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Abstract: We develop a full theoretical analysis of the nonlinear inter-
actions of the two polarizations of a waveguide by means of a vectorial
model of pulse propagation which applies to high index subwavelength
waveguides. In such waveguides there is an anisotropy in the nonlinear
behavior of the two polarizations that originates entirely from the waveguide
structure, and leads to switching properties. We determine the stability prop-
erties of the steady state solutions by means of a Lagrangian formulation.
We find all static solutions of the nonlinear system, including those that
are periodic with respect to the optical fiber length as well as nonperiodic
soliton solutions, and analyze these solutions by means of a Hamiltonian
formulation. We discuss in particular the switching solutions which lie near
the unstable steady states, since they lead to self-polarization flipping which
can in principle be employed to construct fast optical switches and optical
logic gates.
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1. Introduction

The Kerr nonlinear interaction of the two polarizations of the propagating modes of a wave-
guide leads to a host of physical effects that are significant from both fundamental and applica-
tion points of view. Here, we develop a model of nonlinear interactions of the two polarizations
using full vectorial nonlinear pulse propagation equations, with which we analyze the nonlinear
interactions in the emerging class of subwavelength and high index optical waveguides. Based
on this model we predict an anisotropy that originates solely from the waveguide structure, and
which leads to switching states that can in principal be used to construct optical devices such
as switches or logical gates. We derive the underlying nonlinear Schrödinger equations of the
vectorial model with explicit integral expressions for the nonlinear coefficients. We analyze
solutions of these nonlinear pulse propagation equations and the associated switching states
by means of a Lagrangian formulation, which enables us to determine stability properties of
the steady states; this formulation provides a global view of all solutions and their properties
by means of the potential function and leads, for example, to the emergence of kink solitons
as solutions to the model equations. We also use a Hamiltonian formalism in order to iden-
tify periodic and solitonic trajectories, including solutions that allow polarization flipping, and
find conditions under which the unstable states and associated switching solutions are experi-
mentally accessible. In order to provide examples of parameter values for which the predicted
behavior occurs, we perform numerical calculations for waveguides with elliptical cross sec-
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tions, although the underlying model is applicable to arbitrary fiber geometries.
The nonlinear interactions of the two polarizations of the propagating modes of a waveguide

have been studied extensively over the last 30 years [1–13]. Different aspects of the interac-
tions have been investigated, for example Stolen et al. [1] used the induced nonlinear phase
difference between the two polarizations to discriminate between high and low power pulses.
In the context of counterpropagating waves, the nonlinear interactions have been shown to lead
to polarization domain wall solitons, [8–10] which are described as kink solitons representing
a polarization switching between different domains with orthogonal polarization states. The
nonlinear interactions can also lead to polarization attraction [9, 11–13, 15, 16] where the state
of the polarization of a signal is attracted towards that of a pump beam. For twisted birefrin-
gent optical fibers, polarization instability [2, 5] and polarization domain wall solitons [17]
have been reported. The nonlinear interactions also induce modulation instability which re-
sults in dark-soliton-like pulse-train generation [6,7]. Large-signal enhanced frequency conver-
sion [18], cross-polarization modulation for WDM signals [10], and polarization instability [3]
have also been reported and attributed to nonlinear polarization interactions. Stability behavior
has been studied in anisotropic crystals [19].

The nonlinear interactions of the two polarizations can also be studied in the context of either
nonlinear coherent coupling or nonlinear directional coupling in which the amplitudes of two
or more electric fields, either the two polarizations of a propagating mode of a waveguide or
different modes of different waveguides, couple to each other through linear and nonlinear ef-
fects [20–22]. Nonlinear directional coupling is relevant to ultrafast all-optical switching, such
as soliton switching [23–27] and all-optical logic gates [28–30]. The interaction of ultrafast
beams, with different frequencies and polarizations, in anisotropic media has also been studied
and the conditions for polarization stability have been identified [24, 31].

In previous work ( [32], Chapter 6), the nonlinear interactions of the two polarizations are
described by two coupled Schrödinger equations. These equations employ the weak guidance
approximation, which assumes that the propagating modes of the two polarizations of the wave-
guide are purely transverse and orthogonal to each other within the transverse x,y plane, per-
pendicular to the direction of propagation z. Based on this, the electric fields are written as

Ei(x,y,z, t) = Ai(z, t)ei(x,y), i = 1,2, (1)

where Ai(z, t) are the amplitudes of the two polarizations, with e1(x,y) � e2(x,y) =
e1(x,y)e2(x,y)x̂ � ŷ = 0, where e1(x,y),e2(x,y) are the transverse distributions of the two po-
larizations, x̂, ŷ are unit vectors along the x and y directions, and it is understood that fast
oscillatory terms of the form exp(−iωt ± βiz) are to be included for the polarization fields.
The weak guidance approximation also assumes that the Kerr nonlinear coefficients for the self
phase modulation of the two polarizations are equal because their corresponding mode effective
areas are equal [32]. We refer here to models of nonlinear pulse propagation based on the weak
guidance approximation simply as “scalar” models, since these models consider only purely
transverse modes for the two polarizations.

The weak guidance approximation works well only for waveguides with low index con-
trast materials, and large dimension structure compared to the operating wavelength. This ap-
proximation is, however, no longer appropriate for high index contrast subwavelength scale
waveguides (HIS-WGs) [33–35]. These waveguides have recently attracted significant interest
mainly due to their extreme nonlinearity and possible applications for all optical photonic-chip
devices. Examples include silicon, chalcogenide, or soft glass optical waveguides, which have
formed the base for three active field of studies: silicon photonics [36–40], chalcogenide pho-
tonics [41–43], and soft glass microstructured photonic devices [44–48].

In order to address the limitations of the scalar models in describing nonlinear processes
in HIS-WGs, we have developed in [33] a full vectorial nonlinear pulse propagation model.

#165808 - $15.00 USD Received 30 Mar 2012; revised 27 May 2012; accepted 30 May 2012; published 14 Jun 2012
(C) 2012 OSA 18 June 2012 / Vol. 20,  No. 13 / OPTICS EXPRESS  14517



Important features of this model are: (1) the propagating modes of the waveguide are not, in
general, transverse and have large z components and, (2) the orthogonality condition of different
polarizations over the cross section of the waveguide is given by

∫
e1(x,y)×h∗

2(x,y) � ẑ dA =
0, rather than simply e1(x,y) � e2(x,y) = 0 as in the scalar models. These aspects lead to an
improved understanding of many nonlinear effects in HIS-WGs; it was predicted in [33], for
example, that within the vectorial model the Kerr effective nonlinear coefficients of HIS-WGs
have higher values than those predicted by the scalar models due to the contribution of the z-
component of the electric field, as later confirmed experimentally [46]. Similarly, it was also
predicted that modal Raman gain of HIS-WGs should be higher than expected from the scalar
model [49].

Here, we extend the vectorial model to investigate the nonlinear interaction of the two po-
larizations of a guided mode. The full vectorial model leads to an induced anisotropy on the
dynamics of the nonlinear interaction of the two polarizations [50], which we refer to as struc-
turally induced anisotropy, in order to differentiate this anisotropy from others, such as those
for which the anisotropy originates from isotropic materials. The origin of the anisotropy is the
structure of the waveguide rather than the waveguide material.

The origin of this anisotropy in subwavelength and high index contrast waveguides has also
been reported by Daniel and Agrawal [35], who considered nonlinear interactions of the two
polarizations in a silicon rectangular nanowire including the effect of free carriers. In their
analysis, however, they ignore the coherent coupling of the two polarizations, considering the
dynamics of the Stokes parameters only for a specific waveguide and ignore the linear phase.

This anisotropy in turn leads to a new parameter space in which the interaction of the two
polarizations shows switching behavior, which is a feature of the vectorial model not accessible
through the scalar model with the underlying weak guidance approximation. We also show that
the resulting system of nonlinear equations, for the static case, can be solved analytically. Due to
the underlying similarity of the nonlinear interaction of the two polarizations and the nonlinear
directional coupling of two waveguides, the anisotropy discussed here can be also applied to
the case of nonlinear directional coupling, in which the two waveguides have different effective
nonlinear coefficients for the propagating modes.

This work develops and expands on results reported in [50,51], but in addition we derive (in
Section 2) the equations that describe the nonlinear interactions of the two polarizations within
the framework of the vectorial model, including all relevant nonlinear terms, with explicit in-
tegral expressions for all the nonlinear coefficients. In Section 3 we determine properties of
the static solutions, classify the steady state solutions, and determine their stability using a La-
grangian formalism. We also discuss a Hamiltonian approach and how the phase space portrait
provides a complete picture of the trajectories of the system, including the periodic and soli-
tonic solutions (Section 3.5), and the relevance of the separatrix to the switching solutions. We
derive analytical periodic solutions by direct integration of the system of equations in Section 4,
and then discuss switching solutions and their properties. We relegate to the Appendix a math-
ematical analysis of the exact soliton solutions, which are relevant to the switching solutions,
with concluding remarks in Section 5.
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2. Nonlinear differential equations of the model

In the vectorial model the nonlinear pulse propagation of different modes of a waveguide is
described by the equations:

∂Aν
∂ z

+
∞

∑
n=1

in−1β (n)
ν

n!
∂ nAν
∂ tn

= i
(

γν |Aν |2 + γμν
∣
∣Aμ

∣
∣2
)

Aν + iγ ′μν A2
μ A∗

ν e−2i(βν−βμ )z + iγ(1)μν A∗
μ A2

ν e−i(βμ−βν )z

+iγ(2)μν Aμ |Aν |2 ei(βμ−βν )z + iγ(3)μν Aμ
∣
∣Aμ

∣
∣2 ei(βμ−βν )z (2)

where μ ,ν = 1,2 with μ �= ν , and A1(z, t),A2(z, t) are the amplitudes of the two orthogonal
polarizations. These equations follow from the analysis in [33], by combining Eqs. (23) and (32)
of [33], but without the shock term. The linear birefringence is defined by Δβνμ = −Δβμν =
βν −βμ and the γ coefficients are given by

γν =

(
kε0

4μ0

)
1

3N2
ν

∫

n2(x,y)n2(x,y)
[
2 |eν |4 +

∣
∣e2

ν
∣
∣2
]

dA, (3)

γμν =

(
kε0

4μ0

)
2

3Nν Nμ

∫
n2(x,y)n2(x,y)

[∣
∣eν � e∗μ

∣
∣2 +

∣
∣eν � eμ

∣
∣2 + |eν |2

∣
∣eμ

∣
∣2
]

dA, (4)

γ ′μν =

(
kε0

4μ0

)
1

3Nν Nμ

∫
n2(x,y)n2(x,y)

[
2(eμ � e∗ν)2 +(eμ)

2(eν)
2]dA, (5)

γ(1)μν =

(
kε0

4μ0

)
1

3
√

N3
ν Nμ

∫
n2(x,y)n2(x,y)

[
2 |eν |2 (e∗μ � eν)+(eν)

2(e∗μ � e∗ν)
]

dA, (6)

γ(2)μν =

(
kε0

4μ0

)
2

3
√

N3
ν Nμ

∫
n2(x,y)n2(x,y)

[
2 |eν |2 (eμ � e∗ν)+(e∗ν)

2(eμ � eν)
]

dA, (7)

γ(3)μν =

(
kε0

4μ0

)
1

3
√

N3
μ Nν

∫
n2(x,y)n2(x,y)

[
2
∣
∣eμ

∣
∣2 (eμ � e∗ν)+(eμ)

2(e∗μ � e∗ν)
]

dA. (8)

Here we use the notation (eν)
2 = eν � eν , |eν |2 = eν � e∗ν and

∣
∣e2

ν
∣
∣2 = (eν � eν)(e∗ν � e∗ν), together

with
∣
∣eν � e∗μ

∣
∣2 = (eν .e∗μ)(e∗ν �eμ). In these equations e1(x,y),e2(x,y) are the modal fields of the

two orthogonal polarizations, k = 2π/λ is the propagation constant in vacuum, and γν , γμν ,

γ ′μν , γ(1)μν , γ(2)μν ,γ
(3)
μν are the effective nonlinear coefficients representing, respectively, self phase

modulation, cross phase modulation, and coherent coupling of the two polarizations, and

Nμ =
1
2

∣
∣
∣
∣

∫
eμ ×h∗

μ � ẑ dA

∣
∣
∣
∣ (9)

is the normalization parameter.
The coupled Eqs. (2) describe the full vectorial nonlinear interaction of the two polariza-

tions. There are two fundamental differences between these equations and the typical scalar
coupled Schrödinger equations (see for example Chapter 6 in [32]). Firstly, the additional
terms A∗

μ A2
ν ,Aμ |Aν |2 ,Aμ

∣
∣Aμ

∣
∣2 on the right hand side of Eq. (2) represent interactions between

the two polarizations. These do not appear in the scalar model since the effective nonlinear

coefficients associated with these terms, γ(1)μν ,γ
(2)
μν ,γ

(3)
μν as given in Eqs. (6)–(8), contain fac-

tors such as eμ � eν which are zero in the scalar model, since the modes are assumed to be
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purely transverse. All possible third power combinations of the two polarization fields, namely
|Aν |2 Aν ,

∣
∣Aμ

∣
∣2 Aν ,A2

μ A∗
ν ,A

∗
μ A2

ν ,Aμ |Aν |2 and Aμ
∣
∣Aμ

∣
∣2 occur on the right hand side of Eq. (2),

due to the z-component of the modal fields. Secondly, in all effective nonlinear coefficients
given by Eqs. (3)–(8), the modal fields e and h have both transverse and longitudinal compo-
nents, unlike the scalar model in which modal fields have only transverse components. The
terms containing nonzero eμ � eν provide a mechanism for the interaction of the two polariza-
tions since they allow for exchange of power between the two modes through the z-components
of their fields. The last term on the right hand side of Eq. (2), for example, indicates a coupling
of power into a polarization, even if initially no power is coupled into that polarization.

Although the terms on the right hand side of Eq. (2) that contain eμ � eν are nonzero, they
are generally significantly smaller than the remaining terms and are therefore neglected in the
following; further investigation of the effects of these terms, and a discussion of their physical
significance, will be presented elsewhere. The focus of this paper is to investigate the effect of
the z-components of the fields e and h, which influence the values of the effective coefficients,
and therefore also the nonlinear interactions of the two polarizations. Hence, from Eq. (2), we
obtain the equations:

∂Aν
∂ z

+
∞

∑
n=1

in−1

n!
β (n)

ν
∂ nAν
∂ tn = i

(
γν |Aν |2 + γμν

∣
∣Aμ

∣
∣2
)

Aν + iγ ′μν A2
μ A∗

ν e−2i(βν−βμ )z. (10)

These are similar in form to the scalar coupled equations ( [32], Section 6.1.2), however, the
coefficients γν ,γμν ,γ

′
μν , given in Eqs. (3)–(5), now contain z-components of the electric field,

through both e and h. In the framework of the scalar model, the weak guidance approximation
assumes that the effective mode areas of the two polarization modes are equal [32], leading to

γ1 = γ2 = 3γc/2 = 3γ ′c, (11)

where we have denoted γc = γ12 = γ21,γ ′c = γ ′12 = γ ′21. This means that in the scalar model
there is an isotropy of the nonlinear interaction of the two polarizations; in order to break this
isotropy, one needs to use either anisotropic waveguide materials or twisted fibers, or else cou-
ple varying light powers into the two polarizations by using either counter- or co-propagating
laser beams. The fact that in the vectorial form Eq. (10) of the coupled equations the γ values
include the z-component of the fields, as given by Eqs. (3)–(5), means that Eqs. (11) do not hold
in general. As an example, see Fig. 1 in [50] which plots γ1,γ2,γc,γ ′c for a step-index glass-air
waveguide with an elliptical cross section; evidently Eqs. (11) are not satisfied. One conse-
quence of the vectorial formulation is, as we show in Section 3.4, the existence of unstable
states not present in the scalar formulation.

3. Static equations

We find now all solutions of Eq. (10) for the static case, in which the fields A1,A2 are functions
of z only. We have therefore the two equations

dA1

dz
= i

(
γ1 |A1|2 + γc |A2|2

)
A1 + iγ ′cA2

2A∗
1 e−2iΔβ z (12)

dA2

dz
= i

(
γ2 |A2|2 + γc |A1|2

)
A2 + iγ ′cA2

1A∗
2 e2iΔβ z, (13)

where Δβ = β1 −β2. We express the fields A1,A2 in polar form according to

A1 =
√

P1 eiφ1 , A2 =
√

P2 eiφ2 , (14)
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where the powers P1,P2 and the phases φ1,φ2 are real functions of z. It is convenient to define
the phase difference Δφ and an angle θ according to

Δφ = φ1 −φ2 + zΔβ , θ = 2Δφ , (15)

then upon substitution into Eqs. (12) and (13) we obtain the four real equations:

dP1

dz
= 2γ ′cP1P2 sinθ (16)

dP2

dz
= −2γ ′cP1P2 sinθ (17)

dθ
dz

= 2Δβ +2P1(γ1 − γc − γ ′c cosθ)−2P2(γ2 − γc − γ ′c cosθ) (18)

dφ1

dz
= γ1P1 +P2(γc + γ ′c cosθ). (19)

The last equation decouples from the remaining equations, hence we first solve Eqs. (16)–(18)
for P1,P2,θ and then determine φ1 by integrating Eq. (19). Equations (16) and (17) show that
P0 = P1 +P2 is constant in z. We define the dimensionless variables

v =
P1

P0
=

P1

P1 +P2
, τ = 2γ ′cP0 z, (20)

and the dimensionless parameters

a =− Δβ
γ ′cP0

− γc − γ2

γ ′c
, b =

γ1 + γ2 −2γc

2γ ′c
. (21)

In terms of these parameters we obtain the two equations:

v̇ ≡ dv
dτ

= v(1− v)sinθ , (22)

θ̇ ≡ dθ
dτ

=−a+2bv+(1−2v)cosθ . (23)

Since τ takes only positive values, we may regard τ as a time variable which is limited in value
only by the length of the optical fiber and by the value of P0, and we set the initial values
v0 = v(0),θ0 = θ(0) at time τ = 0, i.e. at one end of the fiber. The general solution depends on
the initial values v0,θ0 and on only two parameters a,b, even though Eqs. (16)–(19) depend on
the five constants P0,γ1,γ2,γc,γ ′c.

At the initial time we have P1,P2 > 0 and so we always choose v0 such that 0 < v0 < 1. It
may be shown from Eqs. (22) and (23) that 0 < v(τ) < 1 is then maintained for all τ > 0, i.e.
the powers P1,P2 remain strictly positive at all later times. The constraint 0 < v0 < 1 implies
that the initial speed θ̇0 is restricted, since it follows from Eq. (23) that |θ̇ | � |a|+ 2|b|+ 1 at
all times τ .

3.1. Properties of a,b

Of the two dimensionless parameters a,b, evidently b depends only on the optical fiber param-
eters, whereas a depends also on the total power P0, unless Δβ = 0. For the scalar model, when
Eqs. (11) are satisfied, we have b = 1 but generally b �= 1. In this case a set of steady state
solutions appears (the states Eq. (24) discussed in Section 3.2 below) which for certain values
of a,b are unstable. For fibers with elliptical cross sections we find that b > 1 and the unstable
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steady states exist provided 1 < a < 2b− 1. We have not, however, been able to eliminate the
possibility that b < 1 for other geometries, and so in the following we also analyze the case
b < 1. The parameter a can be positive or negative depending on the sign of Δβ and on the
value P0; when Eqs. (11) are satisfied we have a =−3Δβ/(P0γ1)+1 and hence a can take large
positive or negative values for small P0.

As an example, we have evaluated b using the definitions Eqs. (3)–(5) for step-index, air-clad
glass waveguides with elliptical cross sections where the major/minor axes are denoted x,y. The
host glass is taken to be chalcogenide with linear and nonlinear refractive indices of n = 2.8 and
n2 = 1.1×10−17m2/W at λ = 1.55μm (as in [52]). Figure 1(i) shows a contour plot of log10 b
as a function of x,y. We see, as expected, that b approaches 1 as the waveguide dimensions
x,y increase towards the operating wavelength. For small core waveguides, however, we find
b > 1 with values as large as b ≈ 200. The parameter a, on the other hand, depends on both the
structure and the total input power P0. For low input powers, specifically for P0γ ′c � |Δβ |, a can
take large negative values (for Δβ > 0) or positive values (for Δβ < 0) as shown in Fig. 1(ii).
For large values of P0, however, a approaches the constant C = (γ2 − γc)/γ ′c, whose contours
for elliptical core waveguides are shown in Fig. 1(iii); most such waveguides have positive C
values ranging up to 400, but some, those in the region on the left side of the white curve in
Fig. 1(iii), have negative or small values of C. The contour plot for Δβ in Fig. 1(iv) shows that
Δβ takes a wide range of positive and negative values as x,y vary.
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Fig. 1. Contour plots as functions of the elliptical waveguide dimensions x,y of (i) log10 b;
(ii) a as defined in Eq. (21) for P0 = 1W; (iii) C = (γ2 − γc)/γ ′c where C < 0 to the left of
the white line; (iv) the birefringence Δβ .
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3.2. Steady state solutions

There are four classes of steady state solutions of Eqs. (22) and (23), each of which exist only
for values of a,b within certain limits, as follows:

cosθ = 1, v =
a−1

2(b−1)
(24)

provided b �= 1 and 0 < a−1
2(b−1) < 1;

cosθ =−1, v =
a+1

2(b+1)
(25)

provided b �=−1 and 0 < a+1
2(b+1) < 1;

cosθ = a, v = 0 (26)

provided |a|� 1; and

cosθ =−a+2b, v = 1 (27)

provided |a−2b|� 1.
Of these four classes, the values Eqs. (26) and (27) lie on the boundary of the physical region

0< v < 1, but nevertheless influence properties of nearby nontrivial trajectories, and also play a
role in soliton solutions. The states Eq. (24) lie within the physical region only if the parameters
(a,b) belong to either the red or green region of the a,b plane shown in Fig. 2(i). Similarly the
solutions Eq. (25) satisfy 0 < v < 1 only in the disjoint regions of the a,b plane defined by
either 2b+ 1 < a < −1 or −1 < a < 2b+ 1. If a,b lie outside these regions, and also outside
the strips given by |a|� 1 and |a−2b|� 1, there are no steady state solutions.

For special values of a,b these steady states can coincide, for example if a = 1 the solution
Eq. (26) coincides with the boundary value of Eq. (24). Steady states for values of a,b on the
boundary of the regions shown in Fig. 2 may need to be considered separately; for example
if a = b = 1 then all steady states are given either by Eq. (25), or else by cosθ = 1 and any
constant v.

In practice, the values of a,b are determined by the waveguide structure, the propagating
mode and, in the case of a, the input power P0, and hence only restricted regions of the a,b
plane are generally accessible. For example, Fig. 1(i) shows that for the fundamental mode of
elliptical core fibers we have log10 b � 0, and so the attainable values of b are limited to b � 1.
We nevertheless include the case b < 1 in our analysis, since this possibility cannot be excluded
for other fiber geometries. We discuss the accessible regions for the case of unstable steady
states in Section 3.4.

3.3. Lagrangian formulation

We wish to determine the stability properties of each of the four classes of steady state solutions,
in particular we look for unstable steady states. These are of interest because polarization states
which lie close to these unstable states are very sensitive to small changes in parameters such as
the total power P0, and so can flip abruptly as a function of the optical fiber length z. Although
we may determine stability properties by investigating perturbations about the constant solu-
tions, we find it convenient to reformulate the defining Eqs. (22) and (23) as the Euler-Lagrange
equations of a Lagrangian L which is a function of θ , θ̇ , and depends otherwise only on the pa-
rameters a,b. This also provides insight into the properties and solutions of these equations,
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Fig. 2. The a,b plane showing: (i) the regions of existence for the solutions Eq. (24), either
1< a < 2b−1 (red), or 2b−1< a < 1 (green); (ii) the regions of existence for the unstable
solutions consisting of Eq. (24) (red), and Eq. (25) for which 2b+ 1 < a < −1 (orange),
together with Eqs. (26) and (27) for which |a|< 1 or |a−2b|< 1 (light blue).

and we may then investigate stability by examining the corresponding potential function. From
Eq. (23) we have

v =
θ̇ +a− cosθ
2(b− cosθ)

, (28)

and by substitution into Eq. (22) we obtain

2(b− cosθ) θ̈ − sinθ θ̇ 2 + sinθ(a− cosθ)(a−2b+ cosθ) = 0. (29)

We consider Lagrangians L of the form

L = T −V =
1
2

M(θ) θ̇ 2 −V (θ) (30)

where T is the (positive) kinetic energy, V is the potential energy, and the “mass” M is a positive
function of θ . The equation of motion is

M(θ) θ̈ +
1
2

M′(θ)θ̇ 2 +V ′(θ) = 0, (31)

and is identical to Eq. (29) provided

M(θ) =
2

|b− cosθ | , V (θ) =−|b− cosθ |− (a−b)2

|b− cosθ | . (32)

We may therefore investigate all possible solutions θ(τ) by analyzing properties of the pe-
riodic potential V (θ); every solution of the system of Eqs. (22) and (23) corresponds to the
trajectory θ(τ) of a particle of variable mass M in the potential V . Steady state solutions are ze-
roes of V ′(θ), and stability is determined by whether these zeroes are local maxima or minima
of V , subject to the constraint that the associated function v should always satisfy 0 < v < 1.
Trajectories which begin near a local minimum, with a small initial speed θ̇(0), oscillate peri-
odically with a small amplitude. On the other hand, trajectories which begin near an unstable
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point, i.e. near a local maximum of V , can display periodic oscillations of large amplitude
with abrupt transitions between adjacent local maxima; we refer to these as switching solutions
(previously bistable solutions [50]) since cosΔφ = cos(θ/2) switches periodically between two
distinct values. Soliton trajectories also occur in which the particle moves between adjacent lo-
cal maxima of V , see for example the discussion in [53], Section 2 and [54] for properties of
solitons in optical fibers. As mentioned in Section 3.5, soliton trajectories also appear as the
separatrix in phase plane plots.

We plot V as a function of θ and either a or b in Fig. 3, showing that V defines a complex
surface with valleys and peaks which change suddenly as a or b are varied. Periodic solutions
occur for trajectories restricted to a local valley, but there are also unbounded trajectories, in
which θ increases or decreases indefinitely, depending on a,b and on whether θ̇(0) is suffi-
ciently large. The potential, as a function of θ and a, has saddle points which indicate that a
stable solution can become unstable as a is varied; according to the definition Eq. (21) we may
vary a within certain limits by varying the total power P0.

For a = b the potential is essentially that of the nonlinear pendulum under the influence of
gravity, namely a simple cosine potential, but with a mass that depends on θ . Provided b > 1
this mass varies between two positive, finite limits. The unstable steady states correspond to
a pendulum balanced upright, while the switching states (discussed in Section 4) correspond
to trajectories which begin with the pendulum positioned near the top, possibly with a small
initial speed, then swinging rapidly through θ = 2π to reach the adjacent unstable steady state.
During this motion cosΔφ = cos θ

2 flips rapidly between the values ±1. The soliton discussed
in the Appendix is the trajectory in which the pendulum begins at the unstable upright position
and, over an infinite time, moves through the stable minimum to the adjoining unstable steady
state.

Fig. 3. The potential V plotted as a function of (i) θ ,a for b = 0.8; (ii) θ ,b for a = 0.

Although both M and V are singular when cosθ = b, which occurs only if |b| � 1, this
singularity is an artifact of the Lagrangian formulation, as is evident from Eqs. (22) and (23),
which have smooth bounded right hand sides for any b. In particular v, which is obtained from
Eq. (28) given θ , is a smooth function of τ even if cosθ = b for some τ .

The energy T +V = 1
2 M(θ) θ̇ 2 +V (θ) is a constant of the motion. Hence we may integrate

Eq. (29) to obtain
θ̇ 2 = (b− cosθ)2 +(a−b)2 + c(b− cosθ), (33)

where c is the constant of integration. This constant is determined by first choosing initial values
v0,θ0, where 0 < v0 < 1, and then finding θ̇(0) from Eq. (23) which, from Eq. (33) evaluated at
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τ = 0, fixes c. We may integrate Eq. (33) to determine θ as an explicit function of τ , expressible
in terms of elliptic functions, as discussed further in Section 3.5.

A limitation of the Lagrangian formulation is that the constraint 0 < v < 1 is not easily
implemented. Whereas every solution of the system Eqs. (22) and (23) defines a trajectory
θ(τ) in the Lagrangian system Eq. (29), the converse is not true, i.e not all trajectories in
this system satisfy 0 < v < 1. The initial speed θ̇(0) must be restricted to only those values
allowed by Eq. (23), in which 0 < v(0) < 1, and similarly the constant solutions of Eq. (29)
are valid steady states for the original Eqs. (22) and (23) only in certain regions of the a,b
plane. Trajectories which violate 0 < v < 1, while not physical in the context of optical fiber
configurations, can nevertheless be viewed as acceptable motions of the mechanical system
defined by the Lagrangian Eq. (30). We investigate an alternative Hamiltonian formulation in
terms of v in Section 3.5.

3.4. Stability of steady state solutions

The stability of each of the four classes of steady state solutions in Section 3.2 is determined by
the sign of V ′′ for that solution; a positive sign implies that the solution lies at a local minimum
of V and is therefore stable, whereas a negative sign implies that the solution is unstable.

For the steady states Eq. (24) we have V ′′ = (a−1)(a−2b+1)(b−1)/|b−1|3 and so these
states are stable for points a,b such that (a−1)(a−2b+1)(b−1> 0, shown as the green region
in the a,b plane in Fig. 2(i), and are unstable in the red region, where 1 < a < 2b− 1. For the
steady states Eq. (25) we have V ′′ = (a+1)(−a+2b+1)(b+1)/|b+1|3 and so these solutions
are stable for −1 < a < 2b+1 and are unstable in in the orange region 2b+1 < a <−1 shown
in Fig. 2(ii).

For the remaining steady states Eqs. (26) and (27), for which v = 0 or v = 1, we have V ′′ =
−2sin2 θ/|a−b| which in all cases is negative, and so these states are unstable whenever they
exist. This is consistent with the observation that v(τ) cannot attain the values 0,1 at any time
τ , provided 0 < v0 < 1. The regions in the a,b plane where the unstable states exist are shown
in Fig. 2(ii).

Next, we determine conditions under which the unstable steady state solutions Eq. (24) are
accessible. For elliptical core step index fibers, for which b > 1 as shown in Fig. 1(i), the region
of instability is indeed accessible and leads to properties such as nonlinear self-polarization
flipping, discussed in Section 4. The region of unstable solutions is given by 1 < a < 2b− 1,
equivalently

γc + γ ′c − γ1 <
Δβ
P0

< γ2 − γc − γ ′c. (34)

These inequalities specify the possible values, if any, of P0 for which the unstable solutions
exist for a fixed fiber. In order to visualize this region we plot a as a function of P0 in Fig. 4(i),
where a is given by Eq. (21). The boundaries of the unstable region at a = 1,a = 2b− 1 are
shown by the green solid lines.

First we consider fibers for which 1 < C < 2b− 1, where C = (γ2 − γc)/γ ′c takes the value
shown by the dashed line in Fig. 4(i). Then a has two branches associated with either Δβ < 0
or Δβ > 0; for the branch corresponding to Δβ < 0 (the solid blue line), a is large and positive
for small P0 and asymptotically approaches C for large P0. The intersection of this branch with
the boundary a = 2b− 1 determines the minimum power Pmin1 required in order to access the
unstable region. In this case, only part of the unstable region corresponding to C < a < 2b−1 is
accessible, as shown by the blue region. For the Δβ > 0 branch (red solid curve) a is large and
negative for small P0 and asymptotically approaches C for large P0. For this branch, P0 needs
to be larger than a value Pmin2 . The unstable region is accessible provided 1 < a < C and is a
subset (red shaded) of the whole unstable solution region. Figure 4(i) allows one to determine
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the minimum and maximum values of a and the minimum power to access the unstable solution
region, once Δβ and C are known. For elliptical core fibers these two values are completely
determined by the dimensions x,y, see Fig. 1(iii,iv) for plots of C and Δβ .

Besides fibers for which 1 < C < 2b− 1, there are the possibilities C > 2b− 1 or C < 1.
From Fig. 1(iii,iv) one can show that these combinations (with Δβ positive or negative) either
do not exist, or do not lead to unstable solutions, since the possible values of a do not lie in the
unstable region 1 < a < 2b− 1. In summary, the only elliptical core fibers that allow unstable
solutions are those with 1 <C < 2b−1 with either positive or negative Δβ . The case in which
Δβ = 0 is discussed separately in [55, 56].

Based on the above discussion, one can find the minimum power Pmin
0 required to gener-

ate unstable solutions for elliptical core fibers. Figure 4(ii) plots log10(P
min
0 ) (where Pmin

0 is
measured in watts) as a function of x,y, where the white region corresponds to fibers for which
there are no unstable solutions, and the regions below and above the diagonal line correspond
to Pmin1 and Pmin2 , respectively, which have been obtained for the two branches of the function
a(P0) shown in Fig. 4(i). In these examples of elliptical fibers very high powers, in the range
1− 10kW, are required in order to observe switching solutions, as we discuss further in our
concluding remarks in Section 5. The underlying theory shows, however, that this behavior can
occur at much lower powers for waveguides with small birefringence Δβ ; specifically, it is nec-
essary only that the inequalities Eq. (34) be satisfied, and so the total power P0 required is small
provided that Δβ is sufficiently small [55].
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Fig. 4. (i) a as a function of P0 for Δβ < 0 (blue solid line) and Δβ > 0 (red solid line). The
green lines mark the boundaries of the (red) region of instability in the a,b plane shown in
Fig. 2(i); (ii) contour plot of log10(P

min
0 ) as a function of x,y, showing the minimum total

power Pmin
0 (in units W) required to access unstable steady states, where they exist.

3.5. Hamiltonian function

Although the Lagrangian formulation in terms of θ is convenient for an analysis of the steady
states and their stability, and also for a qualitative understanding of all solutions including soli-
tons, the constraint 0 < v < 1 is more easily implemented by means of a direct formulation
in terms of v. This automatically eliminates unphysical trajectories for which one of the input
powers P1,P2 is negative. Such a formulation follows by construction of a Hamiltonian function
which, being conserved, allows us to firstly integrate the nonlinear equations and obtain analyt-
ical solutions and, secondly, to interpret physically the possible states of polarizations within
an optical waveguide from the phase plane contours. Corresponding to the conserved energy
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T +V which follows from Eq. (30) there is a Hamiltonian function H defined by

H(v,θ) =−av+bv2 + v(1− v)cosθ (35)

which satisfies

v̇ =−∂H
∂θ

, θ̇ =−∂H
∂v

.

Hence as a function of τ , H is conserved and takes the constant value H0 =H(v0,θ0) on any tra-
jectory. We may investigate all possible solutions, therefore, by analyzing the curves of constant
H0 in the v,θ plane. We have

cosθ =
H0 +av−bv2

v(1− v)
, (36)

and from Eq. (22) we obtain
v̇2 = Q(v), (37)

where Q is the polynomial of 4th degree (provided b2 �= 1) given by

Q(v) = v2(1− v)2 − (H0 +av−bv2)2. (38)

Since the left hand side of Eq. (37) is positive, solutions exist only if Q(v) � 0 for v in the
interval 0 < v < 1. Generally Q(0),Q(1) < 0 but since Q(v0) = v2

0(1− v0)
2 sin2 θ0 � 0 (as

follows from Eq. (22)) Q has at least two real zeroes, possibly repeated, and so there is an
interval within 0 < v < 1 in which Q(v)> 0, and so solutions always exist. If the initial values
v0,θ0 are such that the trajectory begins in a stable steady state, v remains constant for all τ > 0,
otherwise the trajectory is nontrivial. There are two types of nontrivial solutions, periodic and
soliton solutions.

We can gain insight into possible solutions by plotting contours of constant H(v,θ) in the
v,θ plane, which supplies essentially a phase portrait of the system. Solutions for which both
v,θ are periodic in τ form closed loops, and lie close to a stable steady state, whereas nonpe-
riodic trajectories lie outside the separatrix which defines soliton solutions, as we discuss in
the Appendix. Figure 5 shows two examples in which stable steady states are marked in green,
and unstable steady states are shown in red or orange. Periodic solutions are evident as closed
loops surrounding stable steady states, whereas the separatrix marks soliton trajectories which
connect unstable steady states. Apart from these solitons, all other solutions v,cosθ (but not
necessarily θ ) are periodic in τ . The switching solutions of particular interest, in which the
state of polarization inside the waveguide flips between two well-defined states, are those close
to the separatrix.

4. Periodic solutions

Periodic solutions v of Eq. (37) attain both minimum and maximum values, denoted vmin,vmax

respectively, with 0 < vmin � vmax < 1. Since v̇ = 0 at a maximum or minimum of v, both
vmin,vmax are roots of Q. We can factorize Q as a product of quadratic polynomials,

Q(v) =−[
(b+1)v2 − (a+1)v−H0

][
(b−1)v2 − (a−1)v−H0

]
, (39)

and hence explicitly find all roots, and so identify vmax and vmin. We integrate v̇ =
√

Q(v) over
the half-period in which v increases, in order to find τ as a function of v, and also the period T :

∫ v

vmin

du
√

Q(u)
= τ − τ0, T = 2

∫ vmax

vmin

du
√

Q(u)
, (40)
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Fig. 5. Contours in the θ ,v plane of constant H for (i) a = 1,b = 4; (ii) a = b = 2, with
steady states marked by green dots (stable) and red or orange dots (unstable). The separa-
trix, which identifies the soliton trajectories, is shown in red.

where τ0 is the time at which v achieves its minimum, i.e. vmin = v(τ0). These integrals may
be evaluated in terms of elliptic integrals of the first kind, see for example the explicit formulas
in [57] (Sections 3.145, 3.147). In particular, T is expressible in terms of the complete elliptic
integral K, and so can be written as an explicit function of a,b,v0,θ0, i.e. as a function of the
waveguide parameters and the initial power and phase of the input fields. The precise formulas
depend on the relative location of the roots of Q.

Having found v, cosθ is obtained from Eq. (36) and is also periodic in τ , as is θ̇ which is
obtained from Eq. (23), however θ itself need not be periodic. Although it is straightforward to
find v,θ numerically as functions of τ , for specified numerical values of a,b and initial values
v0,θ0, the exact solutions are useful because they display the exact dependence of the solution
on all parameters, such as the total power P0; it is not necessary therefore to solve the equations
numerically for every choice of P0, rather the exact solution gives the explicit periodic solution
and the period as known functions of P0.

For switching solutions, the phase difference between the two polarization vectors experi-
ences abrupt phase shifts through π as the light propagates within the waveguide. As a result,
the state of polarization flips between two well-defined polarization states, where the flipping
angle depends on a,b and on θ0,v0. The following are two examples of switching solutions.

As the first example we choose a = 1,b = 4 with the initial values v0 = ε,θ0 = 0, where
ε = 10−4, in which case the input laser beam is linearly polarized and the polarization state is
close to one of the principle axes of the waveguide. Hence, the trajectory starts near the unstable
steady states Eq. (24) or Eq. (26), which lie on the boundary of the red region shown in Fig. 2(i).
We plot v and cos θ

2 = cosΔφ as a function of τ in Fig. 6(i), showing switching behavior for
cos θ

2 , which is periodic and flips abruptly between the values ±1; θ , however, is an increasing
function of τ , with jumps through 2π at periodic intervals. The polarization vector experiences
an angular flipping associated with the abrupt flipping of cosΔφ , however, since v0 = ε and
θ0 = 0, the flipping angle is very small, as depicted in the inset of Fig. 6(i). Regarded as the
trajectory of a particle of mass M in the potential V in Eq. (32) this motion corresponds to a
particle moving slowly over the peaks of the potential, which are the unstable steady states,
then sliding quickly down the valleys through the minimum values of V and back to the peaks.
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For a = 1 the potential is flat at its maximum values, since in this case V ′ = 0 = V ′′ = V ′′′,
hence v, θ̇ are each close to zero except when θ moves to an adjoining maximum of V . In terms
of the contour plots shown in Fig. 5(i) this trajectory corresponds to the contour which begins
just above the unstable steady state (orange dot) and closely follows the separatrix shown in red
(which is the soliton solution discussed in the Appendix) with a maximum value ∼ 0.4 for v.
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Fig. 6. Switching solutions v and cos θ
2 = cosΔφ as functions of τ for: (i) a = 1,b = 4

and v0 = ε,θ0 = 0; (ii) a = b = 2 and v0 =
1
2 ,θ0 = ε where ε = 10−4. The insets show the

polarization vectors associated with the values cosΔφ =±1.

As a second example of switching behavior we choose a= b= 2 with v0 = 1/2,θ0 = ε , where
ε = 10−4, which corresponds to a linearly polarized input laser beam in which the polarization
vector makes an angle of 45◦ to either of the principle axes of the waveguide. Again, the initial
value lies close to an unstable steady state Eq. (24) and a,b lie within the red region of instability
in Fig. 2. We plot v and cos(θ/2) as functions of τ in Fig. 6(ii), showing the periodicity of these
functions and the switching behavior of cos(θ/2). Since v0 = 1/2, the angular flipping of the
polarization vector is π/2, because cos(θ/2) flips between values ±1, as shown in the inset of
Fig. 6(ii). Unlike the previous example, θ is also periodic in τ with a trajectory that corresponds
to the motion of a particle in the potential V , starting slowly near the unstable steady state Eq.
(24) but sliding rapidly through the potential minimum to approach an adjoining unstable steady
state. This motion is similar to the periodic oscillations of a nonlinear pendulum (since a = b,
see the definition of V in Eq. (32)) with a large amplitude of almost 2π , and v attains nearly
all values between 0,1. In terms of the phase space contours shown in Fig. 5(ii), the motion
corresponds to a periodic trajectory which begins near the red dot (unstable steady state) and
again closely follows the separatrix which marks the soliton trajectory.

5. Discussion and conclusion

Switching states, as defined and demonstrated here through simulation by means of a full vec-
torial model, are attractive for practical applications, since they allow nonlinear self-flipping
of the polarization states of light propagating in an optical waveguide. This flipping is due to
the nonlinear interactions of the two polarizations, and has properties that depend on the total
optical power and on the specific fiber parameters. These properties can in principle be em-
ployed to construct devices such as optical logic gates [58], fast optical switches and optical
limiters [55, 56], in which small controlled changes in the input parameters lead to sudden
changes in the polarization states.

The minimum power necessary to generate such switching states is determined for any
waveguide by the inequalities Eq. (34) and, for chalcogenide optical nanowires with ellipti-
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cal core cross sections, is summarized in Fig. 4(ii). The minimum power required in such
nanowires is in the range 1− 10kW which, although not practicable for CW lasers, can be
achieved in pulsed lasers. Although we have limited our analysis to the static case, ignoring the
temporal variation of laser light, it is still applicable to slow pulses with pulse widths in the or-
der of nanoseconds depending on the dispersion of the waveguide. A more practical minimum
power requirement that achieves switching behavior is by means of asymmetric waveguides,
such as rib waveguides, for which Δβ can be reduced to very small values while still having
different field distributions for the two polarizations, as discussed in [55, 56].

The nonlinear interactions of the two polarizations can be impacted by two factors that have
not yet been investigated: (1) interactions with higher order modes in few-mode waveguides
and, (2) contributions from nonlinear terms containing different forms of e1 � e2, i.e., nonzero

values for the coefficients γ(1)μν ,γ
(2)
μν ,γ

(3)
ν in Eqs. (6)–(8). (This applies only when e1 � e2 is no

longer very small, as assumed in this paper). In few-mode waveguides, higher order modes con-
tribute to the nonlinear phase of each polarization of the fundamental mode through cross phase

and coherent mixing terms. Inspection of Eq. (2) reveals that nonzero γ(1)μν ,γ
(2)
μν ,γ

(3)
μν coefficients

significantly change the dynamics of nonlinear interactions of the two polarizations and most
likely lead to different parameter regimes for the existence of periodic and solitonic solutions.
These factors will be the subject of further studies.

In summary, we have developed the theory of nonlinear interactions of the two polarizations
using a full vectorial model of pulse propagation in high index subwavelength waveguides.
This theory indicates that there is an anisotropy in the nonlinear interactions of the two polar-
izations that originates solely from the waveguide structure. We have found all static solutions
of the nonlinear system of equations by finding exact constants of integration, which leads to
expressions for the general solution in terms of elliptic functions. We have analyzed the stabil-
ity of the steady state solutions by means of a Lagrangian formalism, and have shown that there
exist periodic switching solutions, related to a class of unstable steady states, for which there
is an abrupt flipping of the polarization states through an angle determined by the structural
parameters of the waveguide and the parameters of the input laser. By means of a Hamiltonian
formalism we have analyzed all solutions, including solitons which we have shown are close to
the switching solutions of interest.

Appendix

We include here a discussion of the topological solitons which appear as solutions of Eq. (29),
as configurations θ(τ) which interpolate between the adjacent maxima of the periodic potential
V defined in Eq. (32). They define trajectories which move between adjacent unstable steady
states with abrupt transitions, to form “kinks” which are stable against time-dependent pertur-
bations. Such trajectories are visible in Fig. 5(i), 5(ii) (the contours marked in red) as they form
the separatrix between periodic solutions v,θ and nonperiodic solutions. The fact that solitons
can occur in this way has been previously noted, see for example Chapter 9 in [54]. In Fig. 5(i)
the soliton is the trajectory which connects the adjacent unstable steady states (orange) at v = 0
and θ = 0,2π,4π . . . and similarly in Fig. 5(ii) the solitons connect the (red) unstable steady
states. Such solutions exist on the full real line −∞ < τ < ∞, with appropriate boundary con-
ditions, but are also solutions on any finite subset of the real line, corresponding to an optical
fiber of finite length, with boundary values obtained from the exact solution.

Solitons are significant in the context of switching solutions since switching behavior occurs
precisely when solutions lie near soliton trajectories; the switching solutions shown in Fig. 6(i),
6(ii), for example, correspond to contours in Fig. 5(i), 5(ii) which lie very close to the separatrix.
The soliton itself is not periodic but nearby trajectories are periodic for both v and cosθ as
functions of τ . The abrupt transitions which characterize switching, as shown for example in
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Fig. 6, can equally be viewed as the “kinks” of a soliton, in which cos(θ/2) changes between
two distinct values over a very short τ-interval, and in doing so interpolates between unstable
steady states. We are interested here mainly in transitions between the unstable steady states
Eq. (24), since these correspond to polarization flipping, i.e. cosΔφ = cos(θ/2) flips between
values ±1. There exist, however, solitons corresponding to the other unstable steady states such
as Eqs. (26) and (27), which we also discuss briefly.

In order to find explicit solutions, we define a potential U according to U(θ) = V0 −V (θ),
where the shift V0 is selected such that the minimum value of U is zero. If 1 < a < 2b−1, for
example, in which case the unstable steady states Eq. (24) exist, we have

V0 = 1−b− (a−b)2

b−1
. (41)

We also define the positive “action” functional S by

S(θ , θ̇) =
∫ ∞

−∞

[
1
2

M(θ) θ̇ 2 +U(θ)
]

dτ. (42)

Equations (29) and (31) follow by using Hamilton’s principle of least action applied to S. We
can write

S =
∫ ∞

−∞

1
2

M

[

θ̇ ∓
√

2U
M

]2

dτ ±
∫ ∞

−∞
M

√
2U
M

θ̇ dτ. (43)

The last term takes values only on the boundary and so does not vary as θ , θ̇ are varied, hence
a local minimum of S occurs when

θ̇ =±
√

2U
M

, (44)

which implies Mθ̇ 2 = 2U . Solutions of this equation, which is equivalent to Eq. (33) with
c = V0, satisfy Eqs. (29) and (31) with the property that S < ∞. Hence, for such solutions we
have θ̇ → 0 and θ approaches a zero of U as |τ| → ∞. We therefore integrate Eq. (44) or
equivalently Eq. (33) with c =V0.

For the first example we select a,b in the red region in Fig. 2 for which 1 < a < 2b−1, with
c = V0 given by Eq. (41), then the soliton interpolates between the unstable steady states Eq.
(24). By direct integration of Eqs. (33) or (44) we obtain

cosθ = 1+
2κ

1− (κ +1)cosh2√κ (τ − τ0)
, (45)

where τ0 is the constant of integration, and

κ =
(a−1)(−a+2b−1)

2(b−1)
.

The solution satisfies lim|τ |→∞ cosθ = 1 and at τ = τ0, which may be regarded as the location of
the soliton, we have cosθ =−1. By suitable choice of sign for θ , and by choice of the branch of
the inverse cosine function, we obtain θ as a function of τ which either increases or decreases
between any two adjacent zeros of the potential U at cosθ = 1. From Eq. (28) we obtain v:

v =
a−1

2(b−1)
+

κ
a−b± (b−1)

√
κ +1 cosh

√
κ (τ − τ0)

, (46)

where the sign corresponds to either increasing or decreasing θ , and we have lim|τ |→∞ v(τ) =
a−1

2(b−1) .
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As a specific example, for a = b = 2 and κ = 1/2, the separatrix trajectory shown in Fig.
5(ii) is the parametric plot of v,θ as functions of the parameter τ; v evidently varies between
maximum and minimum values which occur at τ = τ0, as can be determined directly from Eq.
(46). We can also find the solutions Eqs. (45) and (46) directly by solving Eq. (37). It is neces-
sary only to determine H0 = H(v0,θ0) by choosing v0,θ0 at |τ|= ∞, which then determines Q

from Eq. (38). For the states Eq. (24) we obtain H0 =− (a−1)2

4(b−1) and Q(v) has a repeated root at

v = a−1
2(b−1) ; the expression Eq. (46) for v may then be obtained by using the general integration

formulas in Sections 2.266, 2.269 of Ref. [57].
Solitons also exist corresponding to the unstable steady states Eq. (25), provided 2b+ 1 <

a < −1 and b < −1, and may be obtained from the formulas Eqs. (45) and (46) by means of
the symmetry τ →−τ,θ → θ +π,a →−a,b →−b which leaves Eqs. (22) and (23) invariant.
The parameter κ , for example, is now defined by κ = (a+ 1)(a− 2b− 1)/2/(b+ 1) which is
positive in the orange region of Fig. 2(ii).

Consider next the unstable states Eq. (26), which are defined only in the strip |a| � 1 of the
a,b plane. Soliton solutions take the values cosθ = a,v = 0 as |τ| → ∞, and hence the Hamil-
tonian function H(v,θ) defined in Eq. (35) takes the constant value H0 = 0, which corresponds
to c =V0 = 2(a−b) in Eq. (33). By solving v̇2 = Q(v) we find:

v(τ) =
1−a2

1−ab+ |b−a| cosh[
√

1−a2 (τ − τ0)]
, (47)

which exists for all |a| < 1 and b �= a. We have lim|τ |→∞ v(τ) = 0 and v attains its maximum
value vmax at τ = τ0, with either vmax = (a+1)/(b+1) for b > a or else vmax = (a−1)/(b−1)
for b < a. Having found v, we obtain cosθ from Eq. (36) with H0 = 0 using cosθ = (a−
bv)/(1− v), specifically

cosθ(τ) = a− 1−a2

−a+η cosh[
√

1−a2 (τ − τ0)]
, (48)

where η = (b−a)/|b−a| is the sign of b−a. We have θ̇ = a−cosθ and cosθ(τ0) =−η . For
the special case b = a with |a| < 1, or if a = 1, we solve v̇2 = Q(v) directly; in the latter case
we obtain

v(τ) =
2

b+1+(b−1)(τ − τ0)2 , cosθ = 1− 2
1+(τ − τ0)2 . (49)

As a specific example we choose a = 1,b = 4, for which contour plots for constant H are
shown in Fig. 5(i); the (red) separatrix trajectory in particular is visible as the curve which con-
nects the unstable steady states at v= 0,θ = 0,2π . . . . This separatrix is precisely the parametric
plot of v,θ given by Eq. (49), where v evidently varies between zero and its maximum value of
2/(b+ 1) = 0.4 which occurs at τ = τ0, while cosθ varies between the values 1 as |τ| → ∞,
when v = 0, and −1 at τ = τ0.

There are also solitons corresponding to the unstable steady states Eq. (27). Precise formulas
can be obtained from Eqs. (47) and (48) by means of the transformations θ → −θ ,v → 1−
v,a →−a+2b which are discrete symmetries of the defining Eqs. (22) and (23).
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