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ABSTRACT

To obtain an accurate estimation of reservoir perfor-
mance, the reservoir should be properly characterised. 
One of the main stages of reservoir characterisation is the 
calibration of rock property distributions with flow perfor-
mance observation, which is known as history matching. 
The history matching procedure consists of three distinct 
steps: parameterisation, regularisation and optimisation. In 
this study, a Bayesian framework and a pilot-point approach 
for regularisation and parameterisation are used. The major 
focus of this paper is optimisation, which plays a crucial role 
in the reliability and quality of history matching. 

Several optimisation methods have been studied for his-
tory matching, including genetic algorithm (GA), ant colony, 
particle swarm (PS), Gauss-Newton, Levenberg-Marquardt 
and Limited-memory, Broyden-Fletcher-Goldfarb-Shanno. 
One of the most recent optimisation algorithms used in dif-
ferent fields is artificial bee colony (ABC). In this study, the 
application of ABC in history matching is investigated for 
the first time. ABC is derived from the intelligent foraging 
behaviour of honey bees. A colony of honey bees is comprised 
of employed bees, onlookers and scouts. Employed bees look 
for food sources based on their knowledge, onlookers make 
decisions for foraging using employed bees’ observations, 
and scouts search for food randomly. 

To investigate the application of ABC in history matching, 
its results for two different synthetic cases are compared with 
the outcomes of three different optimisation methods: real-
valued GA, simulated annealing (SA), and pre-conditioned 
steepest descent. In the first case, history matching using ABC 
afforded a better result than GA and SA. ABC reached a lower 
fitness value in a reasonable number of evaluations, which 
indicates the performance and execution-time capability 
of the method. ABC did not appear as efficient as PSD in the 
first case. In the second case, SA and PDS did not perform 
acceptably. GA achieved a better result in comparison to SA 
and PSD, but its results were not as superior as ABC’s. 

ABC is not concerned with the shape of the landscape, that 
is, whether it is smooth or rugged. Since there is no precise 

information about the landscape shape of the history match-
ing function, it can be concluded that by using ABC, there is a 
high chance of providing high-quality history matching and 
reservoir characterisation. 

KEYWORDS
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INTRODUCTION
One of the main purposes of reservoir simulation is to pre-

dict the future performance of hydrocarbon fields with the aim 
of field developments or investment decisions. Accurate reser-
voir simulation requires high-quality reservoir characterisation 
and geomodelling. In geomodels, porosity and permeability 
distributions are usually considered as uncertain parameters; 
however, they are also the principal parameters in reservoir 
simulation. Porosity and permeability distributions in geomod-
els are generated using geostatistical correlations (Journel and 
Huijbregts, 1978). Although many developments have been 
made in geostatistics such as co-kriging, sequential Gaussian 
simulation, and sequential indicator simulation (Kelkar and 
Perez, 2002), porosity and permeability remain uncertain pa-
rameters for reservoir simulation due to the limited number 
of sample data (Oliver, 1994). Only about one-billionth of the 
whole reservoir is measured and the rest is estimated using the 
geostatistical correlations (Berta et al, 1994). 

Hence, history matching is applied to calibrate geomodel pa-
rameters and possibly other input data of the reservoir simulator, 
such as well skins and aquifer strength with observed data. The 
observed data is typically information about well performance 
during the production period—for instance: well oil performance 
rate, well bottomhole pressure, and well water cut in each time 
step (Oliver and Chen, 2010). This calibration is called history 
matching, which is a non-linear inverse problem (Ballester and 
Carter, 2007). The non-linearity, measurement errors in observed 
data, excessive computation time, and large number of variables 
make history matching a complicated inverse problem, which 
suffers from ill-posedness. Ill-posed problems have more than 
one solution with similar fitness values (Sun, 1994). 

The history matching procedure, like other inverse prob-
lems, consists of three sections: variables definition (param-
eterisation), objective function definition, and optimisation 
(Oliver and Chen, 2010). As the number of gridblocks in geo-
models is large, it is unfeasible to carry out history matching 
while treating porosity and permeabilities in each gridblock 
as decision variables. Therefore, a parameterisation should be 
used to reduce the quantity of unknown parameters to a rea-
sonable number. In parameterisation, it is essential to define 
the minimum parameters representing the whole model with 
enough accuracy (Tarantola, 1987); however, it is a complex task 
due to reservoir heterogeneity. Several approaches have been 
introduced such as zonation (Jacquard, 1965), pilot points (De 
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Marsily et al, 1984, Bissell et al, 1997), spectral decomposition 
of prior covariance (Reynolds et al, 1996), and so on. These 
parameterisation approaches are not the focus of this study. In 
this paper, a pilot-point approach and a full parameterisation 
have been used. Full parameterisation corresponds to a system 
that does not include parameterisation and in which all vari-
ables (gridblocks) are taken for granted as decision variables. In 
such a case, the number of gridblocks should be small. 

The next section is objective function definition. The objec-
tive function can be defined in different ways. The most famous 
approaches in history matching regarding the objective func-
tion definition are the square of differences between observed 
data (history) and simulation results (L2 the norm of misfit), and 
Bayesian form, which is derived from Bayes’ theorem (Sivia and 
Skilling, 2006; Carter, 2004). In the Bayesian framework, prior 
knowledge is used to stabilise problems and make them well-
posed. The prior information performs as a penalty term in the 
objective function. In this study, the Bayesian approach is used 
for the definition of the objective function. After defining the de-
cision variables with or without parameterisation and defining 
the objective function, finding the global minimum (optimisa-
tion) is the next step, and plays a key role in history matching.

Various optimisation methods have been used in history 
matching, such as simulated annealing (Ouenes et al, 1993), 
genetic algorithm (GA) (Romero and Carter, 2001), particle 
swarm (Mohamed et al, 2010), ant colony (Hajizadeh et al, 
2011) and several classical optimisation methods—for example: 
Gauss-Newton, Levenberg-Marquardt and Limited-memory, 
Broyden-Fletcher-Goldfarb-Shanno (LBFGS) (He et al, 1997, 
Zhang et al, 2005). Each method has its own capabilities and 
weaknesses, and the method selection should be based on con-
ditions—especially the shape of landscape. Due to the large 
dimensionality of the space, providing a precise assessment for 
the landscape shape is not possible (Oliver and Chen, 2010). 
Thus, the selection of the optimisation method is controversial 
and no unique approach has been developed thus far. It should 
be mentioned that ensemble Kalman filtering (Liang et al, 2009, 
Lorentzen et al, 2009, Nævdal et al, 2003) is another algorithm 
that was developed for assisted history matching.

Classical (gradient) optimisers converge much faster and 
more efficiently than stochastic optimisers, (Zhang et al, 2005), 
but they have some restrictions, especially in systems with mul-
tiple local minima and/or discrete decision variables. On one 
hand, classical methods are sensitive to the initial guess, and 
the objective function is required to be derivable. On the other 
hand, stochastic methods are slow in convergence and cannot 
perform appropriately in systems with a large number of vari-
ables (Oliver and Chen, 2010). To find the global minimum in 
systems with many local minima, however, one of the best op-
tions is making use of stochastic optimisers. The ABC method 
introduced by Karaboga in 2005 is one of the most recent evo-
lutionary optimisation methods. ABC was inspired by studying 
the swarm behaviour of honey bees. Its applications have been 
studied in different fields, such as digital IIR filters (Nurhan, 
2009), heat-transfer coefficient (Zielonka et al, 2011) and sev-
eral numerical functions (Karaboga and Akay, 2009). In this 
study, the application of the ABC algorithm in automatic history 
matching and reservoir characterisation is investigated for the 
first time, and its advantages and disadvantages explored by 
evaluating its performance on two different synthetic models. 

HISTORY MATCHING

As previously stated, the main goal of history matching is to 
calibrate the input data—especially the geomodel—with the 
observed data. This means that an estimated set of parameters 
(m) using some observed data (d

obs
) that contains measurement 

error is required (Equation 1). Measurement error is almost 
always assumed to be Gaussian with a zero mean, and it is also 
assumed that observed data is not correlated with each other 
(Sun, 1994). Therefore, the covariance matrix (C

d
) of observed 

data is a diagonal matrix whose elements are standard devia-
tions of the measurement error (noise). The matrix is shown in 
Equation 2. The decision variables form a column vector, m, in 
Hilbert space (H

1
),

 
and the number of elements is N

m
. Similarly, 

d
obs

, d
cal

 are column vectors in Hilbert space (H
2
) containing 

the observation and calculation data, respectively, and with a 
quantity denoted by N

dobs
. The vectors m and d

cal
 are related to 

each other by g, a non-linear operator from space H
1
 to space 

H
2
. As shown in Equation 3 (Stark, 1987), g is the reservoir simu-

lator in the history matching problem, which is ECLIPSE E100 
in this paper. 

 (1)

 (2)

 (3)

Equation 3 is the forward problem, but in history match-
ing it is desirable to estimate m using observed data; this re-
quires solving an inverse problem. The elements of m can be 
any uncertain or unknown parameter—such as porosities—in 
some or all of the gridblocks, or well skins, aquifer data and so 
on. To estimate m, an objective function should be defined. 
As previously stated, to overcome ill-posedness and stabilise 
the solution, a Bayesian framework can be applied to define 
the objective function. In the Bayesian framework, the main 
objective is to find a set of variables (m) that maximises the 
posterior probability function: p(m|d

obs
). Using Bayes’ theorem 

(Equation 4), Equation 5 can be derived with the assumption 
of Gaussian distribution of m, and Gaussian noise in the ob-
served data (Sivia and Skilling, 2006). The matrix, C

m
, is the 

covariance of prior knowledge and C
D

 is the covariance matrix 
of observed data, which is defined in Equation 6. The second 
term in Equation 6 (C

T
) is the numerical simulation error, which 

is assumed to be zero in this study. With the purpose of finding 
the solution (m

∞
), it is necessary to maximise Equation 5—or 

similarly minimise Equation 7. The first term in Equations 5 
and 7 is likelihood and the second term is prior knowledge. The 
prior knowledge term depends on the availability and certainty 
of information about decision variables, and can be omitted if 
there is no prior knowledge for the decision variables. 

 (4)
 
 (5)

 (6)

 (7)

An optimisation is required to minimise Equation 7. Several 
methods of optimisation exist, but reaching an acceptable solu-
tion and being efficient in computation time requires a discern-
ing selection of optimisation method. In this study, the objec-
tive function of history matching is defined by Equation 7. The 
observed data is field and well performance in each time step. 
The decision variables (m) are the porosity in each gridblock. 
In the first case study, they are directly assumed to be variables 
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due to full parameterisation. In the second case, pilot-point pa-
rameters construct the element of m, then by making use of 
pilot-point parameters and ordinary kriging, porosities in the 
whole gridblocks are calculated. Hence, the porosity in each 
gridblock is indirectly the unknown parameter in the second 
case study. The parameter definitions are discussed in more 
detail in the case studies. In this study, an assessment for the 
landscape shape was made to determine whether S(m) has sev-
eral local minima or not; however, this is only an estimate. The 
following optimization methods were then applied: simulated 
annealing (SA), genetic algorithm (GA), pre-conditioned steep-
est descent (PSD), and ABC. Their outcomes were compared 
together. In this paper, the application of ABC for history match-
ing is investigated in detail, and its usefulness and efficiency in 
different cases is evaluated.

ARTIFICIAL BEE COLONY

The natural behaviour of a honey bee’s colony

To survive through winter, bees have to produce adequate 
honey. Hence, honey bees need to explore and exploit the area 
around them for food as efficiently as possible and store enough 
food. To carry out efficient exploitation and exploration, they not 
only memorise the locations with highest profitability, but also 
share their information with each other (Panigrahi et al, 2011). 
The profitability of a food source depends on its distance from the 
hive, richness and the ease of extraction (Karaboga, 2005). The 
main stage of efficient exploration and exploitation involves shar-
ing information and communicating with each other through a 
dancing language—a waggle dance. In this dance, they explain 
the profitability of food sources, directions and distances (Pani-
grahi et al, 2011). By this means, they share their knowledge and 
are consequently able to focus more on areas with highest profit-
ability. Bees’ exploration and exploitation of their surrounding 
area is one of the most well organised in nature.

Artificial bee colony (ABC) algorithm

Using honey bee behaviour as inspiration, an algorithm for 
optimisation was developed by Karaboga in 2005. The colony of 
ABC comprises employed bees, onlookers and scouts, just like 
real honey bees. In the first attempt, employed bees search for 
food randomly and then memorise the locations. In the next 
attempt, an employed bee looks for a food source based on 
her knowledge. This means employed bees always looked for 
better locations around the previous ones. They also share their 
information about food source profitability and their locations 
with onlooker bees. Onlookers collect information from all em-
ployed bees, then make decisions based on the observations. 
If the nectar amount increases, the number of onlookers look-
ing for it will increase (Karaboga, 2005). This means locations 
with the highest profitability are exploited by more onlooker 
bees. Scouts search randomly and usually look for a new home 
or food source. Scouts usually comprise only 5% of the whole 
population. If an employed bee cannot extract any more food 
from its corresponding area after a number of tries (i.e. they 
cannot find a better location with a higher level of nectar) it 
becomes a scout bee.

In the ABC algorithm, defining colony size (N
b
) and the di-

mension of the problem (N
m

) are the first steps. Usually half 
of the colony is assumed to be employed bees and the rest are 
onlooker bees, and the number of food sources (N

f
) is equal to 

the number of employed bees (Karaboga and Basturk, 2008). 
An initial population should then be generated. It is shown as 
a matrix (Equation 8), which is typically generated randomly. 
Each possible solution (mi=[mi1

... miNm
]) is then evaluated. Af-

ter that, each employed bee looks around one mi for a better 
solution—if she gets a better result, she memorises the new 
location (solution), otherwise she keeps the previous location 
(solution) in mind. Each employed bee is an agent for a solution 
(mi). After all the employed bees search around their mi, they 
share their knowledge with an onlooker based on the fitness 
of each solution. 

 (8)

Onlookers then use the fitness values provided by the em-
ployed bees to forage around the food sources. Consequently, 
most onlookers exploit around an mi with a lower fitness value 
(a higher profitability) rather than search for an mi with a higher 
fitness (a lower profitability). It is a repetitive procedure: in each 
cycle, each employed bee searches for a better fitness using 
their own knowledge and each onlooker searches for food after 
collecting the knowledge of the employed bees. These cycles 
are repeated until the required satisfaction is gained, or one of 
the stopping criteria is met. During the cycles, it is necessary 
to define a limitation; if an employed bee cannot improve the 
fitness of a specific location after a limited number of iterations, 
she should become a scout bee and look for a new solution ran-
domly (Karaboga, 2005; Karaboga and Basturk, 2007a, 2007b). 

In this study, the above algorithm—which was coded in 
MATLAB by Karaboga in 2007—is used. In the following sec-
tions two famous functions, which are usually used to bench-
mark the capability of optimisation methods, are selected to 
investigate the searching behaviour of ABC. 

Searching behaviour of ABC using the Ackley
function

The Ackley function is a multi-dimensional model that is 
extensively used to test optimisation methods; this function has 
several local minima and one global minimum. In this study, 
to be able to draw the function and investigate the searching 
behaviour, a 2D Ackley function is used. The global minimum 
is (0,0) with a zero fitness value: (f(0,0) = 0). The function is 
displayed in Figure 1 for -2 < x, y < 2. The function is written 
in Equation 9, assuming a = 20, b = 0.2, and c = 2π (Molga and 
Smutnicki, 2005). Classical optimisation methods cannot per-
form properly to find the global optimum of such a system and 
they usually get stuck in a local minimum. For these kinds of 
functions, evolutionary algorithms must be applied.

 

 (9)

The ABC algorithm was run on the Ackley func-
tion with 50 iterations and a colony size of 30. The point 
(3.9×10-10, -3.2×10-10) was found as a final solution with a fit-
ness of 1.4×10-9, which is very close to the exact solution. The 
total number of evaluations was 1,500. Figure 2 exhibits the 
exploration and exploitation of ABC on this function. Each dot 
point shows a location that is evaluated either by employed, 
onlooker or scout bees. Notice that even though the landscape 
contains many local minima, ABC converges quickly to the 
global minimum.

Searching behaviour of ABC using the Schwefel
function

A similar procedure is used for the Schwefel function, which 
is shown in Equation 10. For this study, x and y are between -500 

with highest profitability. Bees’ exploration and exploitation of their surrounding area is one of the most well-organized in nature.    

 

3.2. Artificial bee colony algorithm (ABC) 

Using the inspiration of honeybee behavior, an algorithm for optimization was developed by Karaboga in 2005. The colony of 

ABC comprises employed bees, onlookers and scouts, just like real honeybees. In the first attempt, employed bees search for food 

randomly and then memorize the locations. In the next attempt, an employed bee looks for a food source based on her knowledge. 

This means employed bees always looked for better locations around the previous ones. They also share their information about 

food source profitability and their locations with onlooker bees. Onlookers collect information from all of the employed bees and 

then make decisions based on the observations. If the nectar amount increases, the number of onlookers looking for it will increase 

(Karaboga, 2005). This means that location(s) with the highest profitability is exploited by more onlooker bees. Scouts search 

randomly and usually they look for a new home or food source. Scouts are usually only 5% of the whole population. An employed 

bee will become a scout bee, whenever they cannot extract more food from its corresponding area (i.e. they cannot find a better 

location with a higher nectar) after a number of attempts. 

In the artificial bee colony algorithm, defining colony size (Nb) and the dimension of the problem (Nm) are the first steps. Usually 

half of the colony is assumed to be employed bees and the rest are onlooker bees. Also, the number of food sources (Nf) is equal to 

the number of employed bees (Karaboga and Basturk, 2008). Then, an initial population should be generated. It is shown as a matrix 

(equation 8) which is typically generated randomly. Then, each possible solution (mi=[mi1... miNm]) is evaluated. After that, each 

employed bee looks around one mi for a better solution; if she gets a better result, she will memorize the new location (solution); 

otherwise she will keep the previous location (solution) in her mind. Each employed bee is an agent for a solution (mi). After all the 

employed bees search around their mi, they share their knowledge with an onlooker based on the fitness of each solution.  

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼  𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑚𝑚!! ⋯ 𝑚𝑚!!!
⋮ ⋱ ⋮

𝑚𝑚!!! ⋯ 𝑚𝑚!!!!
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Then, onlookers use the fitness values provided by the employed bees to forage around the food sources. Consequently, most 

onlookers exploit around an mi with a lower fitness value (a higher profitability) and less search at an mi with a higher fitness (a 

lower profitability). It is a repetitive procedure, in each cycle, each employed bee searches for a better fitness using their own 

knowledge and each onlooker searches for food after collecting the knowledge of the employed bees. These cycles are repeated until 

the required satisfaction is gained, or one of the stopping criteria is met. During the cycles, it is necessary to define a limitation. If an 

employed bee cannot improve the fitness of a specific location after a limited number of iterations, she should become a scout bee 

and look for a new solution randomly (Karaboga, 2005, Karaboga and Basturk, 2007b, Karaboga and Basturk, 2007a).  

In this study, the above algorithm is used, which was coded in MATLAB by Karaboga in 2007. In the following sections, two 

famous functions which are usually used to benchmark the capability of optimization methods are selected to investigate the 

searching behavior of ABC.  

 

3.3. Searching behavior of ABC using the Ackley function 

The Ackley function is a multidimensional model which is extensively used to test out optimization methods; this function has 

several local minima and one global minimum. In this study, in order to be able to draw the function and also investigate the 

searching behavior, a 2-D Ackley function is used. The global minimum is (0,0) with a zero fitness value (f(0,0)=0). The function is 

displayed in figure 1 for -2<x,y<2. The function is written in equation 9, with a=20, b=0.2, c=2π (Molga and Smutnicki, 2005). 

Classical optimization methods cannot perform properly to find the global optimum of such a system and usually they get stuck in a 

local minimum. For these kinds of functions, evolutionary algorithms are required to be applied.       

𝐹𝐹(𝑥𝑥, 𝑦𝑦) = −𝑎𝑎𝑒𝑒
!! !

! !!!!!
− 𝑒𝑒

!
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Insert Figure 1 hereabouts. 

 

The ABC algorithm was run on the Ackley function with 50 iterations and a colony size of 30, this point was found as a final 

solution: 3.9×10-10, -3.2×10-10, with a fitness of 1.4×10-9, which is so close to the exact solution. The total number of evaluations was 

1500. The next figure (figure 2) exhibits the exploration and exploitation of ABC on this function. Each dot point shows a location 

which is evaluated either by employed, onlooker or a scout bees. It is noticeable that even though the landscape contains many local 

minima, ABC converges quickly to the global minimum.     

 

Insert Figure 2 hereabouts. 

 

3.4. Searching behavior of ABC using the Schwefel function 

A similar procedure is used for the Schwefel function which is written in equation 10. For this study, x and y are between -500 

and 500 and the global minimum is -837.9658 which is located at (x y)=(420.9687 420.9687). Schwefel is a multidimensional 

function which is problematic even for stochastic optimization algorithms, due to its highly rugged landscape shape (figure 3) 

(Molga and Smutnicki, 2005). ABC was run for the function with 70 iterations and colony size of 30. The following results were 

obtained: x,y of the solution are equal to 420.9688 and 420.9688 respectively and its fitness is -837.966 which is close to the exact 
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and 500, and the global minimum is -837.9658, which is located 
at (x, y) = (420.9687, 420.9687). Schwefel is a multi-dimensional 
function, which is problematic even for stochastic optimisation 
algorithms due to its highly rugged landscape shape (Fig. 3) 
(Molga and Smutnicki, 2005). ABC was run for the function with 
70 iterations and colony size of 30. The following results were 
obtained—x and y of the solution were equal to 420.9688 and 
420.9688, respectively, and its fitness was -837.966, which is 
close to the exact solution. Figure 4 exhibits the convergence 
behaviour of ABC on Schwefel function. 

 (10)

The searching behaviour of ABC demonstrates high-quality 
exploration and exploitation of the landscape and fast conver-
gence to the solution. 

Application of ABC in history matching

In the above examples, the capability of ABC in exploration 
and exploitation is shown. In this study, the application of ABC 
in automatic history matching and its advantages and disad-
vantages are studied using two synthetic examples. To auto-
mate the history matching, MATLAB was coupled with ECLIPSE 
(E100) to run the reservoir simulation at each function evalua-
tion. MATLAB was also coupled with SGeMS for geostatistical 
data generation (Remy et al, 2009). The coding for the geosta-
tistics section was done by Thomas Mejer Hansen from 2004–08 
and can be found at http://mgstat.sourceforge.net/. The coding 
for the ABC algorithm used in this study was done by Karaboga 
(2009) and can be found at http://mf.erciyes.edu.tr/abc/. To 
evaluate the capacity of ABC, a comparison of its results with 
other optimisation methods is required. Thus, two stochastic 
optimisers (a real-valued genetic algorithm and simulated an-
nealing), and a classical method (pre-conditioned steepest 
descent (Tarantola, 1987) are used. For the genetic algorithm 
and simulated annealing optimisation, the MATLAB global op-
timisation toolbox was used. 

RESULTS

For this study, two synthetic models were constructed to 
evaluate the proposed optimisation method in the history 
matching process. Since synthetic cases do not have any flow 
performance history, they should be simulated for a period of 
time to generate such a history. A Gaussian noise was added 
to the history (observed vector) to make it more realistic. At 
this point, the history used for geomodel calibration was ready. 
Subsequently, the decision variables needed to be defined. The 
porosities of each gridblock were assumed to be the decision 
variables. Then, with history matching, the decision variables 
were assessed using the objective function defined in Equation 
7 and an optimisation method. Finally, the estimated values ob-
tained by different optimisation methods were compared with 
the reference values (exact solutions) that were used to produce 
the history for the synthetic cases. A real case was not used in 

Figure1. 2D Ackley function.

Figure 2. Searching behaviour of ABC on the Ackley function.

solution. Figure 4 exhibits the convergence behavior of ABC on Schwefel function.   
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Insert Figure 3 hereabouts. 

 

The searching behavior of ABC demonstrates high-quality exploration and exploitation of the landscape and fast convergence to 

the solution.  

Insert Figure 4 hereabouts. 

 

3.5. Application of ABC in history matching 

In the above examples, the capability of ABC in exploration and exploitation is shown. In this study, the application of ABC in 

automatic history matching and its advantages and disadvantages are studied using two synthetic examples. In order to automate the 

history matching, MATLAB is coupled with ECLIPSE (E100) to run the reservoir simulation at each function evaluation, and 

MATLAB is also coupled with SGeMS for geostatistical data generation (Remy et al., 2009). The coding for the geostatistics section 

was done by Thomas Mejer Hansen from 2004 to 2008 and can be found at the following URL: http://mgstat.sourceforge.net/. The 

coding for the artificial bee colony algorithm used in this study was done by Karaboga and can be found at the following URL: 

http://mf.erciyes.edu.tr/abc/. To evaluate the capacity of ABC, a comparison of its results with other optimization methods is 

required. Thus, two stochastic optimizers (a real-valued genetic algorithm and simulated annealing), and a classical method 

(preconditioned steepest descent (Tarantola, 1987) are used.  For the genetic algorithm and simulated annealing optimization, the 

MATLAB global optimization toolbox was used.  

 

4. Results 

For this study, two synthetic models were constructed to evaluate the proposed optimization method in the history matching 

process. Since synthetic cases do not have any flow performance history, they should be simulated for a period of time in order to 

generate a performance history. A Gaussian noise is added to the history (observed vector) to make it more realistic. At this point, 

the history used for geomodel calibration is ready. Subsequently, the decision variables need to be defined. The porosities of each 

gridblock are assumed as the decision variables. Then, with history matching, the decision variables are assessed using the objective 

function defined in equation 7 and an optimization method. Finally, the estimated values obtained by different optimization 
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the evaluation of the proposed method since its correspond-
ing true solution was not necessarily known, and so further 
verification of the solution acquired by different methods was 
not possible or reliable. To sum up, the goal was to reproduce 
the reference porosity distribution using historical performance 
data and prior knowledge, if available. 

 Case one

The first case consisted of 75 large gridblocks in three layers; 
each layer had 25 gridblocks. The permeability of each grid-
block is calculated using the Kozeny-Carman equation with 
some simplifications, shown in Equation 11. Permeability in the 
x and y directions were set as equal. The permeability in the ver-
tical direction (z) was 10% of the permeability in the horizontal 
direction (x, y). The porosity in each gridblock was similar to 
the corresponding gridblocks of other layers. The porosities for 
one layer were considered as the decision variable. Thus, there 
were only 25 unknown parameters and no need to reduce the 

number of unknown variables with parameterisation. It was 
assumed that the porosity distribution of the reference case 
was totally heterogeneous and therefore uncorrelated. More 
detail about the case is shown in Table 1. Although this case was 
unrealistic, it is useful to investigate the outcomes of different 
approaches on simple cases. 

k = 30,000×φ3 (11)

Porosity for the reference case was generated using a normal 
distribution, with a mean of 25 and standard deviation (σ) of 
7. As it is uncorrelated, the covariance matrix (C

M
) was diago-

nal. The porosity distribution of the reference case is shown in 
Figure 5. History was generated for 2,210 days in 38 time steps. 
The history consisted of well bottomhole pressures, well liquid 
production rates, well gas production rates, and well oil produc-
tion rates in each time step; the total observation data is equal 
to 798 elements. Gaussian noise was then added to the history 
with a zero mean and σ of 2. The observed performances were 
not correlated, therefore the covariance matrix (C

D
) is a diago-

nal matrix whose elements are 4 (σ2). This case is a nine-spot 
water flooding system, with five injectors and four producers.

To generate a prior knowledge, Gaussian noise was added 
to the reference porosity with zero mean and σ of 3. Therefore, 

Figure 3. 2D Schwefel function.

Figure 4. Searching behaviour of ABC on Schwefel function.

Property Value
Average permeability in X and Y direction 517 md

Average porosity 0.2471
Number of gridblocks in X, Y, Z direction 5, 5, 3

Dimension of gridblocks in X, Y, Z direction 183 m, 183 m, 18.3 m
Rock compressibility 0.000058 1/bar

Reservoir top 2,926 m
Phases Oil, water, gas and dissolved gas

Oil viscosity 2 cp @ 413 bar
Initial pressure 269 bar @ 1851 m

Table 1. Reservoir properties.
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this can be considered as the initial estimation for all 25 un-
known variables (prior knowledge); Figure 6 shows the prior 
distribution. The objective function is defined by Equation 7. 
Although the prior distribution seems close to the reference 
case, its fitness value is in the order of 107 (5.04 × 107) and the 
difference between prior (here m

prior
 = m

∞
) and the reference 

porosity is 9.5%, based on Equation 12. In this equation, m
r
 

is the reference value and m
∞

 is the final solution. The main 
goal of history matching is to reduce the difference between 
the solution and the reference (Equation 12) by minimising the 
result of Equation 7. 

 (12)

For full parameterisation cases with porosities and/or per-
meabilities as variables, the authors believe the shape of land-
scape is smooth and is more likely to have only one minimum. 
As mentioned before, it is almost impracticable to precisely es-
timate the landscape shape for the history matching objective 
function; it is only a rough estimation. What led the authors to 
this conclusion is the landscape shape for the 2D system, and 
that classical methods can converge to the optimal solution. 
To draw a 2D landscape, the porosity of 23 out of 25 gridblocks 
was fixed to the reference values and the other two assumed as 
variables. The fitness value has been drawn for different poros-
ity values of the two gridblocks, as shown in Figure 7. As it can 
be seen, the graph is fairly smooth. 

The results of different optimisation methods for the 2D 
case are shown in Table 2. Since stochastic methods (SA, GA 
and ABC) use random numbers, they were run 10–20 times 
with different seed numbers and different algorithm options; 
the best ones (i.e. lower fitness values) were then selected. SA, 
ABC, real-coded GA, and pre-conditioned steepest descent 
(PSD) converged to the optimal point. The classical method 
also works properly. This can be due to the existence of only 
one minimum. The main difference is the number of times the 
evaluation function has been evaluated, which causes a huge 
impact on computation costs/time. The method performances 
are ranked from the lowest computation time to the highest: 
1. PSD; 2. SA; 3. ABC; and, 4: GA. For PSD, calculation of the 
sensitivity matrix (which is estimated numerically in this study) 
is necessary. For such cases with smooth landscapes, classical 
methods are much more efficient than evolutionary algorithms. 

The performance results of the methods in the 2D case could 

not clearly discern between the methods’ capabilities and 
strong points. The main challenge is the case with 25 variables. 
The next section investigates which of the classical or stochastic 
methods are more efficient for the case with 25 variables.

The results of solving the 25 variables system with the dif-
ferent methods are shown in Table 3. One of the main advan-
tages of using ABC in history matching is the opportunity of 
considering prior knowledge for selecting the starting points. 
At the beginning, ABC starts looking for a solution around the 
initial food sources. Hence, if a prior knowledge is available and 
incorporated into the optimisation, there will be a higher prob-
ability that ABC converges at a more rapid pace into the global 
optimum. Since prior knowledge is only a point (vector), and 
the initial food source consists of a set of points (matrix), noise 
is added to the prior knowledge to define the initial food source.

As previously mentioned, the main goal is to reduce the val-
ue of Equation 12 by minimising Equation 7. For this case, there 
was an initial estimation for all variables (prior knowledge) and 
its difference with the reference (real solution) was 9.5%. As the 
observed data contains noises, the value of Equation 7 for the 
reference is around 742.82. A genetic algorithm was run several 
times and each time got stuck at a different point. The result 
in Table 3 for GA is the best one, and it could not reduce the 
value to less than 481,800. The difference between its solution 
and reference is 15.75%; hence, it is concluded that GA at its 
present configuration cannot provide a good result for this case.

SA was also applied. In SA, an initial point is required and 
because of having prior knowledge, it is possible to use it as the 
initial guess. The main problem with this method is its slow con-
vergence speed. It reached S(m) = 74,579 after 70,200 iterations, 
but its results are acceptable and close to the reference. The value 
of Equation 12 using SA solution is 5.2%. As SA needs more time 
to get better results, it is not efficient, especially in a real case.

Pre-conditioned steepest descent worked properly in this 
case, as was expected. Not only it did achieve a better result 
compared to the stochastic optimisers, but it also converged 
faster to the optimal solution. The final solution of PSD is close 
to the reference, and the difference is only 0.2%. Thus, it is rec-
ommended that a classical optimiser should be implemented 
for this type of case.

In this study, the main focus is on the application of ABC in 
history matching. For this case, the outcome of history match-
ing using ABC demonstrates ABC can provide a better result 
compared to other stochastic optimisers. The difference be-
tween its solution and the reference is 2.55%. In contrast to 
the other two stochastic methods, ABC reached a lower fitness 

Figure 5. Porosity distribution for the reference case. Figure 6. Prior porosity distribution.

deviation of 3. Therefore, this can be considered as the initial estimation for all 25 unknown variables (prior knowledge). Figure 6 

shows the prior distribution. The objective function is defined by equation 7. Although the prior distribution seems close to the 

reference case, its fitness value is in the order of 107 (5.04×107) and the difference between prior  (ℎ𝑒𝑒𝑒𝑒𝑒𝑒  𝑚𝑚!"#$" = 𝑚𝑚∞) and the 

reference porosity is 9.5%, based on equation 12. In this equation, 𝑚𝑚! is the reference value and 𝑚𝑚∞ is the final solution. The main 

goal of history matching is to reduce the difference between the solution and the reference (equation 12) by minimizing the result of 

equation 7.   
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Insert Figure 6 hereabouts. 

 

For full-parameterizations cases with porosities and/or permeabilities as variables, we believe that the shape of landscape is 

smooth and it is more likely to have only one minimum. As mentioned before, it is almost impracticable to estimate the landscape 

shape precisely for the history matching objective function; it is only a rough estimation. What led us to this conclusion is the 

landscape shape for the 2D system and the fact that classical methods can converge to the optimal solution. In order to draw a 2D 

landscape, the porosity of 23 out of 25 gridblocks was fixed to the reference values and the other two assumed as variables. Fitness 

value has been drawn for different porosity values of those two gridblocks as shown in figure 7. As it can be seen, the graph is fairly 

smooth.  

 

Insert Figure 7 hereabouts. 

 

The results of different optimization methods for the 2-dimensional case are shown in table 2. Since stochastic methods (SA, GA 

and ABC) use random numbers, they were run 10-20 times with different seed numbers and different algorithm options, and then 

the best ones in terms of lower fitness values were selected. Simulated annealing (SA), artificial bee colony (ABC), real-coded genetic 

algorithm (GA), and preconditioned steepest descent (PSD) converged to the optimal point. The classical method also works 

properly. This can be due to the existence of only one minimum. The main difference is the number of times that the evaluation 

function has been evaluated, which causes a huge impact on computation costs/time. The method performances are ranked in the 

following way, from the lowest computation time to the highest: 1-PSD, 2-SA, 3-ABC and 4-GA. For PSD, it is required to calculate 

the sensitivity matrix which is estimated numerically in this study. For such cases with smooth landscapes, classical methods are 

much more efficient than evolutionary algorithms.  
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value in a reasonable number of evaluations. This demonstrates 
the performance and execution time capability of the method. 
Although GA exhibited more power in exploration of the so-
lution space than ABC, ABC can overcome this deficiency in 
exploration with its exploitation ability. It is fair to state that 
ABC did not appear as efficient as PSD in this case. 

Case two

Since real cases consist of a large number of gridblocks, more 
gridblocks were defined for the second case (35 × 35 × 3 grids 
in x, y and z directions, respectively). Similar to the previous 
case, it is assumed the porosity is unknown in each gridblock. 
The permeability is calculated from Equation 11, and the per-
meability is the same in x and y directions. The permeability 
in the vertical direction is 10% of the horizontal. This case is a 
system with two phases (water and oil), and is also a nine-spots 
water-flood system with five injectors and four producers. The 

injector wells are connected to the first and second layers, and 
the production wells are completed only into the second layer. 
The history (observed vector) was generated by simulating the 
reference case in 38 time steps for 2,210 days. Its elements are 
well bottomhole pressures, well oil production rates, well liquid 
production rates, field oil production rate, field pressure, and 
field water production rate at each time step. Gaussian noise 
with a σ of 2 and a zero mean was added to the observed vector. 

This case has 3,675 gridblocks, and the aim is to estimate the 
porosity in each gridblock. There are nine wells in the system 
with known porosity values in the gridblocks where wells ex-
ist. Hence, the number of variables is 3675 – (3×9) = 3,648. It is 
impractical to optimise a system with 3,648 variables; thus, a pa-
rameterisation method should be applied to reduce the variables 
to a reasonable number. The pilot-point approach introduced 
by de Marsily in 1984 is used in this study. Pilot points act as 
pseudo wells and can alter the property distribution with their 
parameters, which are their locations and their values—in this 

Figure 7. Landscape for case one.

Method Options No. of Evaluations Fitness value Parameters
Solution - - 725.9 [20.28...18.96]

SA

Initial point: [15...15] 113 724 [20.28...18.96]
Fast annealing

Exponential temp. update
10 initial temp with 100 iterations interval

ABC
Colony size = 30 280 (12 generations) 725 [20.28...18.96] 

Cycles = 12
Limit = 100

Real-valued GA

Pop. size = 10 780 (25 generations) 724.7 [20.28...18.96]
Crossover: 90%; heuristic ratio: 1.2

Mutation: 10% constrained dependent
Elite: 2

Selection: stochastic uniform

PSD Initial point: [15...15] 36 (nine iterations) 725 [20.28...18.96]

Table 2. Results for the first case with two variables.
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case, porosity. A limited number of the gridblocks are described 
by pilot points and the rest are calculated using geostatistical 
interpolations based on the pilot points and well data. In this 
study, a fixed number of pilot points are used to describe the 
reservoir and their values (porosity), and locations are consid-
ered as decision variables. Therefore, it is only necessary to find 
the best locations and the best values for pilot points, and the 
rest of gridblocks are calculated using geostatistical correlation. 

In this case, it is assumed there are seven pilot points in each 
layer and their locations are defined in a polar coordinate system. 
Each pilot point is located on a specific fixed radius, but could be 
located at any angle. In each layer, seven pilot points are available 
but their values and angles are unknown (2×7=14); thus, there 
are 42 decision variables. After history matching, the location 
and value of all the 21 pilot points are obtained. The rest of the 
gridblocks are estimated using geostatistical correlations. In this 
study, ordinary kriging is used; it is assumed the variogram pa-
rameters are all known for further simplification of the problem. 

The objective function is defined in the same way as the pre-
vious case, but in this case there is no prior knowledge; it is un-
reasonable to provide prior knowledge for the locations of pilot 
points. Therefore, the objective function is only the first term 
(likelihood) of Equation 7. The porosity of the reference case 
was constructed by assuming a set of values for the pilot points’ 
location and value (m

r
). The permeability distribution for each 

layer of the reference case is shown in Figure 8. Using only data 

from the nine wells, the distributions for each layer are calcu-
lated and the corresponding fitness value is 1.6036 × 106 (Fig. 9). 
The difference in generated porosity between nine samples and 
16 samples (nine wells plus seven pilot points), based on Equa-
tion 13, is 17.34%. In Equation 13, p

∞
 denotes the generated 

porosity using the final solution (m
∞

), and p
r
 denotes the refer-

ence porosity, which is generated using m
r
. 

 (13)

Similar to the first case, the shape of the landscape was es-
timated first. As the location and value of a pilot point are re-
lated to each other, a rugged landscape is expected so to prove 
this, all the values and locations of the pilot points are assumed 
known except for one. The value for this single pilot point and 
its angle are the unknown parameters; its corresponding land-
scape was calculated and is shown in Figure 10. As it can be 
seen, there are some local minima and one global minimum. 
This shape is only for one pilot point. It is expected that the 
landscape exhibits a more rugged behaviour in cases with more 
pilot points. Consequently, it is difficult for a classical method 
to solve these kinds of problems. 

In this case, four different optimisation methods—ABC, 
PSD, GA and SA—were investigated on both the 2-dimen-
sional and 42-dimensional problems. In the pilot points ap-

Solutions Prior Reference SA GA ABC PSD

Options - -

Initial point: prior Pop size = 120
Elite = 1

Initial food source: 
prior + Gaussian noise

Initial point: prior
Fast annealing Crossover: 70% 

scattered Colony size = 30

Exponential temp. 
update

Mutation: 30% con-
strained dependent Cycles = 1,550

10 initial temp with 
30 iterations interval

Selection: roulette 
wheel Limit = 100

Parameters

27.528
25.404
26.451
20.250
25.867
17.320
42.022
32.067
25.563
27.441
26.744
27.879
28.126
19.573
23.335
19.438
26.420
25.988
18.136
18.112
6.540

34.384
31.135
21.335
23.342

24.563
25.546
27.444
24.817
26.286
20.283
35.238
30.868
24.549
29.874
27.519
28.600
27.305
22.834
21.038
21.489
28.444
24.552
16.313
18.959
10.565
32.213
28.522
17.927
21.903

26.476
25.332
27.455
20.932
27.428
18.552
42.291
31.440
24.858
28.568
27.670
26.817
26.775
21.806
21.318
21.684
26.106
23.306
18.606
17.527
10.510
30.945
28.775
17.742
23.667

36.663
19.036
27.057
22.600
26.700
25.603
39.756
33.116
30.590
34.173
26.948
14.128
28.591
13.514
20.885
24.942
31.067
21.207
11.534
23.754
10.637
29.661
27.967
18.673
18.735

24.323
25.352
27.162
24.777
26.126
19.394
35.590
32.114
24.641
29.559
27.113
29.299
27.638
24.059
20.867
21.466
27.854
24.580
19.258
17.617
10.546
32.512
28.297
18.694
22.853

24.489
25.653
27.437
24.861
26.321
20.291
35.289
30.722
24.413
29.881
27.511
28.581
27.251
22.999
21.037
21.463
28.462
24.515
16.455
18.901
10.566
32.151
28.517
17.965
21.898

Fitness value 5.04 × 107 742.84 74,579 481,800 19,735 733

No. of 
evaluations - - 70,200 36,120 

(300 generations) 48,100 (1,550 cycles) 32,400 
(1,200 iterations) 

Difference using 
Eq. 12 (%) 9.5% 0% 5.2% 15.74% 2.55% 0.2%

Table 3. Results for the first case with 25 variables.
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Figure 8a. Reference first layer.

Figure 8b. Reference second layer.

Figure 8c. Reference third layer.
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Figure 9a. Generated permeability of first layer (with only nine wells' data).

Figure 9b. Generated permeability of second layer (with only nine wells' data).

Figure 9c. Generated permeability of third layer (with only nine wells' data).
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proach, different sets of parameters (m) may lead to the same 
answer (p). Thus, in this section the final porosity distribu-
tions (p

∞
) are compared, based on Equation 13. For the 2D 

problem, the classical method got stuck in a local minimum 
as expected, but all stochastic optimisers provided appropri-
ate solutions. The results of the four different optimisers can 
be seen in Table 4. The real challenge is for the case with 42 
decision variables. 

For the 42-dimensional problem, pre-conditioned steepest 
descent could not reduce the fitness value to less than 601,810, 
and the difference between reference porosity distribution and 
the generated porosity distribution based on Equation 13 is 
16.78%. For the pilot-point approach, it is not feasible to pro-
vide a proper initial guess. This can be a reason why classical 
methods were stuck in a local minimum. In those cases where 
decision variables are dependent, stochastic optimisers are 

recommended. The outcomes of the different optimisers are 
shown in Table 5.

SA did not perform acceptably in this case. After 28,430 itera-
tions, the fitness value (S(m)) was 207,890. SA not only failed 
to reduce the value of Equation 13—in fact, this value was ob-
served to increase; however, the fitness value was reduced com-
pared to the case without pilot points. The genetic algorithm 
reduced the value of S(m) to 26,127 with 15,540 evaluations in 
258 generations, and the corresponding O(m

∞
) value is 16.75%, 

which is better than the results from SA and PSD. The ABC out-
performed the other optimisers in performance and O(m

∞
) and 

S(m
∞

) values. ABC reduced the value of fitness to 9,142.2, which 
is much better than the other algorithms. More importantly, the 
difference between the reference and the calculated porosity 
after history matching, based on Equation 13, is 12.55%. More 
details are provided in Table 5. 

Figure 10. Landscape shape for case two.

Method Options No. of 
Evaluations Fitness value Difference based 

on Eq. 13 (%) Parameters

Solution - - 739.29 0 [5.1998...15.4701]

SA

Initial point: [10...10] 61 739.44 0.003 [5.2527...15.4942]
Fast annealing

Exponential temp. update
10 initial temp. with 30 iterations interval

ABC
Colony size = 20 280 (14 generations) 739.32 0.0015 [5.3053...15.4681]

Cycles = 14
Limit = 100

Real-valued 
GA

Pop size = 20 340 (16 generations) 739.31 0.0008 [5.2771...15.4765]
Crossover: 80%; heuristic ration: 0.8

Mutation: 20% constrained dependent
Elite: 1

Selection: stochastic uniform

PSD Initial point: [10...10] 800 (200 iterations) 7,129.0 1.73 [10.797...24.581]

Table 4. Results for case two with two variables.
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This study shows that the ABC method works properly in 
history matching problems. ABC is not concerned with the 
shape of the landscape, that is, whether it is smooth or rugged. 
The main problem is the computation time, which makes it an 
inefficient method in systems with smooth landscapes. Since 
there is no precise information about the landscape shape, it 
can be concluded that by using ABC, there is a high chance of 
providing high-quality history matching and reservoir charac-
terisation. 

CONCLUSION

In this study, the application of ABC optimisation in history 
matching and reservoir characterisation was investigated using 
two different synthetic cases. The outcomes of ABC were com-
pared with the results of different optimisation methods—PDS, 
SA and real-coded GA. The comparison indicates ABC worked 
properly in convergence speed and the final solution in both 
cases. In the first case where a full parameterisation was used, 
although a classical method provided a better result than the 
other methods, ABC also performed properly. In the second 
case where pilot-point parameterisation was used, ABC gave 
the best result in comparison to the other three methods.

Due to the high dimensionality of history matching, there is 
no straightforward technique to predict the landscape shape of 
the objective function; hence, the selection of an optimisation 
method among the variety of options is always controversial. In 
this study, it was shown that ABC can perform properly both on 
rugged or smooth landscapes. The major drawback of ABC is 
the long computing time, which is a result of the slow conver-
gence speed due to its preference for exploitation rather than 
exploration, in contrast to GA. 

Providing one solution for industrial problems is risky, espe-
cially for investment and field-development decisions; thus, a 
set of solutions along with their reliability should be provided. 
Future studies could expand the knowledge area of this mat-
ter. It is recommended for such work to include an uncertainty 
analysis. It is also fair to state that evolutionary algorithms 
can almost never find the exact optimal solution in cases with 
continuous variables. To find the global optimum, it is recom-
mended that a hybrid ABC be implemented by coupling ABC 
with a classical method. 
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NOMENCLATURE

d
obs

  Column vector of observed data
d

sim
  Column vector of simulated data

m  Column vector consists of model parameters 
m

prior
  Column vector consists of prior model 

  parameters
g  Forward problem
C

d
  Covariance matrix of observed data

C
m  

Covariance matrix of model data
C

T  
Covariance matrix of calculation error

S(m)  Bayesian objective function
N

d
  Number of observed data

S(m)  An objective that shows the difference of 
  reference and solution
σ  Standard deviation
m

∞
  Solution of optimisation

p
∞  

Porosity distributions for 
O(m

∞
), O(m) Difference of reference and solution 
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