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Abstract

The spatial resolution of conventional terahertz (THz) images is limited by the wave-
length of THz radiation (0.3 mm for 1 THz) and is therefore in the submillimetre range.
The general motivation behind an increased spatial resolution is to distinguish objects
separated by sub-wavelength distances and to cater for a smaller sample size. Owing
to the infancy of the technology, much work has to be carried out to improve the system
resolution. The focus of this Thesis is not to further improve the resolution, but rather,
take a step back to elucidate further understanding THz near-field approach. This
thesis, in the scope of engineering, investigates the focused beam near-field technique
through experimentation and modelling with an aim to provide a better understanding
in the far-field and near-field regime. The work aims to assist with the future imple-
mentation of THz near-field imaging systems. This body of work performs far-field
studies of a sub-wavelength THz source (Chapter 5) and a near-field investigation for
potential microscopic application (Chapter 6). In particular, this can be outlined into

two categories:

Far-field studies of a sub-wavelength THz source focus on modelling the source as a
radiating Gaussian aperture and illustrate the breakdown of the paraxial approxima-
tion at low THz frequencies. The findings show that the shape of the radiation pattern
causes a reduction in detectable THz radiation and hence contribute significantly to
low signal-to-noise ratio in THz radiation generation. The investigation can apply
without a loss of generality to other types of sub-wavelength sources for THz gen-
eration, such as, in photoconduction and plasma generation. Simulation of the laser
heating effects from prolonged intense exposure of a highly confined optical beam on

the THz emitter is also conducted.

The near-field investigation of a sub-wavelength THz source in a THz emitter also
models the source as a radiating Gaussian aperture. Based on realistic parameter val-
ues, the model allows for THz beam characterisation in the near-field region for po-
tential microscopy applications. The proposed validated numerical model therefore

aids in the quantitative understanding of the performance parameters. The work can
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Abstract

be applied to other focused beam THz techniques such as photoconductive antennas
without a loss of generality. Thin THz emitters have been reported to generate THz
radiation power enhancement. Empirical investigation of a reported unexpected thin

crystal power enhancement is also conducted.

In addition to these parts of the original contributions, the Thesis offers an introductory
background to THz-TDS and THz near-field imaging. Three side investigations are de-
scribed in the appendices: (i) THz photoconductive antenna material characterisation,

(ii) THz near-field material detection, and (iii) Gas recognition with THz-TDS.
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