξ(t)a(η)P (x), where

a(η) = η, P (x) = |x|, Aξ(t) = Āξ(t)Q(ξt) with limξ→∞
Āξ(t)
υ1(ξ) = limξ→∞

√
1+ξ4t4

ξ2
= t2 and

Q(y) = 1
1+| ln y| → 0 when y → +∞.

(4). F (t, x) = tαD(x) where α ≥ 1 and D(x) is a distribution function for any random

variable. Then f(t, x) = tαI(x ≥ 0), υ1(ξ) = ξα, υ2(η) = 1, R(ξ, η; t, x) < b(ξ)q(t)Q(ηx)

where b(ξ) = ξα, q(t) = tα and Q(y) = D(y)I(y < 0) + (1 − D(y))I(y ≥ 0) which

approaches to zero when y → +∞.

Theorem 1.5.1. Let F (t, x) be in Class T (HH) with homogeneity powers υ1(·) and υ2(·)
and normal function f(t, x). Let martingale difference (es,Fn,s) and xs,n satisfy Assump-

tion B. We then have

1

nυ1(n)υ2(cn)

n∑
s=1

F (s, cnxs,n) →D

∫ 1

0
f(r,W (r))dr, (1.5.2)

1√
nυ1(n)υ2(cn)

n∑
s=1

F (s, cnxs,n)es →D

∫ 1

0
f(r,W (r))dU(r), (1.5.3)

where (U(r),W (r)) is the limit of (Un(r),Wn(r)) for r ∈ [0, 1] stipulated in Assumption

B.

Remark 1.5.2. Notice that if F (t, x) reduces to an univariate function F (x), with cn =
√
n,

(1.5.2) becomes Theorem 5.3 of Park and Phillips (1999) and the first part of Theorem 3.3

with singleton Π of Park and Phillips (2001); (1.5.3) becomes the second part of Theorem

3.3 with singleton Π in Park and Phillips (2001).

Proof. Observe that, like preceding proofs, the embedding schedule allow us to work un-

der a stronger condition (Wn, Un) → (W,U) almost surely but still achieve the weak

convergence for the assertion.
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It follows from the asymptotic homogeneity of F function that

1

nυ1(n)υ2(cn)

n∑
s=1

F (s, cnxs,n)

=
1

n

n∑
s=1

f
( s
n
, xs,n

)
+

1

nυ1(n)υ2(cn)

n∑
s=1

R(n, cn; s, cnxs,n).

Note that f(t, x) is regular and thus by the proof (not the result) of Theorem 1.4.1,

1

n

n∑
s=1

f
( s
n
, xs,n

)
→a.s.

∫ 1

0
f(r,W (r))dr,

as n→∞.

In order to complete the proof of (1.5.2), it thus suffices to show

1

nυ1(n)υ2(cn)

n∑
s=1

R(n, cn; s, cnxs,n)→a.s. 0.

Let limn→∞
a(cn)
υ2(cn) = a and limn→∞

b(n)
υ1(n) = b. Let K = [smin − 1, smax + 1] with

smin = infr∈[0,1]W (r) and smax = supr∈[0,1]W (r). Note that almost surely K is a finite

compact interval.

It follows from the definition that as n is large,

1

nυ1(n)υ2(cn)

n∑
s=1

|R(n, cn; s, cnxs,n)|

≤ a(cn)

nυ1(n)υ2(cn)

n∑
s=1

An

( s
n

)
P (xs,n) +

b(n)

nυ1(n)υ2(cn)

n∑
s=1

q
( s
n

)
Bcn(xs,n)

=
a(1 + o(1))

nυ1(n)

n∑
s=1

An

( s
n

)
P (xs,n) +

b(1 + o(1))

nυ2(cn)

n∑
s=1

q
( s
n

)
Bcn(xs,n)

:=Π1 + Π2.

If lim supn→∞
An( sn)
υ1(n) = 0 uniformly in s, then for any given ε > 0, when n is large

enough, 0 <
An( sn)
υ1(n) < ε. Thus,

0 ≤ Π1 <εa(1 + o(1))
1

n

n∑
s=1

P (xs,n) ≤ εa(1 + o(1))‖P‖K →a.s. 0,

as n → ∞ and ε → 0 since xs,n = Wn(r) ∈ K due to convergence of Wn(r) to W (r)

almost surely and ‖P‖K , the bound of P (x) on K (in the sequel similar notations have

the similar meaning), is almost surely finite. Thus, Π1 → 0, a.s.
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If υ1(n)→∞ as n→∞ and An(t) = A(t) which is Riemann integrable on [0, 1], then

0 < Π1 =
a(1 + o(1))

nυ1(n)

n∑
s=1

A
( s
n

)
P (xs,n)

≤a(1 + o(1))

υ1(n)
‖P‖K

1

n

n∑
s=1

A
( s
n

)
→a.s. 0,

since as n → ∞, 1
υ1(n) → 0, 1

n

∑n
s=1A

(
s
n

)
→
∫ 1

0 A(t)dt < ∞ and ‖P‖K < ∞ a.s.. We

have Π1 →a.s. 0 as well.

If An(t) = Ān(t)Q(nt) with lim supn→∞
Ān(t)
υ1(n) = l(t) bounded on [0,1] and Q(y) is

bounded on R as well as limy→+∞Q(y) = 0, then for any given ε > 0, there exists a

positive integer s0 such that when y > s0, 0 < Q(y) < ε. Therefore,

0 < Π1 =
a(1 + o(1))

nυ1(n)

n∑
s=1

Ān

( s
n

)
Q(s)P (xs,n)

≤a(1 + o(1))

n

n∑
s=1

l
( s
n

)
Q(s)P (xs,n)

≤a(1 + o(1)) max
0≤t≤1

l(t)‖P‖K
1

n

n∑
s=1

Q(s)

≤a(1 + o(1)) max
0≤t≤1

l(t)‖P‖K

[
1

n

s0∑
s=1

Q(s) +
1

n

n∑
s=s0

ε

]
→a.s. 0,

as n→∞ and ε→ 0. Thus, Π1 →a.s. 0 too.

We are now in a position to show Π2 →a.s. 0.

If Bcn(xs,n) = B̄(cn)V (xs,n) with lim supn→∞
B̄(cn)
υ2(cn) = 0, 0 ≤ q(t) ≤ Mq < ∞ on [0,1]

and V (x) is locally bounded, then for any given ε > 0, when n is large, 0 < B̄(cn)
υ2(cn) < ε.

Thus,

0 < Π2 =
b(1 + o(1))

nυ2(cn)

n∑
s=1

q
( s
n

)
B̄(cn)V (xs,n)

≤εb(1 + o(1))‖V ‖KMq →a.s. 0,

as n→∞ and ε→ 0. Thus, Π2 →a.s. 0.

If Bcn(xs,n) = B̄(cn)V (cnxs,n) where lim supn→∞
B̄(cn)
υ2(cn) = l <∞ and V (y) is bounded

and vanishes at infinity, viz., limy→∞ V (y) = 0, then when n is large, B̄(cn)
υ2(cn) = l(1 + o(1))

and when |y| > y0 for some positive y0 and a given ε > 0, |V (y)| < ε. Therefore,

0 < Π2 =
b(1 + o(1))B̄(cn)

nυ2(cn)

n∑
s=1

q
( s
n

)
V (cnxs,n)
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=bl(1 + o(1))
1

n

n∑
s=1

q
( s
n

)
V (cnxs,n)

=blMq(1 + o(1))
1

n

n∑
s=1

V (cnxs,n)

× [I(|cnxs,n| ≤ y0) + I(|cnxs,n| > y0)]

≤blMq(1 + o(1))

(
‖V ‖ 1

n

n∑
s=1

I(cn|xs,n| ≤ y0) + ε

)

=blMq(1 + o(1))

(
‖V ‖

∫ 1

0
I(cn|Wn(r + o(1))| ≤ y0)dr + ε

)
.

Observe that for ε > 0,

{cn|Wn(r + o(1))| ≤ y0}

=

{
|Wn(r + o(1))| ≤ y0

cn
, |W (r)| ≤ y0

cn
+ ε

}
∪
{
|Wn(r + o(1))| ≤ y0

cn
, |W (r)| > y0

cn
+ ε

}
⊂
{
|W (r)| ≤ y0

cn
+ ε

}
∪ {|Wn(r + o(1))−W (r)| > ε} .

Thus,

I{cn|Wn(r + o(1))| ≤ y0} ≤I
{
|W (r)| ≤ 1

cn
y0 + ε

}
+ I {|Wn(r + o(1))−W (r)| > ε} .

However, as n→∞, for every r ∈ [0, 1],{
|W (r)| ≤ 1

cn
y0 + ε

}
↓ {|W (r)| ≤ ε} , and

{|Wn(r + o(1))−W (r)| > ε} ↓ ∅,

which imply that

I

{
|W (r)| ≤ 1

cn
y0 + ε

}
→a.s. I {|W (r)| ≤ ε}

I

{
sup

0≤r≤1
|Wn(r + o(1))−W (r)| > ε

}
→a.s. 0.

It follows from the dominated convergence theorem that

0 ≤
∫ 1

0
I(cn|Wn(r + o(1))| ≤ y0)dr
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≤
∫ 1

0
I

{
|W (r)| ≤ 1

cn
y0 + ε

}
dr +

∫ 1

0
I {|Wn(r + o(1))−W (r)| > ε} dr

→a.s.

∫ 1

0
I {|W (r)| ≤ ε} dr.

Then, as ε → 0, I {|W (r)| ≤ ε} →a.s. I{|W (r)| = 0} = 0 almost surely except r = 0.

Once again, the dominated convergence theorem implies that∫ 1

0
I {|W (r)| ≤ ε} dr →a.s.

∫ 1

0
I{|W (r)| = 0}dr = 0, a.s.

Hence, Π2 →a.s. 0 as n → ∞ first and then ε → 0. This finishes the proof of (1.5.2).

We are now ready to prove (1.5.3).

It follows from the asymptotic homogeneity of F (·, ·) that

1√
nυ1(n)υ2(cn)

n∑
s=1

F (s, cnxs,n)es

=
1√
n

n∑
s=1

f
( s
n
, xs,n

)
es +

1√
nυ1(n)υ2(cn)

n∑
s=1

R(n, cn; s, cnxs,n)es

:=Π3 + Π4.

According to Theorem 1.4.1,

Π3 =
1√
n

n∑
s=1

f
( s
n
, xs,n

)
es →D

∫ 1

0
f(r,W (r))dU(r).

It thus suffices to show that with the help of the embedding schedule, Π4 →P 0 as

n→∞ in order to finish the proof. Using martingale structure of (es,Fn,s) we have

E[Π4]2 =
1

nυ1(n)2υ2(cn)2
E

[
n∑
s=1

R(n, cn; s, cnxs,n)es

]2

=
σ2
e

nυ1(n)2υ2(cn)2

n∑
s=1

ER2(n, cn; s, cnxs,n)

≤ 2σ2
ea

2(cn)

nυ1(n)2υ2(cn)2

n∑
s=1

A2
n

( s
n

)
E[P (xs,n)]2

+
2σ2

eb
2(n)

nυ1(n)2υ2(cn)2

n∑
s=1

q2
( s
n

)
E[Bcn(xs,n)]2

:=Π41 + Π42.
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Observe that if lim supn→∞
An( sn)
υ1(n) = 0 uniformly in s, then for any given ε > 0, when

n is large enough, 0 <
An( sn)
υ1(n) < ε. Thus

0 ≤ Π41 ≤ 2a2σ2
e(1 + o(1))ε2

1

n

n∑
s=1

E[P (xs,n)]2.

Since P 2(·) ∈ T 0
LB, P 2(xs,n) ≤ ‖P 2‖K < ∞ almost surely and then E[‖P 2‖K ] < ∞,

hence 1
n

∑n
s=1E[P (xs,n)]2 ≤ E[‖P 2‖K ], which implies that Π41 → 0.

If An
(
s
n

)
= A

(
s
n

)
and υ1(n)→∞ when n→∞,

0 ≤ Π41 ≤2a2σ2
e(1 + o(1))

1

nυ1(n)2

n∑
s=1

A2
( s
n

)
E[P (xs,n)]2

≤σ2
e(1 + o(1))E[‖P 2‖K ]

1

υ1(n)2

1

n

n∑
s=1

A2
( s
n

)
→ 0,

on account of integrability of A2(t), which implies that Π41 → 0 as well.

If An(t) = Ān(t)Q(nt) with lim supn→∞
Ān(t)
υ1(n) = l(t) which is bounded on [0, 1] and

Q(y) is bounded as well as limy→+∞Q(y) = 0, then for any given ε > 0, there exists a

positive integer s0 such that when y > s0, 0 < Q(y) < ε.

0 ≤ Π41 ≤2a2σ2
e max
t∈[0,1]

l2(t)(1 + o(1))
1

n

n∑
s=1

Q2(s)E[P (xs,n)]2

≤2a2σ2
eE[‖P 2‖K ] max

t∈[0,1]
l2(t)(1 + o(1))

1

n

n∑
s=1

Q2(s)

≤2a2σ2
eE[‖P 2‖K ] max

t∈[0,1]
l2(t)(1 + o(1))

[
1

n

s0∑
s=1

Q2(s) +
1

n

n∑
s=s0

ε2

]
→0,

as n→∞ and ε→ 0.

As for Π42, if Bcn(xs,n) = B̄(cn)V (xs,n), V (x) ∈ T 0
LB, and lim supn→∞

B̄(cn)
υ2(cn) = 0, then

for any given ε > 0, when n is large,

0 ≤ Π42 ≤2σ2
eb

2(1 + o(1))ε2
1

n

n∑
s=1

q2
( s
n

)
E[V (xs,n)]2

≤2σ2
eb

2(1 + o(1))ε2E[‖V 2‖K ]Mq → 0,

as n→∞ and ε→ 0, hence, Π42 → 0.
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If Bcn(xs,n) = B̄(cn)V (cnxs,n) where lim supn→∞
B̄(cn)
υ2(cn) = l <∞ and V (y) is bounded

and vanishes at infinity, viz., limy→∞ V (y) = 0, then when n is large, B̄(cn)
υ2(cn) = l(1 + o(1))

and for a given ε > 0, let y0 > 0 such that whenever |y| > y0, |V (y)| < ε. Consequently,

0 ≤ Π42 =
2σ2

eb
2(n)B̄2(cn)

nυ1(n)2υ2(cn)2

n∑
s=1

q2
( s
n

)
E[V (cnxs,n)]2

≤2σ2
eb

2l2(1 + o(1))
1

n

n∑
s=1

q2
( s
n

)
E[V (cnxs,n)]2

=2σ2
eb

2l2(1 + o(1))
1

n

n∑
s=1

q2
( s
n

)
E{[V (cnxs,n)]2

× [I(|cnxs,n| ≤ y0) + I(|cnxs,n| > y0)]}

≤2σ2
eb

2l2(1 + o(1))‖V 2‖M2
qE

1

n

n∑
s=1

I(cn|xs,n| ≤ y0) + 2σ2
eb

2l2(1 + o(1))ε2M2
q

=2σ2
eb

2l2(1 + o(1))‖V 2‖M2
qE

∫ 1

0
I(cn|Wn(r)| < y0)dr + 2σ2

eb
2l2(1 + o(1))ε2M2

q

→ 0

by the result in the first part that
∫ 1

0 I(cn|Wn(r)| < y0)dr →a.s. 0 and the dominated

convergence theorem as n→∞ and ε→ 0.

This finishes the whole proof.

40



Chapter 2

Orthogonal expansion of Brownian

motion functionals

2.1 Introduction

Researchers have long employed stochastic processes to depict random phenomena in many

disciplines such as economics, finance and engineering. In finance, for example, equity’s

price in the Black-Scholes model is formulated as a stochastic process. Meanwhile, the

price of a derivative on the equity is described in terms of the so-called Black-Scholes PDE

(Partial Differential Equation) in Black and Scholes (1973). As a matter of fact, many

popular models in economics and finance, like those for pricing derivative securities, involve

diffusion processes formulated in continuous time as solutions to stochastic differential

equations. These processes have been employed to model options prices, the term structure

of interest rates, and exchange rates, for example. Stochastic differential equations also

have been used to model macroeconomic aggregates like consumption and investment, and

systems of such equations have been studied extensively to delineate economic activities

at a national level.

A diffusion process can be thought of as a strong Markov process with continuous

paths. Inspired by Lévy’s investigation of sample paths, Itô studied diffusions that could

be represented as solutions of stochastic differential equations of the form

dX(t) = a(t,X(t))dt+ b(t,X(t))dB(t), X(0, ω) = Y (ω), (2.1.1)

where B = (B(t), t ≥ 0) denotes a standard Brownian motion, and a(t, x) and b(t, x) are
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deterministic functions. Under sufficient conditions, such as the Lipschitz condition for

a and b functions and finite second moment for initial value X(0), differential equation

(2.1.1) has a so-called strong solution, which can be expressed as a functional of Brownian

motion, i.e. X(t) = f(B(t)). In the last few decades, researchers devote remarkable effort

to studying solutions of such diffusion equations based on some assumptions on the forms

of the drift function a(t,X(t)) and diffusion function b(t,X(t)).

When both a(t, x) and b(t, x) are unknown parametrically, the parameters involved

in X(t) can be estimated using existing estimation methods, such as Fan et al. (2003),

Ait-Sahalia (2002) and Hardle et al. (2003). When both a(t, x) and b(t, x) are unknown

nonparametrically or semiparametrically, statistical estimation of the drift and diffusion

functions have been extensively discussed in the literature, such as Chapter 5 of Gao

(2007). Meanwhile, stochastic diffusion models with time–inhomogeneity are also useful

in modelling economic and financial data. See, for example, Hamilton and Susmel (1994),

?, Fan et al. (2003), Ait-Sahalia (2002) and Hardle et al. (2003).

In the meantime, existing literature discusses how to estimate unknown functions of

nonlinear time series using nonparametric and semiparametric methods. For the stationary

case, recent studies include Fan and Yao (2003), Gao (2007) and Li and Racine (2007).

It should be pointed out that the literature also shows that many economic and financial

data exhibit both nonlinearity and nonstationarity. Consequently, some nonparametric

and semiparametric models and kernel-based methods have been proposed to deal with

both nonlinearity and nonstationarity simultaneously. Existing studies mainly discuss the

employment of nonparametric kernel estimation methods. Such studies include Phillips

and Park (1998), Park and Phillips (1999, 2001), Karlsen and Tjøstheim (2001), Karlsen

et al. (2007), Cai et al. (2009), Phillips (2009), Wang and Phillips (2009a,b), Xiao (2009),

and Gao and Phillips (2010).

However, such kernel-based estimation methods are not applicable to establish closed-

form expansions of Brownian motion functionals. In the stationary case, the literature

discusses how series approximations may be used in dealing with stationary time series

models, such as Ai and Chen (2003), Chapter 2 of Gao (2007) and Li and Racine (2007).

As discussed above, there is need to study Brownian motion functionals of both time-

homogeneity and time-inhomogeneity. Note that one powerful way of dealing with such

problems is to decompose the process, say f(B(t)) or f(t, B(t)), where the functional

form is unknown, into an orthogonal series in some Hilbert space, such that once one
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has obtained observed values of the process, the coefficients involved in the series can be

estimated using an econometric method. Actually, there is long history that there is a

close connection between stochastic processes and orthogonal polynomials. For example,

the so-called Karlin-McGregor representation expresses the transition probability of the

birth and death process by means of a spectral representation in terms of orthogonal

polynomials. Some people clearly feel the potential importance of orthogonal polynomials

in probability theory. Schoutens (2000), for instance, gives an extensive discussion about

relations between stochastic processes and orthogonal polynomials.

It is therefore clear that our first aim in this paper is to expand an unknown stochastic

process into an orthogonal series. To this purpose, a suitable Hilbert space which contains

objective processes should be constructed, and we need to find out the orthonormal basis

for the space. It then follows from the Hilbert space theory that we can expand any

element in the space into series by means of existing bases. Our second aim is to employ

the expansions developed in this paper to estimate an unknown function of the form m(t, x)

involved in an econometric time series model. This question is dealt with by considering

three types of sampling, that are, on infinite interval (0,∞), on finite interval [0, T ] with

fixed T and on compact interval [0, Tn] with Tn increasing to infinity as sample size goes

to infinity. All sampling points are equally spaced. Essentially they are quite different.

The first case requires more restrictions on m(t, x), while the last two cases, due to the

compactness of the time horizon, involve relatively less restrictions on m(t, x). Our results,

on the other hand, show that the limiting theory in the case of t ∈ [0, T ] with T being

fixed is very unique. By contrast, the asymptotic theory for the other two cases is quite

similar.

2.2 Orthogonal expansion of homogeneous functionals of

Brownian motion

The aim of this section is to expand a functional of Brownian motion f(B(t)) into an

orthogonal series. The Hermite polynomial system {Hi(x)}∞0 is known orthogonal on

(−∞,∞) with respect to the density function φ(x) of standard normal distribution. Let

D = d/dx be the differential operator. Then Hermite polynomials are defined as

Hi(x) := (−1)i
1

φ(x)
Diφ(x), i ≥ 0.
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In addition, Hermite polynomials Hi(x) can be generated by the exponential generating

function

exp(xw − w2/2) =
∞∑
i=0

Hi(x)
wi

i!
, (2.2.1)

which, in some cases, is more convenient to be used than the definition.

The first 11 Hermite polynomials are

H0(x) = 1

H1(x) = x

H2(x) = x2 − 1

H3(x) = x3 − 3x

H4(x) = x4 − 6x2 + 3

H5(x) = x5 − 10x3 + 15x

H6(x) = x6 − 15x4 + 45x2 − 15

H7(x) = x7 − 21x5 + 105x3 − 105x

H8(x) = x8 − 28x6 + 210x4 − 420x2 + 105

H9(x) = x9 − 36x7 + 378x5 − 1260x3 + 945x

H10(x) = x10 − 45x8 + 630x6 − 3150x4 + 4725x2 − 945

The relationship of orthogonality of Hermite system is∫ ∞
−∞

Hi(x)Hj(x)φ(x)dx = i!δij , (2.2.2)

where δij is the Kronecker delta.

It is known, (for example, Example 1 of Shiryaev, 1996, p.268) that Hermite polynomial

system {Hi(x)}∞i=0 is a complete orthogonal basis in the Hilbert space L2(R, φ(x)) defined

as

L2(R, φ(x)) =

{
f(x) :

∫ ∞
−∞

f2(x)φ(x)dx <∞
}

(2.2.3)

and in which the inner product is defined as

(f, g) =

∫ ∞
−∞

f(x)g(x)φ(x)dx, f, g ∈ L2(R, φ(x)). (2.2.4)

Here the completeness means that every function in the space can be represented either

as
∑k

i=0 ciHi(x), or as a limit of these form in the sense of mean square. A necessary and
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sufficient condition of an orthogonal system to be complete in a complete space is that if a

function in the space is orthogonal with every element in the sequence, then this function

must be a zero function. See Theorem 3.17 of Kufner and Kadlec (1971, p.90).

Since we shall work with Brownian motion whose density function is φt(x) = 1√
2πt
e−x

2/2t,

it is necessary to construct a system which is orthogonal with respect to φt(x). To this

end, for any t > 0, define

hi(t, x) =
1√
i!
Hi(x/

√
t), i = 0, 1, 2, . . . . (2.2.5)

Such defined system hi(t, x) belongs to the space

L2(R, φt(x)) =

{
f(x) :

∫ ∞
−∞

f2(x)φt(x)dx <∞
}
, (2.2.6)

which is a Hilbert space (see, for example, p.162 of Dudley 2003) with the conventional

inner-product defined by (f, g) =
∫
fgφtdx and induced norm ‖f‖ = (f, f)1/2.

Lemma 2.2.1. In the space L2(R, φt(x)), {hi(t, x)} is a complete orthonormal polynomial

system.

Proof. Firstly, note that

(hi(t, x), hj(t, x))L2(R,φt(x)) =
1√
i!j!

(Hi(x), Hj(x))L2(R,φ(x)) = δij ,

implying the orthogonality of the system.

In addition, since L2(R, φt(x)) is complete, the completeness of {hi(t, x)} is tantamount

to showing that suppose f(x) ∈ L2(R, φt(x)) is orthogonal with every hi(t, x), then f(x)

must be a zero function, viz., f(x) = 0 in the space. In fact,

0 =(f(x), hi(t, x))L2(R,φt(x)) =

∫
f(x)hi(t, x)φt(x)dx

=
1√
i!

∫
f(x)Hi(x/

√
t)

1√
2πt

e−x
2/2tdx

=
1√
i!

∫
f(
√
tx)Hi(x)φ(x)dx =

1√
i!

(f(
√
tx), Hi(x))L2(R,φ(x)),

which implies that (f(
√
tx), Hi(x))L2(R,φ(x)) = 0 for every i. Whence, by the completeness

of Hi(x) in the space L2(R, φ(x)), f(
√
tx) = 0, hence f(x) = 0.
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Therefore, we assert that L2(R, φt(x)) is a Hilbert space equipping with this inner-

product and corresponding induced norm as well as possessing the complete orthonormal

basis {hi(t, x)}∞i=0.

Let L2(Ω) be a Hilbert space of random variables on the probability space (Ω,F , P )

with finite second order moments, where the inner product is defined as 〈X,Y 〉 = E(XY ).

Now, for every f ∈ L2(R, φt(x)), we can constitute a mapping between L2(R, φt(x)) and

L2(Ω):

T : f → f(B(t)). (2.2.7)

Denote by Θ the image of L2(R, φt(x)) under mapping T . Since E[f(B(t))]2 <∞ for

all f(x) ∈ L2(R, φt(x)), Θ is a subset of L2(Ω), hence, there exists inner product operation

on Θ. The following lemmas show the properties of T and Θ.

Lemma 2.2.2. (1) T is linear;

(2) T is an one-one mapping from L2(R, φt(x)) to Θ;

(3) T is an isomorphism.

Proof. (1). Straightforward verification. (2). For any functions f, g ∈ L2(R, φt(x)), we

have,

〈T (f),T (g)〉L2(Ω) = 〈f(B(t)), g(B(t))〉

= E[f(B(t))g(B(t))] =

∫ ∞
−∞

f(x)g(x)φt(x)dx

= (f, g)L2(R,φt(x)).

Thus, the transformation T is inner product preserving. If f 6= g, which amounts that

they are not in the same equivalent class, then

‖T (f)−T (g)‖L2(Ω) = ‖T (f − g)‖ = ‖f − g‖L2(R,φt(x)) 6= 0.

On the other hand, if T (f) = T (g), then ‖f − g‖L2(R,φt(x)) = ‖T (f − g)‖L2(Ω) =

‖T (f)−T (g)‖ = 0, therefore f = g. Thus, T is one-one.

(3). Since T is linear and ‖T (f)‖ = ‖f‖ for f ∈ L2(R, φt(x)), T is isomorphism.

Lemma 2.2.3. Θ is a closed subspace of L2(Ω), hence it is a Hilbert space.
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Proof. It is easy to see that Θ is a linear space due to linearity of T . Next, suppose in Θt

there is a Cauchy sequence {ξn}. Because the mapping T is one-one, there is a unique

sequence {fn} in L2(R, φt(x)) such that T (fn) = ξn, n = 0, 1, 2, . . .. Due to ‖T (·)‖ = ‖ ·‖
and linearity of T , {fn(x)} is a Cauchy sequence in L2(R, φt(x)) as well. Therefore there

exists a function f ∈ L2(R, φt(x)) such that {fn(x)} converges to f(x) in the sense of

mean square since L2(R, φt(x)) is a Hilbert space. Thus,

‖ξn − f(B(t))‖L2(Ω) = ‖T (fn)−T (f)‖ = ‖fn − f‖L2(R,φt(x)) → 0

as n → ∞, which implies that Θ is a closed subspace of L2(Ω). Hence it is a Hilbert

space.

Lemma 2.2.4. If {pi(x)}∞i=0 is any orthonormal basis in L2(R, φt(x)), then {T (pi)}∞n=0

is an orthonormal basis in Θ. Particularly, {T (hi(t, x))}∞i=0 = {hi(t, B(t))}∞i=0, t > 0, is

an orthonormal basis in Θ.

Proof. By virtue of the properties of T that T is inner product preserving, it is valid.

Now that Θ is a Hilbert space and {hi(t, B(t))}∞i=0 is an orthonormal basis in it, we

naturally have the following theorem.

Theorem 2.2.1. For any random variable f(B(t)) ∈ Θ, it admits a Fourier series ex-

pansion,

f(B(t)) =
∞∑
i=0

ci(t)hi(t, B(t)), (2.2.8)

where ci(t) = ci(t, f) = 〈f(B(t)), hi(t, B(t))〉Θ.

Example 2.1

Here is to show expansions of some Brownian motion functionals into orthogonal series

using the method of Theorem 2.2.1. The first one is from straightforward calculation; the

last three are all derived from exponential generating function (2.2.1).

B5(t) = 15t5/2h1(t, B(t)) + 10
√

6t5/2h3(t, B(t)) + 2
√

30t5/2h5(t, B(t)).

exp(B(t)) =

∞∑
i=0

hi(t, B(t))

√
t
i

√
i!
et/2.

sinB(t) =

∞∑
i=0

cihi(t, B(t)),
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cosB(t) =

∞∑
i=0

c̃ihi(t, B(t)),

where

ci(t) =


0, if i = 2k, k = 0, 1, . . . ,

(−1)k
√
t
i

√
i!
e−t/2 if i = 2k + 1, k = 0, 1, . . .

c̃i(t) =


0, if i = 2k + 1, k = 0, 1, . . . ,

(−1)k
√
t
i

√
i!
e−t/2 if i = 2k, k = 0, 1, . . . .

Given truncation parameter k, the truncation series for f(B(t)) which admits an ex-

pansion of orthogonal series
∑∞

i=0 ci(t)hi(t, B(t)) is defined as

fk(B(t)) :=
k∑
i=0

ci(t)hi(t, B(t)). (2.2.9)

The question that naturally arises is that what is the degree of approximation of

fk(B(t)) to f(B(t)). The following theorem answers this question.

Theorem 2.2.2. If f and its derivatives f (v), v = 1, . . . , r, are all in the Hilbert space

L2(R, φt(x)), (t > 0). Denote by ci(t, f
(v)) the coefficients in the expansion of f (v)(B(t))

, v = 0, 1, . . . , r, in terms of {hi(t, B(t))}∞i=0, then for sufficient large k ∈ N,

‖f(B(t))− fk(B(t))‖2L2(Ω) ≤
tr

kr
R(k, f (r)). (2.2.10)

where R(k, f (r)) = (1 + o(1))
∑∞

i=k+1

[
ci−r(t, f

(r))
]2 → 0 as k →∞ with fixed t.

Proof. Hermite polynomials can be expressed as

Hi(x) = (−1)i exp

(
x2

2

)
Di exp

(
−x

2

2

)
, i = 0, 1, 2, . . . . (2.2.11)

It therefore follows from the chain rule of derivative that for all t > 0,

hi(t, x) = (−1)i
√
t
i

√
i!

exp

(
x2

2t

)
Di exp

(
−x

2

2t

)
, i = 0, 1, 2, . . . . (2.2.12)
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Now, under the assumption that f and its derivatives f (v), v = 1, . . . , r, are all in the

Hilbert space L2(R, φt(x)), integration by parts gives,

ci(t, f) = 〈f(B(t)), hi(t, B(t))〉Θ =

∫ ∞
−∞

f(x)hi(t, x)φt(x)dx

=

∫ ∞
−∞

f(x)(−1)i
√
t
i

√
i!

exp

(
x2

2t

)[
Di exp

(
−x

2

2t

)]
1√
2πt

exp

(
−x

2

2t

)
dx

= (−1)i
√
t
i

√
i!

1√
2πt

∫ ∞
−∞

f(x)Di exp

(
−x

2

2t

)
dx

= (−1)i
√
t
i

√
i!

1√
2πt

(
f(x)Di−1 exp

(
−x

2

2t

) ∣∣∣∞
−∞
−
∫ ∞
−∞

f ′(x)Di−1 exp

(
−x

2

2t

)
dx

)
= (−1)i−1

√
t
i

√
i!

1√
2πt

∫ ∞
−∞

f ′(x)Di−1 exp

(
−x

2

2t

)
dx

=

√
t√
i

∫ ∞
−∞

f ′(x)hi−1(t, x)φt(x)dx

=

√
t√
i
ci−1(t, f ′).

We have to explain two limits in the above derivation,

(1) : lim
x→∞

f(x)Di−1 exp(−x
2

2t
) = 0,

and

(2) : lim
x→−∞

f(x)Di−1 exp(−x
2

2t
) = 0.

To prove (1), recall that
∫∞
−∞ f

2(x)φt(x)dx <∞ and rewrite

f(x)Di−1 exp(−x
2

2t
) = Af(x)hi−1(t, x)φt(x),

where A is a constant depending on i and t, independent of x. Since both f(x) and

hi−1(t, x) are in L2(R, φt(x)), their inner product
∫
R f(x)hi−1(t, x)φt(x)dx exists. Sup-

pose F (x) is the primary function of f(x)hi−1(t, x)φt(x), hence, limx→∞ F (x) = L < ∞.

Therefore, by the definition,

Af(x)hi−1(t, x)φt(x) = F ′(x) = lim
∆x→0

F (x+ ∆x)− F (x)

∆x
.
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For any ε > 0, fixed ∆x, we can choose sufficient large x, such that |F (x)−L| < ε|∆x|/2
and |F (x+ ∆x)− L| < ε|∆x|/2. Thus, when x is sufficient large,

|F (x+ ∆x)− F (x)|
|∆x|

≤ |F (x+ ∆x)− L|+ |F (x)− L|
|∆x|

< ε,

which implies that limx→∞Af(x)hi−1(t, x)φt(x) = 0. For the same reason (2) is valid.1

Using the relation ci(t, f) =

√
t√
i
ci−1(t, f ′) repeatedly, we iterate that

ci(t, f) =

√
t
r√

i(i− 1) · · · (i− r + 1)
ci−r(t, f

(r)). (2.2.13)

Finally, it follows from the orthogonality of hi(t, B(t)) and the relation (2.2.13) that

‖f(B(t))− fk(B(t))‖2Θ =

∥∥∥∥∥
∞∑

i=k+1

ci(t, f)hi(t, B(t))

∥∥∥∥∥
2

Θ

=
∞∑

i=k+1

[ci(t, f)]2

=
∞∑

i=k+1

tr

i(i− 1) · · · (i− r + 1)

[
ci−r(t, f

(r))
]2

≤ tr

(k + 1)k · · · (k − r + 2)

∞∑
i=k+1

[
ci−r(t, f

(r))
]2

=
tr

kr
R(k, f (r)).

Theorem 2.8 of Hall and Heyde (1980) points out that a sufficient condition such that

orthogonal series
∑∞

n=1 cnXn converges almost surely is
∑∞

n=1 c
2
n(log n)2EX2

n < ∞. One

therefore has the following corollary.

Corollary 2.2.1. If the conditions in Theorem 2.2.2 hold for r ≥ 1, fk(B(t)) converges

to f(B(t)) almost surely in ω ∈ Ω for each t as k →∞.

1There is an alternative way to demonstrate the relations (1) and (2): Suppose that they are not valid,

limx→∞ f(x)Di−1 exp(−x
2

2t ) = limx→∞Af(x)hi−1(t, x)φt(x) = bi 6= 0, so to speak, then when x is large

f(x) ≈ bi
Ahi−1(t, x)φt(x)

,⇒ f2(x)φt(x) ≈ b2i
A2h2

i−1(t, x)φt(x)
,

which would lead
∫
f2(x)φt(x)dx diverges.
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Proof. Note that Eh2
i (t, B(t)) = 1 for ∀i. We only need to check the sufficient condition

for r = 1. In fact, by (2.2.13), we have

∞∑
i=2

c2
i (t, f)(log i)2 = t

∞∑
i=2

log2 i

i
c2
i−1(t, f ′)

≤ t
∞∑
i=2

c2
i−2(t, f ′′) ≤ t‖f ′′‖L2(R,φt(x)) <∞,

for any t > 0 since (log i)/i converges to zero. In view of Theorem 2.8 in Hall and Heyde

(1980), the assertion holds.

2.3 Expansion of coefficient functions

As suggested in Example 2.1, the coefficients in the expansion of f(B(t)) are actually

functions of t. This would hamstring the application of this method in time series econo-

metrics. One way to tackle this issue is to expand the coefficient functions again into

orthogonal series given that the coefficients satisfy a certain condition, so that at the

range of econometrical applications we can estimate the constant coefficients.

We would focus our attention in two scenarios where time horizons are finite and infinite

respectively, since in practice time zone is always limited, and theoretically, however, it

can reach infinity.

2.3.1 Infinite time horizon

The Laguerre system is engaged to expand the coefficient functions when the time zone is

infinity, that is, we consider t ∈ (0,∞). The reason for adopting Laguerre system is that

this system is orthogonal on (0,∞) which coincides with the domain of the time horizon

and Brownian motion. The generalised Laguerre polynomial system {L(α)
j (t)}∞0 (α > −1)

is a complete orthogonal sequence with respect to the density tαe−t in the function space

L2(R+, tαe−t) := {ϕ(t) :
∫∞

0 ϕ2(t)tαe−tdt < ∞}. See, for example, Szego (1975). It is

defined by the Rodrigues equation that

L
(α)
j (t) =

t−αet

j!
Dj(tj+αe−t).

The orthogonality for generalised Laguerre polynomials is expressed as∫ ∞
0

tαe−tL
(α)
j (t)L(α)

m (t)dt = Γ(α+ 1)

(
j + α

j

)
δmj ,
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where Γ(·) is the Gamma function.

The simplest Laguerre polynomials are recovered from the generalised polynomials by

setting α = 0: Lj(t) := L
(0)
j (t).

As the system of {L(α)
j (t)} consists of polynomials which are unbounded on R+, it

is difficult to obtain uniform convergence to a function in the space. Nevertheless, the

uniform approximation of a function on R+ is crucial to the development of this study.

To obtain the uniform convergence, we introduce a modified orthonormal system on R+.

Let for α ≥ 0

Lj(t) := e−t/2Lj(t) =
1

j!
et/2Dj(tje−t)

L
(α)
j (t) :=

1√
Γ(α+ 1)Cjj+α

tα/2e−t/2L
(α)
j (t)

=
1√

Γ(α+ 1)Cjj+αj!
t−α/2et/2Dj(tj+αe−t)

Now L
(α)
j (t), j = 0, 1, . . ., form an orthonormal basis in L2(R+) = {ϕ(t) :

∫∞
0 ϕ(t)2dt <

∞} (see Sansone, 1959, p.351). The space L2(R+) is apparently a Hilbert space af-

ter equipped with an inner product (g, h) =
∫∞

0 g(t)h(t)dt and an induced norm ‖f‖ =

(f, f)1/2, by the conventional L2 space theory, since the Lebesgue measure is σ-finite on

R+. By virtue of Hilbert space, for any ϕ ∈ L2(R+), we have an unique expansion:

ϕ(t) =

∞∑
j=0

a
(α)
j L

(α)
j (t), (2.3.1)

where a
(α)
j =

∫∞
0 ϕ(t)L

(α)
j (t)dt. Designate aj = a

(0)
j for convenience. We mainly in the

sequel discuss in the situation that α = 0.

Given truncation parameter p, correspondingly we have a truncation series

ϕp(t) =

p∑
j=0

ajLj(t). (2.3.2)

It is known that ϕp(t) converges to ϕ(t) in the space L2(R+) as p approaches to infinity.

The following theorem gives the convergence rates both in the sense of norm and pointwise.

Theorem 2.3.1. Suppose ϕ(t) ∈ L2(R+) is differentiable until r-th (r ≥ 1) order such

that tr/2ϕ(v)(t), v = 0, 1, . . . , r are in the space L2(R+) as well. Then we have

‖ϕ(t)− ϕp(t)‖2 ≤
1

pr
R2(p), (2.3.3)
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|ϕ(t)− ϕp(t)|2 ≤
1

r − 1

1

pr−1

(
sup
j≥p+1

|Lj(t)|

)2

R2(p), (r > 1), (2.3.4)

for sufficient large p, where R2(p) = (1 + o(1))
∑∞

j=p+1[a
(r)
j−r(φ̃)]2 is an infinitesimal with

p→∞ in which ϕ̃(t) = tr/2e−t/2[ϕ(t)et/2](r).

Proof. Straightforward calculation yields that

aj(ϕ) =

∫ ∞
0

ϕ(t)Lj(t)dt =

∫ ∞
0

ϕ(t)
1

j!
et/2Dj(tje−t)dt

=
1

j!
ϕ(t)et/2Dj−1(tje−t)

∣∣∣∞
0
− 1

j!

∫ ∞
0

[ϕ(t)et/2]′Dj−1(tje−t)dt

= − 1

j!

∫ ∞
0

[ϕ(t)et/2]′Dj−1(tje−t)dt

= · · ·

=
(−1)r

j!

∫ ∞
0

[ϕ(t)et/2](r)Dj−r(tje−t)dt

=
(−1)r

j!

√
Γ(r + 1)Cj−rj (j − r)!√
Γ(r + 1)Cj−rj (j − r)!

∫ ∞
0

ϕ̃(t)t−r/2et/2Dj−r(tj−r+re−t)dt

=
(−1)r

j!

√
Γ(r + 1)Cj−rj (j − r)!a(r)

j−r(ϕ̃)

= (−1)r

√
(j − r)!
j!

a
(r)
j−r(ϕ̃),

where φ̃(t) = tr/2e−t/2[φ(t)et/2](r).

It follows that

‖ϕ(t)− ϕp(t)‖2L2(R+) =

∥∥∥∥∥∥
∞∑

j=p+1

ajLj(t)

∥∥∥∥∥∥
2

=
∞∑

j=p+1

a2
j

=

∞∑
j=p+1

(j − r)!
j!

[a
(r)
j−r(ϕ̃)]2 ≤ (p+ 1− r)!

(p+ 1)!

∞∑
j=p+1

[a
(r)
j−r(ϕ̃)]2

=
1

pr
R2(p).

On the other hand, using Cauchy-Schwarz inequality,

|ϕ(t)− ϕp(t)|2 =

∣∣∣∣∣∣
∞∑

j=p+1

ajLj(t)

∣∣∣∣∣∣
2
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≤

 ∞∑
j=p+1

|aj ||Lj(t)|

2

≤

(
sup
j≥p+1

|Lj(t)|

)2
 ∞∑
j=p+1

|aj |

2

=

(
sup
j≥p+1

|Lj(t)|

)2
 ∞∑
j=p+1

√
(j − r)!
j!

|a(r)
j−r(ϕ̃)|

2

≤

(
sup
j≥p+1

|Lj(t)|

)2 ∞∑
j=p+1

(j − r)!
j!

∞∑
j=p+1

|a(r)
j−r(ϕ̃)|2

=

(
sup
j≥p+1

|Lj(t)|

)2 ∞∑
j=p+1

|a(r)
j−r(ϕ̃)|2

∞∑
j=p+1

1

j(j − 1) · · · (j − r + 1)

≤

(
sup
j≥p+1

|Lj(t)|

)2 ∞∑
j=p+1

|a(r)
j−r(ϕ̃)|2

∫ ∞
p

1

u(u− 1) · · · (u− r + 1)
du

≤

(
sup
j≥p+1

|Lj(t)|

)2 ∞∑
j=p+1

|a(r)
j−r(ϕ̃)|2

(∫ ∞
p

1

(u− r + 1)r
du

)

=
1

r − 1

1

(p− r + 1)r−1

(
sup
j≥p+1

|Lj(t)|

)2 ∞∑
j=p+1

|a(r)
j−r(ϕ̃)|2

=
1

r − 1

1

pr−1R
2(p),

where r > 1.

Actually approximation of ϕp(t) to ϕ(t) in the above theorem is uniform. The table on

Askey and Wainger (1965, p.699) shows that, given any α ≥ 0, there are positive constants

C and γ, independent of j and t, such that for all integers j ≥ 0,

|L (α)
j (t)| ≤



Ctα/2mα/2, if 0 < t ≤ 1
m

Ct−1/4m−1/4, if 1
m < t ≤ m

2

Cm−3/4(m1/3 + |t−m|)1/4, if m
2 < t ≤ 3m

2

Ce−γt, if t > 3m
2

(2.3.5)

where m = 4j + 2α+ 2.

It therefore follows that |Lj(t)| is uniformly bounded by C and turns out that ϕp(t)

approaches ϕ(t) uniformly.
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2.3.2 Finite time horizon

We now concentrate on finite horizon, namely, let t ∈ [0, T ] for some fixed T > 0. To

expand a function g(t) on [0, T ] into an orthogonal series, a basic requirement is that g(t) ∈
L2[0, T ] since it is a Hilbert space. Observe that there are many complete orthonormal

basis in L[0, T ], for example,

(I) ϕ0(t) =
√

1
T , ϕj(t) =

√
2
T cos jπtT , j = 1, 2, · · · ;

(II) ψj(t) =
√

2
T sin jπt

T , j = 1, 2, · · · .

See Davis (1963). Not only trigonometrical system, there are also orthogonal poly-

nomials system in the space and one even can form an orthogonal series based on some

density and the interval (see Nikiforov and Uvarov, 1988). In what follows, we shall em-

ploy the system ϕj(t) to our purpose. In order to emphasise this system is orthogonal on

[0, T ], write it as ϕjT (t).

It is clear that if g(t) ∈ L2[0, T ], we have an expansion of g(t) in terms of ϕjT (t),

namely, g(t) =
∑∞

j=0 bjϕjT (t), where bj = bj(g) = (g(t), ϕjT (t)), the conventional inner

product on L2[0, T ].

Given a truncation parameter N , let gN (t) =
∑N

j=0 bjϕjT (t) be the truncation series.

Theorem 2.3.2. (1) If g(t) is differentiable on [0, T ] and g′(t) ∈ L2[0, T ]. Then the

expansion of g(t) converges to g(t) pointwise.

(2) If g(t), g′(t), g′′(t) are all in L2[0, T ], then we have

‖g(t)− gN (t)‖2 ≤C1
a2
TT

3

N3
+ C2

aTT
3.5

N3.5
R1N + C3

T 4

N4
R2

1N , (2.3.6)

|g(t)− gN (t)| ≤C4
aTT

N
+ C5

T 1.5

N1.5
R1N , (2.3.7)

where Cj(j = 1, 2, · · · 5) are absolutely constants; aT := |g′(T )|+ |g′(0)|,

R2
1N =

∑∞
j=N+1 |bj(g′′)|2 which converge to zero when N →∞.

(3) If g(t) and its derivatives until third order are all in L2[0, T ], then we have

|g(t)− gN (t)| ≤ C4
aTT

N
+ C5

T 1.5

N2
RN , (2.3.8)

where R2N =
∑∞

j=N+1 |bj(g′′)| that converges to zero as N →∞.
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Proof. Let us start with the calculation of the coefficients. Integration by parts gives

bj(g) =

∫ T

0
g(t)ϕjT (t)dt =

√
2

T

∫ T

0
g(t) cos

jπt

T
dt

=− T

jπ

√
2

T

∫ T

0
g′(t) sin

jπt

T
dt

=− T

jπ
βj(g

′),

where βj is the j-th coefficient of the expansion of g′(t) in terms of the orthonormal system

ψj(t). Therefore,

∞∑
j=1

|bj | ≤
T

π

 ∞∑
j=1

|βj |2
1/2 ∞∑

j=1

1

j2

1/2

=
T

π
‖g′(t)‖

 ∞∑
j=1

1

j2

1/2

.

Absolutely convergence of
∑∞

j=1 bj indicates that the series
∑∞

j=0 bjϕjT (t) converges

uniformly, and due to the continuity of the basis the sum function is continuous on

[0, T ]. This sum function must be g(t). In fact, if we signify g̃(t) =
∑∞

j=0 bjϕjT (t),

then bj = (g̃(t), ϕjT (t)), but from the expansion, we know bj = (g(t), ϕjT (t)). Thus

(g̃(t)− g(t), ϕjT (t)) = 0 for ∀j. In view of completeness of the basis, g̃(t) = g(t).

Suppose now that g(t), g′(t), g′′(t) are all in L2[0, T ]. We can calculate bj further using

integration by parts

bj(g) =− T

jπ

√
2

T

∫ T

0
g′(t) sin

jπt

T
dt

=

(
T

jπ

)2
√

2

T

∫ T

0
g′(t)d cos

jπt

T

=

(
T

jπ

)2
√

2

T
[(−1)jg′(T )− g′(0)]−

(
T

jπ

)2
√

2

T

∫ T

0
g′′(t) cos

jπt

T
dt

=

(
T

jπ

)2
√

2

T
[(−1)jg′(T )− g′(0)]−

(
T

jπ

)2

bj(g
′′).

Accordingly, denoting aT = |g′(T )|+ |g′(0)|,

‖g(t)− gN (t)‖2 =

∥∥∥∥∥∥
∞∑

j=N+1

bjϕjT (t)

∥∥∥∥∥∥
2

=
∞∑

j=N+1

b2j

=

∞∑
j=N+1

[(
T

jπ

)2
√

2

T
[(−1)jg′(T )− g′(0)]−

(
T

jπ

)2

bj(g
′′)

]2
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=

∞∑
j=N+1

(
T

jπ

)4
[√

2

T
[(−1)jg′(T )− g′(0)]− bj(g′′)

]2

≤
∞∑

j=N+1

(
T

jπ

)4
(

2

T
a2
T + 2

√
2

T
aT |bj(g′′)|+ |bj(g′′)|2

)

≤
2T 3a2

T

π4

∞∑
j=N+1

1

j4
+

2
√

2T 3.5aT
π4

∞∑
j=N+1

1

j4
|bj(g′′)|+

T 4

π4

∞∑
j=N+1

1

j4
|bj(g′′)|2

≤C1
a2
TT

3

N3
+ C2

aTT
3.5

N3.5
R1N + C3

T 4

N4
R2

1N ,

where C1, C2, C3 are 2/π4, 2
√

2/π4 and 1/π4 respectively; R2
1N =

∑∞
j=N+1 |bj(g′′)|2 which

converge to zero when N →∞.

Meanwhile,

|g(t)− gN (t)| =

∣∣∣∣∣∣
∞∑

j=N+1

bjϕjT (t)

∣∣∣∣∣∣ ≤
√

2

T

∞∑
j=N+1

|bj |

=

√
2

T

∞∑
j=N+1

∣∣∣∣∣
(
T

jπ

)2
√

2

T
[(−1)jg′(T )− g′(0)]−

(
T

jπ

)2

bj(g
′′)

∣∣∣∣∣
≤aT

2

T

(
T

π

)2 ∞∑
j=N+1

1

j2
+

√
2

T

(
T

π

)2 ∞∑
j=N+1

1

j2
|bj(g′′)|

≤C4
aTT

N
+ C5

T 1.5

N1.5
R1N ,

where C4 and C5 are 2/π2 and
√

2/π2 respectively; R1N retains the same as before.

However, if g′′′(t) ∈ L2[0, T ], since
∑∞

j=0 |bj(g′′)| is convergent, we have

|g(t)− gN (t)| ≤ C4
aTT

N
+ C5

T 1.5

N2
R2N ,

in which all notations are the same as before except for R2N =
∑∞

j=N+1 |bj(g′′)| that

converges to zero as N →∞.

2.3.3 Converse questions of expansion

Two interesting and useful converse questions arising are that (1) Given constant sequences

{aj} and {bj} , when the series
∑∞

0 ajLj(t) and
∑∞

j=0 bjϕjT (t) converge to functions in

the spaces respectively? (2) If any, when is it/ are they differentiable? The reason for

studying these questions is to be specified later.
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Fortunately question (1) has been answered by some existing theorems. See, Riesz-

Fischer theorem in Dudley (2003, p.167). Roughly speaking, if the sequence {aj} is square

summable the series
∑∞

0 ajPj(t) converges to a function in the corresponding space given

that Pj(t) is a complete orthogonal system in the space. On top of that, if the basis

functions are continuous and the series converges uniformly, the sum function is continuous

as well.

We are now in a position to answer the second question.

Theorem 2.3.3. Suppose that there is a positive integer r for given sequence {aj} such

that
∞∑
j=r

ω(j, r)|aj−r| <∞, (2.3.9)

where ω(j, r) :=
√
j(j − 1) · · · (j − r + 1), then the function ϕ(t) =

∑∞
j=r ajLj(t), gener-

ated by {aj}, exists and is differentiable until r-th derivative.

Remark 2.3.1. As condition (2.3.9) is much stronger than its counterpart in the Riesz-

Fischer theorem, the function ϕ(t) exists and, as can be seen in its proof, the convergence

of the series is uniformly.

Proof. It is evident that ϕ(t) exists.

Let us now prove the case of r = 1 for differentiability.

Let ϕ(t) =
∑∞

j=0 ajLj(t) and g1(t) =
∑∞

j=1

√
jaj−1L

(1)
j−1(t). They are elements in

L2(R) since both
∑∞

j=0 a
2
j and

∑∞
j=1 ja

2
j−1 converge.

Rewrite g1(t) =
∑∞

j=1

√
jaj−1L

(1)
j−1(t) =

∑∞
j=0

√
j + 1ajL

(1)
j (t). Note that

√
j + 1√
t

L
(1)
j (t) =

√
j + 1√
t

1√
Γ(2)Cjj+1j!

t−1/2et/2Dj(tj+1e−t)

=
1

j!t
et/2Dj(tj+1e−t) =

1

j!t
et/2

j∑
k=0

[tj+1](k)[e−t](j−k)Ckj

=
1

j!t
e−t/2

j∑
k=0

(−1)j−k(j + 1)j · · · (j − k + 2)tj+1−kCkj

=
1

j!
e−t/2

j∑
k=0

(−1)j−k
(j + 1)!

(j − k + 1)!

j!

k!(j − k)!
tj−k. (2.3.10)
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On the other hand, since Lj(t) = 1
j!
et/2Dj(tje−t),

d

dt
Lj(t) =

1

j!

1

2
et/2Dj(tje−t) +

1

j!
et/2Dj+1(tje−t)

=
1

2
Lj(t) +

1

j!
et/2

j+1∑
k=0

[tj ](k)[e−t](j+1−k)Ckj+1

=
1

2
Lj(t) +

1

j!
e−t/2

j∑
k=0

j(j − 1) · · · (j − k + 1)tj−k(−1)j+1−kCkj+1

=
1

2
Lj(t)−

1

j!
e−t/2

j∑
k=0

(−1)j−k
j!

(j − k)!

(j + 1)!

(j + 1− k)!k!
tj−k

=
1

2
Lj(t)−

√
j + 1√
t

L
(1)
j (t),

in virtue of (2.3.10). It follows from the above that

∞∑
j=0

aj
d

dt
Lj(t) =

1

2

∞∑
j=0

ajLj(t)−
1√
t

∞∑
j=0

√
j + 1ajL

(1)
j (t)

=
1

2
ϕ(t)− 1√

t
g1(t),

which is exactly ϕ′(t). This is because firstly the continuity and boundedness of L
(α)
j (t)

and secondly
∑∞

j=0 |aj | <
∑∞

j=0

√
j + 1|aj | < ∞, hence both of two series involved are

uniformly convergent.

Now induction is used to obtain the further result. Suppose that the derivatives

ϕ′(t),· · · , ϕ(v)(t), (v < r) exist. we construct g1(t), · · · , gv+1(t) as

gk(t) =
∞∑
j=k

ω(j, k)aj−kL
(k)
j−k(t) =

∞∑
j=0

ω(j + k, k)ajL
(k)
j (t),

for k = 1, · · · , v + 1. Similarly, we have that

ω(j + v + 1, v + 1)

t(v+1)/2
L

(v+1)
j (t)

=
ω(j + v + 1, v + 1)

t(v+1)/2

t−(v+1)/2et/2√
Γ(v + 2)Cjj+v+1j!

Dj(tj+v+1e−t)

=
et/2

j!tv+1
Dj(tj+v+1e−t) =

et/2

j!tv+1

j∑
u=0

(tj+v+1)(u)(e−t)(j−u)Cuj
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=
e−t/2

j!tv+1

j∑
u=0

(−1)j−u(j + v + 1)(j + v) · · · (j + v − u+ 2)tj+v−u+1Cuj

=
e−t/2

j!

j∑
u=0

(−1)j−u
(j + v + 1)!

(j + v − u+ 1)!

j!

u!(j − u)!
tj−u. (2.3.11)

Meanwhile, we also have

Dv+1Lj(t) =
1

j!

v+1∑
u=0

Cuv+1[et/2](u)Dj+v+1−u(tje−t)

=
1

j!

v+1∑
u=0

Cuv+12−uet/2
j+v+1−u∑

l=0

C lj+v+1−u(tj)(l)(e−t)(j+v+1−u−l)

=
1

j!

v+1∑
u=0

Cuv+12−ue−t/2
j∑
l=0

C lj+v+1−uj(j − 1) · · · (j − l + 1)tj−l(−1)j+v+1−u−l

=

v+1∑
u=0

Cuv+12−u(−1)v+1−u e
−t/2

j!

j∑
l=0

(j + v + 1− u)!

l!(j + v + 1− u− l)!
j!

(j − l)!
tj−l(−1)j−l

:=
v+1∑
u=0

Cuv+12−u(−1)v+1−uA(u).

Notice that

A(u) :=
e−t/2

j!

j∑
l=0

(j + v + 1− u)!

l!(j + v + 1− u− l)!
j!

(j − l)!
tj−l(−1)j−l

=
ω(j + v + 1− u, v − u+ 1)

t(v+1−u)/2
L

(v+1−u)
j (t),

using (2.3.11), where u = 0, 1, · · · , v+ 1. It follows from the same argument as in the case

of r = 1 that

∞∑
j=0

ajD
v+1Lj(t) =

v+1∑
u=0

Cuv+12−u(−1)v+1−u 1

t(v+1−u)/2
gv+1−u(t)

in which g0(t) = ϕ(t). Thus ϕ(v+1)(t) exists by virtue of the uniform convergence of the

series involved. The proof is completed.

A similar result for the expansion on [0, T ] is as follows.

Theorem 2.3.4. For a given real sequence {bj} if there is a positive integer r such that∑∞
j=0 j

r|bj | < ∞, then the function g(t) =
∑∞

j=0 bjϕjT (t) exists on [0, T ] and is differen-

tiable until r-th order.

60



Proof. We only need to prove the case r = 1, as the following proof indicated.

First, g(t) =
∑∞

j=0 bjϕjT (t) exists due to
∑∞

j=0 |bj | <∞. Now consider series of

π

T

∞∑
j=1

jbjψjT (t),

where ψjT (t) =
√

2
T sin jπt

T . The sum makes sense because
∑∞

j=1 j
2b2j < ∞. Let us

designate it as p(t). Moreover, the sum converges to p(t) uniformly due to the boundedness

of ψjT (t) and absolutely convergence of
∑∞

j=1 j|bj | < ∞. In view of the relation between

ψjT (t) and ϕjT (t), one concludes that p(t) = g′(t).

2.4 Orthogonal expansion of time-inhomogeneous function-

als of Brownian motion

There is a strong motivation that makes us extend the expansion technique from univariate

to multivariate. Time-homogeneous models in finance and economics have undoubtedly

dominated the literature on the modelling of time series datasets. For example, both Black

and Scholes (1973) and Cox et al. (1985) models assume that the underlying process is

a diffusion process. The reason is because economic theories do not suggest an explicit

functional form for continuous-time models and researchers therefore take the simple spec-

ification of the functions involved. However, Hamilton and Susmel (1994) and Mikosch and

Starica (2004) point out that invariant parametric specifications are often inconvenient to

model long return series. In recent years, therefore, the literature has naturally evolved

towards the inclusion of multiple variables in continuous time models. One example is that

in Mercurio and Spokoiny (2004) the returns Rt of the asset process are stipulated as a

heteroscedastic model Rt = σtξt where ξt are standard Gaussian independent innovations

and σt is a time-varying volatility coefficient. The relevant works include Fan et al. (2003),

Ait-Sahalia (2002), Hardle et al. (2003) and so forth.

We consider the expansion of f(t, B(t)) in this section for some bivariate functional

f where B(t) is a standard Brownian motion. The expansion eventually facilitates the

application in econometric estimation.
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2.4.1 Infinite time horizon

Let R and R+ be the sets of real numbers and positive real numbers respectively, (R,B)

and (R+,B+) be correspondingly the measurable spaces in which B and B+ are Borel

σ-algebra on R and R+. Now introduce measure spaces (R,B, µt) and (R+,B+, λ) where

µt is defined for any t > 0

µt((−∞, a]) =

∫ a

−∞

1√
2πt

exp

(
−x

2

2t

)
dx :=

∫ a

−∞
φt(x)dx, (2.4.1)

a measure defined by the density of N(0, t) (actually the distribution function of N(0, t))

and λ is the Lebesgue measure.

Consider the product space of these two measure spaces. For ∀B ∈ B and ∀B+ ∈ B+

define

ν(B+ ×B) = λ(B+)µt(B). (2.4.2)

Since µt is a finite measure and λ is σ-finite, ν can be uniquely extended to a measure

on B+⊗B, which is the σ-algebra generated by the collection of all sets B+×B, ∀B ∈ B

and B+ ∈ B+. See, for example, Theorem 4.4.4 in Dudley (2003). The measure ν on

B+ ⊗B is so-called the product measure λ × µt. Thus, (R+ × R,B+ ⊗B, ν) becomes a

measure space.

For measure space (R+×R,B+⊗B, ν), define function space L2(R+×R,B+⊗B, ν) as

the set of all real measurable functions such that
∫
f2dν =

∫
R+

∫
R f

2(t, x)µt(dx)λ(dt) <∞.

Let ‖f‖2 := (
∫
f2dν)1/2 be the L2-norm.

In order to obtain a Hilbert space, one identifies functions differing on a measure-zero

set and define

L2(R+ × R,B+ ⊗B, ν) =
{
f∼ : f ∈ L2(R+ × R,B+ ⊗B, ν)

}
(2.4.3)

where f∼ stands for the equivalent class of f in which all functions are equal a.e. to f .

Therefore, (L2(R+ × R,B+ ⊗B, ν), ‖ · ‖2) is a Banach space (see, e.g., Theorem 5.2.1 of

Dudley (2003)).

Introduce

(f1, f2) =

∫
f1f2dν, (2.4.4)

which is a semi-inner product on (L2(R+ × R,B+ ⊗B, ν), ‖ · ‖2). Let ‖f‖ := (f, f)1/2,

which hence is a semi-norm induced by (2.4.4) on the space. However, the mapping
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(f∼1 , f
∼
2 ) := (f1, f2) =

∫
f1f2dν defines an inner product on L2(R+ × R,B+ ⊗ B, ν).

Therefore, it becomes a Hilbert space equipped with this inner product. For the sake of

convenience, we simplify the notation of the space as L2(R+×R, ν) and specify the norm

as ‖ · ‖L2(R+×R,ν) if necessary.

Since for any Hilbert space there exists a basis, we aim on finding a basis for L2(R+×
R, ν). After obtaining the basis of a Hilbert space, any element in the space can be

formulated by means of the basis.

In view of the structure of the Hilbert space, it is possible to find the bases of spaces

L2(R,B, µt) and L2(R+,B+, λ) separately, then their product will be the basis of L2(R+×
R,B+ ⊗B, ν), as the following lemma shown.

Lemma 2.4.1. {Lj(t)hi(t, x)}∞i,j=0 is a basis in the Hilbert space L2(R+×R,B+⊗B, ν).

Remark 2.4.1. A more general assertion can be found in p.173, Problem 12 of Dudley

(2003). But there is no proof there.

Proof. First of all, let us check the orthogonality of Lj(t)hi(t, x). For any i, j,m, l ≥ 0,

(Lj(t)hi(t, x),Lm(t)hl(t, x)) =

∫
R+×R

Lj(t)hi(t, x)Lm(t)hl(t, x)dν

=

∫ ∞
0

∫ ∞
−∞

Lj(t)hi(t, x)Lm(t)hl(t, x)φt(x)dxdt =


∫∞

0 Lj(t)Lm(t)dt, if i = l;

0, if i 6= l.

=

1, if i = l and j = m;

0, if i 6= l, or j 6= m.

Secondly, for any f(t, x) ∈ L2(R+ × R) since ‖f(t, x)‖L2(R,φt(x)) < ∞ a.e.[λ] for t >

0, f(t, x) ∈ L2(R, φt(x)). Because hi(t, x) is a basis in L2(R, φt(x)), there exists a

sequence ci(t) for almost every t such that f(t, x) = limk→∞
∑k

i=0 ci(t)hi(t, x) in the

sense of norm. Therefore ci(t) = (f(t, x), hi(t, x))L2(R,φt(x)) and Bessel’s inequality shows∑k
i=0 c

2
i (t) ≤ ‖f(t, x)‖2L2(R,φt(x)) for almost every t. However, since f(t, x) ∈ L2(R+ × R),∑k

i=0

∫
R+ c

2
i (t)dt ≤ ‖f(t, x)‖2L2(R+×R) <∞. It follows that for every i ≤ k, ci(t) ∈ L2(R+).

Meanwhile, for almost every t > 0, 0 < ‖f(t, x) −
∑k

i=0 ci(t)hi(t, x)‖2 ≤ ‖f(t, x)‖2 −∑k
i=0 c

2
i (t) ≤ ‖f(t, x)‖2L2(R,φt(x)), which is integrable on R+.

On the other hand, since for every i ≤ k, ci(t) ∈ L2(R+) and Lj(t) is a basis in

the space, ci(t) = limpi→∞
∑pi

j=0 cijLj(t) in the sense of norm. Hence, for any given
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ε > 0, there exists an integer Ni such that when pi > Ni, ‖ci(t)−
∑pi

j=0 cijLj(t)‖L2(R+) <

ε/2(i+1)/2, 0 ≤ i ≤ k.

Finally, for any f(t, x) ∈ L2(R+ × R), there exist a sequence cij such that∥∥∥∥∥∥f(t, x)−
k∑
i=0

pi∑
j=0

cijLj(t)hi(t, x)

∥∥∥∥∥∥
L2(R+×R)

≤

∥∥∥∥∥f(t, x)−
k∑
i=0

ci(t)hi(t, x)

∥∥∥∥∥
L2(R+×R)

+

∥∥∥∥∥∥
k∑
i=0

ci(t)− pi∑
j=0

cijLj(t)

hi(t, x)

∥∥∥∥∥∥
L2(R+×R)

=

∫ ∞
0

∥∥∥∥∥f(t, x)−
k∑
i=0

ci(t)hi(t, x)

∥∥∥∥∥
2

L2(R)

dt

1/2

+

 k∑
i=0

∥∥∥∥∥∥ci(t)−
pi∑
j=0

cijLj(t)

∥∥∥∥∥∥
2

L2(R+)


1/2

≤

∫ ∞
0

∥∥∥∥∥f(t, x)−
k∑
i=0

ci(t)hi(t, x)

∥∥∥∥∥
2

L2(R)

dt

1/2

+ ε→ 0

when pmin = min{p0, · · · , pk} > max0≤i≤k{Ni}, ε → 0 as well as the dominated conver-

gence theorem when k →∞.

We now dwell on the expansion of f(t, B(t)). Let

T : f(t, x) 7→ f(t, B(t)),

for f(t, x) ∈ L2(R+ × R,B+ ⊗B, ν) and for any t > 0, E[f(t, B(t))]2 <∞.
(2.4.5)

Notice that the redundant condition E[f(t, B(t))]2 <∞ rules out the possibility that on a

measure-zero set of t, E[f(t, B(t))]2 =∞. Actually, even if this unfortunate thing happens,

such a function is in the same equivalence class as the function in (2.4.5). Anyway, the

redundant condition makes stating convenient.

Denote by Θ the image of T . Define an operation on Θ×Θ:

〈f(t, B(t)), g(t, B(t))〉Θ =

∫ ∞
0

E[f(t, Bt)g(t, Bt)]dt.

First, this operation makes sense. In fact,∣∣∣∣∫ ∞
0

E[f(t, B(t))g(t, B(t))]dt

∣∣∣∣ ≤ ∫ ∞
0
|E[f(t, B(t))g(t, B(t))]|dt
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≤
∫ ∞

0

√
Ef2(t, B(t))

√
Eg2(t, B(t))dt

≤
(∫ ∞

0
Ef2(t, B(t))dt

)1/2(∫ ∞
0

Eg2(t, B(t))dt

)1/2

=‖f(t, x)‖L2(R+×R,ν)‖g(t, x)‖L2(R+×R,ν).

Second, 〈f(t, B(t)), g(t, B(t))〉Θ = (f(t, x), g(t, x))L2(R+×R,ν), which implies that the

operation is an inner product in Θ and the transformation T preserves inner product.

It is not difficult to show that T and Θ enjoy the properties in Lemmas 2.2.2–2.2.4.

Particularly, Θ is a Hilbert space with this inner product 〈·, ·〉Θ and {Lj(t)hi(t, B(t))}∞i,j=0

is its orthonormal basis. Accordingly, we have the following Theorem.

Theorem 2.4.1. Any stochastic process in the form of f(t, B(t)) in the space Θ admits

a Fourier series expression

f(t, B(t)) =

∞∑
i=0

∞∑
j=0

cijLj(t)hi(t, B(t)), (2.4.6)

where cij = 〈f(t, B(t)),Lj(t)hi(t, B(t))〉Θ.

Proof. It follows immediately from the Hilbert space theory.

Notice that since

cij =〈f(t, B(t)),Lj(t)hi(t, B(t))〉Θ =

∫ ∞
0

E[f(t, B(t))Lj(t)hi(t, B(t))]dt

=

∫ ∞
0

Lj(t)E[f(t, B(t))hi(t, B(t))]dt :=

∫ ∞
0

ci(t, f)Lj(t)dt,

where ci(t, f) := E[f(t, B(t))hi(t, B(t))] and Cauchy-Schwarz inequality shows the square

integrability of ci(t, f) on R+:∫ ∞
0

c2
i (t, f)dt =

∫ ∞
0

[∫ ∞
−∞

f(t, x)hi(t, x)φt(x)dx

]2

dt

≤
∫ ∞

0

∫ ∞
−∞

f2(t, x)φt(x)dxdt <∞,

the expansion (2.4.6) may be viewed as a two-step expansion, viz., expand first f(t, B(t))

in the space L2(R, φt(x)) in terms of hi(t, B(t)) obtaining coefficient function ci(t, f), then
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expand ci(t, f) by means of Lj(t) in the space L2(R+). In addition, from Parseval equality

it follows that

‖f(t, B(t))‖2Θ =
∞∑
i=0

∞∑
j=0

c2
ij =

∞∑
i=0

‖ci(t, f)‖2L2(R+).

As usual, given truncation parameters k and p = (p0, . . . , pk), fk,p(t, Bt) signifies the

truncation series,

fk,p(t, B(t)) =
k∑
i=0

pi∑
j=0

cijLj(t)hi(t, B(t)).

Let us then establish an approximation rate for the truncation series fk,p(t, B(t)) to

f(t, B(t)).

Theorem 2.4.2. Suppose that f(t, x) ∈ L2(R+ × R) and for every t > 0, f(t, x) and

its partial derivatives f
(v)
x (t, x), v = 1, . . . , r1 (r1 ≥ 1), are all in the space L2(R, φt(x)).

Moreover, suppose that t
r1
2 f

(r1)
x (t, x) ∈ L2(R+ × R). In addition, there exists a positive

integer r2 ≥ 1 such that ci(t, f) and t
r2
2
dv

dtv ci(t, f) (v = 1, . . . , r2) are all in L2(R+) for all

i. Then we have

‖f(t, B(t))− fk,p(t, B(t))‖2Θ ≤
1

kr1
R2

1(k) +
k

pr2min

R2
2(pmin),

where R2
1(k) = (1+o(1))

∑∞
i=k+1 ‖ci−r1(t,

√
t
r1
f

(r1)
x (t, x))‖2L2(R+) → 0 as k →∞, R2

2(pmin) =

(1 + o(1))
∑∞

j=pmin+1(c
(r2)
j−r2(c̃i))

2 → 0 as pmin = min{p0, . . . , pk} → ∞, in which c̃i =

t
r2
2 e−t/2[ci(t, f)et/2](r2) and provided that the truncation parameters satisfy that k

p
r2
min

→ 0.

Remark 2.4.2. Firstly, note that the notation c
(r2)
j−r2(c̃i) signifies the coefficients of the

expansion of the function involved expanded by {L (r2)(t)}. Secondly, the conditions can

be satisfied by many functions such as f1(t, x) = t
1+t2

sinx, f2(t, x) = tα sinx (α ≥ 0), by

virtue of Example 2.1. When sinx is substituted by cosx it is clear that the conditions

are also satisfied. In addition, f3(t, x) = tαe−γtpn(x) also satisfy the condition with

∀γ > 0, α ≥ 0 and polynomial pn(x) of fixed degree n ∈ N on account of Example 2.1.

Proof. It follows from the orthogonality of the basis that

‖f(t, B(t))− fk,p(t, B(t))‖2Θ

=

∥∥∥∥∥∥
k∑
i=0

∞∑
j=pi+1

cijLj(t)hi(t, B(t)) +

∞∑
i=k+1

∞∑
j=0

cijLj(t)hi(t, B(t))

∥∥∥∥∥∥
2
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=
k∑
i=0

∞∑
j=pi+1

c2
ij +

∞∑
i=k+1

∞∑
j=0

c2
ij .

Notice that
∑∞

j=0 c
2
ij = ‖ci(t, f)‖2L2(R+) and f(t, x), as a function of x, satisfies all the

conditions in Theorem 2.2.2. Using equality (2.2.13) yields

∞∑
i=k+1

∞∑
j=0

c2
ij =

∞∑
i=k+1

‖ci(t, f)‖2L2(R+)

=
∞∑

i=k+1

1

i(i− 1) · · · (i− r1 + 1)
‖
√
t
r1
ci−r1(t, f (r1)

x (t, x))‖2L2(R+)

=

∞∑
i=k+1

1

i(i− 1) · · · (i− r1 + 1)
‖ci−r1(t,

√
t
r1
f (r1)
x (t, x))‖2L2(R+)

≤ 1

(k + 1)k · · · (k − r1 + 2)

∞∑
i=k+1

‖ci−r1(t,
√
t
r1
f (r1)
x (t, x))‖2L2(R+)

=
1

kr1
R2

1(k),

where R2
1(k) = (1 + o(1))

∑∞
i=k+1 ‖ci−r1(t,

√
t
r1
f

(r1)
x (t, x))‖2L2(R+), which converges to zero

as k →∞, because of
√
t
r1
f

(r1)
x (t, x) ∈ L2(R+ × R).

Meanwhile, since each ci(t, f) satisfies all the conditions in Theorem 2.3.1, by (2.3.3)

we have

k∑
i=0

∞∑
j=pi+1

c2
ij =

k∑
i=0

∥∥∥∥∥∥ci(t, f)−
pi∑
j=0

cijLj(t)

∥∥∥∥∥∥
2

L2(R+)

≤
k∑
i=0

1

pr2i
R2

2(pi) ≤
k

pr2min

(1 + o(1))R2
2(pmin),

where R2
2(pi) = (1 + o(1))

∑∞
j=pi+1(c

(r2)
j−r2(c̃i))

2 and c̃i = tr2/2e−r2/2[ci(t)e
r2/2](r2). Observe

that R2
2(p) converges to 0 as pmin →∞. This finishes the proof.

2.4.2 Finite time horizon

It is known that ([0, T ] × R,BT ⊗B, ν) is a measure space, where BT and B are Borel

σ–algebras on [0, T ] and on R respectively, ν is the product measure of Lebesgue measure

λ on [0, T ] and µt, as defined in last subsection, a measure on R for t ∈ [0, T ]. Since
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both µt and λ are finite, ν is finite. Therefore, L2([0, T ] × R,BT ⊗ B, ν) = {f(t, x) :∫
[0,T ]×R f

2(t, x)dν <∞} is a Hilbert space with an inner product defined by

(f1, f2) =

∫ T

0

∫ ∞
−∞

f1(t, x)f2(t, x)φt(x)dxdt, (2.4.7)

and the induced norm. We also simplify the notation L2([0, T ]×R,BT⊗B, ν) as L2([0, T ]×
R). Similar to Lemma 2.4.1, system {ϕjT (t)hi(t, x)} is a complete orthonormal basis in

L2([0, T ]× R).

We can conduct the same mapping as in the last subsection to establish a space of

stochastic processes that is omitted for brevity. We give the result directly. Let Ξ be the

space of

Ξ = {f(t, B(t)) : f(t, x) ∈ L2([0, T ]× R), and E[f(t, B(t))]2 <∞ for ∀ t ∈ [0, T ]},

which is a Hilbert space with an inner product of the form 〈f(t, B(t)), g(t, B(t))〉Ξ =∫ T
0 E[f(t, B(t))g(t, B(t))]dt and the induced norm. Note that {ϕjT (t)hi(t, B(t))} is an

orthonormal basis in Ξ.

Theorem 2.4.3. Any stochastic process in the form of f(t, B(t)) in the space Ξ admits a

Fourier series expression

f(t, B(t)) =

∞∑
i=0

∞∑
j=0

bijϕjT (t)hi(t, B(t)), (2.4.8)

where bij = 〈f(t, B(t)), ϕjT (t)hi(t, B(t))〉Ξ.

As bij =
∫ T

0 ϕjT (t)E[f(t, B(t))hi(t, B(t))]dt, let bi(t, f) := E[f(t, B(t))hi(t, B(t))],

which is square integrable on [0, T ] implied by Cauchy-Schwarz inequality, the relation

bij =
∫ T

0 ϕjT (t)bi(t, f)dt and the same arguments as in the last subsection imply that

expansion (2.4.8) can be regarded as a two-step expansion: bi(t, f) is the i-th coefficient of

the expansion of f(t, B(t)) in terms of {hi(t, B(t))} and then bij is the j-th coefficient of

the expansion of bi(t, f) in terms of {ϕjT (t)}. It follows from the Parseval-Bessel equality

that

‖f(t, B(t))‖2Ξ =

∞∑
i=0

∞∑
j=0

b2ij =
∞∑
i=0

‖bi(t, f)‖2L2([0,T ]).

Given a bundle of truncation parameters k for i and (p0, p1, · · · , pk) for j’s, we define

the truncation series for (2.4.8):

fk,p(t, B(t)) =

k∑
i=0

pi∑
j=0

bijϕjT (t)hi(t, B(t)). (2.4.9)
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The following theorem gives an approximation rate for the truncation series fk,p(t, B(t))

to f(t, B(t)).

Theorem 2.4.4. Suppose f(t, x) ∈ L2([0, T ]×R) and for every t > 0, f(t, x) and its partial

derivatives f
(v)
x (t, x), v = 1, . . . , r (r ≥ 1), are all in the space L2(R, φt(x)). Moreover,

suppose
√
t
r
f

(r)
x (t, x)) ∈ L2([0, T ] × R). In addition, bi(t, f) = E[f(t, B(t))hi(t, B(t))]

are twice differentiable in t ∈ [0, T ] and b′′i (t, f) ∈ L2[0, T ]. Furthermore, suppose DT =

supi{|b′i(0, f)|+ |b′i(T, f)|} <∞. Then

‖f(t, B(t))− fk,p(t, B(t))‖2Ξ ≤ C
k

p3
min

+
1

kr
R2
k, (2.4.10)

where C = CT is a constant depending on T and DT , pmin = min{p0, p1, · · · , pk}, and

R2
k = (1 + o(1))

∑∞
i=k+1 ‖bi−r(t,

√
t
r
f

(r)
x (t, x))‖2L2[0,T ] → 0 as k → ∞. Also, suppose that

the truncation parameters satisfy k
p3min
→ 0.

Remark 2.4.3. The conditions of this theorem are quite weak since time zone is finite. Let

α ≥ 1 and n ≥ 1. All functions f(t, x) = tαpn(x) where pn(x) is a polynomial of n-th order

satisfy such conditions because bi(t, f) is a power function of t with power greater than or

equal to one when i ≤ n, and 0 when i > n. Thus, functions of the type tαeγtpn(x) (γ > 0)

and their superpositions satisfy the conditions, in addition to functions like tαe−γtpn(x).

Meanwhile, tα sinx and tα cosx are in the ambit of the conditions as well.

Proof. It follows from the orthogonality that

‖f(t, B(t))− fk,p(t, B(t))‖2Ξ =
k∑
i=0

∞∑
j=pi+1

b2ij +
∞∑

i=k+1

∞∑
j=0

b2ij

=
k∑
i=0

∥∥∥∥∥∥bi(t, f)−
pi∑
j=0

bijϕjT (t)

∥∥∥∥∥∥
2

L2[0,T ]

+
∞∑

i=k+1

‖bi(t, f)‖2L2[0,T ] .

It follows from (2.3.6) that∥∥∥∥∥∥bi(t, f)−
pi∑
j=0

bijϕjT (t)

∥∥∥∥∥∥
2

≤ C1
a2
iTT

3

(pi + 1)3
+ C2

aiTT
3.5

(pi + 1)3
Rpi + C3

T 4

(pi + 1)4
R2
pi

where Cj (j = 1, 2, 3) are absolutely constants, aiT = |b′i(0)| + |b′i(T )|, and R2
pi =∑∞

j=pi+1 |bij(b′′i (t))|2. Therefore, denoting DT = supi{aiT },

k∑
i=0

∥∥∥∥∥∥bi(t, f)−
pi∑
j=0

bijϕjT (t)

∥∥∥∥∥∥
2
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≤C1D
2
TT

3
k∑
i=0

1

(pi + 1)3
+ C2DTT

3.5
k∑
i=0

1

(pi + 1)3
Rpi + C3T

4
k∑
i=0

1

(pi + 1)4
R2
pi

≤C1D
2
TT

3 k

p3
min

+ C2DTT
3.5 k

p3
min

Rpmin + C3T
4 k

p4
min

R2
pmin

=(C1D
2
T + C2DT

√
TR1pmin + C3Tp

−1
minR

2
pmin

)
kT 3

p3
min

= C
k

p3
min

,

where pmin = min{p0, p1, · · · , pk} and C = (C1D
2
T +C2DT

√
TRpmin +C3Tp

−1
minR

2
pmin

)T 3 =

O(1).

In the meantime, using (2.2.13) yields

∞∑
i=k+1

‖bi(t, f)‖2 =
∞∑

i=k+1

1

i(i− 1) · · · (i− r + 1)
‖
√
t
r
bi−r(t, f

(r)
x (t, x))‖2L2[0,T ]

≤ 1

(k + 1)k · · · (k − r + 2)

∞∑
i=k+1

‖bi−r(t,
√
t
r
f (r)
x (t, x))‖2L2[0,T ]

=
1

kr
R2
k,

where R2
k = (1 + o(1))

∑∞
i=k+1 ‖bi−r(t,

√
t
r
f

(r)
x (t, x))‖2L2[0,T ]. Because of

√
t
r
f

(r)
x (t, x) ∈

L2([0, T ]× R), R2
2k converges to zero as k →∞. The assertion eventually follows.
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Chapter 3

Estimation of Brownian motion

functionals in econometric models

Consider a continuous time model of the form

Y (t) = m(t, B(t)) + ε(t), (3.0.1)

where m(·, ·) is an unknown functional defined on [0,∞)× (−∞,∞) or [0, T ]× (−∞,∞)

and ε(t) is an error process with mean zero and finite variance.

Since there are three types of sampling to be discussed in what follows, we divide the

chapter into three sections.

3.1 Infinite time horizon

This section is devoted to the estimation where m(·, ·) is defined on [0,∞)× (−∞,∞) and

our sampling points are ts = s, s = 1, 2, · · · , n. We firstly need to impose some conditions

on m(t, x).

Assumption B.11

(a) For every t > 0, m(t, x) and its partial derivatives with respect to x of up to third

order are all in L2(R, φt(x)).

1B is initialled from Brownian motion.
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(b) For each i, ci(t,m(t, x)) = E[m(t, B(t))hi(t, B(t))], the coefficient of the expansion of

m in terms of the system {hi(t, B(t))}, and its derivatives of up to third order belong

to L2(R+).

(c) For i large enough, the coefficient functions ci(t,m
(3)
x (t, x)) of m

(3)
x (t, B(t)) expanded

by the system {hi(t, B(t))} are chosen such that t3c2
i (t,m

(3)
x (t, x)) are bounded on

(0,∞) uniformly in i.

Remark 3.1.1. Condition (a) and the first part of (b) are to ensure that the m function

can be expanded by the method in the last chapter. The second part of condition (b) and

(c) are further requirements for the expansion converging with a certain speed. Since quite

weak, there are variety of functions satisfying these conditions. For example, m1(t, x) =
tα

1+tβ
sin(x) and m2(t, x) = tα

1+tβ
cos(x) where α ≥ 1 and β ≥ α + 1.25. It follows from

Example 2.1 that ci(t,m1) = (−1)k 1√
i!
tα
√
t
i

1+tβ
e−t/2, for i = 2k + 1; 0, for i = 2k, where

k = 0, 1, . . . and ci(t,m2) = (−1)k 1√
i!
tα
√
t
i

1+tβ
e−t/2 for i = 2k; 0, for n = 2k + 1, where

k = 0, 1, . . .. It is evident that ci(t,m1) and ci(t,m2) as well as their derivatives of up to

third order belong to L2(0,∞).

On the other hand, because ∂3

∂x3
m1(t, x) = −m2(t, x) and ∂3

∂x3
m2(t, x) = m1(t, x), the

condition (c) is fulfilled by these two functions. In effect,

t3c2
i

(
t,
∂3

∂x3
m2(t, x)

)
= t3c2

i (t,m1(t, x)) =

0, if i = 2k;

1
i!
t3+2αti

(1+tβ)2
e−t if i = 2k + 1.

In the second case that i = 2k + 1, if 0 < t ≤ 1, it is less than 1; otherwise, making

use of the fact that i! >
√

2πi
(
i
e

)i
yields

1

i!

t3+2αti

(1 + tβ)2
e−t ≤ 1

i!
t3+2α−2βtie−t ≤ 1

i!
ti+

1
2 e−t ≤ 1

i!

(
i+

1

2

)i+ 1
2

e−i−
1
2

≤ ei√
2πiii

(
i+

1

2

)i+ 1
2

e−i−
1
2 ≤

√
i+ 1

2√
2πi

(
1 +

1

2i

)i
e−

1
2 ≤ 1√

π

Also, we can verify that t3c2
i

(
t, ∂

3

∂x3
m1(t, x)

)
satisfies the condition in the same way.

Another interesting example is m3(t, x) = tαe−rtPn(x) where α ≥ 1, r > 0 and P (x)

stands for a polynomial of fixed degree. This kind of functions is frequently encountered

in finance context which may represent the present value of an asset (see Yor, 2001, p.6).

Because P (x) is a polynomial, it is evident that m3 satisfies the conditions.
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Suppose that we have n observations (s, Ys) at the discrete times s = 1, 2, · · · , n, where

Ys = Y (s). The resulting models now become

Ys = m(s,Xs) + es, s = 1, . . . , n, (3.1.1)

where Xs = B(s) denotes the Brownian motion at point s, es = ε(s) (s = 1, . . . , n) form

an error sequence with mean zero and finite variance.

Note that Xs =
∑s

i=1(Xi −Xi−1), a sum of i.i.d.N(0, 1) sequence. Let xs,n = 1√
n
Xs.

It follows from the functional central limit theorem, xs,n converges in distribution to a

Brownian motion on [0, 1]. In addition, the triangular array xs,n, along with dl,k,n =√
(l − k)/n, satisfies Assumption A in Chapter 1.

Having expanded function m at sampling points, given truncation parameters k and

pi, the model in (3.1.1) can be written as

Ys =

k∑
i=0

pi∑
j=0

cijLj(s)hi(s,Xs) +

k∑
i=0

∞∑
j=pi+1

cijLj(s)hi(s,Xs)

+
∞∑

i=k+1

∞∑
j=0

cijLj(s)hi(s,Xs) + es, s = 1, 2, . . . , n.

(3.1.2)

As known from the last chapter,
∑∞

j=0 cijLj(s) = ci(s,m). Therefore, in most cases

we shall supersede this relationship into the model expression. We now rewrite equations

in (3.1.2) in the following matrix form:

Y = Xθ + δ + γ + ε, (3.1.3)

where

Y ′ =(Y1, Y2, . . . , Yn); θ′ = (c00, c01 . . . , c0p0 , c10, . . . , c1p1 , . . . , ck0, . . . , ckpk);

x1 =(L0(1)h0(1, X1),L1(1)h0(1, X1), . . . ,Lp0(1)h0(1, X1),

L0(1)h1(1, X1),L1(1)h1(1, X1), . . . ,Lp1(1)h1(1, X1),

. . . ,L0(1)hk(1, X1),L1(1)hk(1, X1), . . . ,Lpk(1)hk(1, X1)),

...

xn =(L0(n)h0(n,Xn),L1(n)h0(n,Xn), . . . ,Lp0(n)h0(n,Xn),

L0(n)h1(n,Xn),L1(n)h1(n,Xn), . . . ,Lp1(n)h1(n,Xn),

. . . ,L0(n)hk(n,Xn),L1(n)hk(n,Xn), . . . ,Lpk(n)hk(n,Xn)),
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and X = (x′1, x
′
2, . . . , x

′
n)′; ε′ = (e1, e2, . . . , en);

δ′ =(δ1, · · · , δn), with δs =

k∑
i=1

∞∑
j=pi+1

cijLj(s)hi(s,Xs);

γ′ =(γ1, γ2, · · · , γn) with γs =
∞∑

i=k+1

ci(s)hi(s,Xs), s = 1, 2, . . . , n.

The OLS (ordinary least squares) estimator of θ is given by

θ̂ = (X ′X)−1X ′Y. (3.1.4)

3.1.1 Asymptotics of the estimated coefficients

In the sequel we shall explore the asymptotics of θ̂. However, the dimension of θ̂ will in-

crease to infinity with n approaching infinity. To tackle the dimension curse in asymptotic

theory, a transformation of θ̂ has to be introduced. The transformation introduced maps θ̂

into a scalar, so that this image becomes the target of the research. This is also the reason

why we consider the converse questions in the previous section. Let us first introduce the

following assumptions.

Assumption Bc.12

(a) Let S = {a0, a1, a2, . . .}, where ai = {aij}∞j=0 is such that
∑∞

j=2

√
j(j − 1)|ai,j−2| <∞

for i = 0, 1, 2, · · · .

(b) Suppose further that
∑∞

i=0 i
∑∞

j=0 |aij | <∞.

Remark 3.1.2. The condition (a) on the set of sequences ensures not only the convergence

of combinations of each {ai} and the basis {Lj(t)}, but also the differentiability of the

corresponding functions. The condition (2.3.9) in last chapter guarantees this requirement

can be fulfilled. Furthermore, condition (b) is a sufficient condition that secures the

convergence of the combination of {aij} and the basis {Lj(t)hi(t, B(t))} in the product

space.

If aij = O((i+ 1)−3(j + 1)−3), all the conditions can be satisfied.

Lemma 3.1.1. Let Assumption Bc.1 holds. Then there exists a function F̄ (t, x) such that

F̄ (t, B(t)) =

∞∑
i=0

∞∑
j=0

aijLj(t)hi(t, B(t)), (3.1.5)

2Bc is initialled from Brownian motion and coefficients respectively.
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for all t > 0, where the convergence is in the sense of norm.

Proof. It follows immediately from Riesz-Fischer theorem.

Assumption Bc.1 makes the following transformation of θ̂ effective. Let k = k(n); pi =

pi(n), i = 0, 1, . . . k, be the truncation parameters in the expansion which are increasing

with sample size n; for S in Assumption Bc.1 let

a = (a00, · · · , a0p0 , · · · , ak0, · · · , akpk) (3.1.6)

be the truncated sequences corresponding to the truncation parameters. We now have the

following transformation for θ̂:

aX ′X[θ̂ − θ] = aX ′(δ + γ + ε). (3.1.7)

Another crucial issue is the determination of the truncation parameters. This question

has considerable impact on the convergence of the estimate.

Assumption Bc.2

(a) k = [nκ1 ] where 0 < κ1 < 1.

(b) For all i, pi = o(n) and pmin = min(p0, · · · , pk) = [nκ2 ] where 0 < κ2 < 1.

(c) Moreover, κ1 and κ2 satisfy that

(i) κ1 >
1
2 ,

(ii) κ1 + 1
2 ≤

3
2κ2.

Remark 3.1.3. Condition (a) and (b) are requirements for all truncation parameters which

are increasing to infinity with sample size. Note that they are all stipulated to be of

o(n). This guarantees that we have sufficient information to estimate the coefficients

in the expansion. In addition, condition (c) is the relationship between the orders that

ensures the convergence in the subsequential study. The feasible selection of them is clearly

considerable.

The last assumption is about the function generated from the vector a satisfying the

Assumption Bc.1.3 By virtue of (3.1.5), at each observation point we can decompose

3We say a, a vector in (3.1.6) truncated from the sequences, satisfies the Assumption Bc.1 rather than

the sequence for simplicity.
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F̄ (s,Xs) based on the given truncation parameters as

F̄ (s,Xs) = (aX ′)s + δ̄s + γ̄s, s = 1, . . . , n, (3.1.8)

where (aX ′)s is the s-th entry of the vector aX ′, δ̄s and γ̄s are defined in the same way

as δs and γs with the coefficients being substituted by aij .

Designate F̄
′

= (F̄ (1, X1), · · · , F̄ (n,Xn)), δ̄′ = (δ̄1, · · · , δ̄n), and γ̄′ = (γ̄1, · · · , γ̄n) for

later use.

Assumption Bc.3

(a) F̄ (t, x) is in Class T (HI) with homogeneity power v(·) and normal function F (t, x).

(b) F̄ 2(t, x) is in Class T (HI) with homogeneity power v2(·) and normal function F 2(t, x).

Theorem 3.1.1. Suppose that {xs,n}n1 and {es}n1 satisfy Assumptions B and A (c) in

Chapter 1. Moreover, let Assumptions B.1 and Bc.1 – Bc.3 hold. Then we have

1
4
√
nv(n)

aX ′X[θ̂ − θ]→D

(∫ 1

0
G3(u)dLW (u, 0)

) 1
2

N (3.1.9)

where G3(·) =
∫
F 2(·, x)dx as specified in Assumption C in Chapter one, W is the Brown-

ian motion on [0, 1] and N is a standard normal variable which is independent of W , LW

is the local time of W .

Remark 3.1.4. Due to (3.1.8), we have

1√
nv(n)2

aX ′Xa′ =
1√

nv(n)2
(F̄
′ − δ̄′ − γ̄′)(F̄− δ̄ − γ̄)

=
1√

nv(n)2
(F̄
′
F̄ + δ̄′δ̄ + γ̄′γ̄ − 2F̄

′
δ̄ − 2F̄

′
γ̄ + 2δ̄′γ̄).

However, in view of the proof of Theorem 3.1.1, we have

1√
n
δ̄′δ̄ =

1√
n

n∑
s=1

δ̄2
s →P 0,

1√
n
γ̄′γ̄ =

1√
n

n∑
s=1

γ̄2
s →P 0,

and hence it follows from Cauchy-Schwarz inequality that 1√
n
δ̄′γ̄ →P 0 as well. Now, using

Assumption Bc.3 and Theorem 1.3.1 we have

1√
nv(n)2

F̄
′
F̄ =

1√
nv(n)2

n∑
s=1

F̄ 2(s,Xs) =
1√

nv(n)2

n∑
s=1

F̄ 2(s,
√
nxs,n)
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→D

∫ 1

0
G3(t)dLW (t, 0).

We eventually obtain that 1√
nv(n)2

aX ′Xa′ converges to a random variable in distribu-

tion with n→∞, implying that aX ′Xa′ = O(
√
nv(n)2).

On the other hand, by the result of the theorem we have aX ′X(θ̂ − θ) = O( 4
√
nv(n)).

Comparison of these two magnitudes gives us an ambiguous idea of the decay rate of

θ̂ − θ since a is a constant sequence. The effect of substitution of a by θ̂ − θ plays a

role of ( 4
√
nv(n))

−1
, which can reach the conventional rate of n−1/2 for the regression of

stationary sequence when v(n) = n1/4.

Proof. Denote aX ′X(θ̂ − θ) = aX ′γ + aX ′δ + aX ′ε := Qn +Mn + Ln.

We firstly shall show that 1
4√nv(n)

Qn converges to 0 in probability. Notice that it can

be written as

1
4
√
nv(n)

Qn =
1

4
√
nv(n)

aX ′γ =
1

4
√
nv(n)

(F̄− δ̄ − γ̄)′γ

=
1

4
√
nv(n)

(F̄
′
γ − δ̄′γ − γ̄′γ).

Cauchy-Schwarz inequality suggests that we would study the convergence of ‖F̄‖2,

‖δ̄‖2, ‖γ̄‖2 and ‖γ‖2 in order to obtain that of Qn. To this end, we may invoke the

embedding schedule delineated in Chapter 1, so we can work under a strong condition

(Wn, Un)→ (W,U) almost surely but still achieve a weak convergence.

It follows from Theorem 1.3.1 and Bc.3 that

1√
nv2(n)

‖F̄‖2 =
1√

nv2(n)

n∑
s=1

F̄ 2
(
s,
√
nxs,n

)
→P

∫ 1

0
G3(u)dLW (u, 0), (3.1.10)

as n→∞, where G3(·) =
∫
F 2(·, x)dx.

Therefore, it suffices to show that

‖γ‖2 →P 0, (3.1.11a)

1√
nv(n)2

‖δ̄‖2 →P 0,
1√

nv(n)2
‖γ̄‖2 →P 0. (3.1.11b)

In effect,

E‖γ‖2 = E

n∑
s=1

γ2
s =

n∑
s=1

E

 ∞∑
i=k+1

∞∑
j=0

cijLj(s)hi(s,Xs)

2
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=

n∑
s=1

E

( ∞∑
i=k+1

ci(s,m)hi(s,Xs)

)2

=
n∑
s=1

∞∑
i=k+1

c2
i (s,m),

where ci(s,m) := ci(s,m(s, x)) for brevity. Since m function satisfies conditions of Theo-

rem 2.2.1, by (2.2.13), ci(s,m) =
√
s
3

√
i(i−1)(i−2)

ci−3(s,m
(3)
x ), then using Assumption B.1 (c),

we have

E‖γ‖2 =

n∑
s=1

∞∑
i=k+1

s3

i(i− 1)(i− 2)
c2
i−3(s,m(3)

x )

=

∞∑
i=k+1

1

i(i− 1)(i− 2)

n∑
s=1

s3c2
i−3(s,m(3)

x ) ≤ An
∞∑

i=k+1

1

i(i− 1)(i− 2)

≤A n

k2
= A

1

n2κ1−1
→ 0,

as n→∞, where A is the uniform bound for s3c2
i−3(s,m

(3)
x ) stipulated in Assumption B.1

(c). Hence, ‖γ‖2 converges to 0 in probability.

As for (3.1.11b), it follows that

1√
nv(n)2

E‖δ̄‖2 =
1√

nv(n)2

n∑
s=1

Eδ̄2
s

=
1√

nv(n)2

n∑
s=1

E

 k∑
i=0

∞∑
j=pi+1

aijLj(s)hi(s,Xs)

2

=
1√

nv(n)2

n∑
s=1

k∑
i=0

 ∞∑
j=pi+1

aijLj(s)

2

≤ 1√
nv(n)2

n∑
s=1

k∑
i=0

 sup
j≥pi+1

|Lj(s)|
∞∑

j=pi+1

|aij |

2

=
1√

nv(n)2

n∑
s=1

k∑
i=0

(
sup

j≥pi+1
|Lj(s)|

)2
 ∞∑
j=pi+1

√
(j + 2)(j + 1)√
(j + 2)(j + 1)

|aij |

2

≤ 1√
nv(n)2

n∑
s=1

k∑
i=0

1
√
spi

∞∑
j=pi+1

1

(j + 2)(j + 1)

∞∑
j=pi+1

(j + 2)(j + 1)|aij |2

≤ 1√
nv(n)2

n∑
s=1

k∑
i=0

1√
s

1
√
pi

o(1)

pi
≤ o(1)

v(n)2

k

p
3/2
min

1√
n

n∑
i=0

1√
s

=
o(1)

v(n)2

nκ1

n3κ2/2
→ 0,
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as n→∞, where we have used Assumption Bc.1, Bc.2 and the bound of |Lj(s)| in (2.3.5).

In addition,

1√
nv(n)2

E‖γ̄‖2 =
1√

nv(n)2

n∑
s=1

Eγ̄2
s

=
1√

nv(n)2

n∑
s=1

E

 ∞∑
i=k+1

∞∑
j=0

aijLj(s)hi(s,Xs)

2

=
1√

nv(n)2

n∑
s=1

∞∑
i=k+1

 ∞∑
j=0

aijLj(s)

2

≤C
√
n

v(n)2

∞∑
i=k+1

 ∞∑
j=0

|aij |

2

≤C
√
n

v(n)2k

∞∑
i=k+1

i

 ∞∑
j=0

|aij |

2

= o(1)

√
n

v(n)2k

=o(1)n
1
2
−κ1 → 0,

where we have used Assumption Bc.1, Bc.2 and |Lj(s)| ≤ C in (2.3.5) for any j.

Thus, the results in (3.1.10) and (3.1.11) imply all ingredients in Qn converge to zero in

probability, so does Qn in the original probability space due to the equivalence of Qn →D 0

and Qn →P 0.

Now we are in a position to prove that 1
4√nv(n)

Mn converges to 0 in probability. Once

again, we can write it as

1
4
√
nv(n)

Mn =
1

4
√
nv(n)

aX ′δ =
1

4
√
nv(n)

(F̄− δ̄ − γ̄)′δ

=
1

4
√
nv(n)

(F̄
′
δ − δ̄′δ − γ̄′δ).

By virtue of Cauchy-Schwarz inequality, in view of (3.1.11) and (3.1.10), what we need

to do is only to prove that ‖δ‖2 converges to 0 in probability. In fact,

E

n∑
s=1

δ2
s =

n∑
s=1

E

 k∑
i=0

∞∑
j=pi+1

cijLj(s)hi(s,Xs)

2

=

n∑
s=1

k∑
i=0

 ∞∑
j=pi+1

cijLj(s)

2

≤
n∑
s=1

k∑
i=0

1√
s

1
√
pi

o(1)

pi
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=o(1)
k

√
pmin

3

n∑
s=1

1√
s

= o(1)
nκ1+1/2

n3κ2/2
→ 0,

where we again have used the result of Theorem 2.2.2 with r = 2, the bound of |Lj(s)| in
(2.3.5) and Assumption Bc.2.

The last step is to demonstrate that 1
4√nv(n)

Ln converges to the desired random variable

in distribution. We write

1
4
√
nv(n)

Ln =
1

4
√
nv(n)

aX ′ε =
1

4
√
nv(n)

(F̄− δ̄ − γ̄)′ε

=
1

4
√
nv(n)

(F̄
′
ε− δ̄′ε− γ̄′ε).

In view of Theorem 1.3.1, we have

1
4
√
nv(n)

F̄
′
ε =

1
4
√
nv(n)

n∑
s=1

F̄ (s,Xs)es →D

(∫ 1

0
G3(u)dLW (u, 0)

) 1
2

N, (3.1.12)

where G3(·) =
∫
F 2(·, x)dx.

In addition, invoking the fact that (es,Fn,s) is a martingale difference and xs+1,n is

adapted to Fn,s, we have

1√
nv2(n)

E|δ̄′ε|2 =
1√

nv2(n)
E

(
n∑
s=1

δ̄ses

)2

=
1√

nv2(n)

n∑
s1=1

n∑
s2=1

E[δ̄s1es1 δ̄s2es2 ]

=
1√

nv2(n)

n∑
s=1

E[δ̄2
se

2
s] +

2√
nv2(n)

n−1∑
s1=1

n∑
s2=s1+1

E[δ̄s1es1 δ̄s2es2 ]

=
1√

nv2(n)

n∑
s=1

E[δ̄2
sE(e2

s|Fn,s)] +
2√

nv2(n)

n−1∑
s1=1

n∑
s2=s1+1

E[δ̄s1es1 δ̄s2E(es2 |Fn,s2)]

=
σ2
e√

nv(n)2

n∑
s=1

Eδ̄2
s ,

and similarly

1√
nv(n)2

E|γ̄′ε|2 =
1√

nv(n)2
E

(
n∑
s=1

γ̄ses

)2

=
σ2
e√

nv(n)2

n∑
s=1

Eγ̄2
s ,

and thus (3.1.11b) gives us what we want. This finishes the proof.
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3.1.2 Asymptotics of the estimated unknown functional

After obtaining the estimation of coefficients in the expansion of functional m(t, B(t)), we

would be able to estimate the function m(τ, x) at point (τ, x) where ∀τ > 0 and x ∈ R is

any point in the trajectory of B(τ), namely, we can have m̂(τ, x) by superseding θ̂ in lieu

of θ and getting rid of residuals in the expansion of m(τ, x).

More precisely, given that m(·, ·) satisfies Assumption B.1, m(τ, x) is decomposed in

terms of {Lj(τ)hi(τ, x)} as

m(τ, x) =
∞∑
i=0

∞∑
j=0

cijLj(τ)hi(τ, x)

=
k∑
i=0

pi∑
j=0

cijLj(τ)hi(τ, x) +
k∑
i=0

∞∑
j=pi+1

cijLj(τ)hi(τ, x)

+
∞∑

i=k+1

∞∑
j=0

cijLj(τ)hi(τ, x)

:=A′(τ, x)θ + δ(τ, x) + γ(τ, x), (3.1.13)

where

A′(τ, x) = (L0(τ)h0(τ, x), · · · ,Lp0(τ)h0(τ, x), · · · ,

L0(τ)hk(τ, x), · · · ,Lpk(τ)hk(τ, x)),

δ(τ, x) =

k∑
i=0

∞∑
j=pi+1

cijLj(τ)hi(τ, x),

γ(τ, x) =

∞∑
i=k+1

∞∑
j=0

cijLj(τ)hi(τ, x).

Thus,

m̂(τ, x) = A′(τ, x)θ̂. (3.1.14)

We shall investigate the limit of

m̂(τ, x)−m(τ, x) = A′(τ, x)(θ̂ − θ)− δ(τ, x)− γ(τ, x)

= A′(τ, x)(X ′X)−1X ′(δ + γ + ε)− δ(τ, x)− γ(τ, x). (3.1.15)

The following lemma is very useful for the consequential development.
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Lemma 3.1.2. Let v be an 1× p unit column vector. Define p× p matrix A = vv′. Then

A has eigenvalues λ1 = 1, λi = 0, i = 2, . . . , p.

Proof. It is evident that A is both symmetric and nonnegative definite, so that for i =

1, · · · , p, λi are all real and λi ≥ 0. Moreover,

p∑
i=1

λi =tr(A) = tr(vv′) = tr(v′v) = ‖v‖2 = 1.

Nonetheless, λ1 = 1 since Av = vv′v = v. Whence, the assertion follows.

Define matrices Ap×p and Bp×p by

A =
A(τ, x)A′(τ, x)

‖A(τ, x)‖2
and B = (X ′X)A(X ′X)−1 (3.1.16)

where ‖ · ‖ signifies Euclidean norm and dimension p = p0 + · · ·+ pk + k + 1 indicated by

the expression of A′(τ, x).

Because of similarity, A and B share the same eigenvalues. In view of Lemma 3.1.2, A

has λ1 = 1 as its eigenvalue, so does B. Let normalised vector α be the left eigenvector of B

pertaining to eigenvalue λ1 = 1, viz. α′B = α′. As α is p-dimensional vector, in accordance

withA(τ, x), represent α in double-index subscript, α′ = (α00, · · · , α0p0 , · · · , αk0, · · · , αkpk).

The following assumption proposes a two dimensional sequence we are working with.

Assumption Bm.14

(a) Let S = {a0, a1, a2, . . .}, where ai = {aij}∞j=0 is a sequence such that
∑∞

j=1 j|ai,j | <∞
for i = 0, 1, 2, · · · .

(b) Suppose further that
∑∞

i=1 i
(∑∞

j=0 |aij |
)2

<∞.

Remark 3.1.5. Two conditions are independent, meaning that they do not have an inclusive

relationship. This is because the first condition is the requirement of decay speed of |aij |
in terms of j, while the second one postulates that for each i > 0, ςi =

∑∞
j=0 |ai,j | is

approximately of O
(

1
i1+η

)
for some η > 0. Obviously, if there are some ε > 0 and η > 0

such that aij = O
(

1
(1+j)2+ε(1+i)1+η

)
for i, j ≥ 0, both conditions are fulfilled.

In the sequel, denote pmin = min(p0, · · · , pk) and pmax = max(p0, · · · , pk). Let us

reshuffle the set S as S̃ by defining

4Bm stands for Brownian motion and m function respectively.
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1) S̃ = {ã0, · · · , ãi, · · · }

2) ãi = {ãij} where ãij = 1√
pmax

αij for 0 ≤ i ≤ k and 0 ≤ j ≤ pi with pmax =

max{p0, · · · , pk}; otherwise, ãij = aij .

Obviously, since S̃ satisfies the Riesz-Fischer theorem, namely
∑∞

i=0

∑∞
j=0 ã

2
ij < ∞,

there exists a function, denoted by F̃ (t, x), such that

F̃ (t, B(t)) =
∞∑
i=0

∞∑
j=0

ãijLj(t)hi(t, B(t)), (3.1.17)

for any t > 0.

Therefore, in view of (3.1.17),

1
√
pmax

α′X ′ = F̃
′
− δ̃′ − γ̃′ (3.1.18)

where F̃
′
= (F̃ (1, X1), · · · , F̃ (n,Xn)), δ̃′ = (δ̃1, · · · , δ̃n) with δ̃s =

∑k
i=0

∑∞
j=pi+1 aijLj(s)

hi(s,Xs) and γ̃′ = (γ̃1, · · · , γ̃n) with γ̃s =
∑∞

i=k+1

∑∞
j=0 aijLj(s)hi(s,Xs).

Also the above reshuffle procedure can be applied with 1
‖A(τ,x)‖A(τ, x) as follows. Let us

denote the resulting set by S̄. Accordingly, S̄ amounts to a set of sequences {ā0, ā1, ā2, · · · }
where āi = {āij} and āij = 1√

pmax‖A(τ,x)‖Lj(τ)hi(τ, x) if i = 0, · · · , k and j = 0, · · · , pi;
otherwise, āij = aij .

For the same reason, there exists a function, denoted by G̃(t, x), such that

G̃(t, B(t)) =
∞∑
i=0

∞∑
j=0

āijLj(t)hi(t, B(t)), (3.1.19)

for any t > 0. Similarly,

1
√
pmax‖A(τ, x)‖

XA(τ, x) = G̃− δ̄ − γ̄ (3.1.20)

where G̃
′
= (G̃(1, X1), · · · , G̃(n,Xn)), δ̄′ = (δ̄1, · · · , δ̄n) with δ̄s =

∑k
i=0

∑∞
j=pi+1 aijLj(s)

hi(s,Xs) and γ̄′ = (γ̄1, · · · , γ̄n) with γ̄s =
∑∞

i=k+1

∑∞
j=0 aijLj(t)hi(s,Xs).

Note that δ̃ = δ̄ and γ̃ = γ̄ since S̃ and S̄ have the same tails. We have the following

lemma for the generated functions F̃ (t, x) and G̃(t, x).

Lemma 3.1.3. For any t > 0, (a) E[G̃(t, B(t))]2 <∞, and (b) E[F̃ (t, B(t))]2 <∞.
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Proof. (a) It follows from the orthogonality that

E[G̃(t, B(t))]2 =E

 ∞∑
i=0

∞∑
j=0

āijLj(t)hi(t, B(t))

2

=
∞∑
i=0

 ∞∑
j=0

āijLj(t)

2

≤2

k∑
i=0

 pi∑
j=0

āijLj(t)

2

+ 2

k∑
i=0

 ∞∑
j=pi+1

aijLj(t)

2

+
∞∑

i=k+1

 ∞∑
j=0

aijLj(t)

2

:=2Γ1 + 2Γ2 + Γ3.

Using the boundedness of Lj(t) and the conditions for aij in Assumption Bm.1, we

have

Γ2 =
k∑
i=0

 ∞∑
j=pi+1

aijLj(t)

2

≤ c
k∑
i=0

 ∞∑
j=pi+1

|aij |

2

≤c
k∑
i=0

1

p2
i

 ∞∑
j=pi+1

j|aij |

2

≤ o(1)
k

p2
min

= o(1)nκ1−2κ2 → 0,

and

Γ3 =

∞∑
i=k+1

 ∞∑
j=0

aijLj(t)

2

≤ c
∞∑

i=k+1

 ∞∑
j=0

|aij |

2

≤ c
k

∞∑
i=k+1

i

 ∞∑
j=0

|aij |

2

= o(1)n−κ1 → 0.

Therefore, what we need to do is to show Γ1 is bounded. By definition of āij ,

Γ1 =
k∑
i=0

 pi∑
j=0

āijLj(t)

2

=
k∑
i=0

 pi∑
j=0

1
√
pmax‖A(τ, x)‖

Lj(τ)hi(τ, x)Lj(t)

2

=
1

pmax‖A(τ, x)‖2
k∑
i=0

h2
i (τ, x)

 pi∑
j=0

Lj(τ)Lj(t)

2

=


1

pmax‖A(τ,x)‖2
∑k

i=0 h
2
i (τ, x)

(∑pi
j=0 L 2

j (τ)
)2

if t = τ

1
pmax‖A(τ,x)‖2

∑k
i=0 h

2
i (τ, x)

(∑pi
j=0 Lj(τ)Lj(t)

)2
if t 6= τ.
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According to Alexits (1961, p.295), if an orthogonal polynomial system {Pi(x)} which

is orthogonal with respect to ρ(x) satisfying 0 ≤ ρ(x) ≤ C (for some C > 0) contains a

constant, then the following assertion is uniformly fulfilled on any compact interval

m∑
i=0

P 2
i (x) = O(m). (3.1.21)

If t = τ , it follows that
∑pi

j=0 L 2
j (τ) = e−τ

∑pi
j=0 L

2
j (τ) = O(1)pi. Thus

Γ1 =
1

pmax‖A(τ, x)‖2
k∑
i=0

O(1)pih
2
i (τ, x)

pi∑
j=0

L 2
j (τ) ≤ O(1).

If t 6= τ ,

Γ1 =
1

pmax‖A(τ, x)‖2
k∑
i=0

h2
i (τ, x)

 pi∑
j=0

Lj(τ)Lj(t)

2

≤ 1

pmax‖A(τ, x)‖2
k∑
i=0

h2
i (τ, x)

pi∑
j=0

L 2
j (τ)

pi∑
j=0

L 2
j (t)

=
1

‖A(τ, x)‖2
k∑
i=0

O(1)h2
i (τ, x)

pi∑
j=0

L 2
j (τ) = O(1).

To conclude, for any t > 0, E[G̃(t, B(t))]2 <∞.

(b) Similar to the part (a),

E[F̃ (t, B(t))]2 =E

 ∞∑
i=0

∞∑
j=0

ãijLj(t)hi(t, B(t))

2

=
∞∑
i=0

 ∞∑
j=0

ãijLj(t)

2

≤2

k∑
i=0

 pi∑
j=0

ãijLj(t)

2

+ 2

k∑
i=0

 ∞∑
j=pi+1

aijLj(t)

2

+
∞∑

i=k+1

 ∞∑
j=0

aijLj(t)

2

.

In view of the proof in the part (a), we only need to show the boundedness of the first

term. By Cauchy-Schwarz inequality,

k∑
i=0

 pi∑
j=0

ãijLj(t)

2

≤
k∑
i=0

pi∑
j=0

L 2
j (t)

pi∑
j=0

|ãij |2 = O(1)
k∑
i=0

pi
pmax

pi∑
j=0

α2
i,j ≤ O(1) <∞,

since α is an unit vector. The proof is finished.
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Assumption Bm.2

(a) Suppose that F̃ (t, x) and G̃(t, x) are in Class T (HI) with homogeneity powers v(·)
and g(·) and normal functions F and G respectively.

(b) Suppose further that F̃ 2(t, x), G̃2(t, x) and F̃ (t, x)G̃(t, x) are all in Class T (HI) with

homogeneity powers v2(·), g2(·) and v(·)g(·) and normal functions F (·, ·), G(·, ·) and

F (·, ·)G(·, ·) respectively.

Another crucial issue is the orders of the truncation parameters and homogeneity pow-

ers involved. This question has considerable impact on the convergence of the estimator.

Assumption Bm.3

(a) k = [nκ1 ] where 0 < κ1 < 1.

(b) Suppose that pmin = [nκ2 ] and pmax = [nκ̄2 ] where 0 < κ2 ≤ κ̄2 < 1.

(c) Moreover, κ1 and κ2 satisfy that κ1 >
1
2 , and 2

3κ1 + 1
3 ≤ κ2 ≤ 7

5κ1.

(d) Let g(n) = nρ. Suppose that 1
2(κ1 − 1

2) < ρ < 1
2κ2.

Remark 3.1.6. Conditions (a) and (b) are requirements for all truncation parameters. Note

that they are all required to be of o(n). This guarantees that we have sufficient information

to estimate the coefficients in the expansion. In addition, condition (c) imposes a kind of

relationship between the orders to ensure the convergence in the subsequential study. If

necessary, we can control the difference κ̄2 − κ2 as small as possible. This is the reason

that we ignore the difference in the following proof. Approximately, ρ is greater than some

positive number but less than 1
2 . Feasible selections of them are clearly considerable, for

example, κ1 = 0.6 and κ2 = 0.8.

Theorem 3.1.2. Suppose that {xs,n}n1 and {es}n1 satisfy Assumptions B and A(c). Under

Assumptions B.1 and Bm.1–Bm.3 we have

1
4
√
nv(n)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

(m̂(τ, x)−m(τ, x))

→D

(∫ 1

0
G3(t)dLW (t, 0)

) 1
2

N,

(3.1.22)

where G3(t) =
∫
F (t, x)2dx, W is a standard Brownian motion on [0, 1], N is a standard

normal random variable independent of W , and LW is the local–time process of W .
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Remark 3.1.7. As can be seen from the proof of the theorem, since the quantity

1
4
√
nv(n)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

= ∆
1

‖A(τ, x)‖
4
√
n
√
pmaxg(n)

and ∆ is convergent in distribution to a random variable, the quantity is about
4√n√pmaxg(n)
‖A(τ,x)‖ .

To estimate the order, observe from the proof thatO(1)
√
kpmin ≤ ‖A(τ, x)‖ ≤ O(1)

√
kpmax.

Accordingly,

1

‖A(τ, x)‖
4
√
n
√
pmaxg(n) ≤ O(1)

1√
kpmin

4
√
n
√
pmaxg(n) = n

1
4

+ρ+ 1
2

(κ̄2−κ2)− 1
2
κ1

and 1
4 + ρ+ 1

2(κ̄2 − κ2)− 1
2κ1 <

1
4 + 1

2(κ2 − κ1) < 1
2 . Meanwhile, 1

‖A(τ,x)‖
4
√
n
√
pmaxg(n) ≥

4
√
ng(n)k−

1
2 = n

1
4

+ρ− 1
2
κ1 and 1

4 + ρ− 1
2κ1 > 0. Thus, the convergence could be significant

slow if the parameters are not appropriately selected.

Proof. It follows from the relation (3.1.15) that

1
4
√
nv(n)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

(m̂(τ, x)−m(τ, x))

=
1

4
√
nv(n)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[A′(τ, x)(X ′X)−1X ′(δ + γ + ε)− δ(τ, x)− γ(τ, x)]

=
1

4
√
n
√
pmaxv(n)

α′X ′X
A(τ, x)A′(τ, x)

‖A(τ, x)‖2
(X ′X)−1X ′(δ + γ + ε)

− 1
4
√
nv(n)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[δ(τ, x) + γ(τ, x)]

=
1

4
√
n
√
pmaxv(n)

α′BX ′(δ + γ + ε)− 1
4
√
nv(n)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[δ(τ, x) + γ(τ, x)]

=
1

4
√
n
√
pmaxv(n)

α′X ′(δ + γ + ε)− 1
4
√
nv(n)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[δ(τ, x) + γ(τ, x)]

:=Π1 −Π2.

Firstly, we shall prove that Π1 converges to the desired random variable in distribution.

Using (3.1.18), write

Π1 =
1

4
√
n
√
pmaxv(n)

α′X ′(δ + γ + ε)

=
1

4
√
nv(n)

(F̃
′
− δ̃′ − γ̃′)(δ + γ + ε).
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Observe that it follows from Assumption Bm.2 and Theorem 1.3.1 that

1
4
√
nv(n)

F̃
′
ε =

1
4
√
nv(n)

n∑
s=1

F̃ (s,Xs)es

=
1

4
√
nv(n)

n∑
s=1

F̃ (s,
√
nxs,n)es →D

(∫ 1

0
G3(u)dLW (u, 0)

) 1
2

N,

(3.1.23)

where G3(·) =
∫
F 2(·, x)dx.

Accordingly, our aim now is to show all the other terms in Π1 converge to zero in

probability in which we may invoke the embedding schedule that allows us to work under

a stronger condition: almost surely convergence of (Wn, Un) in Assumption B but in an

expanded probability space. The reason is that convergence in probability is preserved

under operations like addition and product. To this purpose, Cauchy-Schwarz inequality

suggests it suffices to show that

‖δ‖2 →P 0, ‖γ‖2 →P 0, (3.1.24)

1√
nv(n)2

‖δ̄‖2 →P 0,
1√

nv(n)2
‖γ̄‖2 →P 0. (3.1.25)

1
4
√
nv(n)

δ̃′ε→P 0,
1

4
√
nv(n)

γ̃′ε→P 0, (3.1.26)

because it follows from Assumption Bm.2 and Theorem 1.3.1 with cn =
√
n that

1√
nv(n)2

‖F̃‖2 =
1√

nv(n)2

n∑
s=1

F̃ 2(s,
√
nxs,n)→P

∫ 1

0
G3(u)dLW (u, 0), (3.1.27)

as n→∞, where G3(·) =
∫
F 2(·, x)dx.

We begin with (3.1.24). Straightforward calculation implies

E‖γ‖2 =E

[
n∑
s=1

γ2
s

]
=

n∑
s=1

E

 ∞∑
i=k+1

∞∑
j=0

cijLj(s)hi(s,Xs)

2

=
n∑
s=1

E

( ∞∑
i=k+1

ci(s,m)hi(s,Xs)

)2

=
n∑
s=1

∞∑
i=k+1

c2
i (s),

where ci(s) := ci(s,m) for brevity. Since m function satisfies conditions of Theorem 2.2.1,

by (2.2.13) with r = 3, ci(s) =
√
s
3

√
i(i−1)(i−2)

ci−3(s,m
(3)
x ), then using Assumption B.1, we

have

E‖γ‖2 =

n∑
s=1

∞∑
i=k+1

s3

i(i− 1)(i− 2)
c2
i−3(s,m(3)

x )
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=

∞∑
i=k+1

1

i(i− 1)(i− 2)

n∑
s=1

s3c2
i−3(s,m(3)

x ) ≤ An
∞∑

i=k+1

1

i(i− 1)(i− 2)

≤A n

k2
= A

1

n2κ1−1
→ 0,

as n→∞, where A is the uniform bound for s3c2
i−3(s,m

(3)
x ) imposed in Assumption B.1.

Hence, ‖γ‖2 converges to 0 in probability. Similarly, we have

E‖δ‖2 =E

[
n∑
s=1

δ2
s

]
=

n∑
s=1

E

 k∑
i=0

∞∑
j=pi+1

cijLj(s)hi(s,Xs)

2

=

n∑
s=1

k∑
i=0

 ∞∑
j=pi+1

cijLj(s)

2

≤
n∑
s=1

k∑
i=0

1√
s

1
√
pi

o(1)

pi

=o(1)
k

√
pmin

3

n∑
s=1

1√
s

= o(1)
nκ1+1/2

n3κ2/2
→ 0,

where we again have used the result of Theorem 2.3.1 with r = 2, the bound of |Lj(s)| ≤
C(sj)−

1
4 in (2.3.5) and Assumption Bm.3.

Regarding (3.1.25), it follows that

1√
nv(n)2

n∑
s=1

Eδ̄2
s =

1√
nv(n)2

n∑
s=1

E

 k∑
i=0

∞∑
j=pi+1

aijLj(s)hi(s,Xs)

2

=
1√

nv(n)2

n∑
s=1

k∑
i=0

 ∞∑
j=pi+1

aijLj(s)

2

≤ C2

√
nv(n)2

n∑
s=1

k∑
i=0

 ∞∑
j=pi+1

|aij |

2

≤C
2√n
v(n)2

k∑
i=0

1

p2
i

 ∞∑
j=pi+1

j|aij |

2

≤C
2√n
v(n)2

k∑
i=0

o(1)

p2
i

≤ o(1)

v(n)2

k
√
n

p2
min

=
o(1)

v(n)2
nκ1+ 1

2
−2κ2 → 0,

as n → ∞, where we have used Assumptions Bm.1 and Bm.3, and the implication of

(2.3.5) that |Lj(s)| < C for some C > 0.

Additionally, we have as n→∞

1√
nv(n)2

n∑
s=1

E
[
γ̄2
s

]
=

1√
nv(n)2

n∑
s=1

E

 ∞∑
i=k+1

∞∑
j=0

aijLj(s)hi(s,Xs)

2
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=
1√

nv(n)2

n∑
s=1

∞∑
i=k+1

 ∞∑
j=0

aijLj(s)

2

≤ C2

√
nv(n)2

n∑
s=1

∞∑
i=k+1

 ∞∑
j=0

|aij |

2

≤ C2√n
kv(n)2

∞∑
i=k+1

i

 ∞∑
j=0

|aij |

2

=
o(1)

v(n)2

√
n

k
=

o(1)

v(n)2
n1/2−κ1 → 0,

where again the fact that |Lj(s)| < C is exploited; in addition, we have used Assumptions

Bm.1 and Bm.3, as Assumption Bm.1 implies that
∑∞

i=k+1 i
(∑∞

j=0 |aij |
)2

= o(1).

Furthermore, invoking the fact that (es,Fn,s) is a martingale difference and xs+1,n is

adapted to Fn,s as well as E(e2
s|Fn,s−1) = σ2

e a.s., we have

1√
nv(n)2

E|δ̄′ε|2 =
1√

nv(n)2
E

(
n∑
s=1

δ̄ses

)2

=
σ2
e√

nv(n)2

n∑
s=1

E
[
δ̄2
s

]
,

1√
nv(n)2

E|γ̄′ε|2 =
1√

nv(n)2
E

(
n∑
s=1

γ̄ses

)2

=
σ2
e√

nv(n)2

n∑
s=1

E
[
γ̄2
s

]
,

and using (3.1.25), the assertions in (3.1.26) are obtained. Therefore, we conclude that

Π1 converges to the limit of (3.1.23) in distribution.

Now we are in a position to prove that Π2 is convergent to zero in probability.

To begin with, let us find out the limit of

∆ :=
1√

nv(n)g(n)

1

pmax‖A(τ, x)‖
α′X ′XA(τ, x).

It follows from (3.1.18) and (3.1.20) that

∆ =
1√

nv(n)g(n)

α′X ′XA(τ, x)

pmax‖A(τ, x)‖
=

1√
nv(n)g(n)

(F̃
′
− δ̃′ − γ̃′)(G̃− δ̄ − γ̄)

=
1√

nv(n)g(n)
(F̃
′
− δ̄′ − γ̄′)(G̃− δ̄ − γ̄)

=
1√

nv(n)g(n)
(F̃
′
G̃− δ̄′G̃− γ̄′G̃− F̃

′
δ̄ − F̃

′
γ̄ + 2γ̄′δ̄ + δ̄′δ̄ + γ̄′γ̄). (3.1.28)

We now investigate term by term. Firstly, using Assumption Bm.2 it follows from

Theorem 1.3.1 with cn =
√
n and Assumption Bm.2 that, as n→∞

1√
nv(n)g(n)

F̃
′
G̃→P

∫ 1

0
J1(u)dLW (u, 0), (3.1.29)
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1√
ng(n)2

‖F̃‖2 →P

∫ 1

0
J2(u)dLW (u, 0), (3.1.30)

1√
ng(n)2

‖G̃‖2 →P

∫ 1

0
J3(u)dLW (u, 0), (3.1.31)

where J1(u) =
∫
F (u, x)G(u, x)dx,J2(u) =

∫
F 2(u, x)dx, J3(u) =

∫
G2(u, x)dx, W is a

standard Brownian motion on [0, 1] and LW (u, 0) is the local time of W .

Secondly, apropos of the terms δ̄′G̃, γ̄′G̃, F̃
′
δ̄ and F̃

′
γ̄, we use Cauchy-Schwarz in-

equality

1

nv(n)2g(n)2
|δ̄′G̃|2 ≤ 1√

nv(n)2
‖δ̄′‖2 1√

ng(n)2
‖G̃‖2,

1

nv(n)2g(n)2
|γ̄′G̃|2 ≤ 1√

nv(n)2
‖γ̄′‖2 1√

ng(n)2
‖G̃‖2,

1

nv(n)2g(n)2
|δ̄′F̃|2 ≤ 1√

ng(n)2
‖δ̄′‖2 1√

nv(n)2
‖F̃‖2,

1

nv(n)2g(n)2
|δ̄′F̃|2 ≤ 1√

ng(n)2
‖δ̄′‖2 1√

nv(n)2
‖F̃‖2.

Notice that in (3.1.25), we can remove v(n)2 since it does not play any role for

the convergence. Therefore, the limits (3.1.25), (3.1.30) and (3.1.31) indicate that all

the remaining terms in (3.1.28) converge in probability to zero. Thus, ∆ converges to∫ 1
0 J1(u)dLW (u, 0).

Because

1
4
√
nv(n)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[δ(τ, x) + γ(τ, x)] = ∆
4
√
n
√
pmaxg(n)

‖A(τ, x)‖
[δ(τ, x) + γ(τ, x)],

in order to prove that Π2 →P 0, it suffices to show

4
√
n
√
pmaxg(n)

‖A(τ, x)‖
δ(τ, x)→ 0 and

4
√
n
√
pmaxg(n)

‖A(τ, x)‖
γ(τ, x)→ 0

as n→∞.

Let us first estimate ‖A(τ, x)‖. Recall that by definition Lj(τ) = e−τ/2Lj(τ) where

{Lj(·)} is the Laguerre orthogonal polynomial system. According to Alexits (1961, p.295),

if an orthogonal polynomial system {Pi(x)} which is orthogonal with respect to ρ(x)

satisfying 0 ≤ ρ(x) ≤ C (for some C > 0) contains a constant, then the following assertion

is uniformly fulfilled on any compact interval

m∑
i=0

P 2
i (x) = O(m). (3.1.32)
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It follows that

‖A(τ, x)‖2 =
k∑
i=0

pi∑
j=0

L 2
j (τ)h2

i (τ, x) = e−τ
k∑
i=0

pi∑
j=0

L2
j (τ)h2

i (τ, x)

=O(1)
k∑
i=0

pih
2
i (τ, x) ≥ O(1)pmin

k∑
i=0

h2
i (τ, x) = O(1)kpmin.

We then assert that ‖A(τ, x)‖ ≥ O(1)
√
kpmin. Palpably, ‖A(τ, x)‖ ≤ O(1)

√
kpmax.

Accordingly, due to Assumption B.1 (b), using the result in Theorem 2.3.1 with r = 3

and the relation of (2.3.5) gives

4
√
n
√
pmaxg(n)

‖A(τ, x)‖
|δ(τ, x)| =

4
√
n
√
pmaxg(n)

‖A(τ, x)‖

∣∣∣∣∣∣
k∑
i=0

∞∑
j=pi+1

cijLj(τ)hi(τ, x)

∣∣∣∣∣∣
≤

4
√
n
√
pmaxg(n)

‖A(τ, x)‖

k∑
i=0

|hi(τ, x)|

∣∣∣∣∣∣
∞∑

j=pi+1

cijLj(τ)

∣∣∣∣∣∣
≤

4
√
n
√
pmaxg(n)

‖A(τ, x)‖

(
k∑
i=0

h2
i (τ, x)

) 1
2

 k∑
i=0

 ∞∑
j=pi+1

cijLj(τ)

2
1
2

≤O(1)
4
√
n
√
pmaxn

ρ

√
kpmin

√
k

[
k∑
i=0

1
√
τpi

o(1)

p2
i

] 1
2

≤ o(1)
n

1
4

+ρ√pmaxk
1
2

√
pminp

5
4
min

=o(1)n
1
4

+ρ+ 1
2
κ1+ 1

2
(κ̄2−κ2)− 5

4
κ2 → 0,

where we have used Assumption Bm.3 (c) and (d).

Meanwhile, exploiting an asymptotic property of Hermite polynomials that, for large

i, |hi(τ, x)‖ ≤ Ci−
1
4 where C is independent of i (see Nikiforov and Uvarov, 1988, p.54),

and on account of Assumption B.1 using (2.2.13) with r = 3, we have

4
√
n
√
pmaxg(n)

‖A(τ, x)‖
|γ(τ, x)| =

4
√
n
√
pmaxg(n)

‖A(τ, x)‖

∣∣∣∣∣∣
∞∑

i=k+1

∞∑
j=0

cijLj(τ)hi(τ, x)

∣∣∣∣∣∣
=

4
√
n
√
pmaxg(n)

‖A(τ, x)‖

∣∣∣∣∣
∞∑

i=k+1

ci(τ,m)hi(τ, x)

∣∣∣∣∣
=

4
√
n
√
pmaxg(n)

‖A(τ, x)‖

∣∣∣∣∣
∞∑

i=k+1

√
τ

3√
i(i− 1)(i− 2)

ci−3(τ,m(3)
x )hi(τ, x)

∣∣∣∣∣
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≤O(1)
4
√
n
√
pmaxg(n)

‖A(τ, x)‖

∣∣∣∣∣
∞∑

i=k+1

c2
i−3(τ,m(3)

x )

∣∣∣∣∣
1
2
∣∣∣∣∣
∞∑

i=k+1

1

i(i− 1)(i− 2)
√
i

∣∣∣∣∣
1
2

≤o(1)
4
√
nnρ
√
pmax√

kpmin

1

k5/4

=o(1)n
1
4

+ρ+ 1
2

(κ̄2−κ2)− 7
4
κ1 → 0,

where we have utilised Assumption Bm.3 (c) and (d). Therefore Π2 →P 0, which finishes

the proof.

3.2 Finite time horizon

Assume time variable t lies in [0, T ] with T fixed. In this section function m is defined

on [0, T ] × R. Therefore, conditions on m would be weakened since square integrability

on [0, T ] is much weaker than that on the half line. We make the following assumptions

about m(t, x) in model (3.0.1).

Assumption B.2

(a) Letm(t, x) ∈ L2([0, T ]×R, ν). Moreover, m(t, x) has partial derivatives with respect to

x of up to second order such that m′x,m
′′
x ∈ L2([0, T ]×R, ν) and m′′x(t, x) is continuous

in both t and x.

(b) For each i, bi(t,m) = E[m(t, Bt)hi(t, Bt)], the coefficient of the expansion of m in

terms of the system {hi(t, B(t))}, and its derivatives of up to second order belong to

L2[0, T ].

(c) Furthermore, bi(t,m) satisfies that |b′i(0,m)|+|b′i(T,m)| is bounded byM(T ) uniformly

in i.

Remark 3.2.1. Apart from condition (c), Assumption B.2 is quite weak and can cover a

variate of functions as discussed in the remark for Theorem 2.4.4. In addition, all functions

satisfying Assumption B.1 is in the ambit of Assumption B.2(a) and (b). Moreover,

condition (c) is fulfilled when m(t, x) = g(t)tpn(x) with pn(x) being a polynomial of

degree n and g(t) being arbitrary but continuously differentiable on [0, T ], since bi = 0 if

i > n. One more example is m(t, x) = g(t) cos(x), where g(t) ∈ C1[0, T ]. In this case, it
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follows from Example 2.1 that bi(t,m) = (−1)kg(t)tk · 1√
(2k)!

e−
t
2 when i = 2k, and 0 when

i = 2k + 1 for k = 0, 1, . . .. Therefore,

|b′i(0)|+ |b′i(T )| ≤ |g(0)|

+
1√

(2k)!

[
|g′(T )|+ (k − 1/2)|g(T )|

]
T ke−T/2 for i = 2k, k ≥ 1,

which is bounded uniformly in i = 2k because kTk√
(2k)!

converges to zero as k →∞.

Suppose that we have n observations for the process Y (t) on [0, T ] and the observations

are Ys,n = Y (ts,n) at ts,n = T s
n for s = 1, 2, · · · , n. At the sampling points, we have the

following models

Ys,n = m(ts,n, Xs,n) + es, s = 1, . . . , n, (3.2.1)

where Xs,n = B(T s
n) denotes the Brownian motion at point ts,n, es = ε(T s

n) (s = 1, . . . , n)

form an error sequence with mean zero and finite variance.

Note that Xs,n =
∑s

i=1(Xi,n − Xi−1,n) =
√
T 1√

n

∑s
i=1wi, where wi = 1√

T

√
n(Xi,n −

Xi−1,n) forms an i.i.d. N(0,1) sequence. Let xs,n = 1√
n

∑s
i=1wi. It follows from the

functional central limit theorem that xs,n converges to a standard Brownian motion in

distribution as n→∞. It also is clear that xs,n, along with dl,k,n =
√

(l − k)/n, satisfies

Assumption A.

Due to the expansion of functional m(t, B(t)), given truncation parameters k and pi

(0 ≤ i ≤ k), equation (3.2.1) can be rephrased as

Ys,n =

k∑
i=0

pi∑
j=0

bijϕjT (ts,n)hi(ts,n, Xs,n) +

k∑
i=0

∞∑
j=pi+1

bijϕjT (ts,n)hi(ts,n, Xs,n)

+
∞∑

i=k+1

∞∑
j=0

bijϕjT (ts,n)hi(ts,n, Xs,n) + es, s = 1, 2, . . . , n.

(3.2.2)

Equivalently, (3.2.2) in matrix form is

Y = Xβ + δ + γ + ε, (3.2.3)

where all notations remain the same as in the last section so that we omit reciting them.

The OLS estimator of β is given by

β̂ = (X ′X)−1X ′Y. (3.2.4)
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3.2.1 Asymptotics of the estimated coefficients

As in last section, to tackle the dimension curse we introduce the following assumption.

Assumption Bc.4

(a) Let S = {a0, a1, a2, . . .}, where ai = {aij}∞j=0 is a sequence such that
∑∞

j=1 j|ai,j | <∞
for i = 0, 1, 2, · · · .

(b) Suppose further that
∑∞

i=0

∑∞
j=0 |aij | <∞.

Remark 3.2.2. Condition (a) on the set of sequences ensures not only the convergence of

combinations of each {ai} and the basis {ϕjT (t)}, but also differentiability of the corre-

sponding function that is guaranteed by Theorem 2.3.4. Furthermore, condition (b) is a

sufficient condition that secures the convergence of the combination of {aij} and the basis

{ϕjT (t)hi(t, B(t))} in the product space, because under which a2
ij < |aij |.

The Assumption Bc.4 makes the following transformation of β̂ effective. Let k =

k(n); pi = pi(n), i = 0, 1, . . . k, be the truncation parameters in the expansion which are

increasing with sample size n; for S in Assumption Bc.4 let

a = (a00, · · · , a0p0 , · · · , ak0, · · · , akpk)

be the truncated series corresponding to the truncation parameters. We now have the

following transformation for β̂:

aX ′X[β̂ − β] = aX ′(δ + γ + ε). (3.2.5)

In order to obtain asymptotic behavior of β̂, we make the following assumptions for

the truncation parameters.

Assumption Bc.5

(a) k = nκ1 and 1/2 ≤ κ1 < 1

(b) For any i, pi = o(n) and pmin = nκ2 with 0 < κ2 < 1 and 2κ2 > 1 + κ1.

Observe that given a satisfying the Assumption Bc.4,5 as n → ∞, there is a function

F (t, x) such that

F (t, B(t)) =

∞∑
i=0

∞∑
j=0

aijϕjT (t)hi(t, B(t)), (3.2.6)

5Actually, it is a set of sequences S which satisfies Assumption Bc.4. We simplify the stating by

neglecting the difference between a and S.
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in the sense of the norm in the space. Also at each observation point we can decompose

F (ts,n, Xs,n) based on the given truncation parameters as

F (ts,n, Xs,n) = (aX ′)s + δ̄s + γ̄s, s = 1, . . . , n, (3.2.7)

where (aX ′)s is the s-th entry of the vector aX ′, δ̄s and γ̄s are defined in the same way

as δs and γs.

Denote F′ = (F (t1,n, X1,n), · · · , F (tn,n, Xn,n)), δ̄′ = (δ̄1, · · · , δ̄n) and γ̄′ = (γ̄1, · · · , γ̄n).

Thus, aX ′ = F′ − δ̄′ − γ̄′. The last assumption is about function F (t, x).

Assumption Bc.6

(a) Function F (t, x) is continuous in both t and x. In addition, both F (t, x) and F 2(t, x)

are in L2(R, φt(x)) for any t > 0.

Theorem 3.2.1. Suppose that {xs,n}n1 and {es}n1 satisfy Assumptions B and A (c) in

Chapter 1. Let Assumption B.2 and Bc.4–Bc.6 hold. Then we have

1√
n
aX ′X[β̂ − β]→D

∫ 1

0
F (rT,

√
TW (r))dU(r) (3.2.8)

where (W,U) is a vector of Brownian motions on [0, 1] specified in Assumption B.

Remark 3.2.3. Because aX ′ = F′ − δ̄′ − γ̄′ , it follows that

1

n
aX ′Xa′ =

1

n
(F′ − δ̄′ − γ̄′)(F− δ̄ − γ̄)

=
1

n
(F′F + δ̄′δ̄ + γ̄′γ̄ − 2F′δ̄ − 2F′γ̄ + 2δ̄′γ̄).

However, in view of the result and proof of Theorem 3.2.1, we have

1

n
F′F =

1

n

n∑
s=1

F 2
( s
n
T,
√
Txs,n

)
→D

∫ 1

0
F 2(rT,

√
TWr)dr,

1

n
δ̄′δ̄ =

1

n

n∑
s=1

δ̄2
s →P 0, and

1

n
γ̄′γ̄ =

1

n

n∑
s=1

γ̄2
s →P 0,

and consequently, by Cauchy-Schwarz inequality, 1
nF′δ̄, 1

nF′γ̄ and 1
n δ̄
′γ̄ are all convergent

in probability to zero as well. Therefore, 1
naX

′Xa′ converges with n→∞ in distribution

to a random variable, implying that aX ′Xa′ = O(n). The result of Theorem 3.2.1 indicates

that aX ′X(β̂ − β) = O(
√
n). Comparison of these two magnitudes shows the effect of

supersedence of a by β̂ − β plays a role of about n−1/2.
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Proof. In view of (3.2.7), we have

1√
n
aX ′X[β̂ − β] =

1√
n
aX ′(δ + γ + ε)

=
1√
n

(F− δ̄ − γ̄)′(δ + γ + ε).

(3.2.9)

We can write Xk,n =
√
Txk,n where xk,n = 1√

n

∑k
j=1wj and wj is an i.i.d.N(0,1)

sequence. Because {xk,n} and {ek} satisfy Assumption B, the embedding schedule permits

us to assume (Un(r),Wn(r)) →a.s. (U(r),W (r)), in a suitable probability space but we

still achieve the weak convergence for the theorem.

Notice that, because of predictability of xk,n, we have

1√
n

F′ε =
1√
n

n∑
k=1

F (tk,n,
√
Txk,n)ek

=

n∑
k=1

F

(
k

n
T,
√
Txk,n

)(
1√
n
ek

)

=

n∑
k=1

F

(
k − 1

n
T +

1

n
T,
√
TWn

(
k − 1

n
+

1

n

))
(Un(k/n)− Un((k − 1)/n))

=

∫ 1

0
F
(
rT + o(1),

√
TWn(r + o(1))

)
dUn(r).

Observe that since (Wn(r+o(1)), Un(r))→a.s. (W,U) as shown in Chapter 1, it follows

from the continuity of F (·, ·) and continuous mapping theorem that

(F (rT + o(1),
√
TWn(r + o(1))), Un(r))→a.s. (F (rT,

√
TW (r)), U(r)).

Using Theorem 2.2 in Kurtz and Protter (1991) yields

1√
n

F′ε =
1√
n

n∑
k=1

F (tk,n,
√
Txk,n)ek →P

∫ 1

0
F (rT,

√
TW (r))dU(r).

Next, we shall prove all the rest terms in (3.2.19) converge in probability to zero. In

effect,

1√
n
|F′δ| = 1√

n

∣∣∣∣∣
n∑
s=1

F
(
T
s

n
,
√
Txk,n

)
δs

∣∣∣∣∣
≤

(
1

n

n∑
s=1

F 2
(
T
s

n
,
√
Txk,n

))1/2( n∑
s=1

δ2
s

)1/2

,

97



1√
n
|F′γ| = 1√

n

∣∣∣∣∣
n∑
s=1

F
(
T
s

n
,
√
Txk,n

)
γs

∣∣∣∣∣
≤

(
1

n

n∑
s=1

F 2
(
T
s

n
,
√
Txk,n

))1/2( n∑
s=1

γ2
s

)1/2

,

and

1√
n
|δ̄′δ| ≤

(
1

n

n∑
s=1

δ̄2
s

)1/2( n∑
s=1

δ2
s

)1/2

,
1√
n
|δ̄′γ| ≤

(
1

n

n∑
s=1

δ̄2
s

)1/2( n∑
s=1

γ2
s

)1/2

,

1√
n
|γ̄′δ| ≤

(
1

n

n∑
s=1

γ̄2
s

)1/2( n∑
s=1

δ2
s

)1/2

,
1√
n
|γ̄′γ| ≤

(
1

n

n∑
s=1

γ̄2
s

)1/2( n∑
s=1

γ2
s

)1/2

.

In addition,

1

n

n∑
k=1

F 2

(
T
k

n
,
√
Txk,n

)

=

n−1∑
k=0

∫ k+1
n

k
n

F 2

(
T

[nr]

n
,
√
Tx[nr],n

)
dr − 1

n
F (0, 0) +

1

n
F (T,

√
Txn,n)

=

∫ 1

0
F 2

(
T

[nr]

n
,
√
Tx[nr],n

)
dr − 1

n
F (0, 0) +

1

n
F (T,

√
Txn,n)

→P

∫ 1

0
F 2(rT,

√
TW (r))dr.

using continuity of F . Therefore, to complete the proof it suffices to show that

n∑
s=1

δ2
s →P 0,

n∑
s=1

γ2
s →P 0,

1

n

n∑
s=1

δ̄2
s →P 0,

1

n

n∑
s=1

γ̄2
s →P 0,

1√
n
γ̄′ε→P 0,

1√
n
δ̄′ε→P 0.

In fact, using (2.3.7), Assumption B.2, Bc.5 yields

E

n∑
s=1

δ2
s =

n∑
s=1

E

 k∑
i=1

∞∑
j=pi+1

bijϕjT (sT/n)hi(sT/n,XsT/N )

2

=
n∑
s=1

k∑
i=1

 ∞∑
j=pi+1

bijϕjT (sT/n)

2

≤CT 2
n∑
s=1

k∑
i=1

(|b′i(0)|+ |b′i(T )|)2

p2
i
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≤CT 2M(T )2 nk

p2
min

= CT 2M(T )2n1+κ1−2κ2 → 0

as n→∞, which implies that
∑n

s=1 δ
2
s →P 0. Meanwhile,

E

n∑
s=1

γ2
s =

n∑
s=1

E

 ∞∑
i=k+1

∞∑
j=0

bijϕjT (sT/n)hi(sT/n,XsT/N )

2

=
n∑
s=1

∞∑
i=k+1

b2i (sT/n).

However, by virtue of (2.2.13) with r = 2, bi(sT/n) =

√
sT/n

2√
i(i− 1)

bi−2(m
(2)
x ). Thus,

n∑
s=1

∞∑
i=k+1

b2i (sT/n) ≤ T 2

n2

n∑
s=1

s2
∞∑

i=k+1

1

i(i− 1)
b2i−2(m(2)

x (sT/n, x))

≤ T 2

n2k2

n∑
s=1

s2
∞∑

i=k+1

b2i−2(m(2)
x (sT/n, x)) ≤ T 2 n

3k2
max

0≤t≤T
E[m′′(t, Bt)]

2

= T 2 max
0≤t≤T

E[m′′(t, Bt)]
2n1−2κ1 → 0,

in view of Assumption Bc.5, and we have invoked the fact that
∑∞

i=2 b
2
i−2(m

(2)
x (t, x)) =

E[m′′(t, Bt)]
2 as well as the continuity of E[m′′(t, Bt)]

2 in [0, T ]. One hence obtains∑n
s=1 γ

2
s →P 0. Moreover, since

1

n
E

n∑
s=1

δ̄2
s =

1

n

n∑
s=1

E

 k∑
i=1

∞∑
j=pi+1

aijϕjT (sT/n)hi(sT/n,XsT/N )

2

=
1

n

n∑
s=1

k∑
i=1

 ∞∑
j=pi+1

aijϕjT (sT/n)

2

≤ 1

n

n∑
s=1

k∑
i=1

√2√
T

∞∑
j=pi+1

|aij |

2

=
1

n

n∑
s=1

k∑
i=1

√2√
T

∞∑
j=pi+1

1

j
|aij |j

2

≤ 1

n

n∑
s=1

k∑
i=1

2

Tp2
i

 ∞∑
j=pi+1

|aij |j

2

≤ 2k

Tp2
min

 ∞∑
j=pmin+1

|aij |j

2

=
o(1)

T
nκ1−2κ2 → 0

as n → ∞, where we use Assumption Bc.5 and the implication of Assumption Bc.4 that
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∑∞
j=pi+1 |aij |j = o(1). Thereby,

∑n
s=1 δ̄

2
s →P 0. At the meantime,

1

n
E

n∑
s=1

γ̄2
s =

1

n

n∑
s=1

E

 ∞∑
i=k+1

∞∑
j=0

aijϕjT (sT/n)hi(sT/n,XsT/N )

2

=
1

n

n∑
s=1

∞∑
i=k+1

 ∞∑
i=k+1

∞∑
j=0

aijϕjT (sT/n)

2

≤ 2

T

∞∑
i=k+1

 ∞∑
j=0

|aij |

2

≤ 2

T

∞∑
i=k+1

∞∑
j=0

|aij | → 0,

by Assumption Bc.4, which leads that 1
n

∑n
s=1 γ̄

2
s →P 0.

Furthermore, invoking that xk,n is adapted to Fn,k−1 and (ek,Fn,k) is a martingale

difference sequence satisfying Assumption B,

E

(
1√
n
γ̄′ε

)2

=
1

n
E

(
n∑
s=1

γ̄ses

)2

=
1

n

n∑
s=1

E[γ̄2
se

2
s] +

2

n

n−1∑
s1=1

n∑
s2=s1+1

E[γ̄s1es1 γ̄s2es2 ]

=
1

n

n∑
s=1

E[γ̄2
sE(e2

s|Fn,s−1)] +
2

n

n−1∑
s1=1

n∑
s2=s1+1

E[γ̄s1es1 γ̄s2E(es2 |Fn,s2−1)]

=
1

n

n∑
s=1

E[γ̄2
s ]→ 0

and similar derivation gives

E

(
1√
n
δ̄′ε

)2

=
1

n

n∑
s=1

E[δ̄2
s ]→ 0

which imply that γ̄′ε and δ̄′ε converge in probability to zero as well. This completes the

proof.

3.2.2 Asymptotics of the estimated unknown functional

Having obtained the estimation of coefficients, the most desirable result is to find the

estimator of function m(τ, x) where τ ∈ (0, T ] and x ∈ R is any point on the path of Bτ ,

and its asymptotic distribution. Given that m(·, ·) satisfies Assumption B.2, m(τ, x) is
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decomposed in terms of {ϕjT (τ)hi(τ, x)} as

m(τ, x) =
∞∑
i=0

∞∑
j=0

bijϕjT (τ)hi(τ, x) := A′(τ, x)β + δ(τ, x) + γ(τ, x), (3.2.10)

where

A′(τ, x) = (ϕ0T (τ)h0(τ, x), · · · , ϕp0T (τ)h0(τ, x), · · · ,

· · · , ϕ0T (τ)hk(τ, x), · · · , ϕpkT (τ)hk(τ, x)),

δ(τ, x) =
k∑
i=0

∞∑
j=pi+1

bijϕjT (τ)hi(τ, x),

γ(τ, x) =
∞∑

i=k+1

∞∑
j=0

bijϕjT (τ)hi(τ, x).

Thus, superseding β with its estimation β̂ and abandoning all residues, we have

m̂(τ, x) = A′(τ, x)β̂. (3.2.11)

We shall investigate the limit of

m̂(τ, x)−m(τ, x) = A′(τ, x)(β̂ − β)− δ(τ, x)− γ(τ, x)

= A′(τ, x)(X ′X)−1X ′(δ + γ + ε)− δ(τ, x)− γ(τ, x). (3.2.12)

Similarly, set up matrices Ap×p and Bp×p defined by

A =
A(τ, x)A′(τ, x)

‖A(τ, x)‖2
and B = (X ′X)A(X ′X)−1. (3.2.13)

As shown in Lemma 3.1.2, B has eigenvalues λ1 = 1, λ2 = · · · = λp = 0. Let normalised

α be the left eigenvector of B pertaining to λ1. Hence, we have α′B = α′ and ‖α‖ = 1.

In accordance with the notation of A(τ, x), the subscript of α is specified of double-index,

viz., α′ = (α00, · · · , α0p0 , · · · , αk0 · · · , αkpk).

Let us apply the reshuffle procedure for the set S from Assumption Bm.1 by α. Denote

by S̃ the resulting set:

1) S̃ = {ã0, · · · , ãi, · · · }.

2) ãi = {ãij} where ãij = 1√
pmax

αij for 0 ≤ i ≤ k and 0 ≤ j ≤ pi; otherwise, ãij = aij .
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Since the Riesz-Fischer theorem is satisfied by S̃, there exists a function, denoted by

F (t, x), such that

F (t, B(t)) =
∞∑
i=0

∞∑
j=0

ãijϕjT (t)hi(t, B(t)), (3.2.14)

for any t ∈ [0, T ].

Therefore, by virtue of (3.2.14),

1
√
pmax

α′X ′ = F′ − δ̃′ − γ̃′ (3.2.15)

where

F′ =(F (t1,n, X1,n), · · · , F (tn,n, Xn,n));

δ̃′ =(δ̃1, · · · , δ̃n), with δ̃s =

k∑
i=0

∞∑
j=pi+1

aijϕjT (ts,n)hi(ts,n, Xs,n);

γ̃′ =(γ̃1, · · · , γ̃n), with γ̃s =

∞∑
i=k+1

∞∑
j=0

aijϕjT (ts,n)hi(ts,n, Xs,n).

Also the above reshuffle procedure can be applied with 1
‖A(τ,x)‖A(τ, x) as follows. Let us

denote the resulting set by S̄. Accordingly, S̄ amounts to a set of sequence {ā0, ā1, ā2, · · · }
where āi = {āij} and āij = 1√

pmax‖A(τ,x)‖ϕjT (τ)hi(τ, x) if i = 0, · · · , k and j = 0, · · · , pi;
otherwise, āij = aij .

Similarly, by the Riesz-Fischer theorem there exists a function, denoted by G(t, x),

such that

G(t, B(t)) =

∞∑
i=0

∞∑
j=0

āijϕjT (t)hi(t, B(t)) (3.2.16)

for any t ∈ [0, T ]. Consequently, it follows from (3.2.16) that

1

‖A(τ, x)‖√pmax
XA(τ, x) = G− δ̄ − γ̄ (3.2.17)

where

G′ =(G(t1,n, X1,n), · · · , G(tn,n, Xn,n));

δ̄′ =(δ̄1, · · · , δ̄n), with δ̄s =
k∑
i=0

∞∑
j=pi+1

aijϕjT (ts,n)hi(ts,n, Xs,n);

γ̄′ =(γ̄1, · · · , γ̄n), with γ̄s =

∞∑
i=k+1

∞∑
j=0

aijϕjT (ts,n)hi(ts,n, Xs,n).
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Notice that δ̃ = δ̄ and γ̃ = γ̄ since S̃ and S̄ have the same tails. The following lemma

demonstrates the finiteness of second moment of F (t, Bt) and G(t, Bt).

Lemma 3.2.1. For any t ∈ [0, T ], (a) E[G2(t, Bt)] <∞, and (b) E[F 2(t, Bt)] <∞.

Proof. (a) From the orthogonality of hi(t, B(t)), it follows that

E[G2(t, B(t))] = E

 ∞∑
i=0

∞∑
j=0

āijϕTj(t)hi(t, B(t))

2

=
∞∑
i=0

 ∞∑
j=0

āijϕTj(t)

2

.

In view of the proof of Lemma 3.1.3 and the structure of āij , we only need consider

the main part of the series. It follows from the definition of āij that if t = τ ,

k∑
i=0

 pi∑
j=0

āijϕTj(t)

2

=
1

‖A(τ, x)‖2pmax

k∑
i=0

h2
i (τ, x)

 pi∑
j=0

ϕ2
Tj(τ)

2

=O(1)
1

‖A(τ, x)‖2
k∑
i=0

pi
pmax

h2
i (τ, x)

pi∑
j=0

ϕ2
Tj(τ) ≤ O(1),

and if t 6= τ ,

k∑
i=0

 pi∑
j=0

āijϕTj(t)

2

≤
k∑
i=0

pi∑
j=0

ϕ2
Tj(t)

pi∑
j=0

|āij |2

≤O(1)
k∑
i=0

pi

pi∑
j=0

|āij |2 = O(1)
k∑
i=0

pi
pmax‖A(τ, x)‖2

pi∑
j=0

ϕ2
Tj(τ)h2

i (τ, x)

≤O(1)
1

‖A(τ, x)‖2
k∑
i=0

pi∑
j=0

ϕ2
Tj(τ)h2

i (τ, x) = O(1) <∞.

(b) It follows similarly as the part (b) of Lemma 3.1.3.

In order to obtain asymptotic behavior of m̂, we make the following assumptions for

the truncation parameters.

Assumption Bm.4

(a) k = [nκ1 ] and 1
2 < κ1 < 1

(b) Let pmin = [nκ2 ] and pmax = [nκ̄2 ] with 0 < κ2 ≤ κ̄2 < 1 and 0 ≤ κ̄2−κ2 < 2κ2−κ1−1.
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Clearly, feasible solutions of truncation parameters do exist. Additionally, Condition

(b) implies that κ2 > κ1. The last assumption is about the function F (t, x), G(t, x).

Assumption Bm.5

(a) Both F (t, x) and G(t, x) are continuous in t and x.

Theorem 3.2.2. Suppose that {xs,n}n1 and {es}n1 satisfy Assumption B in Chapter 1.

Under Assumption B.2, Bm.4 and Bm.5 we have

1√
n

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

(m̂(τ, x)−m(τ, x))→D

∫ 1

0
F (Tr,

√
TW (r))dU(r) (3.2.18)

where (U(r),W (r)) is the vector of Brownian motion in Assumption B.

Remark 3.2.4. As can be seen from the proof of the theorem, since ∆ is convergent to

a random variable in distribution, the quantity 1√
n

α′X′XA(τ,x)√
pmax‖A(τ,x)‖2 = ∆

√
npmax

‖A(τ,x)‖ is about
√
npmax

‖A(τ,x)‖ . Notice also from the proof that, O(1)
√
kpmin ≤ ‖A(τ, x)‖ ≤ O(1)

√
kpmax.

Therefore, O(1)
√

n
k ≤

√
npmax

‖A(τ,x)‖ ≤
√

n
k

√
pmax

pmin
in which the order of the left hand side

is 0 < 1
2(1− κ1) < 1

4 , while that of the right hand side is 1
2(1− κ1) + 1

2(κ̄2 − κ2), a slight

bigger than the former. Roughly speaking, the order of the convergence is about 1
2(1−κ1)

which is less than a quarter.

Proof. We shall exploit the embedding schedule to achieve our aim since, as mentioned

before, it gives us much convenient framework to work with.

It follows from the relation (3.2.12) that

1√
n

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

(m̂(τ, x)−m(τ, x))

=
1√
n

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[A′(τ, x)(X ′X)−1X ′(δ + γ + ε)− δ(τ, x)− γ(τ, x)]

=
1√

n
√
pmax

α′BX ′(δ + γ + ε)− 1√
n

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[δ(τ, x) + γ(τ, x)]

=
1√

n
√
pmax

α′X ′(δ + γ + ε)− 1√
n

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[δ(τ, x) + γ(τ, x)]

:=Π1 −Π2.

First and foremost, let us find out the limit of Π1. In view of (3.2.15) and noting that

δ̃ = δ̄, γ̃ = γ̄, we have

Π1 =
1

√
npmax

α′X ′(δ + γ + ε) =
1√
n

(F− δ̄ − γ̄)′(δ + γ + ε). (3.2.19)
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Notice that

1√
n

F′ε =
1√
n

n∑
s=1

F (ts,n,
√
Txs,n)es =

n∑
s=1

F
( s
n
T,
√
Txs,n

)( 1√
n
es

)

=
n∑
s=1

F

(
s− 1

n
T + o(1),

√
TWn

(
s− 1

n
+ o(1)

))(
Un

( s
n

)
− Un

(
s− 1

n

))

=
n∑
s=1

∫ s
n

s−1
n

F
(
rT + o(1),

√
TWn(r + o(1))

)
dUn(r)

=

∫ 1

0
F
(
rT + o(1),

√
TWn(r + o(1))

)
dUn(r).

Since (Wn(r), Un(r))→a.s. (W,U), it follows from the continuity of F (·, ·) in Assump-

tion Bm.5 that (F (rT + o(1),
√
TWn(r+ o(1))), Un(r))→a.s. (F (rT,

√
TW (r)), U(r)). Us-

ing Theorem 2.2 in Kurtz and Protter (1991) yields

1√
n

F′ε =
1√
n

n∑
s=1

F (ts,n,
√
Txs,n)es →P

∫ 1

0
F (rT,

√
TW (r))dU(r).

Next, we shall prove that each of the rest terms in (3.2.19) converges in probability to

zero. Note that

1√
n
|F′δ| ≤

(
1

n

n∑
s=1

F 2
(
T
s

n
,
√
Txk,n

))1/2( n∑
s=1

δ2
s

)1/2

,

1√
n
|F′γ| ≤

(
1

n

n∑
s=1

F 2
(
T
s

n
,
√
Txk,n

))1/2( n∑
s=1

γ2
s

)1/2

,

and

1√
n
|δ̄′δ| ≤

(
1

n

n∑
s=1

δ̄2
s

)1/2( n∑
s=1

δ2
s

)1/2

,
1√
n
|δ̄′γ| ≤

(
1

n

n∑
s=1

δ̄2
s

)1/2( n∑
s=1

γ2
s

)1/2

,

1√
n
|γ̄′δ| ≤

(
1

n

n∑
s=1

γ̄2
s

)1/2( n∑
s=1

δ2
s

)1/2

,
1√
n
|γ̄′γ| ≤

(
1

n

n∑
s=1

γ̄2
s

)1/2( n∑
s=1

γ2
s

)1/2

.

In addition, we have as n→∞

1

n

n∑
s=1

F 2
(
T
s

n
,
√
Txs,n

)
=

∫ 1

0
F 2

(
T

[nr]

n
,
√
Tx[nr],n

)
dr − 1

n
F 2(0, 0) +

1

n
F 2(T,

√
Txn,n)
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→P

∫ 1

0
F 2(rT,

√
TW (r))dr (3.2.20)

using the continuity of F in Assumption Bm.5 and E[F 2(T,
√
Txn,n)] = E[F 2(T,XT )] <∞

by Lemma 3.2.1.

Therefore, in view of the above equations, in order to complete the convergence of Π1

it suffices to show that as n→∞
n∑
s=1

δ2
s →P 0,

n∑
s=1

γ2
s →P 0,

1

n

n∑
s=1

δ̄2
s →P 0,

1

n

n∑
s=1

γ̄2
s →P 0,

1√
n
γ̄′ε→P 0,

1√
n
δ̄′ε→P 0.

Firstly, using the result in Theorem 2.3.2 as well as Assumptions B.2 and Bm.4, we

have

E

[
n∑
s=1

δ2
s

]
=

n∑
s=1

E

 k∑
i=1

∞∑
j=pi+1

bijϕjT

(
sT

n

)
hi

(
sT

n
,XsT/n

)2

=
n∑
s=1

k∑
i=1

 ∞∑
j=pi+1

bijϕjT

(
sT

n

)2

≤CT 2
n∑
s=1

k∑
i=1

(|b′i(0)|+ |b′i(T )|)2

p2
i

≤CT 2M(T )2 nk

p2
min

= CT 2M(T )2n1+κ1−2κ2 → 0

as n→∞, which implies
∑n

s=1 δ
2
s →P 0.

Secondly, straightforward calculation gives

E

[
n∑
s=1

γ2
s

]
=

n∑
s=1

E

 ∞∑
i=k+1

∞∑
j=0

bijϕjT

(
sT

n

)
hi

(
sT

n
,XsT/n

)2

=
n∑
s=1

∞∑
i=k+1

b2i

(
sT

n

)
.

Meanwhile, by virtue of (2.2.13) with r = 2, we have bi
(
sT
n

)
=

√
sT/n

2√
i(i− 1)

bi−2

(
sT
n ,m

′′
x

)
,

which implies

n∑
s=1

∞∑
i=k+1

b2i

(
sT

n

)
≤ T 2

n2

n∑
s=1

s2
∞∑

i=k+1

1

i(i− 1)
b2i−2

(
sT

n
,m′′x

)
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≤ T 2

n2k2

n∑
s=1

s2
∞∑

i=k+1

b2i−2

(
sT

n
,m′′x

)
≤ T 2 n

3k2
max

0≤t≤T
E[m′′(t, Bt)]

2

= T 2 max
0≤t≤T

E[m′′(t, Bt)]
2n1−2κ1 → 0,

in view of Assumption Bm.4, and we have invoked the fact that
∑∞

i=2 b
2
i−2(t,m′′x) =

E[m′′(t, Bt)]
2 as well as the continuity of E[m′′(t, Bt)]

2 in [0, T ], since E[m′′(t, Bt)]
2 =∫

[m′′x(t, x)]2φt(x)dx =
∫

[m′′x(t,
√
tx)]2φ(x)dx, then by Assumption B.2(a) it is continuous.

This finally proves
∑n

s=1 γ
2
s →P 0.

Thirdly, we have

1

n
E

[
n∑
s=1

δ̄2
s

]
=

1

n

n∑
s=1

E

 k∑
i=0

∞∑
j=pi+1

aijϕjT

(
sT

n

)
hi

(
sT

n
,XsT/n

)2

=
1

n

n∑
s=1

k∑
i=0

 ∞∑
j=pi+1

aijϕjT

(
sT

n

)2

≤ 1

n

n∑
s=1

k∑
i=0

√2√
T

∞∑
j=pi+1

|aij |

2

≤
k∑
i=0

2

Tp2
i

 ∞∑
j=pi+1

j|aij |

2

≤ 2k

Tp2
min

 ∞∑
j=pmin+1

j|aij |

2

=
o(1)

T
nκ1−2κ2 → 0

as n → ∞, where we have used Assumption Bm.4 and the implication of Assumption

Bm.1 that
∑∞

j=pi+1 |aij |j = o(1). Hence,
∑n

s=1 δ̄
2
s →P 0.

Fourthly, we may also have

1

n
E

[
n∑
s=1

γ̄2
s

]
=

1

n

n∑
s=1

E

 ∞∑
i=k+1

∞∑
j=0

aijϕjT

(
sT

n

)
hi

(
sT

n
,XsT/n

)2

=
1

n

n∑
s=1

∞∑
i=k+1

 ∞∑
j=0

aijϕjT

(
sT

n

)2

≤ 2

nT

n∑
s=1

∞∑
i=k+1

 ∞∑
j=0

|aij |

2

≤ 2

kT

∞∑
i=k+1

i

 ∞∑
j=0

|aij |

2

→ 0

due to Assumption Bm.1. We thus obtain that 1
n

∑n
s=1 γ̄

2
s →P 0.

Finally, invoking that xk,n is adapted to Fn,k−1 and (ek,Fn,k) is a martingale difference
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sequence satisfying Assumption B, as well as E(e2
s|Fn,s−1) = σ2 a.s., we can deduce that

E

(
1√
n
γ̄′ε

)2

=
1

n
E

(
n∑
s=1

γ̄ses

)2

=
1

n

n∑
s=1

E[γ̄2
sE(e2

s|Fn,s−1)] +
2

n

n−1∑
s1=1

n∑
s2=s1+1

E[γ̄s1es1 γ̄s2E(es2 |Fn,s2−1)]

=
σ2

n

n∑
s=1

E[γ̄2
s ]→ 0,

and a similar derivation gives

E

(
1√
n
δ̄′ε

)2

=
σ2

n

n∑
s=1

E[δ̄2
s ]→ 0,

and thus both of which imply that 1√
n
γ̄′ε and 1√

n
δ̄′ε converge in probability to zero as

well.

We are now in a position to prove that Π2 →P 0.

To begin, let us find out the limit of ∆ := 1
npmax‖A(τ,x)‖α

′X ′XA(τ, x). It follows from

(3.2.15) and (3.2.17) that

∆ =
1

n

α′X ′XA(τ, x)

pmax‖A(τ, x)‖
=

1

n
(F′ − δ̄′ − γ̄′)(G− δ̄ − γ̄)

=
1

n
(F′G− F′δ̄ − F′γ̄ − δ̄′G− γ̄′G + 2δ̄′γ̄ + δ̄′δ̄ + γ̄′γ̄).

We investigate term by term. Using continuous mapping theorem gives

1

n
F′G =

1

n

n∑
s=1

F (ts,n, Xs,n)G(ts,n, Xs,n)

=
1

n

n∑
s=1

F
(
T
s

n
,
√
Txs,n

)
G
(
T
s

n
,
√
Txs,n

)
=

n∑
s=1

∫ s
n

s−1
n

F

(
T

[nr]

n
,
√
Tx[nr],n

)
G

(
T

[nr]

n
,
√
Tx[nr],n

)
dr

− 1

n
F (0, 0)G(0, 0) +

1

n
F (T,

√
Txn,n)G(T,

√
Txn,n)

→P

∫ 1

0
F (Tr,

√
TW (r))G(Tr,

√
TW (r))dr

since 1
nF (T,

√
Txn,n)G(T,

√
Txn,n)→P 0 as n→∞ by Lemma 3.2.1.
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Meanwhile,

1

n2
|F′δ̄|2 ≤ 1

n2
‖F‖2‖δ̄‖2 =

1

n

n∑
s=1

F 2
(
T
s

n
,
√
Txs,n

) 1

n

n∑
s=1

δ̄2
s ,

1

n2
|F′γ̄|2 ≤ 1

n2
‖F‖2‖γ̄‖2 =

1

n

n∑
s=1

F 2
(
T
s

n
,
√
Txs,n

) 1

n

n∑
s=1

γ̄2
s ,

1

n2
|δ̄′G|2 ≤ 1

n2
‖G‖2‖δ̄‖2 =

1

n

n∑
s=1

G2
(
T
s

n
,
√
Txs,n

) 1

n

n∑
s=1

δ̄2
s ,

1

n2
|γ̄′G|2 ≤ 1

n2
‖G‖2‖γ̄‖2 =

1

n

n∑
s=1

G2
(
T
s

n
,
√
Txs,n

) 1

n

n∑
s=1

γ̄2
s ,

1

n2
|δ̄′γ̄|2 ≤ 1

n

n∑
s=1

δ̄2
s

1

n

n∑
s=1

γ̄2
s .

Notice that we have shown that 1
n

∑n
s=1 δ̄

2
s →P 0 and 1

n

∑n
s=1 γ̄

2
s →P 0 and we can

have a similar result for G as that of (3.2.20) for F .

Whence all the above arguments indicate that ∆→P

∫ 1
0 F (Tr,

√
TWr)G(Tr,

√
TWr)dr.

Next, because

1√
n

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[δ(τ, x) + γ(τ, x)] = ∆

√
npmax

‖A(τ, x)‖
[δ(τ, x) + γ(τ, x)],

up to now what we need to show is
√
npmax

‖A(τ,x)‖δ(τ, x)→ 0 and
√
npmax

‖A(τ,x)‖γ(τ, x)→ 0.

By aforementioned reason, it is easy to obtain that

O(1)kpmin ≤ ‖A(τ, x)‖2 =
k∑
i=0

h2
i (τ, x)

pi∑
j=0

ϕ2
jT (τ) ≤ O(1)kpmax.

It follows from Assumption B.2 and Theorem 2.3.2 that

√
npmax

‖A(τ, x)‖
|δ(τ, x)| =

√
npmax

‖A(τ, x)‖

∣∣∣∣∣∣
k∑
i=0

∞∑
j=pi+1

bijϕjT (τ)hi(τ, x)

∣∣∣∣∣∣
≤
√
npmax

‖A(τ, x)‖

k∑
i=0

|hi(τ, x)|

∣∣∣∣∣∣
∞∑

j=pi+1

bijϕjT (τ)

∣∣∣∣∣∣
≤O(1)

√
npmax√
kpmin

(
k∑
i=0

|hi(τ, x)|2
) 1

2

 k∑
i=0

∣∣∣∣∣∣
∞∑

j=pi+1

bijϕjT (τ)

∣∣∣∣∣∣
2

1
2
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≤O(1)

√
npmax√
kpmin

√
k

(
k∑
i=0

a2
TT

2

p2
i

) 1
2

≤ O(1)TM(T )

√
npmax

√
k

pmin
√
pmin

=O(1)n
1
2

+ 1
2
κ1+ 1

2
(κ̄2−κ2)−κ2 → 0

as n→∞ using Assumption Bm.4.

Additionally, using (2.2.13) with r = 2 and |hi(τ, x)| ≤ i−
1
4 for large i (see Nikiforov

and Uvarov, 1988, p.54) gives

√
npmax

‖A(τ, x)‖
|γ(τ, x)| =

√
npmax

‖A(τ, x)‖

∣∣∣∣∣∣
∞∑

i=k+1

∞∑
j=0

bijϕjT (τ)hi(τ, x)

∣∣∣∣∣∣
=

√
npmax

‖A(τ, x)‖

∣∣∣∣∣
∞∑

i=k+1

bi(τ)hi(τ, x)

∣∣∣∣∣
=

√
npmax

‖A(τ, x)‖

∣∣∣∣∣
∞∑

i=k+1

τ√
i(i− 1)

bi−2(τ,m′′x)hi(τ, x)

∣∣∣∣∣
≤O(1)

√
npmax√
kpmin

( ∞∑
i=k+1

|bi−2(τ,m′′x)|2
) 1

2
( ∞∑
i=k+1

1

i(i− 1)
√
i

) 1
2

≤o(1)

√
npmax√
kpmin

1

k3/4

=o(1)n
1
2

+ 1
2

(κ̄2−κ2)− 5
4
κ1 → 0

as n→∞ by virtue of Assumption Bm.4. The proof is finished.

3.3 Compact time horizon approaching infinity

The interesting situation is no more than that the interval we work with is [0, Tn] with

Tn → ∞. Because of this, we need to constrain the divergence of Tn. Our strategy is

to require Tn
n → 0 as n → ∞ so that comparing with the sample size, the increase of

time span of observation is negligible meaning that we get sufficient information from the

sample path. This will help us avoid two drawbacks in the previous situations, that is, on

(0,∞) we could not shrink the time span of observation lengths, whereas on [0, T ] with

fixed T we ignore considerable information beyond the time zone that may be helpful

for our estimation. In technical terms, allowing T = Tn → ∞ and Tn
n → 0 amounts to

both infill and long span asymptotics. Meanwhile, the two-fold limit theory keeps one
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away from the so-called aliasing problem (i.e. different continuous-time processes may

be indistinguishable when sampled at discrete times). Phillips (1973) and Hansen and

Sargent (1983) were among the first discussing the aliasing phenomenon in the econometric

literature. Recent studies include Bandi and Phillips (2003) and Bandi and Phillips (2007).

Let m(t, x) be the function in model (3.0.1) defined on [0,∞)×R. Intuitively, we need

only to require that m(t, x) satisfies Assumption B.2. Nonetheless, for T = Tn → ∞,

m(t, x) has to satisfy more stringent restrictions than that in Assumption B.2.

Assumption B.3

(a) For every t > 0, m(t, x) and its partial derivatives with respect to x of up to third

order are all in L2(R, φt(x)).

(b) For each i, bi(t,m) = E[m(t, B(t))hi(t, B(t))], the coefficient of the expansion of m in

terms of the system {hi(t, B(t))}, and its derivatives of up to second order belong to

L2[0, T ] for any T > 0.

(c) For i large enough, the coefficient functions bi(t,m
(3)
x (t, x)) of m

(3)
x (t, B(t)) expanded

by the system {hi(t, B(t))} are such that t3b2i (t,m
(3)
x (t, x)) are bounded on (0,∞)

uniformly in i.

(d) bi(t,m(t, x)) is such that its derivative b′i(t,m) is bounded in absolute value on [0,∞)

by M > 0 uniformly in i.

Remark 3.3.1. Conditions (a), (b) and (c) are almost the same as those in Assumption

B.1. This is because we now, on the one hand, confine the time variable on a compact

interval, and on the other we let the time span go to infinity. Condition (d) is similar

to its counterpart in Assumption B.2. There are many functions that satisfy these four

conditions at the same time. For instance, m(t, x) = tηe−rtP (x) with η ≥ 1, r > 0 and

P (x) being any polynomial of fixed degree; m(t, x) = t
1+tη cosx with η ≥ 3, and so on.

For the truncation parameters and time span Tn, we make the following assumption.

Assumption B.4

(a) Let k = [nκ1 ] and pi = o(n) for 0 ≤ i ≤ k, pmin = [nκ2 ] and Tn = [nκ3 ], where

0 < κi < 1 (i = 1, 2, 3).

(b) Let 2κ3 + κ1 + 1 < 2κ2 and 2κ1 > 1.
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Remark 3.3.2. Feasible solutions for κi (i = 1, 2, 3) do exist. For instance, κ1 = 0.55,

κ2 = 0.95 and κ3 = 0.15. Meanwhile, condition (b) implies that κ1 < κ2 and 2κ3 < κ1.

Given the observation number n, one can choose T = Tn according to Assumption B.4.

Let us sample on [0, Tn] at equally spaced points: ts,n = Tn
s
n (s = 1, · · · , n) for model

(3.0.1). Denote by Ys,n for the process Y (t) at ts,n, Xs,n = B(ts,n) for the Brownian

motion at the discrete points and es = ε(ts,n). Note that Xs,n =
∑s

i=1(Xi,n −Xi−1,n) =
√
Tn · 1√

n

∑s
i=1wi, where wi =

√
n
Tn

(Xi,n −Xi−1,n) forms an i.i.d N(0,1) sequence.

Let xs,n = 1√
n

∑s
i=1wi. It therefore follows from the functional central limit theorem

that xs,n converges in distribution to a Brownian motion on [0, 1] as n→∞. In addition,

it is clear that xs,n, along with dl,k,n =
√

(l − k)/n, satisfies Assumption A in Chapter 1.

We expand m(t, B(t)) using an orthonormal basis of the form {ϕjTn(t)hi(t, B(t))} at

each sampling point, and then obtain n equations. The n equations can be written in the

following matrix form with the similar notations as before

Y = Xβ + δ + γ + ε. (3.3.1)

The OLS estimator of β is given by

β̂ = (X ′X)−1X ′Y. (3.3.2)

3.3.1 Asymptotics of the estimated coefficients

Let S be the set of sequences in Assumption Bc.4. Then we have proposition below.

Lemma 3.3.1. Let Assumption Bc.4 hold. There exists a function F̄ (t, x) such that

F̄ (t, B(t)) =

∞∑
i=0

∞∑
j=0

aijϕjTn(t)hi(t, B(t)), (3.3.3)

for all t ∈ [0, Tn]. Meanwhile, functions ai(t) =
∑∞

j=0 aijϕjTn(t) for every i exist and are

differentiable.

Proof. The existence of F̄ (t, x) is due to the Riesz-Fischer theorem, while the existence

and differentiability of ai(t) are attributed to Theorem 2.3.4.

Let a be the row vector truncated from sequences satisfying Assumption Bc.4, that is,

a = (a00, · · · , a0p0 , · · · , ak0, · · · , akpk). We can apply a transformation to β̂:

aX ′X(β̂ − β) = aX ′(δ + γ + ε),
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while vector aX ′ can be expressed by virtue of (3.3.3) as follows

(aX ′)s = F̄ (ts,n, Xs,n)− δ̄s − γ̄s, s = 1, . . . , n, (3.3.4)

where (aX ′)s is the s-th entry of the vector aX ′, δ̄s and γ̄s are defined in the same way as δs

and γs. In the vector version, aX ′ = F̄
′−δ̄′−γ̄′ where F̄ = (F̄ (t1,n, X1,n), · · · , F̄ (tn,n, Xn,n))′.

Assumption Bc.7

(a) F̄ (t, x) is in Class T (HI) with homogeneity power v(·) and normal function F (t, x).

(b) F̄ 2(t, x) is in Class T (HI) as well with homogeneity power v2(·) and normal function

F 2(t, x).

Theorem 3.3.1. Suppose that {xs,n}ns=1 and {es}ns=1 satisfy Assumption B. Under As-

sumptions B.3, B.4 and Bc.7, we have

4
√
Tn√

nv(Tn)
aX ′X[β̂ − β]→D

(∫ 1

0
G3(u)dLW (u, 0)

)1/2

N (3.3.5)

where G3(·) =
∫
F 2(·, x)dx as specified in Assumption 4.1, W is the Brownian motion on

[0, 1] and N is a standard normal random variable which is independent of W , LW is the

local time of W .

Remark 3.3.3. It follows from (3.3.4) that

√
Tn

nv(Tn)2
aX ′Xa′ =

√
Tn

nv(Tn)2
(F̄
′ − δ̄′ − γ̄′)(F̄− δ̄ − γ̄)

=

√
Tn

nv(Tn)2
(F̄
′
F̄ + δ̄′δ̄ + γ̄′γ̄ − 2F̄

′
δ̄ − 2F̄

′
γ̄ + 2δ̄′γ̄).

However, in view of (3.3.8b) in the proof of Theorem 3.3.1, we have

√
Tn

nv(Tn)2
δ̄′δ̄ =

√
Tn

nv(Tn)2

n∑
s=1

δ̄2
s →P 0, and

√
Tn

nv(Tn)2
γ̄′γ̄ =

√
Tn

nv(Tn)2

n∑
s=1

γ̄2
s →P 0,

and consequently, Cauchy-Schwarz inequality gives that
√
Tn

nv(Tn)2
δ̄′γ̄ →P 0. Now, using

Assumption Bc.7 and Theorem 1.3.1 we have

√
Tn

nv(Tn)2
F̄
′
F̄ =

√
Tn

nv(Tn)2

n∑
s=1

F̄ 2
( s
n
Tn,
√
Tnxs,n

)
→D

∫ 1

0
G3(t)dLW (t, 0).
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We therefore obtain that
√
Tn

nv(Tn)2
aX ′Xa′ converges with n → ∞ in distribution to a

random variable, implying that aX ′Xa′ = O
(
nv(Tn)2√

Tn

)
. But according to the result of

Theorem 3.3.1, aX ′X(β̂ − β) = O
(√

nv(Tn)
4√Tn

)
. These two magnitudes imply the effect of

supersedence of a by β̂−β is about
4√Tn√
nv(Tn)

. The effect can be n−1/2 as that of stationary

process when v(Tn) = 4
√
Tn.

Proof. Notice that

4
√
Tn√

nv(Tn)
aX ′X[β̂ − β] =

4
√
Tn√

nv(Tn)
aX ′(δ + γ + ε)

=
4
√
Tn√

nv(Tn)
(F− δ̄ − γ̄)′(δ + γ + ε),

(3.3.6)

where vector F = (F̄ (t1,n, X1,n), · · · , F̄ (tn,n, Xn,n))′.

Moreover, in view of Theorem 1.3.1 with cn =
√
Tn, we have

4
√
Tn√

nv(Tn)
F′ε =

4
√
Tn√

nv(Tn)

n∑
s=1

F̄ (ts,n, Xs,n)es

=
4
√
Tn√

nv(Tn)

n∑
s=1

F̄ (Tn
s

n
,
√
Tnxs,n)es

→D

(∫ 1

0
G3(u)dLW (u, 0)

)1/2

N,

(3.3.7)

where G3(·) =
∫
F 2(·, x)dx as specified in the Assumption C, W , N and LW remain the

previous meanings.

To facilitate the following proof, we invoke the embedding schedule again. Remember

we now can use the almost surely convergence of (Wn, Un) but to get a weak convergence

for the theorem.

Next, we are about to prove that all the rest terms are convergent in probability to

zero. Nonetheless, by Cauchy-Schwarz inequality, to this purpose, it is sufficient to show

that

‖δ‖2 →P 0, ‖γ‖2 →P 0, (3.3.8a)
√
Tn

nv(Tn)2
‖δ̄‖2 →P 0,

√
Tn

nv(Tn)2
‖γ̄‖2 →P 0, (3.3.8b)

4
√
Tn√

nv(Tn)
|δ̄′ε| →P 0,

4
√
Tn√

nv(Tn)
|γ̄′ε| →P 0, (3.3.8c)
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because once again Theorem 1.3.1 with cn =
√
Tn and Assumption Bc.7 imply that

√
Tn

nv(Tn)2
‖F̄‖2 →P

∫ 1

0
G3(r)dLW (r, 0).

In fact, using the result in Theorem 2.3.2 yields

E
n∑
s=1

δ2
s =

n∑
s=1

E

 k∑
i=0

∞∑
j=pi+1

bijϕjTn(sTn/n)hi(sTn/n,XsTn/n)

2

=

n∑
s=1

k∑
i=0

 ∞∑
j=pi+1

bijϕjTn(sTn/n)

2

≤CT 2
n

n∑
s=1

k∑
i=0

(|b′i(0)|+ |b′i(Tn)|)2

p2
i

(1 + o(1))

≤CT 2
nM

2 nk

p2
min

(1 + o(1)) = CM2n1+2κ3+κ1−2κ2(1 + o(1))→ 0

as n → ∞ using Assumption B.4, which in turn implies
∑n

s=1 δ
2
s →P 0. Meanwhile,

invoking (2.2.13) with r = 3, bi(sTn/n) =

√
sTn/n

3√
i(i− 1)(i− 2)

bi−3(m
(3)
x ) and therefore

E

n∑
s=1

γ2
s =

n∑
s=1

E

 ∞∑
i=k+1

∞∑
j=0

bijϕjTn(sTn/n)hi(sTn/n,XsTn/n)

2

=
n∑
s=1

∞∑
i=k+1

bi(sTn/n)2 =
n∑
s=1

∞∑
i=k+1

(sTn/n)3

i(i− 1)(i− 2)
b2i−3(m(3)

x )

=

∞∑
i=k+1

1

i(i− 1)(i− 2)

n∑
s=1

(sTn/n)3b2i−3(m(3)
x )

≤An
∞∑

i=k+1

1

i(i− 1)(i− 2)
≤ A(1 + o(1))

n

k2

=A(1 + o(1))n1−2κ1 → 0,

by Assumption B.3 and B.4, where A is the uniform bound of t3b2i−3(t,m
(3)
x (t, x)).

Regarding (3.3.8b),

√
Tn

nv(Tn)2

n∑
s=1

Eδ̄2
s =

√
Tn

nv(Tn)2

n∑
s=1

E

 k∑
i=0

∞∑
j=pi+1

aijϕjTn(sTn/n)hi(sTn/n,XsTn/n)

2
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=

√
Tn

nv(Tn)2

n∑
s=1

k∑
i=0

 ∞∑
j=pi+1

aijϕjTn(sTn/n)

2

≤ 2

n
√
Tnv(Tn)2

n∑
s=1

k∑
i=0

 ∞∑
j=pi+1

|aij |

2

≤ 2

n
√
Tnv(Tn)2

n∑
s=1

k∑
i=0

1

p2
i

 ∞∑
j=pi+1

j|aij |

2

≤ 2ko(1)√
Tnp2

minv(Tn)2
=

o(1)

v(Tn)2
nκ1−2κ2−κ3/2 → 0

as n→∞ by Assumption B.4 and Bc.4. Moreover,

√
Tn

nv(Tn)2

n∑
s=1

Eγ̄2
s =

√
Tn

nv(Tn)2

n∑
s=1

E

 ∞∑
i=k+1

∞∑
j=0

aijϕjTn(sTn/n)hi(sTn/n,XsTn/n)

2

=

√
Tn

nv(Tn)2

n∑
s=1

∞∑
i=k+1

 ∞∑
j=0

aijϕjTn(sTn/n)

2

≤ 1

nv(Tn)2
√
Tn

n∑
s=1

∞∑
i=k+1

 ∞∑
j=0

|aij |

2

=
1

v(Tn)2
√
Tn

∞∑
i=k+1

 ∞∑
j=0

|aij |

2

→ 0,

because 1√
Tn
→ 0 and

∑∞
i=k+1

[∑∞
j=0 |aij |

]2
<
∑∞

i=k+1

∑∞
j=0 |aij | → 0 by Assumption

Bc.4.

The last step is to show the convergence of (3.3.8c). These hold because using the

property of martingale difference of es and adaptivity of xs,n we can deduce

E

(
4
√
Tn√

nv(Tn)
δ̄′ε

)2

=E

(
4
√
Tn√

nv(Tn)

n∑
s=1

δ̄ses

)2

=

√
Tnσ

2
e

nv(Tn)2

n∑
s=1

Eδ̄2
s → 0,

E

(
4
√
Tn√

nv(Tn)
γ̄′ε

)2

=E

(
4
√
Tn√

nv(Tn)

n∑
s=1

γ̄ses

)2

=

√
Tnσ

2
e

nv(Tn)2

n∑
s=1

Eγ̄2
s → 0,

which finishes the proof.
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3.3.2 Asymptotics of the estimated unknown functional

Having obtained β̂, we may be able to have m̂(τ, x), estimation of m(τ, x) for fixed τ > 0

and fixed x ∈ R on the path of B(τ). Thus, one desired result is the asymptotic distribution

of m̂(τ, x)−m(τ, x).

Given that m(·, ·) satisfies Assumption B.3, using orthogonal system {ϕjTn(τ)hi(τ, x)},
m(τ, x) is expanded as

m(τ, x) =

∞∑
i=0

∞∑
j=0

bijϕjTn(τ)hi(τ, x) := A′(τ, x)β + δ(τ, x) + γ(τ, x), (3.3.9)

here

A′(τ, x) = (ϕ0Tn(τ)h0(τ, x), · · ·ϕp0Tn(τ)h0(τ, x), · · ·ϕ0Tn(τ)hk(τ, x), · · ·

ϕpkTn(τ)hk(τ, x)),

δ(τ, x) =

k∑
i=0

∞∑
j=pi+1

bijϕjTn(τ)hi(τ, x),

γ(τ, x) =
∞∑

i=k+1

∞∑
j=0

bijϕjTn(τ)hi(τ, x).

Whence, after substituting β̂ in lieu of β and getting rid off all residues, we have

m̂(τ, x) = A′(τ, x)β̂. (3.3.10)

We shall investigate the limit of

m̂(τ, x)−m(τ, x) = A′(τ, x)(β̂ − β)− δ(τ, x)− γ(τ, x)

= A′(τ, x)(X ′X)−1X ′(δ + γ + ε)− δ(τ, x)− γ(τ, x). (3.3.11)

Similarly, put

Ap×p =
A(τ, x)A′(τ, x)

‖A(τ, x)‖2
and Bp×p = (X ′X)A(X ′X)−1. (3.3.12)

According to Lemma 3.1.2, B has eigenvalues λ1 = 1, λ2 = · · · = λp = 0. Let

normalised α be the unit left eigenvector of B pertaining to λ1. Hence, we have α′B = α′

and ‖α‖ = 1. Denote α′ = (α00, · · · , α0p0 , · · · , αk0 · · · , αkpk) in concert with A(τ, x).

Let us apply the reshuffle procedure for the set S from Assumption Bm.1 by α. Denote

by S̃ the resulting set:
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1) S̃ = {ã0, · · · , ãi, · · · }

2) ãi = {ãij} where ãij =
√

Tn
pmax

αij for 0 ≤ i ≤ k and 0 ≤ j ≤ pi where pmax =

max{p0, · · · , pk}; otherwise, ãij = aij .

Obviously, there exists a function, denoted by F̃ (t, x), such that

F̃ (t, B(t)) =

∞∑
i=0

∞∑
j=0

ãijϕjTn(t)hi(t, B(t)), (3.3.13)

for any t ∈ [0, Tn]. Therefore, by virtue of (3.3.13), we have√
Tn
pmax

α′X ′ = F̃
′
− δ̃′ − γ̃′, (3.3.14)

where F̃
′
= (F̃ (t1,n, X1,n), · · · , F̃ (tn,n, Xn,n)); δ̃′ = (δ̃1, · · · , δ̃n), δ̃s =

∑k
i=0

∑∞
j=pi+1 aij

ϕjTn(ts,n)hi(ts,n, Xs,n); γ̃′ = (γ̃1, · · · , γ̃n), γ̃s =
∑∞

i=k+1

∑∞
j=0 aijϕjTn(ts,n)hi(ts,n, Xs,n).

Also the above reshuffle procedure can be applied with 1
‖A(τ,x)‖A(τ, x). Let us denote

the resulting set by S̄. Accordingly, S̄ amounts to a set of sequences {ā0, ā1, ā2, · · · }
where āi = {āij} and āij = 1

‖A(τ,x)‖

√
Tn
pmax

ϕjTn(τ)hi(τ, x) if i = 0, · · · , k and j = 0, · · · , pi;
otherwise, āij = aij .

Similarly, there exists a function, denoted by G̃(t, x), such that

G̃(t, B(t)) =
∞∑
i=0

∞∑
j=0

āijϕjTn(t)hi(t, B(t)), (3.3.15)

for any t ∈ [0, Tn]. Consequently, by (3.3.15),

1

‖A(τ, x)‖

√
Tn
pmax

XA(τ, x) = G̃− δ̄ − γ̄ (3.3.16)

where G̃
′
= (G̃(t1,n, X1,n), · · · , G̃(tn,n, Xn,n)); δ̄′ = (δ̄1, · · · , δ̄n), δ̄s =

∑k
i=0

∑∞
j=pi+1 aij

ϕjTn(ts,n)hi(ts,n, Xs,n); γ̄′ = (γ̄1, · · · , γ̄n), γ̄s =
∑∞

i=k+1

∑∞
j=0 aijϕjTn(ts,n)hi(ts,n, Xs,n).

Notice that δ̃ = δ̄ and γ̃ = γ̄ since S̃ and S̄ have the same tails. The following

proposition shows the finiteness of the second moment of G̃(t, B(t)) and F̃ (t, B(t)).

Lemma 3.3.2. For t ∈ [0, Tn], (a) E[G̃(t, Bt)]
2 <∞, and (b) E[F̃ (t, Bt)]

2 <∞.
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Proof. (a) From the orthogonality of hi(t, B(t)),

E[G̃(t, B(t))]2 = E

 ∞∑
i=0

∞∑
j=0

āijϕjTn(t)hi(t, B(t))

2

=

∞∑
i=0

 ∞∑
j=0

āijϕjTn(t)

2

.

We mainly focus on the partial sum
∑k

i=0

(∑pi
j=0 āijϕjTn(t)

)2
in view of the proof of

Lemma 3.1.3. Notice that if t = τ ,

k∑
i=0

 pi∑
j=0

āijϕjTn(τ)

2

=
Tn

‖A(τ, x)‖2pmax

k∑
i=0

h2
i (τ, x)

 pi∑
j=0

ϕ2
jTn(τ)

2

.

Observe from the definition of ϕjTn(·) that

pi∑
j=0

ϕ2
jTn(τ) =

1

Tn
+

2

Tn

pi∑
j=1

cos2 jπτ

Tn
=

1

Tn

1 + 2

pi∑
j=0

cos2 jπτ

Tn


=

1

Tn

1 +

pi∑
j=1

(
1 + cos

2jπτ

Tn

) =
1

Tn

1 + pi +

pi∑
j=1

cos
2jπτ

Tn


=

1

Tn

(
1

2
+ pi

)
+

sin(pi + 1
2)2πτ

Tn

2Tn sin πτ
Tn

,

where we have employed a trigonometric formula 1
2 + cosu + · · · + cosmu =

sin(m+ 1
2

)u

2 sin u
2

.

Notice that by Assumption B.4 pmin/Tn →∞, hence sin(pi + 1
2)2πτ

Tn
fluctuates between -1

and 1, while the denominator 2Tn sin πτ
Tn
→ 2πτ as sample size increases. Thus, we can

assert that
∑pi

j=0 ϕ
2
jTn

(τ) = 1
Tn
pi(1 + o(1)). Consequently,

∑k
i=0

(∑pi
j=0 āijϕjTn(τ)

)2
≤

1+o(1)
‖A(τ,x)‖2

∑k
i=0 h

2
i (τ, x)

∑pi
j=0 ϕ

2
jTn

(τ) = 1 + o(1).

When t 6= τ , from Cauchy-Schwarz inequality and the above derivation it follows that

k∑
i=0

 pi∑
j=0

āijϕjTn(t)

2

=
1

‖A(τ, x)‖2
k∑
i=0

Tn
pmax

h2
i (τ, x)

 pi∑
j=0

ϕjTn(τ)ϕjTn(t)

2

≤ 1

‖A(τ, x)‖2
k∑
i=0

Tn
pmax

h2
i (τ, x)

pi∑
j=0

ϕ2
jTn(τ)

pi∑
j=0

ϕ2
jTn(t)

=
1

‖A(τ, x)‖2
k∑
i=0

Tn
pmax

pi
Tn

(1 + o(1))h2
i (τ, x)

pi∑
j=0

ϕ2
jTn(τ)
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≤ 1 + o(1)

‖A(τ, x)‖2
k∑
i=0

h2
i (τ, x)

pi∑
j=0

ϕ2
jTn(τ) = 1 + o(1).

In conclusion, for t > 0, E[G̃(t, Bt)]
2 <∞.

(b) Since E[F̃ (t, B(t))]2 has the similar expression as E[G̃(t, B(t))]2, we focus on the

estimation of the partial sum. In effect,

k∑
i=0

 pi∑
j=0

ãijϕjTn(t)

2

=
k∑
i=0

Tn
pmax

 pi∑
j=0

αijϕjTn(t)

2

≤
k∑
i=0

Tn
pmax

pi∑
j=0

α2
ij

pi∑
j=0

ϕ2
jTn(t) =

k∑
i=0

Tn
pmax

pi
Tn

(1 + o(1))

pi∑
j=0

α2
ij ≤ 1 + o(1),

because α is an unit vector. The proof is finished.

We propose the following assumptions in order to obtain the asymptotic behaviour of

m̂(τ, x).

Assumption Bm.6

(a) Both F̃ (t, x) and G̃(t, x) are in Class T (HI) with normal functions F (t, x), G(t, x),

and homogeneity powers v(·) and g(·) respectively.

(b) Let pmax = [nκ̄2 ] and g(n) = nρ. Suppose that 1
2 + 1

2κ1 + (ρ+ 3
4)κ3 < κ2.

(c) Suppose further that F̃ 2(t, x) and G̃2(t, x) and F̃ (t, x)G̃(t, x) are all in Class T (HI)

with normal functions F 2(t, x), G2(t, x) and F (t, x)G(t, x) and homogeneity powers

v2(·) and g2(·), v(·)g(·) respectively.

Remark 3.3.4. Since by Assumption B.4(b) 1
2 + 1

2κ1 + κ3 < κ2, it is easy to see that if

0 < ρ ≤ 1
4 then Condition (b) of Assumption Bm.6 is guaranteed by B.4 (b); if however,

ρ > 1
4 , Assumption Bm.6 implies that B.4 (b) holds automatically. Meanwhile, as we

always can control the difference κ̄2 − κ2 as small as we wish, the requirement for κ̄2 − κ2

is ignored.

Note also that the ambit of ρ is able to be extended if we impose a more rigorous

condition on Assumption B.3(d), viz., assuming that the derivative of bi(t,m) is dominated

by t−η with some η > 0. Thus, in the proof of the following theorem a(Tn) < T−ηn = n−ηκ3 ,

hence ρ− η would be in lieu of ρ, namely 0 < ρ < η + 1
4 .
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Theorem 3.3.2. Suppose that {xs,n}ns=1 and {es}ns=1 satisfy Assumptions B and A (c) in

Chapter 1. Under Assumptions B.3, B.4 and Bm.6 we have

4
√
Tn

3

√
nv(Tn)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

(m̂(τ, x)−m(τ, x))

→D

(∫ 1

0
G3(u)dLW (u, 0)

) 1
2

N,

(3.3.17)

where G3(·) =
∫
F 2(·, x)dx, W is the standard Brownian motion on [0, 1] and N is a

standard normal random variable independent of W , and LW is the local–time process of

W .

Remark 3.3.5. As can be seen from the proof of the theorem, since the ∆ converges to

a random variable in distribution,
4√Tn

3

√
nv(Tn)

α′X′XA(τ,x)√
pmax‖A(τ,x)‖2 is equivalent to

√
npmaxg(Tn)

4√Tn
3‖A(τ,x)‖

. In

view of the fact that O(1) 1
Tn
kpmin ≤ ‖A(τ, x)‖2 ≤ O(1) 1

Tn
kpmax, we have O(1)

√
n
kT

ρ− 1
4

n ≤
√
npmaxg(Tn)

4√Tn
3‖A(τ,x)‖

≤ O(1)
√

n
k

√
pmax

pmin
T
ρ− 1

4
n . Moreover, taking account of Assumption Bm.6 (b),

the left hand side is n
1
2

(1−κ1)+(ρ− 1
4

)κ3 of which the exponent is greater than zero but lower

than 1
4 , while the right hand side is n

1
2

(1−κ1)+ 1
2

(κ̄2−κ2)+(ρ− 1
4

)κ3 of which the order is less

than 1
2 .

Proof. It follows from (3.3.11) that

4
√
Tn

3

√
nv(Tn)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

(m̂(τ, x)−m(τ, x))

=
4
√
Tn

3

√
nv(Tn)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[A′(τ, x)(X ′X)−1X ′(δ + γ + ε)− δ(τ, x)− γ(τ, x)]

=
4
√
Tn

3

√
nv(Tn)

√
pmax

α′BX ′(δ + γ + ε)−
4
√
Tn

3

√
nv(Tn)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[δ(τ, x) + γ(τ, x)]

=
4
√
Tn√

nv(Tn)

√
Tn
pmax

α′X ′(δ + γ + ε)−
4
√
Tn

3

√
nv(Tn)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[δ(τ, x) + γ(τ, x)]

:=Π1 −Π2. (3.3.18)

We are about to show that Π1 converges to the desired variable in distribution and Π2

converges to zero in probability. To make life easier, we shall invoke the embedding sched-

ule. Bearing in mind, albeit using almost surely convergence of (Wn, Un), the assertion is

still a weak convergence.
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First and foremost, let us prove the convergence of Π1. It follows from (3.3.14) that

Π1 =
4
√
Tn√

nv(Tn)
(F̃− δ̄ − γ̄)′(δ + γ + ε), (3.3.19)

where vector F̃
′
= (F̃ (t1,n, X1,n), · · · , F̃ (tn,n, Xn,n)).

From Assumption Bm.6 (a) and (c) and Theorem 1.3.1 it follows that

4
√
Tn√

nv(Tn)
F̃
′
ε =

4
√
Tn√

nv(Tn)

n∑
s=1

F̃ (ts,n, Xs,n)es

=
4
√
Tn√

nv(Tn)

n∑
s=1

F̃
(
Tn
s

n
,
√
Tnxs,n

)
es

→D

(∫ 1

0
G3(u)dLW (u, 0)

) 1
2

N, (3.3.20a)

√
Tn

nv(Tn)2
‖F̃‖2 =

√
Tn

nv(Tn)2

n∑
s=1

F̃ 2(ts,n, Xs,n)

=

√
Tn

nv(Tn)2

n∑
s=1

F̃ 2
(
Tn
s

n
,
√
Tnxs,n

)
→P

∫ 1

0
G3(u)dLW (u, 0), (3.3.20b)

due to asymptotic homogeneity, where G3(·) =
∫
F 2(·, x)dx is as specified in Assumption

C, W , N and LW are the same as defined before. At the meantime, Cauchy-Schwarz

inequality gives

√
Tn

nv(Tn)2
|F̃
′
δ|2 ≤

√
Tn

nv(Tn)2
‖F̃‖2‖δ‖2,

√
Tn

nv(Tn)2
|F̃
′
γ|2 ≤

√
Tn

nv(Tn)2
‖F̃‖2‖γ‖2,

√
Tn

nv(Tn)2
|δ̄′δ|2 ≤

√
Tn

nv(Tn)2
‖δ̄‖2‖δ‖2,

√
Tn

nv(Tn)2
|δ̄′γ|2 ≤

√
Tn

nv(Tn)2
‖δ̄‖2‖γ‖2,

√
Tn

nv(Tn)2
|γ̄′δ|2 ≤

√
Tn

nv(Tn)2
‖γ̄‖2‖δ‖2,

√
Tn

nv(Tn)2
|γ̄′γ|2 ≤

√
Tn

nv(Tn)2
‖γ̄‖2‖γ‖2.

Moreover, invoking Assumption B that xs,n is adapted to Fn,s−1 and (es,Fn,s) is a

martingale difference sequence, as well as E(e2
s|Fn,s−1) = σ2 a.s., noting the expressions

of δ̄s, we have

E

(
4
√
Tn√

nv(Tn)
δ̄ε

)2

=

√
Tn

nv(Tn)2
E

(
n∑
s=1

δ̄ses

)2

=

√
Tn

nv(Tn)2

n∑
s1=1

n∑
s2=1

E[δ̄s1es1 δ̄s2es2 ]
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=

√
Tn

nv(Tn)2

n∑
s=1

E[δ̄2
sE(e2

s|Fn,s−1)]

+ 2

√
Tn

nv(Tn)2

n−1∑
s1=1

n∑
s2=s1+1

E[δ̄s1es1 δ̄s2E(es2 |Fn,s2−1)]

=

√
Tnσ

2

nv(Tn)2

n∑
s=1

E[δ̄2
s ] =

√
Tnσ

2

nv(Tn)2
E‖δ̄‖2,

and similarly

E

(
4
√
Tn√

nv(Tn)
γ̄ε

)2

=

√
Tnσ

2

nv(Tn)2
E‖γ̄‖2.

Therefore, in order to prove that all the rest terms in Π1 converge in probability to

zero, it suffices to show

‖δ‖2 →P 0, ‖γ‖2 →P 0, (3.3.21a)
√
Tn

nv(Tn)2
E‖δ̄‖2 → 0,

√
Tn

nv(Tn)2
E‖γ̄‖2 → 0. (3.3.21b)

In fact, using the result in Theorem 2.3.2 yields that as n→∞

E

[
n∑
s=1

δ2
s

]
=

n∑
s=1

E

 k∑
i=0

∞∑
j=pi+1

bijϕjTn

(
sTn
n

)
hi

(
sTn
n
,XsTn/n

)2

=

n∑
s=1

k∑
i=0

 ∞∑
j=pi+1

bijϕjTn

(
sTn
n

)2

≤CT 2
n

n∑
s=1

k∑
i=0

(|b′i(0)|+ |b′i(Tn)|)2

p2
i

(1 + o(1))

≤CT 2
nM

2 nk

p2
min

(1 + o(1)) = CM2n1+2κ3+κ1−2κ2(1 + o(1))→ 0

by virtue of Assumption B.4, which in turn implies ‖δ‖2 →P 0.

Similarly, invoking (2.2.13) with r = 3 and bi
(
sTn
n

)
=

√
sTn/n

3√
i(i− 1)(i− 2)

bi−3

(
sTn
n ,m

(3)
x

)
,

we have as n→∞

E

[
n∑
s=1

γ2
s

]
=

n∑
s=1

E

 ∞∑
i=k+1

∞∑
j=0

bijϕjTn

(
sTn
n

)
hi

(
sTn
n
,XsTn/n

)2
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=

n∑
s=1

∞∑
i=k+1

bi

(
sTn
n

)2

=

n∑
s=1

∞∑
i=k+1

(sTn/n)3

i(i− 1)(i− 2)
b2i−3

(
sTn
n
,m(3)

x

)

=
∞∑

i=k+1

1

i(i− 1)(i− 2)

n∑
s=1

(
sTn
n

)3

b2i−3

(
sTn
n
,m(3)

x

)

≤An
∞∑

i=k+1

1

i(i− 1)(i− 2)
≤ A(1 + o(1))

n

k2
= A(1 + o(1))n1−2κ1 → 0

by Assumption B.3, B.4, where A is the uniform bound of t3b2i−3(t,m
(3)
x (t, x)).

In a very similar fashion, we have

√
Tn

nv(Tn)2

n∑
s=1

E
[
δ̄2
s

]
=

√
Tn

nv(Tn)2

n∑
s=1

E

 k∑
i=0

∞∑
j=pi+1

aijϕjTn

(
sTn
n

)
hi

(
sTn
n
,XsTn/n

)2

=

√
Tn

nv(Tn)2

n∑
s=1

k∑
i=0

 ∞∑
j=pi+1

aijϕjTn

(
sTn
n

)2

≤ 2

n
√
Tnv(Tn)2

n∑
s=1

k∑
i=0

 ∞∑
j=pi+1

|aij |

2

≤ 2√
Tnv(Tn)2

k∑
i=0

1

p2
i

 ∞∑
j=pi+1

j|aij |

2

≤ o(1)k√
Tnp2

minv(Tn)2
=

o(1)

v(Tn)2
nκ1−2κ2−κ3/2 → 0

as n→∞ by Assumptions B.4 and Bm.1.

Analogously, we have as n→∞

√
Tn

nv(Tn)2

n∑
s=1

E
[
γ̄2
s

]
=

√
Tn

nv(Tn)2

n∑
s=1

E

 ∞∑
i=k+1

∞∑
j=0

aijϕjTn

(
sTn
n

)
hi

(
sTn
n
,XsTn/n

)2

=

√
Tn

nv(Tn)2

n∑
s=1

∞∑
i=k+1

 ∞∑
j=0

aijϕjTn

(
sTn
n

)2

≤ 2
√
Tn

nv(Tn)2Tn

n∑
s=1

∞∑
i=k+1

 ∞∑
j=0

|aij |

2

≤ 2√
Tnv(Tn)2k

∞∑
i=k+1

i

 ∞∑
j=0

|aij |

2
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=
o(1)

v(Tn)2
n−κ1−κ3/2 → 0

on account of Assumption Bm.1 (b).

Therefore, we assert that Π1 converges in distribution to the limit of (3.3.20a).

We are now in a position to prove that Π2 →P 0. To this end, we begin with finding

the limit of

∆ :=

√
Tn

3

nv(Tn)g(Tn)

α′X ′XA(τ, x)

pmax‖A(τ, x)‖
. (3.3.22)

On account of (3.3.14) and (3.3.16), we have

∆ =

√
Tn

3

nv(Tn)g(Tn)

α′X ′XA(τ, x)

pmax‖A(τ, x)‖
=

√
Tn

nv(Tn)g(Tn)
(F̃
′
− δ̃′ − γ̃′)(G̃− δ̄ − γ̄)

=

√
Tn

nv(Tn)g(Tn)
(F̃
′
G̃− F̃

′
δ̄ − F̃

′
γ̄ − δ̃′G̃− γ̃′G̃ + δ̃′δ̄ + δ̃′γ̄ + γ̃′δ̄ + γ̃′γ̄)

=

√
Tn

nv(Tn)g(Tn)
(F̃
′
G̃− F̃

′
δ̄ − F̃

′
γ̄ − δ̄′G̃− γ̄′G̃ + ‖δ̄‖2 + 2δ̄′γ̄ + ‖γ̄‖2).

However, using Assumption Bm.6 for F̃ (·, ·) and G̃(·, ·) and Theorem 1.3.1 gives

√
Tn

nv(Tn)g(Tn)
F̃
′
G̃ =

√
Tn

nv(Tn)g(Tn)

n∑
s=1

F̃ (ts,n, Xs,n)G̃(ts,n, Xs,n)

=

√
Tn

nv(Tn)g(Tn)

n∑
s=1

F̃
(
Tn
s

n
,
√
Tnxs,n

)
G̃
(
Tn
s

n
,
√
Tnxs,n

)
→P

∫ 1

0
J(u)dLW (u, 0), (3.3.23)

where J(u) =
∫
F (u, x)G(u, x)dx and W is a standard Brownian motion on [0, 1] and

LW (u, 0) is the local time of W , and

√
Tn

ng(Tn)2
‖G̃‖2 →P

∫ 1

0

∫
G2(u, x)dxdLW (u, 0).

Hence, in view of (3.3.21), using Cauchy-Schwarz inequality, ∆ of (3.3.22) converges

to the same limit as (3.3.23).

We are now ready to prove that Π2 in (3.3.18) converges to zero in probability.

Because Π2 = ∆
√
npmaxg(Tn)

4√Tn
3‖A(τ,x)‖

[δ(τ, x) + γ(τ, x)], in order to show Π2 →P 0, it suffices to

prove that

√
npmaxg(Tn)

4
√
Tn

3‖A(τ, x)‖
δ(τ, x)→ 0 and

√
npmaxg(Tn)

4
√
Tn

3‖A(τ, x)‖
γ(τ, x)→ 0 (3.3.24)
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as n→∞.

Notice that by the proof of Lemma 3.3.2, we have O(1)kpmax ≥ Tn‖A(τ, x)‖2 ≥
O(1)kpmin. Using Assumption B.3, B.4, Bm.6 and the result in Theorem 2.3.2,

√
npmaxg(Tn)

4
√
Tn

3‖A(τ, x)‖
|δ(τ, x)| ≤ O(1)

√
npmaxg(Tn)
4
√
Tn
√
kpmin

∣∣∣∣∣∣
k∑
i=0

∞∑
j=pi+1

bijϕjTn(τ)hi(τ, x)

∣∣∣∣∣∣
≤O(1)

√
npmaxg(Tn)
4
√
Tn
√
kpmin

k∑
i=0

|hi(τ, x)|

∣∣∣∣∣∣
∞∑

j=pi+1

bijϕjTn(τ)

∣∣∣∣∣∣
≤O(1)

√
npmaxg(Tn)
4
√
Tn
√
kpmin

(
k∑
i=0

|hi(τ, x)|2
) 1

2

 k∑
i=0

∣∣∣∣∣∣
∞∑

j=pi+1

bijϕjTn(τ)

∣∣∣∣∣∣
2

1
2

≤O(1)

√
npmaxg(Tn)
4
√
Tn
√
kpmin

√
k

(
k∑
i=0

a2(Tn)T 2
n

p2
i

) 1
2

≤ O(1)

√
npmaxT

ρ
n

4
√
Tn

√
kTn√
pmin

3

=O(1)n
1
2

+ 1
2
κ1+(ρ+ 3

4
)κ3+ 1

2
(κ̄2−κ2)−κ2 → 0

as n → ∞ where we use Assumption B.3(d) that a2(Tn) < M and Assumption B.4 and

Bm.6 for ρ and truncation parameters.

Meanwhile, using (2.2.13) with r = 2 and |hi(τ, x)| ≤ i−
1
4 for large i (see Nikiforov and

Uvarov, 1988, p.54) gives

√
npmaxg(Tn)

4
√
Tn

3‖A(τ, x)‖
|γ(τ, x)| ≤ O(1)

√
npmaxg(Tn)
4
√
Tn
√
kpmin

∣∣∣∣∣∣
∞∑

i=k+1

∞∑
j=0

bijϕjTn(τ)hi(τ, x)

∣∣∣∣∣∣
=O(1)

√
npmaxg(Tn)
4
√
Tn
√
kpmin

∣∣∣∣∣
∞∑

i=k+1

bi(τ)hi(τ, x)

∣∣∣∣∣
=O(1)

√
npmaxg(Tn)
4
√
Tn
√
kpmin

∣∣∣∣∣
∞∑

i=k+1

τ√
i(i− 1)

bi−2(τ,m′′x)hi(τ, x)

∣∣∣∣∣
≤O(1)

√
npmaxT

ρ
n

4
√
Tnk
√
kpmin

( ∞∑
i=k+1

|bi−2(τ,m′′x)|2
) 1

2
( ∞∑
i=k+1

1

i(i− 1)
√
i

) 1
2

≤o(1)

√
npmaxT

ρ
n

4
√
Tnk
√
kpmin

1

k3/4

=o(1)n
1
2

+ 1
2

(κ̄2−κ2)−( 1
4
−ρ)κ3− 5

4
κ1 → 0

as n→∞ in view of Assumption B.4 and Bm.6. The proof is finished.
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Chapter 4

Orthogonal expansion of Lévy

process functionals

4.1 Introduction

Stochastic differential equations driven by a Lévy process under some conditions have

solutions in the form of functionals of the underlying process. Such equations are used

extensively in economics, finance and engineering disciplines to describe random phenom-

ena in both theory and practice. Meanwhile, some empirical studies show that many

datasets admit nonlinearity and nonstationarity. Consequently, a number of nonpara-

metric and semiparametric models and kernel-based methods have been proposed to deal

with both nonlinearity and nonstationarity simultaneously. Existing studies mainly dis-

cuss the employment of nonparametric kernel estimation methods. Such studies include

Phillips and Park (1998), Park and Phillips (1999), Park and Phillips (2001), Karlsen

and Tjøstheim (2001), Karlsen et al. (2007), Cai et al. (2009), Phillips (2009), Wang and

Phillips (2009a,b), Xiao (2009), and Gao and Phillips (2010).

However, such kernel-based estimation methods are not applicable to establish closed-

form expansions of functionals of Lévy processes. In the stationary case, the literature

already discusses how series approximations may be used in dealing with stationary time

series models, such as Ai and Chen (2003), Chapter 2 of Gao (2007) and Li and Racine

(2007). In addition, although the celebrated Black-Scholes option pricing formula de-

scribed the price of the financial product as a functional of Brownian motion, literature
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has pointed out that there are some significant drawbacks to this formula. For example,

empirical evidence suggests that log returns do not behave according to a normal dis-

tribution (see Schoutens, 2003). Hence, the researchers realise that one would need to

include other stochastic processes (not just Brownian motion) when one needs to formu-

late a continuous-time stochastic models in order to depict some stochastic phenomena or

scientific datasets.

Therefore, there is need to study functionals of the Lévy process, Z(t), in the both cases

of time-homogeneity and time–inhomogeneity. Note that one powerful way of dealing with

such problems is to decompose the process, say f(Z(t)) or f(t, Z(t)), where the functional

form is unknown, into an orthogonal series in some Hilbert space, such that once one

has obtained observed values of the process, the coefficients involved in the series can be

estimated using an econometric method. Actually, the literature has found for a long time

that there exists a close connection between stochastic processes and orthogonal polyno-

mials. For example, the so-called Karlin-McGregor representation expresses the transition

probability of the birth and death process by means of a spectral representation in terms

of orthogonal polynomials. Some people clearly feel the potential importance of orthogo-

nal polynomials in probability theory. Schoutens (2000), for instance, gives an extensive

discussion about relations between stochastic processes and orthogonal polynomials.

In what follows, we shall establish some general theory and methodology for the ex-

pansion of a class of functionals of Lévy processes. As an application, we shall estimate

an unknown function of the form m(t, z) involved in the following model:

Y (t) = m(t, Z(t)) + ε(t), t ∈ [0,∞), (4.1.1)

where Z(t) is a Lévy process that covers both the continuous (such as Brownian motion)

and the discrete (such as the Poisson process) cases, ε(t) is an error process with zero

mean and finite variance, and m(t, z) is an unknown function of (t, z).

As far as we are aware, there is no discussion about how to estimate m(t, z) by a non- or

semi-parametric method in the literature. Even in the discrete case where t = 1, 2, · · · , it

is not clear whether a nonparametric kernel method can provide a consistent estimator for

m(t, z). Part of the contribution of this paper is to establish an asymptotically consistent

estimator of m(t, z) and the resulting asymptotic theory in each of the three sampling

situations: a) the case where Zt = Z(t) at t = 1, 2, · · · , b) the case where Zt,n = Z
(
tT
n

)
at t = 1, 2, · · · , and c) the case where Zt,n = Z

(
tTn
n

)
at t = 1, 2, · · · and with Tn →∞.
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The estimation methodology proposed in the sequel is summarised as follows. We

shall employ an appropriate polynomial sequence that is orthogonal with respect to ei-

ther the probability density or the probability distribution of Z(t) depending on whether

Z(·) is continuous or discrete. We then expand the unknown function m(t, Z(t)) into

an orthogonal series in some Hilbert space in terms of the polynomial sequence. We then

propose using a semiparametric least squares (SLS) estimation method to estimate m(t, z)

by m̂(t, z). To establish an asymptotic theory for m̂, we introduce a general asymptotic

theory to deal with the sample mean and sample covariance of four classes of functionals

of Lévy processes. It is noteworthy to point out that the established asymptotic theory

considerably extends some existing results, such as Park and Phillips (1999, 2001), and

Wang and Phillips (2009a).

With the advantage of expanding an unknown functional into an orthogonal series,

the proposed method can be used to deal with some estimation problems in economics,

finance and engineering. For example, there are a number of studies involving models with

conditional moment restriction containing an unknown functional, such as Ai and Chen

(2003, 2007), and Chen and Ludvigson (2009). Since existing theory for expansions of

functionals of stationary processes is not directly applicable, the proposed expansion and

estimation method in this paper is useful and significant in both theory and applications.

4.2 Lévy processes and infinite divisibility

The term ”Lévy process” honours the work of the French mathematician Paul Lévy who,

although not alone in his contribution, played an instrumental role in bringing together an

understanding and characterisation of processes with stationary independent increments.

In earlier literature, Lévy processes can be found under a number of different names.

In the 1940s, Lévy himself referred to them as a sub-class of processus additif (additive

processes), that is processes with independent increments. For the most part however,

research literature from the 1960s and 1970s refers to Lévy processes simply as processes

with stationary independent increments. One sees a change in language through the 1980s

and by the 1990s the use of the term ”Lévy process” had become standard.

Definition 4.2.1 (Lévy process). A process Z = (Z(t), t ≥ 0) defined on a probability

space (Ω,F ,P) is called a Lévy process if it possesses the following properties

(i) The paths of Z are P-almost surely right continuous with left limits.
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(ii) P(Z(0) = 0) = 1.

(iii) For 0 ≤ s ≤ t, Z(t)− Z(s) is equal in distribution to Z(t− s).

(iv) For 0 ≤ s ≤ t, Z(t)− Z(s) is independent of {Z(u), u ≤ s}.

(v) Stochastic continuity: for ∀ ε > 0, limh→0 P(|Z(t+ h)− Z(t)| > ε) = 0.

It is evident that both Brownian motion and the Poisson process are Lévy processes.

However, from the definition alone it is difficult to see how rich a class of processes the

class of Lévy processes forms.

If we sample a Lévy process Z(t) at regular time intervals 0,4, 24, · · · , we obtain

a random work: defining Sn(4) ≡ Z(n4), we can write Sn(4) = Y1 + · · · + Yn where

Yi = Z(i4) − Z((i − 1)4) are i.i.d. random variables whose distribution is the same as

that of Z(4). Since this can be done for any sampling interval 4, we can see by specifying

a Lévy process we have specified a whole family of random walks Sn(4): these models

simply correspond to sampling the Lévy process Z(t) at different frequencies.

Choosing n4 = t, we see that for any t > 0 and any n ≥ 1, Z(t) = Sn(4) can be

represented as a sum of n i.i.d. random variables whose distribution is that of Z( tn):

Z(t) can be ”divided” into n i.i.d. parts. A distribution having this property is said

to be infinitely divisible. Finetti (1929) introduced the notion of an infinitely divisible

distribution and showed that they have an intimate relationship with Lévy processes. This

relationship gives a reasonably good impression of how varied the class of Lévy processes

really is.

Definition 4.2.2 (Infinitely divisible distribution). We say that a real-valued random

variable ξ has an infinitely divisible distribution if for each n = 1, 2, · · · , there exists a

sequence of i.i.d. random variables ξ1,n, · · · , ξn,n such that

ξ
D
= ξ1,n + · · ·+ ξn,n

where
D
= is equality in distribution.

Define the characteristic function Φt(θ) of Z(t)

Φt(θ) ≡ ΦZ(t)(θ) ≡ E[exp(iθZ(t))], θ ∈ R.
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For t, s > 0, noting that Z(t+s) = Z(t+s)−Z(s)+Z(s) and the fact that Z(t+s)−Z(s)

and Z(s) are mutually independent, we obtain that t 7→ Φt(θ) is a multiplicative function

Φt+s(θ) =ΦZ(t+s)(θ) = ΦZ(t+s)−Z(s)(θ)ΦZ(s)(θ)

=ΦZ(t)(θ)ΦZ(s)(θ) = Φt(θ)Φs(θ).

Meanwhile, stochastic continuity implies in particular that Z(t)→ Z(s) in distribution

as t → s. Thus t 7→ Φt(θ) is a continuous function, which, together with multiplicative

property, implies that Φt(θ) is an exponential function.

Φt(θ) = e−tψ(θ),

where ψ(θ) := ψ1(θ) = − logE
[
eiθZ(1)

]
is the characteristic exponent of Z(1). Hence,

Φt(θ) = [Φ1(θ)]t. The law of Z(t) is therefore determined by the knowledge of the law of

Z(1): the only degree of freedom when we are specifying a Lévy process is to specify the

distribution of Z(t) for a single time ( say t = 1). Please consult Kyprianou (2006) and

Cont and Tankov (2004).

4.3 Existence of orthogonal polynomials associated with the

Lévy process

Let (Z(t), t ≥ 0) be any Lévy process. Let Φ(θ) be the characteristic function of Z(1).

According to Schoutens (2000, p.50), it can be shown that

Φ′(θ)

Φ(θ)
= i(µ+ σ2τ(iθ)) (4.3.1)

for some function τ(·) with τ(0) = 0 where µ = EZ(1) and σ2 = V ar(Z(1)).

Let u(·) be the inverse function of τ(·). Define π(z) = [φ(−iu(z))]−1.

Definition 4.3.1 (Lévy-Meixner system). A polynomial set {qi(t, x), i ≥ 0, t ≥ 0} is

called a Lévy-Meixner system if it is defined by a generating function of the form

∞∑
i=0

qi(t, x)
zi

i!
= (π(z))t exp(xu(z)). (4.3.2)

This definition is a general case of Lévy-Meixner system in Schoutens (2000) since

time variable t is involved. Such a change makes it possible to obtain the existence of a
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polynomial system which is orthogonal with respect to the distribution of Lévy process

Z(t). That is, such defined qi(t, x) is orthogonal with respect to the distribution Ψt(x) of

Z(t): ∫ ∞
−∞

qi(t, x)qj(t, x)dΨt(x) = δij d̃
2
i (t). (4.3.3)

where d̃2
i (t) =

∫∞
−∞ q

2
i (t, x)dΨt(x) > 0.

Remark 4.3.1. When process Z(t) is specified as Brownian motion, qi(t, x) becomes Her-

mite polynomial with weight the density of normal distribution N(0, t); when Z(t) is speci-

fied as Gamma process, qi(t, x) will be Laguerre polynomial system L
(αt)
i (x); if Z(t) = N(t)

a Poisson process, qi(t, x) will be Charlier polynomial system Ci(µt, x); if Z(t) is a Pascal

process, qi(t, x) will be a Meixner polynomial system.

Note that the Lévy-Meixner system is a subclass of the Lévy-Sheffer system, so that

we have the following martingale equality

E[qi(t, Z(t))|Z(s)] = qi(s, Z(s)), 0 ≤ s ≤ t, i ≥ 0. (4.3.4)

In what follows we are about to find the explicit expressions of qi(t, x). Frankly speak-

ing, the following arguments parallel the counterpart in Nikiforov and Uvarov (1988).

Since there are two scenarios to be considered, continuous and discrete, this section is

split into two subsections.

4.3.1 Orthogonal polynomials of a continuous variable

Let (Z(t), t ≥ 0) be a Lévy process. Suppose that Z(t) is a continuous random variable

with distribution function Ψt(x) for every t > 0, and d
dxΨt(x) = ρ(t, x).

Let us now consider differential equation of hypergeometric type with parameter t > 0:

s(t, x)y′′(t, x) + v(t, x)y′(t, x) + λ(t)y(t, x) = 0. (4.3.5)

where s(t, x) and v(t, x) are polynomials in x of degree at most 2 and 1 respectively,

while λ(t) is independent of x. We shall refer to the solutions of (4.3.5) as functions

of hypergeometric type. Note that in the equation (4.3.5), and also in the sequel, all

derivatives are conducted with respect to x, not to t.

Lemma 4.3.1. All derivatives of the solutions of (4.3.5) are still of hypergeometric type;

meanwhile, any function of hypergeometric type is a derivative of some function of hyper-

geometric type with λ(t) 6= 0 in the differential equation.
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Proof. Differentiating (4.3.5) and denoting z1(t, x) = y′(t, x) entail that

s(t, x)z′′1 (t, x) + v1(t, x)z′1(t, x) + η1(t)z1(t, x) = 0 (4.3.6)

where v1(t, x) = v(t, x) + s′(t, x) and η1(t) = λ(t) + v′(t, x).

Since v1(t, x) is a polynomial in x of degree at most 1 and η1 is independent of x,

equation (4.3.6) is of hypergeometric type.

Now let z1(t, x) be a solution of (4.3.6) with λ(t) = η1(t) − v′1(t, x) + s′′(t, x) 6= 0.

Construct a function y(t, x) = − 1
λ(t)(s(t, x)z′1(t, x) + v(t, x)z1(t, x)). Then

λ(t)y′(t, x) =− (s(t, x)z′1(t, x) + v(t, x)z1(t, x))′

=− s(t, x)z′′1 (t, x)− s′(t, x)z′1(t, x)− v(t, x)z′1(t, x)− v′(t, x)z1(t, x)

=λ(t)z1(t, x),

by virtue of (4.3.6). Hence, y′(t, x) = z1(t, x). The construction of y(t, x) therefore implies

that y(t, x) is a solution of equation (4.3.5).

It follows from induction that zi(t, x) = y(i)(t, x) is a solution of

s(t, x)z′′i (t, x) + vi(t, x)z′i(t, x) + ηi(t)zi(t, x) = 0 (4.3.7)

where vi(t, x) = v(t, x) + is′(t, x) and ηi(t) = λ(t) + iv′(t, x) + i(i−1)
2 s′′(t, x).

Moreover, every solution of (4.3.7) for ηk 6= 0 (k = 0, 1, · · · , i− 1) can be represented

as zi(t, x) = y(i)(t, x), where y(t, x) is a solution of (4.3.5).

Observe that Lemma 4.3.1 provides with us a possibility to find out a family of par-

ticular solutions of (4.3.5) according to a given λ(t). Indeed, if ηi(t) = λ(t) + iv′(t, x) +
i(i−1)

2 s′′(t, x) = 0, it is evident that equation (4.3.7) has a solution zi(t, x) = zi(t) inde-

pendent of x. Since zi(t) = y(i)(t, x), we assert that when λ(t) ≡ λi(t) = −iv′(t, x) −
i(i−1)

2 s′′(t, x), y(t, x) = yi(t, x), as a solution of (4.3.5), is a polynomial in x of degree

exactly i.

In order to find out the explicit expression of yi(t, x), where i is any fixed positive

integer, noting that (4.3.7) is valid for k = 0, 1, · · · , i (that is, i can be substituted by any

k), we multiply equations (4.3.5) and (4.3.7) by appropriate functions ρ(t, x) and ρk(t, x)

such that they can be written in self-adjoint form

(s(t, x)ρ(t, x)y′(t, x))′ + λ(t)ρ(t, x)y(t, x) = 0 (4.3.8a)
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(s(t, x)ρk(t, x)z′k(t, x))′ + ηk(t)ρk(t, x)zk(t, x) = 0 (4.3.8b)

where ρ(t, x) and ρk(t, x) satisfy that

(s(t, x)ρ(t, x))′ = v(t, x)ρ(t, x) (4.3.9a)

(s(t, x)ρk(t, x))′ = vk(t, x)ρk(t, x) (4.3.9b)

It follows from (4.3.9) that

(s(t, x)ρk(t, x))′

ρk(t, x)
= vk(t, x) = v(t, x) + ks′(t, x) =

(s(t, x)ρ(t, x))′

ρ(t, x)
+ ks′(t, x)

which entails that
ρ′k(t, x)

ρk(t, x)
=
ρ′(t, x)

ρ(t, x)
+ k

s′(t, x)

s(t, x)
.

Whence we have

ρk(t, x) = sk(t, x)ρ(t, x), k = 0, 1, · · · (4.3.10)

where ρ0(t, x) = ρ(t, x) by definition.

Observing that s(t, x)ρk(t, x) = ρk+1(t, x) and z′k(t, x) = zk+1(t, x), it follows from

(4.3.8b) that

ρk(t, x)zk(t, x) = − 1

ηk
(s(t, x)ρk(t, x)z′k(t, x))′ = − 1

ηk
(ρk+1(t, x)zk+1(t, x))′. (4.3.11)

Hence, when k < i we obtain successively

ρk(t, x)zk(t, x) =− 1

ηk
(ρk+1(t, x)zk+1(t, x))′

=
(−1)2

ηkηk+1
(ρk+2(t, x)zk+2(t, x))′′

= · · · = (−1)i−k
1

ηk · · · ηi−1
(ρi(t, x)zi(t, x))(i−k)

=
Ak
Ai

(ρi(t, x)zi(t, x))(i−k)

where we denote

Ai = (−1)i
i−1∏
j=0

ηj , A0 = 1. (4.3.12)

By virtue of that yi(t, x) is a polynomial of degree i and zk = y(k), zi = y(i) = const.,

we finally have

y
(k)
i (t, x) =

AkiBi
ρk(t, x)

[ρi(t, x)](i−k) (4.3.13)
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where Aki := Ak(λ)|λ=λi and Bi = 1
Aii
y

(i)
i (t, x).

Hence, in particular, when k = 0, we have an explicit representation of yi(t, x) of

hypergeometric type

yi(t, x) =
Bi

ρ(t, x)

di

dxi
[si(t, x)ρ(t, x)]. (4.3.14)

We call (4.3.14) the Rodrigues formula, since it was established in 1814 by B. O. Ro-

drigues for special polynomials of hypergeometric type, namely the Legendre polynomials,

for which s(x) = 1− x2, ρ(x) = 1.

Notice that for many Lévy processes (Z(t), t ≥ 0), s′′(t, x) = 0 (Brownian motion

with s(x) = 1, Gamma process and Poisson process with s(x) = x). See Appendix B of

Schoutens (2000). In this case Aii and Bi reduce to

Aii = (v′(t, x))ii!, Bi =
1

(v′(t, x))ii!
y

(i)
i (t, x).

Similar to the theorem of Nikiforov and Uvarov (1988, p.29), we have the following

lemma.

Lemma 4.3.2. Suppose that polynomials yi(t, x) in x are the solutions of equation of

hypergeometric type

s(t, x)y′′(t, x) + v(t, x)y′(t, x) + λi(t)y(t, x) = 0 (4.3.15)

where λi(t) = −iv′(t, x) − i(i−1)
2 s′′(t, x). In addition, suppose a density function ρ(t, x)

satisfies that (s(t, x)ρ(t, x))′ = v(t, x)ρ(t, x) and the so-called boundary condition for any

t > 0

s(t, x)ρ(t, x)xk|x=a,b = 0, k = 0, 1, · · · (4.3.16)

where a and b are the boundary points of the support of ρ(t, x) relative to x. Then the

yi(t, x) are orthogonal on (a, b) with respect to ρ(t, x).

The orthogonal polynomial system {yi(t, x)} with ρ(t, x) satisfying conditions in Lemma

4.3.2 is called classic orthogonal polynomial system of continuous variable. It is usually

considered the auxiliary conditions ρ(t, x) > 0 and s(t, x) > 0 on (a, b) for any t > 0.

Proof. Observe that ym(t, x) and yi(t, x) satisfy the following differential equations in

self-adjoint form respectively

(s(t, x)ρ(t, x)y′i(t, x))′ + λi(t)ρ(t, x)yi(t, x) = 0, (4.3.17a)
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(s(t, x)ρ(t, x)y′m(t, x))′ + λm(t)ρ(t, x)ym(t, x) = 0. (4.3.17b)

Operation (4.3.17b)×yi–(4.3.17a)×ym yields

(λm(t)− λi(t))ρ(t, x)ym(t, x)yi(t, x)

=(s(t, x)ρ(t, x)y′i(t, x))′ym(t, x)− (s(t, x)ρ(t, x)y′m(t, x))′yi(t, x).

Integration by parts gives

(λm(t)− λi(t))
∫ b

a
ρ(t, x)ym(t, x)yi(t, x)dx

=s(t, x)ρ(t, x)y′i(t, x)ym(t, x)|ba − s(t, x)ρ(t, x)y′m(t, x)yi(t, x)|ba = 0

due to the boundary condition (4.3.16). Hence, if λm(t) 6= λi(t), then yi(t, x) are of

orthogonality with weight ρ(t, x).

Note that (1) Interval (a, b) is infinite in this study. (2) λi 6= λm ⇔ m 6= i. In fact,

λi(t)−λm(t) = (m− i)[v′(t, x)+ 1
2(m+ i−1)s′′(t, x)], but v′(t, x)+ 1

2(m+ i−1)s′′(t, x) = 0

implies both v′(t, x) = 0 and s′′(t, x) = 0. Nonetheless, vanishes of the two simultaneously

will not result in a density ρ(t, x) which satisfies boundary conditions.

Example 4.1

We are going to find out the differential equation of hypergeometric type for orthogonal

polynomials with weight ρ(t, x) = 1√
2πt
e−

x2

2t .

Starting from (s(t, x)ρ(t, x))′ = v(t, x)ρ(t, x), we have s′ − sxt = v. Noting that s is

a polynomial at most of second order while v is a polynomial at most of first order, in

order to meet the equation, we must have s = g(t), hence v = −g(t)xt . Consequently, λi =

ig(t)1
t . Therefore, the orthogonal polynomials satisfy the following differential equation of

hypergeometric type

ty′′(t, x)− xy′(t, x) + iy(t, x) = 0. (4.3.18)

It is easy to verify that y0 = 1, y1 = x√
t
, y2 = 1√

2

(
x2

t − 1
)

, and y3 = 1√
6

(
x3√
t
3 − 3 x√

t

)
satisfy the equation (4.3.18).

Example 4.2

In this example, we are about to find out the differential equation of hypergeometric

type of orthogonal polynomials with respect to ρ(t, x) = 1
Γ(1+αt)x

αte−x, which corresponds

to a Gamma process Z(t) with α > −1.
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It follows from (s(t, x)ρ(t, x))′ = ρ(t, x)v(t, x) that s′(t, x)x + αts(t, x) − xs(t, x) =

v(t, x)x. Palpably, s(t, x) is at most a polynomial in x of one degree to satisfy this equation

since v(t, x) is a polynomial of degree at most 1.

Suppose that s(t, x) = g(t)x+ h(t) and v(t, x) = g1(t)x+ h1(t). Substituting into the

above equation yields

g(t)x+ αtg(t)x+ αth(t)− g(t)x2 − h(t)x = g1(t)x2 + h1(t)x.

Identifying the coefficients gives that h(t) = 0, g1(t) = −g(t) and h1(t) = (αt+ 1)g(t).

Therefore, s(t, x) = g(t)x, v(t, x) = (αt+1−x)g(t) and λi = ig(t). Whence, the differential

equation is

xy′′(t, x) + (αt+ 1− x)y′(t, x) + iy(t, x) = 0. (4.3.19)

Lemma 4.3.3. For the classical orthogonal polynomial yi(t, x) of hypergeometric type with

weight ρ(t, x)

s(t, x)y′′(t, x) + v(t, x)y′(t, x) + λi(t)y(t, x) = 0, (4.3.20)

where λi(t) = −iv′(t, x) − 1
2 i(i − 1)s′′(t, x), the derivatives y

(k)
i (t, x) are orthogonal with

respect to ρk(t, x) = sk(t, x)ρ(t, x) on (a, b).

Proof. According to Lemma 4.3.1, because yi(t, x) satisfies equation (4.3.20), y
(k)
i (t, x) is

a solution of the following differential equation

s(t, x)[y
(k)
i (t, x)]′′ + vk(t, x)[y

(k)
i (t, x)]′ + ηiny

(k)
i (t, x) = 0, (4.3.21)

where vk(t, x) = v(t, x) + ks′(t, x) and ηki(t) = λi(t) + kv′(t, x) + 1
2k(k − 1)s′′(t, x).

It is easy to verify that given (s′(t, x)ρ(t, x))′ = v(t, x)ρ(t, x), ρk(t, x) satisfies

(s(t, x)ρk(t, x))′ = vk(t, x)ρk(t, x). (4.3.22)

We therefore have a self-adjoint form of equation (4.3.21)

{s(t, x)ρk(t, x)[y
(k)
i (t, x)]′}′ + ηkiρk(t, x)y

(k)
i (t, x) = 0. (4.3.23)

Suppose, on the other hand, that y
(k)
m (t, x) is the k-th derivative of ym(t, x) of hy-

pergeometric type corresponding to λm, then we also have a similar equation to (4.3.23).

Aligning them together gives

{s(t, x)ρk(t, x)[y
(k)
i (t, x)]′}′ + ηkiρk(t, x)y

(k)
i (t, x) = 0, (4.3.24a)
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{s(t, x)ρk(t, x)[y(k)
m (t, x)]′}′ + ηkmρk(t, x)y(k)

m (t, x) = 0. (4.3.24b)

A similar derivation as in Lemma 4.3.2 yields

(ηkm − ηki)
∫ b

a
ρk(t, x)y(k)

m (t, x)y
(k)
i (t, x)dx

=

∫ b

a
{s(t, x)ρk(t, x)[y

(k)
i (t, x)]′}′y(k)

m (t, x)dx

−
∫ b

a
{s(t, x)ρk(t, x)[y(k)

m (t, x)]′}′y(k)
i (t, x)dx

=s(t, x)ρk(t, x)[y
(k)
i (t, x)]′y(k)

m (t, x)|ba
− s(t, x)ρk(t, x)[y(k)

m (t, x)]′y
(k)
i (t, x)|ba

=0

in virtue of the boundary condition of ρ(t, x).

Therefore, when ηkm 6= ηki, viz., m 6= i, we have
∫ b
a ρk(t, x)y

(k)
m (t, x)y

(k)
i (t, x)dx = 0.

In other words, ∫ b

a
ρk(t, x)y(k)

m (t, x)y
(k)
i (t, x)dx = δmid

2
ki

where d2
ki(t) :=

∫ b
a ρk(t, x)[y

(k)
i (t, x)]2dx.

Let us find out the relationship between the squared norm d2
ki(t) of y

(k)
i (t, x) and the

squared norm d2
i (t) := d2

0i(t) of yi(t, x). Rewrite equation (4.3.24a) as

[ρk+1(t, x)y
(k+1)
i (t, x)]′ + ηkiρk(t, x)y

(k)
i (t, x) = 0. (4.3.25)

Multiplying (4.3.25) by y
(k)
i (t, x) and integrating by parts over (a, b) give

ηkid
2
ki(t) =ηki

∫ b

a
ρk(t, x)[y

(k)
i (t, x)]2dx (4.3.26)

=−
∫ b

a
[ρk+1(t, x)y

(k+1)
i (t, x)]′y

(k)
i (t, x)dx

=− ρk+1(t, x)y
(k+1)
i (t, x)y

(k)
i (t, x)|ba +

∫ b

a
ρk+1(t, x)[y

(k+1)
i (t, x)]2dx

=d2
k+1,i(t). (4.3.27)

Whence, by induction, we obtain

d2
mi(t) = d2

i (t)

m−1∏
k=0

ηki(t). (4.3.28)

where η0i(t) = λi(t).
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4.3.2 Orthogonal polynomials of a discrete variable

First, we study the solutions of difference equation of hypergeometric type with parameter

t > 0. Define difference operation 4f(x) = f(x+ 1)− f(x), ∇f(x) = f(x)− f(x− 1). In

what follows, the following identities are frequently utilised
4f(x) =∇f(x+ 1),

4∇f(x) =∇4f(x) = f(x+ 1)− 2f(x) + f(x− 1)

4[f(x)g(x)] =f(x)4g(x) + g(x+ 1)4f(x)

(4.3.29)

Note that in the sequel all difference operations are applied with respect to x only.

The difference equation of hypergeometric type takes the form

s(t, x)4∇y(t, x) + v(t, x)4y(t, x) + λ(t)y(t, x) = 0 (4.3.30)

where s(t, x) and v(t, x) are polynomials in x at most second and first degree respectively,

and λ is a constant relative to t.

Lemma 4.3.4. If y(t, x) is a solution to (4.3.30), then z1(t, x) = 4y(t, x) is also a solution

of some difference equation of hypergeometric type. If λ(t) 6= 0, the converse is also true.

Proof. Applying 4 on (4.3.30) yields

4[s(t, x)∇z1(t, x)] +4[v(t, x)z1(t, x)] + λ(t)z1(t, x) = 0 (4.3.31)

Moreover, by (4.3.29),

4[s(t, x)∇z1(t, x)] =s(t, x)4∇z1(t, x) +4s(t, x)∇z1(t, x+ 1)

=s(t, x)4∇z1(t, x) +4s(t, x)4z1(t, x),

4[v(t, x)z1(t, x)] =z1(t, x)4v(t, x) + v(t, x+ 1)4z1(t, x).

It thus follows that

s(t, x)4∇z1(t, x) + v1(t, x)4z1(t, x) + η1(t)z1(t, x) = 0, (4.3.32)

where v1(t, x) = v(t, x+ 1) +4s(t, x) and η1(t) = λ(t) +4v(t, x).

Palpably, v1(t, x) is a polynomial in x of degree at most 1 and η1(t) is independent of

x. Therefore, (4.3.32) is of the same form as (4.3.30).
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If λ(t) 6= 0 (which can be represented by η1(t), v1(t, x) and s(t, x)), for each solution

z1(t, x) of (4.3.32), construct

y(t, x) = − 1

λ(t)
[s(t, x)∇z1(t, x) + v(t, x)z1(t, x)].

Then, it is easy to verify that 4y(t, x) = z1(t, x) and y(t, x) satisfies equation (4.3.30).

In fact, since (4.3.32) is equivalent to (4.3.31), −λ(t)4y(t, x) = 4[s(t, x)∇z1(t, x) +

v(t, x)z1(t, x)] = −λ(t)z1(t, x), hence, 4y(t, x) = z1(t, x). Moreover, s(t, x)4∇y(t, x) +

v(t, x)4y(t, x)+λ(t)y(t, x) = s(t, x)∇z1(t, x)+v(t, x)z1(t, x)+λ(t)y(t, x) = −λ(t)y(t, x)+

λ(t)y(t, x) = 0 by the definition of y(t, x). The proof is finished.

It follows from induction that zi(t, x) = 4iy(t, x) satisfies a difference equation of

hypergeometric type:

s(t, x)4∇zi(t, x) + vi(t, x)4zi(t, x) + ηi(t)zi(t, x) = 0, (4.3.33)

where

vi(t, x) =vi−1(t, x+ 1) +4s(t, x), v0(t, x) =v(t, x) (4.3.34a)

ηi(t) =ηi−1(t) +4vi−1(t, x), η0(t) =λ(t). (4.3.34b)

The converse is also correct, viz., every solution zi(t, x) of (4.3.33) with ηk 6= 0 (k =

0, 1, · · · , i−1) can be rephrased as zi(t, x) = 4iy(t, x) where y(t, x) is a solution of (4.3.30).

Since the first part of (4.3.34a) may be rewritten as

vi(t, x) + s(t, x) = vi−1(t, x+ 1) + s(t, x+ 1), (4.3.35)

it is clear that vi(t, x) = v(t, x+ i) + s(t, x+ i)− s(t, x).

Observe that 4vi(t, x) and 42s(t, x) are independent of x. Thus, it follows from once

again the first part of (4.3.34a) that 4vi(t, x) = 4vi−1(t, x)+42s(t, x) = · · · = 4v(t, x)+

i42s(t, x). Whence, the first part of (4.3.34b) reads ηi(t) = ηi−1(t) + 4vi−1(t, x) =

ηi−1(t) +4v(t, x) + (i− 1)42s(t, x), which gives

ηi(t) =η0(t) +

i∑
k=1

[ηk(t)− ηk−1(t)]

=λ(t) +

i∑
k=1

[4v(t, x) + (k − 1)42s(t, x)]

=λ(t) + i4v(t, x) +
1

2
i(i− 1)42s(t, x)

=λ(t) + iv′(t, x) +
1

2
i(i− 1)s′′(t, x).

(4.3.36)
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Note that apparently if ηi(t) = 0 in equation (4.3.33), then zi(t, x)=const. is a solution

of equation (4.3.33). Note also that zi(t, x) = 4iy(t, x). That means that when λ(t) =

λi(t) = −iv′(t, x) − 1
2 i(i − 1)s′′(t, x), equation (4.3.30) has a solution y(t, x) = yi(t, x)

which is a polynomial in x of degree exactly i provided that ηk 6= 0 for k = 0, 1, · · · , i− 1.

Indeed, the equation

s(t, x)4∇zk(t, x) + vk(t, x)4zk(t, x) + ηk(t)zk(t, x) = 0

can be rephrased as

zk(t, x) = − 1

ηk
[s(t, x)∇zk+1(t, x) + vk(t, x)zk+1(t, x)]

which clearly implies that if zk+1(t, x) is a polynomial in x then zk(t, x) is a polynomial

in x as well when ηk 6= 0.

In order to obtain explicit solution yi(t, x), exploiting functions ρ(t, x) and ρk(t, x)

satisfying

4(s(t, x)ρ(t, x)) = v(t, x)ρ(t, x), (4.3.37)

4(s(t, x)ρk(t, x)) = vk(t, x)ρk(t, x), (4.3.38)

the equations (4.3.30) and (4.3.33) are written in a self-adjoint form

4(s(t, x)ρ(t, x)∇y(t, x)) + λ(t)ρ(t, x)y(t, x) = 0, (4.3.39)

4(s(t, x)ρk(t, x)∇zk(t, x)) + ηk(t)ρk(t, x)zk(t, x) = 0. (4.3.40)

Let us find out ρk(t, x). It follows from (4.3.38) that

s(t, x+ 1)ρk(t, x+ 1)

ρk(t, x)
= vk(t, x) + s(t, x). (4.3.41)

By virtue of (4.3.35), we have

s(t, x+ 1)ρk(t, x+ 1)

ρk(t, x)
=
s(t, x+ 2)ρk−1(t, x+ 2)

ρk−1(t, x+ 1)
, (4.3.42)

which is equivalent to

ρk(t, x+ 1)

s(t, x+ 2)ρk−1(t, x+ 2)
=

ρk(t, x)

s(t, x+ 1)ρk−1(t, x+ 1)
:= ck(t, x)
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where ck(t, x) is any periodic function in x with period 1. Since we only need to find

out a particular ρk(t, x) in (4.3.38), we may take ck(t, x) = 1. Thus, ρk(t, x) = s(t, x +

1)ρk−1(t, x+ 1), which entails

ρk(t, x) = ρ(t, x+ k)
k∏
j=1

s(t, x+ j). (4.3.43)

With the help of (4.3.43), equation (4.3.40) is rephrased as

ρk(t, x)zk(t, x) =− 1

ηk(t)
4(s(t, x)ρk(t, x)∇zk(t, x))

=− 1

ηk(t)
∇(s(t, x+ 1)ρk(t, x+ 1)4zk(t, x))

=− 1

ηk(t)
∇(ρk+1(t, x)zk+1(t, x)).

For k < i, we obtain successively

ρk(t, x)zk(t, x) =− 1

ηk(t)
∇(ρk+1(t, x)zk+1(t, x))

=
(−1)2

ηk(t)ηk+1(t)
∇2(ρk+2(t, x)zk+2(t, x))

= · · ·

=
Ak
Ai
∇i−k(ρi(t, x)zi(t, x)),

(4.3.44)

where

Ai = (−1)i
i−1∏
j=0

ηj(t), A0 = 1. (4.3.45)

Noting that zi(t, x) = 4iyi(t, x)=const. and denoting zmi(t, x) = 4myi(t, x), we have

zmi(t, x) = 4myi(t, x) =
AmiBi
ρm(t, x)

∇i−m[ρi(t, x)], (4.3.46)

where

Ami = Am(λ)|λ=λi =
i!

(i−m)!

m−1∏
k=0

(
v′(t, x) +

k + i− 1

2
s′′(t, x)

)
,

A0i = 1

Bi =
1

Aii
4iyi(t, x) =

1

Aii
y

(i)
i (t, x).

(4.3.47)

142



Particularly, an explicit expression, Rodrigues formula, of yi(x, t) is

yi(t, x) =
Bi

ρ(t, x)
∇i[ρi(t, x)]. (4.3.48)

Apparently, (4.3.48) is equivalent to

yi(t, x) =
Bi

ρ(t, x)
4i[ρi(t, x− i)] =

Bi
ρ(t, x)

4i

[
ρ(t, x)

i−1∏
k=0

s(t, x− k)

]
. (4.3.49)

Lemma 4.3.5. Given that ρ(t, x) > 0 satisfies 4(s(t, x)ρ(t, x)) = v(t, x)ρ(t, x) and the

boundary conditions for any t > 0,

s(t, x)ρ(t, x)xk|x=a,b = 0, k = 0, 1, · · · , (4.3.50)

where a and b are left and right endpoints of the support of ρ(t, x) relative to x, the

polynomial solutions yi(t, x) of the difference equation (4.3.30) are orthogonal on [a, b− 1]

with weight ρ(t, x)
b−1∑
xj=a

ym(t, xj)yi(t, xj)ρ(t, xj) = δmid
2
i (t). (4.3.51)

Similarly, 4kyi(t, x) are orthogonal with respect to ρk(t, x):

b−k∑
xj=a

4kym(t, xj)4kyj(t, xj)ρk(t, xj) = δmid
2
ki(t). (4.3.52)

The orthogonal polynomial system {yi(t, x)} with ρ(t, x) satisfying conditions in Lemma

4.3.5 is called classic orthogonal polynomial system of discrete variable.

Proof. The equations for yi(t, x) and ym(t, x) in self-adjoint form are

4(s(t, x)ρ(t, x)∇yi(t, x)) + λi(t)ρ(t, x)yi(t, x) = 0 (4.3.53)

4(s(t, x)ρ(t, x)∇ym(t, x)) + λm(t)ρ(t, x)ym(t, x) = 0. (4.3.54)

Multiply (4.3.53) by ym(t, x) and (4.3.54) by yi(t, x), subtract the second from the

first. We have

(λm(t)− λi(t))ρ(t, x)ym(t, x)yi(t, x)

=ym(t, x)4(s(t, x)ρ(t, x)∇yi(t, x))− yi(t, x)4(s(t, x)ρ(t, x)∇ym(t, x))

=4(s(t, x)ρ(t, x)ym(t, x)∇yi(t, x))− s(t, x+ 1)ρ(t, x+ 1)∇yi(t, x+ 1)4ym(t, x)
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−4(s(t, x)ρ(t, x)yi(t, x)∇ym(t, x)) + s(t, x+ 1)ρ(t, x+ 1)∇ym(t, x+ 1)4yi(t, x)

=4[s(t, x)ρ(t, x)(ym(t, x)∇yi(t, x)− yi(t, x)∇ym(t, x))],

on account of (4.3.29).

If we put x = xj and sum them over j

(λm(t)− λi(t))
∑
j

ym(t, xj)yi(t, xj)ρ(t, xj)

=s(t, x)ρ(t, x)(ym(t, x)∇yn(t, x)− yn(t, x)∇ym(t, x))|ba = 0

by virtue of the boundary condition. Hence, (4.3.51) is valid.

We are now in a position to demonstrate (4.3.52). We use induction. Notice that

4yi(t, x) is a solution of difference equation which can be written in self-adjoint form with

ρ1(t, x) = s(t, x + 1)ρ(t, x + 1) = (v(t, x) + s(t, x))ρ(t, x) by the condition that ρ(t, x)

satisfies.

Because ρ(t, x) satisfies the boundary condition (4.3.50), ρ1(t, x) satisfies a similar

condition, viz.,

s(t, x)ρ1(t, x)xk|x=a,b = 0, k = 0, 1, · · ·

Whence the polynomials 4yi(t, x) have orthogonality

b−2∑
xj=a

4ym(t, xj)4yi(t, xj)ρ1(t, xj) = δmid
2
1i(t).

Palpably, we have the relationship of orthogonality for 4kyi(t, x),

b−k−1∑
xj=a

4kym(t, xj)4kyi(t, xj)ρk(t, xj) = δmid
2
ki(t).

Example 4.3

Let Z(t) be a Poisson process with intensity µ. Then, ρ(t, x) = e−µt (µt)x

x! , x = 0, 1, 2, · · · .
In this example, we are to find out the difference equation of hypergeometric type that

polynomials orthogonal with respect to ρ(t, x) satisfy.

From the condition 4(s(t, x)ρ(t, x)) = v(t, x)ρ(t, x), it follows that s(t, x + 1)ρ(t, x +

1)− s(t, x)ρ(t, x) = v(t, x)ρ(t, x), which is

s(t, x+ 1)µt = [s(t, x) + v(t, x)](x+ 1). (4.3.55)

144



Obviously, s(t, x) could not take a quadratic form. Suppose therefore that s(t, x) =

g(t)x+h(t) and v(t, x) = g1(t)x+h1(t). Plugging these representations into (4.3.55) yields

µtg(t)x+ [g(t) + h(t)]µt = [g(t) + g1(t)]x2 + [h(t) + h1(t) + g(t) + g1(t)]x+ h(t) + h1(t).

Equating the coefficients of powers of x, we have

g(t) + g1(t) = 0,

h(t) + h1(t) + g(t) + g1(t) = µtg(t),

µt[g(t) + h(t)] = h(t) + h1(t).

Thus, g1(t) = −g(t), h(t) = 0 and h1(t) = µtg(t). Hence, λ = λi(t) = −nv′(t, x) =

ig(t). Therefore, the difference equation of hypergeometric type is

x4∇y(t, x) + (µt− x)4y(t, x) + iy(t, x) = 0.

In order to obtain the squared norm d2
i (t), we first establish the connection between

d2
ki(t) and d2

k+1,i(t) where

d2
ki(t) =

b−k−1∑
xj=a

z2
ki(t, xj)ρk(t, xj), d2

0i(t) = d2
i (t), zki(t, x) = 4kyi(t, x).

The self-adjoint equation for zki(t, x) is

4(s(t, x)ρk(t, x)∇zki(t, x)) + ηki(t)ρk(t, x)zki(t, x) = 0,

where ηki(t) = λi(t)− λk(t).
Multiply by zki(t, x), sum up over the values x = xj for which a ≤ xj ≤ b− k − 1:∑

j

zki(t, xj)4(s(t, xj)ρk(t, xj)∇zki(t, xj)) + ηki(t)d
2
ki(t) = 0

Note that 4zki(t, x) = zk+1,i(t, x), s(t, x+ 1)ρk(t, x+ 1) = ρk+1(t, x). Using difference

identity for product in (4.3.29) gives∑
j

zki(t, xj)4(s(t, xj)ρk(t, xj)∇zki(t, xj))

=
∑
j

[4(s(t, xj)ρk(t, xj)zki(t, xj)∇zki(t, xj))
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− s(t, xj + 1)ρk(t, xj + 1)∇zki(t, xj + 1)4zki(t, xj)]

=
∑
j

[
4(s(t, xj)ρk(t, xj)zki(t, xj)∇zki(t, xj))− ρk+1(t, xj)z

2
k+1,i(t, xj)

]
=s(t, x)ρk(t, x)zki(t, x)∇zki(t, x)|b−ka − d2

k+1,i(t)

=− d2
k+1,i(t).

We thus have

d2
ki(t) =

1

ηki
d2
k+1,i(t). (4.3.56)

And iterating the formula gives

d2
i (t) =d2

0i(t) =
1

η0i
d2

1,i(t) =
1

η0iη1i
d2

2,i(t) = · · ·

=
1∏i−1

k=0 ηki
d2
ii(t) =

1∏i−1
k=0 ηki

z2
ii(x, t)Si(t)

=(−1)iAiiB
2
i Si(t) (4.3.57)

where Si(t) =
∑b−i−1

xj=a
ρi(xj , t).

4.3.3 Three important remarks

Remark 4.3.2. The interval and the weight of orthogonality determine the polynomial

uniquely, up to a constant multiple. See Nikiforov and Uvarov (1988, p.34). We therefore

have qi(t, x) = ai(t)yi(t, x). Palpably, ai(t) can be determined by orthogonality:∫
I
q2
i (t, x)dΨt(x) = a2

i (t)

∫
I
y2
i (t, x)dΨt(x) ⇒ d̃2

i (t) = a2
i (t)d

2
i (t),

where d̃2
i (t) and d2

i (t) are squared norms of qi(t, x) and yi(t, x) respectively. Hence, ai(t) =

d̃i(t)/di(t) and

qi(t, x) =
d̃i(t)

di(t)
yi(t, x). (4.3.58)

Remark 4.3.3. It follows from (4.3.26) and (4.3.56) that in both continuous and discrete

situations, ηki > 0 for all i > 0 and k = 0, 1, · · · , i − 1. Observe that η0i = λi =

−iv′(t, x)− 1
2 i(i− 1)s′′(t, x) > 0 entails that v′(t, x) + 1

2(i− 1)s′′(t, x) < 0 for all i > 0.

In what follows we discuss the possible signs of v′(t, x) and s′′(t, x). (1) s′′(t, x) > 0.

No matter what the sign of v′(t, x) is, because of the arbitrariness of i, λi < 0 for i being

large. (2) v′(t, x) ≥ 0. It follows that λ1 = −v′(t, x) ≤ 0. Thus, the above two cases are

impossible.
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The possible cases are: (3) v′(t, x) < 0 and s′′(t, x) = 0. Example 4.1, 4.2 and 4.3 all

belong to this situation. (4) v′(t, x) < 0 and s′′(t, x) < 0. This situation corresponds to

Legendre polynomials, where, after variable changing, s(t, x) becomes a2 − x2 implying

that the support of ρ(t, x) is [−a, a] with fixed a. However, this scenario is beyond the

scope of this paper since we are interested in the scenario that Z(t) assumes values on

R, R+, or N. Therefore, in the sequel, our development will rely on the case 3, viz.,

v′(t, x) < 0 and s′′(t, x) = 0.

Remark 4.3.4. Sometimes we may need the asymptotic property of orthogonal polyno-

mials. In the sequel, the following inequalities for Hermite polynomials and Laguerre

polynomials are useful which can be found on Nikiforov and Uvarov (1988, p.54),

1

di
|Hi(x)| ≤ C1i

− 1
4 and

1

di
|L(α)
i (x)| ≤ C2i

− 1
4 ,

where di are the norm of Hermite and Laguerre polynomials in different inequalities re-

spectively; C1 and C2 only depend on fixed x.

In view of the relation Ci(µ, x) = Cx(µ, i) = x!L
(i−x)
x (µ), the above inequality is true

for Charlier polynomials as well. Thus, we may assert that within the ambit of our study,

all classical orthonormal polynomials Qi(t, x) satisfy that |Qi(t, x)| ≤ Ci−
1
4 for fixed t and

x where C is independent of i.

4.4 Orthogonal expansion of homogeneous functionals of

the Lévy process

Let (Z(t), t ≥ 0) be a Lévy process with distribution function Ψt(x), associated with a

probability space (Ω,F ,P). Suppose that the density or probability distribution ρ(t, x)

of Z(t) satisfies the boundary condition in the preceding section, hence, there exists a

polynomial system yi(t, x) orthogonal with respect to ρ(t, x). Let

Qi(t, x) =
1

di(t)
yi(t, x) (4.4.1)

be the orthonormal polynomial system with the measure of orthogonality Ψt(x) where

d2
i (t) is the squared norm of yi(t, x). In such a situation, we shall say that the Lévy

process Z(t) admits a classical orthonormal polynomial system Qi(t, x).
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Let I be the support of the density or probability distribution ρ(t, x) of Z(t). Consider

a function space for t > 0

L2(I, dΨt(x)) = {f(x) :

∫
I
f2(x)dΨt(x) <∞}. (4.4.2)

According to Billingsley (1995, p.249), L2(I, dΨt(x)) is a Hilbert space. Given that

Ψt(x) satisfies a sufficient condition, viz., there exists a constant c > 0, such that∫
ec|x|dΨt(x) <∞, (4.4.3)

the system Qi(t, x) is not only orthonormal but also complete in L2(I, dΨt(x)). See Niki-

forov and Uvarov (1988, p.57). Indeed, there are many Lévy processes satisfying this

sufficient condition, for example, Laguerre polynomial system associated to Gamma pro-

cess satisfies (4.4.3) with c < 1, and both Hermite polynomial system with the density of

Brownian motion as its weight and Charlier polynomial system orthogonal to the proba-

bility distribution function of the Poisson process satisfy it with any c > 0.

Additionally, in the Hilbert space L2(I, dΨt(x)), the scalar product and the induced

norm are defined as follows

(f, g) =

∫
f(x)g(x)dΨt(x), ‖f‖ =

√
(f, f).

Construct a mapping for f(x) ∈ L2(I, dΨt(x))

T : f 7→ f(Z(t)).

Since E[f2(Z(t))] =
∫
I f

2(x)dΨt(x) <∞, f(Z(t)) is an element of L2(Ω), a collection

of all random variables with finite second moment. Accordingly, the image of T , denoted by

Θ, is a subset of L2(Ω). Hence, all elements in Θ admit the norms and scalar products, as

the elements in L2(Ω), namely, 〈f(Z(t)), g(Z(t))〉Θ = E[f(Z(t))g(Z(t))] and ‖f(Z(t))‖Θ =√
〈f(Z(t)), f(Z(t))〉, the induced norm. The following lemma gives the properties of T

and Θ.

Lemma 4.4.1. The mapping T has the following properties:

(1) T is linear;

(2) T is a one-to-one mapping from L2(I, dΨt(x)) to Θ;
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(3) T is an isomorphism.

Proof. (1) Straightforward verification. (2) For any functions f, g ∈ L2(I, dΨt(x)), we

have,

〈T (f), T (g)〉Θ = 〈f(Z(t)), g(Z(t))〉 = E[f(Z(t))g(Z(t))]

=

∫
I
f(x)g(x)dΨt(x) = (f, g)L2(I,dΨt(x)).

That means the transformation is inner product preserving. Therefore, f 6= g ⇔
T (f) 6= T (g). Thus T is one-one. (3) Since T is linear and ‖T (f)‖ = ‖f‖ for f ∈
L2(I, dΨt(x)), T is isomorphism.

Lemma 4.4.2. Θ is a closed subspace of L2(Ω), hence it is a Hilbert space.

Proof. Apparently, Θ is a linear space due to linearity of T . Because T is one-to-one and

inner product preserving, {ξn} is a Cauchy sequence in Θ if and only if there is a unique

sequence {fn} in L2(I, dΨt(x)) such that T (fn) = ξn, n = 0, 1, 2, . . ., and {fn(x)} is a

Cauchy sequence in L2(I, dΨt(x)). Therefore, due to the completeness of L2(I, dΨt(x)),

Θ is a closed subspace of L2(Ω). Hence it is a Hilbert space.

Lemma 4.4.3. If {pi(x)}∞i=0 is any orthonormal basis in L2(I, dΨt(x)), then {T (pi)}∞n=0

is an orthonormal basis in Θ. Particularly, {T (Qi(t, x))}∞i=0 = {Qi(t, Z(t))}∞i=0, t > 0, is

an orthonormal basis in Θ.

Proof. By virtue of the properties of T that T is one-to-one, inner product preserving, it

is valid.

The following theorem is a consequence of the above lemmas.

Theorem 4.4.1. Suppose that Lévy process (Z(t), t > 0) admits a classical orthonormal

polynomial system Qi(t, x) with weight ρ(t, x). For any element f(Z(t)) ∈ Θ, it has a

Fourier series expansion

f(Z(t)) =

∞∑
i=0

ci(t, f)Qi(t, Z(t)), (4.4.4)

where ci(t, f) = 〈f(Z(t)), Qi(t, Z(t))〉Θ.

Proof. In view of the facts that Θ is a Hilbert space and {Qi(t, Z(t))} is an orthonormal

basis in Θ, it follows.
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Note that from Parseval equality it follows that ‖f(Z(t))‖2Θ =
∑∞

i=0 c
2
i (t, f) for all

t > 0.

Example 4.4

We are about to show some examples of expansion of Lévy process functionals.

1. f(Z(t)) = a0 + a1Z(t) + · · · + akZ(t)k. Obviously, f(Z(t)) = c0(t)Q0(t, Z(t)) +

c1(t)Q1(t, Z(t)) + · · · + ck(t)Qk(t, Z(t)). The coefficients ci(t) = E[f(Z(t))Qi(t, Z(t))],

i = 0, 1, · · · , k.

We have two particular examples for Z(t) = B(t) and Z(t) = N(t):

B5(t) =15t5/2h1(t, B(t)) + 10
√

6t5/2h3(t, B(t)) + 2
√

30t5/2h5(t, B(t)),

N2(t) =µt(1 + µt)C0(µt;N(t))−
√
µt(2µt+ 1)C1(µt;N(t)) +

√
2µtC2(µt;N(t)),

where hi(t, B(t)) = 1√
i!
Hi(B(t)/

√
t) with Hi(·) being Hermite polynomials, µ is the in-

tensity of Poisson process N(t) and Ci(t;N(t)) =
√
µti√
i!
ci(µt;n) with ci(·; ·) being Charlier

polynomials.

2. f(Z(t)) = exp(Z(t)) and g(Z(t)) = exp(−Z(t)). It follows from (4.3.2) that

∞∑
j=0

Qj(t, x)d̃j(t)
zj

j!
= (π(z))t exp(xu(z)),

where d̃j(t) are norm of qj(t, x) in (4.3.2).

Note that π(z) = [φ(−iu(z))]−1 in which φ(θ) = E[eiθZ(1)] and u(z) is the inverse

function of τ(·) determined by (4.3.1) and i is the imaginary unit.

Let u(z) = 1. Then π(z) = [φ(−i)]−1 and therefore

exp(Z(t)) = [φ(−i)]t
∞∑
j=0

Qj(t, Z(t))d̃j(t)
τ(1)j

j!
.

Similarly,

exp(−Z(t)) = [φ(i)]t
∞∑
j=0

d̃j(t)
τ(−1)j

j!
Qj(t, Z(t))

3. f(Z(t)) = cosZ(t) and g(Z(t)) = sinZ(t).

First, as above, we may obtain the expansion of exp(iZ(t)) and exp(−iZ(t)) by letting

u(z) = i and u(z) = −i respectively, where i is the imaginary unit,

exp(iZ(t)) = [φ(1)]t
∞∑
j=0

d̃j(t)
τ(i)j

j!
Qj(t, Z(t)),
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exp(−iZ(t)) = [φ(−1)]t
∞∑
j=0

d̃j(t)
τ(−i)j

j!
Qj(t, Z(t)).

It follows from the formulae eix = cosx+ i sinx and e−ix = cosx− i sinx that

cosZ(t) =
1

2
[exp(iZ(t)) + exp(−iZ(t))] =

∞∑
j=0

bj(t)Qj(t, Z(t)),

sinZ(t) =
1

2i
[exp(iZ(t))− exp(−iZ(t))] =

∞∑
j=0

cj(t)Qj(t, Z(t)),

where

bj(t) =
1

j!
d̃j(t)

1

2

{
τ(i)j [φ(1)]t + τ(−i)j [φ(−1)]t

}
,

cj(t) =
1

j!
d̃j(t)

1

2i

{
τ(i)j [φ(1)]t − τ(−i)j [φ(−1)]t

}
.

It is noteworthy to point out that when Lévy process Z(t) is specified as Brownian

motion, φ(θ) = e−
θ2

2 and τ(s) = s. Hence E(e−iZ(1)) = E(eiZ(1)) = e−
1
2 . In addition,

d̃j(t) =
√
t
j√
j! (see Schoutens, 2000). If we supersede these relations into the expansions

in last example, the basis Qi(t, Z(t)) is substituted by hi(t, B(t)), then the expansions of

the f(Z(t)), eZ(t), e−Z(t), sinZ(t) and cosZ(t) would reduce to the expansions of f(B(t)),

eB(t), e−B(t), sinB(t) and cosB(t) in the examples of Chapter 2. The coincidence in a

sense implies the correctness of the method in Theorem 4.4.1. For the convenience of the

following development, we coin the notations as follows.

Notations: We continuously use the notations in §2, such as, ρ(t, x), ρk(t, x), λn(t),

ηmn(t), dn(t), dmn(t); Meanwhile, as Lemma 4.3.3 (Lemma 4.3.5) indicated, since for

fixed integer r, Qri(t, x) = 1
dri(t)

y
(r)
i (t, x) (or Qri(t, x) = 1

dri(t)
4ryi(t, x) in the discrete

case) also form an orthonormal system, we may in what follows expand the function

f (r)(Z(t)) (or 4rf(Z(t))) in terms of Qri(t, Z(t)). In this case, for the sake of convenience

we use notations ci(t,D
rf) to stand for the corresponding coefficients without specifying

the basis, or the notations allude the basis is Qri(t, Z(t)). In other cases, we would specify

what basis we are using.

Moreover, because v(t, x), as discussed in Remark 4.3.3, is a polynomial in x of degree

exactly 1 and v′(t, x) < 0, it is notationally convenient to signify in the rest of the paper

v(t) := − 1
v′x(t,x) > 0.
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Since there are always two operations of differentiation and difference to be dealt with,

we unify them as D, viz., D stands for either differentiation or difference operation, which

would not be ambiguous in context.

Let k be a truncation parameter for i. The truncation series of (4.4.4) is defined as

fk(Z(t)) =

k∑
i=0

ci(t, f)Qi(t, Z(t)).

Theorem 4.4.2. Let (Z(t), t > 0) be a Lévy process satisfying conditions in Theorem

4.4.1. Suppose further that Dhf(x) ∈ L2(I, ρh(t, x)) for h = 0, 1, · · · , r. Then

‖f(Z(t))− fk(Z(t))‖2Θ ≤
1

kr
R2
k(t,D

rf) (4.4.5)

where R2
k(t,D

rf) = (1 + o(1))[v(t)]r
∑∞

i=k+1 c
2
i (t,D

rf)→ 0 as k →∞ for every t > 0.

Proof. We begin with the calculation of the coefficients ci(t, f). If Z(t) is a continuous

variable with density function ρ(t, x), the polynomials yi(t, x) orthogonal with respect to

ρ(t, x) satisfy the differential equation

s(t, x)y′′i (t, x) + v(t, x)y′i(t, x) + λi(t)yi(t, x) = 0

where s(t, x) > 0, v(t, x) and ρ(t, x) satisfy conditions (4.3.16) and λi(t) = −iv′(t, x).

The self-adjoint form of the equation is

(s(t, x)ρ(t, x)y′i(t, x))′ + λi(t)ρ(t, x)yi(t, x) = 0.

Multiplying by f(x), integrating by part on (a, b), we have

f(x)s(t, x)ρ(t, x)y′i(t, x)|ba −
∫ b

a
s(t, x)ρ(t, x)y′i(t, x)f ′(x)dx

=− λi(t)
∫ b

a
ρ(t, x)yi(t, x)f(x)dx.

(4.4.6)

Let us prove that f(x)s(t, x)ρ(t, x)y′i(t, x)|ba = 0.

Suppose limx→b f(x)s(t, x)ρ(t, x)y′i(t, x) = bi 6= 0. Then, as x→ b,

f(x) ≈ bi
s(t, x)ρ(t, x)y′i(t, x)

⇒ f2(x)ρ(t, x) ∼ b2i
s2(t, x)ρ(t, x)[y′i(t, x)]2

.

Because of boundary condition, f2(x)ρ(t, x) will approach to positive infinity as x→ b,

which leads to the infiniteness of the integral
∫ b
a f

2(x)ρ(t, x)dx.
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The above discussion applies to the situation where a = −∞ as well.

When a is finite, according to Nikiforov and Uvarov (1988, p.21),

s(t, x) ∼ x− a, and ρ(t, x) ∼ (x− a)α, where α > −1.

Hence, when x→ +a,

f(x) ∼ 1

(x− a)1+α
, and f2(x)ρ(t, x) ∼ 1

(x− a)2+α

which implies the infiniteness of
∫ b
a f

2(x)ρ(t, x)dx.

Thus, the relation (4.4.6) reduces to∫ b

a
ρ1(t, x)y′i(t, x)f ′(x)dx = λi(t)

∫ b

a
ρ(t, x)yi(t, x)f(x)dx

which is exactly the following relationship: d1i(t)ci(t, f
′) = λi(t)di(t)ci(t, f), or equiva-

lently

ci(t, f) =
d1i(t)

λi(t)di(t)
ci(t, f

′).

We can iterate the relation until r-th derivative,

ci(t, f) =
dri(t)

di(t)λi(t)η1i(t) · · · ηr−1,i(t)
ci(t, f

(r))

=
√
v(t)

r

√
(i− r)!
i!

ci(t, f
(r))

(4.4.7)

where we have used the relationship (4.3.28) with ηji(t) = λi(t)−λj(t) = −v′(t, x)(i−j) =
1
v(t)(i− j).

If Z(t) is a discrete variable for each t > 0, ρ(t, x) is the probability distribution of Z(t).

The polynomials yi(t, x) orthogonal with respect to ρ(t, x) satisfy the following difference

equation

s(t, x)4∇yi(t, x) + v(t, x)4yi(t, x) + λi(t)yi(t, x) = 0

where s(t, x) > 0, s′′(t, x) = 0 and v′(t, x) < 0. The self-adjoint form of the difference

equation is

4(s(t, x)ρ(t, x)∇yi(t, x)) + λi(t)ρ(t, x)yi(t, x) = 0.

Multiplying by f(x) and summing up over the support of ρ(t, x),∑
m

f(xm)4(s(t, xm)ρ(t, xm)∇yi(t, xm)) = −λi(t)
∑
m

f(xm)ρ(t, xm)yi(t, xm).
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Summation by parts gives

f(x)s(t, x)ρ(t, x)∇yi(t, x)|ba −
∑
m

s(t, xm+1)ρ(t, xm+1)∇yi(t, xm+1)4f(xm)

= −λi(t)
∑
m

f(xm)ρ(t, xm)yi(t, xm).

It is easy to prove that f(x)s(t, x)ρ(t, x)∇yi(t, x)|ba = 0 similar to the continuous case.

Note that ∇yi(t, xm+1) = 4yi(t, xm) and s(t, xm+1)ρ(t, xm+1) = ρ1(t, xm). Therefore,∑
m

ρ1(t, xm)4yi(t, xm)4f(xm) = λi(t)
∑
m

f(xm)ρ(t, xm)yi(t, xm)

which reads ci(t, f) = d1i(t)
λi(t)di(t)

ci(t,4f). We iterate this relationship and obtain again

(4.4.7) with derivative being substituted by difference. Adopting our operator D, we have

ci(t, f) =
√
v(t)

r

√
(i− r)!
i!

ci(t,D
rf). (4.4.8)

Now we are ready to obtain the result. Using (4.4.8),

‖f(Z(t))− fk(Z(t))‖2Θ =
∞∑

i=k+1

c2
i (t, f) =

∞∑
i=k+1

[v(t)]r
(i− r)!
i!

c2
i (t,D

rf)

≤[v(t)]r
(k − r)!
k!

∞∑
i=k+1

c2
i (t,D

rf) =
1

kr
R2
k(t,D

rf),

where R2
k(t,D

rf) = (1 + o(1))[v(t)]r
∑∞

i=k+1 c
2
i (t,D

rf)→ 0 as k →∞ for every t > 0.

4.5 Orthogonal expansion of time-inhomogeneous function-

als of Lévy process

In this section we discuss the expansion of f(t, Z(t)) for t ∈ [0, T ] and t ∈ [0,∞) where

(Z(t), t ≥ 0) is a Lévy process. Let Ψt(x) be the distribution function of Z(t), and ρ(t, x)

be the density or probability distribution function of Z(t) depending on whether Z(t) is

continuous or discrete variable. Let I be the support of ρ(t, x). In addition, µ signifies

Lebesgue measure on line.
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4.5.1 Finite time horizon

Let t ∈ [0, T ]. Consider function space

L2(I × [0, T ], ν) =

{
f(t, x) :

∫
I
f2(t, x)dΨt(x) <∞, for each t ∈ [0, T ],

and

∫ T

0

∫
I
f2(t, x)dν <∞

}
,

where ν is the product measure of probability measure Ψt(x) and Lebesgue measure µ.

For the sake of convenience, we abbreviate the notation of the space defined above

as L2(I × [0, T ]). Space L2(I × [0, T ]) is actually a conventional L2 space. Therefore,

L2(I × [0, T ]) is a Hilbert space with scalar product

(f1(t, x), f2(t, x)) =

∫ T

0

∫
I
f1(t, x)f2(t, x)dΨt(x)dt.

As we know,{Qi(t, x)} defined in last section is an orthonormal basis for L2(I, dΨt(x))

and {ϕjT (t)}, with ϕ0T =
√

1
T and ϕjT =

√
2
T cos jπtT for j ≥ 1, is an orthonormal basis in

L2([0, T ], µ). Whence, according to Problem 12 of Dudley (2003, p173), {Qi(t, x)ϕjT (t)}∞i,j=0

is an orthonormal basis in L2(I × [0, T ]).

Construct a mapping T from L2(I × [0, T ]) to a set of stochastic processes,

T : f(t, x) 7→ f(t, Z(t)), for f(t, x) ∈ L2(I × [0, T ]).

Denote the image of T by Ξ. Evidently, T is a linear mapping, so that Ξ is a linear

space. Define 〈f1(t, Z(t)), f2(t, Z(t))〉Ξ =
∫ T

0 E[f1(t, Z(t))f2(t, Z(t))]dt, an operation on Ξ.

Obviously, 〈·, ·〉Ξ is an inner product on Ξ, which can induce a norm as well. Meanwhile,

it can be shown that T and Ξ enjoy the properties in Lemma 4.4.1–4.4.3, hence Ξ is a

Hilbert space and {Qi(t, Z(t))ϕjT (t)}∞i,j=0 is an orthonormal basis in Ξ. The following

theorem is easily obtained from Hilbert space theory.

Theorem 4.5.1. In Ξ, any element f(t, Z(t)) admits a Fourier series expansion

f(t, Z(t)) =

∞∑
i=0

∞∑
j=0

cijQi(t, Z(t))ϕjT (t), (4.5.1)

where cij = 〈f(t, Z(t)), Qi(t, Z(t))ϕjT (t)〉Ξ.
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Because actually

cij =〈f(t, Z(t)), Qi(t, Z(t))ϕjT (t)〉Ξ =

∫ T

0
E[f(t, Z(t))Qi(t, Z(t))]ϕjT (t)dt

:=

∫ T

0
ci(t, f)ϕjT (t)dt,

where ci(t, f) := E[f(t, Z(t))Qi(t, Z(t))], the expansion (4.5.1) can be regarded as two-step

expansion, that is, expand f(t, Z(t)) first in terms of {Qi(t, Z(t))} obtaining coefficients

ci(t, f) = E[f(t, Z(t))Qi(t, Z(t))], then expand ci(t, f) in terms of {ϕjT (t)} on [0, T ].

Notice that from Parseval equality it follows that

‖f(t, Z(t))‖2Ξ =
∞∑
i=0

∞∑
j=0

c2
ij =

∞∑
i=0

‖ci(t, f)‖2L2[0,T ].

Given a bundle of truncation parameters k for i and pi for j’s, we define the truncation

series of (4.5.1) as follows

fk,p(t, Z(t)) =

k∑
i=0

pi∑
j=0

cijQi(t, Z(t))ϕjT (t). (4.5.2)

Denote pmin = min{p1, · · · , pk} and pmax = max{p1, · · · , pk} throughout the paper.

Theorem 4.5.2. Let (Z(t), t ≥ 0) be a Lévy process which admits a classical orthonormal

polynomial system {Qi(t, x)} defined by (4.4.1). Suppose that functional f(t, Z(t)) ∈ Ξ,

that Dhf(t, x), h = 1, · · · , r, are in the space L2(I, ρh(t, x)) for each t > 0. Moreover,√
v(t)

r
Drf(t, x) ∈ L2(I × [0, T ]). In addition, for each i ≥ 0, ci(t, f) ∈ C3[0, T ] and

‖c′′i (t, f)‖L2[0,T ] is uniformly bounded in i. Then,

‖f(t, Z(t))− fk,p(t, Z(t))‖2Ξ ≤
1

kr
R2
k + C(k, p)

k

p4
min

, (4.5.3)

where R2
k = (1 + o(1))

∑∞
i=k+1

∥∥∥ci (t,√v(t)
r
Drf

)∥∥∥2

L2[0,T ]
→ 0 as k → ∞, C(k, p) =

T 4π−4 max0≤i≤k
∑∞

j=pmin+1 b
2
j (c
′′
i ) in which bj(c

′′
i ) stands for the j-th coefficient in the

expansion of c′′i (t, f).

Remark 4.5.1. Basically, the error of approximation fk,p(t, Z(t)) to f(t, Z(t)) consists of

two types because the expansion is of two-step, that is, the first term in the right hand

side of (4.5.3) is incurred since we abandon the residue in the first step expansion, while

the second term is due to giving up the residues in the second step.
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Because for each i : 0 ≤ i ≤ k,
∑∞

j=pmin+1 b
2
j (c
′′
i ) is an infinitesimal when pmin goes

to infinity, for fixed k, C(k, p) is an infinitesimal as well. However, when both k and

pmin approach infinity, C(k, p) could not be guaranteed to be infinitesimal. One sufficient

condition that C(k, p) is bounded is that the norm ‖c′′i (t, f)‖L2[0,T ] is uniformly bounded

in i for we always have
∑∞

j=pmin+1 b
2
j (c
′′
i ) ≤ ‖c′′i (t, f)‖2L2[0,T ].

Proof. From orthogonality we have

‖f(t, Z(t))− fk,p(t, Z(t))‖2Ξ

=

∥∥∥∥∥∥
k∑
i=0

∞∑
j=pi+1

cijQi(t, Z(t))ϕjT (t) +
∞∑

i=k+1

∞∑
j=0

cijQi(t, Z(t))ϕjT (t)

∥∥∥∥∥∥
2

Ξ

=

k∑
i=0

∞∑
j=pi+1

c2
ij +

∞∑
i=k+1

∞∑
j=0

c2
ij .

Since ci(t, f) ∈ C3[0, T ], the expansion of c′′i (t, f) in terms of ϕjT (t) is convergent

uniformly on [0, T ] (Davis, 1963, p.142). We thus have cij =
(
T
jπ

)2
bj(c

′′
i ) where bj(c

′′
i )

stands for the j-th coefficient in the expansion of c′′(t, f) in terms of ϕjT (t). Then

k∑
i=0

∞∑
j=pi+1

c2
ij =

k∑
i=0

∞∑
j=pi+1

(
T

jπ

)4

b2j (c
′′
i ) ≤

(
T

π

)4 k∑
i=0

1

p4
i

∞∑
j=pi+1

b2j (c
′′
i )

≤T
4

π4

k

p4
min

∞∑
j=pmin+1

b2j (c
′′
i ) ≤ C(k, p)T 4 k

p4
min

,

where C(k, p) = T 4π−4 max0≤i≤k
∑∞

j=pmin+1 b
2
j (c
′′
i ).

On the other hand, invoking (4.4.8), We have

∞∑
i=k+1

∞∑
j=0

c2
ij =

∞∑
i=k+1

‖ci(t, f)‖2L2[0,T ] =
∞∑

i=k+1

(i− r)!
i!

∥∥∥ci (t,√v(t)
r
Drf

)∥∥∥2

≤(k − r)!
k!

∞∑
i=k+1

∥∥∥ci (t,√v(t)
r
Drf

)∥∥∥2

L2[0,T ]
=

1

kr
R2
k.

The proof is completed.

4.5.2 Infinite time horizon

Let t ∈ (0,∞). Consider function space defined by

L2(I × R+, ν) =

{
f(t, x) :

∫
I
f2(t, x)dΨt(x) <∞, for each t ∈ (0,∞),
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and

∫ ∞
0

∫
I
f2(t, x)dν <∞,

}
where ν is the product of probability measure Ψt(x) and Lebesgue measure µ.

We abbreviate the notation of the space as L2(I ×R+) for brevity. Apparently it is a

L2 space so that it is a Hilbert space. The inner product is conventional

(f1(t, x), f2(t, x)) =

∫ ∞
0

∫
I
f1(t, Z(t))f2(t, Z(t))dΨt(x)dt,

and ‖f(t, x)‖ =
√

(f(t, x), f(t, x)) is the induced norm.

Since {Qi(t, x)} and {Lj(t)} (see the definition in Chapter 2) are orthonormal bases

in L2(I, dΨt(x)) and L2(R+, µ) respectively, {Qi(t, x)Lj(t)} is an orthonormal basis in

L2(I × R+) (see Dudley, 2003, Problem 12, p.173).

Similarly, construct a mapping from L2(I × R+) to a set of stochastic process

T : f(t, x) 7→ f(t, Z(t)).

It is easy to show that T is linear, so that the image set, denoted by Λ, is a linear real

vector space. Note that after defining

〈f1(t, Z(t)), f2(t, Z(t))〉Λ =

∫ ∞
0

E[f1(t, Z(t))f2(t, Z(t))]dt,

Λ becomes an inner product space equipped with induced norm. Analogous to the coun-

terpart in the preceding subsection, T and Λ possess the properties in Lemma 4.4.1–4.4.3.

Whence, Λ is a Hilbert space and {Qi(t, Z(t))Lj(t)} is an orthonormal basis in Λ. Con-

sequently, we have the following theorem.

Theorem 4.5.3. In Λ, any element f(t, Z(t)) admits a Fourier series expansion

f(t, Z(t)) =
∞∑
i=0

∞∑
j=0

bijQi(t, Z(t))Lj(t), (4.5.4)

where bij = 〈f(t, Z(t)), Qi(t, Z(t))Lj(t)〉Λ.

Proof. For Λ is a Hilbert space with orthonormal basis {Qi(t, Z(t))Lj(t)}, it follows im-

mediately.

Indeed,

bij =〈f(t, Z(t)), Qi(t, Z(t))Lj(t)〉Λ =

∫ ∞
0

E[f(t, Z(t))Qi(t, Z(t))]Lj(t)dt
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:=

∫ ∞
0

bi(t, f)Lj(t)dt,

where bi(t, f) = E[f(t, Z(t))Qi(t, Z(t))], the expansion (4.5.4) can be regarded as two-step

expansion, that is, expand f(t, Z(t)) first in terms of {Qi(t, Z(t))} obtaining coefficients

bi(t, f) = E[f(t, Z(t))Qi(t, Z(t))], then expand bi(t, f) in terms of {Lj(t)} on (0,∞).

Notice that from Parseval equality it follows that

‖f(t, Z(t))‖2Λ =
∞∑
i=0

∞∑
j=0

b2ij =
∞∑
i=0

‖bi(t, f)‖2L2(R+).

Given a bundle of truncation parameters k for i and pi for j’s, we define the truncation

series of (4.5.4) as follows

fk,p(t, Z(t)) =
k∑
i=0

pi∑
j=0

bijQi(t, Z(t))Lj(t). (4.5.5)

Theorem 4.5.4. Let (Z(t), t ≥ 0) be a Lévy process which admits a classical orthonormal

polynomial system {Qi(t, x)} defined by (4.4.1). Suppose that functional f(t, Z(t)) ∈ Λ,

that Dhf(t, x), h = 1, · · · , r1, are in the space L2(I, ρh(t, x)) for each t > 0. Moreover,√
v(t)

r1
Dr1f(t, x) ∈ L2(I×R+). In addition, for each i ≥ 0, bi(t, f) = E[f(t, Zt)Qi(t, Z(t))]

is differentiable up to r2-th order and bi(t, f) and
√
v(t)

r2 dh

dth
bi(t, f) are all in L2(R+) for

h = 1, · · · , r2. Then,

‖f(t, Z(t))− fk,p(t, Z(t))‖2Λ ≤
1

kr1
R2(k) + C(k, p)

k

pr2min

, (4.5.6)

where R2(k) = (1 + o(1))
∑∞

i=k+1 ‖bi(t,
√
v(t)

r1
Dr1f)‖2L2(R+) → 0, as k → ∞, C(k, p) =

(1 + o(1)) max0≤i≤k
∑∞

j=pmin+1[a
(r1)
j−r1 (̃bi(t))]

2, in which b̃i(t) = tr2/2e−t/2[bi(t, f)et/2](r2)

and a
(r2)
j−r2 (̃bi(t)) are the coefficients of the expansion of b̃i(t) in terms of L

(r2)
j (t). Here

we assume that C(k, p) k
p
r2
min

→ 0.

Remark 4.5.2. Here a similar remark as that to Theorem 4.5.2 on the error of the approx-

imation and on C(k, p) can be addressed.

Proof. It follows from the orthogonality that

‖f(t, Z(t))− fk,p(t, Z(t))‖2Λ

=

∥∥∥∥∥∥
k∑
i=0

∞∑
j=pi+1

bijQi(t, Z(t))Lj(t) +
∞∑

i=k+1

∞∑
j=0

bijQi(t, Z(t))Lj(t)

∥∥∥∥∥∥
2

Λ
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=
k∑
i=0

∞∑
j=pi+1

b2ij +
∞∑

i=k+1

∞∑
j=0

b2ij .

Due to (4.4.8), bi(t, f) =
√
v(t)

r1
√

(i−r1)!
i! bi(t,D

r1f). Accordingly,

∞∑
i=k+1

∞∑
j=0

b2ij =
∞∑

i=k+1

‖bi(t, f)‖2L2(R+) =
∞∑

i=k+1

(i− r1)!

i!
‖bi(t,

√
v(t)

r1
Dr1f)‖2

≤(k + 1− r1)!

(k + 1)!

∞∑
i=k+1

‖bi(t,
√
v(t)

r1
Dr1f)‖2

=(1 + o(1))
1

kr1

∞∑
i=k+1

‖bi(t,
√
v(t)

r1
Dr1f)‖2 =

1

kr1
R2

1(k),

where R2
1(k) = (1 + o(1))

∑∞
i=k+1 ‖bi(t,

√
v(t)

r1
Dr1f)‖2L2(R+).

On the other hand, according to Theorem 2.3.1,

∞∑
j=pi+1

b2ij ≤
(pi + 1− r2)!

(pi + 1)!

∞∑
j=pi+1

[a
(r2)
j−r2 (̃bi(t))]

2

where b̃i(t) = tr2/2e−t/2[bi(t, f)et/2](r2) and a
(r2)
j−r2 (̃bi(t)) are the coefficients of the expansion

of b̃i(t) in terms of L
(r2)
j (t). Thus,

k∑
i=0

∞∑
j=pi+1

b2ij ≤
k∑
i=0

(pi + 1− r2)!

(pi + 1)!

∞∑
j=pi+1

[a
(r2)
j−r2 (̃bi(t))]

2

≤(pmin + 1− r2)!

(pmin + 1)!

k∑
i=0

∞∑
j=pmin+1

[a
(r2)
j−r2 (̃bi(t))]

2 ≤ C(k, p)
k

pr2min

.

where C(k, p) = (1 + o(1)) max0≤i≤k
∑∞

j=pmin+1[a
(r2)
j−r2 (̃bi(t))]

2. This finishes the proof.
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Chapter 5

Estimation of Lévy process

functionals in econometric models

We consider a general econometric model which involves the Lévy process as follows

Y (t) = m(t, Z(t)) + ε(t), (5.0.1)

where m(·, ·) is an unknown functional, and ε(t) is an error process with zero mean and

finite variance.

Suppose that Z(t) admits a classical orthonormal polynomial system Qi(t, x) with

weight ρ(t, x), the density function or probability distribution function of Z(t). Let the

support of ρ(t, x) be denoted by I, which can be R, R+ or N. Note that, as before, the

operator D signifies either differentiation or difference operation and it is conducted only

with respect to x.

This chapter dwells on the estimation of m(·, ·) in the model (5.0.1) given discrete

observations of Y (t). We divide the chapter into three sections according to the different

types of time horizons, viz., on (0,∞), [0, T ] with fixed T and [0, Tn] where Tn is increasing

with sample size n.

5.1 Infinite time horizon

Suppose t is in the interval (0,∞). In this section we work with the situation where m(·, ·)
is defined on [0,∞)× I and our sampling points are ts = s, s = 1, 2, · · · , n. Given that we

have observations (s, Ys) where Ys = Y (s), s = 1, 2, · · · , n, our aim is to estimate m(·, ·).
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At each point of observations, the model (5.0.1) now becomes

Ys = m(s,Xs) + es, s = 1, . . . , n, (5.1.1)

where Xs = Z(s) denotes the Lévy process at point s, es = ε(s) (s = 1, . . . , n) form an

error sequence with mean zero and finite variance.

Note that because Z(t) is a Lévy process, E[Z(t)] = tµ where µ = E(Z(1)) and

V ar(Z(t)) = tσ2
z where σ2

z = V ar(Z(1)). Observe that Xs = sµ + Xs − sµ = sµ +∑s
i=1[(Xi− iµ)− (Xi−1− (i− 1)µ)] = sµ+

√
nσzxs,n where xs,n = 1√

nσz

∑s
i=1[(Xi− iµ)−

(Xi−1−(i−1)µ)]. Since (Xi−iµ)−(Xi−1−(i−1)µ) form an i.i.d (0, σ2
z) sequence, it follows

from the functional central limit theorem, xs,n converges in distribution to a Brownian

motion on [0, 1]. In addition, xs,n, along with dl,k,n =
√

(l − k)/n, satisfies Assumption A

in Chapter 1.

We firstly need to impose some conditions on m(t, x).

Assumption L.1

(a) For every t > 0, m(t, x) and Drm(t, x) are in L2(I, ρr(t, x)), r = 1, 2, 3.

(b) For each i, the coefficient function ci(t,m) = E[m(t, Z(t))Qi(t, Z(t))], and its deriva-

tives of up to third order belong to L2(R+).

(c) For i large enough, the coefficient functions ci(t,D
3m) of D3m(t, Z(t)) expanded by

the system {Q3i(t, Z(t))} verify that v(t)3c2
i (t,D

3m) are bounded on (0,∞) uniformly

in i.

Remark 5.1.1. Note that the notations ρr(t, x), v(t) and {Q3i(t, Z(t))} are defined in the

preceding chapter.

Condition (a) is some basic requirements under which we can expand not onlym(t, Z(t))

but also Drm(t, x)|x=Z(t). Condition (b) and (c) give the necessary conditions for the co-

efficient functions in order to obtain some kind of convergent speed on the expansions.

There are many functionals satisfying all the conditions. (1) Let m1(t, x) = tae−btPk(x)

with a ≥ 3, b > 0 and Pk(x) being a polynomial of fixed degree k (k ≥ 1). m1(t, x) satisfies

Condition (a) due to the boundary condition on ρ(t, x); the reason that m1(t, x) satisfies

Condition (b) is that the coefficients ci(t,m1) are all in form of e−btq(t) where q(·) is

a polynomial in t; Condition (c) is fulfilled because when i > k, ci(t,m1) = 0. (2)

m2(t, x) = tα

1+tβ
sin(x) and m3(t, x) = tα

1+tβ
cos(x) where α ≥ 1 and β ≥ α + 1.25. In the
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Brownian motion case, from Example 3.1 we have explicit expression of the coefficients

ci(t,m2) = (−1)k 1√
i!
tα
√
t
i

1+tβ
e−t/2, for i = 2k + 1; 0, for i = 2k, where k = 0, 1, . . . and

ci(t,m3) = (−1)k 1√
i!
tα
√
t
i

1+tβ
e−t/2 for i = 2k; 0, for n = 2k + 1, where k = 0, 1, . . .. It is not

difficult to verify the conditions. (3) In the case that Z(t) = N(t) a Poisson process with

intensity 1, m4(t, x) = tξ2−x where ξ ≥ 2, m5(t, x) = tξ

1+tη sinx and m6(t, x) = tξ

1+tη cosx

with ξ ≥ 1 and η ≥ ξ + 1.25. Since ci(t,m4) = tξe−t/2 1
2i

√
ti

i! , the conditions are easy to

be verified for m4. Meanwhile, from example 3.1 we can have the explicit expressions of

ci(t,m5) and ci(t,m6)

ci(t,m5) = (−1)i
tξ

1 + tη

√
ti

i!
e−tβ

√
2β

i
sin(αi+ t sin 1)

ci(t,m6) = (−1)i
tξ

1 + tη

√
ti

i!
e−tβ

√
2β

i
cos(αi+ t sin 1)

where α is a constant and β = 1− cos 1. Thus, the condition can be verified.

Having expanded function m at sampling points, given truncation parameters k and

pi, model (5.1.1) can be written as

Ys =
k∑
i=0

pi∑
j=0

cijLj(s)Qi(s,Xs) +
k∑
i=0

∞∑
j=pi+1

cijLj(s)Qi(s,Xs)

+
∞∑

i=k+1

∞∑
j=0

cijLj(s)Qi(s,Xs) + es, s = 1, 2, . . . , n.

(5.1.2)

As we know from the last chapter,
∑∞

j=0 cijLj(s) = ci(s,m) or more simply, ci(s) if

there is no confusion occurred. Therefore, in most cases we shall supersede this relationship

into the model expression. We now may rewrite equations (5.1.2) in the following matrix

form:

Y = Xθ + δ + γ + ε, (5.1.3)

where

Y ′ =(Y1, Y2, . . . , Yn); θ′ = (c00, c01 . . . , c0p0 , c10, . . . , c1p1 , . . . , ck0, . . . , ckpk);

x1 =(L0(1)Q0(1, X1),L1(1)Q0(1, X1), . . . ,Lp0(1)Q0(1, X1),

L0(1)Q1(1, X1),L1(1)Q1(1, X1), . . . ,Lp1(1)Q1(1, X1),

. . . ,L0(1)Qk(1, X1),L1(1)Qk(1, X1), . . . ,Lpk(1)Qk(1, X1)),

...
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xn =(L0(n)Q0(n,Xn),L1(n)Q0(n,Xn), . . . ,Lp0(n)Q0(n,Xn),

L0(n)Q1(n,Xn),L1(n)Q1(n,Xn), . . . ,Lp1(n)Q1(n,Xn),

. . . ,L0(n)Qk(n,Xn),L1(n)Qk(n,Xn), . . . ,Lpk(n)Qk(n,Xn)),

and X = (x′1, x
′
2, · · · , x′n)′; δ′ = (δ1, · · · , δn), γ′ = (γ1, γ2, · · · , γn), ε′ = (e1, e2, · · · , en),

with δs =
∑k

i=1

∑∞
j=pi+1 cijLj(s)Qi(s,Xs), γs =

∑∞
i=k+1 ci(s)Qi(s,Xs), s = 1, 2, · · · , n.

The OLS estimator of θ is given by

θ̂ = (X ′X)−1X ′Y. (5.1.4)

With the help of the estimation of coefficients in the expansion of functional m(t, Z(t)),

we are able to estimate the function m(τ, x) at point (τ, x) where ∀τ > 0 and x ∈ R is

any point on the trajectory of Xτ = Z(τ), namely, we can have m̂(τ, x) by superseding θ̂

in lieu of θ and getting rid of residues in the expansion of m(τ, x).

More precisely, as m(·, ·) satisfies Assumption L.1, m(τ, x) is decomposed using or-

thonormal basis {Lj(τ)Qi(τ, x)} as follows

m(τ, x) =
∞∑
i=0

∞∑
j=0

cijLj(τ)Qi(τ, x)

=
k∑
i=0

pi∑
j=0

cijLj(τ)Qi(τ, x) +
k∑
i=0

∞∑
j=pi+1

cijLj(τ)Qi(τ, x)

+
∞∑

i=k+1

∞∑
j=0

cijLj(τ)Qi(τ, x)

:=A′(τ, x)θ + δ(τ, x) + γ(τ, x), (5.1.5)

where θ is defined as before and

δ(τ, x) =

k∑
i=0

∞∑
j=pi+1

cijLj(τ)Qi(τ, x),

γ(τ, x) =

∞∑
i=k+1

∞∑
j=0

cijLj(τ)Qi(τ, x),

A′(τ, x) = (L0(τ)Q0(τ, x), · · · ,Lp0(τ)Q0(τ, x),

· · · ,L0(τ)Qk(τ, x), · · · ,Lpk(τ)Qk(τ, x)).

Thus,

m̂(τ, x) = A′(τ, x)θ̂. (5.1.6)
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We shall investigate the limit of

m̂(τ, x)−m(τ, x) = A′(τ, x)(θ̂ − θ)− δ(τ, x)− γ(τ, x)

= A′(τ, x)(X ′X)−1X ′(δ + γ + ε)− δ(τ, x)− γ(τ, x).
(5.1.7)

To this end, denote Ap×p and Bp×p by

A =
A(τ, x)A′(τ, x)

‖A(τ, x)‖2
and B = (X ′X)A(X ′X)−1

where ‖ · ‖ signifies Euclidean norm and dimension p = p0 + · · ·+ pk + k + 1.

On account of Lemma 3.1.2, we can assert that matrix B has eigenvalues λ1 = 1,λ2 =

· · · = λp = 0.

Let α be the unit left eigenvector of B pertaining to eigenvalue 1, viz., α′B = α′ and

‖α‖ = 1. As α is p-dimensional vector, in concert with A(τ, x), represent α in double-

index subscript, that is, α′ = (α00, · · · , α0p0 , · · · , αk0, · · · , αkpk). The following assumption

proposes a double-index sequence we are working with.

Assumption L.2

(a) Let S = {a0, a1, a2, . . .}, where ai = {aij}∞j=0 is a sequence such that
∑∞

j=1 j|ai,j | <∞
for i = 0, 1, 2, · · · .

(b) Suppose further that
∑∞

i=1 i
(∑∞

j=0 |aij |
)2

<∞.

Remark 5.1.2. This assumption is actually exactly Assumption Bm.1. For completeness

and independence of this chapter, we recite it here.

Using α and 1
‖A′(τ,x)‖A

′(τ, x), let us reshuffle the set S as S̃ and S̄ by defining

1) S̃ = {ã0, · · · , ãi, · · · },

2) ãi = {ãij} where ãij = 1√
pmax

αij for 0 ≤ i ≤ k and 0 ≤ j ≤ pi; otherwise, ãij = aij .

3) S̄ = {ā0, · · · , āi, · · · },

4) āi = {āij} where āij = 1√
pmax‖A(τ,x)‖Lj(τ)Qi(τ, x) for 0 ≤ i ≤ k and 0 ≤ j ≤ pi;

otherwise, āij = aij .

Obviously, ãij = aij = āij if i > k or j > pi. Meanwhile, since S̃ and S̄ satisfy

Riesz-Fischer theorem, there exist functions, denoted by F̃ (t, x) and G̃(t, x), such that

F̃ (t, Z(t)) =
∞∑
i=0

∞∑
j=0

ãijLj(t)Qi(t, Z(t)), (5.1.8)
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G̃(t, Z(t)) =

∞∑
i=0

∞∑
j=0

āijLj(t)Qi(t, Z(t)), (5.1.9)

for any t > 0.

Therefore, in view of (5.1.8) and (5.1.9), we have

1
√
pmax

α′X ′ =F̃
′
− δ̃′ − γ̃′, (5.1.10)

1
√
pmax‖A′(τ, x)‖

A′(τ, x)X ′ =G̃
′
− δ̃′ − γ̃′, (5.1.11)

where

F̃
′
=(F̃ (1, X1), · · · , F̃ (n,Xn)),

G̃
′
=(G̃(1, X1), · · · , G̃(n,Xn)),

δ̃′ =(δ̃1, · · · , δ̃n) with δ̃s =

k∑
i=0

∞∑
j=pi+1

aijLj(s)Qi(s,Xs),

γ̃′ =(γ̃1, · · · , γ̃n) with γ̃s =

∞∑
i=k+1

∞∑
j=0

aijLj(s)Qi(s,Xs).

We have the following proposition for the generated functions F̃ (t, x) and G̃(t, x).

Lemma 5.1.1. For any t > 0, (a) E[G̃(t, Z(t))]2 <∞, and (b) E[F̃ (t, Z(t))]2 <∞.

Proof. (a) It follows from the orthogonality of Qi(t, Z(t)) and the boundedness in (2.3.5)

for Lj(t) that

E[G̃(t, Z(t))]2 =
∞∑
i=0

 ∞∑
j=0

āijLj(t)

2

≤ C
∞∑
i=0

 ∞∑
j=0

|āij |

2

=C

∞∑
i=0

 pi∑
j=0

|āij |+
∞∑

j=pi+1

|aij |

2

≤2C
∞∑
i=0

 pi∑
j=0

|āij |

2

+ 2C
∞∑
i=0

 ∞∑
j=pi+1

|aij |

2

=2C

k∑
i=0

 pi∑
j=0

|āij |

2

+ 2C
∞∑

i=k+1

 pi∑
j=0

|aij |

2
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+ 2C
∞∑
i=0

 ∞∑
j=pi+1

|aij |

2

≤2C
1

pmax‖A′(τ, x)‖2
k∑
i=0

Q2
i (τ, x)

 pi∑
j=0

Lj(τ)

2

+O(1)

≤2C
1

pmax‖A′(τ, x)‖2
k∑
i=0

Q2
i (τ, x)pi

pi∑
j=0

L 2
j (τ) +O(1) = O(1).

where we have used Assumption L.2 for aij , the definition of āij and ‖A′(τ, x)‖2 =∑k
i=0Q

2
i (τ, x)

∑pi
j=0 L 2

j (τ).

(b) Similar to the proof of (a).

Notice that E[Z(t)] = µt. Denote F (t, x − µt) = F̃ (t, x) and G(t, x − µt) = G̃(t, x).

This is only a change in the form of functions since the process Z(t) has to be centralised

in order to acquire the limit distribution of m̂.

The following assumption is stipulated for the truncation parameters, which is crucial

for obtaining the limit distribution of the estimator.

Assumption L.3

(a) k = [nκ1 ] with 1
2 < κ1 < 1;

(b) pmin = [nκ2 ] and pmax = [nκ̄2 ] with 0 < κ2 ≤ κ̄2 < 1;

(c) 2 + 2κ1 < 5κ2.

Remark 5.1.3. There are obviously a great deal of feasible options for κ1, κ2 and κ̄2 satis-

fying the conditions. Note that Condition (c) is not harsh since when κ2 > 0.8 it follows

automatically.

The next assumption describes the families of functionals F and G we are studying in

the asymptotic distribution of the estimator.

Assumption L.4

(a) Suppose that F (·, ·) and G(·, ·) are in class T (HI) with homogeneity powers υ(·) and

%(·) and normal functions f(·, ·) and g(·, ·) respectively. Let υ(n) = nς and %(n) = nι

with ς ≥ 0 and ι ≥ 0 satisfying 1
2(κ1 − 1

2) < ι < min{5
4κ2 − 1

4 −
1
2κ1,

7
4κ1 − 1

4}.
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(b) Suppose also that F 2(·, ·), G2(·, ·) and F (·, ·)G(·, ·) are all in class T (HI) with ho-

mogeneity powers υ2(·), %2(·) and υ(·)%(·), and normal functions f2(·, ·), g2(·, ·) and

f(·, ·)g(·, ·) respectively.

(c) Suppose that F (·, ·) and G(·, ·) are in class T (HH) with homogeneity powers υ1(·),
υ2(·) and %1(·), %2(·) and normal functions f(·, ·) and g(·, ·) respectively. Let υ1(n) =

nς1 , υ2(n) = nς2 , %1(n) = nι1 , and %2(n) = nι2 with ςi ≥ 0, ιi ≥ 0, i = 1, 2, satisfying

that ι1 + 1
2 ι2 < min{5

4κ2 − 1
2(1 + κ1), 7

4κ1 − 1
2}.

(d) Suppose also that F 2(·, ·), G2(·, ·) and F (·, ·)G(·, ·) are all in class T (HH) with ho-

mogeneity powers υ2
1(·) and υ2

2(·); %2
1(·) and %2

2(·); υ1(·)%1(·) and υ2(·)%2(·) as well as

normal functions f2(·, ·), g2(·, ·) and f(·, ·)g(·, ·) respectively.

Remark 5.1.4. Assumption L.3 ensures that two upper bounds for ι and ι1 + 1
2 ι2 are

positive. Of course, we can make these conditions in (a) and (c) for parameters tractable

and tidy if we impose more constraints on κ1 and κ2. However, these raw conditions give

them more options.

Notice that in the proof of the following theorem, what conditions for ι and ι1 + 1
2 ι2

we actually use involve κ̄2 − κ2. Since we may require that κ̄2 be much closer to κ2 such

that κ̄2 − κ2 is as small as we wish, conditions in (a) and (c) implicitly indicates what

we require in the proof. Obviously, this does not harm any thing else and applies to the

subsequential subsections.

Note also that the ambit for both ι and ι1 + 1
2 ι2 can be enlarged at the price of

enhancing the order of differentiability for the coefficient functions in the expansion of the

m function, as can be seen in the proof of the following theorem.

We are now ready to state the main result in the section.

Theorem 5.1.1. Suppose that {xs,n}n1 and {es}n1 satisfy Assumptions B and A (c). Let

Assumptions L.1–L.3 hold.

If Assumption L.4 (a) and (b) hold, then

√
σz

4
√
nυ(n)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

(m̂(τ, x)−m(τ, x))

→D

(∫ 1

0
G3(t)dLW (t, 0)

) 1
2

N,

(5.1.12)
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where G3(t) =
∫
f(t, x)2dx, W is a standard Brownian motion on [0, 1], N is a standard

normal random variable independent of W , and LW is the local–time process of W .

If Assumption L.4 (c) and (d) hold, then

1√
nυ1(n)υ2(

√
nσz)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

(m̂(τ, x)−m(τ, x))

→D

∫ 1

0
f(r,W (r))dU(r),

(5.1.13)

where (W (r), U(r)) is the vector of Brownian motion in Assumption B.

Remark 5.1.5. As can be seen from the proof, the order of the convergence of (5.1.12) is
4√n√pmax%(n)
‖A(τ,x)‖ . By virtue of the calculation of ‖A(τ, x)‖ in the proof, we can estimate

n
1
4

+ι− 1
2
κ1 ≤

4
√
n
√
pmax%(n)

‖A(τ, x)‖
≤ n

1
4

+ 1
2

(κ̄2−κ2)+ι− 1
2
κ1 ≤ n

5
4
κ2−κ1 .

This means when ι reaches its upper bound, the convergence rate is at maximum n
5
4
κ2−κ1 ,

while when ι is close to 1
2(κ1 − 1

2) the convergence is very slow.

Meanwhile, the convergence rate for (5.1.13) is
√
n
√
pmax%1(n)%2(

√
nσx)

‖A(τ,x)‖ which similarly

has the following approximation

n
1
2

(1−κ1)+ι1+ 1
2
ι2 ≤

√
n
√
pmax%1(n)%2(

√
nσx)

‖A(τ, x)‖
≤ n

1
2

(1−κ1)+ι1+ 1
2
ι2+ 1

2
(κ̄2−κ2) ≤ n

5
4
κ2−κ1 .

As ι1 + 1
2 ι2 reaches its upper bound, the rate is as high as n

5
4
κ2−κ1 , while as ι1 + 1

2 ι2

closes to 1
2(κ1 − 1

2) the convergence is very slow, the same as in the first situation.

Proof. We firstly prove (5.1.12). By virtue of (5.1.7), we may write

√
σz

4
√
nυ(n)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

(m̂(τ, x)−m(τ, x))

=

√
σz

4
√
nυ(n)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[A′(τ, x)(X ′X)−1X ′(δ + γ + ε)− δ(τ, x)− γ(τ, x)]

=

√
σz

4
√
nυ(n)

√
pmax

α′BX ′(δ + γ + ε)−
√
σz

4
√
nv(n)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[δ(τ, x) + γ(τ, x)]

=

√
σz

4
√
nυ(n)

√
pmax

α′X ′(δ + γ + ε)−
√
σz

4
√
nv(n)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[δ(τ, x) + γ(τ, x)]

=
3∑
i=1

Πi −Π4,
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where

Π1 =

√
σz

4
√
nυ(n)

√
pmax

α′X ′δ, Π2 =

√
σz

4
√
nυ(n)

√
pmax

α′X ′γ,

Π3 =

√
σz

4
√
nυ(n)

√
pmax

α′X ′ε, Π4 =

√
σz

4
√
nυ(n)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[δ(τ, x) + γ(τ, x)].

We are about to show that Πi →P 0, i = 1, 2, 4, and Π3 converges to the desired

variable in distribution as n→∞.

Firstly, it follows from (5.1.10) that

Π3 =

√
σz

4
√
nυ(n)

(F̃
′
− δ̃′ − γ̃′)ε =

√
σz

4
√
nυ(n)

(F̃
′
ε− δ̃′ε− γ̃′ε)

=

√
σz

4
√
nυ(n)

n∑
s=1

F̃ (s,Xs)es −
√
σz

4
√
nv(n)

n∑
s=1

δ̃ses −
√
σz

4
√
nυ(n)

n∑
s=1

γ̃ses

=

√
σz

4
√
nυ(n)

n∑
s=1

F̃ (s, sµ+
√
nσzxs,n)es −

√
σz

4
√
nv(n)

n∑
s=1

δ̃ses −
√
σz

4
√
nυ(n)

n∑
s=1

γ̃ses

=

√
σz

4
√
nυ(n)

n∑
s=1

F (s,
√
nσzxs,n)es −

√
σz

4
√
nυ(n)

n∑
s=1

δ̃ses −
√
σz

4
√
nυ(n)

n∑
s=1

γ̃ses

:=Π31 −Π32 −Π33.

In view of Theorem 1.3.1 with cn =
√
nσz, we have

Π31 →D

(∫ 1

0
G3(t)dLW (t, 0)

) 1
2

N, (5.1.14)

where G3(t) =
∫
f(t, x)2dx, W is a standard Brownian motion on [0, 1], N is a standard

normal random variable independent of W , and LW is the local–time process of W .

Meanwhile, the martingale difference structure (es,Fn,s) and the adaptivity xs+1,n

with Fn,s yield

E(Π32)2 =
σzσ

2
e√

nυ(n)2

n∑
s=1

Eδ̃2
s , (5.1.15a)

E(Π33)2 =
σzσ

2
e√

nυ(n)2

n∑
s=1

Eγ̃2
s , (5.1.15b)

where E(e2
s|Fn,s−1) = σ2

e a.s.

Regarding (5.1.15a), using the expression of δ̃s we have

E(Π32)2 =
σzσ

2
e√

nυ(n)2

n∑
s=1

Eδ̃2
s
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=
σzσ

2
e√

nυ(n)2

n∑
s=1

E

 k∑
i=0

∞∑
j=pi+1

aijLj(s)Qi(s,Xs)

2

=
σzσ

2
e√

nυ(n)2

n∑
s=1

k∑
i=0

 ∞∑
j=pi+1

aijLj(s)

2

≤ σzσ
2
e√

nυ(n)2

n∑
s=1

k∑
i=0

(
max
j≥pi
|Lj(s)|

)2
 ∞∑
j=pi+1

|aij |

2

≤o(1)
σzσ

2
e√

nυ(n)2

n∑
s=1

1√
s

k∑
i=0

1
√
pi

1

p2
i

≤ o(1)
σzσ

2
e

υ(n)2

k

p
5/2
min

=o(1)
σzσ

2
e

υ(n)2
nκ1−

5
2
κ2 → 0,

as n→∞ due to Assumption L.2 and L.3, and the upper bound of |Lj(t)| in (2.3.5).

Similarly, using the expression of γ̃s we have

E(Π33)2 =
σzσ

2
e√

nυ(n)2

n∑
s=1

Eγ̃2
s

=
σzσ

2
e√

nυ(n)2

n∑
s=1

E

 ∞∑
i=k+1

∞∑
j=0

aijLj(s)Qi(s,Xs)

2

=
σzσ

2
e√

nυ(n)2

n∑
s=1

∞∑
i=k+1

 ∞∑
j=0

aijLj(s)

2

≤C2 σzσ
2
e√

nυ(n)2

n∑
s=1

∞∑
i=k+1

 ∞∑
j=0

|aij |

2

≤C2o(1)
σzσ

2
e√

nυ(n)2

n∑
s=1

1

k
= C2o(1)

σzσ
2
e

v(n)2

√
n

k

=C2o(1)
σzσ

2
e

υ(n)2
n

1
2
−κ1 → 0,

as n→∞ due to Assumption L.2 and L.4.

Hence, we obtain

Π3 →D

(∫ 1

0
G3(t)dLW (t, 0)

) 1
2

N. (5.1.16)
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Secondly, for Π1 and Π2, from (5.1.10) it follows that

Π1 =

√
σz

4
√
nυ(n)

√
pmax

α′X ′δ =

√
σz

4
√
nυ(n)

(F̃
′
− δ̃′ − γ̃′)δ

=

√
σz

4
√
nυ(n)

(F̃
′
δ − δ̃′δ − γ̃′δ),

Π2 =

√
σz

4
√
nυ(n)

√
pmax

α′X ′γ =

√
σz

4
√
nυ(n)

(F̃
′
− δ̃′ − γ̃′)γ

=

√
σz

4
√
nυ(n)

(F̃
′
γ − δ̃′γ − γ̃′γ).

Thus, by Cauchy-Schwarz inequality, in order to obtain Π1 →P 0 and Π2 →P 0, we

only need to show ‖δ‖ →P 0 and ‖γ‖ →P 0 since the convergence of (5.1.15) indicates

that
1√
n
‖δ̃‖2 →P 0, and

1√
n
‖γ̃‖2 →P 0, (5.1.17)

and because of Theorem 1.3.1 and Assumption L.4 (b), we have

σz√
nυ(n)2

‖F̃
′
‖2 =

σz√
nυ(n)2

n∑
s=1

F̃ 2(s,Xs)

=
σz√
nυ(n)2

n∑
s=1

F 2(s,
√
nσxxs,n)

→P

∫ 1

0

∫ ∞
−∞

f2(r, x)dxdLW (r, 0). (5.1.18)

In fact, by orthogonality of Qi and Theorem 2.3.1 with r = 3,

E‖δ‖2 =E
n∑
s=1

δ2
s = E

n∑
s=1

 k∑
i=0

∞∑
j=pi+1

cijLj(s)Qi(s,Xs)

2

=

n∑
s=1

k∑
i=0

 ∞∑
j=pi+1

cijLj(s)

2

=

n∑
s=1

k∑
i=0

ci(t,m)−
pi+1∑
j=0

cijLj(s)

2

≤
n∑
s=1

k∑
i=0

o(1)
1
√
spi

1

p2
i

≤ o(1)
k

p
5
2
min

n∑
s=1

1√
s

=o(1)n
1
2

+κ1− 5
2
κ2 → 0
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as n→∞, where we have used the bound for Lj(s) and Assumption L.4 (a).

Similarly, in view of (4.4.8), ci(t,m) =
√
v(t)

r
√

(i−r)!
i! ci(t,D

rm). It follows from As-

sumption L.1 (a) and (c) with r = 3 that

E‖γ‖2 =E
n∑
s=1

γ2
s = E

n∑
s=1

( ∞∑
i=k+1

ci(s,m)Qi(s,Xs)

)2

=
n∑
s=1

∞∑
i=k+1

(ci(s,m))2

=
n∑
s=1

∞∑
i=k+1

v(s)3 (i− 3)!

i!
ci(s,D

3m)2

=

∞∑
i=k+1

(i− 3)!

i!

n∑
s=1

v(s)3ci(s,D
3m)2

≤An 1

k2
(1 + o(1)) = An1−2κ1 → 0,

where A is the uniform bound of v(s)3ci(s,D
3m)2 on account of Assumption L.1 and we

have used Assumption L.3.

Now we are ready to prove that Π4 →P 0 as n→∞. We may rewrite

Π4 =

√
σz

4
√
nυ(n)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[δ(τ, x) + γ(τ, x)]

=

√
σz√

nυ(n)%(n)

α′X ′XA(τ, x)

pmax‖A(τ, x)‖

4
√
n
√
pmax%(n)

‖A(τ, x)‖
[δ(τ, x) + γ(τ, x)]

:=Π41 × (Π42 + Π43),

where we denote

Π41 =

√
σz√

nυ(n)%(n)

α′X ′XA(τ, x)

pmax‖A(τ, x)‖
,

Π42 =
4
√
n
√
pmax%(n)

‖A(τ, x)‖
δ(τ, x) and Π43 =

4
√
n
√
pmax%(n)

‖A(τ, x)‖
γ(τ, x).

We shall demonstrate that Π41 converges to a random variable in probability and Π42

and Π43 approach to zero as n→∞. To begin with, it follows from (5.1.10) and (5.1.11)

that

Π41 =

√
σz√

nυ(n)%(n)
(F̃
′
− δ̃′ − γ̃′)(G̃− δ̃ − γ̃)

=

√
σz√

nυ(n)%(n)
(F̃
′
G̃− δ̃′G̃− γ̃′G̃− F̃

′
δ̃ − F̃

′
γ̃ + ‖δ̃‖2 + ‖γ̃‖2 + 2γ̃′δ̃).
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Therefore, by virtue of (5.1.17) and (5.1.18), to find out the limit of Π41, our remain-

ing task is to prove the convergence of σz√
n%(n)2

‖G̃‖2, and σz√
nυ(n)%(n)

F̃
′
G̃ due to Cauchy-

Schwarz inequality.

Similar to (5.1.18),

σz√
nυ(n)2

‖G̃‖2 =
σz√
nυ(n)2

n∑
s=1

G̃(s,Xs)
2 =

σz√
nυ(n)2

n∑
s=1

G(s,Xs − EXs)
2

=
σz√
nυ(n)2

n∑
s=1

G(s,
√
nσzxs,n)2

→P

∫ 1

0

∫ ∞
−∞

g2(t, x)dxdLW (t, 0),

and

σz√
nυ(n)%(n)

F̃
′
G̃ =

σz√
nυ(n)%(n)

n∑
s=1

F̃(s,Xs)G̃(s,Xs)

=
σz√

nυ(n)%(n)

n∑
s=1

F (s,Xs − EXs)G(s,Xs − EXs)

=
σz√

nυ(n)%(n)

n∑
s=1

F (s,
√
nσzxs,n)G(s,

√
nσzxs,n)

→P

∫ 1

0

∫ ∞
−∞

f(t, x)g(t, x)dxdLW (t, 0),

using Assumption L.4 (b).

Whence, Π41 →P

∫ 1
0

∫∞
−∞ f(t, x)g(t, x)dxdLW (t, 0) as n→∞.

For the proof of the vanish of Π42 and Π43, we first estimate ‖A(τ, x)‖:

‖A(τ, x)‖2 =

k∑
i=0

pi∑
j=0

L 2
j (τ)Q2

i (τ, x) = e−τ
k∑
i=0

Q2
i (τ, x)

pi∑
j=0

L2
j (τ)

=O(1)e−τ
k∑
i=0

piQ
2
i (τ, x),

which leads to O(1)kpmin ≤ ‖A(τ, x)‖2 ≤ O(1)kpmax where we have used the fact that∑k
i=0H

2
i (x) = O(1)k uniformly in x for any orthogonal polynomial Hi(x) on any compact

interval (see Alexits, 1961, p.295).

Accordingly, due to Assumption L.1(b), using the result in Theorem 2.3.1 with r = 3
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and the upper bound in (2.3.5) gives

|Π42| =
4
√
n
√
pmax%(n)

‖A(τ, x)‖
|δ(τ, x)| =

4
√
n
√
pmax%(n)

‖A(τ, x)‖

∣∣∣∣∣∣
k∑
i=0

∞∑
j=pi+1

cijLj(τ)Qi(τ, x)

∣∣∣∣∣∣
≤

4
√
n
√
pmax%(n)

‖A(τ, x)‖

k∑
i=0

|Qi(τ, x)|

∣∣∣∣∣∣
∞∑

j=pi+1

cijLj(τ)

∣∣∣∣∣∣
≤

4
√
n
√
pmax%(n)

‖A(τ, x)‖

(
k∑
i=0

Q2
i (τ, x)

) 1
2

 k∑
i=0

 ∞∑
j=pi+1

cijLj(τ)

2
1
2

≤O(1)
4
√
n
√
pmaxn

ι

√
kpmin

√
k

[
k∑
i=0

1
√
τpi

o(1)

p2
i

] 1
2

≤ o(1)
n

1
4

+ι√pmaxk
1
2

√
pminp

5
4
min

=o(1)n
1
4

+ι+ 1
2
κ1+ 1

2
(κ̄2−κ2)− 5

4
κ2 → 0,

where we have used the condition in Assumption L.4 (b) for parameters.

Meanwhile, on account of Assumption L.1 using (4.4.8) with r = 3 and the asymptotic

inequality for Qi in Remark 4.3.4, we have

|Π43| =
4
√
n
√
pmax%(n)

‖A(τ, x)‖
|γ(τ, x)| =

4
√
n
√
pmax%(n)

‖A(τ, x)‖

∣∣∣∣∣
∞∑

i=k+1

ci(τ,m)Qi(τ, x)

∣∣∣∣∣
=

4
√
n
√
pmax%(n)

‖A(τ, x)‖

∣∣∣∣∣
∞∑

i=k+1

√
v(τ)

3√
i(i− 1)(i− 2)

ci(τ,D
3m)Qi(τ, x)

∣∣∣∣∣
≤o(1)

4
√
n
√
pmax%(n)

‖A(τ, x)‖

( ∞∑
i=k+1

1

i(i− 1)(i− 2)
Qi(τ, x)2

) 1
2

≤o(1)
4
√
nnι
√
pmax√

kpmin

( ∞∑
i=k+1

1

i(i− 1)(i− 2)
√
i

) 1
2

≤o(1)
4
√
nnι
√
pmax√

kpmin

1

k5/4
= o(1)n

1
4

+ι+ 1
2

(κ̄2−κ2)− 7
4
κ1 → 0,

by the condition in Assumption L.4 (a) for parameters. The proof of (5.1.12) is completed.

We are now in a position to prove (5.1.13). In view of (5.1.7),

1√
nυ1(n)υ2(

√
nσz)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

(m̂(τ, x)−m(τ, x))

=
1√

nυ1(n)υ2(
√
nσz)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2
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× [A′(τ, x)(X ′X)−1X ′(δ + γ + ε)− δ(τ, x)− γ(τ, x)]

=
1√

nυ1(n)υ2(
√
nσz)

α′X ′
√
pmax

(δ + γ + ε)

− 1√
nυ1(n)υ2(

√
nσz)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[δ(τ, x) + γ(τ, x)]

:=
3∑
i=1

Γi − Γ4,

where we by Γi (i = 1, 2, 3, 4) signify that

Γ1 =
1√

nυ1(n)υ2(
√
nσz)

α′X ′
√
pmax

δ =
1√

nυ1(n)υ2(
√
nσz)

(F̃
′
− δ̃′ − γ̃′)δ,

Γ2 =
1√

nυ1(n)υ2(
√
nσz)

α′X ′
√
pmax

γ =
1√

nυ1(n)υ2(
√
nσz)

(F̃
′
− δ̃′ − γ̃′)γ,

Γ3 =
1√

nυ1(n)υ2(
√
nσz)

α′X ′
√
pmax

ε =
1√

nυ1(n)υ2(
√
nσz)

(F̃
′
− δ̃′ − γ̃′)ε,

Γ4 =
1√

nυ1(n)υ2(
√
nσz)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[δ(τ, x) + γ(τ, x)].

We are going to prove that Γi →P 0, i = 1, 2, 4 and Gamma3 converges to the desired

result in probability in the embedding framework. Observe that due to Assumption L.4

(c) and (d), we have

1√
nυ1(n)υ2(

√
nσz)

F̃
′
ε =

1√
nυ1(n)υ2(

√
nσz)

n∑
s=1

F̃ (s,Xs)es

=
1√

nυ1(n)υ2(
√
nσz)

n∑
s=1

F (s,
√
nσzxs,n)es →P

∫ 1

0
f(r,W (r))dU(r),

(5.1.19)

and

1

nυ1(n)2υ2(
√
nσz)2

‖F̃‖2 =
1

nυ1(n)2υ2(
√
nσz)2

n∑
s=1

F̃ (s,Xs)
2

=
1

nυ1(n)2υ2(
√
nσz)2

n∑
s=1

F (s,
√
nσzxs,n)2 →a.s.

∫ 1

0
f2(r,W (r))dr,

(5.1.20)

by the proof (not the result) of Theorem 1.5.1.

Note that in first part we have shown that

1√
n
‖δ̃′‖2 →P 0,

1√
n
‖γ̃′‖2 →P 0, ‖δ‖2 →P 0, (5.1.21a)
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‖γ‖2 →P 0,
1
4
√
n
δ̃′ε→P 0,

1
4
√
n
γ̃′ε→P 0. (5.1.21b)

All results in (5.1.21) remain true since all conditions for δ, γ, δ̃, γ̃ and ε have not

changed. Therefore, (5.1.19),(5.1.20) and (5.1.21) imply that Γ1 →P 0 and Γ2 →P 0,

as well as Γ3 →P

∫ 1
0 f(r,W (r))dU(r) as n → ∞. Thus, our remaining task is to prove

Γ4 →P 0 as n→∞.

To this end, let us rewrite

Γ4 =
1√

nυ1(n)υ2(
√
nσz)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[δ(τ, x) + γ(τ, x)]

:=Γ41 × (Γ42 + Γ43),

where we denote

Γ41 =
1

nυ1(n)υ2(
√
nσz)%1(n)%2(

√
nσz)

α′X ′XA(τ, x)

pmax‖A(τ, x)‖
,

Γ42 =

√
n
√
pmax%1(n)%2(

√
nσz)

‖A(τ, x)‖
δ(τ, x), and

Γ43 =

√
n
√
pmax%1(n)%2(

√
nσz)

‖A(τ, x)‖
γ(τ, x).

It follows from (5.1.10) and (5.1.11) that

Γ41 =
1

nυ1(n)υ2(
√
nσz)%1(n)%2(

√
nσz)

(F̃
′
− δ̃′ − γ̃′)(G̃

′
− δ̃′ − γ̃′)

=
1

nυ1(n)υ2(
√
nσz)%1(n)%2(

√
nσz)

× (F̃
′
G̃− δ̃′G̃− γ̃′G̃− F̃

′
δ̃ − F̃

′
γ̃ + ‖δ̃‖2 + ‖γ̃‖2 + 2γ̃′δ̃).

Once again, due to Theorem 1.5.1 and Assumption L.4 (d), we similarly have

1

n%1(n)2%2(
√
nσz)2

n∑
s=1

G̃2(s,Xs) =
1

n%1(n)2%2(
√
nσz)2

n∑
s=1

G2(s,
√
nσzxs,n)

→a.s.

∫ 1

0
g2(r,W (r))dr. (5.1.22)

Thus, Cauchy-Schwarz inequality as well as (5.1.20), (5.1.21) and (5.1.22) suggest that

to find out the limit of Γ41 it suffices to find that of the term in Γ41 involving F̃
′
G̃. In

fact, by Assumption L.4 (d),

1

nυ1(n)υ2(
√
nσz)%1(n)%2(

√
nσz)

F̃
′
G̃
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=
1

nυ1(n)υ2(
√
nσz)%1(n)%2(

√
nσz)

n∑
s=1

F̃ (s,Xs)G̃(s,Xs)

=
1

nυ1(n)υ2(
√
nσz)%1(n)%2(

√
nσz)

n∑
s=1

F (s,
√
nσzxs,n)G(s,

√
nσzxs,n)

→a.s.

∫ 1

0
f(r,W (r))g(r,W (r))dr,

as n→∞, so that Γ41 converges to the same limit in probability.

We are ready to prove both Γ42 → 0 and Γ43 → 0, as n→∞. By virtue of the estimate

of ‖A(τ, x)‖, due to Assumption L.1(b), using Theorem 2.3.1 with r = 3 gives

|Γ42| =
√
n
√
pmax%1(n)%2(

√
nσz)

‖A(τ, x)‖
|δ(τ, x)|

=

√
n
√
pmax%1(n)%2(

√
nσz)

‖A(τ, x)‖

∣∣∣∣∣∣
k∑
i=0

∞∑
j=pi+1

cijLj(τ)Qi(τ, x)

∣∣∣∣∣∣
=

√
n
√
pmax%1(n)%2(

√
nσz)

‖A(τ, x)‖

∣∣∣∣∣∣
k∑
i=0

Qi(τ, x)
∞∑

j=pi+1

cijLj(τ)

∣∣∣∣∣∣
≤
√
n
√
pmax%1(n)%2(

√
nσz)

‖A(τ, x)‖

(
k∑
i=0

Q2
i (τ, x)

) 1
2

 k∑
i=0

 ∞∑
j=pi+1

cijLj(τ)

2
1
2

≤O(1)

√
n
√
pmaxn

ι1n
1
2
ι2

√
kpmin

√
k

[
k∑
i=0

1
√
τpi

o(1)

p2
i

] 1
2

≤o(1)
√
nn

1
2

(κ̄2−κ2)nι1+ 1
2
ι2
√
kp
− 5

4
min

=o(1)n
1
2

+ 1
2

(κ̄2−κ2)+ι1+ 1
2
ι2+ 1

2
κ1− 5

4
κ2 → 0,

as n→∞ by Assumption L.1(b) and condition (ii) of Assumption L.4 (b).

Meanwhile, once again on account of Assumption L.1 using (4.4.8) with r = 3, we have

|Γ43| =
√
n
√
pmax%1(n)%2(

√
nσz)

‖A(τ, x)‖
|γ(τ, x)|

=

√
n
√
pmax%1(n)%2(

√
nσz)

‖A(τ, x)‖

∣∣∣∣∣∣
∞∑

i=k+1

∞∑
j=0

cijLj(τ)Qi(τ, x)

∣∣∣∣∣∣
=

√
n
√
pmax%1(n)%2(

√
nσz)

‖A(τ, x)‖

∣∣∣∣∣
∞∑

i=k+1

ci(τ,m)Qi(τ, x)

∣∣∣∣∣
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=

√
n
√
pmax%1(n)%2(

√
nσz)

‖A(τ, x)‖

∣∣∣∣∣
∞∑

i=k+1

v(τ)3√
i(i− 1)(i− 2)

ci(τ,D
3m)Qi(τ, x)

∣∣∣∣∣
≤O(1)

√
n
√
pmaxn

ι1n
1
2
ι2

√
kpmin

( ∞∑
i=k+1

|ci(τ,D3m)|2
) 1

2

×

( ∞∑
i=k+1

1

i(i− 1)(i− 2)
|Qi(τ, x)|2

) 1
2

≤o(1)

√
n
√
pmaxn

ι1n
1
2
ι2

√
kpmin

( ∞∑
i=k+1

1

i(i− 1)(i− 2)
√
i

) 1
2

≤o(1)

√
n
√
pmaxn

ι1n
1
2
ι2

√
kpmin

1

k5/4

=o(1)n
1
2

+ 1
2

(κ̄2−κ2)+ι1+ 1
2
ι2− 7

4
κ1 → 0

by Assumption L.4 (c). This finishes the proof.

5.2 Finite time horizon

Assume time variable t lies in [0, T ] with T fixed. In this section function m is defined

on [0, T ] × I. Therefore, conditions on m would be weakened since square integrability

on [0, T ] is much weaker than that on the half line. We make the following assumptions

about m(t, x) in the model (5.0.1).

Assumption L.5

(a) Let Drm(t, x) ∈ L2(I, ρr(t, x)) for any t ∈ [0, T ] and r = 0, 1, 2. Moreover, the

expansion of D2m(t, Z(t)) in terms of Q2i(t, Z(t)) is convergent in the sense of mean

square uniformly on [0, T ].

(b) For each i, bi(t,m) = E[m(t, Zt)Qi(t, Zt)] and its derivatives of up to third order

belong to C[0, T ].

(c) Furthermore, ‖b′′i (t,m)‖L2[0,T ] are bounded uniformly in i.

Remark 5.2.1. The conditions are quite weak. Condition (a) can be satisfied by all func-

tions m(t, x) as long as m,Dm,D2m have finite second moment and the moment function
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is integrable on [0, T ]. Condition (b) is not restrictive as well, albeit we request the deriva-

tives are continuous. The continuities make sure their expansions are convergent uniformly

on the interval [0, T ].

Suppose that we have n observations for the process Y (t) on [0, T ] and the observations

are Ys,n = Y (ts,n) at ts,n = T s
n for s = 1, 2, · · · , n. At the sampling points, we have the

following model

Ys,n = m(ts,n, Xs,n) + es, s = 1, . . . , n, (5.2.1)

where Xs,n = Z(T s
n) denote the Lévy process Z(t) at point ts,n, es = ε(T s

n) (s = 1, . . . , n)

form an error sequence with mean zero and finite variance.

Note that Xs,n =
∑s

i=1(Xi,n − Xi−1,n) = s
nTµ +

√
Tσz

1√
n

∑s
i=1wi, where wi =

√
n√
Tσz

(Xi,n−Xi−1,n− 1
nTµ) form an i.i.d.(0,1) sequence. Let xs,n = 1√

n

∑s
i=1wi. It follows

from the functional central limit theorem that xs,n converges to a standard Brownian mo-

tion in distribution as n → ∞. It also is clear that xs,n, along with dl,k,n =
√

(l − k)/n,

satisfies Assumption A.

Under Assumption L.5 we can expand m(t, Z(t)) at every point t ∈ [0, T ] using basis

ϕjT (t)Qi(t, Z(t)). Let k and pi be truncation parameters for i and j. Thus, the models

(5.2.1) become

Ys,n =
k∑
i=0

pi∑
j=0

bijϕjT (ts,n)Qi(ts,n, Xs,n) +
k∑
i=0

∞∑
j=pi+1

bijϕjT (ts,n)Qi(ts,n, Xs,n)

+

∞∑
i=k+1

∞∑
j=0

bijϕjT (ts,n)Qi(ts,n, Xs,n) + es, s = 1, 2, · · · , n.
(5.2.2)

Equivalently, the matrix form of (5.2.2) is

Y = Xβ + δ + γ + ε, (5.2.3)

where all notations remain the same as in the last subsection so that we omit reciting

them. The OLS estimator of β is given by

β̂ = (X ′X)−1X ′Y. (5.2.4)

With the help of β̂ we are able to estimate m(·, ·) at (τ, x) where τ is any point in

[0, T ] and x is any point on the path of Z(τ). On account of Assumption L.5, m(τ, x) can
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be expanded into an orthogonal series,

m(τ, x) =
∞∑
i=0

∞∑
j=0

bijϕjT (τ)Qi(τ, x)

:=A′(τ, x)β + δ(τ, x) + γ(τ, x),

(5.2.5)

where

δ(τ, x) =
k∑
i=0

∞∑
j=pi+1

bijϕjT (τ)Qi(τ, x),

γ(τ, x) =
∞∑

i=k+1

∞∑
j=0

bijϕjT (τ)Qi(τ, x),

A′(τ, x) = (ϕ0T (τ)Q0(τ, x), · · · , ϕp0T (τ)Q0(τ, x),

· · · , ϕ0T (τ)Qk(τ, x), · · · , ϕpkT (τ)Qk(τ, x)).

Then m̂(τ, x) is obtained by substituting β with β̂ and getting rid of the residues,

m̂(τ, x) = A′(τ, x)β̂. (5.2.6)

We shall investigate the limit of

m̂(τ, x)−m(τ, x) = A′(τ, x)(β̂ − β)− δ(τ, x)− γ(τ, x)

= A′(τ, x)(X ′X)−1X ′(δ + γ + ε)− δ(τ, x)− γ(τ, x).
(5.2.7)

For this purpose, let us put

A =
A(τ, x)A′(τ, x)

‖A(τ, x)‖2
and B = (X ′X)A(X ′X)−1. (5.2.8)

Once again, by virtue of Lemma 3.1.2, B has eigenvalues λ1 = 1, λ2 = · · · = λp = 0.

Let unit column vector α be the left eigenvector of B pertaining to λ1, viz., α′B = α′ and

‖α‖ = 1. In accordance with the notation of A(τ, x), the subscript of α is specified in

double-index, that is, α′ = (α00, · · · , α0p0 , · · · , αk0, · · · , αkpk).

Let us apply the reshuffle procedure for the set S from Assumption L.2 by α and
1

‖A(τ,x)‖A(τ, x). Denote by S̃ and S̄ the resulting sets:

1) S̃ = {ã0, · · · , ãi, · · · }, and S̄ = {ā0, · · · , āi, · · · }.

2) ãi = {ãij} where ãij = 1√
pmax

αij for 0 ≤ i ≤ k and 0 ≤ j ≤ pi; otherwise, ãij = aij .

181



3) āi = {āij} where āij = 1√
pmax‖A(τ,x)‖ϕjT (τ)Qi(τ, x) for 0 ≤ i ≤ k and 0 ≤ j ≤ pi;

otherwise, āij = aij .

Since the Riesz-Fischer theorem is satisfied by both S̃ and S̄, there exist two functions,

denoted by F (t, x) and G(t, x), such that

F (t, Z(t)) =
∞∑
i=0

∞∑
j=0

ãijϕjT (t)Qi(t, Z(t)),

G(t, Z(t)) =
∞∑
i=0

∞∑
j=0

āijϕjT (t)Qi(t, Z(t)),

(5.2.9)

for any t ∈ [0, T ].

Therefore, by virtue of equations in (5.2.9),

1
√
pmax

α′X ′ =F′ − δ̃′ − γ̃′, (5.2.10a)

1
√
pmax‖A(τ, x)‖

A(τ, x)′X ′ =G′ − δ̃′ − γ̃′, (5.2.10b)

where

F′ =(F (t1,n, X1,n), · · · , F (tn,n, Xn,n)),

G′ =(G(t1,n, X1,n), · · · , G(tn,n, Xn,n)),

δ̃′ =(δ̃1, · · · , δ̃n), with δ̃s =
k∑
i=0

∞∑
j=pi+1

aijϕjT (ts,n)Qi(ts,n, Xs,n),

γ̃′ =(γ̃1, · · · , γ̃n), with γ̃s =
∞∑

i=k+1

∞∑
j=0

aijϕjT (ts,n)Qi(ts,n, Xs,n).

The following lemma demonstrates the finiteness of second moment of F (t, Z(t)) and

G(t, Z(t)).

Lemma 5.2.1. For any t ∈ [0, T ], (a) E[F 2(t, Z(t))] <∞, and (b) E[G2(t, Z(t))] <∞.

Proof. (a) It follows from the orthogonality of Qi(t, Z(t)) that

E[F 2(t, Z(t))] =

∞∑
i=0

 ∞∑
j=0

ãijϕjT (t)

2

=
∞∑
i=0

 pi∑
j=0

ãijϕjT (t) +
∞∑

j=pi+1

aijϕjT (t)

2
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≤2
∞∑
i=0

 pi∑
j=0

ãijϕjT (t)

2

+ 2
∞∑
i=0

 ∞∑
j=pi+1

aijϕjT (t)

2

=2
1

pmax

k∑
i=0

 pi∑
j=0

αijϕjT (t)

2

+ 2
∞∑

i=k+1

 pi∑
j=0

aijϕjT (t)

2

+ 2

∞∑
i=0

 ∞∑
j=pi+1

aijϕjT (t)

2

≤ 2

pmax

k∑
i=0

pi∑
j=0

α2
ij

pi∑
j=0

ϕ2
jT (t) +

4

T

∞∑
i=k+1

 pi∑
j=0

|aij |

2

+
4

T

∞∑
i=0

 ∞∑
j=pi+1

|aij |

2

≤O(1)

pmax

k∑
i=0

pi

pi∑
j=0

α2
ij +

4

Tk

∞∑
i=k+1

i

 ∞∑
j=0

|aij |

2

+
4

T

∞∑
i=0

 ∞∑
j=0

|aij |

2

<∞,

since
∑pi

j=0 ϕ
2
jT (t) = O(1)pi, α is a unite vector and {aij} satisfies Assumption L.2.

(b) Similar to Part (a).

In order to obtain asymptotic behaviour of m̂, we make the following assumptions for

the truncation parameters.

Assumption L.6

(a) Let k = [nκ1 ] and 1
2 < κ1 < 1

(b) Let pmin = [nκ2 ], pmax = [nκ̄2 ] with 0 < κ2 ≤ κ̄2 < 1 and 0 ≤ κ̄2 − κ2 < 3κ2 − κ1 − 1.

Clearly, feasible solutions of truncation parameters do exist. The last assumption is

about the functions F (t, x), G(t, x).

Assumption L.7

(a) Both F (t, x) and G(t, x) are continuous in t and x.
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Theorem 5.2.1. Suppose that {xs,n}n1 and {es}n1 satisfy Assumption B. Under Assump-

tion L.5–L.7 we have

1√
n

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

(m̂(τ, x)−m(τ, x))

→D

∫ 1

0
F (Tr, Tµr +

√
TσzW (r))dU(r),

(5.2.11)

as n→∞ where (U(r),W (r)) is the vector of Brownian motion in Assumption B.

Remark 5.2.2. As can be seen from the proof, the convergence rate of m̂(τ, x) −m(τ, x)

is about
√
npmax

‖A(τ,x)‖ . In view of the estimation of ‖A(τ, x)‖, the rate is between n
1
2

(1−κ1) and

n
1
2

(1−κ1)+ 1
2

(κ̄2−κ2). The minimum order is less than 1
4 , while the maximum order is a little

bit bigger than the minimum order.

Proof. It is evident that we shall make use of the embedding schedule to facilitate the

proof. Note that we still use the old notations but with strong convergence (Wn, Un)→a.s.

(W,U). However, the convergence of (5.2.11) is in the weak sense remaining unchanged.

As mentioned before, this only makes our proof easier.

It follows from (5.2.7) that

1√
n

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

(m̂(τ, x)−m(τ, x))

=
1√

n
√
pmax

α′BX ′(δ + γ + ε)− 1√
n

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[δ(τ, x) + γ(τ, x)]

=
1√

n
√
pmax

α′X ′(δ + γ + ε)− 1√
n

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[δ(τ, x) + γ(τ, x)]

:=Π1 −Π2.

We shall show that Π1 converges to the desired variable in probability and Π2 →P 0

as n→∞.

In view of (5.2.10a), Π1 can be rephrased as

Π1 =
1√

n
√
pmax

α′X ′(δ + γ + ε) =
1√
n

(F′ − δ̃′ − γ̃′)(δ + γ + ε)

=
1√
n

(F′δ − δ̃′δ − γ̃′δ + F′γ − δ̃′γ − γ̃′γ + F′ε− δ̃′ε− γ̃′ε).

In order to complete the convergence of Π1, we are going to demonstrate that

1√
n

F′ε→P

∫ 1

0
F (Tr, Tµr +

√
TσzW (r))dU(r), (5.2.12)
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and

1√
n

F′δ →P 0,
1√
n

F′γ →P 0, (5.2.13)

1√
n
δ̃′δ →P 0,

1√
n
γ̃′δ →P 0,

1√
n
δ̃′γ →P 0,

1√
n
γ̃′γ →P 0, (5.2.14)

1√
n
δ̃′ε→P 0,

1√
n
γ̃′ε→P 0. (5.2.15)

In fact, (5.2.12) is valid because from Assumption B it follows that

1√
n

F′ε =
1√
n

n∑
s=1

F (ts,n, Xs,n)es =
1√
n

n∑
s=1

F
( s
n
T,
s

n
Tµ+

√
Tσzxs,n

)
es

=
n∑
s=1

F
( s
n
T,
s

n
Tµ+

√
Tσzxs,n

) 1√
n
es

=

n∑
s=1

F

(
s− 1

n
T +

1

n
T,
s− 1

n
Tµ+

1

n
Tµ+

√
TσzWn

(
s− 1

n
+

1

n

))
×
(
Un

( s
n

)
− Un

(
s− 1

n

))
=

n∑
s=1

∫ s
n

s−1
n

F (rT + o(1), rTµ+ o(1) +
√
TσzWn(r + o(1)))dUn(r)

=

∫ 1

0
F (rT + o(1), rTµ+ o(1) +

√
TσzWn(r) + oP (1))dUn(r),

and since (Wn(r + o(1)), Un(r))→a.s. (W (r), U(r)), as we shown in the proof of Theorem

1.4.1, it follows from the continuity of F (·, ·) that

(F (rT + o(1), rTµ+ o(1) +
√
TσxWn(r + o(1))), Un(r))

→a.s. (F (rT, rTµ+
√
TσxW (r)), U(r)).

Using Theorem 2.2 in Kurtz and Protter (1991) yields the result.

We now turn to prove (5.2.13), (5.2.14) and (5.2.15). Due to Cauchy-Schwarz inequality

we have

1

n
|F′δ|2 ≤ 1

n
‖F′‖2‖δ‖2, 1

n
|F′γ|2 ≤ 1

n
‖F′‖2‖γ‖2, 1

n
|δ̃′δ|2 ≤ 1

n
‖δ̃′‖2‖δ‖2,

1

n
|δ̃′γ|2 ≤ 1

n
‖δ̃′‖2‖γ‖2, 1

n
|γ̃′δ|2 ≤ 1

n
‖γ̃′‖2‖δ‖2, 1

n
|γ̃′γ|2 ≤ 1

n
‖γ̃′‖2‖γ‖2.

where ‖ · ‖ signifies the Euclidean norm.
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In addition, using martingale difference structure of (es,Fn,s) and adaptivity of xs+1,n

with Fn,s yields

1

n
E(δ̃′ε)2 =

1

n
E

(
n∑
s=1

δ̃ses

)2

=
1

n

n∑
s=1

E[δ̃2
se

2
s] + 2

1

n

n∑
s=2

s−1∑
l=1

E[δ̃sesδ̃lel]

=
1

n

n∑
s=1

E[δ̃2
sE(e2

s|Fn,s−1)] + 2
1

n

n∑
s=2

s−1∑
l=1

E[δ̃lelδ̃sE(es|Fn,s−1)]

=σ2
e

1

n

n∑
s=1

E[δ̃2
s ] = σ2

e

1

n
E‖δ̃′‖2,

and similarly

1

n
E(γ̃′ε)2 =σ2

e

1

n
E‖γ̃′‖2.

Therefore, it is sufficient to show that as n→∞,

‖δ‖2 →P 0, ‖γ‖2 →P 0,
1

n
E‖δ̃′‖2 → 0,

1

n
E‖γ̃′‖2 → 0, (5.2.16)

since

1

n
‖F′‖2 =

1

n

n∑
s=1

F 2(ts,n, Xs,n) =
1

n

n∑
s=1

F 2
( s
n
T,
s

n
Tµ+

√
Tσzxs,n

)
=

n∑
s=1

∫ s
n

s−1
n

F 2(rT + o(1), rTµ+ o(1) +
√
TσzWn(r) + oP (1))dr

− 1

n
F 2(0, 0) +

1

n
F 2(T, Tµ+

√
TσzWn(1))

=

∫ 1

0
F 2(rT + o(1), rTµ+ o(1) +

√
TσzWn(r) + oP (1))dr

− 1

n
F 2(0, 0) +

1

n
F 2(T,XT )

→P

∫ 1

0
F 2(Tr, Tµr +

√
TσzW (r))dr, (5.2.17)

using the continuity of F (·, ·), Wn(r)→a.s. W (r) and E[F 2(T,XT )] <∞ by Lemma 5.2.1.

Let us prove the results in (5.2.16) one by one.

Firstly, because of Assumptions L.5 (b), bi(t) := bi(t,m) is differentiable up to third

order, hence all expansions of bi(t), b
′
i(t) and b′′i (t) in terms of ϕjT (t) are convergent
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uniformly on [0, T ]. Whence bij =
(
T
jπ

)2
cj(b

′′
i ) where cj(b

′′
i ) stands for the j-th coefficient

in the expansion of b′′i (t). We have

E‖δ‖2 =
n∑
s=1

k∑
i=1

 ∞∑
j=pi+1

bijϕjT (ts,n)

2

≤ 2T 3

π4

n∑
s=1

k∑
i=1

 ∞∑
j=pi+1

1

j2
|cj(b′′i )|

2

≤2T 3

π4

n∑
s=1

k∑
i=1

∞∑
j=pi+1

1

j4

∞∑
j=pi+1

|cj(b′′i )|2

≤o(1)
nk

p3
min

= o(1)n1+κ1−3κ2 → 0

as n→∞, which implies ‖δ‖2 →P 0.

Secondly, by virtue of (4.4.8) with r = 2, bi(t,m) =
√
v(t)

2
√

(i−2)!
i! bi(t,D

2m). Thus,

E‖γ‖2 =

n∑
s=1

E[γ2
s ] =

n∑
s=1

E

 ∞∑
i=k+1

∞∑
j=0

bijϕjT (ts,n)Qi (ts,n, Xs,n)

2

=

n∑
s=1

∞∑
i=k+1

b2i (ts,n) =

n∑
s=1

∞∑
i=k+1

v(ts,n)2 (i− 2)!

i!
b2i (ts,n, D

2m)

≤ 1

k2

n∑
s=1

v(ts,n)2
∞∑

i=k+1

b2i (ts,n, D
2m) ≤ o(1)

1

k2

n∑
s=1

v(ts,n)2

≤o(1)
n

k2
max

0≤t≤T
v(t)2 = o(1)n1−2κ1 → 0,

due to Assumption L.6, and we have invoked Assumption L.5 that the convergence of

expansion of D2m is uniformly on [0, T ], hence
∑∞

i=k+1 b
2
i (ts,n, D

2m) = o(1) independent

of s. In addition, in the scope of this study, v(t) ∈ C[0, T ] (for example, when Z(t)

reduces to Brownian motion, v(t) = t), therefore, it is bounded on the interval. Whence,

‖γ‖2 →P 0.

Thirdly, it follows from the expression of δ̃s

1

n
E‖δ̃′‖2 =

1

n

n∑
s=1

E[δ̃2
s ]

=
1

n

n∑
s=1

E

 k∑
i=0

∞∑
j=pi+1

aijϕjT (ts,n)Qi(ts,n, Xs,n)

2

=
1

n

n∑
s=1

k∑
i=0

 ∞∑
j=pi+1

aijϕjT (ts,n)

2

≤ 1

n

n∑
s=1

k∑
i=0

√2√
T

∞∑
j=pi+1

|aij |

2
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≤
k∑
i=0

2

Tp2
i

 ∞∑
j=pi+1

j|aij |

2

≤ 2k

Tp2
min

 ∞∑
j=pmin+1

j|aij |

2

=
o(1)

T
nκ1−2κ2 → 0

as n → ∞, where we have used Assumption L.6 and the implication of Assumption L.2

that
∑∞

j=pi+1 |aij |j = o(1). Hence, 1
nE‖δ̃

′‖2 → 0.

Lastly, we may also have

1

n
E‖γ̃‖2 =

1

n

n∑
s=1

E[γ̃2
s ] =

1

n

n∑
s=1

E

 ∞∑
i=k+1

∞∑
j=0

aijϕjT (ts,n)Qi(ts,n, Xs,n)

2

=
1

n

n∑
s=1

∞∑
i=k+1

 ∞∑
j=0

aijϕjT (ts,n)

2

≤ 2

nT

n∑
s=1

∞∑
i=k+1

 ∞∑
j=0

|aij |

2

≤ 2

kT

∞∑
i=k+1

i

 ∞∑
j=0

|aij |

2

→ 0

due to Assumption L.2. We thus obtain that 1
nE‖γ̃‖

2 → 0.

Now we are in a position to prove Π2 →P 0 as n→∞.

Since Π2 can be rephrased as

Π2 =
1√
n

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[δ(τ, x) + γ(τ, x)]

=
1

n

α′X ′XA(τ, x)

pmax‖A(τ, x)‖
·
√
n
√
pmax

‖A(τ, x)‖
[δ(τ, x) + γ(τ, x)]

:=Π21 ·Π22,

we shall show that Π21 converges to some random variable in probability and Π22 → 0.

To begin with, by virtue of (5.2.10a) and (5.2.10b) we have

Π21 =
1

n

α′X ′XA(τ, x)

pmax‖A(τ, x)‖
=

1

n
(F′ − δ̃′ − γ̃′)(G− δ̃ − γ̃)

=
1

n
(F′G− F′δ̃ − F′γ̃ − δ̃′G− γ̃′G + 2δ̃′γ̃ + ‖δ̃′‖2 + ‖γ̃′‖2).

Noting that (5.2.16) and (5.2.17) imply that 1
nF′δ̃ →P 0, 1

nF′γ̃ →P 0, 1
n δ̃
′γ̃ →P 0,

1
n‖δ̃

′‖2 →P 0 and 1
n‖γ̃

′‖2 →P , it suffices to show that the convergence of

1

n
F′G and

1

n
‖G‖2, (5.2.18)
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as n→∞.

In effect, similar to (5.2.17),

1

n
F′G =

1

n

n∑
s=1

F (ts,n, Xs,n)G(ts,n, Xs,n)

=

∫ 1

0
F (Tr, Tµr +

√
TσzWn(r))G(Tr, Tµr +

√
TσzWn(r))dr

− 1

n
F (0, 0)G(0, 0) +

1

n
F (T,XT )G(T,XT )

→P

∫ 1

0
F (Tr, Tµr +

√
TσzW (r))G(Tr, Tµr +

√
TσzW (r))dr,

1

n
‖G‖2 =

1

n

n∑
s=1

G2(ts,n, Xs,n)

=

∫ 1

0
G2(Tr, Tµr +

√
TσzWn(r))dr − 1

n
G2(0, 0) +

1

n
G2(T,XT )

→P

∫ 1

0
G2(Tr, Tµr +

√
TσzW (r))dr

by continuous mapping theorem and Lemma 5.2.1 as n→∞.

Therefore, as n→∞,

Π21 →P

∫ 1

0
F (Tr, Tµr +

√
TσzW (r))G(Tr, Tµr +

√
TσzW (r))dr.

As for Π22, since Π22 = ∆1 + ∆2 where

∆1 =

√
n
√
pmax

‖A(τ, x)‖
δ(τ, x) and ∆2 =

√
n
√
pmax

‖A(τ, x)‖
γ(τ, x),

we shall show both ∆1 and ∆2 are approaching to zero.

It is known that O(1)kpmin ≤ ‖A(τ, x)‖2 ≤ O(1)kpmax. It follows from Assumption

L.5 that

|∆1| =
√
npmax

‖A(τ, x)‖
|δ(τ, x)| ≤

√
npmax

‖A(τ, x)‖

k∑
i=0

|Qi(τ, x)|

∣∣∣∣∣∣
∞∑

j=pi+1

bijϕjT (τ)

∣∣∣∣∣∣
≤O(1)

√
npmax√
kpmin

(
k∑
i=0

|Qi(τ, x)|2
) 1

2

 k∑
i=0

2T 3

π4

∣∣∣∣∣∣
∞∑

j=pi+1

1

j2
|cj(b′′i )|

∣∣∣∣∣∣
2

1
2

≤O(1)

√
npmax√
kpmin

√
k

 k∑
i=0

∞∑
j=pi+1

1

j4

∞∑
j=pi+1

|cj(b′′i )|2
 1

2

≤ o(1)

√
npmax

√
k

√
pminp

3/2
min
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=o(1)n
1
2

+ 1
2
κ1+ 1

2
(κ̄2−κ2)− 3

2
κ2 → 0

as n→∞ using Assumption L.6.

In addition, using (4.4.8) with r = 2 and the asymptotic property of Qi in Remark

4.3.4 gives

|∆2| =
√
npmax

‖A(τ, x)‖
|γ(τ, x)| =

√
npmax

‖A(τ, x)‖

∣∣∣∣∣
∞∑

i=k+1

bi(τ,m)Qi(τ, x)

∣∣∣∣∣
=

√
npmax

‖A(τ, x)‖

∣∣∣∣∣
∞∑

i=k+1

v(τ)√
i(i− 1)

bi(τ,D
2m)Qi(τ, x)

∣∣∣∣∣
≤O(1)

√
npmax√
kpmin

( ∞∑
i=k+1

|bi(τ,D2m)|2
) 1

2
( ∞∑
i=k+1

1

i(i− 1)
√
i

) 1
2

=o(1)

√
npmax√
kpmin

1

k3/4
= o(1)n

1
2

+ 1
2

(κ̄2−κ2)− 5
4
κ1 → 0

as n→∞ by virtue of Assumption L.6. The proof is finished.

5.3 Time horizon approaching infinity

We are also interested in the scenario where time variable lies in [0, Tn] and Tn →∞ when

sample size n→∞ for the same reason as in section 3 of Chapter 3.

We propose the following assumptions for the function m(t, x) in the model (5.0.1).

Assumption L.8

(a) For every t > 0, m(t, x) and Drm(t, x) are all in L2(I, ρr(t, x)), r = 1, 2, 3.

(b) For each i, bi(t,m) = E[m(t, Z(t))Qi(t, Z(t))], belongs to C3[0, T ] for any T > 0.

(c) For i large enough, the coefficient functions bi(t,D
3m) of D3m(t, Z(t)) expanded by

the system {Q3i(t, Z(t))} are such that v(t)3b2i (t,D
3m) are bounded on (0,∞) uni-

formly in i.

(d) ‖b′′i (t,m(t, x))‖L2[0,T ] are bounded for any T > 0 uniformly in i.

Remark 5.3.1. Since the framework in this section is a combination of the first two, the

requirements for m(t, x) contains the basic conditions in Assumption L.1 and L.5.
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There are many functions that satisfy these four conditions at the same time. For

instance, m(t, x) = tηe−ctP (x) with η ≥ 1, c > 0 and P (x) being any polynomial of fixed

degree; m(t, x) = t
1+tη cosx with η ≥ 3, and so on.

For the truncation parameters and time span Tn, we make the following assumption.

Assumption L.9

(a) Let k = [nκ1 ], pmin = [nκ2 ], pmax = [nκ̄2 ] and Tn = [nκ3 ], where 0 < κi < 1 (i = 1, 2, 3),

κ2 ≤ κ̄2 < 1 and κ1 > 0.5.

(b) Let 3κ3 + κ1 + 1 < 3κ2.

Remark 5.3.2. Feasible solutions for κi (i = 1, 2, 3) do exist. For instance, κ1 = 0.6,

κ2 = 0.8 and κ3 = 0.2. Meanwhile, condition (b) implies that κ2 >
1
2 + κ3.

Given the observation number n, one can choose T = Tn according to Assumption L.9.

Let us sample on [0, Tn] at equally spaced points: ts,n = Tn
s
n (s = 1, · · · , n) for model

(5.0.1). Denote by Ys,n the process Y (t) at ts,n, Xs,n = Z(ts,n) for the Lévy process at the

discrete points and es = ε(ts,n). Observe that from infinite divisibility and homogeneous

distribution of the Lévy process it follows that E(Z(t)) = tµ and V ar(Z(t)) = tσ2
z for any

real t ≥ 0. Thus,

Xs,n =
s∑
i=1

(Xi,n −Xi−1,n)

=EXs,n +
s∑
i=1

[Xi,n −Xi−1,n − E(Xi,n −Xi−1,n)]

=
s

n
Tnµ+

√
Tnσz

1√
n

s∑
i=1

wi,

where wi =
√
n√

Tnσz
(Xi,n −Xi−1,n − 1

nTnµ) form an i.i.d (0,1) sequence.

Let xs,n = 1√
n

∑s
i=1wi. It therefore follows from the functional central limit theorem

that xs,n converges in distribution to a Brownian motion on [0, 1] as n→∞. In addition,

it is clear that xs,n, along with dl,k,n =
√

(l − k)/n, satisfies Assumption A.

The following procedure is similar to the preceding subsections. The m(t, Z(t)) is

expanded using an orthonormal basis {ϕjTn(t)Qi(t, Z(t))} at each sampling point, and

then obtain n equations. The n equations can be written in the following matrix form

Y = Xβ + δ + γ + ε, (5.3.1)
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where all notations remain the similar meanings as before, so that we spare our effort to

recite them.

The OLS estimator of β is given by

β̂ = (X ′X)−1X ′Y. (5.3.2)

Obtaining β̂ enables us to estimate m(τ, x) for fixed τ > 0 and fixed x on the path of

Z(τ), viz., m̂(τ, x). m̂(τ, x) is generated from the expansion of m(τ, x) by superseding β

by β̂ and removing all residues. Whence, we have

m̂(τ, x) = A′(τ, x)β̂, (5.3.3)

where A′(τ, x) = (ϕ0Tn(τ)Q0(τ, x), · · · , ϕp0Tn(τ)Q0(τ, x), · · · , ϕ0Tn(τ)Qk(τ, x), · · · ,
ϕpkTn(τ)Qk(τ, x)).

The difference between m̂(τ, x) and m(τ, x) is

m̂(τ, x)−m(τ, x) = A′(τ, x)(β̂ − β)− δ(τ, x)− γ(τ, x)

= A′(τ, x)(X ′X)−1X ′(δ + γ + ε)− δ(τ, x)− γ(τ, x),
(5.3.4)

where

δ(τ, x) =
k∑
i=0

∞∑
j=pi+1

bijϕjTn(τ)Qi(τ, x);

γ(τ, x) =

∞∑
i=k+1

∞∑
j=0

bijϕjTn(τ)Qi(τ, x).

Thus, one desired result is the asymptotic distribution of m̂(τ, x) −m(τ, x). To this

end, put

A =
A(τ, x)A′(τ, x)

‖A(τ, x)‖2
and B = (X ′X)A(X ′X)−1. (5.3.5)

Once again, by Lemma 3.1.2, B has eigenvalues λ1 = 1, λ2 = · · · = λp = 0. Let unit

vector α be the unit left eigenvector of B pertaining to λ1. Hence, we have α′B = α′ and

‖α‖ = 1. Denote α′ = (α00, · · · , α0p0 , · · · , αk0 · · · , αkpk) in concert with A(τ, x).

Let us apply the reshuffle procedure for the set S from Assumption L.2 by α and
1

‖A(τ,x)‖A(τ, x). Denote by S̃ and S̄ the resulting sets:

1) S̃ = {ã0, · · · , ãi, · · · }, and S̄ = {ā0, · · · , āi, · · · }.

2) ãi = {ãij} where ãij =
√

Tn
pmax

αij for 0 ≤ i ≤ k and 0 ≤ j ≤ pi; otherwise, ãij = aij .
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3) āi = {āij} where āij =
√

Tn
pmax

1
‖A(τ,x)‖ϕjTn(τ)Qi(τ, x) for 0 ≤ i ≤ k and 0 ≤ j ≤ pi;

otherwise, āij = aij .

Due to the Riesz-Fischer theorem, for two sequences S̃ and S̄, there exist two functions,

denoted by F̃ (t, x) and G̃(t, x), such that

F̃ (t, Z(t)) =
∞∑
i=0

∞∑
j=0

ãijϕjTn(t)Qi(t, Z(t)),

G̃(t, Z(t)) =

∞∑
i=0

∞∑
j=0

āijϕjTn(t)Qi(t, Z(t)),

(5.3.6)

for any t ∈ [0, Tn].

In view of the expressions of ãij and āij , rewrite (5.3.6) as√
Tn
pmax

α′X ′ =F̃
′
− δ̃′ − γ̃′, (5.3.7a)

1

‖A(τ, x)‖

√
Tn
pmax

A(τ, x)′X ′ =G̃
′
− δ̃′ − γ̃′, (5.3.7b)

where

F̃
′
= (F̃ (t1,n, X1,n), · · · , F̃ (tn,n, Xn,n)), G̃

′
= (G̃(t1,n, X1,n), · · · , G̃(tn,n, Xn,n)),

δ̃′ = (δ̃1, · · · , δ̃n), with δ̃s =
k∑
i=0

∞∑
j=pi+1

aijϕjTn(ts,n)Qi(ts,n, Xs,n),

γ̃′ = (γ̃1, · · · , γ̃n), with γ̃s =
∞∑

i=k+1

∞∑
j=0

aijϕjTn(ts,n)Qi(ts,n, Xs,n).

Lemma 5.3.1. For any t ∈ [0, Tn], (a) E[G̃(t, Z(t))]2 <∞, and (b) E[F̃ (t, Z(t))]2 <∞.

Proof. (a) Invoking the orthogonality of Qi(t, Z(t)) gives

E[G̃(t, Z(t))]2 = E

 ∞∑
i=0

∞∑
j=0

āijϕjTn(t)Qi(t, Z(t))

2

=

∞∑
i=0

 ∞∑
j=0

āijϕjTn(t)

2

=

∞∑
i=0

 pi∑
j=0

āijϕjTn(t) +

∞∑
j=pi+1

aijϕjTn(t)

2

≤2
∞∑
i=0

 pi∑
j=0

āijϕjTn(t)

2

+ 2
∞∑
i=0

 ∞∑
j=pi+1

aijϕjTn(t)

2
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=2
k∑
i=0

 pi∑
j=0

āijϕjTn(t)

2

+ 2
∞∑

i=k+1

 pi∑
j=0

aijϕjTn(t)

2

+ 2
∞∑
i=0

 ∞∑
j=pi+1

aijϕjTn(t)

2

≤2

k∑
i=0

 pi∑
j=0

āijϕjTn(t)

2

+
4

Tn

∞∑
i=k+1

 pi∑
j=0

|aij |

2

+
4

Tn

∞∑
i=0

 ∞∑
j=pi+1

|aij |

2

.

It is easy by Assumption L.2 to see that the last two terms are finite. We thus deal

with the first one in what follows. Notice that in the preceding chapter we have shown

that
∑pi

j=0 ϕ
2
jTn

(t) = O(1) 1
Tn
pi(1 + o(1)). As a result,

k∑
i=0

 pi∑
j=0

āijϕjTn(t)

2

=
Tn

pmax‖A(τ, x)‖2
k∑
i=0

Q2
i (τ, x)

 pi∑
j=0

ϕjTn(τ)ϕjTn(t)

2

≤ Tn
pmax‖A(τ, x)‖2

k∑
i=0

Q2
i (τ, x)

pi∑
j=0

ϕ2
jTn(τ)

pi∑
j=0

ϕ2
jTn(t)

=
O(1)(1 + o(1))Tn
pmax‖A(τ, x)‖2

k∑
i=0

pi
Tn
Q2
i (τ, x)

pi∑
j=0

ϕ2
jTn(τ)

≤O(1)(1 + o(1))
1

‖A(τ, x)‖2
k∑
i=0

Q2
i (τ, x)

pi∑
j=0

ϕ2
jTn(τ)

=O(1).

(b) Similar to (a).

Let G̃(t, x) = G̃(t, µt + x − µt) =: G(t, x − µt) and F̃ (t, x) = F̃ (t, µt + x − µt) =:

F (t, x − µt). These reforms are because we are working on the centralised underlying

process.

Assumption L.10

(a) Both F (t, x) and G(t, x) are in Class (HI) with normal functions f(t, x), g(t, x) and

homogeneity powers υ(·) and %(·) respectively. Let υ(n) = nς and %(n) = nι satisfying

(i) 1 + κ1 + (2ι+ 5
2)κ3 < 3κ2; (ii) 1 + (2ι− 1

2)κ3 <
5
2κ1.
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(b) Suppose further that F 2(t, x), G2(t, x) and F (t, x)G(t, x) are in Class (HI) with normal

functions f2(t, x), g2(t, x) and f(t, x)g(t, x) and homogeneity powers υ2(·), %2(·) and

υ(·)%(·) respectively.

(c) Both F (t, x) and G(t, x) are in Class (HH) with normal functions f(t, x), g(t, x) and

homogeneity powers υ1(·), υ2(·) and %1(·), %2(·) respectively. Let υ1(n) = nς1 , υ2(n) =

nς2 and %1(n) = nι1 , %2(n) = nι2 satisfying (i) 1 + κ1 + (2ι1 + ι2 + 3)κ3 < 3κ2; (ii)

1 + (2ι1 + ι2)κ3 <
5
2κ1.

(d) Suppose further that F 2(t, x), G2(t, x) and F (t, x)G(t, x) are in Class (HH) with nor-

mal functions f2(t, x), g2(t, x) and f(t, x)g(t, x) and homogeneity powers υ2
1(·), υ2

2(·);
%2

1(·), %2
2(·); υ1(·)%1(·), υ2(·)%2(·) respectively.

Remark 5.3.3. Note that the conditions in (a) and (c) are untidy and annoying since we

would like to show the original requirements for the parameters.

It is clear that if 0 < ι < 1
4 , Assumption L.9 (b) implies the condition (i) of Assumption

L.10 (a); conversely, when ι ≥ 1
4 the latter always implies the former. Of course, there

are feasible options for them to satisfy all the requirements. For example, if κ1 = 0.7,

κ2 = 0.9 and κ3 = 0.1, then ι can be chosen from (0, 3.5). By the way, if we impose some

relationship among κi (i = 1, 2, 3), such as κ2 <
7
6κ1 + κ3, (i) implies (ii) in (a).

Let ζ = 2ι1 + ι2 for the time being. Since ζ ≥ 0, the condition (i) in (c) always implies

Assumption 4.9 (b). Evidently, if a relationship is imposed among κi (i = 1, 2, 3), (i) and

(ii) in (c) may substitute each other, depending what relationship is adding. Note that

there are feasible choices for all parameters. For instance, κ1 = 0.6, κ2 = 0.8, κ3 = 0.1,

ζ ∈ (0, 2.5).

The following theorem is the main result for the section.

Theorem 5.3.1. Suppose that {xs,n}ns=1 and {es}ns=1 satisfy Assumptions B and A (c).

Let Assumptions L.8 and L.9 hold.

If Assumption L.10 (a) and (b) are true, then

4
√
Tn

3√
σz√

nυ(Tn)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

(m̂(τ, x)−m(τ, x))

→D

(∫ 1

0
G3(u)dLW (u, 0)

) 1
2

N,

(5.3.8)
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where G3(·) =
∫
f2(·, x)dx, W is the standard Brownian motion on [0, 1] and N is a

standard normal random variable independent of W , and LW is the local–time process of

W .

If Assumption L.10 (c) and (d) are true, then
√
Tn√

nυ1(Tn)υ2(
√
Tnσz)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

(m̂(τ, x)−m(τ, x))

→D

∫ 1

0
f(r,W (r))dU(r),

(5.3.9)

where the vector (W (r), U(r)) of Brownian motions is from Assumption B.

Remark 5.3.4. The convergence rate of m̂(τ, x)−m(τ, x) in the first case, as can be seen

in its proof, is about
√
n
√
pmax%(Tn)

4√Tn
3‖A(τ,x)‖

. With help of the estimation of ‖A(τ, x)‖, the rate is

between n
1
2

(1−κ1)+(ι− 1
4

)κ3 and n
1
2

(1−κ1)+(ι− 1
4

)κ3+ 1
2

(κ̄2−κ2). The order of the lower bound is

less than 1
4 , while the order of upper bound is less than 1

2 .

In the second case, the convergence rate is
√
n
√
pmax%1(Tn)%2(

√
Tnσz)√

Tn‖A(τ,x)‖ revealed by its proof.

Approximately, it is between n
1
2

(1−κ1)+(ι1+ 1
2
ι2)κ3 and n

1
2

(1−κ1)+(ι1+ 1
2
ι2)κ3+ 1

2
(κ̄2−κ2).

Comparing the upper bounds and the lower bounds in the two scenarios, roughly

speaking, the second situation is faster than the first.

Proof. Let us prove (5.3.8) first. It follows from (5.3.4) that

4
√
Tn

3√
σz√

nυ(Tn)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

(m̂(τ, x)−m(τ, x))

=
4
√
Tn

3√
σz√

nυ(Tn)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[A′(τ, x)(X ′X)−1X ′(δ + γ + ε)− δ(τ, x)− γ(τ, x)]

=
4
√
Tn

3√
σz√

nυ(Tn)
√
pmax

α′BX ′(δ + γ + ε)−
4
√
Tn

3√
σz√

nυ(Tn)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[δ(τ, x) + γ(τ, x)]

=
4
√
Tn

3√
σz√

nυ(Tn)
√
pmax

α′X ′(δ + γ + ε)−
4
√
Tn

3√
σz√

nυ(Tn)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[δ(τ, x) + γ(τ, x)]

:=Π1 −Π2.

We are about to show that Π1 converges to the desired random variable in distribution,

while Π2 →P 0 as n→∞.

Using (5.3.7a) we can write

Π1 =
4
√
Tn
√
σz√

nυ(Tn)
(F̃
′
− δ̃′ − γ̃′)(δ + γ + ε)
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=
4
√
Tn
√
σz√

nυ(Tn)
(F̃
′
δ − δ̃′δ − γ̃′δ + F̃

′
γ − δ̃′γ − γ̃′γ + F̃

′
ε− δ̃′ε− γ̃′ε).

It follows from Theorem 1.3.1 and Assumption L.10 (a) that

4
√
Tn
√
σz√

nυ(Tn)
F̃
′
ε =

4
√
Tn
√
σz√

nυ(Tn)

n∑
s=1

F̃ (ts,n, Xs,n)es

=
4
√
Tn
√
σz√

nυ(Tn)

n∑
s=1

F̃
( s
n
Tn,

s

n
Tnµ+

√
Tnσzxs,n

)
es

=
4
√
Tn
√
σz√

nυ(Tn)

n∑
s=1

F
( s
n
Tn,
√
Tnσzxs,n

)
es

→D

(∫ 1

0
G3(u)dLW (u, 0)

) 1
2

N,

(5.3.10)

where G3(·) =
∫
f2(·, x)dx, W is the standard Brownian motion on [0, 1] and N is a

standard normal random variable independent of W , and LW is the local–time process of

W .

Meanwhile, using Cauchy-Schwarz inequality gives

|F̃
′
δ|2 ≤ ‖F̃

′
‖2‖δ‖2, |F̃

′
γ|2 ≤ ‖F̃

′
‖2‖γ‖2, |δ̃′δ|2 ≤ ‖δ̃′‖2‖δ‖2,

|δ̃′γ|2 ≤ ‖δ̃′‖2‖γ‖2, |γ̃′δ|2 ≤ ‖γ̃′‖2‖δ‖2, |γ̃′γ|2 ≤ ‖γ̃′‖2‖γ‖2.

where ‖ · ‖ signifies the Euclidean norm.

In addition, it follows once again from Theorem 1.3.1 that

√
Tnσz

nυ(Tn)2
‖F̃
′
‖2 =

√
Tnσz

nυ(Tn)2

n∑
s=1

F̃ 2(ts,n, Xs,n)

=

√
Tnσz

nυ(Tn)2

n∑
s=1

F̃ 2
( s
n
Tn,

s

n
Tnµ+

√
Tnσzxs,n

)
=

√
Tnσz

nυ(Tn)2

n∑
s=1

F 2
( s
n
Tn,
√
Tnσzxs,n

)
→P

∫ 1

0

∫ ∞
−∞

f2(t, x)dxdLW (t, 0),

(5.3.11)

since F 2(·, ·) is in Class (HI) with normal function f2(t, x) and homogeneity power υ(·)2

due to Assumption 6.10 (b).
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Also, since xs,n and es (s = 1, · · · , n) satisfy Assumption B, using martingale difference

structure, similar to the proof of Theorem 5.2.1, we have
√
Tnσz

nυ(Tn)2
E(δ̃′ε)2 =

√
Tnσz

nυ(Tn)2
σ2
eE‖δ̃′‖2,

√
Tnσz

nυ(Tn)2
E(γ̃′ε)2 =

√
Tnσz

nυ(Tn)2
σ2
eE‖γ̃′‖2.

Therefore, in order to complete the convergence of Π1 it suffices to demonstrate that

as n→∞,

‖δ‖2 →P 0, ‖γ‖2 →P 0, (5.3.12a)
√
Tn

nυ(Tn)2
E‖δ̃′‖2 →0,

√
Tn

nυ(Tn)2
E‖γ̃′‖2 →0. (5.3.12b)

To begin with the proof of (5.3.12a), similar to the counterpart in the proof of Theorem

5.2.1,

E‖δ‖2 =

n∑
s=1

E

 k∑
i=0

∞∑
j=pi+1

bijϕjTn(ts,n)Qi(ts,n, Xs,n)

2

=
n∑
s=1

k∑
i=0

 ∞∑
j=pi+1

bijϕjTn(ts,n)

2

≤ o(1)T 3
n

n∑
s=1

k∑
i=0

1

p3
i

≤o(1)T 3
n

nk

p3
min

= o(1)n1+3κ3+κ1−3κ2 → 0,

by virtue of Assumption L.9, which in turn implies ‖δ‖2 →P 0.

In addition, it follows from (4.4.8) with r = 3 that as n→∞

E‖γ‖2 =

n∑
s=1

E[γ2
s ] =

n∑
s=1

E

 ∞∑
i=k+1

∞∑
j=0

bijϕjTn(ts,n)Qi(ts,n, Xs,n)

2

=
n∑
s=1

∞∑
i=k+1

b2i (ts,n) =
n∑
s=1

∞∑
i=k+1

v3(ts,n)

i(i− 1)(i− 2)
b2i−3(ts,n, D

3m)

=
∞∑

i=k+1

1

i(i− 1)(i− 2)

n∑
s=1

v3(ts,n)b2i−3(ts,n, D
3m)

≤An
∞∑

i=k+1

1

i(i− 1)(i− 2)
≤ A(1 + o(1))

n

k2

=A(1 + o(1))n1−2κ1 → 0,
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by Assumption L.8, L.9, where A is the uniform bound of v(t)3b2i−3(t,D3m).

Now we are to prove (5.3.12b). It follows from the expressions of δ̃s that

√
Tn

nυ(Tn)2
E‖δ̃′‖2 =

√
Tn

nυ(Tn)2

n∑
s=1

E[δ̃2
s ]

=

√
Tn

nυ(Tn)2

n∑
s=1

E

 k∑
i=0

∞∑
j=pi+1

aijϕjTn(ts,n)Qi(ts,n, Xs,n)

2

=

√
Tn

nυ(Tn)2

n∑
s=1

k∑
i=0

 ∞∑
j=pi+1

aijϕjTn(ts,n)

2

≤ 2

n
√
Tnυ(Tn)2

n∑
s=1

k∑
i=0

 ∞∑
j=pi+1

|aij |

2

≤ 2√
Tnυ(Tn)2

k∑
i=0

1

p2
i

 ∞∑
j=pi+1

j|aij |

2

≤ o(1)k√
Tnp2

minυ(Tn)2
=

o(1)

υ(Tn)2
nκ1−2κ2−κ3/2 → 0,

as n→∞ by Assumptions L.10 (a) and L.2.

Analogously, we have as n→∞
√
Tn

nυ(Tn)2
E‖γ̃′‖2 =

√
Tn

nυ(Tn)2

n∑
s=1

E[γ̃2
s ]

=

√
Tn

nυ(Tn)2

n∑
s=1

E

 ∞∑
i=k+1

∞∑
j=0

aijϕjTn(ts,n)Qi(ts,n, Xs,n)

2

=

√
Tn

nυ(Tn)2

n∑
s=1

∞∑
i=k+1

 ∞∑
j=0

aijϕjTn(ts,n)

2

≤ 2
√
Tn

nυ(Tn)2Tn

n∑
s=1

∞∑
i=k+1

 ∞∑
j=0

|aij |

2

≤ 2√
Tnυ(Tn)2k

∞∑
i=k+1

i

 ∞∑
j=0

|aij |

2

=
o(1)

υ(Tn)2
n−κ1−κ3/2 → 0
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on account of Assumption L.2 as n→∞.

We are now in a position to prove Π2 →P 0 as n→∞.

Notice that Π2 can be rephrased as

Π2 =
4
√
Tn

3√
σz√

nυ(Tn)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[δ(τ, x) + γ(τ, x)]

=

√
Tnσz

nυ(Tn)%(Tn)

Tn
pmax‖A(τ, x)‖

α′X ′XA(τ, x)

×
√
n
√
pmax%(Tn)

√
σz

4
√
Tn

3‖A(τ, x)‖
[δ(τ, x) + γ(τ, x)]

:=Π21 × (Π22 + Π23),

where

Π21 =

√
Tnσz

nυ(Tn)%(Tn)

Tn
pmax‖A(τ, x)‖

α′X ′XA(τ, x),

Π22 =

√
n
√
pmax%(Tn)

√
σz

4
√
Tn

3‖A(τ, x)‖
δ(τ, x), Π23 =

√
n
√
pmax%(Tn)

√
σz

4
√
Tn

3‖A(τ, x)‖
γ(τ, x).

To complete the convergence of Π2, we are going to show that Π21 converges to some

random variable in probability, while both Π22 and Π23 are convergent to zero.

It follows from (5.3.7) that

Π21 =

√
Tnσz

nυ(Tn)%(Tn)

Tn
pmax‖A(τ, x)‖

α′X ′XA(τ, x)

=

√
Tnσz

nυ(Tn)%(Tn)
(F̃
′
− δ̃′ − γ̃′)(G̃− δ̃ − γ̃)

=

√
Tnσz

nυ(Tn)%(Tn)
(F̃
′
G̃− δ̃′G̃− γ̃′G̃ + F̃

′
δ̃ + F̃

′
γ̃ − ‖δ̃′‖2 − 2γ̃′δ̃ − ‖γ̃′‖2).

Nevertheless, (5.3.11) and (5.3.12b) as well as Cauchy-Schwarz inequality suggest that

in order to obtain the limit of Π21, one only needs to find the limits of

√
Tnσz

nυ(Tn)%(Tn)
F̃
′
G̃ and

√
Tnσz

n%(Tn)2
‖G̃‖2.

Indeed, similar to (5.3.11) we have

√
Tnσz

n%(Tn)2
‖G̃
′
‖2 =

√
Tnσz

n%(Tn)2

n∑
s=1

G̃2(ts,n, Xs,n)
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=

√
Tnσz

n%(Tn)2

n∑
s=1

G̃2
( s
n
Tn,

s

n
Tnµ+

√
Tnσzxs,n

)
=

√
Tnσz

n%(Tn)2

n∑
s=1

G2
( s
n
Tn,
√
Tnσzxs,n

)
→P

∫ 1

0

∫ ∞
−∞

g2(t, x)dxdLW (t, 0),

and
√
Tnσz

nυ(Tn)%(Tn)
F̃
′
G̃ =

√
Tnσz

nυ(Tn)%(Tn)

n∑
s=1

F̃ (ts,n, Xs,n)F̃ (ts,n, Xs,n)

=

√
Tnσz

nυ(Tn)%(Tn)

n∑
s=1

F̃
( s
n
Tn,

s

n
Tnµ+

√
Tnσzxs,n

)
G̃
( s
n
Tn,

s

n
Tnµ+

√
Tnσzxs,n

)
=

√
Tnσz

nυ(Tn)%(Tn)

n∑
s=1

F
( s
n
Tn,
√
Tnσzxs,n

)
G
( s
n
Tn,
√
Tnσzxs,n

)
→P

∫ 1

0

∫ ∞
−∞

f(t, x)g(t, x)dxdLW (t, 0),

by virtue of Theorem 1.3.1 and Assumption L.10 (b).

Hence, we have Π21 →P

∫ 1
0

∫∞
−∞ f(t, x)g(t, x)dxdLW (t, 0).

Regarding Π22, because σz is a constant, and in view of the estimation O(1)kpmin ≤
Tn‖A(τ, x)‖2 ≤ O(1)kpmax and bij =

(
Tn
jπ

)2
cj(b

′′
i ) where cj(b

′′
i ) is the j-th coefficient in

the expansion of b′′i , we have,

|Π22| =
√
n
√
pmax%(Tn)

√
σz

4
√
Tn

3‖A(τ, x)‖
|δ(τ, x)|

=

√
n
√
pmax%(Tn)

√
σz

4
√
Tn

3‖A(τ, x)‖

∣∣∣∣∣∣
k∑
i=0

∞∑
j=pi+1

bijϕjTn(τ)Qi(τ, x)

∣∣∣∣∣∣
≤
√
n
√
pmax%(Tn)

√
σz

4
√
Tn

3‖A(τ, x)‖

(
k∑
i=0

|Qi(τ, x)|2
) 1

2

 k∑
i=0

∣∣∣∣∣∣
∞∑

j=pi+1

bijϕjTn(τ)

∣∣∣∣∣∣
2

1
2

≤o(1)

√
n
√
pmaxTn%(Tn)

√
kpmin

4
√
Tn

3

√
k

(
k∑
i=0

T 3
n

p3
i

) 1
2

≤o(1)

√
npmaxT

ι
n√

pmin
4
√
Tn

√
k
√
Tn

3

√
pmin

3

=O(1)n
1
2

+ 1
2
κ1+(ι+ 5

4
)κ3+ 1

2
(κ̄2−κ2)− 3

2
κ2 → 0,
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as n → ∞ where we use Assumption L.8(d) , Assumption L.9 and L.10 (a) for ι and

truncation parameters.

Analogously, by (4.4.8) with r = 2,

|Π23| =
√
n
√
pmax%(Tn)

√
σz

4
√
Tn

3‖A(τ, x)‖
|γ(τ, x)|

=

√
n
√
pmax%(Tn)

√
σz

4
√
Tn

3‖A(τ, x)‖

∣∣∣∣∣
∞∑

i=k+1

bi(τ)Qi(τ, x)

∣∣∣∣∣
=

√
n
√
pmax%(Tn)

√
σz

4
√
Tn

3‖A(τ, x)‖

∣∣∣∣∣
∞∑

i=k+1

v(τ)√
i(i− 1)

bi(τ,D
2m)Qi(τ, x)

∣∣∣∣∣
≤O(1)

√
npmaxT

ι
n

4
√
Tn
√
kpmin

( ∞∑
i=k+1

1

i(i− 1)
√
i

) 1
2

≤ o(1)

√
npmaxT

ι
n

4
√
Tn
√
kpmin

1

k3/4

=o(1)n
1
2

+ 1
2

(κ̄2−κ2)+(ι− 1
4

)κ3− 5
4
κ1 → 0,

as n→∞ in view of Assumption L.10 (a).

Up to now, the first part of the theorem is finished. In what follows we shall prove the

second part.

It follows from (5.3.4) that
√
Tn√

nυ1(Tn)υ2(
√
Tnσz)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

(m̂(τ, x)−m(τ, x))

=

√
Tn√

nυ1(Tn)υ2(
√
Tnσz)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

× [A′(τ, x)(X ′X)−1X ′(δ + γ + ε)− δ(τ, x)− γ(τ, x)]

=
1

√
nυ1(Tn)υ2(

√
Tnσz)

√
Tn
pmax

α′X ′(δ + γ + ε)

−
√
Tn√

nυ1(Tn)υ2(
√
Tnσz)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[δ(τ, x) + γ(τ, x)]

:=Π3 −Π4.

We are about to show that Π3 is convergent in probability to the desired stochastic

integral and Π4 →P 0.

Observe that in view of (5.3.7a) we have

Π3 =
1

√
nυ1(Tn)υ2(

√
Tnσz)

√
Tn
pmax

α′X ′(δ + γ + ε)
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=
1

√
nυ1(Tn)υ2(

√
Tnσz)

(F̃
′
− δ̃′ − γ̃′)(δ + γ + ε)

=
1

√
nυ1(Tn)υ2(

√
Tnσz)

× (F̃
′
δ − δ̃′δ − γ̃′δ + F̃

′
γ − δ̃′γ − γ̃′γ + F̃

′
ε− δ̃′ε− γ̃′ε).

It follows from the proof (not the result) of Theorem 1.5.1 that

1
√
nυ1(Tn)υ2(

√
Tnσz)

F̃
′
ε =

1
√
nυ1(Tn)υ2(

√
Tnσz)

n∑
s=1

F̃ (ts,n, Xs,n)es

=
1

√
nυ1(Tn)υ2(

√
Tnσz)

n∑
s=1

F̃ (ts,n, µts,n +
√
Tnσzxs,n)es

=
1

√
nυ1(Tn)υ2(

√
Tnσz)

n∑
s=1

F (ts,n,
√
Tnσzxs,n)es

=
1

√
nυ1(Tn)υ2(

√
Tnσz)

n∑
s=1

F
( s
n
Tn,
√
Tnσzxs,n

)
es

→P

∫ 1

0
f(r,W (r))dU(r), (5.3.13)

on account of Assumption L.10 (c) where (W (r), U(r)) is the limit of (Wn(r), Un(r)) in

Assumption B.

Also, for the same reason we have

1

nυ2
1(Tn)υ2

2(
√
Tnσz)

‖F̃
′
‖2 =

1

nυ2
1(Tn)υ2

2(
√
Tnσz)

n∑
s=1

F̃ 2(ts,n, Xs,n)

=
1

nυ2
1(Tn)υ2

2(
√
Tnσz)

n∑
s=1

F̃ 2(ts,n, µts,n +
√
Tnσzxs,n)

=
1

nυ2
1(Tn)υ2

2(
√
Tnσz)

n∑
s=1

F 2(ts,n,
√
Tnσzxs,n)

=
1

nυ2
1(Tn)υ2

2(
√
Tnσz)

n∑
s=1

F 2
( s
n
Tn,
√
Tnσzxs,n

)
→P

∫ 1

0
f2(r,W (r))dr, (5.3.14)

on account of Assumption L.10 (d).

Notice that the parameters involved in both δ and γ are k and pi (i = 0, · · · , k) which

satisfy Assumption L.9, as the case in the first part of the theorem, and the coefficients
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of the expansion of m(t, x) in both δ and γ remain unchanged; meanwhile, δ̃′ and γ̃′ are

the same as in the first part since {aij} is still the sequence in Assumption L.2 and the

truncation parameters are the same. Whence, (5.3.12) is still valid in this part with a

modification that υ(Tn) is superceded by υ1(Tn). Therefore, Cauchy-Schwarz inequality

and (5.3.14) imply all the terms of Π3 except for (5.3.13) are approaching to zero in

probability, hence Π3 →P

∫ 1
0 f(r,W (r))dU(r).

Now we are ready to prove that Π4 →P 0. Rewrite

Π4 =

√
Tn√

nυ1(Tn)υ2(
√
Tnσz)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[δ(τ, x) + γ(τ, x)]

:=Π41 × (Π42 + Π43)

where

Π41 =
Tn

nυ1(Tn)υ2(
√
Tnσz)%1(Tn)%2(

√
Tnσz)

α′X ′XA(τ, x)

pmax‖A(τ, x)‖
,

Π42 =

√
n
√
pmax%1(Tn)%2(

√
Tnσz)√

Tn‖A(τ, x)‖
δ(τ, x),

and

Π43 =

√
n
√
pmax%1(Tn)%2(

√
Tnσz)√

Tn‖A(τ, x)‖
γ(τ, x).

It follows from (5.3.7) that

Π41 =
1

nυ1(Tn)υ2(
√
Tnσz)%1(Tn)%2(

√
Tnσz)

(F̃
′
− δ̃′ − γ̃′)(G̃− δ̃ − γ̃)

=
1

nυ1(Tn)υ2(
√
Tnσz)%1(Tn)%2(

√
Tnσz)

× (F̃
′
G̃− δ̃′G̃− γ̃′G̃− F̃

′
δ̃ − F̃

′
γ̃ + ‖δ̃‖2 + ‖γ̃‖2 + 2γ̃′δ̃).

Once again, due to the proof of Theorem 1.5.1, Assumption L.10 (d), we similarly have

1

n%1(Tn)2%2(
√
Tnσz)2

‖G̃‖2

=
1

n%1(Tn)2%2(
√
Tnσz)2

n∑
s=1

G̃2(ts,n, Xs,n)

=
1

n%1(Tn)2%2(
√
Tnσz)2

n∑
s=1

G2
( s
n
Tn,
√
Tnσzxs,n

)
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→P

∫ 1

0
g2(r,W (r))dr. (5.3.15)

Thus, Cauchy-Schwarz inequality as well as (5.3.12b),(5.3.14), (5.3.15) suggests that

all the terms in Π41 except for the one containing F̃
′
G̃ converge in probability to zero.

Hence, to find out the limit of Γ41 it suffices to find that of that term. In fact,

1

nυ1(Tn)υ2(
√
Tnσz)%1(Tn)%2(

√
Tnσz)

F̃
′
G̃

=
1

nυ1(Tn)υ2(
√
Tnσz)%1(Tn)%2(

√
Tnσz)

n∑
s=1

F̃ (ts,n, Xs,n)G̃(ts,n, Xs,n)

=
1

nυ1(Tn)υ2(
√
Tnσz)%1(Tn)%2(

√
Tnσz)

×
n∑
s=1

F̃
(
ts,n, µts,n +

√
Tnσzxs,n

)
G̃
(
ts,n, µts,n +

√
Tnσzxs,n

)
=

1

nυ1(Tn)υ2(
√
Tnσz)%1(Tn)%2(

√
Tnσz)

×
n∑
s=1

F
( s
n
Tn,
√
Tnσzxs,n

)
G
( s
n
Tn,
√
Tnσzxs,n

)
→P

∫ 1

0
f(r,W (r))g(r,W (r))dr,

as n→∞ by the proof of Theorem 1.5.1 and Assumption L.10 (d), so that Π41 converges

to the same limit as above in probability.

Now let us turn to prove both Π42 → 0 and Π43 → 0, as n → ∞. Recall that

O(1)kpmin ≤ Tn‖A(τ, x)‖2 ≤ O(1)kpmax. Because δ(τ, x) and γ(τ, x) remain the same as

in the first part, we have

|Π42| =
√
n
√
pmax%1(Tn)%2(

√
Tnσz)√

Tn‖A(τ, x)‖
|δ(τ, x)|

=

√
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√
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√
Tnσz)√

Tn‖A(τ, x)‖

∣∣∣∣∣∣
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∣∣∣∣∣∣
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) 1
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 ∞∑
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2
1
2
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≤O(1)

√
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√
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ι1
n T

1
2
ι2

n√
kpmin

√
k

(
k∑
i=0

T 3
n

1

p3
i

) 1
2

≤o(1)n
1
2

+ 1
2
κ1+ 1

2
(κ̄2−κ2)+(ι1+ 1

2
ι2+ 3

2
)κ3− 3

2
κ2 → 0,

as n→∞ by the condition for the parameters of Assumption L.10 (c).

Meanwhile, once again on account of Assumption L.8 using (4.4.8) with r = 2, we have

|Π43| =
√
n
√
pmax%1(Tn)%2(

√
Tnσz)√

Tn‖A(τ, x)‖
|γ(τ, x)|

=

√
n
√
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√
Tnσz)√
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∣∣∣∣∣
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v(τ)√
i(i− 1)

bi−2(τ,D2m)Qi(τ, x)

∣∣∣∣∣
≤o(1)

√
n
√
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n T

1
2
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n√
kpmin

1

k3/4

=o(1)n
1
2

+ 1
2

(κ̄2−κ2)+(ι1+ 1
2
ι2)κ3− 5

4
κ1 → 0,

where Assumption L.10 (c) are used.

This finishes the whole proof.
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Chapter 6

Conclusions and discussion

What has been done

Homogeneous functional f(B(t)) and time-inhomogeneous functional f(t, B(t)), given that

f satisfies some not quite rigorous conditions respectively, have been expanded into or-

thogonal series, the so-called Fourier series in respective Hilbert space. Subsequently,

everything happens automatically by virtue of Hilbert space. Different time horizons are

considered from the application point of view. The key point behind doing so is to find

appropriate Hilbert space which contains the functionals we are interested in and then to

find some complete orthogonal polynomial sequence in the Hilbert space. What orthogo-

nal polynomial systems we utilise in this situation are Hermite and Laguerre polynomial

sequences as well as a trigonometric sequence on a fixed interval. These expansions enable

us to estimate an unknown functional form in a class of general econometric models. The

estimated form is explicit and the asymptotic distributions of the estimators according

to different time horizons and sampling styles are shown as mixed normal for two cases

where either the time zone is infinity or the time zone is compact associated with sample

size and moving to infinity, and a stochastic integral in the case where the time zone is

fixed.

For the same purposes, we consider a more general scenario where the underlying

process is replaced by the Lévy process. Definitely, we face more challenges since we

cannot rely on any particular distribution of the process. One thing is to illuminate the

existence of orthogonal polynomial system which has the density function or probability

distribution function of the underlying process as its weight. We thus define the classical
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polynomial system for some Lévy processes which encompass not only continuous processes

such as Brownian motion but also discrete processes like the Poisson process. By virtue of

hypergeometric differential/difference equations, we have shown the explicit expressions

of the orthogonal polynomial system and their squared norms of the polynomials. These

are crucial for the following developments.

Similar to the first part, homogeneous functional f(Z(t)) and time-inhomogeneous

functional f(t, Z(t)) where Z(t) is a Lévy process are expanded into Fourier series in

respective Hilbert spaces. We also estimate unknown functionals of the Lévy processes

in a general class of econometric models. Similarly, asymptotic distributions for different

estimators according to the different time horizons are derived as well. The limits of

the estimators on the infinite interval and compact interval which approaches infinity are

different from the limit of the estimator on the fixed time zone. Moreover, the convergence

rates of the estimators depend on sample size (as conventional regression estimator) and

function forms produced by values of the basis at sampling points.

The existing results in the literature regarding of the asymptotic theory are not appli-

cable for this research and it is mainly because a time variable is involved in the regressor.

The exploration of asymptotic theory is exhibited in Chapter 1, which contains two large

classes functionals and displays asymptotic theorems for both sample mean and sample

covariance. As a result, the existing studies become a special case of the asymptotic theory

developed in this paper.

As shown in Chapter 3 and 5, asymptotic theory plays a vital role for the application of

the proposed expansions. More precisely, it determines for what kinds of functional forms

involved in our derivation we can obtain their asymptotic distribution. Therefore, asymp-

totic theory amounts to a bottleneck. We establish asymptotic theory for two rudimentary

classes of functionals, namely, functionals in Assumption C and regular functionals, and

two extended classes of functionals, viz., Class T (HI) and Class T (HH) in Chapter 1.

Our results indicate that the asymptotic theory enables us to apply the expansion in

relative general functional forms.

More potential applications

Apart from the econometric estimation displayed in this thesis, the proposed method of

Lévy process functional expansion may also be used in some relevant fields of economics
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and finance to tackle the nonlinear and nonstationary problems.

We would consider a traditional maximum utility question on agent consumption and

habits. The form of utility, according to a prominent explanation of aggregate stock

market behaviour, is a power function of the difference between aggregate consumption

and a habit level. Thus, it is the habit function that plays a central role in such a theory.

The question is addressed to maximise the utility

U = E
∞∑
t=0

δt
(Ct −Xt)

γ−1 − 1

γ − 1
,

where δ is the time preference factor, Xt is the level of habit such that 0 ≤ Xt ≤ Ct.
However, the theory does not provide precise guidelines about the functional form of the

habit. In the literature such as Chen and Ludvigson (2009), Campbell and Cochrane (1999,

2000) and Constantinides (1990), the habit function is formulated as a function of past

and contemporaneous consumption levels, viz., Xt = f(Ct, Ct−1, · · · , Ct−L). Moreover,

to tackle the nonstationarity of the data, researchers presume that the habit function is

homogeneous of order one which allows to rephrase the function as

Xt = Ctg

(
Ct−1

Ct
, · · · , Ct−L

Ct

)
.

Definitely, such a pre-assumption restricts the applicabilities of the theory and real-

world data sets. We can do better by relaxing such a particular form as a general form

and rewrite Xt = f(Ct, Ct−1, · · · , Ct−L) = g(4Ct−1, · · · ,4Ct−L+1, Ct−L) where 4 is the

forward difference operation. Noting that the difference sequence of consumption is i.i.d.,

we then expand the function g and estimate the coefficients and hence obtain the habit

function.

Furthermore, in economics there are a great deal of models with conditional moment

restrictions containing unknown functionals in nonstationary processes. See Ai and Chen

(2003, 2007). Such models take a general form as

E(ρ(Z, g)|W, g) = 0,

where (ZT ,W T ) is a vector of observable random variables, and W may or may not be in-

cluded in Z. Here ρ is a one-dimensional residual function known up to g. The conditional

expectation is taken with respect to conditional distribution Z given W and g, assumed

unknown. The parameter of interest is g which is infinite dimensional. Interestingly, this

model covers several commonly encountered nonparametric and semiparametric models:
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Regular nonparametric regression

Y = g(W ) + ε,

given E(ε|W ) = 0. Let Z = (Y,W ). With ρ(Z, g) = Y −g(W ) it becomes the parent

model.

Single index model

Y = h(W T θ) + ε,

given E(ε|W ) = 0. The parameter of interest is (h, θT ) where h is nonparametric.

Let Z = (Y,W ), g = (h, θT ) and ρ(Z, g) = Y − h(W T θ). It returns to the parent

model.

Nonparametric IV regression

Y = g(X) + ε,

where X is an endogenous regressor such that E(ε|X) 6= 0. Suppose there is an

instrumental variable W observable for which E(ε|W ) = 0. Define Z = (Y,X) and

ρ(Z, g) = Y − g(X). It is rewritten as the parent model.

Nonparametric quantile IV regression

Y = g(X) + ε, P (ε ≤ 0|W ) = γ,

where the unknown function g is of interest and γ ∈ (0, 1) is known and fixed. With

ρ(Z, g) = I(Y ≤ g(X))− γ where Z = (Y,X), we have the parent model.

However, in the literature researchers assumed that the observations of (Z,W ) are

identical and independent distributed data (Zi,Wi) (i = 1, · · · , n). See, for example, Liao

and Jiang (2011).

In finance, more often than not, the derivative pricing problem is associated with a

functional, very popular nowadays, in a general Lévy process rather than only a Brownian

motion. It can be expected that our expansion method is applicable in complete financial

markets to deal with the perfect hedging problems and in incomplete financial markets to

tackle the mean-variance hedging problems.

Note that two significant features of our proposed method are dealing with nonstation-

ary data sets and unknown functional forms. The orthogonal expansion of the unknown

functionals involving in the above models would be a sharper weapon to obtain the esti-

mations of parameters and unknown function of interest.
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Future work

There remain some researches about this topic to do in the future. We would study the

expansion of Lévy process functionals for more general forms. In particular, the functional

including time variable and two independent different Lévy processes is worthy to be stud-

ied. In addition, more classes of functionals need to be investigated in asymptotic theory

that will widen our scope of applicability of proposed method and theory. Moreover, there

is an urgent need to do some simulations on the convergence of the orthogonal expansions

of Lévy process functionals and the estimators of unknown functionals in econometric

models.

As an application of the proposed method and theory, the aforementioned problems

in economics and finance would be investigated in next step, which may resolve the long-

standing theoretical issues. All application studies will provide evidence of the necessity of

proposing the method and theory in this thesis. Hopefully, reasonable and sound results

can be achieved.
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Appendix A

Miscellaneous

This chapter reports an alternative method for the expansion of the Brownian motion

functional, particularly, the quadratic Brownian motion. More precisely, the proposed

method adopts stochastic integral to construct a complete orthogonal basis for a complete

subspace of L2(Ω), then any element in the subspace including the quadratic Brownian

motion can be expanded as a Fourier series.

A.1 Background and motivation

Recall that there are several existing expansions of Brownian motion in literature exploit-

ing different choices of bases in L2 space. Orthogonal decomposition of Brownian motion

gives a convenient way to simulate Brownian motion, and theoretically it is helpful to

understand what the Brownian motion is.

In Yeh (1973), noting that there is a complete orthonormal system {φn(t)}, n = 0, 1, . . .,

in L2[0, π], where

φ0(t) =
1√
π
, and φn(t) =

√
2

π
cos(nt), n = 1, 2, . . . , t ∈ [0, π], (A.1.1)

and using the transformation I(f) =
∫ π

0 f(x)dB(x), f ∈ L2[0, π], this basis {φn(t)} is

mapped from L2[0, π] into a complete subspace of L2(Ω) and the image forms a complete

orthonormal system in the subspace. Denote by {Zn, n = 0, 1, . . .} the image of {φn},
n = 0, 1, . . ., hence Zn =

∫ π
0 φn(x)dB(x). Then for every n, Zn follows normal distribution

N(0, 1) and they are independent each other. Based on this orthonormal system, Brownian
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motion is expanded as

B(t) =
t√
π
Z0 +

∞∑
n=1

√
2

π

sin(nt)

n
Zn, t ∈ [0, π]. (A.1.2)

In Mikosch (1998), there are another two versions of Brownian motion expansions.

One is the Paley-Wiener representation

B(t, ω) = Z0(ω)
t√
2π

+
2√
π

∞∑
n=1

Zn(ω)
sin(nt/2)

n
, t ∈ [0, 2π], (A.1.3)

where Zn are i.i.d. N(0, 1) random variables.

Another one, more generally, is the Levy-Ciesielski representation

B(t, ω) =

∞∑
n=1

Zn(ω)

∫ t

0
φn(x)dx, t ∈ [0.1], (A.1.4)

where Zn are i.i.d N(0, 1) random variables and (φn) is a complete orthogonal system on

[0, 1].

However, to the best of my knowledge, there is no existing expansion for Brownian

motion functionals into orthogonal series. Note that such expansions potentially have a

variety application in solving stochastic differential equations and in modeling two random

variables with unknown relationships. Nevertheless, the difficulty of decomposing function

f(B(t)) into orthogonal series is overwhelming because of the arbitrariness of f(·). This

chapter dwells on a simple function f(x) = x2, and it can be seen that this method is

applicable for any power function f(x) = xn.

Suppose that Brownian motion is defined on probability space (Ω,F , P ) and interval

[0,∞). To begin with, we introduce the following definition of a kind of stochastic integral.

Definition A.1.1. Suppose B(t) is a standard Brownian motion on (Ω,F , P ). Let F (t, ·)
be a function defined on [a, b]× Ω satisfying integrability conditions

• F (t, B(t)) is B×F-measurable, where B denotes the Borel σ-field on [a, b];

• F (t, ·) is adapted with natural filtration Ft = σ(B(t)) generated by Brownian mo-

tion;

• ∫ b

a
E[F 2(t, B(t))]dt =

∫ b

a

∫ +∞

−∞

1√
2πx

e
−y

2

2t F 2(t, y)dydx <∞.
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Suppose that an arbitrary partition is described by a sequence of points on [a, b],

τn[a, b]: a = t0 < t1 < · · · < tn−1 < tn = b. Denote by ∆ti = ti − ti−1 and ∆t =

maxi{∆xi}. Define a stochastic integral

I(F ) :=

∫ b

a
F (t, B(t))dB(t), (A.1.5)

as a mean square limit of the following summation

n∑
i=1

F (ti−1, B(ti−1))(B(ti)−B(xi−1)).

Remark A.1.1. The integrability conditions are normal requirements in usual text book

about Itô integral. In addition, this definition is almost the same as that in general

stochastic integral text book (Mikosch, 1998); the only difference is that here the integrand

stochastic process is of the particular form F (t, B(t)). This is only for the sake of later

use in this study. Furthermore, it can be seen that this integral of F with respect to

Brownian motion is actually a mean square limit of stochastic integrals of a sequence of

simple processes.

A.2 Expansion using stochastic integrals

In what follows, our aim is finding a transformation between L2[a, b] and L2(Ω) and then

studying expansion of B2(t), a particular functional of Brownian motion. To this end, we

will focus on the case of F (t, B(t)) = 1√
t
f(t)B(t) and introduce the subsequent definition.

Definition A.2.1. Suppose f(t) ∈ L2[a, b] and a > 0. Define a transformation T between

L2[a, b] and L2(Ω) as

T (f ; [a, b]) =

∫ b

a

f(t)√
t
B(t)dB(t). (A.2.1)

Remark A.2.1. When it is necessary to stress the interval [a, b] we put it into the notation,

but mostly we use the notation without interval. It is crucial to ensure that the trans-

formation we defined exists for every f ∈ L2[a, b]. We can verify this fact by checking

whether it satisfies the three integrability conditions in Definition A.1.1. Obviously we

only need to check the last one:∫ b

a
E

(
f(t)√
t
B(t)

)2

dt =

∫ b

a

f2(t)

t
E[B(t)2]dt =

∫ b

a
f2(t)dt <∞.
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Therefore the transformation T (f ; [a, b]) is a mapping from L2[a, b] into random variables.

It can be seen that T (f) ∈ L2(Ω) from the following theorem.

Theorem A.2.1. Suppose f(x), g(x) ∈ L2[a, b] and a > 0. The transformation in Defi-

nition (A.2.1) satisfies

(a) E[T (f)] = 0;

(b) 〈T (f),T (g)〉 = (f, g);

(c) ‖T (f)‖2L2(Ω) = ‖f‖22. hence T (f) ∈ L2(Ω);

(d) T (c1f + c2g)(ω) = c1T (f)(ω) + c2T (g)(ω) for every ω ∈ Ω, where c1, c2 are real

constants.

Proof. Denote by τn[a, b] an arbitrary partition on interval [a, b]: a = t0 < t1 < · · · < tn =

b, where n is any positive integer number. Let 4t = maxi{ti − ti−1}. For f ∈ L2[a, b],

denote by Sτn(f) the sum corresponding to the partition τn[a, b]

Sτn(f) :=
n∑
i=1

f(ti−1)√
ti−1

B(ti−1)(B(xi)−B(ti−1)).

By the independence of increments of Brownian motion and its distribution, it follows

easily that

E[Sτn(f)] =

n∑
i=1

f(ti−1)√
ti−1

E[B(ti−1)]E[B(ti)−B(ti−1)] = 0.

(a). Since E[Sτn(f)] = 0, by Jensen inequality we have

{E[T (f)]}2 = {E[T (f)]− E[Sτn(f)]}2 = {E[T (f)− Sτn(f)]}2

≤ E [T (f)− Sτn(f)]2 → 0, as n→∞,

which implies E[T (f)] = 0.

(b). Since T (f) and T (g) are mean square limit of sequence Sτn(f) and Sτn(g) re-

spectively, it follows from continuity of inner product in Hilbert space L2(Ω) that

〈T (f),T (g)〉 =

〈
lim

∆t→0
Sτn(f), lim

4t→0
Sτn(g)

〉
= lim
4t→0

〈Sτn(f), Sτn(g)〉 = lim
4t→0

E[Sτn(f)Sτn(g)]
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= lim
∆t→0

E

(
n∑
i=1

f(ti−1)√
ti−1

B(ti−1)(B(ti)−B(ti−1)) ·
n∑
i=1

g(ti−1)√
ti−1

B(ti−1)(B(ti)−B(ti−1))

)

= lim
∆t→0

E

 n∑
i=1,j=1

f(ti−1)√
ti−1

B(ti−1)(B(ti)−B(ti−1))
g(tj−1)√
tj−1

B(tj−1)(B(tj)−B(tj−1))


= lim

∆t→0

n∑
i=1

f(ti−1)g(ti−1)

ti−1
E[B2(ti−1)]E[(B(ti)−B(ti−1))2]

= lim
∆t→0

n∑
i=1

f(ti−1)g(ti−1)(ti − ti−1) =

∫ b

a
f(x)g(x)dx = (f, g).

(c). This is a particular case of property (b) when f = g.

(d). For arbitrary constants c1, c2,

T (c1f + c2g) = lim
4t→0

Sτn(c1f + c2g)

= lim
4t→0

n∑
i=1

c1f(ti−1) + c2g(ti−1)√
ti−1

B(ti−1)(B(ti)−B(ti−1))

= lim
∆t→0

n∑
i=1

c1f(ti−1)√
ti−1

B(ti−1)(B(ti)−B(ti−1))

+ lim
∆t→0

n∑
i=1

c2g(ti−1)√
ti−1

B(ti−1)(B(ti)−B(ti−1))

=c1 lim
∆t→0

n∑
i=1

f(ti−1)√
ti−1

B(ti−1)(B(ti)−B(ti−1))

+ c2 lim
∆t→0

n∑
i=1

g(ti−1)√
ti−1

B(ti−1)(B(ti)−B(ti−1))

=c1

∫ b

a

f(t)√
t
B(t)dB(t) + c2

∫ b

a

g(t)√
t
B(t)dB(t)

=c1T (f) + c2T (g).

Apart from the properties listed in the previous theorem, T (f) possesses other char-

acteristics of the usual integral, for example, linearity on adjacent intervals and continuity

about lower limit a and upper limit b. Linearity on adjacent intervals says that if a < c < b,

T (f ; [a, b]) = T (f ; [a, c]) + T (f ; [c, b]); while continuity about a means that if a′ → a the

integral T (f ; [a′, b]) will converge to the integral T (f ; [a, b]) in mean square sense.
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Now concentration moves to the interval [0, T ], T > 0 and fixed. The main reason why

we shift to this case is simply that customarily the standard Brownian motion starts at

point zero. Moreover this relaxes the restriction that a > 0. However, the movement is

not trivial. Since 1/
√
x is undefined at the point zero, the mapping T cannot be used on

interval [0, T ] directly. It is therefore reasonable to apply improper integration to it. The

transformation T from L2[0, T ] to L2(Ω) is defined as

T (f ; [0, T ]) = lim
ε→+0

T (f ; [ε, T ]) = lim
ε→+0

∫ T

ε

f(t)√
t
B(t)dB(t) (in norm). (A.2.2)

It raises the question of whether the improper integrations exist for the functions we

are studying, i.e. for h(t) ∈ L2[0, T ], does T (h; [0, T ]) exist? To answer this question, let

us define

Tε(h) = T (h; [ε, T ]) =

∫ T

ε

h(t)√
t
B(t)dB(t).

As has been shown, Tε(h) is always well defined for 0 < ε < T , and Tε(h) ∈ L2(Ω).

Lemma A.2.1. For ∀h(t) ∈ L2[0, T ], the improper integral T (h; [0, T ]) exists.

Proof. To begin with, suppose {δn} is a positive sequence which converges to zero. Con-

sequently there is a sequence {Tδn(h)} in L2(Ω) for h ∈ L2[0, T ]. The aim is to show that

{Tδn(h)} is a Cauchy sequence. Actually,

‖Tδn(h)−Tδm(h)‖2L2(Ω) =

∥∥∥∥∫ T

δn

h(t)√
t
B(t)dB(t)−

∫ T

δm

h(t)√
t
B(t)dB(t)

∥∥∥∥2

=

∥∥∥∥∫ δn∨δm

δn∧δm

h(t)√
t
B(t)dB(t)

∥∥∥∥2

=

∫ δn∨δm

δn∧δm
h2(t)dt→ 0, (as n,m→∞)

which implies the sequence Tδn(h) is a Cauchy sequence in L2(Ω).

Since L2(Ω) is a Hilbert space, every Cauchy sequence has a limit in the space. Suppose

limn→∞Tδn(h) = ξ in L2-norm for the function h and the sequence {δn}, where ξ is a

random variable in L2(Ω). The problem is, for any other positive sequence, {εn} say,

which converges to zero, whether the corresponding sequence Tεn(h) converges in norm

to another random variable η? In fact,

‖ξ − η‖L2(Ω) ≤ ‖ξ −Tδn(h)‖+ ‖Tδn(h)−Tεn(h)‖+ ‖Tεn(h)− η‖
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= ‖ξ −Tδn(h)‖+

∫ δn∨εn

δn∧εn
h2(t)dt+ ‖Tεn(h)− η‖

→ 0, (as n→∞)

which implies ξ = η in L2(Ω). Now that for every positive sequence δn which converges to

zero, the integral sequence Tδn(h) converges to the same random variable, ξ say, the limit

of Tε(h) as ε→ 0 also should be ξ. Actually it follows from following inequality,

‖Iε(h)− ξ‖L2(Ω) ≤‖Iε(h)− Iδn(h)‖+ ‖Iδn(h)− ξ‖

=

∫ δn∨ε

δn∧ε
h2(t)dt+ ‖Iδn(h)− ξ‖ → 0,

as ε→ 0, n→∞. This finishes the proof.

Theorem A.2.2. For any f, g ∈ L2[0, T ] and constants c1, c2, the following hold:

(a) E[T (f ; [0, T ])] = 0;

(b) 〈T (f ; [0, T ]),T (g; [0, T ])〉 = (f, g);

(c) ‖T (f)‖22(Ω) = ‖f‖22;

(d) T (c1f + c2g; [0, T ])(ω) = c1T (f ; [0, T ])(ω) + c2T (g; [0, T ])(ω) for every ω ∈ Ω.

Proof. For ∀ε : 0 < ε < T , Tε(·) is defined as before, and T (·) is the mean square limit

of Tε(·) as ε→ 0.

(a). It follows from E[Tε(f)] = 0 and Jensen inequality that

{E[T (f)]}2 = {E[T (f)]− E[Tε(f)]}2 = {E[T (f)−Tε(f)]}2

≤ E[T (f)−Tε(f)]2 → 0 as ε→ +0,

hence E[I(f)] = 0.

(b). Using the definition of transformation T (·) and the continuity of inner product

in Hilbert space, we have

〈T (f),T (g)〉 =

〈
lim
ε→+0

Tε(f), lim
ε→+0

Tε(g)

〉
= lim

ε→+0
〈Tε(f),Tε(g)〉

= lim
ε→+0

∫ T

ε
f(t)g(t)dt =

∫ T

0
f(t)g(t)dt = (f, g),

where the property (b) in theorem A.2.1 is used to derive 〈Tε(f),Tε(g)〉.

218



(c). This equality is the particular case of (b).

(d). This property can be proved similarly as the counterpart in theorem A.2.1 except

that here it is needed to take limit for ε→ +0. Therefore the proof is neglected.

In order to continue the investigation on the transformation T , denote by Θ the image

of L2[0, T ] under the mapping. Then the properties of T mapping L2[0, T ] onto Θ are

studied in the sequel.

Theorem A.2.3. The stochastic integral T of (A.2.2) defines an one-to-one mapping

from L2[0, T ] to Θ. The image Θ of L2[0, T ] under the mapping T is a closed linear

subspace of L2(Ω). Furthermore, the transformation T is an isomorphism as well between

L2[0, T ] and Hilbert space Θ.

Proof. To begin with, if f, g ∈ L2[0, T ] and f 6= g, then ‖f − g‖2 6= 0. This implies

T (f − g) = T (f) − T (g) 6= 0 since T (f − g) is a random variable with zero mean and

variance ‖f − g‖2, so that T (f) 6= T (g). On the other hand, if ξ ∈ Θ and T (f) = ξ and

T (g) = ξ for f, g ∈ L2[0, T ]. Because T (f − g) = T (f)−T (g) = ξ− ξ = 0, the variance

of T (f − g) is definitely zero, i.e. ‖f − g‖2 = 0 and this means f = g. Therefore T is

one-to-one.

It is evident that Θ is a linear subspace of L2(Ω) as the transformation T is linear.

To show Θ is closed, suppose that {ξn} is a sequence in Θ and ξ is an element in L2(Ω)

such that ‖ξn − ξ‖ → 0. As T is one-to-one there is a sequence {fn} ∈ L2[0, T ] such that

T (fn) = ξn. Moreover, T preserves metric, which indicates ‖fn‖ is a Cauchy sequence

since ‖fn − fm‖2 = ‖T (fn − fm)‖L2(Ω) = ‖T (fn) − T (fm)‖ = ‖ξn − ξm‖L2(Ω) and {ξn}
is of Cauchy. Thus, there exists a function f ∈ L2[0, T ] such that ‖fn − f‖2 → 0. Once

again by the property of the mapping we have ‖ξn−T (f)‖2(Ω) = ‖T (fn)−T (f)‖L2(Ω) =

‖fn − f‖2 → 0. Then the inequality

‖ξ −T (f)‖L2(Ω) ≤ ‖ξn − ξ‖L2(Ω) + ‖ξn −T (f)‖L2(Ω) → 0,

as n→∞ implies ξ = T (f) ∈ Θ. This proves that Θ is closed.

Finally, as a closed linear subspace of Hilbert space L2(Ω), Θ is Hilbert space as well.

It follows from (b) and (d) in Theorem A.2.2 that T is isomorphism.

Corollary A.2.1. If {fn} is a full orthonormal system in L2[0, T ], then {T (fn)} is a full

orthonormal system in Θ. The inverse is also true.
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Proof. What needs to prove is merely that when {fn} is full in L2[0, T ], {T (fn)} is

complete in L2(Ω). Denote ξn = T (fn), n = 1, · · · ,∞. For any ξ ∈ Θ, there is one

and only one f ∈ L2[0, T ] such that ξ = T (f). This f can be uniquely represented as

f =
∑∞

n=1 cnfn, so that ξ = T (f) =
∑∞

n=1 cnT (fn) =
∑∞

n=1 cnξn and the representation

is unique. Thus, {ξn} is a complete orthogonal system.

The inverse is true as T is an one-to-one mapping.

Theorem A.2.4. Let T be a transformation from L2[0, T ] into L2(Ω) defined by equation

(A.2.2) and {fn} be an orthonormal system in L2[0, T ]. Let ξn = T (fn), n = 1, 2, · · · . For

any ξ ∈ Θ with ξ = T (f), we have

ξ =

∞∑
n=1

〈ξ, ξn〉ξn =

n∑
n=1

(f, fn)ξn,

where the convergence of the infinite series is in the sense of norm in L2(Ω). Furthermore,

ξ(ω) =

∞∑
n=1

〈ξ, ξn〉ξn(ω) =

n∑
n=1

(f, fn)ξn(ω), in probability

Proof. According to the theory of Fourier expansion, the representation is evident and the

coefficients 〈ξ, ξn〉 are called Fourier coefficients. Since T is isomorphism, 〈ξ, ξn〉 = (f, fn).

Because convergence in norm implies convergence in probability, the second expression

is valid.

Theorem A.2.5. Suppose B(t) is standard Brownian motion on [0,∞) and {fn} is an

arbitrary full orthonormal system in L2[0, T ] where T > 0 is a finite real number. The

stochastic process B2(t) for t ∈ [0, T ] can be expanded as

B2(t) = t+ 2
∞∑
n=1

(
√
tX[0,t], fn)ξn, (A.2.3)

where X[0,t] is the indicator function on [0, t], and ξn = T (fn).

Proof. This is a particular case of Theorem A.2.4. For any 0 < t ≤ T , let f(s) =
√
sX[0,t](s). Then

T (f) =

∫ t

0
B(s)dB(s) =

1

2
(B2

t − t).

On the other hand, T (f) =
∑∞

n=1(f, fn)ξn =
∑∞

n=1(
√
sX[0,t], fn)ξn. Thus the expansion

follows.
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Example A.1 Let T = π. On [0, π], a full orthonormal system is {fn} where

f0(x) =
1√
π
, and fn(x) =

√
2

π
cos(nx), n = 1, 2, · · · .

To get the decomposition of B2(t), (0 < t ≤ π), let f(s) =
√
sX[0,t](s) for 0 < t ≤ π.

Compute

c0 = c0(t) = (f, f0) =

∫ π

0
f(s)f0(s)ds =

∫ t

0

√
s

1√
π
ds =

2

3
√
π
t3/2

cn = cn(t) = (f, fn) =

∫ π

0
f(s)fn(s)dx =

√
2

π

∫ t

0

√
s cos(ns)ds.

The corresponding orthonormal system in L2(Ω) is

ξ0 = T (f0) =

∫ π

0

1√
πs
B(s)dB(s),

ξn = T (fn) =

√
2

π

∫ π

0

cos(ns)√
s

B(s)dB(s).

Thus

B2(t) = t+ 2

∞∑
n=0

cn(t)ξn.

Example A.2 In L2[0, T ] there is an orthonormal system consisting of

fn(t) =

√
2

T
sin

((
n+

1

2

)
π

T
t

)
, t ∈ [0, T ], n = 0, 1, 2, · · ·

Again, to expand B2(t) (0 < t ≤ T ), let f(s) =
√
sX[0,t](s), where 0 < t ≤ T .

c0 = c0(t) = (f, f0) =

∫ T

0
f(s)f0(s)ds =

√
2

T

∫ t

0

√
s sin

( π

2T
s
)
ds

cn = cn(t) = (f, fn) =

∫ T

0
f(s)fn(s)dx =

√
2

T

∫ t

0

√
s sin

((
n+

1

2

)
π

T
s

)
ds.

The corresponding orthonormal system in L2(Ω) is

ξ0 = T (f0) =

√
2

T

∫ T

0

1√
s

sin
( π

2T
s
)
B(s)dB(s),

ξn = T (fn) =

√
2

T

∫ T

0

1√
s

sin

((
n+

1

2

)
π

T
s

)
B(s)dB(s).

Thus

B2(t) = t+ 2
∞∑
n=0

cn(t)ξn (A.2.4)
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Remark A.2.2. All studies on interval [0, T ] in this part can revert to [a, b]. This means

all results about interval [0, T ] are valid for [a, b] ,a > 0, under mapping T (f ; [a, b]) from

L2[a, b] into L2(Ω). The only change is that Brownian motion starts at a and almost surely

is zero at point a.

Additionally, the drawback of the method, as can be seen in the examples, is that

the coefficients in the expansions cannot be calculated precisely and the basis ξn is only

phrased as stochastic integrals. Therefore, in practice in order to utilise such an expansion,

one has to make use of a computer for its powerful computation ability.
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