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Nucleon magnetic moments display a rich nonanalytic dependence on the quark mass in both quenched

and full QCD. They provide a forum for a detailed examination of the connection between quenched and

full QCD made possible through the formalism of finite-range regularized chiral effective field theory. By

defining meson-cloud and core contributions through the careful selection of a regularization scale, one

can correct the meson cloud of quenched QCD to make full QCD predictions. Whereas past success is

based on unquenching the leading-order loop contributions, here we extend and test the formalism

including next-to-leading-order loop contributions. We discuss the subtleties associated with working at

next-to-leading order and illustrate the role of higher-order corrections.
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I. INTRODUCTION

The study of the properties of hadrons continues to
attract significant interest in the process of revealing and
understanding the essential mechanisms of QCD, the fun-
damental theory of the strong interactions. The nonpertur-
bative properties of QCD and the difficulty of numerically
simulating the theory at the light quark masses of nature
has provided a rich history of phenomenological models at
both the quark and hadronic levels and an intense study of
the quark-mass dependence of hadronic observables in
effective field theory (EFT).

Based on the observation that all hadron properties show
a slow, smooth variation with quark mass for pion masses
above m� � 0:4 GeV, one can conclude that the nonana-
lytic contributions from pion loops are suppressed there
[1]. An alternative regularization method, namely, finite-
range regularization (FRR), resums the chiral expansion in
a manner that suppresses loop contributions at large pion
masses. Inspired by quark models [2–4] that account for
the finite size of the nucleon as the source of the pion cloud,
FRR EFT has been used to describe lattice data over a wide
range of pion masses.

FRR EFT was first applied in the extrapolation of
the nucleon mass and magnetic moments [5–7]. The
remarkably improved convergence properties of the FRR
expansion mean that lattice data at large pion masses can
be described very well, and the nucleon mass obtained at
the physical pion mass compared favorably with the
experimental value. Later, the FRR method was applied
to extrapolate the vector meson mass, magnetic moments,
magnetic form factors, strange form factors, charge
radii, first moments of generalized parton distributions,
etc. [8–16]. The results are reasonable and reflect the

manner in which FRR EFT characterizes the essential
features of QCD at the hadronic level.
The prevalence of the quenched approximation in the

history of lattice QCD simulations provided an opportunity
to explore the possible connection between quenched and
full QCD data. Indeed quenched chiral perturbation theory
was developed [17–21] to understand how the nonanalytic
structure of quenched QCD differed from that of full QCD.
It was the advent of FRR EFT that made it possible to
define a pion-cloud contribution to hadronic observables
and then proceed to correct the quenched cloud to that of
full QCD [22].
The meson loop contributions are calculated in both

quenched and full QCD in terms of the axial coupling
constants. One then fits the quenched FRR EFT to lattice
QCD to learn the low-energy coefficients. This is done by
fitting the coefficients of the residual series of terms ana-
lytic in the quark mass. The value of the nucleon axial
charge, gA, from a quenched lattice simulation with
domain wall fermions is about 1.21 [23]. This value is
almost the same as the full lattice QCD result [24–26]. The
pion decay constant in quenched lattice QCD is about
89 MeV [27], which is only 5% smaller than the physical
value. Therefore, with the assumption that the SU(3) axial
coupling constants, F, D, and C as well as pion decay
constant f�, do not differ significantly between quenched
and full QCD, one can replace the quenched meson cloud
contribution of FRR EFT with the full QCD cloud contri-
bution. Because the loop contribution in the quenched case
at finite volume is small, this replacement will not cause a
significant difference. We note that in dimensional regu-
larization, for example, the low-energy coefficients are
composed of both residual series and loop contributions
with no recourse to separating the origin of terms
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contributing to the total renormalized coefficient. On the
contrary, in FRR the low energy coefficients of the residual
analytic expansion provide the core contribution which is
considered invariant in moving from quenched QCD to full
QCD.

The dependence of the nucleon magnetic moments
on quark mass has been studied by various chiral pertur-
bation theory groups and lattice collaborations [28–41].
Quenched and partially quenched FRR chiral EFT has
been used to study baryon electromagnetic phenomena
including charge radii, strange magnetic moments, and
strange form factors [12–15]. In the previous calculations,
only the leading-order diagrams were included and
unquenched. For example, power counting withM� ¼ MN

for the magnetic form factor, only the leading nonanalytic
terms proportional to logðm�Þ and m� were included. In
this paper, wewill include the next-to-leading-order (NLO)
contributions.

The paper is organized in the following way. In Sec. II,
we briefly introduce the relevant chiral Lagrangian. In
Sec. III, we study the nucleon magnetic moments using
chiral perturbation theory with FRR at NLO. Numerical
results and discussions are presented in Sec. IV. Finally,
Sec. V provides a summary.

II. CHIRAL LAGRANGIAN

There are many papers that deal with heavy baryon
chiral perturbation theory—for details, see, for example,
Refs. [42–44]. For completeness, we briefly introduce the
formalism in this section. In heavy-baryon chiral perturba-
tion theory, the lowest chiral Lagrangian for the baryon-
meson interaction that will be used in the calculation of the
nucleon magnetic moments, including the octet and dec-
uplet baryons, is expressed as

Lv ¼ iTr �Bvðv �DÞBv þ 2DTr �BvS
�
v fA�; Bvg

þ 2FTr �BvS
�
v ½A�; Bv� � i �T

�
v ðv �DÞTv�

þ Cð �T�
v A�Bv þ �BvA�T

�
v Þ; (1)

where S� is the covariant spin-operator defined as

S
�
v ¼ i

2
�5���v�: (2)

Here, v� is the nucleon four velocity (in the rest frame, we
have v� ¼ ð1; 0Þ). D, F, and C are the axial coupling
constants. The chiral covariant derivative D� is written

as D�Bv ¼ @�Bv þ ½V�; Bv�. The pseudoscalar meson

octet couples to the baryon field through the vector and
axial vector combinations

V� ¼ 1

2
ð�@��y þ �y@��Þ;

A� ¼ 1

2
ð�@��y � �y@��Þ;

(3)

where

� ¼ ei�=f�; f� ¼ 93 MeV: (4)

The matrix of pseudoscalar fields � is expressed as

� ¼ 1ffiffiffi
2

p

1ffiffi
2

p �0 þ 1ffiffi
6

p � �þ Kþ

�� � 1ffiffi
2

p �0 þ 1ffiffi
6

p � K0

K� �K0 � 2ffiffi
6

p �

0
BBBB@

1
CCCCA:

(5)

Bv and T�
v are the velocity dependent new fields that are

related to the original baryon octet and decuplet fields B
and T� by

BvðxÞ ¼ eimN 6vv�x
�
BðxÞ; (6)

T�
v ðxÞ ¼ eimN 6vv�x

�
T�ðxÞ: (7)

In the chiral SUð3Þ limit, the octet baryons will have the
same mass mB. In our calculation, we use the physical
masses for the baryon octets and decuplets. The explicit
form of the baryon octet is written as

B ¼

1ffiffi
2

p �0 þ 1ffiffi
6

p � �þ p

�� � 1ffiffi
2

p �0 þ 1ffiffi
6

p � n

�� �0 � 2ffiffi
6

p �

0
BBBB@

1
CCCCA: (8)

For the baryon decuplet, the symmetric tensor carries three
indices and is defined as

T111¼�þþ; T112¼ 1ffiffiffi
3

p �þ; T122¼ 1ffiffiffi
3

p �0; T222¼��;

T113¼ 1ffiffiffi
3

p ��;þ; T123¼ 1ffiffiffi
6

p ��;0; T223¼ 1ffiffiffi
3

p ��;�;

T133¼ 1ffiffiffi
3

p ��;0; T233¼ 1ffiffiffi
3

p ��;�; T333¼��: (9)

The octet, decuplet, and octet-decuplet transition mag-
netic moment operators are needed in the one-loop calcu-
lation of nucleon magnetic form factors. The baryon octet
magnetic Lagrangian is written as

L¼ e

4mN

ð�DTr �Bv�
��fFþ

��;Bvgþ�FTr �Bv�
��½Fþ

��;Bv�Þ;
(10)

where

Fþ
�� ¼ 1

2
ð�yF��Q� þ �F��Q�yÞ: (11)

Q is the charge matrixQ ¼ diagf2=3;�1=3;�1=3g. At the
lowest order, the Lagrangian will generate the following
nucleon magnetic moments:

�tree
p ¼ 1

3
�D þ�F; �tree

n ¼ � 2

3
�D: (12)
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The decuplet magnetic moment operator is expressed as

L ¼ �i
e

mN

�Cqijk �T
�
v;iklT

�
v;jklF��; (13)

where qijk and qijk�C are the charge and magnetic moment

of the decuplet baryon Tijk. The transition magnetic op-

erator is

L¼i
e

2mN

�TF��ð	ijkQi
l
�Bj
vmS

�
v T

�;klm
v þ	ijkQl

i
�T
�
v;klmS

�
vB

m
vjÞ:

(14)

In Ref. [45], the authors used �u, �d and �s instead of the
�C and �T . For the particular choice, �s ¼ �d ¼ � 1

2�u,

one finds the following relationship:

�D¼3

2
�u; �F¼2

3
�D; �C¼�D; �T ¼�4�D:

(15)

In our numerical calculations, the above formulas are used,
and therefore all baryon magnetic moments are related to
one parameter, �D.

In the heavy-baryon formalism, the propagators of the
octet or decuplet baryon, j, are expressed as

i

v � k� 
jN þ i"
and

iP��

v � k� 
jN þ i"
; (16)

where P�� is v�v� � g�� � ð4=3ÞS�v S�v. 
ab ¼ mb �ma

is the mass difference of between the two baryons. The
propagator of meson j (j ¼ �, K, �) is the usual free
propagator, i.e.,

i

k2 �M2
j þ i"

: (17)

III. NUCLEON MAGNETIC MOMENTS

In the heavy baryon formalism, the nucleon form factors
are defined as

hBðp0ÞjJ�jBðpÞi

¼ �uðp0Þ
�
v�GEðQ2Þ þ i	����v

�S�vq�

mN

GMðQ2Þ
�
uðpÞ;

(18)

where q ¼ p0 � p and Q2 ¼ �q2. According to the
Lagrangian, the one-loop Feynman diagrams that contrib-
ute to the nucleon magnetic moments are plotted in Fig. 1.
The intermediate baryons can be octets and decuplets.

Diagrams (a) and (b) are for the leading order, while
diagrams (c), (d), (e), and (f) enter at NLO. The last two
diagrams exist only in the quenched case where the �0 is
degenerate with the pion and noK-meson loops contribute.
The loop contribution to nucleon magnetic form factors

at leading order is expressed as

GpðLOÞ
M ¼ mN

8�3f2�
½�NN

1�ðpÞI
NN
1� þ �N�

1KðpÞI
N�
1K þ �N�

1KðpÞI
N�
1K

þ �N�
1�ðpÞI

N�
1� þ �N��

1KðpÞI
N��
1K �; (19)

GnðLOÞ
M ¼ mN

8�3f2�
½�NN

1�ðnÞI
NN
1� þ �N�

1KðnÞI
N�
1K þ �N�

1�ðnÞI
N�
1�

þ �N��
1KðnÞI

N��
1K �: (20)

The integration I��1j is expressed as

I��1j ¼
Z

d3k
k2yuð ~kþ ~q=2Þuð ~k� ~q=2Þð!jð ~kþ ~q=2Þ þ!jð ~k� ~q=2Þ þ 
��Þ

A��
j

; (21)

where

hg

x

x

γ
π,K,η
Decuplet

Octet

fe

dc

ba

FIG. 1. Feynman diagrams for the nucleon magnetic moments.
The last two diagrams, (g) and (h), only exist in the quenched
case.
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A��
j ¼ !jð ~kþ ~q=2Þ!jð ~k� ~q=2Þð!jð ~kþ ~q=2Þ þ 
��Þ

� ð!jð ~k� ~q=2Þ þ 
��Þð!jð ~kþ ~q=2Þ
þ!jð ~k� ~q=2ÞÞ: (22)

!jð ~kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

j þ ~k2
q

is the energy of the meson j. 
�� is the
mass difference between baryon � and �. In our calcula-
tion, we use finite-range regularization with uð ~kÞ the ultra-
violet regulator. This leading-order contribution has been
studied in the previous paper [12,15] which gives the
leading analytic term to the magnetic moments. The first
terms in Eqs. (19) and (20) come from the � meson cloud,
while the last two terms correspond to the case where the
intermediate baryons are decuplets.

The NLO contribution to the form factors is expressed as

GpðNLOÞ
M ¼ 1

48�3f2�
½�NN

2�ðpÞI
NN
2� þ �N�

2KðpÞI
N�
2K þ �N�

2KðpÞI
N�
2K

þ �N��
5KðpÞI

N��
5K þ �NN

2�ðpÞI
NN
2� þ �N�

2�ðpÞI
N�
2�

þ �N��
2KðpÞI

N��
2K þ �N�

3�ðpÞI
N�
3� þ �N���

5KðpÞ I
N���
5K

þ �N���
5KðpÞ I

N���
5K �; (23)

GnðNLOÞ
M ¼ 1

48�3f2�
½�NN

2�ðnÞI
NN
2� þ �N�

2KðnÞI
N�
2K þ �N�

2KðnÞI
N�
2K

þ �N��
5KðnÞI

N��
5K þ �NN

2�ðnÞI
NN
2� þ �N�

2�ðnÞI
N�
2�

þ �N��
2KðnÞI

N��
2K þ �N�

3�ðnÞI
N�
3� þ �N���

5KðnÞ I
N���
5K

þ �N���
5KðnÞ I

N���
5K �; (24)

where

I��2j ¼
Z

d3k
k2u2ð ~kÞ

!jð ~kÞð!jð ~kÞ þ 
��Þ2 ; (25)

I���5j ¼
Z

d3k
k2u2ð ~kÞ

!jð ~kÞð!jð ~kÞ þ 
��Þð!jð ~kÞ þ 
��ÞÞ ; (26)

I��3j ¼
Z

d3k
k2u2ð ~kÞ

!jð ~kÞ2ð!jð ~kÞ þ 
��Þ : (27)

All the coefficients � in front of the integrals are shown
in Table I for full QCD. The coefficients of the leading-
order contributions are functions of the coupling constants
D, F, and C. The coefficients of the NLO contribution are
associated with the tree-level baryon magnetic moments.
The magnetic moment is defined as � ¼ GMðQ2 ¼ 0Þ.

The total nucleon magnetic moments can be written as

�pðm2
�Þ ¼ ap0 þ ap2m

2
� þ ap4m

4
� þ ðZ� 1Þ�tree

p

þGpðLOÞ
M ðQ2 ¼ 0Þ þGpðNLOÞ

M ðQ2 ¼ 0Þ; (28)

�nðm2
�Þ ¼ an0 þ an2m

2
� þ an4m

4
� þ ðZ� 1Þ�tree

n

þGnðLOÞ
M ðQ2 ¼ 0Þ þGnðNLOÞ

M ðQ2 ¼ 0Þ; (29)

where the wave function renormalization can be calculated
as

Z ¼ 1� 1

48�3f2�
½�NN

� INN
2j � �N�

� IN�
2j � �N�

K IN�
2j

� �N�
K IN�

2j � �NN
K IN��

2j � �NN
� INN

2j �: (30)

The coefficients � in the wave function renormalization
are listed in Table II.
With the exception of Figs. 1(a) and 1(b), the con-

tributions of the diagrams in Fig. 1 are proportional to
the tree-level moments, �tree

pðnÞ, expressed in Eq. (12). In

the quenched case [10], the logarithmic divergence of the
magnetic moment encountered in the chiral limit makes it
necessary to replace the leading-order estimate �tree

pðnÞ with
the renormalized moment, effectively incorporating phys-
ics associated with higher-order terms of the expansion. To
provide a connection between the quenched and full QCD
expansions, we make this replacement for the full QCD
case as well. Therefore, the expression for nucleon mag-
netic moments can be written as

TABLE I. Coefficients � for the magnetic moments in the full QCD case.

�NN
1� �N�

1K �N�
1K �N�

1� �N��
1K

Proton ðDþ FÞ2 ðDþ3FÞ2
6

ðD�FÞ2
2

2C2
9 � C2

18

Neutron �ðDþ FÞ2 � � � ðD� FÞ2 � 2C2
9 � C2

9

�NN
2� �N�

2K �N�
2K �N�

2� �N��
2K

Proton ðDþFÞ2
4 ð�D ��FÞ ðDþ3FÞ2

12 �D � ðD�FÞ2
4 ð�D þ 2�FÞ 40C2

27 �C
5C2
27 �C

Neutron � ðDþFÞ2
2 �F

ðDþ3FÞ2
12 �D � ðD�FÞ2

4 ð�D � 2�FÞ � 10C2
27 �C � 5C2

27 �C

�NN
2� �N�

3� �N��
5K �N���

5K �N���
5K

Proton � ðD�3FÞ2
12 ð�D þ 3�FÞ 4ðDþFÞC

9 �T
ðD�FÞðDþ3FÞ

6
5ðD�FÞC

18
ðDþ3FÞC

18

Neutron � ðD�3FÞ2
6 �D � 4ðDþFÞC

9 �T � ðD�FÞðDþ3FÞ
6

ðD�FÞC
18 � ðDþ3FÞC

18
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�pðnÞ ¼ apðnÞ0 þ apðnÞ2 m2
� þ apðnÞ4 m4

� þ�pðnÞ
l1

þ ðZ� 1Þ�pðnÞ þ�pðnÞ
l2

�tree
pðnÞ

�pðnÞ; (31)

where �pðnÞ
l1 is the loop contribution from diagrams (a)

and (b) in Fig. 1, while �pðnÞ
l2 is the contribution from (c),

(d), (e), and (f) expressed in the previous formulas. The
above formula can be rewritten as

�pðnÞ ¼ fapðnÞ0 þ apðnÞ2 m2
� þ apðnÞ4 m4

�

þ�pðnÞ
l1 g

��
2� Z��pðnÞ

l2

�tree
pðnÞ

�
: (32)

Since the lattice data of the magnetic moment are
obtained in the quenched approximation, we should fit
the lattice data using quenched chiral perturbation theory.
In the quenched case, only the pion loop makes a contri-
bution. The coefficients in the quenched case are shown in
Table III. They can be obtained following the methodology
of Ref. [19]. Remember, in this case, we have two more
diagrams, i.e., (g) and (h) in Fig. 1.

The loop contribution to the nucleon magnetic moments
at leading order in the quenched case is expressed as

~G
pðLOÞ
M ¼ mN

8�3f2�
½ ~�NN

1�ðpÞI
NN
1� þ ~�N�

1�ðpÞI
N�
1� þ ~�NN

dhðpÞI
NN
6� �;
(33)

~GnðLOÞ
M ¼ mN

8�3f2�
½ ~�NN

1�ðnÞI
NN
1� þ ~�N�

1�ðnÞI
N�
1� þ ~�NN

dhðnÞI
NN
6� �;

(34)

where

INN
6j ¼

Z
d3k

k2u2ð ~kÞ
!5

j ð ~kÞ
: (35)

The NLO contribution can be written as

~GpðNLOÞ
M ¼ mN

48�3f2�
½ ~�NN

2�ðpÞI
NN
2� þ ~�NN

2�ðpÞI
NN
2� þ ~�N�

2�ðpÞI
N�
2�

þ ~�NN
hðpÞI

NN
2� �; (36)

~GnðNLOÞ
M ¼ mN

48�3f2�
½ ~�NN

2�ðnÞI
NN
2� þ ~�NN

2�ðnÞI
NN
2� þ ~�N�

2�ðnÞI
N�
2�

þ ~�NN
hðnÞI

NN
2� �: (37)

In the quenched case, the wave function renormalization
constant is obtained as ~Z:

~Z ¼ 1� 1

48�3f2�
½ ~�NN

� INN
2j � ~�N�

� IN�
2j � ~�NN

dh INN
6j

� ~�NN
h INN

2j �; (38)

where the coefficients ~� are shown in Table II. For the
double hairpin diagram, M0 is the interaction strength.
Similar to the full QCD case, the quenched magnetic

moments of the nucleon are expressed as

~�pðnÞ ¼ fapðnÞ0 þ apðnÞ2 m2
� þ apðnÞ4 m4

�

þ ~�pðnÞ
l1 g

��
2� ~Z� ~�pðnÞ

l2

~�tree
pðnÞ

�
; (39)

where ~�pðnÞ
l1 is the loop contribution from diagrams (a)

and (b) in Fig. 1 with quenched coefficients, while ~�pðnÞ
l2

is the contribution from the other diagrams. Because the
simulation is on a lattice with length L in the spatial
dimensions, the momentum integral is replaced by a dis-
crete sum over the momentum, i.e.,

TABLE II. Coefficients � and ~� for the wave function renormalization in the full QCD and quenched cases.

Full QCD �NN
� �N�

� �N�
K �N�

K �N��
K �NN

�

9
4 ðDþ FÞ2 2C2 1

4 ð3FþDÞ2 15
4 ðD� FÞ2 5

6 C
2 1

2 ð3F�DÞ2
Quenched ~�NN

�
~�N�
�

~�NN
�

~�NN
dh

~�NN
h

� 9
4D

2 � 9
4F

2 þ 15
2 DF 1

2 C
2 � 3

2D
2 � 3

2F
2 þDF 3

4M
2
0ð3F�DÞ2 3ð3F�DÞðD� FÞ

TABLE III. Coefficients ~� for the magnetic moments in the quenched case.

~�NN
1�

~�N�
1�

~�NN
dh

Proton 4
3D

2 C2
6 � ð3F�DÞ2

72mN
M2

0ð�D þ 3�FÞ
Neutron � 4

3D
2 � C2

6
ð3F�DÞ2
36mN

M2
0�D

~�NN
2�

~�NN
2�

~�N�
2�

~�NN
h

Proton ð3136D2 � 1
4F

2 � 1
2DFÞ�D

3D2þ3F2�2DF
12 ð�D þ 3�FÞ 5

9 C
2�C

ð3F�DÞðF�DÞ
3 ð�D þ 3�FÞ

Neutron �ð1118D2 � 1
2F

2 � 19
15DFÞ�D

�3D2�3F2þ2DF
2 �D � 5C2

18 �C
2ð3F�DÞðD�FÞ

3 �D
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Z
d3k )

�
2�

aL

�
3 X
kx;ky;kz

; (40)

where the momenta kx, ky, and kz are given by 2�n=L

and the infinite sum is regulated by the finite-range regu-
lator. By fitting the quenched lattice data with Eq. (39),
one can get the parameters ai. The full QCD results are
then obtained with Eq. (32). In all the above formulas,
the nucleon mass is chosen to be physical mass, mN , and
does not change with the pion mass. This is because
the lattice data we will extrapolate are multiplied by the
ratio mN=m

0
N , where m0

N is the pion-mass-dependent
nucleon mass [46]. In this way, the magnetic moments
are presented in terms of a constant unit, i.e., the nuclear
magneton.

IV. NUMERICAL RESULTS

In the numerical calculations, the parameters are chosen
as D ¼ 0:76 and F ¼ 0:50 (gA ¼ Dþ F ¼ 1:26). The
coupling constant C is chosen to be �1:2 which is the
same as Ref. [47]. The regulator, uðkÞ, may be chosen as
a monopole, dipole, or Gaussian function, since all have
been shown to yield similar results [48]. In our calcula-
tions, the dipole function is used:

uðkÞ ¼ 1

ð1þ k2=�2Þ2 ; (41)

with � ¼ 0:8 GeV.
The K- and �-meson masses have relationships with the

pion mass according to

m2
K ¼ 1

2
m2

� þm2
Kjphy �

1

2
m2

�jphy; (42)

m2
� ¼ 1

3
m2

� þm2
�jphy � 1

3
m2

�jphy (43)

and enable a direct relationship between the meson dress-
ings of the nucleon magnetic moments and the pion mass.

We begin by considering nucleon magnetic moments
from the CSSM Lattice Collaboration [46]. The leading-
order result of the proton magnetic moment versus m2

� is
shown in Fig. 2. The solid line is for the finite-volume
quenched-QCD fit and the dashed, dotted, and dashed-
dotted lines are for the infinite-volume full QCD results
of tree level, leading loop, and sum of tree level and leading
loop, respectively. One can see that quenched lattice results
can be described very well in quenched chiral effective
field theory. At the physical pion mass, the proton magnetic
moment ~�p is about 2.25 which is significantly smaller

than the experimental data. With the obtained fitting pa-
rameters ai, the full QCD results are determined and
illustrated in the figure.

In the quenched case, the loop contribution is small.
While quenched-QCD coefficients of nonanalytic terms
are typically smaller than in the full QCD case, the

dominant effect here is that the momentum integration is
replaced by the finite-volume sum. The loop contribution
in full QCD gives the dominant curvature of the pion-mass
dependence of the proton magnetic moment. The proton
magnetic moment in the full QCD case is significantly
larger. At the physical pion mass, the proton magnetic
moment in the full QCD case, �p, is approximately

2:95�N which is comparable with the experimental value,
2:79�N .
In the FRR, except for the fitting parameters ai, there is

only one free parameter, �, which is set to be 0.8 GeV. If
we vary � from 0.6 to 1 GeV, the leading-order proton
magnetic moment in full QCD will change by about 8%
from the central value. At NLO, though both the wave
function renormalization and loop contribution also
depend on �, the final result is less sensitive to it.
Therefore, as an estimate, we added the error bar (10%
of its central value) to the extrapolated value at physical
pion mass in each figure. The empirical value of the
nucleon magnetic moment is also plotted in each figure
with a solid star.
The leading-order result for the neutron magnetic

moment versus m2
� is shown in Fig. 3. Again, the finite-

volume quenched-QCD lattice results are described very
well by finite-volume finite-range regularized quenched
chiral effective field theory. The curvature of the line is
small. At the physical pion mass, the finite-volume
quenched neutron magnetic moment is around �1:5. The
associated full QCD results of tree level, leading loop, and
sum of tree level and leading loop are shown as well.
Similar to the proton case, the loop contribution changes

FIG. 2. The proton magnetic moment as a function of the
squared pion mass. The solid line illustrates the finite-volume
quenched-QCD fit to the lattice results. The dashed, dotted, and
dashed-dotted lines correspond to the infinite-volume full-QCD
results at tree level, leading loop, and sum of tree level and
leading loop, respectively.
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smoothly at large pion mass and drops quickly at small
pion masses. The total value of neutron magnetic moment
from our leading-order calculations is �n ’ �1:96�N ,
similar to the physical value of �1:91�N .

The NLO result for the proton magnetic moment versus
m2

� is shown in Fig. 4. The solid line is the finite-volume
quenched-QCD result. The dashed, dotted, dashed-dotted,
and dashed-dot-dotted lines are for the infinite-volume
full-QCD results of tree level, leading order loop, NLO
loop, and sum of tree and loop contribution, respectively.
At NLO, the quenched lattice results continue to be
described well by finite-volume quenched chiral effective
field theory. However, at NLO, the approach to the chiral
limit displays some downward curvature associated with
the new wave function renormalization contributions
which appear only at NLO. The wave function renormal-
ization constant Z decreases quickly at small pion mass.

At the physical pion mass, the infinite-volume tree-level
contribution to the proton magnetic moment changes from
2.30 to 1.10. The leading loop contribution at the physical
pion mass is 0.65. The NLO loop contribution has a smaller
curvature than the leading loop. It contributes 0.78 to the
proton magnetic moment. The sum of tree level, leading
loop, and NLO loop contribution to the proton magnetic
moment is 2:53�N to be compared with the experimental
value of 2:79�N .

The NLO result for neutron magnetic moment�n versus
m2

� is shown in Fig. 5. The meaning of the different types of
lines are the same as for Fig. 4. Here, the wave function
renormalization has a more subtle effect. As anticipated,
the NLO loop contribution has a smaller curvature than the

leading-order loop contribution. At the physical pion mass,
the tree level, leading loop, and NLO loop contribute
to the neutron magnetic moment �0:52, �0:62 and
�0:66�N , respectively. The total neutron magnetic
moment at NLO is �1:80�N which remains close to the
experimental value of �1:91�N .

FIG. 3. The neutron magnetic moment as a function of the
squared pion mass. The solid line illustrates the finite-volume
quenched-QCD fit. The dashed, dotted, and dashed-dotted lines
correspond to the infinite-volume full-QCD results of tree level,
leading loop, and sum of tree level and leading loop contribution,
respectively.

FIG. 4. The proton magnetic moment versus squared pion
mass. The solid line illustrates the finite-volume quenched-
QCD fit. The dashed, dotted, dashed-dotted, and dashed-dot-
dotted lines correspond to the infinite-volume full-QCD results
of tree level, leading loop, NLO loop, and sum of tree level and
loop contribution, respectively.

FIG. 5. The neutron magnetic moment versus squared pion
mass. The solid line illustrates the quenched-QCD fit. The
dashed, dotted, dashed-dotted, and dashed-dot-dotted lines cor-
respond to the infinite-volume full-QCD results of tree level,
leading loop, NLO loop, and sum of tree level and loop con-
tribution, respectively.
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We should mention that when we calculate the NLO
loop contribution, the tadpole diagram is not included
explicitly. That is, the tadpole contribution is handled by
adjusting the parameters a0i to ai, so that

a00 þ a02m2
� þ a04m4

� þ�tad ’ a0 þ a2m
2
� þ a4m

4
�; (44)

where �tad is the tadpole contribution to the magnetic
moments. In Ref. [11], the chiral extrapolation did explic-
itly include this tadpole diagram, but the numerical results
were almost the same if we refit the lattice data without this
diagram. This means that, in practice, the new parameters,
ai, can compensate the contribution of the tadpole dia-
gram. In the present work, we explored both the explicit
and implicit inclusion of the tadpole term, with the nu-
merical results clearly favoring the approximation where
the fitting parameters on the right-hand side of Eq. (44) are
the same in the quenched and full QCD cases.

Chiral symmetry can be realized in a number of ways,
resulting in different forms for the effective Lagrangian. In
Ref. [49], the authors applied two different Lagrangian
densities incorporating chiral symmetry to the problem of
pion-nucleon scattering, with the nucleon represented by
anMIT bag. In one case, the interaction was confined to the
bag surface, where only a Yukawa type NN� interaction
appeared. The other formulation involved a volume inter-
action, where a contact term (four-particle NN�� term) is
required. Their conclusion was that transforming from the
surface interaction to the volume interaction amounts to
summing the contribution from all excited intermediate
states of the confined quarks. That is, the two formulations
give equivalent results if excited intermediate states are
included. One can also study the magnetic moments with
the pseudoscalar nucleon-meson interaction where no tad-
pole diagram appears—c.f. Refs. [2–4]. With this back-
ground, we conclude that the tadpole contribution to the
magnetic moments from the contact term corresponds to
the contribution of diagram (c) in Fig. 1 summed over an
infinite set of highly excited baryon states, and phenom-
enologically this appears to be appropriately incorporated
through Eq. (44).

V. SUMMARY

We have extrapolated quenched lattice QCD results for
nucleon magnetic moments extending into the chiral
regime [46] to the physical pion mass using finite-volume

finite-range regularized chiral effective field theory. Here,
the NLO contributions are included, with the numerical
results showing that the quenched lattice results are
described very well. By fitting quenched lattice data, the
parameters ai can be obtained, and, using the dipole regu-
lator parameter of 0.8 GeV, the full QCD results are pre-
dicted. The infinite-volume full QCD results obtained at
the physical pion mass are in reasonable agreement with
experiment at both leading order and NLO. Thus, finite-
range regularized chiral effective field theory provides an
effective formalism for describing physical quantities at
large pion mass and connecting quenched QCD and full
QCD in a quantitative manner. This formalism leads to a
remarkably reliable, albeit model-dependent, way of
resumming terms in the chiral expansion. The parameters
and results are summarized in Table IV.
It is interesting how the NLO contributions come in a

compensating fashion. While each NLO contribution dis-
plays significant curvature in the chiral regime, the net
contribution is relatively smooth and otherwise easily
compensated for by the residual series expansion. We
expect that this qualitative behavior will continue as addi-
tional higher-order terms are introduced, as we are in-
formed by the lattice QCD results displaying a smooth
slowly varying quark mass dependence. Indeed, it will be
interesting to examine more physical quantities to gain a
deeper understanding of the utility of finite-range regular-
ized chiral effective field theory.
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