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4.5.1 Finite time horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.5.2 Infinite time horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
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Abstract

This research focuses on the estimation of a class of econometric models for involved

unknown nonlinear functionals of nonstationary processes. The proxy of nonstationary

processes studied here is Lévy processes including Brownian motion as a particular one.

A Lévy process is a càdlàg1 stochastic process which starts at zero almost surely, which has

independent increments over disjoint intervals, which has stationary increment distribution

meaning that under shift the distributions of increments are identical, which has stochastic

continuous trajectory. Obviously, Brownian motion, Poisson process, Gamma process and

Pascal process are fundamental examples of Lévy processes. Lévy processes (Z(t), t ≥ 0)

studied in this thesis possess density or probability distribution functions which verify

some properties stated in the text.

Why do we care about the functionals of Lévy processes?

Starting with Brownian motion

In the galaxy of stochastic processes used to model random phenomena in disciplines such

as economics, finance and engineering, Brownian motion is undoubtedly the brightest

star. Brownian motion is the most widely studied stochastic process and the mother of

the modern stochastic analysis. Brownian motion, for example, and financial modelling

have been tied together from the very beginning when Bachelier (1900) proposed to model

the price S(t) of an asset at the Paris Bourse as S(t) = S(0) + σB(t) where B(t) is a

standard Brownian motion. The multiplicative version of Bachelier’s model led to the

celebrated Black-Scholes option pricing model2 where log-price lnS(t) follows a Brownian

1right continuous with left limits.
2The Black-Scholes model is one of the most important concepts in modern financial theory. It was

developed in 1973 by Fisher Black, Robert Merton and Myron Scholes and is still widely used today, and
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motion S(t) = S(0) exp(µt+ σB(t)) (see Black and Scholes, 1973).

Of course, the Black-Scholes model is not the only continuous time model built on

Brownian motion. Nonlinear Markov diffusion where instantaneous volatility can de-

pend on the price and time via a local volatility function have been proposed by Der-

man and Kani (1994) and Dupire (1994): 1
S(t)dS(t) = µdt + σ(t, S(t))dB(t). Another

possibility is given by stochastic volatility models (see Hull and White, 1987; Heston,

1993) where the price S(t) is the component of a bivariate diffusion (S(t), σ(t)) driven

by a two-dimensional Brownian motion (B(1)(t), B(2)(t)): 1
S(t)dS(t) = µdt+ σ(t)dB(1)(t),

σ(t) = f(Y (t)), dY (t) = α(t)dt + γ(t)dB(2)(t). While these models have more flexible

statistical properties, they share with Brownian motion the property of continuity, which

does not seem to be shared by the real price over time scales of interest. Assuming that

prices move in a continuous manner amounts to neglecting the abrupt movements in which

most of the risk is concentrated.

Let us take an example from economics. Let Q denote the customer’s total wealth and

K the value of their house. The price of housing is constant, and the service flow from

a house is equal to its value. For now there is no adjustment cost, so the customer can

adjust K continuously and costlessly.

There are two assets, one safe and one risky. Assume that short sales of risky asset

are not allowed, and let A > 0 be the customer’s holding of the risky asset. Then Q− A
is the wealth of the safe asset. The mortgage interest rate is the same as the return of the

bond, so holdings of the safe asset are the sum of equity in the house and bond holdings.

Let r > 0 be the riskless rate of return, let µ > r and σ2 > 0 be the mean return and

variance of risky asset, and let δ ≥ 0 be the maintenance cost per unit of housing. Then

given K and A, the law of motion for total wealth is

dQ = [rQ+ (µ− r)A− (r + δ)K]dt+ σAdB

= a(Q,Θ)dt+ b(Q,Θ)dB

where Θ = (µ, σ, r, δ) and B stands for Brownian motion. In the equation, function a is

the total return constituting safe assets, risky assets, mortgage payments and maintenance

cost, which are considered as a function of the time in question; while function b measures

regarded as one of the best ways of determining fair prices of options. The seminal work brought a Nobel

prize in economics for Robert Merton and Myron Scholes in 1997.
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the risky return from risky assets due to fluctuation of the stock market. More examples

can be found in Stoke (2009).

One thing of note is that, more often than not, the processes depicted by stochastic

differential equations involving Brownian motion take the form of the functional of the

underlying process B(t) as the solutions of the equations (Mikosch, 1998).

From Brownian motion to the Lévy process

In the end, a theory is accepted not because it is confirmed by conventional

empirical tests, but because researchers persuade one another that the theory

is correct and relevant.

Fischer Black (1986)

The Black-Scholes model stipulates that the log returns of an asset in question follow

normal distribution. However, as suggested by empirical researches, e.g. Cont (2001) and

Schoutens (2003), this assumption is not supported by real-world data. The following

table tells that the daily log returns have significant (negative) skewness; the daily log

returns have kurtosis bigger than 3; the P -values of the χ̂2 statistics in the table show

that the normal distribution is always rejected. The first dataset (S& P 500 (1970-2001))

contains all daily log returns of the S& P 500 Index over the period 1970-2001. The

second dataset (*S&P 500(1970-2001)) contains the same data except for the exceptional

log return (-0.2280) of the crash of 19 October 1987. All other datasets are over the period

1997-1999.

Table 1 Skewness, kurtosis and PNormal-value of major indices

Index Skewness Kurtosis PNormal-value

S&P 500(1970-2001) -1.6663 43.36 0.0000

*S&P 500(1970-2001) -0.1099 7.17 -

S&P 500(1997-1999) -0.4409 6.94 0.0421

Nasdaq-Composite -0.5439 5.78 0.0049

DAX -0.4314 4.65 0.0366

SMI -0.3584 5.35 0.0479

CAC-40 -0.2116 4.63 0.0285
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Moreover, another failure of the Black-Scholes model is that it does not capture the

feature of heavy tail for the distribution of the real-world data sets. Figure 1 compares

the five-minute returns on the Yen/Deutschemark (DM) exchange rate to increments of

a Brownian motion with the same average volatility. While both return series have the

same variance, the Brownian model achieves it by generating returns which always have

roughly the same amplitude whereas the Yen/DM returns are widely dispersed in their

amplitude and manifest frequent large peaks corresponding to ‘jumps’ in the price. This

Figure 1: Five-minute log-returns for Yen/DM exchange rate, 1992-1995, compared with

log-returns of a Black-Scholes model with the same annualised mean and variance

high variability is a constantly observed feature of financial asset returns. In statistical

terms this results in heavy tails in the empirical distribution returns: the tails of the

distribution decay slowly at infinity and very large moves have a significant probability

of occurring. This well-known fact leads to a poor representation of the distribution of

returns by a normal distribution. No book on financial risk is nowadays complete without

a reference to the traditional six standard deviation market moves which are commonly

observed on all markets, even the largest and the most liquid ones. Since for a normal

random variable the probability of occurrence of a value six times the standard deviation is

less than 10−8, in a Gaussian model a daily return of such magnitude occurs less than once

in a million years! Saying that such a model underestimates risk is a polite understatement.

For detailed discussion, see Schoutens (2003, Chapter 4) and Cont and Tankov (2004).

Another observation is that many empirical datasets show non-linearity and non-

stationarity. For example, in Gao (2007), there is strong evidence that the short rate

is not stationary and normally distributed. The graph in Figure 2 shows the data of three
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Figure 2: Left: three month Treasury bill rates 1963,1-1998,12; right: the estimated

density

month Treasury bill rates between January 1963 and December 1998 (432 observations)

and the estimated density function. It is clear that the density function is not normal dis-

tributed, and at 1% significance level it is acceptable that the set of data is non-stationary

(see Gao et al., 2009).

Thanks to the aforementioned reasons, for a number of years, researchers have focused

on developing a richer class of asset price models that include jumps as well as stochastic

parameters; see Erakar et al. (2003) and Kou (2002). Meanwhile, several works realise that

more sophisticated processes, Lévy processes, are able to represent skewness and excess

kurtosis. See, for example, Schoutens (2003, Chapter 5) and Leblane and Yor (1998). In

addition, several particular choices for non-Brownian Lévy processes have been proposed

in the last few decades. Madan and Seneta (1990) have proposed a Lévy process with

variance gamma distributed increments. We mention also the hyperbolic model proposed

by Eberlein and Keller (1995), and in the same year the normal inverse Gaussian Lévy

process proposed by Barndorff-Nielson (1995). Carr et al. (2000) introduced the CMGY

model. Finally, we mention the Meixner model (see Grigelionis 1999 and Schoutens 2001).

Obviously, by Theorem 7 on Protter (2004, p.253), under some conditions, a stochastic

differential equation driven by a Lévy process (Z(t), t ≥ 0) has a solution f(Z(t)). See,

for example, Lim (2005) and Brockwell et al. (2007, 2011).
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Both time-homogeneous and time-inhomogeneous functionals matter

It then makes sense to consider Lévy process functionals for modelling stochastic phe-

nomena. Note that it is quite reasonable to consider time-inhomogeneous functionals of

Lévy processes like f(t, Z(t)), instead of only dealing with the homogeneous functionals

f(Z(t)). Since Hamilton and Susmel (1994) and Mikosch and Starica (2004) pointed out

that invariant parametric specifications are often inconvenient to model long return series,

in recent years the literature has naturally evolved towards the inclusion of multiple vari-

ables in continuous-time models. One example is that in Mercurio and Spokoiny (2004)

the returns Rt of the asset process are stipulated as a heteroscedastic model Rt = σtξt

where ξt are standard Gaussian independent innovations and σt is a time-varying volatility

coefficient. The relevant works include Fan et al. (2003), Ait-Sahalia (2002), Hardle et al.

(2003) and so forth.

About orthogonal expansions

Due to its extensive use in science, economics, finance and engineering and its central posi-

tion within stochastic processes, the starting point of this research is to expand Brownian

motion functionals including f(B(t)) and f(t, B(t)) where B(t) is a standard Brownian

motion into orthogonal series.

Notice that in the literature, albeit there exist some expansions of Brownian motion

in terms of i.i.d. N(0,1) sequence, (see, for example, Yeh 1973 and Mikosch 1998), few

researchers are working in the area of general form of Brownian motion functionals.

There are two papers which are close to our topic in some sense in the literature

about orthogonal expansion of nonlinear functionals of some processes. To understand

the relevant results, let us introduce some notations in the corresponding papers. Denote

by C the space of real functions x(t) which are continuous on the interval 0 ≤ t ≤ 1 and

which vanish at t = 0. Let {αp(t)} be any orthonormal set of real functions in L2(0, 1),

and define

Φm,p(x) = Hm

(∫ 1

0
αp(t)dx(t)

)
; m = 0, 1, 2, · · · , p = 1, 2, · · · ,

where Hm(·) is the sequence of Hermite orthogonal polynomials and

Ψm1,··· ,mp(x) ≡Ψm1,··· ,mp,0,··· ,0(x)
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=Φm1,1(x) · · ·Φmp,p(x),

in which the index p may be any positive number; the subscripts m1, · · · ,mp may be any

nonnegative numbers.

Using the Wiener measure on C and completeness properties of Hermite polynomials

over (−∞,∞), Cameron and Martin (1947) introduced a complete orthonormal set of

functionals on C so that every real or complex valued functional F [x(·)] which belongs to

L2(C), ∫ w

c
|F [x]|2dwx <∞,

has a Fourier development in terms of this set which converges in the L2(C) sense to

functional F [x]:

∫ w

c

∣∣∣∣∣∣F [x]−
N∑

m1,··· ,mN=0

Am1,··· ,mNΨm1,··· ,mN (x)

∣∣∣∣∣∣
2

dwx→ 0,

as N →∞, where Am1,··· ,mN is the Fourier-Hermite coefficient

Am1,··· ,mN =

∫ w

c
F [x]Ψm1,··· ,mN (x)dwx.

Ogura (1972) did an analogous job as Cameron and Martin (1947) but expanded

functionals of the Poisson process F [D(·)] in a series of multiple Poisson-Wiener integrals:

F [D(·)] =

∞∑
n=0

∫ ∞
−∞
· · ·
∫ ∞
−∞

fn(t1, · · · , tn)c(n)[dD(t1), · · · , dD(tn)],

where D(·) stands for a Poisson process.

Clearly, the bases in both papers for expansion of functionals are highly complicated

since, as discussed in Ogura (1972), they are all multiple Hermite polynomials having

the number of arguments increasing to infinity. By contrast, the expansions proposed in

Chapter 2 and 4 in this study are quite simple thanks to the simplicity of the bases. This

difference gives convenience in calculation of the coefficients and application in practice.

Notice that the expansions in the literature have coefficients which are actually functions

in the time variable, which would hamstring the applicability of the expansion in econo-

metrics. Nonetheless, from the econometrical applicability perspective, we tackle this issue

by expanding time-inhomogeneous functionals, so that coefficients in our expansion are all

pure constants which can be estimated by econometric methods. Furthermore, another
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huge difference between the proposed method in this research and the literature is that we

are going to expand functionals of a general class of Lévy processes, not just for Brownian

motion or the Poisson process. Additionally, due to the reasons mentioned above our

expansion method may be used to estimate unknown functional forms in a general class

of econometric models.

The methodology undertaken here, for both Brownian motion functionals and general

Lévy process functionals is about to expand the functional in some Hilbert space into

Fourier series in terms of a particular orthonormal polynomial basis in the aforementioned

space. The basis is actually a sequence of polynomial solutions of hypergeometric differen-

tial equations. It is noteworthy that the correspondence between the Lévy process and the

orthonormal polynomial system is one–one. The key link between them is the density or

probability function of the process. From the Hilbert space theory standpoint, the Fourier

series expansion gives the coordinates of a functional in infinite dimensional space, and

thereby characterises the functional in nature.

Econometric applications of Fourier expansion

Nevertheless, the Fourier series expansion of Lévy process functionals is by no means our

destination. We are interested in estimating an unknown functional form in a general

model

Y (t) = m(t, Z(t)) + ε(t),

where Z(t) is a Lévy process, and ε(t) is an error process with zero mean and finite

variance, given that we have discrete observations of Y (t).

It is known that existing literature already discusses how to estimate unknown func-

tions of nonlinear time series using nonparametric and semiparametric methods. For the

stationary case, recent studies include Fan and Yao (2003), Gao (2007) and Li and Racine

(2007). It should also be pointed out that the literature shows that many economic and

financial data exhibit both nonlinearity and nonstationarity. Consequently, some non-

parametric and semiparametric models and kernel–based methods have been proposed to

deal with both nonlinearity and nonstationarity simultaneously. Existing studies mainly

discuss the employment of nonparametric kernel estimation methods. Such studies include

Phillips and Park (1998), Park and Phillips (1999, 2001), Karlsen and Tjøstheim (2001),

Karlsen et al. (2007), Cai et al. (2009), Phillips (2009), Wang and Phillips (2009a,b), Xiao
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(2009), and Gao and Phillips (2010). Observe that such kernel–based estimation methods

are not applicable to establish closed–form expansions of Brownian motion/Lévy process

functionals. In the stationary case, the literature already discusses how series approxi-

mations may be used in dealing with stationary time series models, such as Ai and Chen

(2003), Chapter 2 of Gao (2007) and Li and Racine (2007). Therefore, it is reasonable to

seek its counterpart in the nonstationary scenario to tackle the nonstationary problems.

An inevitable question of doing so is on what time horizon we shall estimate the

functional m(·, ·). The intuitive choices of time horizon are no more than two cases, viz.,

a compact interval [0, T ] and an infinite interval (0,∞). However, apart from these two

options, we consider the third case, that is, on [0, Tn] with Tn approaching to infinity as

sample size goes to infinity. In technical terms, allowing T = Tn →∞ and Tn
n → 0 amounts

to both infill and long span asymptotics. Meanwhile, the two-fold limit theory keeps one

away from the so-called aliasing problem (i.e. different continuous-time processes may be

indistinguishable when sampled at discrete time). Phillips (1973) and Hansen and Sargent

(1983) are early references on the aliasing phenomenon in econometric literature.

A pivotal asymptotic theory

Of the most importance is an asymptotic theory as it is a tool, also a bottleneck, for

obtaining the limit distribution of estimators. Without a more general asymptotic theory,

our method would be extremely restricted. In order to obtain the asymptotic distribution

of the estimators of m(·, ·) estimated from the model mentioned before, we have to study

an asymptotic theory for different classes of functionals f(·, ·) for their sample mean and

sample covariance.

Note that in last decade or so, several studies have been devoted to developing an

asymptotic theory of a general class of functionals of integrated time series. The relevant

researchers have noticed that the absence of such a limit distribution theory has ham-

strung time series application. See Park and Phillips (1999, 2001) and Wang and Phillips

(2009a,b). However, the existing theory in the literature cannot furnish an answer for

the limit problems arising from the scenarios in this study since f(·, ·) includes not only a

random walk with a unit root but also the time variable, while in literature only a single

random walk is involved. Whence, a new asymptotic theory needs to be established. The

asymptotic theory developed in this research depends heavily on the local–time process of
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a Brownian motion defined as a limit by the underlying process and shows that the limit

distribution of the estimators on infinity horizon (0,∞) and on compact interval [0, Tn]

with Tn approaching infinity are a mixed normal,(∫ 1

0

∫
R
f2(t, x)dxdLW (t, 0)

) 1
2

N

where LW (t, 0) is the local–time process of the limiting Brownian motion W (r) on [0, 1]

standing for the sojourn time at origin over [0, t] by W (r) and N is a standard normal

random variable independent of W , f is some suitable function defined on [0, 1]× R.

By contrast, in the situation where the time variable lies in [0, T ] with T fixed, the

asymptotic distribution of the estimator is a stochastic integral,∫ 1

0
f(Tr, Tµr +

√
TσzW (r))dU(r)

where (W (r), U(r)) is a vector of Brownian motion which is a limit of some process vector

(Wn(r), Un(r)) constructed from Lévy processes Z(t) and error process ε(t), µ = E[Z(1)]

and σ2
z = V ar[Z(1)], f is some suitable function defined on [0, T ] × R. It is noteworthy

to point out that W and U may not be independent which gives more flexibility for the

models used in practice.

Outline

The thesis is not presented according to the chronology of the research. We display

the asymptotic theory in Chapter 1, which provides an essential tool for the following

development. At the same time, as can be seen from the text, since the framework is

quite general the results in asymptotic theory of Chapter 1 are applicable even beyond

the ambit of this research.

Chapter 2 is devoted to a special case for expansions where Lévy process Z(t) reduces

to Brownian motion B(t). Restricted within Brownian motion, the setup in Chapter 2 is

concrete. For example, the polynomial system in terms of which we expand functionals is

the Hermite polynomial system. In addition, many ideas and methods which are used in

the general situation are fostered in this period.

Chapter 3 studies the estimation of an unknown functional form in a general econo-

metric model which involves Brownian motion. The estimators are obtained according to

xiii



different time horizons and sampling styles. Meanwhile, their asymptotic distributions are

obtained and from the results we can see that the rates of convergence are affected by not

only sample size but also many other factors.

Chapter 4 dwells on the general situation where the underlying process is a Lévy

process Z(t) whose density or probability function ρ(t, x) satisfies the so-called boundary

condition. Every such process admits a so-called classical orthonormal polynomial system

with weight ρ(t, x), with which the functional of Z(t) can be expanded in the corresponding

Hilbert space into Fourier series.

As an application of the orthogonal expansion and asymptotic theory in the previous

chapters, Chapter 5 estimates the unknown functional m(τ, z) by m̂(τ, z) in the model

aforementioned with the help of OLS (ordinary least squares). After obtaining the esti-

mators in three types of time horizon, their asymptotic distributions are investigated.

The last chapter concludes what we did and discusses potential applications of the

proposed expansion method for Lévy process functionals.

Appendix A, entitled Miscellaneous, states an alternative expansion method for the

quadratic Brownian motion form using stochastic integral method. Without doubt, it has

a kind of quaint charm although comparing with the text it is difficult to be extended to

general situations.
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