ACCEPTED VERSION

L.J. Moran, Z. Sui, C.S. Cramp and J.M. Dodd **A decrease in diet quality occurs during pregnancy in overweight and obese women which is maintained post-partum** International Journal of Obesity, 2012; 2012(5):1-8

© 2012 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

PERMISSIONS

http://www.nature.com/ijo/for_authors.html#Journal-open

Authors of original research articles are encouraged to submit the author's version of the accepted paper (the unedited manuscript) to their funding body's archive, for public release six months after publication. In addition, authors are encouraged to archive this version of the manuscript in their institution's repositories and on their personal websites, also six months after the original publication. This is in line with <u>NPG's self-archiving policy</u>.

10 March 2015

http://hdl.handle.net/2440/76355

1 <u>Title:</u> A decrease in diet quality occurs during pregnancy in overweight and o	obese women
--	-------------

- 2 which is maintained post-partum
- 3
- 4 Moran LJ $(PhD)^1$
- 5 Sui, $Z (MHIthSc)^1$
- 6 Cramp CS (BND) 1
- 7 Dodd, JM (PhD, FRANZCOG)¹
- 8
- 9 ¹ The Robinson Institute, Discipline of Obstetrics & Gynaecology, The University of Adelaide
- 10
- 11 Corresponding author and requests for reprints: Dr Lisa Moran
- 12 The Robinson Institute
- 13 55 King William Road, North Adelaide, South Australia 5006, AUSTRALIA
- 14 Tel: +61 8 8313 1352; Fax: +61 8 8161 7652
- 15 Email: <u>lisa.moran@adelaide.edu.au</u>
- 16
- 17 <u>Sources of support:</u> This trial is supported through the Australian National Health and
- 18 Medical Research Council (NHMRC) in a four-year project grant. LJM is the recipient of a
- 19 NHMRC Post-Doctoral Fellowship and JMD is the recipient of a NHMRC Practitioner
- 20 Fellowship.
- 21
- 22 <u>Running title:</u> Diet quality in overweight pregnant women
- 23
- 24 <u>Clinical trial registry:</u> This trial was registered at the Australian and New Zealand Clinical
- 25 Trials Registry (ACTRN12607000161426).

26 Abstract

27 **Background:** Ensuring adequate dietary intake during pregnancy has important implications for optimising maternal and fetal health. It is not known whether diet quality is altered over 28 29 pregnancy and the post-partum period. 30 **Objective:** The aim of this study was to perform a comprehensive assessment of diet quality 31 in overweight and obese women during pregnancy and early post-partum. 32 **Design:** In a prospective cohort study, n=301 overweight or obese pregnant women 33 completed a food frequency questionnaire at study entry (10-20 weeks gestation), 28 weeks gestation, 36 weeks gestation and 4 months post-partum for assessment of macronutrient and 34 35 micronutrient intake and diet quality by the Healthy Eating Index (HEI). Results: Energy, macronutrient and dietary sources of micronutrients did not alter across 36 37 pregnancy or post-partum. The HEI was of below average quality in 31.0% of women at 38 baseline. This decreased from week 28 (P<0.001) and was maintained at a lower level post-39 partum such that HEI levels were lower compared with study entry (53.3±12.7 versus 40 56.7±10.1, P<0.001). The HEI decrease occurred in association with decreases in the milk, 41 meat and unsaturated oil components and increases in the proportion of energy from solid fats, alcohol and added sugars (P<0.001) and was independently predicted by the socioeconomic 42 43 index for areas score (β =-0.011, SE=0.011, P=0.031). 44 **Conclusion:** We report for the first time that dietary quality decreases across pregnancy and is maintained at this reduced level in the early post-partum period in overweight and obese 45 women. Dietary interventions aimed at improving diet quality should be targeted to early 46

47 pregnancy and post-partum.

48

49 Key words: Diet quality, pregnancy, post-partum, overweight, obesity

50

51 Introduction

52 Nutritional status during pregnancy has important implications for the health of the woman and of her infant. This is well recognised with regards to the effect of under or over nutrition 53 54 on health outcomes including gestational diabetes, maternal anaemia, hypertension, fetal growth and development, neural tube defects, infant cognitive and neurodevelopment, birth 55 weight and potential long-term childhood disease risk ¹⁻⁴. Pregnancy is associated with 56 increased nutritional needs ⁵. While some women may have a nutritionally adequate diet, for 57 58 others the degree to which they modify their diet during pregnancy is crucial in achieving these recommended requirements. While food intakes are variably reported to either be 59 changed or unaltered over the course of pregnancy and into the post-partum period $^{6-8}$. 60 optimal dietary intake is commonly not achieved across these life stages as assessed by 61 comparison to micronutrient reference values, healthy eating indices or recommended food 62 group intakes ⁹. 63

64

65 It is also important to assess the overall quality of a diet to identify eating patterns associated with disease prevention ¹⁰. This can be analysed through identification of healthy or unhealthy 66 food patterns through techniques including principle component analysis or use of dietary 67 quality indices comparing nutritional intake with recommendations for healthy eating or 68 69 dietary guidelines. As a comprehensive measure of total dietary intake, decreased diet quality assessed by these indices is associated with longitudinal weight gain ¹¹ and increased both all 70 71 cause mortality and morbidity, and specifically mortality related to chronic diseases including cancer and coronary heart disease ¹⁰. Furthermore, poor diet quality during pregnancy and 72 post-partum has been previously reported ^{9, 12} to be associated with adverse outcomes such as 73 maternal glucose intolerance and preeclampsia¹³. There is limited data assessing longitudinal 74 changes in diet during and after pregnancy. No changes in dietary patterns, assessed from 75

There is additionally evidence that overweight and obese women consume a poorer quality 80 diet during pregnancy with reduced grain, vegetable, iron and folate intake and poorer overall 81 diet quality compared with women of healthy weight ¹⁶⁻¹⁸. While it is estimated that up to 50% 82 of Australian women are overweight or obese during pregnancy¹⁹, there is limited data 83 84 examining changes in diet specifically in this population of women. Woolf et al have reported increases in energy intake from 15 to 27 weeks⁶, although to our knowledge there are no 85 86 studies examining longitudinal changes in dietary quality in overweight and obese women through pregnancy and post-partum. The aim of this study was to perform a comprehensive 87 88 assessment of energy, macronutrient and micronutrient intake, and dietary quality over the 89 course of pregnancy and post-partum in overweight and obese women.

90

91 Methods

92 *Study population*

This prospective cohort study is nested within a randomised trial evaluating the effect of an 93 94 antenatal dietary and lifestyle intervention to limit weight gain for women who are 95 overweight or obese (the LIMIT study). The methodology of the LIMIT randomised trial has been described in detail previously ²⁰. Specifically, women who were randomised to the 96 control group of the LIMIT trial between September 2008 and January 2010, who received 97 98 standard antenatal care and completed dietary questionnaires at all 4 time points of the study 99 comprise the current cohort (n=301). Inclusion criteria were women with a body mass index (BMI)>25 kg/m² with a live singleton pregnancy between 10^{+0} to 20^{+0} weeks gestation at their 100

101	first antenatal appointment. Women diagnosed with diabetes (pre-existing Type 1 or Type 2
102	or gestational diabetes prior to trial entry) were excluded from the study. Women were
103	recruited from public maternity hospitals across the South Australian metropolitan area
104	(specifically, Women's and Children's Hospital, Lyell McEwin Hospital and Flinders
105	Medical Centre). While all women received informal advice regarding healthy eating from
106	their midwife, at one recruitment site (Lyell McEwin Hospital) women with a BMI > 40
107	kg/m ² additionally received a pamphlet on healthy eating principles. Ethics approval was
108	obtained from all sites, and all women provided written informed consent. This trial was
109	registered at the Australian and New Zealand Clinical Trials Registry
110	(ACTRN12607000161426).
111	
112	Demographic and clinical measurements
113	Baseline demographic details were collected including postcode and socioeconomic indices
114	for areas disadvantage score (SEIFA) ²¹ , parity, age, ethnicity, smoking status at time of
115	recruitment and gestational age and weight at entry. At the time of study entry, all women had
116	their height and weight measured, and BMI calculated and categorised according to World
117	Health Organisation criteria ²² .
118	

119 Food Frequency Questionnaire

Women completed the Harvard Semi-quantitative Food Frequency questionnaire (The Willett
Questionnaire) at study entry, 28 and 36 weeks gestational age and 4 months post-partum.
The Willett questionnaire was developed in 1985 in the United States to measure the daily
intake of 18 selected nutrients from 126 food items with an indication of standard portion size
divided into seven food groups ²³. It has been validated for use across diverse study
populations including pregnancy ²⁴⁻²⁶ and at multiple time points across pregnancy ²⁷ using

126 24-hour recalls, biomarkers or 4-day weighed food records and is appropriate for performing 127 nutrient estimates in this population. Questions were asked about relative frequency of food 128 item consumption, use of supplements, cooking methods and addition of sugar to foods. An 129 open ended question allowed respondents to record consumption of other foods not included 130 on the food list which was then categorized by study investigators into the appropriate food categories. Daily nutrient intakes were estimated by multiplying frequency responses by the 131 nutrient compositions of the specified portion size of each food items according to the Willett 132 133 nutrient database (Harvard SSFQ5/93; Harvard School of Public Health, Boston,

134 Massachusetts).

135

Nutrients were analysed as mean intakes and as energy-standardised intake per 1000 kcal. For
the questionnaire completed at study entry, women were asked to indicate how often on
average they consumed the amount of food during the past year (for trial entry data) or since
the previous questionnaire was completed (for 28 and 36 weeks gestational age and 4 months
post-partum data). If missing data exceeded 25% the questionnaire was excluded from the
analysis. Women who reported unrealistic energy intakes (<4,500kJ/day or >20,000kJ/day)
were excluded from analysis as previously reported for pregnant women ²⁸.

143

144 Nutrient comparison

Nutrient intake values obtained from the Willett questionnaire were compared with the
Australian Nutrient Reference Values ⁵. The Recommended Dietary Intake (RDI) and
Adequate Intake (AI) were used to determine adequate intake for the population group. The
RDI is defined as the average daily dietary intake that is sufficient to meet the nutrient
requirements of nearly all (97-98%) healthy individuals in a particular life stage and gender
group.. Where a RDI was not set, AI was used which is based on observed or experimentally

determined approximations of nutrient intake by a group (or groups) of apparently healthy
people that are assumed to be adequate ⁵.

153

154

155 *Healthy eating index*

156 The 2005 Healthy Eating Index (HEI), developed by the US Department of Agriculture, was used as a measure of diet quality and variety²⁹. It consists of 12 components which are all 157 158 given a score to a maximum score of 100. The first 6 components, total fruit (including 100% 159 juice), whole fruits (excluding juice), total vegetables, dark green and orange vegetables, 160 vegetables and legumes (legumes included as a vegetable only after the Meat and Beans 161 standard was met), total grains and whole grains categories have a score out of five. The next 162 five components milk (all products made from cow's and goat's milk and soy beverages and 163 excluding infant formulas and products that are primary fat such as butter, cream, sour cream 164 and cream cheese), meat and beans (meat products, eggs, nuts, seeds, soy-based products and 165 legumes), oils (fats that are liquid at room temperature, from a plant source and not described 166 as 'hydrogenated' or 'shortening' including oils from plant, fish, nuts and seeds or margarines), saturated fat and sodium have scores out of 10. The final component of the HEI 167 168 includes calories from solid fats (all excess fat from the Milk and Meat and Beans 169 components beyond that would be consumed if only the lowest fat forms were eaten, solid 170 fats added to foods in preparation or at the table including cream, butter, stick margarine, 171 regular or low-fat cream cheese, lard, meat drippings, cocoa and chocolate), alcoholic 172 beverages and added sugars (SoFAAS) and has a score out of 20. A HEI score above 80 is 173 considered good, a score between 50-80 needs improvement and scores below 50 are 174 considered poor with these scoring criteria determined by the proportion of people within 175 these categories meeting nutrient sufficiency (defined as meeting 75% of the recommended

dietary allowances) on the development of the original HEI ³⁰. The HEI has been validated for
use in a pregnant population ³¹.

178

179 Statistical analysis

180 Data are presented as mean±standard deviation (SD) except where indicated. Data transformations were not used to correct for any departures from normality, since the sample 181 size was sufficient for the central limit theorem to apply ³². Two-tailed statistical analyses 182 183 were performed using SPSS (SPSS for Windows, Rel. 18.0.18. 2010. Chicago: SPSS Inc) with statistical significance set at a P value of <0.05. Cross-sectional comparisons for women 184 included or excluded from the study were analysed using independent sample t-tests. 185 Comparisons between time points were assessed using repeated measures analysis of variance 186 187 (ANOVA) with parity, BMI category, SEIFA category, breastfeeding, hospital recruitment 188 site or trimester at trial entry as between subject factors. As the Australian food supply was 189 fortified with folic acid from September 2009, this was adjusted for in statistical analysis by 190 incorporating month of recruitment (pre or post September 2009) as a between subject factor 191 for folate intake. Relationships between variables were examined using bivariate correlations 192 and multiple linear regression.

193

194 **Results**

195 *Participant Characteristics*

196 301 women randomised to the control group of the LIMIT trial were recruited who completed 197 the Willett questionnaires at all four time points. N=10 were excluded from all analyses due to 198 unrealistically low energy consumption, leaving 291 participants (96.7 %) included in the data 199 analysis. Compared to the n=10 women excluded from the study, women included in the 200 study had a trend for increased age (30.5 ± 5.0 versus 27.8 ± 2.0 years, P=0.06) and decreased

BMI (31.6 \pm 5.5 versus 35.1 \pm 2.5 kg/m², P=0.052) and had higher parity (0.9 \pm 0.9 versus 201 202 0.6 ± 0.2 , P<0.001) and were from an area of greater social disadvantage (5.0±2.9 versus 203 6.5±2.6, P<0.001) (Table 1). Baseline characteristics of women are presented in Table 1 and 204 are similar to the reported demographic characteristics of all pregnant women of any BMI in South Australia 33 . The mean gestational age at study entry was 16.8±4.9 weeks with 22.5% 205 206 of women in the first trimester and 77.5% of women in the second trimester of pregnancy. At 4 months post-partum, 57% of women were breastfeeding (165/291), 32% were not 207 208 breastfeeding (95/291) and breastfeeding status was unknown for 11% of women (31/291).

209

210 *Healthy Eating Index*

211 There was a significant change of the HEI during pregnancy and post-partum (Table 2). HEI 212 declined significantly between study entry and 28 weeks' gestation (P<0.001) and was 213 maintained at this lower level at 4 months post-partum (P<0.001) reflected by significant 214 changes in the milk, meat, oil, and energy from SoFAAS scores. The milk and meat scores of 215 the HEI also significantly decreased between study entry and 28 weeks' gestation (P<0.001) 216 and were maintained at this lower level at 4 months post-partum for the meat score (P<0.001). 217 The energy from SoFAAS scores of the HEI decreased between study entry and 28 weeks' 218 gestation (P<0.001), decreased further from 36 weeks gestation to 4 months post-partum 219 (P<0.001) predominantly related to an increase in alcohol consumption post-partum and were 220 maintained at this lower level at 4 months post-partum (P<0.001). This indicates an overall 221 decrease in milk and meat and increase in calories from SoFAAS over the entire study 222 duration. The oil score of HEI declined significantly between study entry and 28 weeks' 223 gestation (P<0.001), followed by a further decline to 36 weeks' gestation (P<0.001), 224 representing a decrease in non-saturated oils. The oil score increased further at 4 months post-225 partum (P<0.001) but remained significantly lower than that reported at baseline (P<0.001).

226 There was no significant effect on further analysis for BMI, parity, SEIFA, hospital 227 recruitment site or trimester at trial entry as between group factors. At study entry HEI 228 correlated significantly with age (r=0.21 P<0.001) but none of the other baseline covariates. 229 On adjustment for breast-feeding status, there was a significant difference in change in HEI 230 for the total score (P<0.001) and the calories from SoFAAS scores (P<0.001). This occurred 231 from 36 weeks gestation to 4 months post-partum for both the total score and calories from 232 SoFAAS (P<0.001) such that the women who were breastfeeding had a decrease in total HEI 233 (P<0.001) and a increase in calories from SoFAAS (P<0.001) compared to no significant 234 change in total HEI (P=0.220) and calories from SoFAAS (P=0.100) for the women who were 235 not breastfeeding. 236

A multiple linear regression model was constructed to assess independent predictors of the change in HEI from trial entry to 4 months post-partum including age, BMI, ethnicity, smoking, parity, SEIFA, breastfeeding status, hospital recruitment site or trimester at trial entry. SEIFA socio-economic score was the only significant predictor of the change in dietary quality (β =-0.011, SE=0.011, P=0.031). A 1 unit increase in SEIFA, reflecting improved social advantage, was associated with a 0.011 decrease in the change in HEI.

243

244 Macronutrients and micronutrient intake

Energy intake did not change over the entire study duration and was not significantly different
between trial entry and post-partum (8209.3±2533.4 versus 8226.1±2546.0 kJ/day, P=0.179).
There was no significant change in the intake of the majority of macronutrients over the
course of pregnancy and 4 months post-partum (Table 3). Alcohol consumption declined
significantly between study entry and 28 weeks' gestation (P<0.001), followed by a small but
significant increase to 36 weeks' gestation (P<0.001), before increasing at 4 months post-

partum to levels similar to baseline (P<0.001). There was a significant change in caffeine 251 252 consumption due to an increase from 36 weeks gestation to 4 months post-partum (P<0.001). 253 There was no significant effect on further analysis for BMI, parity, SEIFA, hospital 254 recruitment site or trimester at trial entry. On adjustment for breast-feeding status, there was a significant difference for the change in energy (P<0.001), protein (P=0.008) and fat (P<0.001) 255 256 intake. This occurred from 36 weeks gestation to 4 months post-partum for energy (P<0.001), protein (P=0.008) and fat (P<0.001) such that the women who were breastfeeding had a 257 258 increase in energy (P<0.001), protein (P=0.001) and fat (P=0.001) compared to no significant 259 change in energy (P=0.237), protein (P=0.088) and fat (P=0.069) for the women who were 260 not breastfeeding.

261

262 For micronutrient intake from both dietary and supplement sources, a significant change was 263 observed for calcium, iron, zinc, vitamin A equivalents, niacin, vitamin B6, vitamin C, and 264 folate over the entire study duration (Table 3). For calcium, iron, zinc, vitamin A equivalents, 265 vitamin B6 and vitamin C, a decrease was observed from 36 weeks gestation to 4 months 266 post-partum. A similar pattern in supplement use was observed over this time period. 267 Supplement use remained stable over pregnancy with 33.7% of women taking supplements at study entry, 30.5% at 28 weeks gestation and 29.9% at 36 weeks gestation. Supplement use 268 269 then declined in the post-partum period (P<0.001) to 24.4% which was significantly lower 270 than baseline levels (P<0.001). For niacin and folate, a decrease in intake was observed from 271 study entry to 28 weeks gestation followed by a further decrease from 36 weeks gestation to 4 272 months post-partum. There were no changes in any micronutrient intake from dietary sources 273 alone over the entire study duration. These results were maintained following further analysis 274 for adjusted nutrient intake (per 1000 kcal) (data not shown). There was no significant effect 275 on further analysis for BMI, parity, SEIFA, hospital recruitment site or trimester at trial entry.

276 When adjusting for recruitment pre or post September 2009 to account for mandatory

277 fortification of the Australian food supply with folic acid, no significant differences for folic

acid intake from dietary sources alone or from dietary and supplement sources was reported

279 (data not shown).

280

281 Comparison of dietary intake with recommendations

A comparison of HEI and macronutrient and micronutrient (dietary and supplement) intake is 282 283 presented in Table 4. High or average HEI scores were present for 69% at trial entry, 65% of women at 28 weeks' gestation, 58.4% at 36 weeks' gestation, and 54% at 4 months post-284 285 partum, indicating a modest deterioration in diet quality. The majority of the women had 286 intakes of most macro- and micronutrients equivalent to or above the recommendations at all 287 time points with the exception of fibre, magnesium, manganese, pantothenic acid, and copper. 288 With regards to key pregnancy related micronutrients, over 40% of women did not consume 289 sufficient iron or calcium during pregnancy while adequate folate was consumed by over 80% 290 of women in the first trimester which decreased to 65-71% at week 36 for women recruited 291 either before or after September 2009.

292

293 Discussion

This study supports previous reports of poor diet quality during pregnancy and post-partum for overweight or obese women ^{9, 17, 18, 31, 34}. We furthermore expand this literature to report for the first time that dietary quality significantly decreased across pregnancy and was not improved during the post-partum period in overweight and obese women.

298

We report here similar energy and macronutrient intake to previous studies assessing women
in pregnancy or post-partum ⁷⁻⁹. As previously reported, no changes in energy or

macronutrient intake occurred from the early second trimester to post-partum³⁵ with the 301 exception of alcohol⁷. Supplement use was low and micronutrient intake poor for key 302 303 pregnancy related micronutrients including iron and calcium. While poor diet quality was 304 present only in 31% of women at trial entry, this increased to nearly 50% of women post-305 partum with fruit and vegetable scores comprising on average 60%, milk and dairy 50% and 306 total grains 40% of the maximum score. This is in contrast to previous studies which have reported higher intakes of grains and meat post-partum³⁴ in overweight or obese women. 307 308 However, we confirm findings of a poor milk, meat and whole grains and fruit and vegetable intake ^{18, 34} and elevated consumption of SoFAAS ^{18, 34} in pregnancy and post-partum. 309

310

311 We report here for the first time a decrease in diet quality over pregnancy in overweight and 312 obese women which was maintained post-partum. This is consistent with previous reports of a negative correlation between HEI and week of gestation ¹⁸. However, other research reported 313 no differences in the HEI between women who were pregnant, post-partum or not pregnant⁹, 314 ³¹. The decrease in diet quality was independently inversely associated with SEIFA indicating 315 316 a lesser decrease in diet quality was associated with decreased social disadvantage consistent with previous inverse associations between diet quality and income and education ³⁸. We note 317 318 the use of SEIFA as a surrogate of socioeconomic status which should not be used as a proxy measure for individual or familial disadvantage²¹ and the contribution of factors such as 319 320 income, education or occupation to dietary changes across pregnancy warrant assessment in future studies. In contrast to previous research ¹⁷, we observed no association between BMI 321 and diet quality. This may be because all the women in this current study were overweight or 322 323 obese. However, these results cannot be specifically attributed to the overweight and obesity 324 status of these women as we lack a comparative population of women of healthy weight. Alternatively, our findings may be indicative of an indirect relationship between BMI and diet 325

quality partially mediated by factors including socioeconomic status. While some research 326 reports a lack of change in dietary patterns across pregnancy ¹⁵, others suggest changes may 327 328 occur following women learning they are pregnant, after receiving counseling at the initial prenatal visit, or following resolution of nausea or vomiting after the 1st trimester⁷. At trial 329 330 entry women were either in the first (23%) or second trimester (78%). While this introduces 331 potential bias relating to modified dietary intake in association with increased likelihood of nausea with early pregnancy ³⁶ or greater modification of diet in the second trimester 332 333 following a longer period of being aware of their pregnancy, we note no difference in our 334 statistical analysis on adjustment for trimester at trial entry.

335

336 The reduction in diet quality in this study was contributed to by a decrease in milk and meat intake consistent with some ^{39, 40} but not all previous studies ^{7, 14, 39}. This may be related to 337 338 specific food avoidances in pregnancy with an increased aversion to meat and fish (27% and 4% of women) previously reported ⁴⁰ and an increased proportion of pregnant women avoiding 339 raw meat, fish, shellfish and milk cheese and organ meat compared to non-pregnant women⁴¹. 340 341 Recent Australian data has also reported pregnant women with a lower intake of Listeracontaining foods have lower micronutrient intakes ⁴², suggesting greater avoidance of foods 342 343 from the milk, meat and unsaturated oils components may be related to a greater avoidance of 344 potential sources of Listeria monocytogenes. We also observed an increase in the proportional intake of calories from SoFAAS consistent with previous reports of an increase in a high 345 energy diet score during pregnancy but no change in a prudent diet score ¹⁴ and lower alcohol 346 intake in pregnant compared to non-pregnant women⁴¹. A lack of improvement in diet quality 347 348 during pregnancy has been previously proposed to be related unplanned pregnancies which do not allow sufficient time for positive nutritional changes ⁴³. In this current study the decrease 349 in diet quality primarily occurred from early pregnancy to 28 weeks gestation, highlighting 350

arly pregnancy as a critical stage for targeting dietary interventions. The lack of

improvement in diet quality following birth is not surprising given that the post-partum period 352 353 is associated with challenges in achieving a healthy diet in addition to adjusting to life with a new baby ⁴⁴. Furthermore, breast feeding status was associated with decreases in diet quality 354 355 and increases in total energy, protein, fat and calories from SOFAAS from late gestational to post-partum in keeping with previous reports of poorer diet quality ³⁴ or higher energy intake 356 or discretionary calories ³⁷ for women who were breastfeeding compared to not breastfeeding. 357 358 It is possible that more positive dietary changes may be initiated subsequently, supported by reports of decreases in energy intake at 6-12 months post-partum ⁴⁵. 359

360

In our study, micronutrient intake was insufficient for many women consistent with previous 361 findings ^{9, 31, 46}. In particular, over 40% of women did not consume an adequate iron or 362 363 calcium intake from both dietary and supplement sources during pregnancy and post-partum, with implications for the development of anaemia ⁴⁷. Micronutrient intake from both dietary 364 365 and supplement sources declined over the course of our study. Previous Australian studies have reported higher levels of supplementation in the first trimester of pregnancy ⁴⁸ in 366 keeping with national recommendations for folate supplementation ⁵. This may reflect the 367 368 gestational age at which women were recruited to the study, and current recommendations 369 indicating supplementation to continue only during the first trimester of pregnancy. Our 370 finding of a key contribution of supplement use to micronutrient intake in pregnancy is also consistent with previous reports ^{49, 50}, highlighting the need for both appropriate education, 371 particularly in relation to dietary sources of micronutrients. 372

373

The strengths of our study include the comprehensive assessment of dietary intakeencompassing energy, macronutrient and micronutrient intake and diet quality. The

participants were relatively similar to population data for South Australian pregnant women, 376 indicating the generalisability of this data. We prospectively collected food, nutrient and 377 378 supplement intake information at multiple time points during pregnancy and after birth, 379 reducing inter individual variability and capturing longitudinal changes in dietary intake. 380 While standard antenatal care differed between the hospital recruitment sites which could 381 potentially result in differences in dietary intake, we note this did not affect our analysis for the HEI, macronutrient intake or micronutrient intake. We utilised a FFQ in contrast to more 382 383 intensive assessments of food intake, as this was considered a tool preferable given the study 384 duration and costs associated with the large sample size of the complete study (n=2180 women) 51 . The Willett FFO has been previously validated and utilised in pregnancy $^{24-26}$ 385 including in Australian pregnant women⁵² and in a longitudinal way facilitating comparison 386 over multiple time points ²⁷. However, the applicability of the Willett FFO to the Australian 387 388 food supply depends on the similarity of the food supplies with regards to factors including 389 levels of food fortification. As our study recruitment overlaps the time frame for Australian 390 mandatory fortification for folic acid (September 2009), an overestimation of folate intake may be possible for women recruited prior to September 2009 although we note no 391 392 differences on accounting for this in statistical analysis.

393

The implications of poor diet quality extend beyond previous associations with micronutrient insufficiency ⁵³. Unhealthy dietary patterns or poor diet quality are associated with postpartum weight retention ³⁴ and increased gestational weight gain ⁵⁴. This has important implications for long-term maternal obesity given the association between post-partum weight retention and longitudinal obesity development ⁵⁵ and future assessment of the associations between change in dietary quality, gestational weight gain and post-partum weight retention is warranted. A poor diet quality post-partum may also contribute to an inadequate

401	preconception nutritional intake for the subsequent pregnancy. Furthermore, the implications
402	for improving dietary quality extend beyond the health of the woman with positive
403	associations reported between maternal and childhood diet quality ⁵⁶ . While the clinical
404	benefits of improving dietary quality and minimising excess gestational weight gain in
405	overweight and obese pregnant women remain unclear ¹⁹ , general advice on optimising
406	dietary quality is warranted. The association between a deterioration in diet quality across
407	pregnancy and increasing social disadvantage highlights the need for specifically targeted
408	interventions during pregnancy for this population of women.
409	
410	Acknowledgements
411	We acknowledge Dr Lisa Yelland for assistance with statistical analysis. LM, ZS, CC and JD
412	designed the research, ZS and CC conducted the research, ZS performed statistical analysis,
413	LM wrote the paper and had primary responsibility for final content and all authors read and
414	approved the final manuscript.
415	
416	Conflict of interest
417	All authors declare no conflicts of interest.
418	
419	
420	
421	
422	
423	
424	
425	

426	Refer	ences
427	1.	Dyer JS, Rosenfield CR. Metabolic Imprinting by Prenatal, Perinatal, and Postnatal
428		Overnutrition. Semin Reprod Endocrinol 2011; 29(3): 266-76.
429		
430	2.	Forges T, Monnier-Barbarino P, Alberto JM, Gueant-Rodriguez RM, Daval JL,
431		Gueant JL. Impact of folate and homocysteine metabolism on human reproductive
432		health. <i>Hum Reprod Update</i> 2007; 13 (3): 225-38.
433		
434	3.	Kind KL, Moore VM, Davies MJ. Diet around conception and during pregnancy
435		effects on fetal and neonatal outcomes. <i>Reprod Biomed Online</i> 2006; 12 (5): 532-41.
436		
437	4.	Tieu J, Crowther CA, Middleton P. Dietary advice in pregnancy for preventing
438		gestational diabetes mellitus. Cochrane Database of Systematic Reviews 2008;
439		2 (CD006674).
440		
441	5.	NHMRC. Nutrient Reference Values for Australia and New Zealand, Australian
442		Government Publishing Service: Canberra, 2005.
443		
444	б.	Woolf S, Legarth J, Vangsgaard K, Toubro S, Astrup A. A randomized trial of the
445		effects of dietary counseling on gestational weight gain and glucose metabolism in
446		obese pregnant women. Int J Obes 2008; 32 (3): 495-501.
447		
448	7.	Rifas-Shiman SL, Rich-Edwards JW, Willett WC, Kleinman KP, Oken E, Gillman
449		MW. Changes in dietary intake from the first to the second trimester of pregnancy.
450		Paediatr Perinat Epidemiol 2006; 20 (1): 35-42.

452	8.	Talai Rad N, Ritterath C, Siegmund T, Washer C, Siebert G, Henrich W et al.
453		Longitudinal analysis of changes in energy intake and macronutrient composition
454		during pregnancy and 6 weeks post-partum. Arch Gynecol Obstet 2011; 283(2): 185-
455		90.
456		
457	9.	Hure A, Young A, Smith R, Collins C. Diet and pregnancy status in Australian women.
458		Public health nutrition 2008; 12 (6): 853-61.
459		
460	10.	Wirt A, Collins CE. Diet qualitywhat is it and does it matter? Public health nutrition
461		2009; 12 (12): 2473-92.
462		
463	11.	Wolongevicz DM, Zhu L, Pencina MJ, Kimokoti RW, Newby PK, D'Agostino RB et
464		al. Diet quality and obesity in women: the Framingham Nutrition Studies. Br J Nutr
465		2010; 103 (8): 1223-9.
466		
467	12.	Shah A, Fawole B, M'Imunya J M, Amokrane F, Nafiou I, Wolomby JJ et al.
468		Cesarean delivery outcomes from the WHO global survey on maternal and perinatal
469		health in Africa. Int J Gynaecol Obstet 2009; 107(3): 191-7.
470		
471	13.	Rifas-Shiman SL, Rich-Edwards JW, Kleinman KP, Oken E, Gillman MW. Dietary
472		quality during pregnancy varies by maternal characteristics in Project Viva: a US
473		cohort. Journal of the American Dietetic Association 2009; 109(6): 1004-11.
474		

475	14.	Crozier SR, Robinson SM, Godfrey KM, Cooper C, Inskip HM. Women's dietary
476		patterns change little from before to during pregnancy. J Nutr 2009; 139(10): 1956-63.
477		
478	15.	Cuco G, Fernandez-Ballart J, Sala J, Viladrich C, Iranzo R, Vila J et al. Dietary
479		patterns and associated lifestyles in preconception, pregnancy and postpartum. Eur J
480		<i>Clin Nutr</i> 2006; 60 (3): 364-71.
481		
482	16.	Fazio Ede S, Nomura RM, Dias MC, Zugaib M. Dietary intake of pregnant women
483		and maternal weight gain after nutritional counseling. Rev Bras Ginecol Obstet 2011;
484		33 (2): 87-92.
485		
486	17.	Laraia BA, Bodnar LM, Siega-Riz AM. Pregravid body mass index is negatively
487		associated with diet quality during pregnancy. Public health nutrition 2007; 10(9):
488		920-6.
489		
490	18.	Tsigga M, Filis V, Hatzopoulou K, Kotzamanidis C, Grammatikopoulou MG. Healthy
491		Eating Index during pregnancy according to pre-gravid and gravid weight status.
492		<i>Public health nutrition</i> 2011; 14 (2): 290-6.
493		
494	19.	Dodd JM, Grivell RM, Crowther CA, Robinson JS. Antenatal interventions for
495		overweight or obese pregnant women: a systematic review of randomised trials.
496		British Journal of Obstetrics and Gynaecology 2010; 117(11): 1316-26.
497		
498	20.	Dodd JM, Turnbull DA, McPhee AJ, Wittert G, Crowther CA, Robinson JS. Limiting
499		weight gain in overweight and obese women during pregnancy to improve health

500		outcomes: the LIMIT randomised controlled trial. BMC Pregnancy Childbirth 2011;
501		11: 79.
502		
503	21.	Australian Bureau of Statistics Socio-Economic Indexes for Areas (SEIFA) -
504		Technical Paper 2006. Canberra, Australia: Australian Bureau of Statistics, 2008.
505		
506	22.	WHO. Obesity: preventing and managing the global epidemic. Report of a WHO
507		consultation., WHO Technical Report Series 894. World Health Organisation: Geneva,
508		2000.
509		
510	23.	Willett WC, Reynolds RD, Cottrell-Hoehner S, Sampson L, Browne ML. Validation
511		of a semi-quantitative food frequency questionnaire: comparison with a 1-year diet
512		record. Journal of the American Dietetic Association 1987; 87(1): 43-7.
513		
514	24.	Suitor CJ, Gardner J, Willett WC. A comparison of food frequency and diet recall
515		methods in studies of nutrient intake of low-income pregnant women. Journal of the
516		American Dietetic Association 1989; 89 (12): 1786-94.
517		
518	25.	Greeley S, Storbakken L, Magel R. Use of a modified food frequency questionnaire
519		during pregnancy. J Am Coll Nutr 1992; 11(6): 728-34.
520		
521	26.	Fawzi WW, Rifas-Shiman SL, Rich-Edwards JW, Willett WC, Gillman MW.
522		Calibration of a semi-quantitative food frequency questionnaire in early pregnancy.
523		Ann Epidemiol 2004; 14 (10): 754-62.
524		

525	27.	Brown JE, Buzzard IM, Jacobs DR, Jr., Hannan PJ, Kushi LH, Barosso GM et al. A
526		food frequency questionnaire can detect pregnancy-related changes in diet. Journal of
527		the American Dietetic Association 1996; 96 (3): 262-6.
528		
529	28.	Meltzer HM, Brantsaeter AL, Ydersbond TA, Alexander J, Haugen M.
530		Methodological challenges when monitoring the diet of pregnant women in a large
531		study: experiences from the Norwegian Mother and Child Cohort Study (MoBa).
532		Matern Child Nutr 2008; 4(1): 14-27.
533		
534	29.	Guenther PM, Reedy J, Krebs-Smith SM. Development of the Healthy Eating Index-
535		2005. Journal of the American Dietetic Association 2008; 108(11): 1896-901.
536		
537	30.	USDA. The Healthy Eating Index. U.S. Department of Agriculture. Washington, DC,
538		USA: United States Department of Agriculture, 1995.
539		
540	31.	Pick ME, Edwards M, Moreau D, Ryan EA. Assessment of diet quality in pregnant
541		women using the Healthy Eating Index. Journal of the American Dietetic Association
542		2005; 105 (2): 240-6.
543		
544	32.	Lumley T, Diehr P, Emerson S, Chen L. The importance of the normality assumption
545		in large public health data sets. Annu Rev Public Health 2002; 23: 151-69.
546		
547	33.	Chan A, Schiel W, Scott J, Nguyen AM, Sage L. Pregnancy Outcome in South
548		Australia 2009. In: Pregnancy Outcome Unit SADoH, (ed). Adelaide: Government of
549		South Australia, 2011.

551 34. Shah BS, Freeland-Graves JH, Cahill JM, Graves GR. Diet Quality as Measured by 552 the Healthy Eating Index and the Association with Lipid Profile in Low-Income 553 Women in Early Postpartum. Journal of the American Dietetic Association 2010; 554 **110**(2): 274-9. 555 556 35. Piers LS, Diggavi SN, Thangam S, van Raaij JM, Shetty PS, Hautvast JG. Changes in 557 energy expenditure, anthropometry, and energy intake during the course of pregnancy 558 and lactation in well-nourished Indian women. The American journal of clinical 559 *nutrition* 1995; **61**(3): 501-13. 560 561 36. Watson PE, McDonald BW. Major influences on nutrient intake in pregnant New 562 Zealand women. *Maternal Child Health J* 2009; **13**(5): 695-706. 563 564 37. Durham HA, Lovelady CA, Brouwer RJ, Krause KM, Ostbye T. Comparison of 565 dietary intake of overweight postpartum mothers practicing breastfeeding or formula 566 feeding. Journal of the American Dietetic Association 2011; 111(1): 67-74. 567 568 38. Guo X, Warden BA, Paeratakul S, Bray GA. Healthy Eating Index and obesity. Eur J 569 *Clin Nutr* 2004; **58**(12): 1580-6. 570 571 39. Bojar I, Wdowiak L, Humeniuk E, Blaziak P. Change in the quality of diet during 572 pregnancy in comparison with WHO and EU recommendations - environmental and 573 sociodemographic conditions. Ann Agric Environ Med 2006; 13(2): 281-6. 574

575	40.	Fidanza AA, Fidanza R. A nutrition study involving a group of pregnant women in
576		Assisi, Italy. Part 1: Anthropometry, dietary intake and nutrition knowledge, practices
577		and attitudes. Int J Vitam Nutr Res 1986; 56(4): 373-80.
578		
579	41.	Verbeke W, De Bourdeaudhuij I. Dietary behaviour of pregnant versus non-pregnant
580		women. Appetite 2007; 48 (1): 78-86.
581		
582	42.	Pezdirc KB, Hure AJ, Blumfield ML, Collins CE. Listeria monocytogenes and diet
583		during pregnancy; balancing nutrient intake adequacy v. adverse pregnancy outcomes.
584		Public health nutrition 2012: 1-8.
585		
586	43.	Inskip HM, Crozier SR, Godfrey KM, Borland SE, Cooper C, Robinson SM et al.
587		Women's compliance with nutrition and lifestyle recommendations before pregnancy:
588		general population cohort study. BMJ 2009; 12(338): b481.
589		
590	44.	Nystrom K, Ohrling K. Parenthood experiences during the child's first year: literature
591		review. Journal of Advanced Nursing 2004; 46(3): 319-330.
592		
593	45.	Olson CM, Strawderman MS, Hinton PS, Pearson TA. Gestational weight gain and
594		postpartum behaviors associated with weight change from early pregnancy to 1 y
595		postpartum. Int J Obes Relat Metab Disorb 2003; 27(1): 117-27.
596		
597	46.	Blumfield ML, Hure AJ, Macdonald-Wicks LK, Patterson AJ, Smith R, Collins CE.
598		Disparities exist between National food group recommendations and the dietary
599		intakes of women. BMC Womens Health 2011; 11: 37.

601	47.	Bodnar LM, Siega-Riz AM, Cogswell ME. High prepregnancy BMI increases the risk
602		of postpartum anemia. Obes Res 2004; 12 (6): 941-8.
603		
604	48.	Maats FH, Crowther CA. Patterns of vitamin, mineral and herbal supplement use prior
605		to and during pregnancy. Aust NZJ Obstet Gynaecol 2002; 42(5): 494-6.
606		
607	49.	Haugen M, Brantsaeter AL, Alexander J, Meltzer HM. Dietary supplements contribute
608		substantially to the total nutrient intake in pregnant Norwegian women. Ann Nutr
609		<i>Metab</i> 2008; 52 (4): 272-80.
610		
611	50.	Mathews F, Yudkin P, Neil A. Influence of maternal nutrition on outcome of
612		pregnancy: prospective cohort study. <i>Bmj</i> 1999; 319 (7206): 339-43.
613		
614	51.	Willett WC, Hu FB. Not the time to abandon the food frequency questionnaire: point.
615		Cancer epidemiology, biomarkers & prevention : a publication of the American
616		Association for Cancer Research, cosponsored by the American Society of Preventive
617		<i>Oncology</i> 2006; 15 (10): 1757-8.
618		
619	52.	Rumbold AR, Maats FH, Crowther CA. Dietary intake of vitamin C and vitamin E
620		and the development of hypertensive disorders of pregnancy. Eur J Obstet Gynecol
621		<i>Reprod Biol</i> 2005; 119 (1): 67-71.
622		

623	53.	Collins CE, Young AF, Hodge A. Diet quality is associated with higher nutrient intake
624		and self-rated health in mid-aged women. Journal of the American College of
625		<i>Nutrition</i> 2008; 27 (1): 146-57.
626		
627	54.	Uusitalo U, Arkkola T, Ovaskainen ML, Kronberg-Kippila C, Kenward MG, Veijola
628		R et al. Unhealthy dietary patterns are associated with weight gain during pregnancy
629		among Finnish women Public health nutrition 2009; 12(12): 2392-9.
630		
631	55.	Women's Health Australia. Executive Summary Trends in women's health: Results
632		from the ALSWH – chronic conditions, risk factors and health behaviours.: Brown W,
633		(ed) <u>http://www.alswh.org.au/Reports/other_reports.html:</u> Newcastle University, 2007.
634		
635	56.	Fisk CM, Crozier SR, Inskip HM, Godfrey KM, Cooper C, Robinson SM et al.
636		Influences on the quality of young children's diets: the importance of maternal food
637		choices. Br J Nutr 2011; 105(2): 287-96.
638		
639		
640		
641		
642		
643		
644		
645		
646		
647		

648 Tables

649 <u>Table 1. Demographic variables of included and excluded participants and comparative</u>

650 population data

Category with Mean±SD		Included		Excluded		Population data
		N=291		N=10		(S.A. 2009)
		N	%	N	%	%
Age:	<20 years	3	1.0	1	10.0	4.1
	20-30	124	42.6	5	50.0	44.3
	30-40	154	52.9	3	30.0	47.8
	40+	10	3.4	1	10.0	3.8
Parity:*	0 births	120	41.2	7	70.0	41.6
	1-2	159	54.6	3	30.0	49.9
	3+	12	4.1	0	0.0	8.5
BMI:	Overweight	136	46.7	4	40.0	54.1^
	Obesity I	87	29.9	2	20.0	25.8
	II	42	14.4	1	10.0	12.1
	III	26	8.9	3	30.0	8.0
Smoker:*	Yes	28	9.6	1	10.0	15.9
	No	259	89.0	0	0.0	82.6
	Unknown	4	1.4	9	90.0	1.5
Ethnicity:*	Caucasian	269	92.5	10	100.0	85.0
	Asian	11	3.7			8.1
	African	3	1			-
	Aboriginal	4	1.4			3.1
	Others	4	1.4			3.8

SEIFA:*	1-2 deciles [#]	80	27.5	0	0.0	20
	3-4 deciles	65	22.3	4	40.0	20
	5-6 deciles	43	14.8	1	10.0	20
	7-8 deciles	54	18.6	2	20.0	20
	9-10 deciles	49	16.8	3	30.0	20

- Data are presented as mean±SD or % and were analysed by independent t-test with participant
- 652 inclusion/exclusion in the study as the between subject variable
- 653 * Significant difference between women included or excluded in the study
- ⁶⁵⁴ [^] Percentage calculated exclude underweight and normal weight women
- 455 # SEIFA Decile 1 contains the bottom 10% of the collection districts, Decile 2 contains the
- 656 next 10% and so on.
- 657 BMI = Body mass index, SA = South Australia, SD = Standard deviation, SEIFA = Socio-
- 658 Economic Indexes for Areas
- 659

660 <u>Table 2: Healthy eating index in overweight and obese women during pregnancy and post-partum</u>

	Early	28 weeks	36 weeks	4 months	P Overall
	pregnancy	gestation	gestation	postpartum	effect of time
HEI (range 0-100)	56.7±10.1	54.0±10.3*	54.0±9.7	53.3±12.7#	<0.001
Total fruit (range 0-5)	2.7±1.6	2.7 ±1.5	2.7 ±1.5	2.5±1.5	0.111
Whole fruit (range 0-5)	3.0 ±1.7	3.1±1.7	3.1±1.6	2.7±1.8	0.082
Total vegetables (range 0-5)	3.3±1.4	3.3±1.5	3.2±1.4	3.5±1.3	0.115
Dark green and orange vegetables and legumes (range 0-5)	3.0±1.4	3.0±1.4	2.9±1.5	3.0±1.2	0.537
Total grains (range 0-5)	2.0±0.4	2.0±1.5	2.0±0.5	2.0±0.7	0.093
Whole grains (range 0-5)	0.9±0.1	0.9±0.1	0.9±0.1	0.9±0.1	0.325
Milk (range 0-10)	5.0±2.6	4.7±2.6*	4.5±2.3	4.6±2.4	<0.001
Meat (and beans) (range 0-10)	5.5±2.4	4.6±2.6*	4.4±2.6	4.4±2.6#	<0.001
Oils (range 0-10)	3.7±3.7	3.0±2.4*	2.9±2.4*	3.7±2.4*#	<0.001
Saturated fat (range 0-10)	4.6±3.0	4.7±3.0	4.5±3.2	4.9±3.0	0.526
Sodium (range 0-10)	8.0±2.6	7.8±2.7	7.6±2.8	7.4±3.0	0.646

	Calories from SoFAAS (range 0-20 points)	17.8±6.3	15.8±4.8*	15.1±5.8	9.6±9.1*#	<0.001
661	Data are presented as mean±SD and were analysed by repeate	ed measures ANC	OVA			
662	* Significantly differently from preceding time					
663	# Significant difference compared to baseline measurements					
664	HEI = Healthy eating index, SoFAAS = Solid fats, alcohol and	d added sugars				
665						
666						
667						
668						
669						
670						
671						
672						
673						
674						
675						

					Р
	Trial ontry	28 weeks	36 weeks	4 months	Overall
	i i i ai citu y	gestation	gestation	postpartum	effect of
					time
	Mean ±SD	Mean ±SD	Mean ±SD	Mean ±SD	
Macro-nutrients					
Energy (kJ)	8209.3±2533.4	8310.5±2469.1	8408.4±2561.1	8226.1±2546.0	0.179
Protein (g)	89.8±32.2	88.6±29.2	90.6±30.9	91.5±30.1	0.435
Total fat (g)	68.8±26.9	70.2±24.2	70.8±24.7	69.1±24.6	0.653
Carbohydrates (g)	245.6±86.8	257.2±92.1	259.6±96.4	242.9±89.3	0.085
Fibre (g)	21.7±9.6	22.3±9.8	22.5±10.2	22.3±9.7	0.358
Saturated fat (g)	25.9±10.8	26.8±9.9	27.4±10.2	26.0±9.7	0.811
Monounsaturated fat (g)	25.2±10.3	25.6±9.0	25.8±9.3	25.3±9.3	0.095
Polyunsaturated fat (g)	11.0±4.4	11.1±4.4	10.8±4.1	11.0±4.4	0.750

676 <u>Table 3: Macronutrients and micronutrients in overweight and obese women during pregnancy and post-partum</u>

Cholesterol (g)	272.7±116.5	277.7±108.34	285.0±120.9	289.7±118.8	0.622
Alcohol (g)	3.6±8.3	0.4±1.1*	0.5±1.8*	3.3±7.4*	0.013
Micro-nutrients					
Caffeine (mg)	125.1±133.6	122.9±122.8	126.2±129.3	169.9±163.2*#	< 0.001
Sodium (mg)	1851.3±673.8	1896.2±829.5	1945.9±813.9	1961.9±686.0	0.556
Calcium(mg)	1102.1±455.4	1140.6±465.2	1181.9±476.7	1009.1±454.6*#	0.035
Calcium WOS (mg)	901.1±405.6	944.6±447.8	1004.5±458.5	958.8±436.3	0.225
Iron (mg)	36.0±23.5	37.0±25.5	38.2±27.7	22.1±19.1*#	< 0.001
Iron WOS (mg)	14.0±5.9	14.2±6.9	14.4±7.3	14.0±5.1	0.510
Zinc (mg)	31.9±22.0	29.8±19.2	29.4±20.4	18.1±14.9*#	< 0.001
Zinc WOS (mg)	12.3±5.4	12.2±5.2	12.7±6.6	12.6±4.4	0.367
Magnesium (mg)	321.2±126.4	309.7±128.7	320.1±142.3	326.2±120.5	0.466
Magnesium WOS (mg)	319.7±124.9	308.8±127.9	318.8±14	325.1±119.5	0.368
Phosphorous (mg)	1350.5±498.7	1357.6±529.1	1431.2±607.3	1414.4±495.6	0.299
Phosphorous WOS (mg)	1349.7±498.0	1357.6±529.1	1431.2±607.3	1413.8±495.2	0.188
Potassium (mg)	3346.1±1263.7	3255.9±1363.2	3349.9±1375.9	3423.1±1211.1	0.745

Potassium WOS (mg)	3345.6±1263.4	3255.3±1363.0	3349.9±1375.9	3421.5±1210.4	0.752
Manganese (mg)	3.7±1.7	3.4±1.6	3.5±1.7	3.7±1.6	0.563
Manganese WOS (mg)	3.6±1.7	3.4±1.6	3.5±1.7	3.6±1.5	0.834
Copper (mg)	1.3±0.5	1.3±0.5	1.3±0.5	1.3±0.5	0.274
Copper WOS (mg)	1.3±0.4	1.3±0.5	1.3±0.5	1.3±0.5	0.875
Vit A active equiv (µg)	1828.1±913.1	1810.6±961.3	1785.1±836.4	1618.3±1026.7*#	0.018
Vit A active equiv WOS (µg)	1192.4±615.1	1212.3±733.3	1186.7±663.2	1281.9±662.9	0.362
Total carotene (µg)	16886.0±10138.1	16574.4±11275.9	15693.4±10325.7	17196.9±9819.0	0.635
Total carotene WOS (µg)	16773.0±10275.9	16645.5±11345.9	15924.3±10523.3	18201.1±9932.6	0.395
Retinol (µg)	3288.7±2255.7	3244.9±2448.5	3211.0±2164.2	2499.5±2901.2	0.088
Retinol WOS (µg)	1415.1±948.3	1519.9±1472.2	1561.9±1236.2	1487.3±1198.2	0.073
Vit B1 (mg)	5.2±10.5	4.6±9.0	4.5±9.2	2.9±6.6*#	0.017
Vit B1 WOS (mg)	1.5±0.5	1.5±0.5	1.5±0.6	1.5±0.5	0.070
Vit B2 (mg)	5.6±10.5	5.1±9.1	5.0±9.2	3.5±6.6*#	0.016
Vit B2 WO supp (mg)	1.9±0.7	2.0±0.8	2.1±0.8	2.0±0.7	0.066
Niacin (mg)	39.0±19.4	36.8±17.2*	36.3±18.6	29.6±15.7*#	< 0.001

Niacin WOS (mg)	21.8±9.1	21.2±8.8	21.8±10.5	22.6±7.9	0657673
Vit B6 (mg)	7.6±17.8	7.1±19.2	6.6±14.5	4.3±13.1*#	0607283
Vit B6 WOS (mg)	2.1±0.8	2.1±0.8	2.1±0.8	2.1±0.7	068722
Vit B12 (µg)	11.0±11.9	10.6±11.6	10.3±10.2	7.9±8.7	09992
Vit B12 WOS (µg)	5.4±3.3	5.5±4.7	5.8±4.9	5.4±3.8	0,618815
Pantothenic acid (mg)	7.5±9.9	7.4±9.6	7.2±8.7	7.2±7.2	059954
Pantothenic acid WOS (mg)	5.3±2.0	5.2±2.1	5.4±2.1	5.4±1.9	09645
Vit C (mg)	238.1±129.9	232.3±151.6	231.1±128.6	181.9±135.1*#	09092
Vit C WO supp (mg)	154.0±87.6	147.9±97.6	147.4±100.4	141.2±79.5	0.68254
Vit E (mg)	14.0±19.4	12.9±18.2	13.9±27.0	11.2±17.7	0.583
Vit E WO supp (mg)	7.2±3.0	6.9±3.0	7.1±3.5	7.3±2.8	0.763
Folate (µg)	1940.0±1163.3	1721.2±1194.9*	1636.2±1221.0	893.0±941.4*#	<0.001
Food folate (µg)	285.3±128.6	272.4±134.1	276.1±142.9	283.4±130.5	0.453

Data are presented as mean±SD or % and were analysed by repeated measures ANOVA

692 * Significantly differently from preceding time

693	# Significant difference compared to baseline measurements
694	Equiv = Equivalents, Supp = Supplement, Vit = Vitamin, WOS = Without supplementation
695	
696	
697	
698	
699	
700	
701	
702	
703	
704	
705	
706	
707	
708	Table 4: Comparison of intake (supplement and dietary) with recommendations from the Nutrient Reference Values and Healthy Eating Index

Food	Rec	TE			28 week	ks gesta	tion	36 week	ks gesta	tion	Rec	4 month	s post-j	partum
groups/Nutrien	(Pregnan	%	%	%	%	%	%	%	%	%	(Breastfeedin	%	%	%
ts	cy) ^a	Below	Met	Above	Below	Met	Above	Below	Met	Above	g)	Below	Met	Above
Energy (kj)	6100- 17200 ^b	19.2	79.4	1.4	19.2	80.5	0.3	17.9	81.8	0.3	6100-17200 ^b	20.9	78.8	0.3
Protein (g)	60	15.8	84.2	-	17.5	82.5	-	12.7	87.3	-	70	14.8	85.2	-
Alcohol (g)	0^{c}	-	54.3	45.7	-	83.5	16.5	-	83.2	16.8	-	-	-	-
Fibre (g)	28 ^d	77.7	22.3	-	77.0	23.0	-	75.9	24.1	-	30	74.6	25.4	-
Calcium (mg)	1000- 2500	44.7	55.0	0.3	45.0	54.3	0.7	39.2	60.1	0.7	1000-2500	54.3	45.4	0.3
Iron (mg)	27-45	41.2	33.4	25.4	42.3	29.5	28.2	43.6	26.2	30.2	9-45	59.4	29.6	11.0
Zinc (mg)	11-40	14.4	60.1	25.5	15.0	60.6	24.4	20.2	55.5	24.3	12-40	31.8	58.6	9.6
Magnesium (mg)	350	66.3	33.7	-	67.0	33.0	_	68.4	31.6	-	310	61.5	38.5	-
Phosphorous (mg)	1000- 3500	21.9	72.1	-	21.9	72.1	-	20.2	79.7	0.1	1000-4000	19.9	80.1	0.3

Potassium	accod	22.0	CO O		20.5	C1 F		35.7	64.3	-	3200	22.2		
(mg)	2800*	32.0	68.0	-	38.5	61.5	-					33.3	66./	-
Sodium (mg)	460-	17	764	21.9	14	74.2	24.4	0.3	73.6	26.1	460-2300	07	68.4	30.9
Source (mg)	2300 ^d	1.7	70.1	21.9	1.1	71.2	21.1					0.7	00.1	50.7
Manganasa								Q 2 1	16.0		5			
Manganese	5 ^d	81.4	18.6	-	83.1	16.9	-	03.1	10.9	-	5	79.0	21.0	-
(mg)														
Copper (mg)	1.3-10 ^d	56.0	44.0	0	58.4	41.6	0	59.8	40.2	0	1.5-10	54.3	45.7	0
Foloto (u.g.) for														
rotate (µg) tot	600	10.1	89.9	-	19.3	80.7	-	28.6	71.4	-	500	45.7	54.3	-
pre Sep 2009														
Folate (µg) for														
post Sep 2009	600	17.7	82.3	-	26.3	73.7	-	35.5	64.5	-	500	51.9	48.1	-
post Sep 2009														
Vitamin C	60 1000	20	06.2	0	15	01.9	0.7	3.4	96.6	-	85-1000	76	02 1	0.2
(mg)	60-1000	3.8	90.2	0	4.5	94.8	0.7					/.0	92.1	0.5
Vitamin B1	1.4	16.8	83.2	-	16.5	83.5	_	20.3	79.7	_	1.4	34.0	66.0	-
(mg)	1.1	10.0	03.2		10.5	00.0						5 110	00.0	
Vitamin B2	1.4	7.6	92.4	-	5.8	94.2	-	6.5	93.5	-	1.6	15.8	84.2	-

(mg)														
Niacin (mg)	18	11.7	88.3	-	11.3	88.7	-	14.8	85.2	-	17	22.3	77.7	-
Vitamin B6 (mg)	1.9	14.8	85.2	-	15.1	84.9	-	15.8	84.2	-	2.0	29.6	70.4	-
Vitamin B12 (µg)	2.6	2.7	97.3	-	3.4	96.6	-	4.5	95.5	-	2.8	8.9	91.1	-
Vitamin A (µg)	700- 3000	8.9	81.1	10.0	10.0	82.1	7.9	8.3	84.8	6.9	1100-3000	14.1	78.3	7.6
Pantothenic acid (mg)	5 ^d	46.7	53.3	-	48.5	51.5	-	42.6	57.4	-	6	42.6	57.4	-
Vitamin E(mg)	7-300 ^d	19.9	80.1	0	27.1	72.9	-	25.8	74.2	-	11-300	41.6	58.4	-
		Low	Av	High	Low	Av	High	Low	Av	High		Low	Av	High
HEI	High >80 Av 50-	31.0	68.7	0.3	35.0	58.5	6.5	41.3	56.9	1.7	High >80 Av 50-79.9	45.9	53.1	1.0

79.9					Low <50		
Low <50							

709 Data are presented as %

- a: Recommended Dietary Intake (RDI) adapted from the Australia National Health and Medical Research Council (NHMRC) recommendations ⁵
- 711 b: With different age and physical activity level
- 712 c: NHMRC recommends no alcohol intake during pregnancy
- 713 d: Adequate Intake used when an RDI cannot be determined