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A physical, genetic and functional
sequence assembly of the barley genome
The International Barley Genome Sequencing Consortium*

Barley (Hordeum vulgare L.) is among the world’s earliest domesticated and most important crop plants. It is diploid
with a large haploid genome of 5.1 gigabases (Gb). Here we present an integrated and ordered physical, genetic and
functional sequence resource that describes the barley gene-space in a structured whole-genome context. We developed
a physical map of 4.98 Gb, with more than 3.90 Gb anchored to a high-resolution genetic map. Projecting a deep
whole-genome shotgun assembly, complementary DNA and deep RNA sequence data onto this framework supports
79,379 transcript clusters, including 26,159 ‘high-confidence’ genes with homology support from other plant genomes.
Abundant alternative splicing, premature termination codons and novel transcriptionally active regions suggest that
post-transcriptional processing forms an important regulatory layer. Survey sequences from diverse accessions reveal a
landscape of extensive single-nucleotide variation. Our data provide a platform for both genome-assisted research and
enabling contemporary crop improvement.

Cultivated barley, derived from its wild progenitor Hordeum vulgare
ssp. spontaneum, is among the world’s earliest domesticated crop
species1 and today represents the fourth most abundant cereal in both
area and tonnage harvested (http://faostat.fao.org). Approximately
three-quarters of global production is used for animal feed, 20% is
malted for use in alcoholic and non-alcoholic beverages, and 5% as an
ingredient in a range of food products2. Barley is widely adapted to
diverse environmental conditions and is more stress tolerant than its
close relative wheat3. As a result, barley remains a major food source in
poorer countries4, maintaining harvestable yields in harsh and marginal
environments. In more developed societies it has recently been classified
as a true functional food. Barley grain is particularly high in soluble
dietary fibre, which significantly reduces the risk of serious human dis-
eases including type II diabetes, cardiovascular disease and colorectal
cancers that afflict hundreds of millions of people worldwide5. The USA
Food and Drug Administration permit a human health claim for cell-
wall polysaccharides from barley grain.

As a diploid, inbreeding, temperate crop, barley has traditionally
been considered a model for plant genetic research. Large collections
of germplasm containing geographically diverse elite varieties, land-
races and wild accessions are readily available6 and undoubtedly con-
tain alleles that could ameliorate the effect of climate change and
further enhance dietary fibre in the grain. Enriching its broad natural
diversity, extensive characterized mutant collections containing all
of the morphological and developmental variation observed in the
species have been generated, characterized and meticulously main-
tained. The major impediment to the exploitation of these resources
in fundamental and breeding science has been the absence of a reference
genome sequence, or an appropriate enabling alternative. Providing
either of these has been the primary research challenge to the global
barley community.

In response to this challenge, we present a novel model for deliver-
ing the genome resources needed to reinforce the position of barley as
a model for the Triticeae, the tribe that includes bread and durum
wheats, barley and rye. We introduce the barley genome gene space,
which we define as an integrated, multi-layered informational
resource that provides access to the majority of barley genes in a

highly structured physical and genetic framework. In association with
comparative sequence and transcriptome data, the gene space provides
a new molecular and cellular insight into the biology of the species,
providing a platform to advance gene discovery and genome-assisted
crop improvement.

A sequence-enriched barley physical map
We constructed a genome-wide physical map of the barley cultivar
(cv.) Morex by high-information-content fingerprinting7 and contig
assembly8 of 571,000 bacterial artificial chromosome (BAC) clones
(,14-fold haploid genome coverage) originating from six indepen-
dent BAC libraries9. After automated assembly and manual curation,
the physical map comprised 9,265 BAC contigs with an estimated
N50 contig size of 904 kilobases and a cumulative length of 4.98 Gb
(Methods, Supplementary Note 2). It is represented by a minimum
tiling path (MTP) of 67,000 BAC clones. Given a genome size of
5.1 Gb10, more than 95% of the barley genome is represented in the
physical map, comparing favourably to the 1,036 contigs that represent
80% of the 1 Gb wheat chromosome 3B11.

We enhanced the physical map by integrating shotgun sequence
information from 5,341 gene-containing12,13 and 937 randomly selected
BAC clones (Methods, Supplementary Notes 2 and 3, and Sup-
plementary Table 4), and 304,523 BAC-end sequence (BES) pairs
(Supplementary Table 3). These provided 1,136 megabases (Mb) of
genomic sequence integrated directly into the physical map (Sup-
plementary Tables 3 and 4). This framework facilitated the incorpora-
tion of whole-genome shotgun sequence data and integration of the
physical and genetic maps. We generated whole-genome shotgun
sequence data from genomic DNA of cv. ‘Morex’ by short-read
Illumina GAIIx technology, using a combination of 300 base pairs
(bp) paired-end and 2.5 kb mate-pair libraries, to .50-fold haploid
genome coverage (Supplementary Note 3.3). De novo assembly resulted
in sequence contigs totalling 1.9 Gb. Due to the high proportion of
repetitive DNA, a substantial part of the whole-genome shotgun data
collapsed into relatively small contigs characterized by exceptionally
high read depths. Overall, 376,261 contigs were larger than 1 kb
(N50 5 264,958 contigs, N50 length 5 1,425 bp). Of these, 112,989
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(308 Mb) could be anchored directly to the sequence-enriched physical
map by sequence homology.

We implemented a hierarchical approach to further anchor the
physical and genetic maps (Methods, Supplementary Note 4). A total
of 3,241 genetically mapped gene-based single-nucleotide variants
(SNV) and 498,165 sequence-tag genetic markers14 allowed us to
use sequence homology to assign 4,556 sequence-enriched physical
map contigs spanning 3.9 Gb to genetic positions along each barley
chromosome. An additional 1,881 contigs were assigned to chromo-
somal bins by sequence homology to chromosome-arm-specific
sequence data sets15 (Supplementary Note 4.4). Thus, 6,437 physical
map contigs totalling 4.56 Gb (90% of the genome), were assigned to
chromosome arm bins, the majority in linear order. Non-anchored
contigs were typically short and lacked genetically informative
sequences required for positional assignment.

Consistent with genome sequences of other grass species16 the peri-
centromeric and centromeric regions of barley chromosomes exhibit
significantly reduced recombination frequency, a feature that com-
promises exploitation of genetic diversity and negatively impacts
genetic studies and plant breeding. Approximately 1.9 Gb or 48% of
the genetically anchored physical map (3.9 Gb) was assigned to these
regions (Fig. 1 and Supplementary Fig. 11).

Repetitive nature of the barley genome
A characteristic of the barley genome is the abundance of repetitive
DNA17. We observed that approximately 84% of the genome is com-
prised of mobile elements or other repeat structures (Supplementary

Note 5). The majority (76% in random BACs) of these consists of
retrotransposons, 99.6% of which are long terminal repeat (LTR)
retrotransposons. The non-LTR retrotransposons contribute only
0.31% and the DNA transposons 6.3% of the random BAC sequence.
In the fraction of the genome with a high proportion of repetitive
elements, the LTR Gypsy retrotransposon superfamily was 1.5-fold
more abundant than the Copia superfamily, in contrast to observa-
tions in both Brachypodium18 and rice19. However, gene-bearing
BACs were slightly depleted of retrotransposons, consistent with
Brachypodium18 where young Copia retroelements are preferentially
found in gene-rich, recombinogenic regions from which inactive
Gypsy retroelements have been lost by LTR–LTR recombination.
Overall, we see reduced repetitive DNA content within the terminal
10% of the physical map of each barley chromosome arm (Fig. 1).
Class I and II elements show non-quantitative reverse-image distri-
bution along barley chromosomes (Fig. 1), a feature shared with other
grass genomes16,20 and shown by fluorescence in situ hybridization
(FISH) mapping17. Not surprisingly, the whole-genome shotgun
assembly shows a lower abundance of LTR retrotransposons (average
53%) than gene-bearing BACs. That LTR retrotransposons are long
(,10 kb), highly repetitive and often nested21 supports our assump-
tion that short reads either collapsed or did not assemble. Short inter-
spersed elements (SINEs)22, short (80–600 bp) non-autonomous
retrotransposons that are highly repeated in barley, showed no dif-
ferential exclusion from the assemblies. However, miniature inverted-
repeat transposable elements (MITEs), small non-autonomous DNA
transposons23, were twofold enriched in the whole-genome shotgun
assemblies compared with BES reads or random BACs, consistent
with the gene richness of the assemblies and their association with
genes23. Both MITEs and SINEs are 1.5 to 2-fold enriched in gene-
bearing BACs which could indicate that SINEs are also preferentially
integrated into gene-rich regions, or because they are older than LTR
retroelements, may simply remain visible in and around genes where
retro insertions have been selected against.

Transcribed portion of the barley genome
The transcribed complement of the barley gene space was annotated
by mapping 1.67 billion RNA-seq reads (167 Gb) obtained from eight
stages of barley development as well as 28,592 barley full-length
cDNAs24 to the whole-genome shotgun assembly (Methods, Sup-
plementary Notes 6, 7 and Supplementary Tables 20–22). Exon detec-
tion and consensus gene modelling revealed 79,379 transcript clusters,
of which 75,258 (95%) were anchored to the whole-genome shotgun
assembly (Supplementary Notes 7.1.1 and 7.1.2). Based on a gene-
family-directed comparison with the genomes of Sorghum, rice,
Brachypodium and Arabidopsis, 26,159 of these transcribed loci fall
into clusters and have homology support to at least one reference
genome (Supplementary Fig. 16); they were defined as high-confidence
genes. Comparison against a data set of metabolic genes in Arabidopsis
thaliana25 indicated a detection rate of 86%, allowing the barley gene-
set to be estimated as approximately 30,400 genes. Due to lack of
homology and missing support from gene family clustering, 53,220
transcript loci were considered low-confidence (Table 1). High-
confidence and low-confidence barley genes exhibited distinct charac-
teristics: 75% of the high-confidence genes had a multi-exon structure,
compared with only 27% of low-confidence genes (Table 1). The mean
size of high-confidence genes was 3,013 bp compared with 972 bp for
low-confidence genes. A total of 14,481 low-confidence genes showed
distant homology to plant proteins in public databases (Supplementary
Notes 7.1.2, 7.1.4 and Supplementary Fig. 18), identifying them as
potential gene fragments known to populate Triticeae genomes at high
copy number and that often result from transposable element activity26.

A total of 15,719 high-confidence genes could be directly associated
with the genetically anchored physical map (Supplementary Note 4).
An additional 3,743 were integrated by invoking a conservation of syn-
teny model (Supplementary Note 4.5) and a further 4,692 by association
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Figure 1 | Landscape of the barley gene space. Track a gives the seven barley
chromosomes. Green/grey colour depicts the agreement of anchored
fingerprint (FPC) contigs with their chromosome arm assignment based on
chromosome-arm-specific shotgun sequence reads (for further details see
Supplementary Note 4). For 1H only whole-chromosome sequence assignment
was available. Track b, distribution of high-confidence genes along the genetic
map; track c, connectors relate gene positions between genetic and the
integrated physical map given in track d. Position and distribution of track
e class I LTR-retroelements and track f class II DNA transposons are given.
Track g, distribution and positioning of sequenced BACs.
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with chromosome arm whole-genome shotgun data (Supplementary
Note 4.4 and Supplementary Table 15). Importantly, the N50 length
of whole-genome shotgun sequence contigs containing high-confidence
genes was 8,172 bp, which is generally sufficient to include the entire
coding sequence, and 59 and 39 untranslated regions (UTRs). Overall
24,154 high-confidence genes (92.3%) were associated and positioned in
the physical/genetic scaffold, representing a gene density of five genes
per Mb. Proximal and distal ends of chromosomes are more gene-rich,
on average containing 13 genes per Mb (Fig. 1).

In comparison with sequenced model plant genomes, gene family
analysis (Supplementary Note 7.1.3) revealed some gene families that
exhibited barley-specific expansion. We defined the functions of
members of these families using gene ontology (GO) and PFAM
protein motifs (Supplementary Table 25). Gene families with highly
overrepresented GO/PFAM terms included genes encoding (1,3)-b-
glucan synthases, protease inhibitors, sugar-binding proteins and
sugar transporters. NB-ARC (a nucleotide-binding adaptor shared
by APAF-1, certain R gene products and CED-427) domain proteins,
known to be involved in defence responses, were also overrepre-
sented, including 191 NBS-LRR type genes. These tended to cluster
towards the distal regions of barley chromosomes (Supplementary
Fig. 17), including a major group on barley chromosome 1HS, co-
localizing with the MLA powdery mildew resistance gene cluster28.
Biased allocation to recombination-rich regions provides the genomic
environment for generating sequence diversity required to cope with
dynamic pathogen populations29,30. It is noteworthy that the highly
over-represented (1,3)-b-glucan synthase genes have also been impli-
cated in plant–pathogen interactions31.

Regulation of gene expression
Deep RNA sequence data (RNA-seq) provided insights into the spatial
and temporal regulation of gene expression (Supplementary Note 7.2).
We found 72–84% of high-confidence genes to be expressed in all spa-
tiotemporal RNA-seq samples (Fig. 2a), slightly lower than reported
for rice32 where ,95% of transcripts were found in more than one
developmental or tissue sample. More importantly, 36–55% of high-
confidence barley genes seemed to be differentially regulated between
samples (Fig. 2b), highlighting the inherent dynamics of barley gene
expression.

Two notable features support the importance of post-transcriptional
processing as a central regulatory layer (Supplementary Notes 7.3 and
7.4). First, we observed evidence for extensive alternative splicing. Of

the intron-containing high-confidence barley genes, 73% had evidence
of alternative splicing (55% of the entire high-confidence set). The
spatial and temporal distribution of alternative splicing transcripts
deviated significantly from the general occurrence of transcripts in
the different tissues analysed (Fig. 2c). Only 17% of alternative splicing
transcripts were shared among all samples, and 17–27% of the alterna-
tive splicing transcripts were detected only in individual samples,
indicating pronounced alternative splicing regulation. We found
2,466 premature termination codon-containing (PTC1) alterna-
tive splicing transcripts (9.4% of high-confidence genes) (Fig. 2d
and Table 2), similar to the percentage of nonsense-mediated decay
(NMD)-controlled genes in a wide range of species33,34. Premature
termination codons activate the NMD pathway35, which leads to rapid
degradation of PTC1 transcripts, and have been associated with trans-
criptional regulation during disease and stress response in human and
Arabidopsis, respectively34,36–39. The distribution of PTC1 transcripts
was strikingly dissimilar, both spatially and temporally, with only 7.4%
shared and between 31% and 40% exclusively observed in only a
single sample (Fig. 2d). Genes encoding PTC1-containing transcripts
show a broad spectrum of GO terms and PFAM domains and are more
prevalent in expanded gene families. These observations support a
central role for alternative splicing/NMD-dependent decay of PTC1

transcripts as a mechanism that controls the expression of many dif-
ferent barley genes.

Second, recent reports have highlighted the abundance of novel
transcriptionally active regions in rice that lack homology to protein-
coding genes or open reading frames (ORFs)40. In barley as many as
27,009 preferentially single-exon low-confidence genes can be classified
as putative novel transcriptionally active regions (Supplementary Note
7.1.4). We investigated their potential significance by comparing the
homology of barley novel transcriptionally active regions with the rice
and Brachypodium genomes that respectively represent 50 and 30
million years of evolutionary divergence18. A total of 4,830 and 2,450
novel transcriptionally active regions yielded a homology match to the
Brachypodium and rice genomes, respectively (intersection of 2,046;
BLAST P value # 1025), indicating a putative functional role in pre-
mRNA processing or other RNA regulatory processes41,42.

Natural diversity
Barley was domesticated approximately 10,000 years ago1. Extensive
genotypic analysis of diverse germplasm has revealed that restricted
outcrossing (0–1.8%)43, combined with low recombination in peri-
centromeric regions, has resulted in modern germplasm that shows
limited regional haplotype diversity44. We investigated the frequency
and distribution of genome diversity by survey sequencing four
diverse barley cultivars (‘Bowman’, ‘Barke’, ‘Igri’ and ‘Haruna Nijo’)
and an H. spontaneum accession (Methods and Supplementary Note 8)
to a depth of 5–25-fold coverage, and mapping sequence reads against
the barley cultivar ‘Morex’ gene space. We identified more than 15
million non-redundant single-nucleotide variants (SNVs). H. sponta-
neum contributed almost twofold more SNV than each of the cultivars
(Supplementary Table 28). Up to 6 million SNV per accession could be
assigned to chromosome arms, including up to 350,000 associated with
exons (Supplementary Table 29). Approximately 50% of the exon-
located SNV were integrated into the genetic/physical framework
(Fig. 3, Supplementary Table 30 and Supplementary Fig. 31), providing
a platform to establish true genome-wide marker technology for high-
resolution genetics and genome-assisted breeding.

We observed a decrease in SNV frequency towards the centromeric
and peri-centromeric regions of all barley chromosomes, a pattern
that seemed more pronounced in the barley cultivars. This trend was
supported by SNV identified in RNA-seq data from six additional
cultivars mapped onto the Morex genomic assembly (Supplemen-
tary Note 8.2). We attribute this pattern of eroded genetic diversity
to low recombination in the pericentromeric regions, which reduces
effective population size and consequently haplotype diversity. Whereas

Table 1 | Characteristics of high-confidence and low-confidence
gene sets in barley

High confidence Low confidence

Number of genes 26,159 53,220
Gene loci positioned on barley cultivar
Morex assembly*

24,243 (93%) 51,015 (96%)

Single exon 5,954 (25%) 37,395 (73%)
Multi exon 18,289 (75%) 13,620 (27%)
Number of distinct exons{ 184,710 107,768
Mean number of distinct exons per gene 7.62 2.11
Number of genes with alternative
transcript variants

13,299 (55%) 8,214 (16%)

Total number of predicted transcripts 62,426 69,266
Mean number of transcripts per gene 2.58 1.36
Mean gene locus size (first to last exon) 3,013 bp 972 bp
Mean transcript size (UTR, CDS) 1,878bp 931 bp
Mean exon size 454 bp 536 bp

Gene loci not positioned on barley cv.
Morex assembly{

1,916 (7%) 2,205 (4%)

Tagged by unmapped RNA-seq reads 1,657 (86%) 1,127 (51%)
Not taggedbyunmappedRNA-seq reads 259 (14%) 1,078 (49%)

*Gene locus representatives are (1) RNA-seq based transcript or (2) barley fl-cDNA that were mapped
to the barley cultivar Morex assembly or tagged by RNA-seq based transcript during clustering.
{Exons of two or more transcripts were counted once if they have identical start and stop positions.
{Gene locus representatives are barley fl-cDNAs that were not mapped to the barley cultivar Morex
assembly and not matched by any RNA-seq based transcript
CDS, coding sequence.

ARTICLE RESEARCH

2 9 N O V E M B E R 2 0 1 2 | V O L 4 9 1 | N A T U R E | 7 1 3

Macmillan Publishers Limited. All rights reserved©2012



H. spontaneum may serve here as a reservoir of genetic diversity, using
this diversity may itself be compromised by restricted recombination
and the consequent inability to disrupt tight linkages between desirable
and deleterious alleles. Surprisingly, the short arm of chromosome 4H
had a significantly lower SNV frequency than all other barley chromo-
somes (Supplementary Fig. 33). This may be a consequence of a further
reduction in recombination frequency on this chromosome, which is
genetically (but not physically) shortest. Reduced SNV diversity was also
observed in regions we interpret to be either the consequences of recent
breeding history or could indicate landmarks of domestication (Fig. 3).

Discussion
The size of Triticeae cereal genomes, due to their highly repetitive
DNA composition, has severely compromised the assembly of whole-
genome shotgun sequences and formed a barrier to the generation of
high-quality reference genomes. We circumvented these problems by
integrating complementary and heterogeneous sequence-based geno-
mic and genetic data sets. This involved coupling a deep physical map
with high density genetic maps, superimposing deep short-read whole-
genome shotgun assemblies, and annotating the resulting linear, albeit
punctuated, genomic sequence with deep-coverage RNA-derived data
(full-length cDNA and RNA-seq). This allowed us to systematically
delineate approximately 4 Gb (80%) of the genome, including more
than 90% of the expressed genes. The resulting genomic framework

Table 2 | Alternative splicing and transcripts containing PTCs in
high-confidence genes

General statistics of alternative splicing in high-confidence genes
High-confidence genes with RNA-seq data to monitor
alternative splicing

24,243

Predicted transcripts at high-confidence genes 62,426
Transcripts with complete CDS structures* 62,256
Transcripts with partial CDS structures{ 170

Genes with alternative transcripts 13,299
Predicted transcripts derived from genes with
alternative splicing

51,482

Premature stop codon analysis
Predicted transcripts used for PTC analysis{ 51,338
Transcripts without PTC 41,461 (81%)
Transcripts containing PTC 9,877

PTC caused by intron retention 5,286 (10%)
PTC1 transcripts predicted to be NMD****-sensitive 4,591 (9%)

Gene loci incorporating PTC1/NMD transcripts 2,466

*Entire predicted coding sequence (100%) was transferred to transcript model on barley cultivar
Morex contigs.
{Predicted coding sequence could not be completely projected to genomic transcript model (partial
mapping of fl-cDNA).
{Only transcripts with structures for entire coding sequence on barley cultivar Morex WGS assembly
were considered.
CDS, coding sequence.
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provides a detailed insight into the physical distribution of genes and
repetitive DNA and how these features relate to genetic characteristics
such as recombination frequency, gene expression and patterns of
genetic variation.

The centromeric and peri-centromeric regions of barley chromo-
somes contain a large number of functional genes that are locked into
recombinationally ‘inert’ genomic regions45,46. The gene-space distri-
bution highlights that these regions expand to almost 50% of the
physical length of individual chromosomes. Given well-established
levels of conserved synteny, this will probably be a general feature of
related grass genomes that will have important practical implications.
For example, infrequent recombination could function to maintain
evolutionarily selected and co-adapted gene complexes. It will certainly
restrict the release of the genetic diversity required to decouple advant-
ageous from deleterious alleles, a potential key to improving genetic
gain. Understanding these effects will have important consequences
for crop improvement. Moreover, for gene discovery, forward genetic
strategies based on recombination will not be effective in these regions.
Whereas alternative approaches exist for some targets (for example,
by coupling resequencing technologies with collections of natural or
induced mutant alleles), for most traits it remains a serious impedi-
ment. Some promise may lie in manipulating patterns of recombina-
tion by either genetic or environmental intervention47. Quite strikingly,
our data also reveal that a complex layer of post-transcriptional regu-
lation will need to be considered when attempting to link barley genes
to functions. Connections between post-transcriptional regulation
such as alternative splicing and functional biological consequences
remain limited to a few specific examples48, but the scale of our obser-
vations suggest this list will expand considerably.

In conclusion, the barley gene space reported here provides an
essential reference for genetic research and breeding. It represents a

hub for trait isolation, understanding and exploiting natural genetic
diversity and investigating the unique biology and evolution of one of
the world’s first domesticated crops.

METHODS SUMMARY
Methods are available in the online version of the paper.

Full Methods and any associated references are available in the online version of
the paper.
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METHODS
Building the physical map. BAC clones of six libraries of cultivar ‘Morex’9,49 were
analysed by high information content fingerprinting (HICF)7,9. A total of 571,000
edited profiles was assembled using FPC v9.28 (Supplementary Table 2) (Sulston
score threshold of 10290, tolerance 5 5, tolerated Q clones 5 10%). Nine iterative
automated re-assemblies were performed at successively reduced stringency
(Sulston score of 10285 to 10245). A final step of manual merging of FPC contigs
was performed at lower stringency (Sulston score threshold 10225) considering
genetic anchoring information for markers with a genetic distance # 6 5 cM.
This produced 9,265 FPcontigs (approximately 14-fold haploid genome cov-
erage) (Supplementary Table 2).
Genomic sequencing. BAC-end sequencing (BES). BAC insert ends were
sequenced using Sanger sequencing (Supplementary Note 2.1). Vector and quality
trimming of sequence trace files was conducted using LUCY50 (http://www.jcvi.org/
cms/research/software/). Short reads (that is, , 100 bp) were removed. Organellar
DNA and barley pathogen sequences were filtered by BLASTN comparisons to
public sequence databases (http://www.ncbi.nlm.nih.gov/).

BAC shotgun sequencing (BACseq). Seed BACs of the FPC map were sequenced
to reveal gene sequence information for physical map anchoring. 4,095 BAC clones
were shotgun sequenced in pools of 2 3 48 individually barcoded BACs on Roche/
454 GS FLX or FLX Titanium51,52. Sequences were assembled using MIRA v3.2.0
(http://www.chevreux.org/projects_mira.html) at default parameters with features
‘accurate’, ‘454’, ‘genome’, ‘denovo’. An additional 2,183 gene-bearing BACs (Sup-
plementary Note 3.2) were sequenced using Illumina HiSeq 2000 in 91 combin-
atorial pools13. Deconvoluted reads were assembled using VELVET53. Assembly
statistics are given in Supplementary Table 4.

Whole-genome shotgun sequencing. Illumina paired-end (PE; fragment size
,350 bp) and mate-pair (MP; fragment size ,2.5 kb) libraries were generated
from fragmented genomic DNA54 of different barley cultivars (‘Morex’, ‘Barke’,
‘Bowman’, ‘Igri’) and an S3 single-seed selection of a wild barley accession B1K-
04-1255 (Hordeum vulgare ssp. spontaneum). Libraries were sequenced by
Illumina GAIIx and Hiseq 2000. Genomic DNA of cultivar ‘Haruna Nijo’ (size range
of 600–1,000 bp) was sequenced using Roche 454 GSFLX Titanium chemistry.
Whole-genome shotgun sequence assembly. PE and MP whole-genome shot-
gun libraries were calibrated for fragment sizes by mapping pairs against the
chloroplast sequence of barley (NC_008590) using BWA56. Sequences were qual-
ity trimmed and de novo assembled using CLC Assembly Cell v3.2.2 (http://
www.clcbio.com/). Independent de novo assemblies were performed from data
of cultivars ‘Morex’, ‘Bowman’ and ‘Barke’.
Transcriptome sequencing. Eight tissues of cultivar ‘Morex’ (three biological
replications each) earmarking stages of the barley life cycle from germinating
grain to maturing caryopsis were selected for deep RNA sequencing (RNA-seq).
Plant growth, sampling and sequencing is detailed in Supplementary Information
(Supplementary Note 6). Further mRNA sequencing data was generated from
eight additional spring barley cultivars within a separate study and was used here
for sequence diversity analysis (Supplementary Note 8.2).
Genetic framework of the physical map. The genetic framework for anchoring
the physical map of barley was built on a single-nucleotide variation (SNV) map57

(Supplementary Note 4.3) which provided the highest marker density (3,973) and
resolution (N 5 360, RIL/F8) for a single bi-parental mapping population in
barley. Additional high-density genetic marker maps (Supplementary Note 4.3)
were compared and aligned on the basis of shared markers. Furthermore, we used
genotyping-by-sequencing (GBS)58 to generate high-density genetic maps com-
prising 34,396 SNVs and 21,384 SNVs as well as 241,159 and 184,796 dominant
(presence/absence) tags for the two doubled haploid populations Oregon Wolfe
Barley14 and Morex 3 Barke45, respectively. Altogether 498,165 marker sequence
tags were used (Supplementary Table 11).
Genetic anchoring. Genetic integration of the physical map involved procedures
of direct and indirect anchoring.

Direct anchoring. Genetic markers were assigned to BAC clones/BAC contigs
by three different procedures (Supplementary Note 4.3 and Supplementary Table
9). 2,032 PCR-based markers from published genetic maps59,60 were PCR-screened
on custom multidimensional (MD) DNA pools (http://ampliconexpress.com/)
obtained from BAC library HVVMRXALLeA9. A single haploid genome equi-
valent of these MD pools was used for multiplexed screening of 42,302 barley EST-
derived unigenes represented on a custom 44K Agilent microarray as previously
described61. 27,231 barley unigenes, comprising 1,121 with a genetic map position45,62,
could be assigned to 12,313 BACs. 14,600 clones from BAC library HVVMRXALLhA
were screened with 3,072 SNP markers on Illumina GoldenGate assays45 leading to

1,967 markers directly assigned to BACs13; approximately one third of this
information has been included in the present work.

Indirect anchoring. Sequence resources associated with the FPCmap frame-
work provided the basis for extensive in silico integration of genetic marker
information (Supplementary Note 4.3 and Supplementary Table 11). Repeat
masked BES sequences, sequences of anchored markers and 6,295 sequenced
BACs allowed integration of 307 Mb of ‘Morex’ whole-genome shotgun contigs
into the FPC map. Genetic markers and barley gene sequences were positioned to
this reference by strict sequence homology association. Overall 8,170 (,4.6 Gb)
BAC contigs received sequence and/or anchoring information (Supplementary
Note 4). 4,556 FPC contigs (S5 3.9 Gb) were anchored to the genetic framework.
Analysis of repetitive DNA and repeat masking. Repeat detection and analysis
was undertaken as previously described18,20 with the exception of an updated
repeat library complemented by de novo detected repetitive elements from barley
(Supplementary Note 5).
Gene annotation, functional categorization and differential expression.
Publically available barley full-length cDNAs24 and RNA-seq data generated in
the project (Supplementary Note 6) were used for structural gene calling (Sup-
plementary Note 7). Full-length cDNAs and RNA-seq data were anchored to repeat
masked whole-genome shotgun sequence contigs using GenomeThreader63 and
CuffLinks64, respectively, the latter providing also information of alternatively
spliced transcripts. Structural gene calls were combined and the longest ORF for
each locus was used as representative for gene family analysis (Supplementary
Note 7.1.2).

Gene family clustering was undertaken using OrthoMCL (Supplementary Note
7.1.3) by comparing against the genomes of Oryza sativa (RAP2), Sorghum bicolor,
Brachypodium distachyon (v 1.4) and Arabidopsis thaliana (TAIR10 release).

Analysis of differential gene expression (Supplementary Note 7.2) was per-
formed on RNA-seq data using CuffDiff 65.
Analysis of sequence diversity. Genome-wide SNV was assessed by mapping
(BWA v0.5.9-r1656) the original sequence reads of sequenced genotypes to a de
novo assembly of cultivar ‘Morex’. Sequence reads from RNA-seq were mapped
against the ‘Morex’ assembly. Details are provided in Supplementary Note 8.
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