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[1] When an operational artificial neural network (ANN) model is deployed, new input
patterns are collected in order to make real-time forecasts. However, ANNs (like other
empirical and statistical methods) are unable to reliably extrapolate beyond the calibration
range. Consequently, when deployed in real-time operation there is a need to determine if
new input patterns are representative of the data used in calibrating the model. To address
this problem, a novel detection system for identifying uncharacteristic data patterns is
presented. This approach combines a self-organizing map (SOM), to partition the data set,
with nonparametric kernel density estimators to calculate local density estimates (LDE).
The SOM-LDE method determines the degree to which a new input pattern can be
considered to be contained within the domain of the calibration set. If a new pattern is
found to be uncharacteristic, a warning can be issued with the forecast, and the ANN model
retrained to include the new pattern. This approach of selectively retraining the model is
compared to no retraining and the more computationally onerous case of retraining the
model after each new sample. These three approaches are applied to forecast flow in the
Kentucky River, USA, using multilayer perceptron (MLP) models. The results demonstrate
that there is a significant advantage in retraining an ANN that has been deployed as a
real-time, operational model, and that the SOM-LDE classifier is an effective approach for
identifying the model’s range of applicability and assessing the usefulness of the forecast.

Citation: Bowden, G. J., H. R. Maier, and G. C. Dandy (2012), Real-time deployment of artificial neural network forecasting models:

Understanding the range of applicability, Water Resour. Res., 48, W10549, doi:10.1029/2012WR011984.

1. Introduction
[2] Artificial neural networks (ANNs) have risen to

prominence as a viable alternative to many traditional water
resources models, particularly in the field of forecasting
hydrologic variables. Some of the important features that
have contributed to their popularity include their ease of
implementation, their ability to learn from examples with-
out explicit knowledge of the underlying physics, and their
powerful generalization abilities. ANNs have been applied
to a wide variety of water resources problems including
rainfall-runoff modeling, precipitation forecasting, stream-
flow forecasting, and groundwater and water quality model-
ing [ASCE Task Committee on Application of Artificial
Neural Networks in Hydrology, 2000; Maier and Dandy,
2000; Maier et al., 2010; Abrahart et al., 2012]. However,
one limitation of ANNs is that, like other empirical meth-
ods, they are unable to reliably extrapolate beyond the range
of the data used for calibration [Flood and Kartam, 1994;
Minns and Hall, 1996; Tokar and Johnson, 1999]. This
well-known limitation of data-driven models is primarily

because they are not based on the underlying physics.
Physically based models tend to perform better at model
extrapolation for inputs that are outside of the range of
those used in the calibration data as the mass and energy
constraints they comply with may still result in an appropri-
ate response. Accordingly, it can be very difficult to deter-
mine when data-driven models, such as ANNs, will fail to
generalize and to understand the range of applicability of
the model.

[3] It has been acknowledged in the past that an ANN is
susceptible to becoming ‘‘. . .a prisoner of its training data’’
[Minns and Hall, 1996]. During prediction, the model is
likely to perform poorly if faced with a set of inputs that is
far removed from the examples that it saw during training.
By using the widest limits of examples during training pro-
vides the best chance of avoiding the need to extrapolate
with an ANN [ASCE Task Committee on Application of
Artificial Neural Networks in Hydrology, 2000]. Recent
research into data splitting has endeavored to determine a
systematic methodology for creating representative calibra-
tion subsets that reduce uncertainty due to sampling var-
iance [May et al., 2010]. However, once a trained ANN
model has been deployed in an operational setting, it is still
likely to perform poorly if faced with new input patterns
that are far removed from the examples that it was pre-
sented with during calibration. This problem led the ASCE
Task Committee on Application of Artificial Neural Net-
works in Hydrology [2000] to pose the following question:
‘‘Very often we may have no alternative but to proceed
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with limited data. Under these circumstances can we say
when generalization will fail so that we understand the range
of applicability of the ANN?’’ Once a model has been cali-
brated and deployed, this equates to knowing when the
model is likely to fail and when the model needs to be recali-
brated to incorporate new, uncharacteristic patterns that have
not been included in the data set that was used to calibrate
the model in the first place.

[4] Representative data can be viewed in a number of
ways, including, a model’s ability to generate state and out-
put variables. A data pattern may not be contained within
the calibration data but may still be capable of generating a
suitable output and hence, could be considered to be repre-
sentative. However, in real-time forecasting applications it
is difficult to know whether inputs are generating suitable
outputs or not. In such cases, we are restricted to comparing
our current inputs with the inputs used during calibration.
In this context, representative data can be considered to be
patterns that are contained within the domain of the calibra-
tion set. Similar definitions have been provided in the stud-
ies conducted by Bowden et al. [2002] and May et al.
[2010], who investigated methods of improving ANN per-
formance through optimal allocation of data to the training,
testing, and validation sets. Both studies have shown that
model performance is degraded when unrepresentative data
are encountered in this context.

[5] In general, there are two main approaches that have
been employed in previous studies to improve the general-
ization ability of ANNs in the prediction of water resources
variables. The first approach seeks to improve the extrapola-
tion ability of ANNs through improved calibration methods
and the second involves updating ANN model parameters in
real-time during deployment. A number of authors have
investigated the extrapolation ability of ANNs and consid-
ered various approaches to help improve generalization, with
varying degrees of success. Examples of such studies include
Cigizoglu [2003], Coulibaly et al. [2000, 2001], Giustolisi
and Laucelli [2005], Hu et al. [2005], and Imrie et al.
[2000]. There have also been many publications that have
explored the use of ANNs in real-time forecasting, including
Aquil et al. [2007], Brath et al. [2002], Bruen and Yang
[2005], Chang et al. [2002], Chen and Yu [2007], Goswami
et al. [2005], Goswami and O’Connor [2007], Napolitano
et al. [2010], and Xiong and O’Connor [2002]. However, to
the authors’ knowledge, previous studies in water resources
applications have not addressed the issue of how to system-
atically detect when ANN generalization is likely to fail and,
consequently, when the deployed ANN model needs to be
recalibrated.

[6] When an ANN model is deployed in a real-time,
operational setting, there are three options available to the
practitioner: (1) no recalibration, i.e., keeping the model’s pa-
rameters fixed, (2) recalibration of the model at some arbi-
trary time interval, and (3) recalibration of the model given
some knowledge of when a pattern is encountered that is not
sufficiently represented in the calibration domain. The first
two options are straightforward, however, the last option
requires a method for detecting data that are not representa-
tive of the calibration data set, and as such, is a closely related
problem to that of detecting outliers in multivariate space.

[7] Hawkins [1980] provides the following generally
accepted definition of an outlier: ‘‘An outlier is an observation

that deviates so much from other observations as to arouse
suspicion that it was generated by a different mechanism.’’
Accordingly, in outlier detection, the task is to identify pat-
terns far removed from the majority of observations. In this
investigation, the task is to identify uncharacteristic data pat-
terns as they arise in a real-time setting. These are defined as
patterns that are not sufficiently represented in the calibra-
tion data. Therefore, the aim of this work is to develop a
suitable technique that can be used in real-time to identify
new patterns that are outside the domain of the calibration
data and to then recalibrate the model once these patterns
have been identified. These data patterns may or may not be
outliers in the conventional sense but are referred to as
uncharacteristic data in this study since they are not suffi-
ciently represented by the patterns contained in the original
calibration set.

[8] Bowden et al. [2002] proposed a clustering method
for diagnosing uncharacteristic data patterns in a multivari-
ate space using a self-organizing map (SOM). It was found
that by combining new, unseen data with the calibration
data and clustering these data using a SOM, regions of poor
performance could be identified by examining the resulting
clusters. If the new data formed a cluster that did not con-
tain any training data, then these data were diagnosed as
uncharacteristic. It was found that the ANN model per-
formed poorly on these uncharacteristic data since it had
not considered these events during training. To determine
when the ANN is extrapolating rather than interpolating, it
is necessary to know the distribution of the calibration data,
however, this can be rather difficult to determine when the
ANN model has a large number of inputs. One way to
address this problem is by plotting histograms of the inputs
in the training set, to see which values are most common
and which values are rare or absent from the training set.
But this is somewhat subjective and becomes increasingly
difficult as the number of inputs increases.

[9] In this paper the method proposed by Bowden et al.
[2002] is extended to create a robust and systematic detec-
tion system that can be used to identify data patterns that
are not sufficiently represented by the calibration data. A
classifier consisting of two important components is devel-
oped to detect uncharacteristic data. The first component is
a SOM that provides a two-dimensional topological map-
ping of the multivariate calibration data and partitions these
data into a number of regions. It is then possible to use the
SOM to define the neighborhood of calibration data most
closely matching any new input patterns encountered dur-
ing real-time operation. The second component of the clas-
sifier is a kernel density estimator, which provides local
density estimates (LDEs). To identify uncharacteristic data
patterns, the local density of each new pattern is compared
to the local density of the neighboring calibration data iden-
tified by the SOM and a local uncharacteristic factor (LUF)
is then calculated. When a new input pattern is found to be
uncharacteristic, there is likely to be a significant degree of
uncertainty associated with the corresponding forecast and
consequently, a warning is issued. This pattern is then
added to the existing calibration data. Once the correspond-
ing output has been collected, which might take some time,
depending on the modeling time step and forecasting pe-
riod adopted, the ANN is recalibrated with this pattern
included. In this way, the ANN model is able to adapt to
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new information as it is encountered and becomes increas-
ingly robust with time. This method also has the advantage
that if an uncharacteristic pattern is detected, a warning can
be issued in real-time with the corresponding forecast.

[10] To assess the efficacy of the proposed approach, it is
applied to a real-world case study. This involves forecast-
ing flow based on rainfall and previous streamflow using
data from the Kentucky River basin. The dynamic and non-
linear rainfall-runoff process provides a good test of these
techniques and a 13 year real-time simulation is performed
using calibration sets of various lengths to assess the utility
of actively retraining the model. The data set for this case
study was compiled by Jain and Srinivasulu [2006] to build
ANN models and this data set was provided for the investi-
gation performed in this paper. Three recalibration scenar-
ios are investigated for this case study, namely: (1) no
recalibration, (2) recalibration after each new data sample
is collected, and (3) recalibration when an uncharacteristic
pattern is detected using the proposed SOM-LDE classifier.

2. Proposed Recalibration Methodology
2.1. Conceptual Approach

[11] During ANN model development, the available data
are generally divided into training, testing, and validation
subsets. The training set is used to determine the ANN’s
connection weights, the testing set is used to decide when
to stop training in order to avoid overfitting (holdout
method) and/or which network architecture is most suita-
ble, and the validation set is used to assess the trained
ANN’s generalization ability. Since ANNs are unreliable at
extrapolation, all of the patterns present in the available
data need to be represented in the training set. Likewise,
since the testing set is used to decide when to stop training
and which network structure is optimal, it also must be rep-
resentative of the training set and should also contain all of
the patterns present in the available data. If all available
patterns are used to calibrate the model, then the most rig-
orous test of the model’s generalization ability would be if
all of the types of patterns are also represented in the vali-
dation set. However, in many applications the data avail-
able to the practitioner at the time of model development
are not likely to contain all possible patterns, especially
when the available data span a relatively short record.
Hydrologic systems are also dynamic and can evolve over
time, exhibiting a high degree of nonstationarity. Conse-
quently, future events that are caused by different drivers
and processes are unlikely to be adequately represented by
the calibration data. An example of such a situation may
occur when considering the changes to a hydrologic system
caused by climate change impacts. In such cases, once an
ANN model has been deployed in a real-time setting, it is
necessary to ensure that the performance of the model will
not deteriorate significantly when exposed to future input/
output data patterns that were not included in the original
model development process.

[12] The proposed conceptual approach for achieving
this level of adaptation is based on recalibration, as this
ensures that all new data patterns are incorporated into the
model, thereby extending the model’s range of applicability
over time. However, rather than recalibrating the model ev-
ery time a new input set is presented to the model, which

could require significant computing time, it is proposed to
conduct a check to see if the data that have been used for
model calibration thus far are representative of the input
data used during real-time deployment. If this is the case,
there is no need to recalibrate the model. However, if the
new input vector is significantly different from the patterns
contained in the calibration data, then it is labeled as
uncharacteristic and should be added to the calibration set,
and the model recalibrated. The advantages of this
approach are that (1) it is possible to detect and warn when
the forecast may contain a large degree of uncertainty and
(2) the range of applicability of the ANN model is defined.
Recalibrating only upon detecting an uncharacteristic data
pattern also has the advantage of reducing the computa-
tional burden, which is especially beneficial in high fre-
quency forecasting applications. However, it should be
noted that there is some computational effort involved in
the check to determine whether the original calibration data
are representative of the current input pattern. Also, recali-
bration would only be possible in a real-time application
where there was sufficient time between forecasts in order
to perform the recalibration. For very high frequency appli-
cations it may only be possible to do an online weight
update rather than a full recalibration of the model.

[13] The detailed conceptual approach to model recali-
bration is shown in Figure 1. The process starts after model
development has been completed (t ¼ 0). Once the model
has been deployed in an operational setting, the time coun-
ter t is updated by one increment once a new input vector
becomes available, and the model is used to obtain a pre-
diction/forecast. Next, the new input vector (input vector t)
is added to the input data currently contained in the calibra-
tion set (calibration data t � 1). The multidimensional data
space consisting of the combined input data is then parti-
tioned into representative regions. The regions are used to
define a neighborhood surrounding the new input vector
(input vector t) and a local probability density based on the
data points in the neighborhood is calculated. A statistical
significance test is then implemented to compare the local
density of each new input vector with the local density of
its calibration data neighbors and thereby define a local
uncharacteristic factor (LUF). If the new input vector is
representative of the calibration data, the predictive per-
formance of the model is likely to be adequate, as the
model output is obtained by interpolation. Consequently,
the current model can be used for predictive purposes and
there is no need to add the new input vector to the calibra-
tion set. However, if the new input vector is located in a
region of the input space that is different from those occu-
pied by the input vectors in the original calibration set, the
latter are not representative of the former and the predictive
performance of the model is likely to be compromised.
While the model can still be used to obtain the desired pre-
diction/forecast, a warning should be issued that the model
outputs should be treated with caution. When using a
Bayesian ANN model, this increased uncertainty will be
reflected in the spread of the prediction limits [see Kingston
et al., 2005].

[14] Input vectors that represent a different pattern from
those contained in the training set should be added to the
calibration data and the model recalibrated to broaden its
range of applicability to include this new pattern. However,
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before the model can be recalibrated, the measured output
data corresponding to the new input vector have to be
obtained. This may cause a delay in the recalibration pro-
cess, particularly if the model is used to obtain multistep
ahead forecasts, as the output data will only become avail-
able after the forecasting period has elapsed (e.g., if the
purpose of the model is to produce a seven day forecast,
the measured output will only become available in seven
days). In addition, in cases where a test set is being used,
care needs to be taken to ensure that the new input patterns
are distributed between the calibration and test sets. Care
also needs to be taken to ensure the model does not become
overrepresented by a particular type of model pattern. As
shown in Figure 1, for the sake of simplicity of implemen-
tation, it is proposed that when an unrepresentative input
vector is detected, 50% of all new input patterns encoun-
tered since the last model calibration should be added to
the training set, and the remaining 50% allocated to the
test set.

2.2. Detecting Uncharacteristic Data

[15] The problem of identifying uncharacteristic data
patterns is closely related to outlier detection. Outlier
detection is one of the most important tasks in data analysis
and there are many methods that have been proposed for
achieving this. There are four general approaches to the
problem, although in practice there is usually considerable
overlap between them. The approaches can be categorized
as: (1) statistical, (2) distance-based, (3) clustering, and (4)
model-based.

[16] Statistical approaches for outlier detection generally
make use of a probabilistic data model and data points are
determined to be outliers if they do not fit the distributional
model [Petrovskiy, 2003]. In most cases, estimates of loca-
tion and shape are required, but these are susceptible to the
problem of outliers masking each other, and this is further
exacerbated for multidimensional data vectors [Nag et al.,
2005]. In distance-based methods, metrics such as the

Figure 1. Conceptual approach to model recalibration.
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Euclidean [Knorr and Ng, 1998] or Mahalanobis distance
[Atkinson, 1994] are commonly used to calculate distances
between points. These can be further divided into methods
that compute (1) the full dimensional distance, either using
all available features, or only feature projections [e.g.,
Knorr and Ng, 1998], and (2) the densities of local neigh-
borhoods [e.g., Breunig, 2000]. Since a probabilistic inter-
pretation can be placed on many distance-based methods,
there is overlap between this approach and statistical
approaches. Clustering methods [e.g., Nag et al., 2005] have
also been widely used to detect outliers, either as points that
do not belong to clusters, i.e., that form singleton clusters, or
as clusters that are significantly smaller than others [Latecki
et al., 2007]. Finally, model-based methods make use of a
predictive model to describe typical behavior and outliers
are then detected as deviations from the learned model [e.g.,
Hawkins et al., 2002; Tax and Duin, 1998].

[17] The approach proposed in this study uses a combina-
tion of clustering and distance-based methods. It is not possi-
ble to use density estimates to detect outliers for multimodal
distributions, which are often encountered in real-world,
multidimensional data sets. This is because data points that
belong to different modal components may have different
densities without necessarily being outliers [Latecki et al.,
2007]. To overcome this, a self-organizing map (SOM) has
been used in this study to partition the data set and define
the local neighborhood surrounding the data point to be
queried. In order to avoid making any assumptions about the
underlying data, nonparametric kernel density estimation is
used to estimate the local densities.

[18] The ability to partition the calibration data into clus-
ters and then consider the local distribution has been shown
to be advantageous by May et al. [2010], who provided evi-
dence that the overall ANN model error was dependent on
the accuracy of the predictions within local regions. Accord-
ingly, the data splitting methods that were able to consider
the local distribution of the data were more effective in
obtaining representative training, testing, and validation data
sets. By extension, this is also important in the case of model
deployment since it is the local distribution of training data
surrounding the new input pattern that governs how well the
prediction model is likely to perform for that pattern.
2.2.1. Self-Organizing Map (SOM) Clustering

[19] The SOM was developed by Kohonen [1982] and
arose from attempts to develop topographically organized
maps of multidimensional data. The SOM is able to parti-
tion a data set by using an n-dimensional array of process-
ing elements that learn the optimal distribution of the
weight vectors. In this way, input data, which may have
many dimensions, can come to be represented by a one- or
two-dimensional vector which preserves the order of the
higher dimensional data and provides a nonparametric esti-
mation of the underlying distribution.

[20] The SOM has been widely employed in water
resources applications. A recent study by Adeloye et al.
[2011] used a SOM to predict the reference crop evapo-
transpiration based on daily weather data at two diverse
basins. It was found that the SOM-based approach provided
estimates that were in good agreement with conventional
methods, despite requiring fewer input variables. Pearce
et al. [2011] used a modified SOM as part of a decision
making methodology to characterize a water quality gradient

in leachate—contaminated groundwater using only micro-
biological data for input. The SOM was modified by weight-
ing the input variables by their relative importance and
provided statistical guidance for classifying sample similar-
ities. Fassnacht and Derry [2010] used a SOM to define
regions of homogeneity in the Colorado River Basin using
snow telemetry (SNOTEL) snow water equivalent data.
Sahoo and Ray [2008] presented an approach that utilized a
SOM to identify which samples, and how many, to include
in training, testing and validation sets for optimum ANN
prediction efficiency. A genetic algorithm (GA) was used to
optimize the model structure and parameters and it was
found that the GA-ANN model using the SOM technique for
data division was able to outperform the GA-ANN using ar-
bitrary division. Parasuraman et al. [2006] used a SOM as
the spiking layer to a modular neural network (SMNN) and
applied the model to two case studies, including streamflow
forecasting and the modeling of eddy covariance-measured
evapotranspiration. It was found that the SMNN models out-
performed conventional feedforward ANNs for both case
studies as they were very effective in discretizing the com-
plex mapping space into simpler domains that could be
learned with relative ease.

[21] Details of the SOM algorithm used in the present
research are provided by Bowden et al. [2005b]. In most
applications, the size of the SOM grid is chosen by a trial-
and-error process. However, for ease of implementation,
the approach adopted in this study is to use the heuristic
rule provided by Vesanto [1999] for determining the size of
the SOM grid based on the number of samples to be clus-
tered. The number of grid cells is given by

m ¼ �n0:54; (1)

where values of 0.2, 1, and 5 are used for the constant � for
small, normal and large SOMs, respectively, and n is the
number of data patterns [Vesanto, 1999].

[22] The dimensions of the grid are also important for
the quality of the mapping as it has been observed that an
r � c SOM with one side of greater length than the other
(i.e., rectangular) is superior to a square r � r SOM since
the former is more easily able to provide a mapping if the
data are distributed along a dominant axis [May et al.,
2010]. Therefore, given a ratio of the SOM dimensions � it
is possible to formulate the dimensions of the SOM in
terms of the number of rows, by considering r ¼ �c. Since
m ¼ rc, the number of grid cells can then be written, in
terms of r, as

m ¼ r2

�
(2)

which can be substituted into (1) to give the number of
SOM rows as

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��n0:54

p
: (3)

[23] The rule presented in (3) was investigated by May
et al. [2010] and was found to provide adequate clustering
for the data used in their case studies, without requiring the
trial-and-error evaluation of clustering with a potentially
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large number of SOMs with different dimensions. Conse-
quently, the heuristic rule provided in equation (3) was
adopted in this study and values of � ¼ 1 and � ¼ 1.6 were
used in accordance with the findings of May et al. [2010].
Initial trials showed that the results obtained in this study
were not sensitive to these SOM sizing parameters.
2.2.2. Kernel Density Estimation

[24] One of the most common forms of nonparametric
density estimation is the kernel density estimator, which
for n data samples of dimensionality d is able to provide an
estimate of the distribution density (4). Kernel density esti-
mation techniques are widely used due to their stability, ef-
ficiency, and robustness.

f̂ X ðxÞ ¼
1

n

Xn

i¼1

1

�d
K

x� xi

�

� �
; (4)

where K(�) is the kernel function (satisfying non-negativity
and normalization conditions) and � > 0 is the smoothing
parameter, called the bandwidth. In most applications, K(�)
is a Gaussian kernel function of dimensionality d with zero
mean and unit standard deviation.

[25] In order to produce an accurate density estimate, the
bandwidth � must be chosen very carefully. Small values
of � tend to lead to density estimates that give too much
emphasis to individual points. In this case, spurious fine
structure may become present with bumps in the tails of the
probability density. Larger values of � tend to oversmooth
the probability density with all detail, spurious or other-
wise, becoming obscured. Only for intermediate values of
� will a good density estimate be obtained. Various rules-
of-thumb are available in the literature to help choose an
optimal value of �. Sharma [2000] used the Gaussian refer-
ence bandwidth [Scott, 1992], as it is relatively simple and
computationally efficient. Bowden et al. [2005a] found that
kernel density estimators using the city-block distance were
more computationally efficient, yet still able to provide
equivalent density estimations when compared to estimators
using the Gaussian kernel. Consequently, the city block dis-
tance kernel function has been used in this research. Since
the objective of this paper is to detect uncharacteristic data
patterns based on comparing them with samples in their local
neighborhood, the summation only needs to be taken over
the neighborhood defined by the SOM. If kNc(x) denotes the
k neighbors of a sample x, then by combining this with the
city-block distance kernel, it is possible to obtain the follow-
ing equation for estimating the local density at a query data
pattern xQ:

f̂ X ðxQÞ ¼
1

kð2�Þd
X

xi2kNcðxQÞ

Yd

j¼1

e�
jxj�xij j

�

¼ 1

kð2�Þd
X

xi2kNcðxQÞ
exp � 1

�

Xd

j¼1

jxj � xijj
 !

;

(5)

where f̂ X ðxQÞ is the multivariate kernel density estimate of
the d-dimensional variable set X at coordinate location xQ,
xi is the ith multivariate data point, for a sample of size n
points within the query patterns’ neighborhood, and � is the
bandwidth of the kernel density estimate. The univariate

version of this kernel was first proposed by Parzen [1962].
However, theorem 4.1 in Cacoullous [1966] shows that
Parzen’s results can be extended to the multivariate case
when the multivariate kernel is a product of a number of
univariate kernels, as is the case in (5). In (5), j indexes the
product of kernels calculated over the d-dimensional data
pattern. The second line of equation (5) shows the equiva-
lent function transformed into a summation of the city-
block distance over the d-dimensional vector. This kernel
estimator is particularly attractive from the point of view of
computational simplicity. Via experimentation, it was deter-
mined that a neighborhood size of k ¼ 30 provided the most
stable results when identifying uncharacteristic data patterns.
Having at least 30 neighboring samples in the reference pop-
ulation was considered necessary for ensuring a statistically
representative population.
2.2.3. Local Uncharacteristic Factor (LUF)

[26] By comparing the density of the query pattern with
the densities of the neighboring data points in the training
set determined by the SOM, it is possible to define a local
uncharacteristic factor (LUF). This measure provides the
degree to which a new data pattern can be considered to be
uncharacteristic, based on its neighborhood of calibration
data. The LUF, introduced in this paper, is defined as the
ratio of the average local density estimate (LDE) of the
data patterns in the neighborhood surrounding the new data
pattern to the new pattern’s LDE:

LUFðxjÞ ¼

X
xi2kNcðxQÞ

f̂ X ðxiÞ
k

f̂ X ðxQÞ
;

(6)

where f̂ X ðxQÞ is the local density estimate of new query pat-
tern xQ and f̂ X ðxiÞ are the density estimates of the k calibra-
tion patterns in xQ’s neighborhood Nc. The LUF of a new
data pattern xQ captures the degree to which it is deemed to
be unrepresentative of the calibration data. Based on this
relationship, uncharacteristic data patterns can be identified
by setting a criterion of the form LUFðxQÞ > T , where T is
a threshold for deciding if a pattern is uncharacteristic rela-
tive to its local calibration data. The selection of T is case
study dependent and will vary based on the local fluctua-
tions and clustering of the given data set. However, it is im-
portant here to err on the side of caution and set T at a
relatively conservative value since the aim is to detect the
patterns that are poorly represented by the calibration data.
There is a trade-off between detecting too few uncharacter-
istic patterns (false negatives) if T is too large and detecting
too many uncharacteristic patterns (false positives) if T is
too small, which also has the added disadvantage of increas-
ing computational overhead due to excessive retraining of
the model. It was determined by trial-and-error that a value
of T � 2 provided a suitable compromise for detecting
poorly represented data patterns in the case study investi-
gated in this paper, and therefore, this value was adopted.
The trials conducted showed that the classifier had good per-
formance across a very broad range of values for T and,
hence, the method was not sensitive to this parameter. Per-
formance only started to degrade for values of T > 10,000.
A value of T � 2 provided good classification performance
while still only requiring the model to be retrained a small
percentage of the time.
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3. Case Study
[27] As mentioned previously, the purpose of the real-

world case study is to assess the performance of three
approaches for deploying ANN models in a real-time, opera-
tional setting, including: (1) no retraining (i.e., the model
parameters remained fixed), (2) always retraining the model
every time a new input/output set becomes available, and
(3) selectively retraining the model based on the SOM-LDE
classifier identifying a new pattern that is not sufficiently
represented by the calibration data. The real-world study
presented here is a rainfall-runoff forecasting application.

3.1. Study Area and Data

[28] For this investigation, the case study and data set
described by Jain and Srinivasulu [2006] were used. This
data set was derived from the Kentucky River basin. In
total, 26 years of daily data (1960–1972 and 1977–1989)
were available and include the average daily streamflow
(cubic feet per second) from the Kentucky River at LD10,
and the average daily rainfall (mm) from five rain gauges
(Manchester, Hyden, Jackson, Heidelberg, and Lexington
Airport) scattered throughout the Kentucky River catch-
ment. Jain and Srinivasulu [2006] transformed the precipi-
tation data into effective rainfall using the infiltration
modeling and soil moisture accounting (SMA) procedure
described in Jain et al. [2004]. Consequently, the effective
rainfall data were also used as part of this investigation.

3.2. Model Development

[29] Jain and Srinivasulu [2006] used effective rainfall
values at time steps t, t � 1, and t � 2 (Pt, Pt�1, and Pt�2)
and flow values at time steps t � 1 and t � 2 (Qt�1 and
Qt�2) in order to model the flow at time t (Qt). Since the
focus of the present study is on real-time forecasting, the

use of effective rainfall at time t (Pt) was omitted to ensure
that only previous values were used to forecast the flow at
time t (Qt). To further test the proposed classification and
retraining methods, experiments were also conducted in
which flow was forecast three and seven days in advance. In
order to evaluate the efficacy of the three model deployment
methodologies investigated, five different trials were con-
ducted by dividing the first 13 years of data (1960–1972)
into calibration sets of differing lengths (Figure 2). Experi-
ments were performed using differing lengths of calibration
data in order to explore the effect that limited calibration
data has on an ANN model once deployed in a real-time
simulation and to provide a comparison for testing the model
deployment approaches. Each of the five calibration data
sets (RR-1 to RR-5) were further divided by allocating the
first half of the data to the training set and the second half to
the testing set. Details of each set are provided in Table 1.
The second 13 year period of data (1977–1989) was used as
the real-time simulation data in order to test the efficacy of
the recalibration approaches (Figure 3). The simulation
showed what it would have been like if these models had
been deployed over the 13 year period and used in the man-
ner dictated by the retraining method. Even though this was
a simulation, it would have been possible to retrain the ANN
models in real-time and obtain the forecast. This is because
each retrain took of the order of minutes to run, whereas the
shortest forecasting horizon was 1 day. This means that there
would be plenty of time for retraining and obtaining the fore-
cast if this model was deployed in a real-time application.
The performance of all models was also compared to that of
a naive forecasting model, which served as a benchmark for
the flow forecast at time t ( bQt ). The naive model isbQt ¼ Qt�n, where n is the forecasting horizon. For example,
for a one-step forecast the na€�ve model sets the forecast for

Figure 2. Discretization of the 13 years (1960–1972) of available rainfall-runoff (RR) data into five
calibration sets.
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flow at time t as the actual flow observed at time t � 1.
Naive models have zero skill, and therefore provide a way
of assessing the skill a particular model offers the forecasting
problem.

[30] The type of ANN model used in this study was the
feedforward multilayer perceptron (MLP) trained using the
backpropagation algorithm. This combination of ANN
architecture and training algorithm is by far the most com-
monly used in water resources applications [see Maier et al.,
2010] and provides a good basis upon which to explore
different recalibration approaches. Jain and Srinivasulu
[2006] used MLPs with one hidden layer and applied a trial-
and-error approach in order to select the number of hidden
nodes in the range of 1 to 20. Since the focus of the current
investigation is on understanding the range of applicability
of the model and comparing recalibration approaches, the
same network geometry was adopted, which consisted of a
single hidden layer with five nodes for each model. In con-
trast with the study performed by Jain and Srinivasulu
[2006], a linear transfer function was used in the output layer
as this is likely to result in superior extrapolation ability.
This was confirmed by preliminary trials on the present case
study. The trials also indicated that a small learning rate was
required for this study. After considering values in the range
[0.0001, 0.5], it was found that a learning rate of 0.001 pro-
vided the best learning ability. The data were linearly scaled
between 0.0 and 1.0. To ensure that overtraining did not
occur (i.e., when the network performs well on the training
data, but poorly on independent test data), the hold-out
method of cross validation was used. This method alternately

runs train and test commands, and saves the network with
the best test results during the run. After 200 iterations with
no further improvement in the test set results, training is
stopped.

[31] The ANNs developed using the different calibration
sets were used to provide forecasts for the 13 year real-time
simulation period. Three deployment approaches were inves-
tigated, including: no retraining, always retraining after each
new sample, and the proposed method of selectively retrain-
ing the model using the SOM-LDE classification method as
outlined in section 2. The last approach involves retraining
the model each time the SOM-LDE classifier detects an
uncharacteristic data pattern. The SOM grid size was deter-
mined by the heuristic rule provided by Vesanto [1999] as
given in equation (3). It should be noted that the SOM grid
size grew in proportion to the number of calibration samples
as patterns were identified as being uncharacteristic and then
added to the calibration data.

3.3. Performance Measures

[32] The performance of all models developed in this
study was evaluated using three statistical measures com-
monly used in water resources modeling. The first measure
is the root mean square error (RMSE), as it is suitable as a
general measure of model performance and the use of
squaring tends to place greater weight on outlier values.
Two correlation-based measures were also used, including
the coefficient of efficiency (COE), commonly referred to
as the Nash-Sutcliffe efficiency and the coefficient of deter-
mination (R2). The COE is the ratio of the MSE to the

Table 1. Train and Test Periods for the Five Rainfall-Runoff (RR) Data Sets

Data Set
Proportion of

Total (%)
Train Start Date
(dd/mm/yyyy)

Train End Date
(dd/mm/yyyy)

No. Train
Samples

Test Start Date
(dd/mm/yyyy)

Test End Date
(dd/mm/yyyy)

No. Test
Samples

RR-1 12.5 2/01/1960 24/10/1960 297 25/10/1960 17/08/1961 297
RR-2 25.0 2/01/1960 16/08/1961 593 17/08/1961 1/04/1963 593
RR-3 50.0 2/01/1960 2/04/1963 1187 3/04/1963 2/07/1966 1187
RR-4 75.0 2/01/1960 15/11/1964 1780 16/11/1964 30/09/1969 1780
RR-5 100.0 2/01/1960 2/07/1966 2374 3/07/1966 30/12/1972 2373

Figure 3. Real-time simulation data spanning 13 years (1977–1989) for the rainfall-runoff case study.
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variance of the observed data, subtracted from unity and
therefore, measures the ability of a model to predict values
which are different from the mean. The coefficient of deter-
mination (R2) is the square of the Pearson product-moment
correlation coefficient and measures the proportion of var-
iance in the observed data that is explained by the model
[Legates and McCabe, 1999]. Both the COE and R2 are
useful because they are measures that are independent of
scale and hence, can be used for comparisons between
different studies [Dawson and Wilby, 2001].

4. Results and Discussion
[33] The real-time simulation period results obtained for

the rainfall-runoff case study for the models that were cali-
brated with data of different lengths and 1 day forecasts are
shown in Figure 4. Also shown for comparative purposes is
the performance of the naive forecasting model. It can be
seen that the MLP model with no retraining (i.e., fixed pa-
rameters) was able to outperform the benchmark naive
model for all calibration sets, thereby demonstrating its
skill relative to the benchmark. A general trend can be

Figure 4. Real-time simulation performance (a) RMSE, (b) coefficient of efficiency and (c) R2,
obtained for the five rainfall-runoff calibration data sets and the retraining methods, forecasting flow
1 day in advance. The naive model forecasts are also shown as a baseline.
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observed, whereby performance of the baseline MLP
improved as the calibration set increased in size, however,
performance plateaued after the RR-3 calibration set. The
significantly worse performance on the smaller calibration
sets (i.e., RR-1 and RR-2) demonstrates that developing the
MLP on fewer data resulted in poor performance when
tested on the real-time simulation period since the model
was not able to generalize to new unseen patterns. As the
calibration data set increased in size, the MLPs’ generaliza-
tion ability improved via a greater diversity of training
patterns.

[34] The results obtained when always retraining the
MLP and selectively retraining the MLP using the SOM-
LDE classifier are also shown in Figure 4. It can be seen
that always retraining the model showed significant
improvement over no retraining for all calibration sets. The
RR-5 data set consists of a 13 year calibration period, and
as such, is more likely to contain a greater number of all
possible input patterns, whereas RR-1 consists of just over
1.5 years of data and contains a much more limited set of
input patterns. Consequently, the level of outperformance
generally decreased as the size of the calibration set
increased. This is also illustrative of the fact that models
developed on smaller calibration sets can benefit more signifi-
cantly from a periodic recalibration strategy. This is because
the model needs to adapt to the new information as it is
encountered in order for it to become increasingly robust with
time. As the variability of a data set increases, the problem of
having a small calibration set becomes of greater concern.

[35] It is also instructive to compare the real-time simu-
lation period results with the performance obtained on the
initial calibration data (i.e., the training and testing sets).
Table 2 presents the results of the training, testing, and
real-time simulation period for the models developed using
the RR-1 data set. When calibration data were quite limited,
as was the case for the RR-1 data set, the two recalibration
strategies were able to achieve real-time simulation period
performance metrics that were similar, and even slightly
improved, compared to those obtained on the training and
testing data sets. In contrast, not retraining the model
resulted in significant performance deterioration relative to
the initial training and testing results. This highlights that
the retraining strategies were successful in maintaining a
similar level of error during the real-time simulation period
as observed during the initial calibration of the model. This
was generally maintained across all five calibration data
sets, however, as the amount of initial calibration data
increased, the real-time performance of the no retraining
strategy became similar to that obtained on the initial train-
ing and testing sets. This provided further evidence that

recalibration strategies are particularly important in cases
where the initial calibration data are limited and not suffi-
ciently representative of future data. Since it cannot gener-
ally be known a priori whether the calibration data will be
representative of future data, it is better to adopt a recali-
bration strategy when considering real-time deployment, in
order to provide some insurance that model performance
will be maintained at an acceptable level.

[36] The selective retraining strategy uses the SOM-LDE
classifier to diagnose the uncharacteristic data points, issues
a warning for the forecast, and then retrains the model once
the corresponding output pattern has been collected. The
number of uncharacteristic data points identified by the
SOM-LDE classifier varied between approximately 6% and
8% of the total patterns encountered, depending on the ini-
tial calibration set used (Table 3). However, even though
the range was narrow, a clear trend was observed whereby
the amount of uncharacteristic data detected decreased as
the size of the calibration set increased. The models devel-
oped using the RR-1 and RR-2 calibration sets identified
significantly more uncharacteristic data patterns through
the early part of the real-time simulation period (approxi-
mately the first 3.5 years). As these patterns were incorpo-
rated into the model and the calibration set became more
representative, the classifier then detected uncharacteristic
patterns at a rate that was similar to that for the models
developed using the longer calibration sets (i.e., RR-3 to
RR-5). By incorporating only the key patterns early on, the
number of extra data samples that were required to be
added to the RR-1 and RR-2 calibration sets was kept to a
minimum. This explains why the number of uncharacteris-
tic data did not vary much between the different models.

[37] Despite only requiring retraining such a small frac-
tion of the time, the selective retraining approach was able
to provide similar performance to the approach that
retrained the model 100% of the time. For example, when
using the MLP model developed with the RR-1 calibration
set, the SOM-LDE classifier diagnosed 370 uncharacteristic
input patterns. Therefore, 370 warnings were issued with
these forecasts, representing 7.8% of the time that retrain-
ing was required to be performed to adapt the MLP model
to these new patterns. Consequently, there are significant
computational benefits to the selective retraining approach,
and these benefits become particularly relevant for higher
frequency case studies when the time available to perform
the model recalibration is constrained. The computational
burden of the SOM-LDE diagnostic test presented in this
study is small relative to that required to perform a recali-
bration of the MLP model. However, it is an important con-
sideration that if a diagnostic test is used that requires a
significant amount of time to run relative to retraining, then
it may be beneficial to simply consider retraining after each
new sample is collected. However, in this instance one
would lose the ability to issue warnings with the forecast at

Table 2. Training, Testing, and Real-Time Simulation Period
Performance for the MLPs Developed Using the RR-1 Data Set
and Forecasting Flow 1 Day in Advance

Period RMSE (cfs) COE R2

Training 2675 0.842 0.849
Testing 2780 0.874 0.891
Real-Time—No Retraining 3181 0.847 0.870
Real-Time—Always Retraining 2521 0.904 0.904
Real-Time—Selective Retraining 2592 0.898 0.898

Table 3. Proportion of Samples Detected as Uncharacteristic for
Each Rainfall-Runoff Data Set

Model RR-1 RR-2 RR-3 RR-4 RR-5

Selective Retraining 7.8% 7.2% 7.0% 6.5% 6.1%
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times when the new input sample is detected to be outside
of the calibration domain.

[38] The classification performed by the SOM-LDE clas-
sifier for the real-time simulation period is presented
graphically in Figure 5, which plots the logarithm of the
local uncharacteristic factors (LUF) with flow and effective
rainfall. The points that were identified as being sufficiently
represented by the calibration data are shown as dots with
the uncharacteristic data points represented as squares.
Also shown is a linear regression line fitted to the uncharac-
teristic data points. These results are for the MLP model
developed using the RR-1 calibration set, which contains
comparatively lower flow and rainfall events than the real-
time simulation period. As might be expected, the character-
istic data points are clustered at these lower values, with sig-
nificantly higher LUFs being assigned to the higher flow and
rainfall input patterns. The clustering between characteristic
and uncharacteristic patterns is relatively distinct in this
example, which demonstrates the effectiveness of using the
SOM-LDE classifier to selectively retrain the model.

[39] Time series plots of the MLP 1 day forecasts obtained
using each model deployment strategy are shown in Figure 6.

These results display a 2 year section of the real-time simula-
tion (1978–1979) that contained the peak flow event of
99,100 cubic feet per second (cfs). It is apparent that without
retraining, the MLP model produces poor forecasts of the
larger flow events (Figure 6a), because these events were
clearly outside of the domain of the calibration data and
required the model to extrapolate. Always retraining the
MLP model provided a significant improvement in the ability
to forecast the larger flow events (Figure 6b), which shows
that although the model was developed on a limited set of
calibration data, the retraining strategy effectively allowed
the model to adapt to these new patterns. Selective retraining
also greatly improved the MLP’s ability to forecast the larger
flow events, although the peak flow was over-predicted in
this case (Figure 6c). The general improvement in forecasting
the peak flow events was evident despite the fact that the
SOM-LDE classifier was very judicious in identifying when
retraining was necessary. The same pattern was also evident
across the entire real-time validation period, as can be seen in
Figure 7, which presents scatterplots of the 1 day forecasts
for the entire real-time simulation period under the three
retraining approaches. It is important to note here that the
forecast for the first new event of high flow is not good de-
spite the retraining strategies, as this pattern is only included
in the calibration data after it had occurred (i.e., after the
poor forecast). However, the inclusion of this event then has
a positive impact on subsequent forecasts as this type of
event is then incorporated into the calibration domain. For
brevity, only the results for calibration data sets RR-1, RR-3,
and RR-5 are presented, as they are indicative of the general
trend that was observed. As expected, the level of outper-
formance of the retraining strategies, compared with the no
retraining approach, diminished as the amount of calibration
data increased. The degree of variability and the range of the
values included in the calibration data are of importance
here. In this case study, the data are highly variable and the
first few years of data contain lower flows, such that by
increasing the length of the calibration data, more extreme
patterns are included and the resulting forecasts on the real-
time simulation period were then improved.

[40] The real-time simulation results for each deploy-
ment method for the 3 and 7 day ahead forecasting periods
are shown in Figures 8 and 9, respectively. The purpose of
this investigation was not to derive an optimal model in
these cases, but rather to deploy the models under the same
conditions and with the same inputs as used earlier but with
a longer forecast period. Despite the fact that model per-
formance was considerably degraded relative to the 1 day
forecasts, as expected, the general trends observed were
very similar. For both the 3 and 7 day forecasts, the MLP
with no retraining (i.e., fixed weights) provided significant
improvement relative to the na€�ve model, thereby demon-
strating its skill relative to the benchmark. As expected, the
baseline MLP showed improvement in performance as the
size of the calibration data was increased for both the 3
and 7 day forecasts. The active retraining strategies also
resulted in a significant improvement in performance com-
pared with the baseline MLP and the level of outperform-
ance decreased as the size of the calibration data increased.
The results obtained when using longer forecast horizons
demonstrate that even when the forecasts contain consider-
able error, there is still significant improvement to be made

Figure 5. Local uncharacteristic factors (LUF) for the
rainfall-runoff real-time simulation period (a) effective
rainfall, and (b) flow. Gray shaded circles denote character-
istic data vectors and black filled squares denote uncharac-
teristic vectors. Results are for the MLP model developed
using the RR-1 calibration set and forecasting flow 1 day in
advance.
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by utilizing an active retraining deployment strategy such
as that presented in this paper.

5. Summary and Conclusions
[41] When an ANN model is deployed in an operational

environment, there is a need to determine if new input pat-
terns are representative of the data used in calibrating the
model. In this paper, a novel detection system based on a

SOM-LDE classifier is presented for identifying uncharac-
teristic data patterns. Once an uncharacteristic pattern is
detected, it is added to the calibration data set and the
model is retrained after the relevant output variable has
been collected. In so doing, the model is able to cater to
nonstationarity in the data and effectively adapt to new in-
formation as it is encountered.

[42] Selectively retraining the model using the SOM-
LDE classifier was compared with the simpler approaches

Figure 6. Real-time simulation 1 day ahead flow forecasts for 1978–1979 using RR-1 for calibration
and (a) no retraining, (b) always retraining, and (c) selective retraining as the deployment approach.
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of no retraining (i.e., keeping the model parameters fixed)
and always retraining the model using a real-world case
study. All three model deployment approaches were applied
to a 13 year rainfall-runoff forecasting real-time simulation,
where forecasts were made 1 day in advance. The results
from this investigation provided firm evidence that periodi-
cally retraining the model resulted in significant improve-
ments when compared to keeping the model parameters
fixed. By evaluating models developed using differing
amounts of calibration data, it was also determined that the
degree of outperformance achieved by actively retraining
the model was greatest when only limited data were avail-
able in the model development process. In highly variable
data sets such as the rainfall-runoff study investigated here,
the problem of limited model development data is that it
becomes increasingly unlikely that the calibration data

contain a sufficiently representative range of patterns likely
to be encountered in the future. This was clearly observed
in the rainfall-runoff case study as the models developed
using smaller calibration sets significantly underperformed
compared with those developed with larger calibration sets
and failed to accurately forecast the high flow events.

[43] The results also indicated that the SOM-LDE classi-
fier provided an effective means of detecting when retrain-
ing is required. For the case study investigated, the amount
of uncharacteristic data detected by the classifier was gen-
erally between 6% and 8%, and despite only requiring the
model to be retrained such a small fraction of the time, sim-
ilar model performance to the approach that retrained
100% of the time was achieved. Therefore, the selective
retraining approach was also more computationally efficient
than the approach of always retraining the model. The added

Figure 7. Scatterplots of the real-time simulation period 1 day ahead forecasts of flow versus actual
flow for data sets RR-1, RR-3, and RR-5 using the three model deployment approaches.
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advantage of using the SOM-LDE classifier is that it is able
to provide a warning when there is likely to be considerable
uncertainty in the model’s forecast due to an uncharacteristic
input sample being detected. In this study the classifier was
used to determine when to selectively retrain, however, there
is no reason why the classifier could not also be used in con-
junction with any model deployment scenario, in order to
provide warnings of when the forecast is likely to contain a
larger degree of uncertainty.

[44] The deployment approaches were also investigated
when using longer forecasting horizons, specifically 3 and

7 days. The results were broadly in line with those obtained
for the 1 day forecasts. The baseline MLP’s performance
improved as the amount of calibration data was increased.
The retraining approaches provided significant improve-
ment in performance relative to no retraining.

[45] Overall, the investigation highlights the necessity
for periodically recalibrating ANN models when they are
deployed in a real-time operational setting. The proposed
SOM-LDE classifier provided an effective means for parti-
tioning the calibration data and estimating the local density
of new input patterns relative to the calibration points.

Figure 8. Real-time simulation performance (a) RMSE, (b) coefficient of efficiency and (c) R2,
obtained for the five rainfall-runoff calibration data sets and the model deployment approaches, forecast-
ing flow 3 days in advance. The naive model forecasts are also shown as a baseline.
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In so doing, it is possible to define the range of applicability
of ANN models. Future research should be directed toward
additional testing of these methods on further case studies
and toward improving approaches for detecting uncharac-
teristic data patterns. In applications where very high-fre-
quency forecasts are required, there may be little time
available between subsequent forecasts. In such cases, it
would be useful to investigate more efficient methods for
incorporating uncharacteristic data patterns such as online
(incremental) weight updates. The SOM-LDE classifier and
model recalibration methodology developed in this research

has wider applicability than just ANN models. In fact, the
approach could be used for a wide range of other empirical
or data mining based prediction methods. Further studies
investigating how the methodology performs when deploy-
ing other data-driven prediction models would be a good
avenue of future research.

[46] Acknowledgment. The authors would like to gratefully acknowl-
edge Professor Ashu Jain from the Department of Civil Engineering, In-
dian Institute of Technology Kanpur, for kindly providing the rainfall-
runoff data set used in this study.

Figure 9. Real-time simulation performance (a) RMSE, (b) coefficient of efficiency and (c) R2,
obtained for the five rainfall-runoff calibration data sets and the model deployment approaches, forecast-
ing flow 7 days in advance. The naive model forecasts are also shown as a baseline.
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