

## PRESENT STUDENTS.



THIRD YEAR.
N. S. Fotheringham
I. S. Young
G. G. Masson
T. R. Welbourne
B. J. Magarey
W. I. E. Everard
M. Hunter

H, L. Manuel
F. A. Wheaton
M. Bruce
A. P. Stone
E. W. Sandland
S. C. Genders
R. M. Wright

SECOND YEAR.
G. C. Love
H. Snow
J. H. Fletcher
T. D. Hoile
F. H. Snook
R. Hill
H. Solly
S. H. T. Best
G. Ives
L. F. Wilkinson
H. S. G. Nettelbeck
W. K. Tamblyn
R. D. Tolley
F. L. Phillips
J. E. Bruen
W. F. D. Clark
F. M. McDiarmid

H E. Sibley
R. Mowat

FIRST YEAR.
F. Beard
W. Driscoll
H. S. Dunne
J. S. J. Hannam
L. H. S. Hester
B. Hocking
A. H. Howard
P. D. Killicoat
G. V. Madeley

J C. V. Martin
L. W. Morrison
R. C. Scott
A. M. Simpson
J. L. Thomson
E. S. Davidson
A. C. Catt

SPECIAL DAIRY.
C. E. Goddard
"Et conrlabunt gladios suos in vomeres et lanceas suas in ralses."

# Agriculfural College, ROSEWORTHY, 

SOUTII AUSTRAエIA.

Minister for Agriculture:
The HON. J. P. WILSON, M.L.C.

## The wtaff.

Acting Principal and Lecturer on Agriculture: Mr. W. J. COLEBATCH, B.Sc. M.R.C.V.S. Housemaster, and Lecturer on English and Botany: Mr. H. E. PEarsun, B.Sc. Lecturer on Chemistry and Physical Science:

Mr. H. J. PHILLIPS, B.Sc.
Lerturer on Viticulture and Fruit Cul- Supt. of Farm and Live Stock: ture. Supt. of Vineyard and Orchard: Mr. H. E. LAFFER.
(Diploma Agricultural Coilege, Roseworthy).
Lecturer on Surveying :
Mr. J. PAULL. Mr. J. P. RICHARDSON. Lecturer on Fruit Pathology: Mr. G. QUINN.

Lecturer on Veterinary Science, Physiology and Anatomy: Mr. C. A. LOXTON, G.M.V.S.
Teacher of Blacksmithing and Carpentry:
Mr. J. L. WILLIAMS.

Lecturer on Poultry :
Mr. D. F. LAURIE.

## Gardener:

Mr. D. J. Mcewen.

Lecturer on Dairying : Mr. H. J. APPS.
Demonstrator \& Lecturer of Agriculture:
Mr. W. J. SPAFFORD.
(Diploma Agricultural College, Roseworthy) Secretary and Lecturer on Book-keeping: Mr. H. C. PRITCHARD.

## Olo Collegians' Esgociation.

Hon. Secretary: H. E. LAFFER. Hon. Treasurer: T. E. YELLAND. Committee:

Messrs, H. B. ROBSON
R. H. MARTIN
J. WALLACE SANDFORD,
N. BROOKMAN
R. C. POCOCK
R. BIRKS

Auditors : C. F. HEYNE and C. G. SAVAGE.

## CONTENTTS.



## Cbe Student.

Published by the Old Collegians' Association, under the joint direction of Past and Present Students.

EDITED BY THE STUDENTS.
Vol. XI.-No. 1.
JULY, 1910.

## Editorial.

THE Student commences its tenth year of publication with every sign of success for its future. Considering our bad luck in having some of our footballers laid up through accidents last year, the final position of Minor Premiers was very creditable. Our place on the cricket list was next to top, due largely to the efforts of Magarey, Bruce, and Young, and with these three, and a number of new chaps to pick from, our position both on the cricket and footer list should be as high, if not higher, this year.

## ANNUAL BREAK UP.

Speech Day as usual meant the advent of parents and friends of the students to see their sons reap the reward of their labors, both inside and out in the field. The much coveted Gold Medal was won by L. J. Cook, our late Editor, after a keen struggle with G. E. Wells, who, however, carried off the Old Students' Cup. The feature of the year was the splendid average of $72 \%$ of the third year students. First-class diplomas were gained by L. J. Cook, G. E. Wells, and F. R. Sangster, while second-class diplomas were gained by M. O. Weste, G. W. Linnett, P. R. Rumball, and T. R. Moten.

## SCHOLARSHIPS.

We have to congratulate W. F. D. Clark, G. V. Madeley, R. C. Scott, J. L. Thomson, J. C. V. Martin, and W. Driscoll, on their success in winning the annual entrance scholarship, and trust their three years' course may be crowned with a diploma each.

## THE FARM.

Seeding operations, though commenced rather late, owing to dry weather, have been carried out quickly and well, finishing well up to average time. The crops are looking delightful, and aspects of coming season are very favorable.

## THE STUDENT

## THIRD YEAR STUDENTS' TRIP.

A delightful day's outing was spent at Lobethal, when third year students were taken over the Wool Mills. The Manager, Mr . Redpath, and his son, were very kind in explaining all the different processes thoroughly, which will be touched on in our pages.

## DEATH.

We were all sorry to hear of the death of our stable friend "Dee." Twisted bowels caused the calamity. Parasites in the intestines no doubt helped, there being five different kinds in her body.

ONE cannot help noticing the increased demand for R.A.C. Diploma holders by pastoralists and agriculturalists during late years. It is rather a pity that old students, some of whom might be wanting a billet, do not keep more in touch with the Principal of the College, who, I know, would do all in his power to assist them in securing any position that might offer. During the last twelve months, no less than three applications for old students have been made by prominent agriculturists.

## Manganese in Agriculture.

MANGANESE is not included in the elements usually studied in an agricultural chemical course because of the unimportant part which it is supposed to take in the growth of plants. Investigators have, however, long been aware of its presence in soil and plants, and the interest in this question is becoming greater, and accordingly this opportunity is taken of bringing this neglected element under notice, with a view to practically applying some compound of manganese as a fertiliser.

Manganese is generally found and mixed for industrial purposes in the form of black oxide of manganese, pyrolusite manganese-di-oxide. By dissolving this oxide in acids the corresponding salts of manganese, i.e., manganous sulphate or the chloride are obtained. Carbonate of manganese are also known.

A series of manganese salts may be prepared such as manganic sulphate or manganic chlorate. Manganese also readily acts as a negative radical insuch compounds as potassium manganate and in the well known potassium permanganate. The history of the studies and experiments made upon the use of manganese in agriculture commences with the work of Pichard in France, 1898, who demonstrated the wide distribution of manganese in the
vegetable and animal kingdoms. Pichard found manganese to be concentrated in the actively vegetating parts of the plant. The ash of tea and tobacco leaves are well known examples in which the presence of manganese is very apparent.

Manganese appears to be of great importance in enzymeactions, both French and Japanese authorities agreeing that the formation of sugar in plants is increased through the presence of manganese in the soil. German and French workers are decided upon the benefit resulting from the application of manganese salts to the sugar beet. With respect to the action of manganese compounds upon the growth and quality of cereals, there is much conflicting evidence.

French and Belgian agriculturalists agree upon an increase of grain and straw of the oat plant. Mr. C. Potts, of Hawkesbury Agricultural College, has found that manganese salts increase the yield of oats.

French and Dutch experts report increases of $50 \%$ in the yield of maize, due to the application of the salts of manganese.

The Japanese authority Aso during 1903 A.D. obtained an increase of $33 \%$ in the yield of rice upon soil treated with manganese salts, and without further addition the following year the same plot yielded an increase of $17 \%$. The plot which had received 60 lbs . per acre of manganous sulphate gave the best result. In later experiments Aso found the application of carbonate of manganese the most satisfactory. Accounts of the effects of manganese salts upon wheat and barley are unfortunately very meagre. Volitier, of England, reports that he noticed a marked action on barley; Delorme, of France, that the quality of barley grain was improved by addition of manganese compounds to the soil.

An Italian authority states that an application of 44 lbs . per acre of sulphate of manganese produced the most favourable results upon wheat. With larger applications the plants died before flowering or failed to grow after attaining the height of one foot.

In an article by Mr. F. B. Guthrie, F.I.C., and L. Cohen, in the March issue of the New South Wales Agricultural Gazette, the following summary of the action of manganese is made :Speaking generally concerning what is known of the action of manganese in the soil it may be regarded as proved that in small quantities it is beneficial to some crops, that in larger quantities it acts as a plant poison, but whether this is due to the direct action on the soil constituents is not established. A quantity of manganese which is toxic to some plants may be harmless to others. Thus Asofinds that barley and oats are affected by doses of manganese which are injurious to rice, and Kelly of the Hawii Experi-
ment Station states that soils containing manganese which do not grow pineapples give good crops of sugar cane. The injurious or toxic action is greatest in winter, and if the quantity of manganese present is not excessive the affected plants often recover with the warm weather. The compounds such as potassium permanganate in which manganese acts as a negative radical are the most toxic or injurious, and it appears that some process goes on through which the manganese is converted in the soil from an originally innocuous compound to a more poisonous one, so that its presence is not noticed in the soil for the first year or two. This process is probably one of oxidation, as the higher oxides are found to be more toxic than the lower. In the same paper it is stated that at the Bathurst Experimental Farm a soil on which a crop died was found to contain $0.114 \%$ of oxide of manganese as against $\cdot 026 \%$ in soil from the same paddock in which wheat grew normally. The sample of bad soil was found to contain small fragments of a manganiferous iron compound of a black colour and very soft. In the last three years mixtures of manganese and calcium carbonates containing about $15 \%$ of manganese have appeared on the French market as fertilizers. Probably such sparingly soluble salts are less toxic than the readily soluble sulphate and chloride, and may be expected to be the most suitable form in which to supply manganese to the soil. Since it is so difficult to draw any decided conclusions from published reports upon the use of manganese compounds in agricultural practice, it has been decided to commence an investigation at the College upon local soil and under local climatic conditions. In the first case a series of pot experiments are to be arranged in which the effect of various quantities of the sulphate, chloride, and carbonate of manganese upon the growth of cereals will be studied. Particulars of these experiments and ultimate results will appear in later numbers of the Student.

By J. H. PHILLIPS, B.Sc.,

Lecturer in Chemistry.


Most Durable
and the Best．

Mr．B．Bruhn，Manoora，is using a＂Hornsby＂Pciiul Eṻiué， and has written as follows concerning it ：－
＂I am very pleased to state that the＂HIornsby＂Petrol Engine，which you supplied to my order， is giving every satisfaction， and does all that you claim for it．

I can start her in half a minute；and she makes light of her work．
The Extreme Simplicity，Economy in running on all loads， and Durability of Construction，must commend the＂Hiornsby＂ to any farmer requiring an engine for general work．＂
To Power
Ugers $=\frac{\text { If you like a PETROL or BENZINE Engine in preference }}{\text { to a Hornsby＂Standard Kerosene Oit Engine we can }}$
$\frac{\text { supply you with one of the Rest on the Market．}}{}$

BE SURE ANI）INSPECT，and make full enquiries into the merits of the NEW HORNSBY EIROL ENGINE before placing your Order．

Sizes，Dimensions，and Prices on Application．

## FOR COUNTRY HOUSES OUR

Non－Explosive Gas Lighting Plants are the acme of perfection．
One Gallon of Petrol will supply Gas sufficient for three 50－Candle Power Lights for $24 \frac{1}{2}$ days，each light burning at least three hours per day．

## Simple，Inexpensive，Eminently Satisfactory．

－WRITE TO－DAY FOR PARTICULARS．

# Sole Agents for South Australia： The AUSTRALASIAN IMPLEMENT \＆HOUSE FURNISHING Co． 

 ADEKACDE．R．H．WHITE，Manager．
Geo．P．Harris，Scarfe \＆Co．，Ltd．，Proprietors

## (Gold Medal) GRAPE



As used in the Hospitals.

## "THE SPRIITT OF THE ACE."

Recommended by

The Medical Profession.

## Competition Notes.

By W. R. Day.

T
HE 1909-10 Egg Laying Competition, held at the Government Poultry Station, Agricultural College, Roseworthy, started with 113 pens on April the 1st, 1909, and finished on March 31st, 1910, with very gratifying results to all concerned. Records were obtained which will probably stand for some time, the number of pens occupied, viz.: 113, constitutes a world's record for any one competition; the number of eggs laid by the winning pen, viz. : 1,531 , equals the number laid by the winning pen in the 1907-8 competition, and thereby creates another record, the former being laid in 366 days, or leap year, and the latter in 365 days; other records such as high monthly and weekly scores were obtained, and the last but not the least was the record price obtained by the disposal of the winning pen for the sum of £ 31 10s.

The advent of the Egg Laying Competitions into this State has been the means of building up the egg industry, until, at the present time, which shows such vast improvement, that one wonders why some interest was not taken in the matter earlier, and more attention given to the matter of breeding from proved layers. We have only to look back some seven years to find a pen of fowls winning a competition with an average of 172 eggs, such a score or average at the present time is looked upon as just ordinary, nothing worth speaking of. An average of 200 each for a large flock of fowls is the ambition of the careful breeder who is out to make a living from his hens, by disposing of their product on commercial lines, such as accepting the price of the open market, or perhaps a little improvement upon that by supplying a private circle of customers with a guaranteed article of diet, but the breeder of fowls of a laying strain, who is out after the business of supplying these layers for sale to various customers throughout the country, can, and have succeeded in obtaining an average of 255 eggs from a fair number of their hens, and individual hens have given as high as 285 eggs in the one year. This great improvement has been brought about directly by the introduction of competitions, which have caused breeders of fowls to think, and the success of a few who have been fortunate enough to obtain prizes has set others at work, until the interest aroused and enthusiasm spread abroad has been of such a character, that every keeper of poultry for profit can now talk matings and strains for egg production, and the bird which cannot lay 200 eggs during the year is not considered. When the question of mating up for the breeding season is considered, I know the difficulty of gauging a hen's capabilities as a layer is a very great one where
the flock is on free range, as is nearly always the case with the flocks of fowls owned by the average farmer, but then it is not necessary to worry about the lot, but shut a few in a pen or two for the year, and thus obtain a result which would be beyond dispute, as six hens so handled might give somewhat like the following results : No. 1, 95; No. 2, 110; No. 3, 135; No. 4, 160; No. 5, 180; No. 6, 220. These figures are fair averages of what single testing work does show, and are valuable in that they show at a glance how very necessary it is that a breeder should exercise great care about the matter, and only breed by selection, and, other points being equal, from only the best layers, as the expense of feeding and housing is no more for the bird of 200 or over egg strain, than for the one of very much lower power of production. This selection has been largely brought about by the results of work done in Egg Laying Competitions. As a number of people now own fowls, which they are anxious to bave tested, and upon payment of the entrance fee of $10 /$-, their birds are duly installed in a pen $40 \times 10$ feet, and fed and housed for one year. During this period a record is kept of the number of eggs laid by each individual pen of birds, and results are published and birds returned to their homes at the end of that period, and whether the results are satisfactory, or not, to the owners, they at least have the information, which is so desirable--that of knowing upon what foundation they have to build for future results, and by judicious mating, they are enabled to build up their laying strain of fowls; until their ambition is attained, that of obtaining both pleasure and profits from their labours. Of the 678 birds in the competition just finished, 390 of them were White Leghorns, these returned 77,523 eggs, a pen average of $1,192.67$ or 198.7 per hen, followed by-


It will be noticed that the White Leghorns gave the best returns, even on the much larger number kept, but even in this breed there is a wide margin between the top and bottom pen; the top pen gave an average of $255 \cdot 16$ and the bottom pen $125 \cdot 16$. Surely in the face of such results, the necessity for selection will not be lost sight of. The difference in the market value of the eggs laid by these two pens is also worthy of consideration:-Top pen, $£ 517 \mathrm{~s} .1 .78 \mathrm{~d}$., and that of bottom pen, £2 $5 \mathrm{~s} .10 \cdot 84 \mathrm{~d}$. As both pens were occu-
pied by White Leghorns, and both cost the same, viz:-£1 13s for feed during the year, the one gives a profit over cost of feed of £4 4 s .1 d , and the other only 12 s .10 d .; further comment in that direction is needless. The following summary of results may be of interest.

| Number of pens |  |  | 113 |
| :---: | :---: | :---: | :---: |
| Number of birds |  |  | 678 |
| Total number of eggs laid |  |  | 126,133 |
| Value of eggs laid |  | £470 | $125 \cdot 75$ |
| Cost of feeding |  | £187 | $08 \frac{1}{2}$ |
| Profit over feeding |  | £283 | 119.25 |
| Average market price of eggs |  |  | 11.54 d . |
| " number of eggs laid per pen |  |  | 1,116.18 |
| " " " " " " hen | $\ldots$ | $\ldots$ | 186.03 |
| cost per pen in competition |  | £1 | $\begin{array}{ll}13 & 1 \cdot 14\end{array}$ |
| " " hen " |  | £0 | $\begin{array}{lll}5 & 6 \cdot 19\end{array}$ |
| Profit per pen over cost of feeding |  | £2 | $10 \quad 2 \cdot 3$ |
| " " hen " " " " |  | £0 | $8 \quad 4.2$ |
| Eggs laid by winning pen, section I |  |  | 1,531 |
| II |  |  | 1,190 |

Highest monthly score, section I $_{\text {". }}^{\text {" }}$ ". $\quad$.
". " " " II $\quad$.. $\quad$... $\quad 153$
" weekly " " I ... ... 41
N"....
Number of broodies " I .. ... 206
II ... ... 636

The above results were obtained from birds which, with few exceptions, could not be called good type from a show point of view, but as the breeding in most instances is conducted on lines for egg production, the points which please the eye of the fancier are sacrificed, but this is a loss which is readily accepted by those who wish to keep "Poultry for Profit."

## Advantages of the Silo.

THE great advantage of the silo is that it ensures "home consumption" of its contents, because the owner, even if hard up for cash, cannot readily market it. This is a strong point in an uncertain climate such as prevails over a wide extent of Australia. Many a man has sold his crop of hay, and has had to buy back straw afterwards to keep his stock from dying of starvation. Fodder from the silo when fed to stock produces better manure than that resulting from dry feed, and it replaces green pasture in the summer months or in droughty seasons. Its
greatest value is shown in the dairying business ; but for fattening purposes it is not so good, unless aided by grain rations. However, when used in this way it makes excellent feed for fattening purposes ; and being palatable, animals eat it more readily. While its greatest value is for dairy cows, it is also a good fodder for sheep. For horses and pigs it is not so good, unless well preserved, but a little can be used with advantage. For rearing calves it is an excellent food. When fed for fattening it should be supplemented by grain rations, or else flesh will be soft and sappy. When filling silo a few points should be observed. The silage should be tramped well around the walls: airtight silage is necessary for good keeping. When the silo is filled the farmer need have no fear nor worry about cold weather or dry spells as long as his silage lasts. In fact, it will be found profitable to have sufficient on hand to provide feed for the whole year.

## Hold Fast to the Dairy Cow.

DAIRY men who kept up their herds during the past year, instead of reducing them and jumping into some other branch of farming, will reap the reward which their perseverance deserves. It is hard to see why so many farmers should always be going out of this, that, or the other lines at the time of depression, just when prudence would dictate the advisability of stocking up with good cows, so as to be ready for the better times sure to follow. The sway of the pendulum between extremes of of price is, I'm sure, mainly due to the fickleness of human nature, leading, as it does, to unceasing fluctuation of the market.

In local markets the inconstant supply restricts consumption in times of scarcity and high prices, whilst in periods of glut the producer does not gain much by the free consumption, since the price he then gets leaves little or no margin for profit. If there is any reason to warrant a farmer in changing from one line to another, it would be to get out of the lines that have held high, and into those that have been depressed-a reverse of the usual practice. As a general rule it pays to stick pretty well to the same lines from year to year, except when calculation shows one or more to have deen unprofitable for a series of years, in which case, it might be wise to work into something that would give better average returns. The ordinary dairymen should by all means raise his own cows. He has the necessary skim milk, and by keeping fewer cows and turning some of his roughage into well bred dairy heifers, he can make more money in the long run, with considerably less drudgery, than by keeping only cows. The most objectionable feature of dairying, as we at the College
all know, is the daily milking, early rising, Sundays, holidays, and all the year, day in, day out. The time spent in milking is recompensed by the returns, as dairying carried out on proper lines is undoubtedly very remunerative. A still stronger reason for raising one's own dairy cows is the fact that it is the only possible hope of herd improvement, which in most cases is absolutely essential to satisfactory profit. How any farmer in this day of dairy tests, published experience, and cow census revelations, can expect to get a profitable herd going, and purchasing cows here and there by mere appearance, is hard to understand. Every practical man knows, too, that a cow hardly ever does her best, when changed to a new stable under different environment and attendance, so that loss in accustoming the cows to new conditions, and lack of opportunity for improvement, systematic purchase to renew the herd is a very poor business.

Properly handled the cow is a money-maker always, and in times of adversity an unfailing standby. The dairyman who has sacrificed his herd, thinking to find an easier or more profitable rcad to wealth, will come back to the cow, having gained more experience than in pocket book. Stick to the dairy cow.

## The West Coast.

UNDER the comprehensive term of the West Coast a vast agricultural province is in process of being added to the resources of this State. From Port Lincoln northwards, along the course of the railway and beyond, making in all a length of some sixty miles, and from east to west an average width of some forty miles, a great area of particularly useful land is being settled with farmers. Many have been in the past familiar with this territory under pastoral conditions, and have long since recognised how ill adapted these huge undulating plains of low mallee, broombrush, and heath are for the successful rearing of any kind of stock but vermin.

Its seems strange that the resources of two of the earliest land discoveries of this State-Kangaroo Island and this West Coastshould have had to wait some sixty odd years before being adequately appreciated. And now that the change has been wrought we find that it is due to an influence which could never have been previously taken into account as an essential factor tosuc-cess-superphosphate. Possibly it could have enabled both these districts, in Chinese parlance, to "save their faces" a few years earlier (for have we not had this fertiliser with us for twelve years), and
possibly, too, it could have enabled the State to number among its taxpayers scores of able-bodied farmers, and numbers of desirable families who are contributing now to therevenues of New South Wales and Western Australia. However, though a few years late, the chance has come, and come to stay; and the authorities in this State have awoke to the pleasing fact that there are thousands and thousands of acres within excellent rainfall records in the older portions of the State awaiting agricultural development. Comparisons are ever odious, and there is no desire to belittle the merits of such a district as, say, Kangaroo Island, by extolling the merits of the lands beyond Port Lincoln. Each has its own peculiarities, and each of the two mentioned has much in common with the other. Some term each mallee country, on the general principle of describing as mallee all growth that can be overlooked and rolled down, and disregard the fact that the ubiquitous covering of much land so described is honeysuckle, broom and yacca. But having to deal with the West Coast lands, which have as a base the ancient harbour and picturesque township of Port Lincoln, a general description can be confined thereto without trespassing upon invidious comparisons.

For some few miles to the north of Port Lincoln, following the railway route, the country merges from rough and almost useless limestone into yacca land. This land gives the impression of being somewhat cold and wet ; is of a rich, dark, loamy appearance, with a sound clay subsoil, and is densely overgrown with grass trees or yacca. The average growth of yacca here must be, judging by scientific opinions regarding antiquity, fully a thousand years behind the age of those which at rarer intervals adorn the landscape of Kangaroo Island. There are quite low, and butts of even three to four feet in height are the exception. The plant is precisely the same, and the older butts yield the same red gum of commerce, but such as are mature enough to bear gum are so few and far apart as to put commerce out of consideration. This class of land has this merit for those who are undertaking the task of preparing it for the plough-there is very little else in the form of covering to the land, broom, honeysuckle, or aught else to be subjugated. The whole is practically yacca of extremely low growth, and presents few difficulties to the smashing down and ploughing up powers of modern implements. Heavy crops are not likely to be characteristic of the new settlers' efforts ; this is partly due to the all-pervading idea of sacrificing acreage to all other principles in the preparation of new land. Light ploughing, tear, and bustle get over the ground quickly, and the seed drill and superphosphate do the rest. From 5 to 12 bushels per acre is about as much as is likely to respond for the next two or three years to this kind of farming. But as
time goes on and better forms of cultivation demonstrate that more haste means less speed, experience (gained before the days of super. among cultivation paddocks on the old stations) clearly indicates that this same land can be made to produce from 12 to 20 bushels to the acre.

This class of yacca country extends right up to the southern boundary of the Hundred of Mortlock. A change sets in here, and mallee, huge undulating plains of low growing mallee become the predominant feature. These extend for miles and miles, as far as the eye can determine from any of the higher ground, and embrace the whole of the hundreds of Mortlock, Cummins, Stokes, and Shannon, from the higher hills around Koppio and Yalluna, on the east, right across to Marble, Range on the west. The mallee land here is not the light red loam or sandy soil with which many are familiar in other parts of the State, but is a rich red clay of uniform quality. Where any variation takes place, and where sandy dark loam is in evidence, the flats in between the undulations, which are almost free from mallee, but covered with broombush, are the offenders. The whole of this mallee country has a splendid rainfall, apparently 20 inches; can be easily brought under cultivation, and is destined to be one of the greatest cerealproducing provinces in the State. The difficulties of the pioneering settlers here are less severe than almost anywhere. They may be reduced to difficulties of carriage, absence of water, and necessity of importing feed for all working stock. The railway overcomes one, the rainfall the second, and time the third. The hundreds which have already been distributed among applicants have been apportioned in big holdings, many of 2,000 acres, some of 2,500 acres, and one of 5,000 acres, for the nominal consideration of $2 / 6$ per acre under perpetual lease privileges. In the opinion of men already secure in possession, these holdings could have been more advantageously placed had they been half or a third of this size, whilst the number of disappointed applicants would have been proportionately less.

And the practical results to be obtained from these mallee lands ? Much the same as from the yacca country, and for the same reason. Some claim 12 bushels per acre as the result of hurriedly "slapping" in their first crop roughly; others are satisfied with from 5 to 8 bushels. All agree on one subjectthat a better system of cultivation will give better results, and that two or three years hence they may find time to give more attention thereto. All also agree that with an assured rainfall, such as they have, an annual crop of some sort is a certainty : that the land is some of the cheapest in the world; and that the prospects of the future are uncommonly rosy.

## A Trip to Lobethal Woollen Mills.

AFTER the three football matches were played, we third year students spent a most enjoyable and instructive day at Lobethal. The drive I shall not describe, but I must say a word about the spread we sat down to on our arrival at Lobethal. All were ready for the good things put before us, and plates were quickly emptied. Healths were drunk, and speeches were made, and on leaving the dining room, the majority felt that they had dined well, but perhaps not altogether wisely, as there was soon pain behind the waistcoat buttons. On reaching the mills, we were first shown the wool in its greasy state, which, from a raised floor, passes into the washing or scouring troughs and comes out quite nice and white, though lacking in grease. This scoured wool is then dried, when any burr falls out as dust. After this it is dyed required colors, and dried again. Then after the wool has been torn about, or "teased," it is oiled and watered to make it more flexible. The fibres are again torn more finely apart by means of rollers with fine knives on them-the wool being held on a slowly revolving roller, while faster moving discs comb it off. From this machine the wool somewhat resembles a long white rope, and is wound round bobbins. These bobbins are put on the twister, which machine, as its name implies, twists the aforementioned fairly tender white rope-like wool into a stronger, thinner cord, resembling darning thread, and in this state it is strong enough to be woven. To give a cloth a varied coloring, different hued threads are twisted together. Now the wool is ready for the looms, the working of which is quite too complicated for me to explain on paper. While in the looms, the "warp," which is the wool running lengthwise through the piece of cloth, is divided into two parts, and the "weft," or wool, running across the piece of cloth, is woven in by a shuttle moving at a high speed backwards and forwards. This woven cloth must again be scoured to be freed of grease and foreign matter it has collected while going through the different processes. After the rugs and blankets are dry, they are placed on a roller moving at a high speed, and given a kind of scraping, putting on the material what is termed a "pile," that is, the soft, downy feeling. Then, as a final operation, the material is dried in a large, steam-heated room, kept at a temperature of $150^{\circ}$ to $180^{\circ}$

The machinery of the mill is exceedingly delicate and intricate, and makes one wonder if the very steel is not human as he watches it do its work so correctly. An hour was spent in the mills, but one could comfortably spend a day inside and then not be too well posted up in the many different processes.

Mr. Redpath, the manager of the mills, and his son, assistant manager, took great pains in showing us the various processes, and deserve our best thanks for the kindness they showed.

The return trip was as pleasant as our morning drive, and on reaching the city we all felt grateful to Mr. Williams, conscious of having spent a most enjoyable and instructive day's outing.

## Old Students' Column.

J. R. Hocking and T. R. Moten are still among us.

Mr. L. J. Cook took Mr. F. Cooper's position on the farm, but now has left to have a battle with the mallee in the South-East.
S. E. Hall has given up his position on the poultry to launch out in life for himself. Our best wishes for success are with him.
M. O. Weste has a splendid position on a station, near Bordertown.
G. W. Linnett has started to make his pile, and is farming on Kangaroo Island.
G. E. Wells was fortunate in getting a good position in company with E. J. Clarke in Western Australia.
P. R. Rumball is at Kybybolite, among the fowls, doing well from all accounts.
W. R. Birks is back amongst us, keeping up his reputation as a worker, doing experimental work in the laboratory.

Mr. W. R. Fairweather, after three years with Mr. Laffer, has obtained land near Mr. Cook, and has therefore left us.

## Seeding Operations, 1910.

WEATHER conditions this year were generally favorable, but in one field difficulty was experienced, i.e., Grainger's A.
Seeding commenced on April 4th, with rape, and terminated on 24th June, with barley.

The seeding of wheat took place between the 11 th of May and June 16th.

Oats as usual was the first cereal to be sown, wheat was second, and lastly came barley.

The details of the seeding are as follows :-
Field Triangular Corner (Rape).
13/ acres drilled between April 4 th and 6 th, using 4.8 lbs , seed and 68 lbs . bonedust per acre.

This, however did not germinate, and on May 17th and 18 th was broadcasted with 5 lbs , of seed per acre.

On May 18th, 4 acres were drilled, using 5 lbs . seed and 68 lbs . bonedust. Also 6 acres were drilled, using 5 lbs. seed and 68 lbs . superphosphate per acre.

Pig Paddock B (Kale).
Drilled on summer fallow, using $1 \frac{1}{2}$ lbs. of seed and 68 lbs . of bonedust per acre.

Grainger's C.

| Date Sown. | Variety Sown. | Amount of Seed per Acre. | Manure, Superphosphate per acre. | Area. |
| :---: | :---: | :---: | :---: | :---: |
| May 2 \& 3 | Calcutta Oats | 86 lbs. | $\begin{aligned} & 2 \text { cwt. } \\ & \text { (previously } \\ & \text { drilled) } \end{aligned}$ | $\left\{\begin{array}{l} 16 \text { acres } \\ \text { (drilled) } \\ 4 \frac{1}{2} \text { acres } \\ \text { (br'dcasted) } \end{array}\right.$ |
| 7 | Khaleefah | 64 lbs. | 2 cwt | $5 \frac{3}{4}$ acres. |
| 9 | Federation | 73 | 2 ", | $14 \frac{1}{2}$ |
| 19 | Jonathan (Sel. 1) | 68 " | 2 ," | $6 \frac{1}{4}$ |
| 20 | Marshall's 3A (Sel. 2) | 78 " | 2 " | $8 \frac{1}{2}$ |
| 20 | Carmichael's Eclipse (Sel 2.) | 90 " | 2 " | $3{ }^{\frac{7}{7} \frac{1}{3}}$ |
| 21 | Marshall's 3B (Sel. 2) | 78 ", | 2 " | $31_{1}^{12}$ |
| 21 | College Eclipse (Sel. 2) | 78 " | 2 ", | $2{ }_{1}^{5}$ |
| 21 | College Comeback (Sel. 2) |  |  | $2 \frac{2}{3}$ |
| 21 | College Comeback (Sel. 1) | 75 " | 2 ", |  |
| 21 | Headlands were drilled with superphosphate. Area, 1 | King's acre. | d (Sel. 2), | 2 cwt . of |

Field No. 3 (Hay and Ensilage Crop).
May 8 to 15. This field drilled with superphosphate at the rate of 230 lbs . per acre, and the seed mixed and broadcasted. The field was divided into the following plots :-

| $\begin{gathered} \text { May } 4 \\ \text { to } 6 \end{gathered}$ | $\left\{\begin{array}{l} (1) \\ (2) \end{array}\right.$ | Ensilage <br> Ensilage | King's Red (Sel. 2) 79 lbs <br> Calcutta Oats 42 lbs <br> Vetches 10 lbs <br> King's Red (Sel. 2) 79 lbs <br> Calcutta Oats 42 lbs <br> Tick Beans 10 lbs |  | per acre. <br> per acre. | area, 10 acres area, 10 acres |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
|  | (3) | Hay | King's Red (Sel. 2) Calcutta Oats Vetches | 70 lbs. 40 lbs. 10 lbs. | per acre. | ea, 10 |
| May 6 | (4) | Hay | King's Red (Sel. 2) Calcutta Oats | 70 lbs. 40 lbs. | per acr | area, 7 acres |
|  | (5) | Hay | Khaleefah Calcutta Oats | $\begin{aligned} & 70 \mathrm{lb} \\ & 40 \mathrm{lb} \end{aligned}$ | per acre. | area, 6 acr |

(6) Hay. A mixture of King's Red (Sel. 2) 70 lbs.per acre, and Calcutta Oats, 40 lbs , was drilled in with 2 cwt of superphosphate per acre on new ground. Area, $4 \frac{1}{2}$ acres.
$1 \frac{1}{2}$ acres of Headlands were drilled with the same mixture as in plot 6.

The following varieties of lucerne were broadcasted in plots over the ensilage and hay crops :-

| 30 | lbs. | Hunter River | 1909 seed |  |
| :---: | :---: | :---: | :---: | :---: |
| 30 | , | South Australian |  |  |
| 30 | " | American |  |  |
| 30 | " | Turkestan |  |  |
| 30 | " | Province |  | Averaging |
| 30 | ", | Tamworth |  | 5.6 lbs. per acre |
| 30 | " | Medicago Media | (Sand Lucerne) |  |
| 30 | " | Hunter River | 1910 seed |  |
| 35 | " | Hunter River | 1909 seed |  |

## Field Ebsary's C.

April 25-28.-18 acres were drilled with superphosphate at the rate of 2 cwt. per acre.

May 11-12-The above 18 acres were broadcasted with 90 lbs . Bearded Gluyas (Sel. 3) per acre.

May 11-12-Drilling $9 \frac{1}{4}$ acres Bearded Gluyas (Sel. 4), using 85 lbs . of seed and 2 cwt . of superphosphate per acre.

May 11-12-Drilling $7 \frac{1}{4}$ acres Bearded Gluyas (Sel. 3), using 86 lbs of seed and 2 cwt of superphosphate per acre.

May 13-The northern end of this field was broadcasted with lucerne.

| Date Sown. | Variety. | Seed per acre. | Manure, Superphosphate per acre. | Area. |
| :---: | :---: | :---: | :---: | :---: |
| May 14-19 | Late Gluyas (Sel. 3) | 81 lbs. | 2 cwt. | 29 acres |
| June 6-7 | King's White (Sel. 4) | 86 ", | 2 " | 12 " |
| June 7-8 | King's Red (Sel. 4) | 86 " | 2 " | 12 " |
| June 8 | Headlands King's Red (Sel. 2) | 90 " | 2 " | 1 acre |

May 24-Drilled with 2 cwt. of superphosphate and 120 lbs. of King's Red (sel. 2) per acre.

May 25-Broadcasted $6 \frac{1}{2}$ lbs. of lucerne per acre. Field No. 6 A (Variety Plots).


2 cwt . of superphosphate per acre were drilled in all plots.
85 lbs . of wheat per acre used in all plots of wheat.
50 lbs . of barley per acre used in barley plots.
Field No. 6 C (Varieties).

| Varieties. | Date Sown.May 18 | Varieties. <br> Hardy's Elation |  | Date Sown. June 14 |
| :---: | :---: | :---: | :---: | :---: |
| Champion Oats |  |  |  |  |
| Algerian Oats | 18 | Richter's Eminence |  | 14 |
| Federation (Sel. 1) | June 13 | Crossbred 73 |  | 14 |
| Viking (Sel. 1) | 13 | Petatz Surprise |  | 14 |
| Marshall's Pride | 13 | Soory |  | 14 |
| ,, Unification | 13 | Dymenos |  | 15 |
| Unity | 13 | March Rye ... |  | 14 |
| Combination | 13 | Multicaule Rye |  | 15 |
| Dorath | 13 | Giant Winter Rye |  | 15 |
| Prolific | 14 | Schlanstedt Rye |  | 15 |

2 cwts. of superphosphate per acre to all plots. 85 lbs . of wheat per acre. 80 lbs . of oats per acre. 65 lbs . of rye per acre.

## Field Island B. ${ }^{\text {. }}$

| Date Sown. | Variety. | Seed per Acre. | Manure, Superphosphate per acre. | Area. |
| :---: | :---: | :---: | :---: | :---: |
| June 1 | Marshall's No. 3 A (Sel. 2) | 80 lbs . | 2 cwt . | $\frac{2}{3}$ acre |
| 1 | Marshall's No. 3 A (Sel. 1) | 85 | 2 | 2 acres |
| , 1 | Comeback (Sel. 1) | 85 | 2 | 21 |
| " 2 \& 3 | Marshall's No. 3 B (Sel. 1) | 85 ," | 2 | 71 |
| 3 | Carmichael's Eclipse (Sel. 1) | 80 | 2 | $6 \frac{2}{3}$ |
| " 3 \& 4 | College Eclipse (Sel. 1) | 86 | 2 | 7\% ${ }^{\frac{2}{3}}$ |
| ,, 4-9 | Late Gluyas (Sel. 4) | 90 | 2 | $11 \frac{1}{4}$ |
| , 9 | Gluyas (Sel 4) | 81 | 2 | $4 \frac{3}{3}$ |
| 13-16 | Gluyas (Sel 3) | 90 | 2 | $40 \frac{1}{4}$ |
| ", 15 | King's White (Sel. 3) | 85 ,, | 2 " | $5 \frac{1}{3}$ |
| ", 11 | King's Red (Sel 3) | 85 | 2 | $11_{1 / 3}^{1 /}$ |
| ", 10 | King's White (Sel 3) | 85 ," | 2 | $1 \frac{1}{4}$ |
| 9-10 | King's Red (Sel. 3) | 85 | 2 | $141^{5} 3$ |
| " 9 | King's Red (Sel. 3) | 90 | 2 | $20 \frac{1}{2}$ " |
| , 16 | Headlands King's White (Sel. 3) | 85 | 2 |  |

Field No. i6 (Barley).

| Date Sown. | Variety. | Seed <br> Ser acre. | Manure. <br> Superphosphate <br> per acre. | Area. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| June 20-23 | Short Head (Sel. 3) | 68 1bs. | $2 \mathrm{cwt}$. | 55 | acres |
| $"$ | $23 \& 24$ | Short Head (Sel. 2) | $68 ~ "$ | 2 | $"$ |

## Island A (Barley).

| Date Sown. | Variety. | ee | Manure. Superphosphate | Area. |
| :---: | :---: | :---: | :---: | :---: |
| Jane 16-17 |  | per acre. | per acre. |  |
| ," 17-18 | Roseworthy Oregon (Sel. 2) | 72 " | 2 " | 1943 |
| " 18 | Short Head (Sel. 2) | 72 | 2 | $1{ }_{1}{ }^{\frac{1}{2}}$ |

## Wool Brokers and Live Stock Salesmen,

 Land and Financial Agents. HEAD OFFICE:
## 18, KING WILLIAIM ST., ADELAIDE.

Wool and Grain Warehouse, Port Adelaide. Hides and Skins Warehouse, Gilbert Place.

Adelaide Markets.-FAT STOCK. CATTLE-Monday.
SHEEP, LAMBS, PIGS, and CALVES-Wednesday.
We arrange for trucking accommodation promptly on receipt of instructions, and advise when to load.
Sheep and Lambs carefully drafted before Sale.
Account Sales rendered promptly.
Regular Monthly Markets at all the chief Centres. Sales of Fat and Store Stock, Land and Farmers'

Clearing Sales conducted in any part of the State.

## JAPANESE SUPER.

We are ready to book orders for Superphosphates, $38 / 40$ per cent. Water Soluble Phosphates.

Brand - JAPANESE - Brand
For delivery on arrixal January, February, and March, 1911.

$$
\text { Price } £ 42 \text { 2s. } 6 \mathrm{~d} . \text { per ton, }
$$

on trucks Port Adelaide, Wallaroo, or Port Pirie.
Plain Wire, Barbed Wire, Galvanized Iron, Iron Post and Dropper, Cornsacks, 5-ply Twine, Best Manilla Binding Twine, and all other Farm and Station Requisites supplied at lowest rates.

## M A N N U M

## Agricultural Implement Factory. DAVID SHEARER \& CO.

Our Patent Plough and Scarifier Shares have gained the greatest reputation throughout the Commonwealth, both in fit and wear.

Our Celebrated Strippers have gained universal satisfaction in all parts of the Commonwealth. Ordinary, Damp Weather, and Two-Part Comb and Beater, up to 8 -feet crop.

Also our Stump-Jump Harrows have gained high repute.

## Small Dance.

The small dance was held at the College on June 17th. The dining hall was very tastefully decorated with autumn leaves. A great improvement was noticed in the floor which was planed by energetic students. We were fortunate in having a fine night, and in consequence, the attendance was beyond expectations. Mr. Colebatch and Mrs. Laffer received the guests, while Messrs. Laffer and Fairweather made efficient Ms'.C.

## Football Notes.

THE prospects of winning the premiership this year at the present time are not great. We miss sadly such towers of strength as Fairweather, Hall, Fowles, Wells, Weste, and McLaughlin, who were undoubtedly our backbone last season. In the new arrivals we have some promising men, and next session should be playing fairly good games. They will be needed. The handball of the team this year is an improvement on that of last year, but there is plenty of room for improvement in the combination of the whole team. The best players to date are :Magarey, Young, Bruce, Mowat, Hocking, and Fletcher.

The following are the matches played to date :-

> HAMLEY BRIDGE v. COLLEGE-May.

Won by Hamleys. Scores when final bell rang:-Hamleys, 4 goals 6 behinds ; College, 1 goal 7 behinds.

## SOUTHS v. COLLEGE.

Won by College. Scores:-College, 8 goals 7 behinds; Souths, 3 goals 13 behinds.

WILLASTON v. COLLEGE-June 4th.
Won by Willaston. A surprise was in store for us. Our opponents having a very much better team than they had last year, won fairly easily. Scores were :-Willaston, 7 goals 10 behinds ; College, 4 goals 7 behinds.

CENTRAL V. COLLEGE-June 11th.
Our first game in Gawler and opponents proved too good for us. College showed lack of training. Scores:-Central, 6 goals 10 behinds; College, 5 goals 5 behinds.

## HAMLEY BRIDGE V. COLLEGE-June 18th.

We turned the tables on Hamleys this time, administering a severe drubbing. Scores :-Hamleys, 6 behinds; College, 17 goals 24 behinds.

## CENTRAL v. COLLEGE.

Centrals again proved victorious, contrary to our expectations. At the last quarter we hoped by aid of a strong wind blowing in our favour to make up a small deficiency, but didn't prove quite up to the occasion. Scores:-Central, 5 goals 13 behinds; College, 5 goals 5 behinds.

## Annual Footer Trip.

AHAPPY crowd steamed out of Roseworthy Station on Friday afternoon, June 24th, en route for the Gay Cit., to try conclusions with the St. Peter's, Princes, and Concordias in the football field. Sad to relate, we were not so fortunate as last year, when we had two wins to our credit. We were only able to outshine the Concordia fellows this season, being beaten by both Blues and Reds, who proved much too fast and scientific for us lads from the country. But I think football is only a secondary consideration in this annual trip of ours, much more attention being given to "Little Mary" and places of amusement. Still, we always have a rattling good time, and seem to dread coming back to exams.

The scores:-
S.P.S.C. -8 goals 10 behinds
R.A.C. -7 goals 5 behinds
P.A.C. -15 goals 15 behinds
R.A.C. -6 goals 4 behinds
R.A.C. -7 goais 9 behinds

Concordia-6 goals 13 behinds

## Those Names.

"BELL'S gone!" shouted some one in the small hours of the morning, so I hurriedly donned my blueys and rushed into breakfast, to be confronted by some Mass-on my plate which the waiter called brawn, but which looked to me more like canned horse, kidnapped kittens, or pork of doubtful origin, so I told him to bring me something to fit a man for hard Manuel labour, whereupon to my joy he brought in a fried Snook, a large serve of Martin pie, and several smaller dishes as Phillups.

After breakfast, all the students made their way to the farm, where some were told off to load Wheat on the barge, others to cart Stone for a monument to our famous cross-country racer Nevis, who had serious thoughts of departing this life ; one-the
best teamster in the College-was told to plough up the Sand(y) land on the Hill in number sixteen ; while I, who was said to know all about machinery, was sent to cut the hay crop.

The first thing I did on reaching my binder was to give my horses, Bruen and (H)esther, half a gallon of (H)oil(e) apiece, as I had heard it was the stuff to make things run well, and, of course, you want a good pace with a binder.

Then I started, but somehow that binder wouldn't Mow at all. By 11.30 I had scarcely Dunne a round, and my horses were sliding around like fish on ice. I had just taken them out, when along came the farm manager, a man with a Beard to awe the boldest, and told me to put them back again. I pointed out to him that that binder was enough to Killicoat, let alone a horse ; but he said he couldn't see the force of that argument, and I was far too Welbo(u)rn to push the matter further, so I hitched up my team and started again. I did my level Best, and tried hard (Howard you may never guess) to get that team along, but without success, when all of a sudden the horses took fright, and bolted $\operatorname{Mad}(e) 1(e) y$ across the field.

When I was able to pull them up I found that an old black Cat $(t)$ of the masculine Gender(s) had been caught in the blades. I thought it strange that a cat should be out there when I suddenly recognised him as the old College pet, and a great Hunter of mice. I pulled him out and found his hind leg fractured in seventeen places, but his Hock-in good order, so I at once sent the manager to F (l)etcher Young doctor who had his practice in Kangaroo Flat.

Now you know this doctor, living in a very populous district, was Everard at work attending his numerous patients; and he said he thought it the height of impudence for anyone to bring him to fix up a Cat (t), seeing that he had no Love whatever for the feline race, so I had perforce to attend to the poor beast's injuries myself. I had nothing on me with which I could posSibley alleviate the pain, except Hazeline Snow, so I rubbed it on the broken limb, and it answered very well.

The doctor, however, brought the matter before the district Clark, who advised him to find out all the facts and lay them before a court; and of all the things I've seen, the way that doctor went about trying to incriminate me is the strangest. However, I have not been taken into custody so far, and the doctor is collecting his evidence still.

## Criticism.

WHILST walking down the dormitory the other evening, I heard someone yelling like an Indian on the warpath, and, on making my way towards the scene of the disturbance, found much difficulty in fighting my way through the atmosphere, which, at the time, was as thick as smoke. I heard a familiar voice raised in angry protest, and, on peeping into one of the rooms, saw the familiar figure of "Cracker" writhing and twisting like a greased nigger, in the grasp of his deadly rival, "Jocky Sambo."

Such a scene as the one described above is common in this particular spot, and many a hoary battle has been waged between these two "old identities." It may truthfully be added, that at any period of the day when the students are disengaged, one may walk into this building and hear the same voice, day after day, hurling "epithets" at various members of his year, and particularly at his old friend "Youngè."
"Cracker," as he is best known to all, is the proud possessor of a marvellous memory, which has earned for him the nom-deplume of "Datas," the celebrated memory marvel. "Datas" has also another alias, which at one time was very prominent before the eye of the public, namely-"The Calico King." How he earned this business-like name is best left to the reader to guess.

Like all other youths, "Cracker" has a marked tendency towards "dainty titbits," and on a certain evening he was seen manœuvreing "tasty morsels" through the window of the supper room for "future reference." "Cracker" has a great liking for toast, and has often been heard bartering his last " fill of baccy" for such dainty morsels. His visits to Gawler have always aroused intense interest amongst his fellow students, and speculation has, at times, been rife as to whether he is ("Rowe)ing" or playing "Pool." I believe heavy dividends were paid on the result of his first "venture," but since then the dividends have markedly decreased, owing to him starting "favorite," but, nevertheless, we all wish him the best of luck in whatever "branch of the sport" he may seem fit to indulge.

## A Dream of the Future.

On our football aspirations, fortune very seldom frowned, For our wings were very speedy, and our centre very sound; And the total of our victories went gaily mounting up Till we figured in the final of the Barossa District Cup.
I remember every incident connected with the tie,
How the trams were running crowded, and our hopes were running high;
We had youth and skill and backers of a sort that seemed to me,
Quite sufficient to intimidate the boldest referee.
Now it may have been our nervousness at such a stringent test, Or it may have been the subtlety the other side possessed, But at any rate the fact remains, when half the game was done, They were actually leading us by three good goals to none.
Then we went to the pavilion for a breather and a rub, We were sad at such a blot upon the 'scutcheon of the club, And we felt the sorrows people feel, when every hope departs, So we busted out a-weeping, fit to break our little hearts.
And the tears were so effective, that the matches latter bit Saw our eyes a little reddened, but our feet exceeding fit; And before the final whistle put a limit to the score,
We had vigorously walloped them, by seventeen to four.

## Committees, Etc.

THE students' annual meeting was held on the evening of May 6th, the business being the election of officers for the year 1910. Mr. Pearson presided. The following were elected:-

President-Mr. Colebatch (ex officio); Vice-Presidents-Mr. Laffer, Mr. Spafford; Sports Secretary-Mr R. Hill; Assist. Secetary-Mr I. Young; Treasurer-Mr. Pritchard; Sports Committee, (3rd year) Young, (2nd year) Wilkinson, (1st year) Hocking; Dance Committee - (3rd year) Welbourn (Secretary), Stone, (2nd year) Wilkinson, Hill, (1st year) Killicoat; Student Commit-tee-G. G. Masson (editor), N. S. Fotheringham, (2nd year) H. Snow, G. C. Love, (1st year) P. D. Killicoat; Councilmen-(3rd year) B. J. Magarey, (2nd year) H. Snow, (1st year) P. D. Killicoat; Tennis Committee-(3rd year) N. S. Fotheringham, (2nd year) Wilkinson, (1st year) Killicoat. The following students were chosen to act sub-librarians:-I. S. Young, N. S. Fotheringham, H. Snow, and G. C. Love.

## Coprespondence.

"Requisites."-Wouldn't it be better if you were to see a brain specialist? Bottle and tube brushes were not made for washing out 10 -gallon milk cans.
"Hogget."-Not bluffing old chap, square en all, but wouldn't it be as well to keep the tynes in the ground when working the scarifier.
"Long 'un."-You would get full marks for spelling, yes, I don't think, "Backteereor."
"Ginger."-Peculiar place to look for sore shoulders on a riding horse, isn't it?
"Pussy"-The student who carried the bag of ensilage down Rundle Street last year during show week had the time of his life. Something for you to look forward to, only beware of Foxy, he's dead nuts on Catts.
"Scotty"-Your methods of harrowing very efficient, but you are ahead of your time. By careful calculation we have found that to harrow a hundred acre paddock in anything like reasonable time, by your method, would need 96 horses, 130 harrows, and 16 men-rather too big a problem for present-day farming.
"Dummy"-Would not advise leaving your head behind when out in the paddocks, might forget you didn't have it.
"Mum"-Not bad for you old girl, but your hairdresser might be more in the fashion.
"Piggy" - It's alright. You could ride, and your ride that night has only been outdistanced by the height to which your imagination soared on a night not long ago.

## Wanted to Know

Who mistook Moffat for Circus?
Who is a snag at lighting the dairy fire ?
Who joined the Drawback Club ?
Who kicked the fated football ?
Who was retossed in the blanket?
Who doesn't like grooming his horses before scram ?
Who tried to dissolve his dial with sulphuric acid ?
Who disappeared down the ensilage pits with 100 bags of super behind him?

Who has his false teeth cleaned every morning before feed up?

Who spoke unnecessarily ?
Who found pipe smoking otherwise than pleasant ?
Who joined the boy scout movement ?
Who calls the fowls at 3.30 a.m?

