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Part III

A P P E N D I C E S





AppendixA
M AT E R I A L T E S T I N G

Abstract

This appendix reports the methods and detailed results of material tests performed
as part of the experimental studies in Chapters 2 and 3.

a.1 introduction

As part of the quasistatic and dynamic experimental tests reported in Chapters 2

and 3, complimentary tests on small-sized masonry specimens were conducted
in order to quantify values of key material properties. The main engineering
parameters of interest were:

• Flexural tensile strength of the masonry, fmt (Section A.2).

• Lateral modulus of rupture of the brick units, fut (Section A.3).

• Unconfined compressive strength of the masonry, fmc (Section A.4).

• Young’s modulus of elasticity of the brick units (Eu), mortar joints (Ej), and
overall masonry (Em) (Section A.4).

• Coefficient of friction along the masonry bond, µm (Section A.5).

The material tests reported herein were conducted on masonry specimens con-
structed with two different types of units: (i) perforated full-sized brick units
(Figure 2.1) with dimensions 230× 110× 76 mm and 10 mm mortar joints, as used
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332 material testing

Table A.1: Types of material properties determined by experimental testing.

Material property Full-sized perforated units Half-sized solid units
(Quasistatic test study) (Dynamic test study)

fmt Yes Yes
fut Yes No
fmc Yes Yes
Em, Eu, Ej Yes Yes
µm No Yes

in the quasistatic test study; and (ii) solid half-sized brick units with dimensions
110× 50× 39 mm and 5 mm mortar joints, as used in the dynamic test study. Table
A.1 summarises the properties determined for the respective types of brickwork.
Mean values of the material properties are presented in Sections 2.3.1 and 3.2.1.
The purpose of this appendix is to report these results, including the test methods,
in greater detail.

a.2 flexural tensile strength

a.2.1 Test Method

The flexural tensile strength of the masonry, fmt, was determined using the bond
wrench method as prescribed by as 3700. The test arrangement (Figure A.1)
consisted of a clamp and vice system used to secure the test specimen, and the
bond wrench fastened to the top unit in the specimen. The test was performed by
manually applying a downward force on the wrench handle using one’s hands,
thus subjecting the joint to a bending moment in addition to a small compressive
axial load. The load was slowly increased until failure of the bond. A calibrated
strain gauge on the horizontal arm of the wrench conveyed the load applied to
the handle to the data acquisition system. For each joint tested, the load to cause
failure was recorded and used to calculate the corresponding fmt based on the
procedure outlined in Section A.2.2.

The bond wrench used for the full-sized brick specimens (Figure A.1) was an
as 3700 compliant wrench which had already been used in previous experimental
studies [Doherty, 2000; Willis, 2004]. The wrench used for the half-sized brick
specimens was designed according to as 3700 specifically for this test study. Its
specifications are shown by Figure A.2.

In both the quasistatic and dynamic test studies, a total of 12 joints were tested
for every batch of mortar used in constructing the main test walls. Two types of
test specimens were used: five-unit masonry prisms (Figure A.3a), and (ii) masonry
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Figure A.1: Bond wrench test arrangement, shown for the five-brick prism specimens
constructed using full-sized brick units.
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Figure A.2: Bond wrench designed specifically for the half-sized brick units used in the
dynamic test study. Dimensions are in millimetres.
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Figure A.3: Types of masonry specimens used for bond wrench tests.
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couplets (Figure A.3b). The purpose of the prisms was to reduce the wastage of
brick units, since a prism would yield four tests from five bricks, as opposed to a
couplet yielding only a single test from two bricks. In both types of specimens, the
mortar joint was made to a thickness equal to that used in the construction of the
main panels, which was 10 mm for the full-sized units in the quasistatic test study
and 5 mm for the half-sized units in the dynamic test study.

The prism specimens were used initially, including for mortar batches from
walls s1–s6. During tests on prisms, steel-stiffened timber plates were clamped onto
the brick units below the top joint, in order to isolate the top joint and protect the
joints below by providing additional flexural stiffness (Figure A.1). It was found,
however, that this arrangement was not always successful in preventing premature
failure of one the other joints, and as a consequence, there were numerous joints
for which no data was recorded. Therefore, after testing the prism specimens from
walls s1–s6, this arrangement was abolished, and only couplets were used for the
remaining walls s7–s8 and d1–d5.

a.2.2 Calculation of fmt

Calculation of fmt assumes that at the point of failure, the section along the bonded
interface exhibits a linear stress profile and that failure occurs due to the stress
in the extreme tensile fibre exceeding the tensile strength. By accounting for the
induced stresses due to the combined applied moment and axial load, the tensile
bond strength is calculated as

fmt =
M
Z
− N

A
, (A.1)

where M is the applied moment at failure, N is the applied axial load at failure, Z
is the elastic section modulus of the bedded area, and A is the bedded area.

a.2.3 Results for Perforated Full-Sized Brick Specimens

Typical examples of the observed bond failure for the perforated brick unit speci-
mens are shown by Figure A.4. Failure occurred predominantly by separation of
the bond interface between the brick unit and mortar. In some specimens, the failed
surface was confined to one brick unit with the entirety of the mortar remaining
adhered to the second unit, whilst in others, the failure surface cut across from one
unit to the other. Furthermore, since the mortar had a tendency to key into the
perforations in the brick units; in order for the joint to fail, this mortar had to either
break or pull out of the holes. Typically, a combination of both of these modes was
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Figure A.4: Typical bond failure of the full-sized perforated brick specimens during bond
wrench test.

observed, as shown by the examples in Figure A.4. The interlock effects between
the brick units and mortar are generally expected to have a beneficial effect on fmt.

The values of fmt determined from the bond wrench tests are provided in Table
A.2, with three different approaches used to group the data. For each approach, the
table provides the number of data points n, mean value of fmt, and the coefficient
of variation (CoV). Figure A.5 also shows the measured fmt data points graphically
for each wall.

The methods of data grouping used in Table A.2 are as follows.

1. The first approach (columns 1–5) is based on individual bond data grouped
by batches. Each set consists of approximately 12 data points depending on
the number of joints successfully tested from each batch.1

2. The second approach (columns 5–8) is based on individual bond data grouped
by walls. The number of data points corresponds to the number of joints tested
from each wall, which ranged between 59 and 83. Further statistical tests
are conducted on the pooled data sets in Section 5.3.1, including probability
distribution fitting.

3. The third approach (columns 9–11) is based on batch mean values grouped
by walls. Hence, in this approach, each constituent batch is given the same

1Batches 4.6 and 6.1 have additional data points, because extra test specimens were constructed
by mistake.
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(d) Wall s4

Figure A.5: Measured fmt data (in MPa) for perforated full-sized unit specimens used in
the quasistatic test study. Results are shown for the individual mortar batches used in
the construction of each wall. Blue crosses ( ) show individual joint data; black circles
( e) show mean values for each batch; solid gray line ( ) shows the average fmt for the
wall, calculated as the mean of the batch averages; and dashed black line ( ) shows the
average fmt for the wall, calculated as the mean of the individual bond data.
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Figure A.5: (cont’d).
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Table A.2: Results of bond wrench tests on full-sized perforated brick units used in the
quasistatic test study.

Batch
Sample consisting of bond

data within batch Wall
Sample consisting of

pooled bond data
Sample consisting of

batch averages

n mean
fmt

[MPa]

CoV t-test
P-value

n mean
fmt

[MPa]

CoV n mean
fmt

[MPa]

CoV

1.1 11 0.749 0.10 0.53 s1 66 0.721 0.20 6 0.721 0.07
1.2 12 0.672 0.25 0.29
1.3 11 0.802 0.23 0.10
1.4 11 0.720 0.16 0.98
1.5 11 0.728 0.21 0.88
1.6 10 0.654 0.16 0.16

2.1 9 0.407 0.12 0.02 s2 66 0.524 0.27 6 0.520 0.22
2.2 12 0.413 0.22 0.01
2.3 10 0.571 0.19 0.31
2.4 11 0.483 0.14 0.35
2.5 12 0.526 0.13 0.95
2.6 12 0.718 0.18 0.00

3.1 12 0.459 0.29 0.33 s3 68 0.502 0.28 6 0.499 0.13
3.2 12 0.520 0.29 0.69
3.3 10 0.465 0.22 0.43
3.4 12 0.621 0.30 0.01
3.5 12 0.489 0.16 0.76
3.6 10 0.443 0.24 0.20

4.1 12 0.733 0.26 0.03 s4 81 0.636 0.21 6 0.639 0.09
4.2 12 0.632 0.19 0.95
4.3 12 0.595 0.22 0.44
4.4 12 0.572 0.15 0.19
4.5 12 0.684 0.15 0.21
4.6 22 0.616 0.20 0.31

5.1 12 0.732 0.09 0.07 s5 83 0.656 0.21 7 0.655 0.12
5.2 12 0.725 0.17 0.11
5.3 12 0.709 0.21 0.23
5.4 12 0.546 0.16 0.01
5.5 12 0.598 0.19 0.17
5.6 12 0.710 0.24 0.23
5.7 11 0.567 0.19 0.04

6.1 16 0.460 0.22 0.25 s6 74 0.494 0.22 6 0.496 0.11
6.2 11 0.446 0.26 0.17
6.3 11 0.562 0.15 0.05
6.4 12 0.457 0.19 0.25
6.5 12 0.492 0.11 0.93
6.6 12 0.562 0.23 0.05

7.1 12 0.718 0.16 0.45 s7 60 0.682 0.23 5 0.682 0.10
7.2 12 0.709 0.25 0.59
7.3 12 0.647 0.26 0.48
7.4 12 0.760 0.17 0.11
7.5/8.5 12 0.578 0.22 0.03

8.1 12 0.756 0.14 0.31 s8 59 0.713 0.19 5 0.714 0.12
8.2 12 0.683 0.16 0.49
8.3 12 0.767 0.20 0.23
8.4 11 0.786 0.12 0.10
8.5/7.5 12 0.578 0.22 0.00
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weighting toward the mean fmt value for the wall, regardless of the number
of joints tested. The number of data points corresponds to the number of
batches used in a particular wall, which ranged between 5 and 7. The mean
values of fmt for each wall determined using this method are reported in
Chapter 2 (Table 2.3) and are further used in the analytical studies reported
in Section 4.5. It is worth noting that the difference between the mean values
of fmt calculated using this method and the second approach is minor (less
than 1%).

Student’s t-test (two-sample with assumed equal variance) was performed
to assess whether the data for individual batches of mortar (first data grouping
approach) could be considered to have the same underlying distribution as the
data when it was pooled for the parent wall (second data grouping approach). The
calculated P-values are listed in the 5th column of Table A.2. These represent the
probability that the batch data follows the same distribution as the pooled data. By
adopting a fairly conservative P-value of 0.25 as the limit of statistical significance,
the results indicate that the difference between the distribution of the batch data
and the pooled wall data is statistically significant (P-value < 0.25) in approximately
50% of the batches. This suggests that the bond data for the individual batches
should not be pooled together into a single data set for the overall wall, because
the mean values of the batches are statistically different. However, it can likewise
be argued that since inter-batch variability would naturally occur in practice, and
calculation of the strength of a wall tends to be based on a single value of fmt,
pooling of the individual batch data sets in order to calculate a mean value of fmt

to use for analysis, is also valid.

On the basis of the mean-of-batch-average approach, the mean bond strength
for the different walls ranges between 0.496 and 0.721 MPa. The CoV in the different
walls ranges between 0.19 and 0.28 based on the pooled bond data. These values
are considered to be typical of the 1:2:9 (cement, lime, sand) mortar mix used.

a.2.4 Results for Solid Half-Sized Brick Specimens

Bond failure of solid half-sized brick couplet specimens consistently occurred such
that the failure plane cut between the mortar and one unit in the couplet, leaving
the mortar adhered entirely to the second unit. This observation is in contrast to
the type of failure observed for the perforated unit specimens (Figure A.4), where,
due to the interlock between the mortar and the brick unit, the failure surface had a
tendency to cut through the mortar itself. Because of the lack of interlock between
the solid units and the adjoining mortar, the bond strength is expected to be lower
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Figure A.6: Measured fmt data in (in MPa) for solid half-sized unit specimens used in the
dynamic test study. Data is shown for the 4 batches of mortar which were used to construct
all of the five walls. Red crosses ( ) show individual joint data; black circles ( e) show mean
values for each batch; solid gray line ( ) shows the average fmt for the wall, calculated
as the mean of the batch averages; and dashed black line ( ) shows the average fmt for
the wall, calculated as the mean of the individual bond data.

Table A.3: Results of bond wrench tests on the half-sized solid brick units used from the
dynamic test study.

Batch Sample consisting of bond
data within batch

Sample consisting of
pooled bond data

Sample consisting of
batch averages

n mean
fmt

[MPa]

CoV t-test
P-value

n mean
fmt

[MPa]

CoV n mean
fmt

[MPa]

CoV

1 11 0.414 0.69 0.99 43 0.415 0.53 4 0.416 0.01
2 10 0.416 0.44 0.99
3 10 0.421 0.51 0.94
4 12 0.411 0.51 0.95

than for the perforated units. Indeed, the results show this to be the case.

Figure A.6 graphs the data for the four batches of mortar tested. The associated
results are provided in Table A.3 for each of the three methods of data grouping
discussed in Section A.2.3. The mean values of fmt for the four batches all range
between 0.411 and 0.421 MPa. The t-test was used to assess whether the four
batches can be considered to all originate from the same batch. The resulting
P-values of the t-test are provided in the 5th column of Table A.3. That the P-
values for all four batches are greater than 0.9 suggests that they can be treated
as originating from the same batch. Pooling the data from the individual batches
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together gives a single data set consisting of 43 data points, with a mean fmt of
0.415 MPa and a CoV of 0.53. Therefore, not only is the bond strength of these units
lower than for the perforated units (Section A.2.3), but it also has higher variability.

a.3 lateral modulus of rupture

a.3.1 Test Method

The lateral modulus of rupture of the brick units, fut, was determined using a four
point bending test as illustrated by Figure A.7. A single test specimen consisted of
three units glue bonded together end-to-end to form a beam. With the specimen
resting on simple supports at either end, two point loads of equal magnitude were
applied onto the central unit, generating a region of constant bending moment and
zero shear force along the central unit. The applied load was increased until failure.
A total of 12 beam specimens were tested using the perforated brick units from the
quasistatic test study.

a.3.2 Calculation of fut

Based on the assumptions that the section exhibits a linear elastic profile at the
instance of failure and that failure occurs when the tensile stress in the extreme
fibre reaches the tensile capacity, the lateral modulus of rupture is calculated as

fut =
M
Z

, (A.2)

where Z is the elastic section modulus of the beam (equal to hut2
u/6), and M is the

applied moment at failure. Using statics, M is calculated from the applied point
load P at failure (Figure A.7) as

M =
P Lx

2
, (A.3)

where is Lx is the horizontal distance between the support and loading point on
the beam (150 mm in these tests).

a.3.3 Results for Perforated Full-Sized Bricks

In each of the 12 beam specimens, failure occurred somewhere within the maximum
moment region in the central unit, such that the failure plane cut across the
perforations in the brick unit. An example of typical failure is shown in Figure A.7.
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Figure A.7: Four point bending test used to determine the lateral modulus of rupture,
including typical failure of the specimens.

The measured fut data for the 12 specimens (Figure A.8) has a mean value of
3.55 MPa and a CoV of 0.27.
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Figure A.8: Measured fut data (in MPa) for the perforated full-sized bricks units. Blue
crosses ( ) show individual data points; black circle ( e) indicates the mean value.

a.4 compression tests

Compression tests were performed to determine several properties, including the
compressive strength of the masonry ( fmc); and the Young’s modulus of elasticity
of the brick units (Eu), mortar joints (Ej), and overall masonry (Em).

a.4.1 Test Method

The test arrangements used for the full-sized and half-sized brick specimens were
slightly different; hence, they will be discussed separately.

Arrangement Used on Full-Sized Brick Specimens

For the full-sized brickwork from the quasistatic tests, the specimens were identical
to the 5-brick prisms used in the bond wrench tests (Figure A.3a). A single specimen
was built and tested for each batch of mortar. The compression test arrangement is
illustrated in Figure A.9. For the purpose of quantifying the Young’s modulus of
elasticity, deflections were measured using Demec gauges at two locations along the
specimen: an 8-inch gauge, used to measure deformations across a combination of
bricks and mortar joints on one side of the specimen (spanning across two mortar
joints); and a 2-inch gauge, positioned on the opposite side of the prism and used
directly to measure the deformation along on the central brick. Note that since the
Demec points for the 8-inch gauge could not be positioned precisely at the centre
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Figure A.9: Compression test arrangement used for full-sized brick specimens.

points of the bricks, the gauge did not span a representative proportion of bricks
and mortar joints; however, this was corrected in the subsequent calculation of the
Young’s moduli using the procedure outlined in Section A.4.3.

The specimens were tested using a mechanical compression rig capable of
imposing loads up to 1000 kN. A thin timber plate was placed between the test
specimen and the bottom plate of the compression machine. Prior to the application
of a load, a moderate quantity of dental paste was spread between the top loading
face of the specimen and the top plate of the compression machine, which was left
to harden to ensure a uniform distribution of the compressive load. Before taking
any deformation measurements, the specimen was subjected to a compressive load
of 150 kN (approximately 40% of the ultimate compressive strength) and unloaded
back to zero load in order to allow it to settle. The test was performed by applying
a compressive load to the specimen at increments of 25 kN up to a maximum load
of 150 kN. At each level of compression, the deformations were measured across
the 2-inch and 8-inch gauges. The load was then dropped back to zero and the
process repeated three times for each test prism. The specimen was then subjected
to an increasing compressive load until failure.

Arrangement Used on Half-Sized Brick Specimens

Due to complications with the results obtained from the original compression test
arrangement used on the full-sized brick specimens, which are discussed in greater
detail in Section A.4.4, a revised arrangement was implemented for tests on the
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Figure A.10: Compression test arrangement used for half-sized brick specimens.

half-sized brick specimens used in the dynamic test study. The revised arrangement
is shown by Figure A.10. Its main improvements over the original setup (Figure
A.9) were as follows.

• Deformation along the masonry gauge (bricks + mortar joints) was measured
using a linear variable differential transformer (LVDT) displacement transducer
and deformation along the brick as measured using a strain gauge. In addition
to this instrumentation being far more accurate than the Demec gauges used
in the original setup, because the data was recorded automatically by a data
acquisition system it meant that tests could be performed much quicker.
A further advantage of using LVDTs was that the length of masonry over
which deformation was measured was designed to span precisely between
the centres of the (second and seventh) bricks, in contrast to the predefined
distance of the 8-inch Demec gauge used in the original tests.

• Deformation measurements were made on both sides of the specimen using
separate LVDTs and strain gauges. Subsequent averaging of the deformation
measurements on the two opposite sides was performed to remove any effects
of undesired bending within the specimen. It is believed that bending may
have significantly affected the results obtained using the original test setup,
as discussed in Section A.4.4.



a.4 compression tests 347

• As the half-sized brick specimens comprised eight-brick prisms, the gauge
measuring deformation spanned across five bricks and five mortar joints.
This is in contrast to the original setup, where the gauge spanned across only
two bricks and two joints.

Another minor aspect of the revised test arrangement was that dental paste was
applied above and below the specimen and the compression machine in order to
facilitate a uniform distribution of the applied pressure.

The test was conducted by slowly applying a compressive force to the specimen
up to 35 kN (approximately 25% of the failure load), during which data was
recorded by a data acquisition system. The load was slowly released and reapplied
for a total of four repetitions. Of these, only the last three were used in calculating
the Young’s moduli. Finally the specimen was subjected to an increasing load until
failure.

a.4.2 Calculation of fmc

The unconfined compressive strength of the masonry, fmc, was determined in
accordance with as 3700 as

fmc = ka

(
Fsp

Ad

)
, (A.4)

where ka is a factor obtained from the code, Fsp is the applied compressive force at
failure, and Ad is the bedded area of the specimen. The factor ka is dependent on
the height/thickness aspect ratio of the specimen and accounts for the effects of
horizontal confinement of the specimen due to platen restraint. Based on the code,
ka was taken as 0.911 for the full-sized 5-brick prisms and 1.0 for the half-sized
eight-brick prisms.

a.4.3 Calculation of Eu, Ej and Em

The steps to calculate the Young’s modulus for the brick units (Eu), mortar joints
(Ej), and the masonry consisting of bricks and mortar joints (Em), are outlined as
follows:

1. The recorded data was converted from its original format to stress versus
strain (σ-ε).

2. For both gauges within a specimen, a linear regression was fitted to the σ-ε
data during each push to determine the respective Young’s moduli. The
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Young’s modulus for each gauge was then taken as the average of the three
pushes. For the ith specimen, let us denote the value measured across the
brick gauge as (Eu)i, and the value measured across the masonry gauge as
(Emg)i.

From the resulting data, the mean value of the Young’s modulus for the brick
units, Êu, was calculated as the average value of (Eu)i for the tested specimens:

Êu =
1
n

n

∑
i=1

(Eu)i. (A.5)

Similarly, this data set was used to calculate other statistical properties for Eu,
including the CoV.

Calculation of the mean Young’s modulus of the masonry, Êm, however, was
not as straightforward as simply averaging the measured (Emg)i for all specimens,
for two reasons: Firstly, the stiffness of the brick (Eu)i measured in the ith specimen
may have varied significantly from the mean value Êu due to the random variability
in Eu, which will influence the stiffness (Emg)i recorded across the masonry gauge.
Secondly, in the case of the full-sized brick specimens, the Demec gauge measuring
the deformation across the masonry was not able to span between the centres of
the bricks;2 therefore, the relative proportions of brick and mortar captured by the
masonry gauge were not representative of the true relative proportions of these
constituents within the masonry.

To correct for these effects, a back-calculation process was firstly used to calcu-
late the Young’s modulus of the mortar joints, (Ej)i, for the ith specimen (according
to Step 3). Then, a forward-calculation process was used to determine the Young’s
modulus of the masonry, (Em)i, corresponding to the ith specimen (as per Step 4).

It can be shown that for a member composed of multiple elements a, b, c, . . .
joined in series, the relationship between the overall member’s apparent Young’s
modulus Etot and the Young’s moduli Ea, Eb, Ec, . . . of the components is

1
Etot

=
ra

Ea
+

rb

Eb
+

rc

Ec
+ . . . , (A.6)

where ra, rb, rc, . . . are the respective proportions of each component element within
the overall member. These must all add up to unity, such that

1 = ra + rb + rc + . . . . (A.7)

2This was not an issue for the half-sized brickwork due to the different test arrangement used.
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Figure A.11: Information used in back-calculation of the Young’s modulus of the mortar
joints (Ej)i for the ith specimen. Shown for the full-size brick specimen test arrangement.
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section being calculated  

Assume mean value 
of brick stiffness Eu 

Use calculated value 
of joint stiffness (Ej)i  

Figure A.12: Information used in forward-calculation of the representative Young’s modu-
lus of the masonry, (Em)i, for the ith specimen.

Equations (A.6) and (A.7) form the basis for remaining steps in the calculation
procedure, outlined as follows:

3. The Young’s modulus of the mortar joints (Ej)i in each specimen was then
back-calculated. Figure A.11 shows the information assumed during this
process. The calculation assumed that the brick along which deformation was
measured had the measured value of stiffness (Eu)i, and that the remaining
bricks had the mean value Êu. Substituting these into the general relationship,
Eq. (A.6), and rearranging in terms of (Ej)i gives

(Ej)i = rj

(
1

(Emg)i
− ru known

(Eu)i
− ru unknown

Êu

)−1

, (A.8)

where rj, ru known and ru unknown are the relative span proportions of the mortar
joints, the brick along which deformation was measured, and the bricks for
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which deformation was not measured, respectively, within the sample. These
must add up to unity:

rj + ru known + ru unknown = 1. (A.9)

4. Finally, a forward-calculation was used to determine a representative Young’s
modulus of the masonry, (Em)i, for each specimen. Figure A.12 shows the
information used in this calculation. It was assumed that for each specimen,
all bricks had the mean Young’s modulus Êu and that the mortar joints had
the Young’s modulus (Ej)i for the ith specimen, as calculated using Step 3.
Substituting these into Eq. (A.6) and rearranging in terms of (Em)i gives

(Em)i =
(

ru

Êu
+

rj

(Ej)i

)−1

, (A.10)

where ru and rj are the relative proportions of brick and mortar within the
masonry, whose sum is unity:

rj + ru = 1. (A.11)

These are calculated as

ru =
hu

hu + tj
, and rj =

tj

hu + tj
, (A.12)

where hu is the height of the brick and tj is the thickness of the mortar
joint. For example, for the full-sized masonry with brick height hu = 76 mm
and joint thickness tj = 10 mm, we get rj = 10/(76 + 10) = 0.12 and ru =
76/(76 + 10) = 0.88.

Once the Young’s moduli of the masonry, (Em)i, and mortar joints, (Em)i, were
calculated for each specimen using Steps 3 and 4, the mean values and CoVs were
determined for both Em and Ej.

a.4.4 Results for Perforated Full-Sized Brick Specimens

Horizontal tensile splitting was the most commonly observed mode of compressive
failure, as shown by Figure A.13a. In most instances of splitting failure, the onset of
the failure was preceded by a gradual decline in the load resisted by the specimen
following the peak load capacity. Less commonly observed was an ‘explosive’
mode of failure, whereby the specimen failed almost immediately after attaining
its ultimate load capacity. This type of failure was typically accompanied by a loud



a.4 compression tests 351

(a) Splitting failure (b) Explosive failure

Figure A.13: Typical compressive failure of perforated full-sized brick specimens.

‘explosion’ sound from the specimen, due to the sudden release of energy. The
remains after such failure are shown by Figure A.13b.

The results for the various properties including Eu, Ej, Em and fmc are presented
in Table A.4 for each batch (specimen), with the mean values for each wall presented
in Table A.5. The data points for each individual test are also displayed graphically
by Figure A.14.

Student’s t-test was used to compare the data for each wall to a global pooled
data set, in order to establish whether there was a statistically significant difference
between the data for the different walls. The resulting P-values from the t-tests
are provided in Table A.5. By adopting a typical statistical significance limit value
of 0.25, approximately three out of eight P-values fall below this value for each
of the parameters investigated. This indicates that there is a significant difference
between the batches from the different walls.

A peculiar result of the t-test is that there appears to be a significant difference
between the measured Young’s modulus of the bricks (Eu) for specimens originating
from the different walls. This should not be the case, since Eu is independent of
the mortar surrounding the brick units, and furthermore, all brick units originated
from the same batch at manufacture.

A second peculiarity can be seen by comparing the mean values of Eu and Ej in
Figures A.14a and A.14b, which show a general trend whereby when one of these
values is high, the other is low, and vice versa. This is likely to be due to internal
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Table A.4: Material properties determined from compression tests on perforated brick
units, with the results organised according to each batch.

Batch Eu Ej Em fmc
[MPa] [MPa] [MPa] [MPa]

1.1 37, 400 448 3, 620 15.9
1.2 32, 600 447 3, 610 17.1
1.3 45, 300 307 2, 530 17.1
1.4 32, 700 417 3, 390 16.1
1.5 41, 600 333 2, 730 18.7
1.6 51, 900 399 3, 250 21.1

2.1 100, 000 187 1, 570 10.8
2.2 45, 300 272 2, 250 12.6
2.3 62, 900 248 2, 060 11.7
2.4 54, 000 233 1, 940 12.1
2.5 57, 000 259 2, 150 15.7
2.6 47, 000 429 3, 470 18.4

3.1 45, 100 335 2, 740 17.4
3.1(r) 38, 900 445 3, 590 12.3
3.2 42, 300 307 2, 530 16.1
3.3 49, 200 351 2, 880 14.6
3.4 41, 300 662 5, 200 18.0
3.5 73, 400 267 2, 210 12.3
3.6 52, 400 249 2, 070 15.3

4.1 24, 800 969 7, 310 17.8
4.2 34, 400 776 6, 000 15.4
4.3 51, 900 469 3, 780 20.3
4.4 33, 600 466 3, 760 14.1
4.5 38, 200 620 4, 890 16.1
4.6 38, 100 1, 090 8, 120 15.2
4.6(r) 38, 500 661 5, 190 18.3

5.1 58, 100 377 3, 070 18.0
5.2 40, 800 595 4, 710 17.9
5.3 112, 000 212 1, 770 17.5
5.4 79, 300 857 6, 560 17.5
5.5 42, 700 583 4, 620 17.4
5.6 43, 600 504 4, 040 17.2
5.7 53, 200 388 3, 160 16.2

6.1 51, 300 360 2, 950 15.8
6.2 41, 900 365 2, 990 16.8
6.3 51, 400 434 3, 520 13.0
6.4 54, 300 230 1, 920 15.3
6.5 47, 900 341 2, 800 15.2
6.6 69, 300 275 2, 280 18.8

7.1 51, 700 526 4, 210 15.8
7.2 71, 900 369 3, 020 13.5
7.3 42, 700 769 5, 950 16.5
7.4 89, 900 528 4, 220 15.2
7.5/8.5 53, 500 402 3, 260 14.6

8.1 41, 800 331 2, 720 16.7
8.2 95, 900 338 2, 770 15.7
8.3 72, 700 370 3, 020 17.3
8.4 52, 800 433 3, 510 16.2
8.5/7.5 53, 500 402 3, 260 14.6

Mean 52, 700 442 3, 540 16.0
CoV 0.35 0.44 0.41 0.14

notes:
·Extra specimens were mistakenly built for batches 3.1 and 4.6.
·The calculated mean and CoV values do not double count batch 7.5/8.5, which was shared between walls s7

and s8.
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(a) Young’s modulus of elasticity of the brick units, Eu.
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(b) Young’s modulus of elasticity of the mortar joints, Ej.

Figure A.14: Material property data determined from compression tests on full-sized
perforated unit specimens. Blue crosses ( ) indicate data points for the different batches;
black circles ( e) show the mean values for each wall; solid gray line ( ) shows the
average value for all walls calculated as the mean of the wall averages; and dashed black
line ( ) shows the average value for all walls calculated as the mean of the individual
batch data.
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(d) Unconfined compressive strength of the masonry, fmc.

Figure A.14: (cont’d).
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Figure A.15: Relationship between the measured Young’s moduli for the 8 inch and 2

inch gauges, located on opposite sides of the specimen. Blue crosses ( ) indicate data for
individual batches; black circles ( e) show the average values for each wall.

bending within the specimens combined with a design flaw in the test arrangement,
in that deformations across the 2-inch masonry gauge and the 8-inch brick unit
gauge were measured on opposite sides of the specimen (Figure A.9). If the top and
bottom surfaces of the specimen are not parallel, then the specimen can undergo
bending due to eccentric application of the axial force. On the basis of the results, it
is likely that such effects occurred, even though care was taken in the design of the
test arrangement to ensure that the pressure exerted onto the specimens was evenly
distributed. This conclusion is further supported by Figure A.15, which plots the
value of the Young’s modulus measured across the 2-inch brick gauge versus the
value measured across the 8-inch gauge (for the masonry). Whilst the data points
are highly scattered, there appears to be an inverse relationship between the two
moduli.

A simple improvement to the test arrangement would be to position both types
of gauges on each side of the specimen, as this would enable any influence of
bending to be eliminated by averaging the deformations measured along the two
sides. This modification was implemented in the test arrangement subsequently
used for the small-sized brick specimens (Figure A.10).

Because of the aforementioned faults in the test arrangement, it is suggested that
the Ej and Em results provided in Table A.5 should be treated with caution, as there
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Figure A.16: Typical compressive failure of solid half-sized brick specimens.

appears to be significant variation in the values from wall to wall. As an attempt
to minimise the error, it is recommended that the overall average results should
be used, as given at the bottom of Table A.4. On this basis, the brickwork had the
mean material properties: Eu = 52,700 MPa, Ej = 442 MPa, Em = 3,540 MPa, and
fmc = 16.0 MPa.

a.4.5 Results for Solid Half-Sized Brick Specimens

All four specimens underwent splitting failure as shown by Figure A.16. The onset
of failure was ‘gentle’ and could be anticipated due to a reduction in the resisted
load.

The stress–strain curves for the masonry and brick components of the four
specimens are shown by Figure A.17. It is seen that the curves are consistent for
each of the four specimens. An exception is the specimen from batch 3, which had
one of its mortar joints broken during transportation and is shown to have a much
softer response than the other three. As a result, this specimen was omitted from
the calculation of the Young’s modulus of the masonry, Em.

Results for each specimen are given in Table A.6. The mean material properties
of the brickwork include: Eu = 32,100 MPa, Ej = 1,410 MPa, Em = 9,180 MPa, and
fmc = 25.9 MPa.
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Figure A.17: Compressive stress versus strain for half-sized brick specimens. All four tests
conducted are superimposed. The solid lines show tests used to calculate the Young’s
moduli and dashed line shows the push to failure. The rightmost curve represents the
response of specimen 3 which was broken prior to testing and was omitted from the
calculation of the mean Young’s modulus of the masonry. Curves are only shown up to
ultimate load, as the deformation measurements became inaccurate beyond this point.

Table A.6: Results of compression tests on the half-sized solid brick units used in the
dynamic test study.

Batch Em Eu Ej fmc
[MPa] [MPa] [MPa] [MPa]

1 7, 720 37, 900 1, 110 26.2
2 9, 360 33, 600 1, 430 26.1
3 − 31, 100 − 22.9
4 10, 500 25, 700 1, 670 28.6

Mean 9, 180 32, 100 1, 410 25.9
CoV 0.15 0.16 0.20 0.09
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a.5 coefficient of friction

a.5.1 Test Method

The test apparatus used to determine the coefficient of friction, µm, along the broken
joint interface is shown by Figure A.18. The specimens used in these tests were
put together from the broken couplets used in the bond wrench tests (described
in Section A.2.1). Each specimen consisted of three bricks, each with its originally
adhered mortar, stacked on top of each other. A vertical load was applied to the top
brick using either a 20, 40, 60 or 80 kg weight. These weights were chosen in order
to generate similar levels of vertical stress to those used in the main test walls in the
shaketable test study. The test was conducted by applying a horizontal load to the
central brick using a hand operated hydraulic ram, while the top and bottom units
were restrained from moving horizontally. The load exerted by the ram onto the
central brick, together with the displacement of the central brick, were conveyed to
a data acquisition system. The test was stopped once the central brick displaced by
approximately 16 mm. A total of eight sets of specimens were tested at each level
of axial compression.

a.5.2 Calculation of µm

The forces applied to the specimen are shown by Figure A.18. Since the specimen
is subjected to the fixed vertical force Fv, at the point of slip, the horizontal forces
across the two joints must be µ1Fv and µ2Fv, where µ1 and µ2 are their respective
friction coefficients. Therefore, from horizontal force equilibrium, the average
friction coefficient for the two joints is

µm =
µ1 + µ2

2
=

Fh

2Fv
, (A.13)

where Fh is the applied horizontal load.

a.5.3 Results for Solid Half-Sized Brick Specimens

Figure A.19 shows the typical measured response in terms of the friction coefficient
µm [calculated from the resisted horizontal force Fh using Eq. (A.13)] versus the
horizontal displacement of the central brick, ∆. The graphs demonstrate the
response to be highly ductile and approximately elastoplastic in shape. The friction
coefficient for each specimen was calculated as the average value or µm over the
displacement range of 2 to 15 mm.
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Figure A.18: Friction test arrangement (top) and forces applied to the test specimen at the
instance of slip (bottom).

Table A.7: Coefficient of friction µm at different levels of axial stress σv, for half-sized solid
brick specimens.

σv [MPa] n mean µm CoV t-test P-value

0.037 8 0.582 0.13 0.80
0.073 8 0.583 0.08 0.77
0.108 8 0.569 0.12 0.78
0.144 8 0.570 0.08 0.79

Pooled 32 0.576 0.10
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Figure A.19: Typical response of frictional resistance (as µm) at varied displacement ∆.
These results correspond to a single specimen under different levels axial stress σv. Dashed
red line ( ) shows the mean value calculated over the displacement range 2–15 mm.
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Figure A.20: Measured friction coefficient data for solid half-sized brick units at different
levels of axial stress. Red crosses ( ) indicate individual data points; black circles ( e) show
the mean values at each level of axial stress; and dashed black line ( ) shows the overall
mean value.

The measured µm data is plotted in Figure A.20 at different levels of the axial
stress σv. The associated mean values and CoVs are summarised in Table A.7.
Whilst the coefficient of friction is typically assumed to be independent of the
acting normal stress, a Student’s t-test was conducted to assess whether there was
a significant difference between the measured values of µm at different levels of σv

in these specimens. The large P-values produced by the t-test indicate that indeed,
σv had negligible influence on µm and that all data may be assumed to come from
the same distribution. Pooling the entire data set gives a mean µm value of 0.576.
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Q U A S I S TAT I C C Y C L I C T E S T I N G

Abstract

This appendix contains additional detail related to Chapter 2.

b.1 miscellaneous technical details

This section contains miscellaneous technical information regarding the test ar-
rangement.

Figure B.1 shows the plan view of the arrangement used to impose vertical
precompression onto the test walls, consisting of a series of weights suspended from
horizontal bars cantilevered over the wall. An elevation view of this arrangement
is also shown in Figure 2.7.

The layout of the airbags used for each of the three different wall geometries
is shown in Figure B.2. The airbags were mounted on a stiffened backing board
positioned between the test wall and the reaction frame (refer to Figures 2.8a and
2.8b). These airbag layouts were arranged to provide the best possible coverage
with the airbags available.

Figure B.3 shows the positions of the load cells which were used to measure
the horizontal load transferred between the airbag backing board and the reaction
frame (refer to Figures 2.8a and 2.8b). The criteria used for positioning the load cells
was to produce similar reaction forces in each cell, whilst minimising the expected
deformation of the airbag backing frame to promote uniform airbag coverage over
the face of the wall. The number of load cells used (either four or six) was selected
based on preliminary predictions of the walls’ load capacities.

363
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Figure B.4 shows the displacement transducer layout used during the initial
push on each wall (i.e. the ultimate strength test). This layout monitored displace-
ments at 15 different locations (14 in walls containing an opening) including the
main wall face and wall boundaries. The displacement transducers comprised a
series of linear variable differential transformers (LVDTs) accurate to ±0.01 mm and
string potentiometers accurate to ±0.1 mm.

During the cyclic test phase, displacement transducers were only used at key
positions along the wall due to the impracticalities with measuring the deformations
when airbags were present on both sides of the wall. These locations, corresponding
to the position where the maximum displacement was measured during the initial
push, are shown by Figure B.5 for each wall. The displacements were monitored
using the string potentiometers accurate to ±0.1 mm, which were connected to
the wall and encased in protective tubing to prevent contact between the airbags
and the string (refer to Figure 2.8b). In walls s3–s8, the central displacements were
measured on both sides of the wall as a redundancy measure. In walls s7 and s8,
the main displacement was measured at the central point of the opening, using an
aluminium bar spanning horizontally across the window.
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(a) Walls s1 and s3 (σvo = 0.10 MPa)
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(b) Wall s4 (σvo = 0.05 MPa)
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(c) Wall s7 (σvo = 0.10 MPa)

Figure B.1: Plan view of the vertical precompression loading arrangement.
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(a) 4000× 2500 mm solid walls.
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(b) 4000× 2500 mm walls with openings.
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(c) 2500× 2500 mm walls with openings.

Figure B.2: Airbag layouts, designed to provide maximum possible coverage along the face
of each wall. Dimensions shown in millimetres.
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Figure B.3: Load cell positioning along the airbag backing frame. Dimensions shown in
millimetres.
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Figure B.4: Displacement transducer layout during ultimate load capacity tests. Dimensions
shown in millimetres.
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(d) Walls s7–s8

Figure B.5: Displacement transducer positioning during cyclic tests. Note that the openings
are not shown for walls s3–s6
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b.2 analysis of response during initial push

Figures B.6–B.13 demonstrate the load-displacement response for each wall during
the initial push. The location of the displacement measurement is shown by Figures
2.11–2.13 for the respective walls. Shown on each graph are the key parameters
derived from the respective tests, which are also summarised in Table 2.6 and
include the following:

ultimate strength The wall’s ultimate strength Fult was taken as the maxi-
mum load resisted during the test, based on the force recorded by the load cells.
Inspection of the response in the subsequent cyclic tests shows that the maximum
load resisted occurred during the initial push for each wall, as intended.

initial uncracked stiffness The initial uncracked stiffness of the wall, Kini,
was taken as the slope of the F/∆ loading branch up to 40% of the ultimate load
capacity. The value of the slope was calculated by first condensing the number of
data points within this region (due to the different rates of loading at the start of
each test), and subsequently fitting a linear regression to the condensed data.

percentage of recovered displacement The proportion of displacement
recovered upon unloading was calculated as

displacement recovery ratio =
∆max − ∆final

∆max
,

where ∆max was the maximum displacement imposed on the wall and ∆final was
the final displacement upon unloading. Since the maximum displacement to which
the walls were subjected is somewhat arbitrary, these values are intended to be
only indicative of the walls’ self-centring characteristics.
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Figure B.6: F-∆ response of wall s1 during the initial push.
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Figure B.7: F-∆ response of wall s2 during the initial push.
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Figure B.8: F-∆ response of wall s3 during the initial push.
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Figure B.9: F-∆ response of wall s4 during the initial push.
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Figure B.10: F-∆ response of wall s5 during the initial push.
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Figure B.11: F-∆ response of wall s6 during the initial push.
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Figure B.12: F-∆ response of wall s7 during the initial push.
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Figure B.13: F-∆ response of wall s8 during the initial push.
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b.3 analysis of cyclic response

b.3.1 Properties from Individual Cycles

For each half-cycle run performed during the course of testing, several proper-
ties were determined from the measured F-∆ response. These include: peak
displacement, cyclic displacement and force amplitudes, effective secant stiffness,
equivalent viscous damping, and envelope point coordinates. The results of these
properties are summarised in Tables B.1–B.8, including for each test run during
the cyclic test phase, as well as the initial push to ultimate strength which can be
considered as the first half-cycle of the wall’s overall response. The results are also
graphed throughout Figures B.16–B.23. The methods used to determine each of
these properties will now be described.

peak displacement The peak displacement ∆peak was taken as the largest
imposed displacement during the cycle.

displacement cycle amplitude The method used to determine the displace-
ment amplitude ∆amp was dependent on whether the half-cycle under consideration
was in the reverse direction or reload direction (Figure B.14). For reverse direction
cycles, ∆amp was taken directly as the peak imposed displacement (Figure B.14a).
For reload direction cycles, ∆amp was taken as the difference between the peak
imposed displacement and the initial displacement at the beginning of the cycle
(Figure B.14b).

force cycle amplitude The force amplitude Famp was taken as the peak force
resisted by the wall during the half-cycle.

effective stiffness The effective secant stiffness of a half-cycle was calculated
as

K =
Famp

∆amp
.

equivalent viscous damping The equivalent viscous damping based on
hysteresis, ξhyst, was calculated using the area-based method according to the
equation

ξhyst =
1
π

U
1/2cyc

Famp ∆amp
,
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Figure B.14: Properties determined from individual half-cycles in cyclic testing. Shown
assuming loading in the positive direction.
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Figure B.15: Envelope point coordinates for half-cycle.



b.3 analysis of cyclic response 377

where U
1/2cyc is the energy dissipated during the half-cycle (as shown in Figure

B.14). In general terms, the energy dissipated during hysteresis is given by the
integral

U =
∫

F d∆.

To obtain U
1/2cyc, this integral was evaluated from the measured F and ∆ data

vectors using the summation

U
1/2cyc =

n−1

∑
k=1

0.5 (Fk + Fk+1) (∆k+1 − ∆k) ,

where k is the data point index and n in the number of data points recorded during
the test run.

envelope point coordinates For each half-cycle run, the coordinates Fenv

and ∆env at a representative envelope point were determined for the purpose
of subsequently using these points to define the overall envelope curve for each
wall (refer to Figures B.16–B.23). In most half-cycle runs, the point of peak force
generally coincided with the point of peak displacement. However, in certain half-
cycles, these points did not coincide due to a reduction in strength with increasing
displacement, as shown in Figure B.15. Therefore, as shown by the figure, the
envelope point was taken as the intersection of the measured F-∆ curve with the
line defined by the effective secant stiffness of the half-cycle (i.e. line joining the
origin and the point ∆peak and Famp).

b.3.2 Properties for Each Wall

After quantifying the various properties based on each half-cycle run (as outlined
in Section B.3.1), several properties indicative of the overall response of each wall
were determined by collectively considering all individual test runs. These include:
the ultimate strength, the displacement range encompassing 80% of the ultimate
strength, the residual strength and effective stiffness at δ = 0.5, and the equivalent
viscous damping in the range 0.25 ≤ δ ≤ 0.75. The resulting values of these
properties are summarised in Table 2.7 and also plotted throughout Figures B.16–
B.23. Note that each of the properties were determined separately in the positive
and negative directions, as denoted by superscripts + and −. The methods used to
determine them will now be described.

ultimate strength Ultimate load capacities were determined in each direc-
tion, as denoted by F+

ult and F−ult in Table 2.7. In each of the eight walls tested,
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the highest strength was measured during the initial push in the positive loading
direction as intended, and this value was adopted as the overall ultimate strength
of the wall (Fult).

displacement range encompassing 80% of Fult As an indicative mea-
sure of the wall’s ability to maintain its load resistance with increasing deformation,
the displacement range encompassing the zone where the wall’s strength exceeded
80% of the ultimate strength, was quantified. Values of this range were determined
in both directions, by using the respective value of F+

ult or F−ult as the reference
strength. The results are shown graphically in Figures B.16–B.23 (right, top graph)
and summarised in Table 2.7, as ∆+

0.8Fu and ∆−0.8Fu.

residual strength and effective stiffness at δ = 0.5 As an alterna-
tive measure of the wall’s ability to maintain its strength at large displacement, its
strength and stiffness were quantified at δ = 0.5 (displacement equal to half the
wall’s thickness, i.e. 55 mm). These properties were determined as follows: Firstly,
the effective secant stiffness K for each half-cycle was plotted against the cycle’s
displacement amplitude ∆amp, as shown in Figures B.16–B.23 (right, middle graph).
Next, a second order exponential regression was fitted to the K–∆amp data in each
direction. For consistency, only data points within 0.25 ≤ δ ≤ 0.75 were used in the
data fitting process. Based on the trendlines (indicated in the respective graphs),
values of the secant stiffness at δ = ±0.5 were determined, as denoted by K+

ht and
K−

ht in Table 2.7. The corresponding values of the force resistance at δ = ±0.5 were
calculated using the relationship Fht = (0.5tu)Kht, and are denoted by F+

ht and F−ht

in Table 2.7.

equivalent viscous damping at 0.25 ≤ δ ≤ 0.75 Average values of ξhyst

were determined for cycles whose displacement amplitude was within the range
0.25 ≤ δ ≤ 0.75. The results are shown graphically in Figures B.16–B.23 (right,
bottom graph), and are summarised in Table 2.7 in both the positive and negative
directions as denoted by ξ+

hyst and ξ−hyst.

b.3.3 Results

Tables B.1–B.8 provide the results of properties that were described in Section
B.3.1 for each half-cycle performed, including the initial push on the wall and the
subsequent cyclic tests. The 1st column gives the test index, and the 2nd column
states whether the test was the initial push to ultimate strength (‘ult’) or a cyclic
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test (‘cyc’). The 3rd column gives the target displacement rounded to the nearest
10 mm (except for the initial ultimate strength test, which is rounded to the nearest
mm). The 4th column states the number of repetitions performed at the particular
target displacement by taking into account the previous cyclic loading history but
ignoring the initial ultimate strength test. The numeral ‘i’ means that it was the
first excursion at the given target displacement, whilst higher numerals denote the
repetition number; for example, ‘ii’ means that the test was the second excursion
at the given target displacement. The 5th column denotes whether the half-cycle
was in the same or opposite direction to the previous half-cycle. Half-cycles in the
same direction are denoted as ‘reload’, whilst half-cycles in the opposite direction
are denoted as ‘reverse’. The remaining columns in each table provide results for
the properties discussed in Section B.3.1 and include: peak displacement ∆peak;
displacement amplitude ∆amp; force amplitude Famp; effective stiffness K; equivalent
viscous damping ratio ξhyst; and the envelope point coordinates ∆env and Fenv.

Figures B.16–B.23 provide several different graphs for each wall tested. On the
left-hand side of each figure (from top to bottom) are plots of the peak displacement
∆peak versus test index; force amplitude Famp versus test index; effective stiffness K
versus test index; and equivalent viscous damping ratio ξhyst versus test index. On
the right-hand side (from top to bottom) are plots of the force F versus displacement
∆; effective stiffness K versus displacement amplitude ∆amp; and equivalent viscous
damping ratio ξhyst versus displacement amplitude ∆amp. Values of key results for
each wall, as described in Section B.3.2, are also annotated.
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b.4 wall deformation profiles

Figures B.24–B.31 provide plots of each wall’s deformation profile during the
initial push test. The data used to generate these graphs was measured using the
displacement transducer layouts shown in Figure B.4.

The graphs plot the deformations at the vertical slices a–a, b–b and c–c, located
at the quarter- and mid-span positions along the wall. These deformations have
been calculated as the displacement at each point along the wall relative to the
supports. Each graph has two horizontal axes to denote the displacement: The top
axis refers to the actual displacement, while the bottom axis shows the displacement
normalised by the maximum value along the wall.1

For each wall, two graphs are provided: The first one shows the profile at the
instance that the wall reached its maximum strength, and the second one shows
the profile at the maximum imposed displacement during the initial push test. For
comparison, the displacement shapes based on the idealised failure mechanisms
which are assumed by the virtual work analytical method (Chapter 4) for computing
the strength of the wall, are also shown. A discussion of the observed trends is
provided in Section 2.6.

1Note that the ‘normalised displacement’ plotted on these graphs is distinct from the definition
of the normalised displacement δ as used in other parts of this thesis and defined by Eq. (2.2).
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(a) During point of ultimate strength.
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(b) At maximum imposed displacement.

Figure B.24: Displacement profile for wall s1.
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(a) During point of ultimate strength.
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(b) At maximum imposed displacement.

Figure B.25: Displacement profile for wall s2.
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(b) At maximum imposed displacement.

Figure B.26: Displacement profile for wall s3.



398 quasistatic cyclic testing

0

602

1204

1806

2408

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Normalised Displacement

V
er

tic
al

 D
is

ta
nc

e 
(m

m
)

0 1 2 3 4

Relative Displacement (mm)

Idealised A-A and C-C
Idealised B-B
Experimental A-A
Experimental B-B
Experimental C-C

 

 
A B C 

A B C 

(a) During point of ultimate strength.

0

602

1204

1806

2408

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Normalised Displacement

V
er

tic
al

 D
is

ta
nc

e 
(m

m
)

0 5 10 15

Relative Displacement (mm)

Idealised A-A and C-C
Idealised B-B
Experimental A-A
Experimental B-B
Experimental C-C

 

 
A B C 

A B C 

(b) At maximum imposed displacement.

Figure B.27: Displacement profile for wall s4.
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(b) At maximum imposed displacement.

Figure B.28: Displacement profile for wall s5.
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(b) At maximum imposed displacement.

Figure B.29: Displacement profile for wall s6.
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(b) At maximum imposed displacement.

Figure B.30: Displacement profile for wall s7.
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(a) During point of ultimate strength.
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(b) At maximum imposed displacement.

Figure B.31: Displacement profile for wall s8.
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b.5 crack pattern photographs

Figures B.32–B.39 show photographs of the walls’ crack patterns at the conclusion
of the cyclic tests. Each of these depict the interior face of the respective walls. Due
to spatial limitations in the laboratory, it was not possible in some cases to capture
the entire wall face in a single photo, so the patterns are demonstrated by multiple
photos. Illustrations of these crack patterns are also provided by Figure 2.24 based
on close visual inspection of the walls.
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Figure B.32: Photograph of wall s1 crack pattern at the conclusion of cyclic testing.

Figure B.33: Photograph of wall s2 crack pattern at the conclusion of cyclic testing.
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Figure B.34: Photograph of wall s3 crack pattern at the conclusion of cyclic testing.

Figure B.35: Photograph of wall s4 crack pattern at the conclusion of cyclic testing.
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Figure B.36: Photograph of wall s5 crack pattern at the conclusion of cyclic testing.

Figure B.37: Photograph of wall s6 crack pattern at the conclusion of cyclic testing.
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Figure B.38: Photograph of wall s7 crack pattern at the conclusion of cyclic testing.

Figure B.39: Photograph of wall s8 crack pattern at the conclusion of cyclic testing.



AppendixC
S H A K E TA B L E T E S T I N G

Abstract

This appendix contains additional detail related to Chapter 3.

c.1 test run nomenclature

For brevity, a standardised convention is used for naming individual test runs.
It uses several arguments separated by underscores to provide a description of
the tests. The first three arguments are standard1 and provide the following
information:

1. Name of the wall; for example d1, d2, d3,...

2. Index of the test run for the particular wall.

3. Type of test; whereby R = pulse test, H = harmonic test, and EQ = earthquake
motion test.

For example, the first three arguments of test d2_06_R_8mm_100ms imply that it
was the sixth test performed on wall d2 and used a pulse input motion. The
remaining arguments contain specific information relating to the different types of
tests (described in Section 3.2.5), as follows:

1Exceptions include test runs 1–6, 8–10 and 89–91 for wall d1, which also provide a value of the
non-standard axial stress applied at the top of the wall as one of the first four arguments.

405
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pulse tests (r) In these tests, the table underwent a simple displacement step
function, as shown by Figure 3.6. The first argument after R denotes the displace-
ment step, and the second argument denotes the time step (defined respectively
by xo and dt in Figure 3.6). For example, in test d2_06_R_8mm_100ms the table was
subjected to a displacement step of 8 millimetres over 100 milliseconds.

harmonic tests (h) These tests used a sinusoidal harmonic input motion, as
shown by Figure 3.7. The first argument after R denotes the excitation frequency,
and the second argument denotes the table displacement amplitude (defined
respectively by fo and xo in Figure 3.7). For example, in test d2_29_H_12Hz_0.3mm
the table was subjected to a harmonic motion at a frequency of 12 Hz with a
targeted amplitude of 0.3 mm. It should be noted, however, that the target PGD

was not always accurately reproduced by the table and hence the actual PGD was
measured using instrumentation.

earthquake motion tests (eq) These tests used earthquake motions defined
using a digitised displacement record. The first argument after EQ refers to the
name of the earthquake motion; for example, Taft or one of the synthetic motions
denoted by Synth0x. Details of these input motions are presented in Section C.2.
The second argument refers to the input peak displacement (PGD) together with
either ‘+’ or ‘−’ to denote the motion’s direction (as defined in Figure C.5). For
example, test d2_39_EQ_Taft_+80mm used the Taft earthquake motion with a PGD

of 80 mm in the positive direction.

c.2 earthquake input motions

Time and frequency domain representations of the Taft earthquake motion, which
served as the main input motion during these tests, are shown by Figure C.1.

In addition, eight synthetic motions were generated, referred to as Synth01–
Synth08. The procedure used to generate each motion consisted of the following
steps:

1. Digitised Gaussian noise was randomly generated in the time domain.

2. A lowpass filter was applied to the noise in the frequency domain, using the
cutoff frequencies given in Table C.1.

3. A shape function was applied to the waveform in the time domain, consisting
of three regions: linear ramp-up, constant amplitude, and linear ramp-down.
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Table C.1: Synthetic earthquake motion cutoff frequencies.

Quake Cutoff Frequency
[Hz]

Synth01 6
Synth02 6
Synth03 8
Synth04 8
Synth05 12
Synth06 12
Synth07 16
Synth08 16

4. The resulting waveform was used as the synthetic motion’s velocity vector.

5. The velocity was integrated to determine the displacement vector, and differ-
entiated to determine the acceleration vector.

6. During the tests, the motion was scaled to achieve a required PGD.

Of the eight synthetic motions generated, all were used in the diagnostic tests
performed on the shaketable test setup as described in Appendix D; however, only
motions Synth01, Synth03 and Synth05 were used during the wall tests. These are
shown by Figures C.2, C.3 and C.4.



408 shaketable testing

-100

   0

 100
Displacement [mm]

0 50 100
FFT Amp

-500

   0

 500
Velocity [mm/s]

0 50
FFT Amp

-5000

    0

 5000
Acceleration [mm/s^2]

0 5 10 15
0

10

20

Time [s]

F
re

q.
 [c

yc
/s

]

0 200 400
FFT Amp

0 5 10 15
0

10

20

F
re

q.
 [c

yc
/s

]

0 5 10 15
0

10

20

F
re

q.
 [c

yc
/s

]

Figure C.1: Taft input motion in the time and frequency domains. (Scaled such that
PGD = +100 mm)
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Figure C.2: Synth01 input motion in the time and frequency domains. (Scaled such that
PGD = +100 mm)
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Figure C.3: Synth03 input motion in the time and frequency domains. (Scaled such that
PGD = +100 mm)
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Figure C.4: Synth05 input motion in the time and frequency domains. (Scaled such that
PGD = +100 mm)
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c.3 standard data processing

This section details the process conducted on the raw test data to determine the time
domain response of variables of interest. Section C.3.1 describes the calculations
used, whilst Section C.3.2 reports peak results of selected response variables for
each test run performed.

c.3.1 Calculation of Time Domain Response Vectors

The raw data acquired consisted of output from ten accelerometers and six displace-
ment transducers, sampled at a rate of 200 Hz (Figure C.5). A computer routine
was implemented to process the test data and derive time domain response vectors
for variables of interest.2 The associated calculations are discussed herein.

Positions and Displacements

Variables corresponding to positions and displacements are listed below.3

vector description

xtab and
xsup.bot

Position of the table and position of the wall’s bottom support, re-
spectively, as measured by displacement transducer dt4 (Figure C.5).
These are assumed to be effectively equal, since there was shown to be
negligible slip between the table and slab.

xsup.top Position of the wall’s top support member, as measured by displacement
transducer dt3 (Figure C.5).

xsup.avg Average position of the wall’s supports, taken as the average of the top
and bottom supports, such that

xsup.avg =
xsup.bot + xsup.top

2
. (C.1)

∆slab-tab Displacement (or slip) between the concrete slab and the table, mea-
sured using displacement transducer dt5 (Figure C.5).

∆w.bot-slab Displacement (or slip) between the wall’s bottom edge and the concrete
slab, as measured by displacement transducer dt5 (Figure C.5). The
displacement transducer was located on the second course of bricks
from the bottom of the wall.

2For clarity, vector variables are denoted using bold symbols (e.g. x or a), and scalar variables
using italicised symbols (e.g. x or a).

3Note the subtle difference between these two parameters: Positions (x) are measured with
respect to the absolute reference frame, whilst displacements (∆) measure the relative difference
between the positions of two objects.
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vector description

∆sup.top-tab Relative displacement between the top and bottom supports of the wall.
Calculated as

∆sup.top-tab = xsup.top − xsup.bot. (C.2)

∆w.cent The wall’s central displacement, defined as the position of the centre
of the wall relative to its supports. Calculated by first determining the
wall’s central position xw.cent as the average of the two displacement
transducers dt1 and dt2 (Figure C.5). The averaging was performed in
order to minimise data noise. The central displacement was then taken
as

∆w.cent = xw.cent − xsup.avg. (C.3)

∆w.cent0 The wall’s central displacement ∆w.cent, zeroed at the start of each test
run.

Accelerations

The following accelerations were determined:

vector description

aw.tl.corner Acceleration at the top left corner of the wall, as measured by accelerom-
eter ac1 (Figure C.5) which was located at the top course of the return
wall.

aw.t.edge Acceleration at the top edge of the wall, as measured by accelerometer
ac2 (Figure C.5). The accelerometer was located on the second topmost
course of bricks, just below the top edge restraint member.

aw.tr.corner Acceleration at the top right corner of the wall, as measured by ac-
celerometer ac3 (Figure C.5) which was located at the top course of the
return wall.

aw.tl.quad Acceleration at the centre of the top left quadrant of the wall, as mea-
sured by accelerometer ac4 (Figure C.5).

aw.tr.quad Acceleration at the centre of the top right quadrant of the wall, as
measured by accelerometer ac5 (Figure C.5).

aw.cent Acceleration at the centre of the wall, as measured by accelerometer
ac6 (Figure C.5).

aw.bl.quad Acceleration at the centre of the bottom left quadrant of the wall, as
measured by accelerometer ac7 (Figure C.5).

aw.br.quad Acceleration at the centre of the bottom right quadrant of the wall, as
measured by accelerometer ac8 (Figure C.5).
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vector description

aslab Acceleration at the centre of the slab supporting the wall, as measured
by accelerometer ac9 (Figure C.5).

atab Acceleration at the centre of the table, as measured by accelerometer
ac10 (Figure C.5).

asup.avg Average acceleration of the wall’s supports. Calculated as a weighted
average of the slab (50% contribution) and the top left and right corners
of the wall (25% contribution each), such that

asup.avg = 0.5 aslab + 0.25 aw.tl.corner + 0.25 aw.tr.corner. (C.4)

aw.avg Average acceleration of the wall, calculated as a weighted average of
the contributions of the 10 accelerometers according to the summation

aw.avg =
10

∑
k=1

rk ak, (C.5)

where k refers to the index of each accelerometer, with ak being its
acceleration and rk its weighting factor. The weighting factor for each
accelerometer was taken as its percentage of the tributary area along
the wall. The factors are given in Figure C.6. The resulting vector aw.avg

was used for computing the wall’s resisting force and pressure.

aw.cent-sup.avg Relative acceleration between the wall’s centre and its top and bottom
supports, calculated as

aw.cent-sup.avg = aw.cent − asup.avg. (C.6)

The primary purpose of this response variable was for use in a subse-
quent spectral analysis for determining the wall’s vibrational frequency,
since it best captures the wall’s fundamental mode of vibration.
For comparison, this relative acceleration was also calculated by double
differentiating the wall’s central displacement ∆w.cent. The response
vector resulting from this latter approach exhibited greater levels of
data noise than that calculated using the above equation. However, at
larger levels of shaking the resulting vectors were very similar in their
peak response, waveform and spectral content.

Pressure and Force

Finally, the pressure and force resisted by the wall were calculated using the wall’s
average acceleration aw.avg. These calculations are based on the equation of motion
and the assumption of negligible viscous (velocity-proportional) forces.
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 Top edge support

AC1 O X O AC3
O

Return wall

O O

X O

O O

X

O
Slab X

Table O X

Concrete Base

Floor
O - location of accelerometer
X - location of displacement transducer

FRONT VIEW OF THE WALL'S OUTER FACE

Top edge supports

Frame used to mount
instrumentation

Return wall

x (+)

Slab

Table

Concrete Base

Floor

SIDE VIEW

X DT3  (displacement relative to floor)

AC2

AC5AC4

AC6

DT1, DT2

AC8AC7

AC9

AC10

DT6  (displacement relative to slab)

DT5  (displacement relative to table)

DT4  (displacement relative to floor)

DT1DT2

DT3

DT6

DT5

DT4

(displacement relative to floor)

Positive direction for measurement of 
displacement, velocity and acceleration

Figure C.5: Map of the instrumentation used for shaketable tests, comprising of 10 ac-
celerometers (labelled ac1–ac10) and 6 displacement transducers (labelled dt1–dt6). Dia-
gram is applicable to walls both with and without openings.
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  AC1
  8.6%

  AC2
  9.6%

  AC3
  8.6%

  AC4
  7.9%

  AC5
  7.9%

  AC6
  12.1%

  AC7
  8.8%

  AC8
  8.8%

  AC9
  27.8%

(a) Solid walls.

  AC1
  10.0%

  AC2
  11.1%

  AC3
  10.0%

  AC4
  4.1%

  AC5
  9.1%

  AC6
  8.4%

  AC7
  5.0%

  AC8
  10.2%

  AC9
  32.2%

(b) Walls with window.

Figure C.6: Accelerometer tributary area percentages, used as weighting factors in calcula-
tion of the wall’s average acceleration.

vector description

qw Uniformly distributed face pressure resisted by the wall, calculated as

qw = −γ tu

g
aw.avg, (C.7)

where γ is the unit weight of the masonry, tu is the thickness of the
wall and g is acceleration due to gravity.

Fw Out-of-plane force resisted by the wall, calculated as

Fw = −Mw aw.avg. (C.8)

In this expression, Mw is the mass of the wall, such that

Mw =
γ tu Aw

g
, (C.9)

where Aw is the wall’s net area.

c.3.2 Results

Table C.6 summarises the peak values for key variables in each test run performed,
and also provides miscellaneous notes relating to individual test runs.

Table C.5: Legend for the notes column in Table C.6.
4 New cracking occurred during the test.
2 No new cracking occurred during the test. This is only shown for tests between

initial and full cracking of the wall.
� Shaketable underwent unexpected impacts which generated spikes in its accel-

eration response (refer to Appendix D).

 Test was recorded using video camera.
P Cracking pattern was photographed after the test.
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c.4 cyclic response analysis

This section describes a developed data analysis procedure that was implemented
on the wall’s load-displacement data vectors in the time domain (obtained by
methods outlined in Section C.3), to quantify key properties relating to the wall’s
cyclic response such as the effective stiffness and equivalent viscous damping
ratio. A significant aspect of the procedure was its applicability to all types of tests
performed, regardless of whether the input motion was periodic (i.e. harmonic
sinusoidal motion tests) or non-periodic (e.g. pulse and earthquake motion tests).

The basis of the analysis was to firstly employ a time domain search algorithm
to find and isolate individual cycles in the wall’s displacement response in a
particular test run. This process is described in Section C.4.1. For every valid cycle
isolated, the cyclic properties of interest were then calculated using the process
described in Section C.4.2. Average values of the properties were then determined
by grouping cycles within a specific range of displacement (including near the
maximum response, and at small displacements). Examples of the computer
program output are shown in Section C.4.3. Detailed results of the analysis are
presented in Section C.4.4. It is noted that prior to implementation of the data
analysis procedure, the data was filtered (using the techniques described in Section
C.5) in order to aid the cycle detection algorithm.

c.4.1 Cycle Isolation Algorithm

The developed cycle isolation algorithm utilised a single time domain vector, which
is denoted throughout this section as x. In application of the algorithm, the response
vector used for this purpose was the initially zeroed central displacement of the
wall, ∆w.cent0.

Step 1: Division of the Waveform into Segments

The first step of the procedure was to identify points in the waveform x correspond-
ing to reversals of direction. These points are referred to as ‘vertices’. The regions
between vertices are referred to as ‘segments’. This process is illustrated by Figure
C.7, which shows that neighbouring segments always alternate between ascending
and descending.

As shown by Figure C.8, a segment (denoted by the index i) is considered
ascending if the values at its vertices, xi and xi+1, are such that xi < xi+1, or
descending if xi > xi+1. The cycle amplitude xamp of a segment is taken as half of
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- + + + + + + + + + +- - - - - - - - - -

x

Figure C.7: Division of a generic waveform into segments for the purpose of isolating
individual cycles. The segments correspond to regions of alternating positive and negative
directions of movement, as indicated by the + and − signs.
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x i + 1
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s e g m e n t  i

(a) Ascending segment (xi < xi+1).

x i

x i + 1

x

 2  x a m p

s e g m e n t  i

(b) Descending segment (xi > xi+1).

Figure C.8: Definition of segment direction and amplitude.

the absolute difference between its two vertices, such that

xamp = 0.5 |xi+1 − xi| . (C.10)

The remaining steps 2–4 were performed on every segment in the waveform, with
the exception of the first and last segments.

Step 2: Classification of Cycle as Either Open or Closed

Once the waveform x has been divided into segments, it becomes possible for any
segment (denoted by the index i) together with its two neighbouring segments
(denoted by the indices i− 1 and i + 1) to be classified as either a closed or open
cycle. As illustrated by Figure C.9, the type of cycle formed depends on whether
there is any overlap between the outer segments i− 1 and i + 1. A closed cycle is
defined as having an overlapping region, whilst an open cycle is defined as having
no overlap (or negative overlap).

To quantify the amount of overlap, the upper and lower bounds of the overlap-
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(a) Closed cycle.
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Figure C.9: Definition of closed and open cycles, and their boundaries. Shown for the
case of a descending middle segment. Any segment i together with its two neighbouring
segments i− 1 and i + 1 can be classified as one of these cycle types. Closed cycles have
overlap across the i− 1 and i + 1 segments, whilst open cycles do not. For closed cycles
the boundaries are taken at the central value of the overlapping region in the outside
segments, whilst for open cycles the boundaries are taken at the exterior limits of the
outside segments.

ping region are determined. The overlap upper bound is calculated as

xou =

min(xi, xi+2) , if segment i is descending (xi > xi+1);

min(xi−1, xi+1) , if segment i is ascending (xi < xi+1).

The overlap lower bound is calculated as

xol =

max(xi−1, xi+1) , if segment i is descending (xi > xi+1);

max(xi, xi+2) , if segment i is ascending (xi < xi+1).

The total overlap xo is then taken as the difference, such that

xo = xou − xol . (C.11)

It is possible for the resulting value of xo to be either positive or negative. This
leads to the definition of closed and open cycles, such that if xo ≥ 0, then the cycle
is classified as closed, and conversely if xo < 0, then it is classified as open. It is
worth noting that closed cycles were found to be far more common that open cycles
in the test data analysed.

Step 3: Omission of Invalid Cycles

Cycles which did not meet certain criteria, in particular a minimum centrality
and overlap, were omitted from subsequent calculation of hysteretic properties
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Figure C.10: Demonstration of the cycle centrality parameter RC. The cycle amplitude is
denoted as a.

(described in Section C.4.2).

minimum centrality condition The first requirement for a cycle to be
considered valid was to be sufficiently centred about x = 0 (i.e. zero displacement).
This condition was implemented to ensure that the cycle was not biased toward a
particular displacement direction. It also served to eliminate cycles which could
potentially be in the ‘plastic’ range of the load-displacement response, as such
cycles were likely to have a reduced stiffness unrepresentative of the wall’s effective
stiffness. Generally, it was also noticed that non-centred cycles tended to exhibit a
large fluctuation in values of their equivalent viscous damping ratio, which were
considered to be inaccurate of actual behaviour.

The degree of centrality for a cycle was quantified using the parameter RC,
calculated as

RC =

−xi/xi+1, if |xi| ≤ |xi+1|;

−xi+1/xi, if |xi| > |xi+1|.
(C.12)

Possible values of RC can range between the limits −1 < RC ≤ 1. Several cases are
shown by Figure C.10. A perfectly centred cycle, in which the values at the two
vertices are equal and opposite, results in RC = 1. A positive value of RC corre-
sponds to a cycle that crosses the line x = 0, whilst a negative value corresponds to
a cycle that does not. A value of RC = 0 results when one of the vertices touches
the line x = 0. In the analysis of the wall test data, a minimum centrality condition
of RC > 0.3 was enforced for admissible cycles. The corresponding limiting case is
illustrated by Figure C.10b.

minimum overlap condition The second requirement for a cycle to be con-
sidered valid was to be ‘sufficiently closed’. This required the cycle’s outer segments
(with indices i − 1 and i + 1, as shown by Figure C.9) to have sufficient overlap.
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(d) RO = −0.4.

Figure C.11: Demonstration of the cycle overlap parameter RO. The cycle amplitude is
denoted as a.

The reason for implementing this condition was that closed cycles were deemed to
be more likely to yield a representative value of the equivalent viscous damping
ratio, which was calculated based on the area enclosed within the hysteresis loop.

The parameter used to quantify the degree of overlap for a cycle was the overlap
ratio RO, calculated as

RO =
xo

2 xamp
, (C.13)

where xo is the length of the overlap calculated using Eq. (C.11) and xamp is the
cycle amplitude as given by Eq. (C.10). It is possible for the value of RO to range
between the limits −1 < RO ≤ 1. Several cases of different overlap ratio are shown
in Figure C.11. In the analysis of the wall test data, a minimum overlap condition
of RO > −0.4 was enforced. The limiting case is illustrated by Figure C.11d. In
other words, only cycles with a negative overlap greater than 0.8 xamp were rejected
on the basis of this condition.

Step 4: Determination of the Cycle’s Boundaries and Data

Once a cycle was declared valid by satisfying the conditions outlined in step 3, the
next step was to extract its load and displacement data vectors from the overall data.
In order to do this, however, it was first necessary to define the cycle’s boundaries
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in the time domain (i.e. its first and last data points) The method implemented for
defining these boundaries was dependent on whether the cycle was closed or open.

The approach used for closed cycles was to firstly calculate the central overlap
value xoc, as the average of the upper and lower bounds of the overlap, such that

xoc = 0.5 (xou + xol) . (C.14)

The points defining the cycle’s boundaries were then taken at the intersections of
the waveform with the value xoc inside the outer segments, as shown by Figure
C.9a. As these boundary points did not generally coincide with discrete points
in the data, the corresponding values of the wall’s load and displacement were
determined by interpolation.

For open cycles, the cycle boundaries were simply taken at the boundaries of
the outer segments, as shown by Figure C.9b.

Once the cycle’s boundary points were defined, data vectors for its displacement
and force (or acceleration) were extracted from the full data vectors. This included
data points within the cycle boundaries and at the boundaries themselves. The
vectors of interest that were used in the subsequent evaluation of cyclic properties
included the zeroed central wall displacement ∆w.cent0, central wall acceleration
aw.cent and average wall acceleration aw.avg. This process is described in Section
C.4.2.

It is also noted that in subsequent calculations, loops of open cycles had to be
closed manually—a requirement for the calculation of the energy dissipated within
the loop. This was done by replicating the first data point at the end of each of the
cycle’s data vectors.

Remarks

Although the developed cycle isolation algorithm was fairly versatile, in that it
could be applied to the test data regardless of whether the motion was periodic (i.e.
harmonic excitation tests) or non-periodic (i.e. pulse or earthquake motion tests),
a certain degree of care had to be exercised during its application. For instance,
in certain scenarios the algorithm failed to isolate the true cycles of interest in
the wall’s response. An example of such a case is shown by Figure C.12, which
illustrates the wall’s displacement response during a harmonic excitation test with
an excitation period To. While the most significant periodic component of the
response also occurs at the period To, the presence of higher frequency interference
can cause additional minor peaks and troughs in the resulting waveform (as shown
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T i m e ,  t

T o

M a i n  v e r t i c e s I n t e r m e d i a t e  v e r t i c e s

x

Figure C.12: Example of scenario where the cycle detection algorithm fails to detect the
main response cycles in the waveform.

in this example). Even though it is obvious that the true cycles of interest must
have a period equal to the excitation period, the developed algorithm would fail to
detect them due to the presence of the intermediate vertices. This type of behaviour
was observed in a small number of harmonic excitation tests, which contained
high frequency interference believed to be due to higher vibrational modes in the
wall’s response. The problem was overcome by firstly filtering the wall’s response
vectors in the frequency domain to eliminate the contributions from the higher
order harmonics, before applying the cycle detection routine. This removed the
intermediate vertices from the wall’s response and enabled the cycle detection
algorithm to function properly. The filters used are described in Section C.5.

c.4.2 Evaluation of Key Cyclic Properties

Calculation of Properties from Each Cycle

For each valid cycle isolated using the procedure described in Section C.4.1, several
key properties were calculated based on its displacement and acceleration data
vectors (Figure C.13). These included: displacement and force amplitudes, effective
stiffness, equivalent viscous damping, and period. The methods used to calculate
these properties are as follows:

displacement cycle amplitude Since the displacement response of a cycle
may not have been necessarily symmetrical about zero displacement (∆ = 0), the
displacement amplitude ∆amp was taken as half of the difference between the
maximum and minimum displacement points occurring in the cycle, such that

∆amp =
∆max − ∆min

2
, (C.15)
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Figure C.13: Isolated hysteresis loop and the properties derived.

where ∆max and ∆min are the maximum and minimum displacements occurring
in the loop. Alternatively, ∆amp could be obtained directly as xamp in the cycle
isolation process, given by Eq. (C.10), since the vector x was assigned the initially
zeroed central wall displacement (∆w.cent0).

force or acceleration cycle amplitude Due to the direct proportional-
ity between the wall’s restoring force Fw and its average acceleration aw.avg [through
Eq. (C.8)], these variables are effectively interchangeable (with the relevant propor-
tionality factors). Since the acceleration in a given cycle was not necessarily centred
about zero acceleration (a = 0), the acceleration amplitude aamp was taken as

aamp =
amax − amin

2
, (C.16)

where amax and amin are the maximum and minimum accelerations occurring in
the loop. Similarly, for force:

Famp =
Fmax − Fmin

2
. (C.17)

effective stiffness The cycle’s effective secant stiffness K was defined as
the slope of the line passing through the cycle’s force-displacement curve. Two
alternative methods were used to calculate its value: In the first method, the
stiffness was determined by fitting a linear regression to the individual data points
comprising the loop. In the second method, the stiffness was calculated as the
slope of the line passing through the corner points of the loop’s bounding box, as
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shown by Figure C.13, or using the expression

K =
Famp

∆amp
. (C.18)

It was found that both methods produced very similar values; therefore, the second
approach [based on Eq. (C.18)] was adopted, since it was less computationally
intensive than the first approach.

equivalent viscous damping The equivalent viscous damping ξhyst was
calculated using the area-based method, according to the equation

ξhyst =
2
π

Uloop

Ubox
, (C.19)

where Uloop is area enclosed within the hysteresis loop, and Ubox is the area inside
the loop’s bounding box. From Figure C.13 it can be seen that

Ubox = 4 Famp ∆amp. (C.20)

The energy Uloop dissipated during a cycle is evaluated by the integral

Uloop =
∫ t2

t=t1

F d∆, (C.21)

in which t1 is the time at the start of the cycle and t2 the time at the end of the cycle.
This integral was evaluated numerically using the ∆ and F vectors for the cycle.

It should be noted that in the calculation of ξhyst [based on Eq. (C.19)], the
energies Uloop and Ubox were determined based on the wall’s central acceleration
(aw.cent), as opposed to its average acceleration (aw.avg) (upon which the wall force
Fw is based). Comparison of typical hysteresis loops obtained using these two
approaches is shown by Figure C.14. The reason for using aw.cent is that it is believed
to have provided a more accurate representation of the wall’s fundamental mode of
vibration due to flexural response. By contrast, it is believed that aw.avg [calculated
as a weighted average of the 10 accelerometers mounted on the wall as per Eq. (C.5)]
received some interference from higher vibrational modes (possibly twisting of the
specimens), resulting in an alteration of the apparent phase relationship between
the force and displacement and ultimately generating fatter and more ragged
hysteresis loops. The values of ξhyst calculated on the basis of aw.avg (generally
ranging between 0.15 and 0.4) are believed to be uncharacteristically high and
deemed to be unconservative. By contrast, the hysteresis loops determined using
aw.cent tended to be significantly cleaner. The computed values of ξhyst are reported
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(a) Earthquake test run d1_76_EQ_Synth03_+100mm.
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(b) Pulse test run d2_45_R_8mm_100ms.

Figure C.14: Typical examples demonstrating the difference between hysteresis loops based
on the average wall acceleration, aw.avg (left) and the central wall acceleration, aw.cent (right).
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Figure C.15: Method used for estimating the cycle period T in closed and open cycles.

in Section C.4.4.

period and frequency As shown by Figure C.15, the method used to evaluate
the period T of the cycle depended on whether the cycle was closed or open.28

For closed cycles, the period was taken as the duration between the start and
end boundary points of the cycle (Figure C.15a). These boundary points were
determined using the procedure described in Section C.4.1, as illustrated by Figure
C.9a. For open cycles, the period was taken as twice the duration between the
cycle’s peak and trough vertices (Figure C.15b). These results are generally reported
as a frequency f , where f = 1/T.

Calculation of Average Values in Each Test Run

Once the aforementioned properties have been calculated for all valid cycles within
a test run, their average values were computed over two ranges of displacement
response:

short displacement range This included cycles whose displacement ampli-
tude was inside the range 0.5 mm ≤ ∆amp ≤ 3 mm, which was intended to capture
response along the initial loading branch of the load-displacement curve. In order
to ensure a good spread of response within this range, average values were only

28A significant amount of effort was invested into attempting to derive values of vibrational
frequency for the walls using a Fourier-based analysis of the walls’ displacement and acceleration
response. However, these efforts were ultimately abandoned due the finding that additional signals
were present in the measured response vectors, which were evidently interfering with that of the
wall’s vibrational response. This interference were likely to have come from some aspect of the test
arrangement such as the wall restraint frame and the shaketable rig itself. The method ultimately
adopted for calculating the cyclic frequency of the walls is believed to also provide the advantage of
being able to examine cycles individually.
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calculated for test runs in which the maximum displacement amplitude exceeded
95% of the upper limit value of 3 mm (i.e. max ∆amp > 2.85 mm). Note that for
this range, ‘average’ values of the effective stiffness K, equivalent viscous damping
ξhyst and period T, were calculated as the interquartile mean. This was done to
reduce the influence of outlying values on the resulting average, as there tended to
be a high level of scatter in these properties at small displacements, which could be
attributed to a larger relative error in the sampling method for displacement.

peak response range This range included all cycles whose displacement
amplitude was at least 70% of maximum value occurring in the test run, or ∆amp ≥
0.7 max(∆amp), and was intended to capture the behaviour near the maximum
displacement response in the test run. Average values of properties within this
range were calculated as the conventional mean.

c.4.3 Examples

Examples of the graphical output from the developed computer routine used to
perform the cyclic analysis are shown by Figures C.16, C.17 and C.18 for a pulse
test, harmonic test and earthquake motion test, respectively.

c.4.4 Results

Results of the cyclic analysis are presented in Table C.7 for all test runs performed
in the experimental study. The hysteresis graphs corresponding to the data used
within these analyses is also presented is Section C.6.

Column 1 of the table lists the test run name, as per the convention outlined
in Section C.1. Column 2 gives the cutoff frequency fc of a lowpass Butterworth
filter of order n = 10, used to filter the results prior to performing the cyclic
analysis. A value of ‘default’ refers to the filter for harmonic tests, corresponding
to a Butterworth comb filter passing the first three harmonics of the excitation
frequency with a normalised bandwidth of 0.2 (refer to Section C.5.1).

Columns 3–5 provide values of the peak cycle amplitudes for the respective
properties occurring in the test run, where ∆amp is the central displacement, ac amp

is the central wall acceleration and aa amp is the average wall acceleration. These
may not necessarily have occurred during the same cycle.

Columns 7–12 give the average results for cycles whose displacement amplitude
∆amp was at least 70% of the peak displacement amplitude in the test run, where n
is the number of cycles used for averaging, K is the effective stiffness, ξhyst is the
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equivalent viscous damping ratio, f is the cycle frequency, and other properties as
defined previously. Note that f is not provided for harmonic test runs, since the
measured cycle frequency in these tests is equal to the excitation frequency and not
the vibrational frequency of the wall. Columns 13–18 give the average results for
cycles whose displacement amplitude was between 0.5 mm and 3 mm.

Whilst this table does not provide the cycle amplitude of the wall’s restoring
force Famp, this value can be calculated directly from the average wall acceleration
amplitude aa amp using the relationship

Famp = Ww
aa amp

g
, (C.22)

where Ww is the weight of the wall, as given in Table 3.3. The weight of the solid
walls (d1 and d2) was 2400 N and the weight of the walls with a window (d3,
d4 and d5) was 2079 N. For example, in run d1_03_0MPa_R_8mm_100ms, where the
peak average wall acceleration was 1.18 g, the corresponding peak wall force was
2400 N× 1.18 = 2830 N.
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c.5 data filtering

Despite an analogue frequency domain filter being incorporated into the data
acquisition system throughout the tests,29 the data obtained inherently exhibited
some degree of high frequency noise. Consequently, frequency domain filtering was
performed on the digitised data in order to remove high frequency noise content,
thereby smoothing the appearance of the hysteresis loops for the subsequent
use of the data in the cyclic response analysis (presented in Section C.4). The
type of filter applied depended on the type of test run under consideration: in
particular, whether the loading and wall response was periodic (i.e. harmonic tests)
or non-periodic (i.e. pulse and earthquake tests).

c.5.1 Periodic Tests

Because of the periodic nature of excitation in the harmonic tests, the Fourier
spectra of the associated data vectors (displacement or acceleration) inherently
contained peaks at integer multiples of the fundamental excitation frequency fo.
This is demonstrated by Figure C.19 which shows a typical example of unfiltered
wall response during a harmonic test. Whilst it can be seen that most of the
spectral content is in the first harmonic, the number of peaks included in the
overall response after filtering affected the amount of detail retained in the shape
of the hysteresis loops. For example, inclusion of only the fundamental frequency
resulted in hysteresis loops that were elliptical in shape, whilst the inclusion of
the higher order harmonics was necessary for the generation of details such as
loop pinching. Because of these considerations, several different types of frequency
filters were trialled to assess their suitability. The filters considered included the
following, as illustrated by Figure C.20:

1. A bandpass filter retaining only spectral content at fo. The filter tested was
a Butterworth filter of order n = 5 with a cutoff frequency bandwidth of
±1 Hz centred around fo. For example, if the fundamental frequency was
fo = 12 Hz, then the filter had a cutoff band of [11, 13] Hz.

2. A bandpass filter retaining spectral content across the first and second har-
monics of fo. The trialled filter was a Butterworth filter of order n = 7, with
a cutoff frequency bandwidth between 0.5 fo and 2.5 fo. For example, if the
fundamental frequency was fo = 12 Hz, then the filter used a cutoff band of
[6, 30] Hz.

29Lowpass Butterworth filter with a cutoff frequency of 50 Hz.
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Figure C.19: Example of unfiltered response from harmonic test, including hysteresis plot
(top), time domain response (middle) and frequency domain response (bottom). Shown for
test run d2_13_H_12Hz_0.25mm.
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Figure C.20: Types of filters trialled for harmonic test data. For the filters shown, the
fundamental frequency is taken as fo = 12 Hz.

3. A comb filter passing only spectral content at the first and second harmonics
of fo (i.e. fo and 2 fo). The filter used was an original filter design based on the
Butterworth filter equations. The cutoff frequency bandwidth for each peak
was 20% of fo centred around the harmonic frequency, with a filter order of
n = 5. For example, if the fundamental frequency was fo = 12 Hz, then the
first harmonic at 12 Hz had a cutoff band of [10.8, 13.2] Hz and the second
harmonic at 24 Hz had a cutoff band of [22.8, 25.2] Hz.

An example of the hysteresis loop shapes produced by the different filters is
shown by Figure C.21. As shown by Figure C.21b, the bandpass filter retaining
content only across fo (filter option 1) had the inherent effect of producing hys-
teresis loops which were elliptical in shape. Whilst such loops become cleaner
in appearance in comparison to those for unfiltered data, they lose certain shape
characteristics such as pinching, due to the removal of the spectral content at the
higher harmonics (2 fo, 3 fo . . .). This is a natural result of including only a single
harmonic frequency in the response spectrum, thus causing the signal to become
approximately sinusoidal in shape. By contrast, filter options 2 and 3 were chosen
so as to retain the spectral content at the second harmonic (2 fo) and in doing so,
preserve some of the shape detail.

To provide a quantitative measure of the filter performance, a series of analyses
were performed in which the parameters ∆amp, aamp, K and ξhyst were calculated
during a 2 second time window in the middle of the test run.30 This analysis

30Note that the calculation of these parameters used the wall’s average acceleration aw.avg, whereas
in the final results reported (in Section C.4) the wall’s central acceleration aw.cent was used to calculate
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(b) Bandpass filter across fo.
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(c) Bandpass filter across fo and 2 fo.
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(d) Comb filter across fo and 2 fo.

Figure C.21: Example comparing the hysteresis loop shape for data filtered using different
types of filter. Shown for test run d2_21_H_12Hz_0.2mm.

was conducted for all harmonic test runs, using data filtered using the three
aforementioned filters as well as for unfiltered data. The criteria used to evaluate
the suitability of the candidate filters were as follows:

• To ensure that the mean parameter values calculated from filtered data were
not significantly altered from those based on unfiltered data. This criterion
was intended to ensure that the strength of the signal was not excessively
diminished due to over-filtering.

• To reduce the amount of noise in the data, thereby generating cleaner hys-
teresis loops. This condition was assessed quantitatively by comparing the
variability of the parameter values determined during the 2 second time
window.

Of the three filters considered (Figure C.20), the comb filter retaining spectral
content at fo and 2 fo had the best performance with respect to the above evaluation

the hysteretic damping ratio ξhyst.
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criteria. In general, the resulting mean values of parameters obtained using this
filter were very comparable to those obtained from the unfiltered data, whilst the
variability had been considerably reduced. This can be seen from Figure C.22

which graphs the filtered versus unfiltered results for each of the five parameters.

By comparison, the bandpass filter retaining only the content at fo produced
loops that were inherently elliptical in shape (as shown by the example in Figure
C.21b). This filter was quite successful in minimising scatter in the results; however,
due to the elliptical shape of the loops, it had a tendency to produce higher apparent
values of equivalent damping ξhyst and effective stiffness K relative to the unfiltered
data. As a result, this filter was deemed to be unconservative for derivation of
these values.

The mean values of parameters derived from the data filtered using the band-
pass filter retaining the content between 0.5 fo and 2.5 fo had better accuracy than the
bandpass filter retaining only the content at fo. The scatter in the results, however,
tended to be higher and similar in magnitude to the results from unfiltered data.
An example of the resulting hysteresis loops is shown by Figure C.21c.

On the basis of this study, the comb filter was deemed to be the most appropriate
for application to the harmonic test data and was adopted in subsequent analyses
whose results are reported in Section C.4.4. The final choice of filter used for
harmonic tests was a comb filter passing the spectral content at the first three
harmonics, with a normalised bandwidth of 0.2 (20% of the fundamental frequency).
Figure C.23 shows an example of response obtained using this filter, which can be
compared to the original unfiltered response in Figure C.19.
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Figure C.22: Comparison of key parameters derived from filtered and unfiltered harmonic
test data. In the case of filtered data, a comb filter was applied capturing the response at the
first and second harmonics of the excitation frequency. Each parameter was calculated over
a time window of 2 seconds in the middle of the test run, with the mean value and level
of variability (as CoV or StD) over this duration being plotted in these graphs. Results are
plotted for all harmonic test runs performed, except for runs where the mean displacement
amplitude was small (< 0.3 mm), which are omitted.
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Figure C.22: (cont’d).
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Figure C.23: Example of filtered response from harmonic test, including hysteresis plot
(top), time domain response (middle) and frequency domain response (bottom). Shown for
test run d2_13_H_12Hz_0.25mm combined with comb filter passing the spectral content at
the first three harmonics (i.e. fo, 2 fo and 3 fo).
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c.5.2 Non-Periodic Tests

Due to the non-periodic nature of the pulse and earthquake tests performed in this
study, the Fourier spectra of the associated data vectors were markedly different to
those from the periodic harmonic tests and therefore required a different filtering
approach. Typical examples of unfiltered response from earthquake and pulse tests
are shown by Figures C.24 and C.26, respectively, where it is seen that the associated
Fourier spectra possessed a broad frequency content, as opposed to the harmonic
tests where the peaks were concentrated at integer multiples of the fundamental
frequency (Figure C.19). This made it possible to utilise a lowpass filter in order to
eliminate the high frequency noise content from the data. Examples of the filtered
response for earthquake and pulse test runs are shown by Figures C.25 and C.27,
which can be compared to the unfiltered versions of the response shown by Figures
C.24 and C.26.

Prior to conducting the cyclic response analysis reported in Section C.4, data
from all earthquake and pulse test runs was filtered using a lowpass Butterworth
filter with order n = 10. The cutoff frequency fc of the filter was manually chosen
on a case-by-case basis for each individual test run. The criteria used to select an
appropriate value of fc was to make fc as low as possible without significantly
reducing the maximum response of key variables, including the wall’s central
displacement ∆w.cent, central acceleration aw.cent, table acceleration atab, support
acceleration asup.avg, and relative acceleration between the centre of the wall and the
supports, aw.cent-sup.avg. The cutoff frequency used for each test run is summarised
in the main results table for the cyclic response analysis, Table C.7.
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Figure C.24: Example of unfiltered response from earthquake test, including hysteresis plot
(top), time domain response (middle) and frequency domain response (bottom). Shown for
test run d2_41_EQ_Taft_-100mm.
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Figure C.25: Example of filtered response from earthquake test, including hysteresis plot
(top), time domain response (middle) and frequency domain response (bottom). Shown
for test run d2_41_EQ_Taft_-100mm combined with lowpass Butterworth filter with order
n = 10 and cutoff frequency fc = 20 Hz.
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Figure C.26: Example of unfiltered response from pulse test, including hysteresis plot (top),
time domain response (middle) and frequency domain response (bottom). Shown for test
run d2_32_R_8mm_100ms.
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Figure C.27: Example of filtered response from pulse test, including hysteresis plot (top),
time domain response (middle) and frequency domain response (bottom). Shown for test
run d2_32_R_8mm_100ms combined with lowpass Butterworth filter with order n = 10 and
cutoff frequency fc = 20 Hz.
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c.6 load-displacement graphs

This section provides load-displacement response plots from all individual test
runs performed. The data plotted was filtered using the techniques described in
Section C.5 and corresponds to the same data used for the cyclic response analysis
(Section C.4). Two sets of axes are provided for each test run: The left axes plot the
wall’s central acceleration aw.cent versus the normalised central displacement δw.cent

(i.e. ∆w.cent divided by the wall thickness of 50 mm). The right axes plot the wall’s
average acceleration aw.avg versus δw.cent. The largest displacement cycle occurring in
each test run is also highlighted, but only for cycles whose displacement amplitude
exceeded 0.3 mm.
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AppendixD
D I A G N O S I S O F S H A K E TA B L E I M PA C T S

Abstract

This appendix contains a diagnostic study performed to identify the causes of
‘impacts’ underwent by the shaketable when run at higher levels of motion intensity,
as part of the work reported in Chapter 3. These impacts causes a marked difference
to the walls’ F-∆ loops, as demonstrated by examples. The study discovered that
the impacts were generated by a velocity limitation of the hydraulic ram used
to move the shaketable. In the opinion of the author, the impacts could not be
avoided with the shaketable hardware available. However, it is proposed that the
influence of the impacts may be alleviated using frequency domain filtering, as
part of post-processing of the data.

d.1 introduction

Throughout the course of the dynamic test study reported in Chapter 3, the
shaketable underwent unexpected ‘impacts’ during tests in which earthquake
motions were run at stronger levels of intensity. These impacts were characterised
by disproportionally large acceleration spikes in the table’s response, as well as a
distinctive ‘banging’ noise enabling them to be easily recognised during testing.
The resulting effects can be seen by comparing the input motion for the Taft
earthquake (Figure D.1) to typical motion generated by the table at progressively
increasing levels of intensity, as shown by Figures D.2, D.3 and D.4. In these
examples, the impacts begin to take place at a peak displacement (PGD)1 of −60

1Throughout this appendix, the abbreviations PGA, PGV and PGD refer to the peak acceleration,
velocity and displacement, respectively, of the shaketable or the hydraulic ram itself.
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Figure D.1: Taft earthquake input motion. Scaled such that PGD = +100 mm.

mm in the negative direction and +80 mm in the positive direction and then persist
at all higher intensities.2

The impacts were deemed to be an undesirable with respect to wall testing, for
the following reasons.

• The waveform generated (Figures D.2, D.3 and D.4) in the presence of the
impacts deviated from the original input motion (Figure D.1). Furthermore,
the peak acceleration (PGA) generated during such test runs greatly exceeded
the intended value.

• The wall load-displacement hysteresis loops produced during the impacts
(Figure D.5) had a distinctively different shape in comparison to loops gener-
ated in the absence of the impacts and also when compared to typical loops

2The (+ or −) sign convention in reference to the PGD refers to the direction in which the
earthquake was run. As defined in Figure C.5, movement in the positive direction corresponds to the
hydraulic actuator retracting inwards. For example, a +100mm PGD means that the maximum table
displacement corresponded to the actuator being retracted 100 mm inward from its resting position.
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Figure D.2: Table acceleration response for Taft earthquake runs on wall d3. The vertical
axis for each graph has been scaled by the shaking intensity based on the input PGD.
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Figure D.3: Table velocity response for Taft earthquake runs on wall d3.
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516 diagnosis of shaketable impacts

-20 -10 0 10 20
-3

-2

-1

0

1

2

3

A
cc
el
er
at
io
n
, 
W
al
l 
av
g.
 [
g] d3_32_EQ_Taft_-40mm

-20 -10 0 10 20

d3_33_EQ_Taft_+40mm

-3

-2

-1

0

1

2

3

A
cc
el
er
at
io
n
, 
W
al
l 
av
g.
 [
g] d3_36_EQ_Taft_-60mm d3_37_EQ_Taft_+60mm

-3

-2

-1

0

1

2

3

A
cc
el
er
at
io
n
, 
W
al
l 
av
g.
 [
g] d3_40_EQ_Taft_-80mm d3_41_EQ_Taft_+80mm

-3

-2

-1

0

1

2

3

A
cc
el
er
at
io
n
, 
W
al
l 
av
g.
 [
g] d3_50_EQ_Taft_-100mm d3_51_EQ_Taft_+100mm

-20 -10 0 10 20

-3

-2

-1

0

1

2

3

Displacement, Wall centre [mm]

A
cc
el
er
at
io
n
, W

al
l 
av
g.
 [
g] d3_54_EQ_Taft_-120mm

-20 -10 0 10 20

Displacement, Wall centre [mm]

d3_55_EQ_Taft_+120mm

Figure D.5: Hysteresis plots of the average wall acceleration versus the wall displacement
for Taft earthquake runs on wall d3.
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observed during quasistatic testing (refer to Figures 2.14–2.21).

Table C.6 specifies whether or not the impacts occurred during individual test runs
conducted in the main wall test programme. In testing the first two walls, d5 and
d3, the impacts were observed for Taft runs at strong intensity; however, they were
ignored. During testing of wall d4, efforts were made to stop the impacts from
occurring, including runs 60–66 which experimented with different PID settings for
the controller (refer to Section D.6.2); and runs 69–84 which trialled filtered versions
of the Taft input motion. However, neither of these attempts were successful in
preventing the impacts.

After testing wall d4, the main test programme was temporarily suspended and
a series of diagnostic tests were performed to investigate the cause of the impacts
and assess whether the test setup or procedure could be modified to prevent them
from occurring. These included:

• Testing of various aspects of the experimental arrangement such as the wall
restraint frame and the table itself,

• Modifying the settings of the hydraulic actuator controller,

• Testing of a second hydraulic actuator (identical to the shaketable actuator),
and

• Trial runs using alternative earthquake input motions.

This appendix presents the findings of investigations relating to the shaketable
impacts. The diagnosed causes of the impacts are presented in Section D.2. The
trends in the experimental behaviour are discussed in Section D.3. A developed
numerical simulation for predicting the time history of the shaketable’s motion
is presented in Section D.4 and a simplified procedure for predicting the input
motion intensities at which the first onset of the impacts is expected to take place
is presented in Section D.5. The aforementioned diagnostic experimental tests
are reported in Section D.6, and finally, conclusions of the investigations and
recommendations for future use of the shaketable are given in Section D.7.

d.2 diagnosed cause of the impacts

The diagnoses made herein are based on the judgement of the author with support
of various evidence presented throughout this appendix, including experimental
data from the main test programme, special diagnostic tests on the apparatus and
a numerical simulation developed to simulate the ram’s motion.
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Figure D.6: Superimposed plots of the table velocity response for Taft earthquake runs
on wall d3, with PGD ranging between ±40 and ±120 mm. The graph demonstrates the
existence of a maximum velocity at which the ram can travel, equal to approximately +200

mm/s and −165 mm/s in the positive and negative directions, respectively.

The underlying cause of the impacts is an upper limit of the velocity at which
the shaketable actuator (hydraulic ram) can travel in both the positive and negative
directions. Existence of these limits is evident from plots of the table’s velocity,
including for tests from the main programme shown by Figure D.3, which are
superimposed together in Figure D.6, and also for tests where the hydraulic ram
was disconnected from the table (refer to Figure D.13). Diagnosing the mechanical
causes responsible for these limits is beyond the scope of this study; however, they
are likely to be due to a maximum rate at which hydraulic fluid can flow in and out
of the actuator, which in turn is likely to be governed by the capacity of the pump
driving the hydraulics. The values of the velocity limits are obtained graphically.
Based on the figures, the limit is approximately u̇+

lim = +200 mm/s in the positive
direction (ram retracting inwards), and u̇−lim = −165 mm/s in the negative direction
(ram extending outwards).

The existence of the velocity limits alone, however, is insufficient to explain the
acceleration spikes generated. The secondary cause of the spikes is that once the
velocity limit is reached, a lag develops between the displacement of the actuator
and the input (target) displacement which the actuator attempts to track. As long
as the displacement lag is in the same direction as the ram’s travel, the ram will
continue moving smoothly toward the target displacement at the limiting velocity.
However, once the target displacement switches to the opposite direction relative
to the ram’s travel, the ram must undergo an abrupt change in direction in order
to follow the target displacement. This sudden reversal in direction is believed to
generate the apparent impact and cause a spike in the acceleration response.
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Figure D.7: Measured PGA response plot for Taft earthquake runs performed on wall d3.
The bracketed values show the time (in seconds) at which the PGA occurred during the
shaking.

d.3 experimental behaviour

The Taft earthquake runs performed on wall d3 are used as the main experimental
data set referred to throughout these discussions. These series of tests have been
chosen as the associated results are representative of all the tests performed in
this experimental study, whilst incorporating the most extensive range of shaking
intensities considered. Several figures are provided based on these test runs.
Response plots of the table’s acceleration (Figure D.2), velocity (Figure D.3) and
displacement (Figure D.4) are shown for selected runs at PGDs of ±40, ±60, ±80,
±100 and ±120 mm. Figure D.7 graphs the associated PGA response for the different
PGD intensities used.

It should be noted that for all results presented in this appendix, the accel-
eration and displacement data was obtained through direct measurement, using
accelerometers and displacement transducers, respectively. By contrast, velocity
data was derived by numerically differentiating the measured displacement data.

d.3.1 PGA Response

The trend in the measured PGA for different intensities of the input motion is
illustrated by Figure D.7. The figure plots the measured PGA of the table against
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the input PGD for the full range of input PGDs for which tests were carried out,
ranging between ±5 and ±120 mm. For comparison, the relationship between the
PGA and PGD in the input motion itself, which would be produced if the shaketable
perfectly tracked the input motion, is also plotted. It is seen that at low shaking
intensities when the magnitude of the PGD is 50 mm or less, the measured PGA

is approximately linear with respect to the PGD and in good agreement with the
idealised input motion. The data points inside this linear range correlate directly
to the test runs where the impacts do not occur. However, as the shaking intensity
is increased to a PGD magnitude beyond approximately 60 mm, the impacts begin
to occur, which causes the PGA to become highly nonlinear with respect to the PGD

and up to 3 to 7 times higher than the theoretical value.

d.3.2 Time History Waveforms

Close inspection of the acceleration, velocity and displacement waveforms, provided
as Figures D.2, D.3 and D.4 supports the hypothesised reasons for the impacts
provided in Section D.3. For example, consider the initial spike in the Taft motion
at approximately t = 3.2 sec (Figure D.2). This spike first occurs at −60 mm and
+70 mm PGD in the negative and positive directions respectively, but interestingly,
becomes attenuated at higher input motion intensities (Figure D.7). This trend can
be explained by the hypothesis as follows.

In the original input motion shown in Figure D.1 there is a ‘kink’ in the
displacement trace at approximately t = 3.2 sec, which requires a slight reversal in
the movement direction. Incidentally, this point also coincides with the PGA of the
input motion. The kink at t = 3.2 sec is well captured by the ram at low shaking
intensities where the velocity threshold is not reached, as can be seen for the −40

mm, +40 mm, +60 mm PGD runs in Figures D.2, D.3 and D.4. Consequently
impacts do not occur at these low input intensities.

At intermediate intensities, corresponding to PGD = −60 mm, −80 mm +40

mm and +60 mm, the velocity begins to reach its limit at approximately t = 2.9 sec
(Figure D.3). These shaking intensities also correlate well with the intensity at
which the impacts begin to occur in the t = 3.2 sec region, as can be seen through
comparison of Figures D.3 and D.2. The impacts occur at these intermediate
intensities because the attainment of the threshold velocity at t = 2.9 sec causes a
lag to develop between the ram’s actual displacement and its target displacement.
Consequently, by the time the ram arrives in the kink region at t = 3.2 sec it needs
to suddenly reverse its direction in order to track the target displacement, which
causes the associated acceleration spike.



d.4 numerical simulation of the ram’s motion 521

That the acceleration spikes in this region disappear for high shaking intensities,
including PGD = −100 mm, −120 mm and +120 mm in the runs is also consistent
with the hypothesis. It can be seen from Figure D.3, that for these test runs the
ram simply travels at its threshold velocity in this region and does not reproduce
the kink at t = 3.2 sec. The reason for this is that when the motion is run at
these high intensities, the lag between the ram’s actual displacement and its target
displacement becomes so large that by the time the actuator arrives at the kink
region, the target displacement is already further ahead in the input motion. This
causes the ram to simply continue travelling toward the target at its threshold
velocity, thus causing the kink to be ignored in the reproduced motion. As a result,
the PGA occurs at a later point, at approximately t = 5.2 sec.

d.4 numerical simulation of the ram’s motion

In order to test the hypothesised reasons for the impacts discussed in Section
D.2, a numerical simulation of the ram’s motion was developed. The basis of the
simulation is to step forward in the time domain and calculate the position of the
ram at each time point by enforcing limits on the maximum velocity at which the
ram can travel. The velocity limits used in the simulation were those determined
graphically from the wall’s response (Figure D.6).

d.4.1 Algorithm

The basic steps in the simulation algorithm are as follows.

1. Start with a digitised input displacement record utarg. This represents the
target motion which is used as input for defining the motion to the shaketable
controller.

2. Numerically differentiate the displacement record to obtain the target ve-
locity record u̇targ, and differentiate for a second time to obtain the target
acceleration record ütarg.

The remaining steps are used to calculate the predicted motion of the ram, including
its displacement uram, velocity u̇ram and acceleration üram.

3. At the first time point, assign the ram displacement, velocity and acceleration
using the first entry of the target motion, such that

ui=1
ram = ui=1

targ, u̇i=1
ram = u̇i=1

targ, üi=1
ram = üi=1

targ.
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In the motions considered in these tests, the above initial quantities were all
equal to zero.

At every subsequent point, the ram displacement is calculated using a step-by-step
process by repeating steps 4 and 5 until the end of the record.

4. At the current (ith) point, calculate the ram velocity needed at the step between
the previous and current time points in order to reach the target displacement
at the current time point. The required velocity is

u̇req =
(

ui
targ − ui−1

ram

)
/∆t,

where ∆t is the time step.

5. If the required ram velocity u̇req lies within the velocity threshold bounds
u̇−lim and u̇+

lim, then the ram is able to track the target motion properly at the
ith point and the ram displacement at that point is assigned as the target
displacement, ui

ram = ui
targ.

Otherwise, if the required ram velocity exceeds one of the threshold bounds,
then the ram’s velocity assumes the value of the threshold that is exceeded.
Consequently the ram loses track of the target motion, causing a displacement
lag to develop. The corresponding displacement at the ith point becomes

ui
ram = ui−1

ram + u̇lim ∆t,

where u̇lim is the critical velocity threshold that was exceeded (either u̇−lim or
u̇+

lim).

Steps 4 and 5 are repeated until the ram displacement uram is calculated for the
entire duration of the motion. Finally the following step is performed.

6. Numerically differentiate the calculated ram displacement record uram to
obtain the ram velocity u̇ram, and differentiate for a second time to obtain the
ram acceleration üram.

At the end of the process described by steps 1 to 6, the user will end up with
histories for the displacement, velocity and acceleration of the target motion (utarg,
u̇targ, ütarg) and the predicted motion of the ram (uram, u̇ram, üram).
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Figure D.8: Predicted PGA response plot for the Taft earthquake based on numerical
simulation. The predicted motion was obtained by implementing velocity threshold limits
of −165 and +200 mm/s. Bracketed values show the time (in seconds) at which the PGA
occurs during the motion. Grey shaded regions show PGDs at which synchronisation is lost
between the ram and target displacement.

d.4.2 Results

The proposed numerical analysis was conducted using the Taft motion at different
PGD intensities, using the velocity threshold limits u̇+

lim = +200 mm/s and u̇−lim =
−165 mm/s. A full PGA response plot for the Taft earthquake predicted by the
simulation is shown by Figure D.8. Examples of the ram’s motion for the associated
simulated runs are also provided by Figure D.9, which plots the ram’s predicted
displacement, velocity and acceleration time histories for PGDs of −60 mm, −80

mm, −100 mm and −120 mm.

d.4.3 Comparison of Predicted PGA Response with Experiment

Comparison of the PGA response plot obtained computationally (Figure D.8) and
experimentally (Figure D.7) shows favourable correlation between several charac-
teristics.

Both curves show that the impacts do not occur for PGDs equal to or less severe
than −50 mm in the negative direction and +60 mm in the positive direction.
Conversely, the numerical analysis predicts the impacts to occur for all intensities
greater than −60 mm in the negative direction and +70 mm in the positive direction,
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Figure D.9: Examples of simulated ram motion for the Taft earthquake. The motion was
calculated by implementing velocity threshold limits of −165 and +200 mm/s. Grey
shaded regions show lost synchronisation between the ram and target displacement.
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Figure D.9: (cont’d).
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which is validated by the experimental results.

Furthermore, the analysis predicts with good accuracy the time at which the
PGA is expected to occur. At low levels of intensity and in the absence of impacts,
both the analysis and experiment demonstrate the PGA to occur at t = 3.1 sec.3

At intermediate levels of shaking intensity, corresponding to PGD between +70

mm and +90 mm on the positive side and between −60 mm and −80 mm on the
negative side, both the analysis and experiment exhibit impacts which result in
the PGA at approximately t = 3.2 sec. At high intensity shaking, corresponding to
PGD between +100 mm and +120 mm on the positive side and between −90 mm
and −120 mm on the negative side, the critical impacts causing the PGA are shown
by both the analysis and experiment to occur at approximately t = 5.2 sec. The
resulting shift in the time at which the PGA occurs to a later point in the motion
is due to the ‘smoothing’ of the displacement trace at the t = 3.2 sec region, as
discussed previously in Section D.3.2, which is also captured in the simulation
(Figure D.9).

There is also good correlation between the overall shapes of the PGA response
curves obtained experimentally (Figure D.7) and computationally (Figure D.8).
For example, on the positive displacement side, the PGA increases as the PGD is
increased from +60 mm to +80 mm, but then begins to reduce slightly at +90 mm.
The PGA then increases again once the critical impacts begin to occur at t = 5.2 sec,
as the PGD is increased from +100 mm to +120 mm. Similarly, on the negative
displacement side, the PGA increases as the PGD is increased from −50 mm to −70

mm. The PGA then reduces slightly at approximately a PGD of −90 mm and then
continues to increase further as the critical impacts move to t = 5.2 sec, as the PGD

is increased from −100 mm to −120 mm. These trend is reflected by both the
experimental and computational results. In addition, both sets of curves show that
the PGA generated is slightly greater in the positive PGD direction as opposed to
the negative PGD direction.

d.4.4 Comparison of Predicted Waveforms with Experiment

Another aspect where the simulation correlates favourably with experimental data
is by comparing the time history waveforms themselves. Comparisons can be made
between the selected analytical runs for PGDs of −60 mm, −80 mm, −100 mm and
−120 mm, as shown by Figure D.9, with the respective experimental runs given in
Figures D.2, D.3 and D.4.

3With the exception of PGD = +60 mm, whereby the largest measured acceleration was at
t = 6.1 sec, which was marginally larger than the second largest acceleration which occurred at the
predicted time of t = 3.1 sec
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For the run at PGD = −60 mm, as shown by Figure D.9a, the simulation
predicts that synchronisation between the ram and the target motion is lost on
two occasions, firstly at around t = 3.0 sec and secondly at t = 5.2 sec. However,
the acceleration trace shows that only the first instance causes an impact, at
approximately t = 3.2 sec. Indeed, the corresponding plot of the experimental
response in Figure D.2 confirms this, exhibiting a single spike at the same location.

For the run at PGD = −80 mm, as shown by Figure D.9b, again two losses
of synchronisation are predicted at the same points in the response as for the
run at PGD = −60 mm. Similarly, only a single acceleration spike is predicted at
t = 3.2 sec, which is once again confirmed by the corresponding experimental plot
in Figure D.2.

For the run at PGD = −100 mm, as shown by Figure D.9c, the behaviour
becomes slightly different. Loss of synchronisation is predicted at numerous points
in the response; however, two of these zones these appear to be most significant.
The first zone is between 2.8 sec and 3.6 sec, even though it is not predicted to
generate any acceleration spikes. The second zone is between 5.2 sec and 6.0
sec, which generates two spikes, one at each of the zone’s boundaries. Again the
corresponding experimental plot in Figure D.2 compares favourably, showing clear
spikes at the same locations in the second zone, as well as an absence of spikes in
the first zone.

The final run at PGD = −120 mm, as shown by Figure D.9d, is somewhat
similar to the run at PGD = −100 mm, however, loss of synchronisation is predicted
at numerous additional zones. Similarly though, the first zone between 2.8 sec
and 3.6 sec, and the second zone between 5.2 sec and 6.0 sec are again the most
significant. There is no impact at the start of the first zone; however, a moderate
spike is predicted to occur at the end of the zone at 3.6 sec. The second zone
again corresponds to the most significant spikes in the response with the largest
one occurring at 5.2 sec and the other at 6.0 sec. In addition, four additional
moderate spikes are predicted to occur at 6.1 sec, 7.0 sec, 7.3 sec and 7.5 sec.
Remarkably, these spikes are all exhibited by the experimental response as shown
by the corresponding plot in Figure D.2.

d.4.5 Limitations

Despite being able to predict certain characteristics of the ram’s motion with
reasonable accuracy, the simulation is unable to accurately predict the actual value
of the PGA. It generally underpredicts the value of the PGA quite significantly when
compared to the experimental results (Figure D.7).
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This error could be due to numerous sources. For example, the actual physical
system experiences inertial loading due to the presence of actual mass, which is
not accounted for in the simulation. Such effects are demonstrated in Section D.6.1
where it is demonstrated that when the ram is disconnected from the rest of the
shaketable test arrangement, the resulting PGAs become significantly lower. Further
inaccuracies could also result from numerical error in the simulation. For example,
given that the numerical differentiation of the ram’s motion relies on division by
the time step ∆t to obtain the acceleration record, a small change in ∆t can have a
significant influence on the computed PGA. By contrast, the value of ∆t used in the
analysis is based solely on the digitised input motion used and hence cannot be
adjusted.

d.4.6 Summary

The simulation has been shown to predict numerous characteristics of the response
with good accuracy, including

• The shaking intensity, as a PGD, at which the impacts are expected to begin to
occur,

• The general shape of the PGA response curve as a function of the PGD,

• The time at which the PGA is expected to occur, and

• Detailed aspects of the time history waveform such as the occurrence of
secondary impacts.

Consequently the simulation is believed to provide a good model for predicting
the motion of the ram, as well as strong support for the hypothesised causes of the
impacts as discussed in Section D.2.

d.5 predicting the onset of the impacts

A computational model was presented in Section D.4 for simulating the motion of
the ram when subjected to maximum velocity limits, which exhibited good corre-
lation with various aspects of the experimentally observed motion. A significant
outcome of the model was that it was able to predict, with good accuracy, the PGD

intensity at which the impacts are expected to occur, by generating a response
curve for the predicted PGA for different levels of input intensity, such as that
shown by Figure D.8 for the Taft motion. That the numerical model performed
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Figure D.10: Simulated ram motion for the Taft earthquake at PGD = −50 mm, calculated
by implementing the velocity threshold limits of −165 and +200 mm/s. Grey shaded
regions show lost synchronisation between the ram and target displacement.

with such good accuracy provided strong evidence for the hypothesised reason
of the impacts, which is that the impacts are caused by a loss of synchronisation
between the ram displacement and the target displacement that occurs when the
peak velocity (PGV) of the input motion exceeds the ram’s threshold velocity.

The numerical model can also be used to demonstrate, however, that loss of
synchronisation between the ram and the target displacement is a necessary, but
not sufficient, condition for the generation of the acceleration spikes. An example
of this is shown by Figure D.10, which shows the predicted motion of the ram for
the Taft earthquake at PGD = −50 mm. It is seen that although the ram loses track
of the target displacement at approximately t = 3.0 sec, the loss of synchronisation
does not generate an acceleration spike in this instance. The likely reason for
this behaviour is that when the ram catches up with the target displacement after
the loss of synchronisation, the target displacement is still travelling in the same
direction and therefore the ram does not need to undergo a direction reversal.

Consequently, a simple yet conservative estimate of the intensity at which
the impacts first begin to occur for a particular input motion can be provided
by calculating the lowest PGD at which the threshold velocity of the ram is first
exceeded. In order to calculate these PGD limits, it is necessary to know the PGV
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Table D.1: The PGD, PGV and PGA of the various shaketable input motions, in both the
positive and negative directions. The motions have been scaled such that the PGD occurs in
the positive direction and is equal to +100 mm.

Quake PGD [mm] PGV [mm/s] PGA [g]

(+) (−) (+) (−) (+) (−) (abs)

Taft +100 −77.0 +349 −241 +0.40 −0.45 0.45
Synth01 +100 −67.4 +522 −444 +0.53 −0.58 0.58
Synth02 +100 −93.9 +492 −314 +0.55 −0.46 0.55
Synth03 +100 −83.9 +322 −274 +0.55 −0.50 0.55
Synth04 +100 −91.0 +416 −372 +0.76 −0.62 0.76
Synth05 +100 −77.4 +619 −463 +1.20 −0.80 1.20
Synth06 +100 −92.4 +568 −673 +1.06 −1.30 1.30
Synth07 +100 −97.4 +586 −534 +2.27 −1.51 2.27
Synth08 +100 −88.1 +483 −438 +1.46 −1.05 1.46

Table D.2: Calculated PGDs in the negative and positive directions at which the ram loses
synchronisation with the target motion. The calculations are based on the input motion
velocity exceeding one of the velocity limits of the ram, either +200 mm/s or −165 mm/s.
In most cases the −165 mm/s limit is critical, except where indicated by an asterisk (∗)

Quake PGD [mm]

(−) (+)

Taft −47.2 +57.3∗

Synth01 −31.6 +37.2
Synth02 −33.6 +40.7∗

Synth03 −51.2 +60.3
Synth04 −39.7 +44.4
Synth05 −26.7 +32.3∗

Synth06 −29.1 +24.5
Synth07 −28.2 +30.9
Synth08 −34.1 +37.7

of the input motion in both the positive and negative displacement directions.
These values can be derived from a digitised velocity record for the particular
input motion, which may be obtained by numerically differentiating its digitised
displacement record. The resulting information is given in Table D.1 for the
different seismic motions used in this experimental study.

Table D.2 provides the calculated PGD limits in the positive and negative direc-
tions at which the threshold velocity of the ram is first exceeded. The associated
calculations assumed the ram velocity threshold limits to be u̇+

lim = +200 mm/s
and u̇−lim = −165 mm/s. Comparison of the calculated limits for the Taft motion
with Figure D.7 show that as expected, they provide an accurate, yet slightly
conservative prediction of the shaking intensities at which the impacts begin to
occur. In Section D.6.3 it is shown that the predictions are also accurate for the
synthetically generated motions Synth01–Synth08. Furthermore, the predictions
show good correlation with results from the main test programme (Table C.6).
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d.6 diagnostic experimental tests

During the process of attempting to diagnose the cause of the shaketable impacts,
a series of experimental tests were conducted focusing on various aspects of the
test setup and method. The general approach used in these tests was to run the
earthquake motions on the shaketable at varying levels of intensity and measure
the resulting displacement and acceleration response. Although the actual cause
of the impacts (discussed in Section D.2) was found to be none of those that were
directly investigated in these diagnostic tests, the results of the tests are nonetheless
reported as they also support the final conclusions reached.

d.6.1 Tests on the Shaketable and Wall Restraint System

The first phase of diagnostic tests aimed to determine if the impacts were caused
by the presence of a particular part of the overall test arrangement such as the wall,
restraint frame, or the shaketable itself. Starting with the original test setup used
for wall tests (refer to Figure 3.4), these diagnostic tests involved gradual removal
of these components from the test arrangement and conducting trial runs of the
Taft earthquake motion. The various configurations that were considered included:

• The hydraulic ram connected to the shaketable, together with the restraint
frame mounted on the table, but without a wall,

• Hydraulic ram connected to only the bare shaketable, and

• The hydraulic ram by itself.

In addition to the above tests, data had already been acquired for the full test
arrangement during the original wall tests. In all of these trial runs, the actuator
controller proportional-integral-derivative (PID) was set to 36 dB (the influence of
this parameter is discussed in greater detail Section D.6.2).

Results

Table D.3 provides the measured PGA data at varied input PGD intensity. Qualitative
assessment of whether the impacts were deemed to have occurred based on the
recorded acceleration time history, is also provided. The table also indicates the
shaking intensities at which the ram is expected to lose synchronisation with the
target motion and the impacts are predicted to occur (based on Table D.2).

The results demonstrate that the test arrangement had no bearing on whether
or not the impacts occurred. Significantly, the impacts occurred even when the
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Table D.3: Results from tests on various test arrangements. The Taft earthquake motion
was used in all tests and the controller PID was set to 36 dB. Gray shading indicates the
PGDs at which synchronisation is expected to be lost, based on Table D.2.

Config: Table + Frame
+ Wall (d3)

Table + Frame Table (no
Frame)

Ram only

PGD PGA Note PGA Note PGA Note PGA Note
[mm] [g] [g] [g] [g]

+120 3.55 � 4.45 � – – – –
+110 2.32 � – – – – – –
+100 2.47 � 3.14 � 3.58 � 1.68 �
+90 1.37 � – – – – – –
+80 2.73 � 3.61 � 4.27 � 1.81 �
+70 2.16 � 2.72 � – – – –
+60 0.45 # 0.93 � 1.03 � 0.40 #
+50 0.40 # 0.87 # – – – –
+40 0.29 # 0.48 # 0.71 # 0.22 #
+30 0.18 # – – – – – –
+20 0.13 # 0.20 # – – – –
+10 0.07 # – – – – – –
+5 0.04 # – – – – – –

−5 0.04 # – – – – – –
−10 0.08 # – – – – – –
−20 0.12 # 0.22 # – – – –
−30 0.20 # – – – – – –
−40 0.28 # 0.45 # 0.55 # 0.23 #
−50 0.34 # 0.65 # – – – –
−60 1.50 � 1.89 � 2.14 � 1.06 �
−70 1.71 � 3.03 � – – – –
−80 1.79 � 2.63 � 3.49 � 1.47 �
−90 2.62 � – – – – – –
−100 1.46 � 2.63 � 3.15 � 1.21 �
−110 3.15 � – – – – – –
−120 3.22 � 4.47 � – – – –

Notes: � = Impacts occurred during run; # = Run was clean from impacts.



d.6 diagnostic experimental tests 533

0

1

2

3

4

5

-120 -80 -40 0 40 80 120

Input PGD [mm]

P
G

A
 [
g]

Table+Frame+Wall (d3) Table+Frame

Table (no Frame) Ram only

Input motion

Figure D.11: Peak acceleration measured during tests on various test arrangements.

hydraulic ram was detached from any additional mass, meaning that the impacts
were not due to the shaketable, the wall restraint frame, or the wall. Generally, the
impacts began to occur for PGD greater than or equal to +60 mm on the positive
side and −60 mm on the negative side. The results exhibit good correlation between
the shaking intensity at which the impacts occurred and the intensity at which they
are expected to occur based on the predictions in Table D.2.

The PGA response for the different test arrangements is also shown graphically
on Figure D.11. The graph indicates that regardless of the test arrangement used,
the PGA was slightly greater in the positive PGD direction as opposed to the negative
direction. This trend is consistent with the results for tests on wall d3, and also
with the predicted response based on the computational simulation performed
(refer to Table D.8).

Whilst the PGD intensity at which the impacts occurred was independent of the
test arrangement, the value of the measured PGA for the different arrangements
varied depending on the configuration, as seen from Figure D.11. For runs at
which the impacts took place, the measured PGA was consistently highest for the
configuration involving only the bare shaketable, second highest for the configu-
ration involving the table and frame, and lowest for the configuration involving
the table, frame and wall. In other words, the measured PGA reduced as the mass
of the system was increased. The apparent inverse relationship between the mass
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and resulting acceleration suggests that the force limit of the ram may have been
reached in these scenarios. Curiously though, this trend is not consistent with
the tests using only the hydraulic ram, whereby the generated accelerations are
consistently lower compared to the other three configurations having additional
mass. A possible explanation for this is that the force limit of the ram may not
have been reached when it was detached from the table, due to the absence of the
additional mass.

Conclusions

The observation that the impacts occurred regardless of the test arrangement used,
and most significantly, even in the case when no additional mass was connected
to the hydraulic ram, had shown that the cause of the impacts was not due to the
presence of any of these components of the test arrangement. Instead, these results
indicate that the impacts must be due to an inability of the actual hydraulic ram to
track the motion at higher levels of shaking intensity. This finding indeed agrees
with the underlying cause diagnosed, as discussed in Section D.2.

d.6.2 Tests Using an Alternate Hydraulic Ram and Different PID Settings

Having previously established that the impacts were not caused by any particular
part of the overall shaketable test arrangement (Section D.6.1), the second phase of
diagnostic tests studied the motion of the hydraulic ram itself when disconnected
from the rest of the shaketable test setup.

The aims of the second phase of experimental diagnostic tests were twofold:

The first aim was to determine whether the impacts may have been caused by a
particular defect of the ram which had been used to drive the shaketable. This was
achieved by testing an alternate ‘reserve’ ram using the same Taft input motion at
the levels of intensity used previously. The reserve ram had identical specifications
to the shaketable ram and was operated using the same controller computer and
software.

The second aim was to investigate the influence of the proportional-integral-
derivative (PID) setting4 of the controller computer on the generation of the impacts

4The PID setting of the controller computer which drives the hydraulic ram indirectly determines
the impetus with which the ram is forced toward its target displacement under displacement-
controlled loading. At any instance in time during the tracking process, there is some, albeit small,
difference between the physical position of the ram and the target position at which it is ‘meant to’
be. The PID setting relates to the energy with which the controller tries to correct this difference
at any point in time—a higher PID value means that the actuator is driven with greater impetus to
correct the error, with the converse being true for a smaller PID value.
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Table D.4: Results from tests on the shaketable ram and reserve ram at different PID
settings. All tests used the Taft earthquake motion. Gray shading indicates the PGDs at
which synchronisation is expected to be lost, based on Table D.2.

Ram: Shaketable Reserve Shaketable Reserve
PID: 36 dB 36 dB 26 dB 26 dB

PGD PGA Note PGA Note PGA Note PGA Note
[mm] [g] [g] [g] [g]

+120 – – – – 0.79 # – –
+100 1.68 � 1.28 � 0.56 # 0.46 #
+80 1.81 � 1.41 � 0.59 # 0.54 #
+60 0.40 # 0.35 # 0.27 # 0.24 #
+40 0.22 # – – 0.19 # 0.18 #
+20 – – – – – – – –
−20 – – – – – – – –
−40 0.23 # – – 0.18 # 0.20 #
−60 1.06 � 0.93 � 0.39 # 0.37 #
−80 1.47 � 1.23 � 0.58 # 0.44 #
−100 1.21 � 0.95 � 0.46 # 0.40 #
−120 – – – – 0.65 # – –

Notes: � = Impacts occurred during run; # = Run was clean from impacts.

and to determine whether the setting could be altered in order to prevent the
impacts from occurring. A PID setting of 36 dB had been previously used in all
tests conducted prior to those reported in this section, including the first three
walls tested (d5, d3 and d4) and diagnostic tests investigating the influence of the
test arrangement (Section D.6.1). In these tests, the original PID setting of 36 dB is
compared to a reduced setting of 26 dB, for both the shaketable ram and reserve
ram. All runs performed used the original Taft earthquake input motion.

Results

Table D.4 shows the measured PGA for the different scenarios considered, including
a qualitative assessment of whether the impacts were deemed to occur based on
the recorded acceleration time history. The table also highlights the PGD intensities
at which the impacts were expected to occur based on the loss of synchronisation
between the ram and the target motion (as per Table D.2). The measured PGA

response is also shown graphically on Figure D.13.

When run at 36 dB PID, both hydraulic rams generated acceleration spikes
which are characteristic of the impacts, although the PGAs were slightly larger for

Whilst the value of the PID setting needs to be sufficiently high in order for the input motion record
to be reproduced with an acceptable accuracy, if it is too high, the system can potentially become
unstable through feedback effects due to continual overcorrection of the displacement error. At the
time that these tests were being conducted, it was hypothesised that the impacts generated could be
a result of such effects.
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Figure D.12: Peak acceleration measured during tests on the shaketable ram and reserve
ram at different PID settings. In these tests the ram was not connected to the shaketable.

the shaketable ram than for the reserve ram (Figure D.12). The impacts for both
rams occurred at the same levels of shaking intensity. For the intensities considered
in these tests, impacts first occurred at −60 mm PGD in the negative direction and
+80 mm PGD in the positive direction and persisted at stronger levels of shaking.
These results are consistent with the PGD predicted to result in impacts due to a
loss of synchronisation between the ram and target motion.

Figure D.13 demonstrates that both rams possess peak velocity limits, which
were reached at stronger PGD intensities. These velocity limits appear to be equal
for both rams, approximately −165 mm/s in the negative direction and +200 mm/s
in the positive direction. It is therefore concluded that neither of these rams has
any particular malfunction which generates the impacts, but rather that tracking
the Taft motion at higher levels of intensity is beyond the capability of both rams.

Comparing the response for the two PID levels considered in these tests reveals
that the magnitude of the acceleration generated during the impacts can be allevi-
ated by reducing the PID to the lower value of 26 dB. As shown by Figure D.12, the
PGA generated for a 26 dB PID is much more comparable to the PGA expected based
on the input motion, as opposed to a 36 dB PID. This is the case for both rams.

Close inspection of the 26 dB PID response of the two rams (Figure D.12),
however, shows a trend which is consistent with tests where the impacts were
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(a) Shaketable ram, PID = 36 dB (PGD = ±40, ±60, ±80, ±100 mm)
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(b) Shaketable ram, PID = 26 dB (PGD = ±40, ±60, ±80, ±100, ±120 mm)
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(c) Reserve ram, PID = 36 dB (PGD = ±60, ±80, ±100 mm)
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(d) Reserve ram, PID = 26 dB (PGD = ±40, ±60, ±80, ±100 mm)

Figure D.13: Velocity response of the shaketable ram and reserve ram for varied PID settings
during the Taft earthquake motion. Several runs with different PGD intensities are plotted
on each graph as indicated.
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observed to occur. In particular, there is an increase in the PGA from ±60 mm PGD

to ±80 mm PGD, a slight reduction at ±100 mm PGD, followed by another rise
at ±120 mm PGD. Whilst the magnitude of the measured PGA for the 26 dB PID

response is significantly lower, this general trend is consistent with that observed
previously in tests where the impacts caused significant acceleration spikes. This
includes, for example, tests on wall d3 (shown in Figure D.12 for comparison) and
also the predicted PGA response based on the simulation of the ram’s motion as a
result of the impacts (Figure D.8). Furthermore, the velocity threshold is shown
to be reached irrespective of the PID setting (Figure D.13), despite the acceleration
spikes being far more prominent at a PID setting of 36 dB as opposed to 26 dB.
These results suggest that reducing the PID does not completely prevent the impacts
for occurring, but rather that it reduces the PGA which is generated.

Conclusions

Since both hydraulic rams possessed equal peak velocity limits and exhibited
impacts at the same levels of input motion intensity, it was concluded that the
reserve ram would provide no benefit over the original ram.

Reducing the controller PID from 36 dB to 26 dB was found to attenuate the ac-
celerations generated for runs where the ram was disconnected from the shaketable.
However, this was found not to be the case in runs where the full test arrangement
was present, as indicated by test runs 60–66 on wall d4, where the impacts were
demonstrated to occur even for a reduced PID setting (Table C.6).

d.6.3 Trial Runs Using Different Seismic Input Motions

The third phase of diagnostic tests involved trial runs using different seismic
motions on the shaketable. The eight seismic motions trialled in this phase of
testing were synthetically generated motions Synth01–Synth08, which are described
in Appendix C.2. The associated peak responses of the motions in both the positive
and negative directions including the PGD, PGV and PGA are given in Table D.1.

The test arrangement during these tests consisted of the ram being connected
to the shaketable and the wall restraint frame, but without the presence of a wall.
These conditions were intended to recreate as close as possible the conditions used
during actual wall tests, by including as much weight as possible.
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Results

Table D.5 provides the PGA data at varied input PGD intensity, including an as-
sessment of whether the impacts were deemed to have occurred. The table also
indicates the shaking intensities for each seismic motion at which the impacts are
expected to occur, based on loss of synchronisation between the ram and input
motion, as per Table D.2.

For each of the seismic motions considered, the impacts began to occur once
the PGD intensity was sufficiently high. Comparison of the experimental results
and analytical predictions shows that the impacts only occurred in cases where
they were predicted to occur based on the simplified procedure, as described in
Section D.5. Although the PGD was increased at the fairly large increments of 20

mm and in certain cases only a small number of tests were carried out5, the results
indicate that for the different shaking motions the simplified procedure (Table D.2)
provides conservative estimates of the PGD intensities at which the impacts first
begin to occur.

The results are also displayed graphically on Figure D.14, which compares the
measured PGA response to the predicted response for each of the seismic motions
considered. The predicted response curve is based on simulating the ram’s motion
using the procedure presented in Section D.4. Whilst the amount of experimental
data obtained is not sufficient to compare the shape of these curves in great detail,
the graphs indicate that when the impacts are predicted not to occur (the unshaded
area of the graphs), the measured and expected PGAs are relatively close. By
contrast, when the impacts are predicted to occur (shaded area), the measured
accelerations become much larger than those expected in the absence of the impacts,
which would occur if the input motion was tracked correctly. Furthermore, when
the impacts did occur, the PGA generated is also significantly larger than that
predicted by the numerical simulation. Possible reasons for this discrepancy were
discussed in Section D.4.5.

Conclusions

For each of the shaking motions considered, the impacts occurred when the shaking
intensity was sufficiently high. This intensity can be predicted using the simplified
procedure presented in Section D.5 as a PGD.

The finding that the impacts are caused by the velocity threshold of the hydraulic
ram could be used for selecting or generating new shaking motions for future use

5This is because at the time these tests were conducted, the aim was to simply determine whether
the impacts would take place and not to provide detailed data.
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Figure D.14: Comparison of predicted and experimentally measured PGA response for the
different seismic motions. The predicted ram motion was calculated by implementing
velocity threshold limits of −165 and +200 mm/s. Grey regions show PGDs at which
synchronisation is lost between the ram and target displacement.
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Figure D.14: (cont’d).
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of the shaketable. However, because of the innate relationship between a signal’s
frequency and amplitudes of acceleration, velocity and displacement, seismic
motions designed to satisfy the prevention of the impacts will typically need to
have a low frequency content.

d.7 conclusions and recommendations

The underlying cause of the shaketable impacts was identified as a velocity limiting
condition of the hydraulic ram used to drive the table. These velocity limits have
been experimentally measured to be −165 mm/s in the negative direction (ram
extending outwards) and +200 mm/s in the positive direction (ram retracting
inwards). The impacts occur in test runs where the peak velocity of the input
motion exceeds the maximum capacity of the hydraulic ram, which causes a loss of
synchronisation between the ram and the target displacement. The actual instance
at which an impact occurs is when the hydraulic ram travels at its threshold velocity
and abruptly experiences a change in the direction of travel

A numerical simulation of the ram’s motion has been developed based on
implementing the maximum velocity condition. The simulation strongly supports
the aforementioned reasons for the impacts, by not only predicting with good
accuracy the motion intensity at which the impacts are expected to occur, but also
the specific points in the motion at which they occur. The predicted response also
exhibits good correlation with experimental results in terms of the trend in the
generated PGA for different shaking intensities.

A simplified procedure was also proposed for predicting the motion intensity at
which the impacts are expected to occur. The premise of the method is to calculate
the PGD at which the PGV in the input motion begins to exceed the velocity limits of
the ram. This approach gives good correlation with the motion intensities at which
the impacts were observed experimentally.

In the opinion of the author, the only way in which the impacts can be prevented
whilst preserving the spectral content of the input motion would be through an
upgrade of the shaketable hardware, in particular, replacing the hydraulic ram
with one capable of reaching higher velocities. Nonetheless, the findings made in
this study may be of benefit during future use of the shaketable; for example, as an
aid in the selection of suitable input earthquake motions.
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AppendixE
M O M E N T C A PA C I T I E S

Abstract

This appendix contains additional detail related to moment capacity expressions,
as dealt with in Chapter 4.

e.1 as 3700 expressions for ultimate moment capacities

This section reproduces expressions for the ultimate moment capacities in vertical,
horizontal and diagonal bending provided in the Australian masonry code as 3700

[Standards Australia, 2001] for ultimate strength design.1

e.1.1 Vertical Bending

as 3700 prescribes the vertical moment capacity as

M̄v =
(
φ kmt f ′mt + fd

)
Z̄d, (E.1)

where φ is the capacity reduction factor (stipulated as 0.6), kmt is a bending moment
capacity factor dependent on the type of masonry material (1.0 for standard clay
brick masonry), f ′mt is the characteristic flexural tensile strength of masonry, Z̄d

is the elastic section modulus of the bedded area per unit length, and fd is the
minimum design vertical compressive stress. Equation (E.1) is based on simple
linear elastic response, with the moment being taken as the product of the necessary

1Since these expressions are used for design, they contain capacity reduction factors and charac-
teristic values of material properties.
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flexural stress to cause cracking ( fmt + fd) and the elastic section modulus (Z̄d). The
code also provides a second equation that limits the usable axial stress to

fd ≤ 2.0 φ kmt f ′mt.

e.1.2 Horizontal Bending

as 3700 specifies the horizontal moment capacity as

M̄h = lesser of

 2.0φ kp

√
f ′mt

(
1 +

fd

f ′mt

)
Z̄d for stepped failure, (E.2a)

φ
(
0.44 f ′ut Z̄u + 0.56 f ′mt Z̄p

)
for line failure, (E.2b)

where φ is the capacity reduction factor; kp is a perpend spacing factor taken as
the lesser of sp/tu and sp/hu, but no greater than 1.0; sp is the minimum overlap
of masonry units in successive courses; tu is width of the masonry unit; hu is the
height of the masonry unit; f ′mt is the characteristic flexural tensile strength of the
masonry in MPa; f ′ut is the characteristic lateral modulus of rupture of the masonry
units; fd is the minimum design vertical compressive stress; Z̄d is the elastic section
modulus of the bedded area; Z̄u is the lateral section modulus of the masonry units;
and Z̄p is the lateral section modulus of the mortar contact area of perpend joints.
The section moduli per unit length of the crack may all be calculated from elastic
beam theory as

Z̄d, Z̄u, Z̄p = t2
u/6, (E.3)

where tu is the width of the brick unit.

Equation (E.2a) is an empirical expression representing the moment capacity
against stepped failure (refer to Figure 4.4a), similar to a relationship derived by
Lawrence [1975] using a regression analysis on brickwork panel flexural strength
test data. The code also provides an additional expression, which enforces an upper
limit on the maximum usable compressive stress fd within equation (E.2a), so that

fd ≤ f ′mt.

This limitation implies that in the absence of bond strength ( f ′mt = 0), the masonry
will possess zero moment capacity. Such a treatment is likely to be overly conser-
vative for walls with low axial stress, since unreinforced masonry (URM) attains
some moment resistance from friction along the bed joints. A further problem of
equation (E.2a) is that it is dimensionally incorrect due to the presence of the

√
f ′mt

term, which can introduce unit inconsistency (thus requiring f ′mt to be in MPa).
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The resistance to line failure (refer to Figure 4.4b), represented by equation
(E.2b), is based on elastic sectional capacity of the vertical crack. The equation
includes strength contributions from rupture of the brick units in addition to
flexural capacity of the perpend joints, whilst making the approximation that 44%
of the failure plane cuts through brick units and 56% through a combination of
perpend and bed mortar joints.2

e.1.3 Diagonal Bending

as 3700 specifies the diagonal bending capacity per unit length according to the
equation

M̄d = φ f ′t Z̄t, (E.4)

where φ is the capacity reduction factor, f ′t is an equivalent characteristic torsional
strength and Z̄t is the equivalent torsional section modulus per unit length along
the axis of the diagonal crack line.

This approach to calculating the diagonal moment capacity was developed
by Lawrence and Marshall [1996] based on the assumption that the diagonal crack
behaves as a rectangular shaft subjected to pure torsion. The effective rectangular
section is assumed to have the dimensions B × tu, where tu is the width of the
masonry unit and the length B is given by

B =
hu + tj√
1 + Gn2

, (E.5)

where hu is the height of the masonry unit, tj is the thickness of mortar joint, lu is
the length of the masonry unit, and Gn is the natural slope of the diagonal crack
line [calculated using equation (4.13)].

The provided expressions for Z̄t are based on elastic theory [e.g. Timoshenko and
Goodier, 1934] and cater for two possibilities regarding the location of the maximum
shear stress along the section, depending on the relative size of B and tu. For solid

2These are values representative of standard Australian brickwork, corresponding to 76 mm brick
unit height and 10 mm mortar joint thickness.
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rectangular sections, the torsional modulus is given as

Z̄t =



2 B2 t2
u

3 B + 1.8 tu(
lu + tj

)√
1 + Gn2

for B ≥ tu,

2 B2 t2
u

1.8 B + 3 tu(
lu + tj

)√
1 + Gn2

for B ≤ tu.

(E.6)

The equivalent torsional stress term f ′t within expression (E.4) was calibrated by
Lawrence and Marshall [1996] using experimental data for 49 test walls, to achieve
good fit between the wall ultimate load capacities measured experimentally and
predictions made using the virtual work method. This resulted in the empirically
derived expression

f ′t = 2.25
√

f ′mt. (E.7)

Lawrence and Marshall reasoned that any deviations in behaviour from the theoretical
idealisation should be compensated for by the empirical nature of this term.

The primary shortcoming of this model is that it contains dimensional in-
consistency due to the

√
f ′mt term within equation (E.7) [similarly to (E.2a) for

horizontal bending stepped failure]. Furthermore, the equations do not account
for the strengthening influence due to vertical compressive stress and imply that
in the absence of mortar bond cohesion a wall will have zero moment capacity
in diagonal bending. This is contrary to the generally accepted view that the ma-
sonry undergoes some degree of rocking behaviour along diagonal crack lines and
must therefore possess some moment resistance even after cracking. Consequently,
neglecting this contribution is likely to be overly conservative, particularly for
masonry with low bond strength or moderate vertical compressive stress.

e.2 torsional capacity of a mortar-bonded section

This section presents an analytical expression for calculating the ultimate torsional
capacity in horizontal bending with respect to the stepped failure mode (refer to
Figure 4.4a), which makes a slight alteration to an expression developed by Willis.

e.2.1 Original Equation by Willis

In his doctoral thesis, Willis [2004] (also published in Willis et al., 2004) proposed
that the ultimate moment capacity of an individual bed joint subjected to torsion
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Figure E.1: Rectangular section subjected to elastic torsion about the centre.

can be calculated using the equation

mh = kb2 τum

(
lu + tj

)
t2
u

2
, (E.8)

where mh is the ultimate moment in horizontal bending over a single element
(refer to Figure 4.2), lu is the length of brick unit, tj is the mortar joint thickness,
tu is the brick unit width, τum is the ultimate shear stress capacity of the masonry
[calculated using Eq. (4.24)], and kb2 is a dimensionless factor based purely on the
geometry of the bed joint. The expression was derived from elastic theory and
assumes that failure occurs when the maximum torsional shear stress developed
along the section reaches the ultimate shear stress capacity. The factor kb2 may be
calculated using the Timoshenko and Goodier [1934] formula

kb2 =

1
3

[
1− 192

π5r ∑∞
n=1,3,5,...

1
n5 tanh

(nπr
2

)]
1− 8

π2 ∑∞
n=1,3,5,...

1
n2 cosh

( nπr
2

) , (E.9)

where r is the ratio of longer side to the shorter side lengths of the section (or
b/a as shown in Figure E.1), which accounts for the fact that the maximum shear
stress occurs at the midpoint of the longer edge. Since Willis’ equation does not
make any distinction between which is the longer and shorter side, it has the minor
shortcoming that it is only applicable when the bed joint has good overlap, or
sb ≥ tu (refer to Figure 4.2). Willis does state however, that kb2 can be conservatively
assumed to be 0.208, which is the value corresponding to a square bed joint.
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e.2.2 Revised Equation

As an alternative expression to that of Willis [equation (E.8)], the author proposes
the slightly modified equation

mh = kbe τum t3
u, (E.10)

which becomes applicable to any value of bed joint overlap, due to the method
used to calculate the coefficient kbe. From the definition of the bed joint overlap
ratio as ro = sb/tu [equation (4.26)], the value r that must be used in the calculation
of kb2 using equation (E.9) is

r = max
(

ro,
1
ro

)
, (E.11)

which accounts for the location of the maximum elastic shear stress along the
rectangular section (Figure E.1). From this, the coefficient kbe becomes

kbe =

kb2 r2
o , for ro < 1;

kb2 ro, for ro ≥ 1.
(E.12)

Figure 4.6 plots the resulting coefficient for varying overlap ratio ro.

e.3 torsional friction capacity of a dry masonry section

This section provides a developed analytical expression for calculating the residual
moment capacity in horizontal bending due to frictional torsion along the bed joint.
Previous models for calculating the frictional torsion capacity are presented in
Section E.3.1. The author believes the new approach to be more robust than the
previous ones for reasons outlined therein. Derivation of the model is presented in
Section E.3.2.

e.3.1 Previous Models

Willis [2004] (also published in Willis et al., 2004) proposed that the post-cracked
frictional torque capacity over a single bed joint can be calculated using the expres-
sion

mh = ξ f σv

(
lu + tj

)
tu

2
, (E.13)

in which ξ f is an empirical index of frictional torque resistance and other symbols
as defined previously (refer to Figure 4.2). The equation is based on the following
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assumed relationship between the torque resistance T and applied axial force P:

T = ξ f P. (E.14)

The coefficient ξ f , which has dimensions of length, was empirically calibrated
by Willis through torsional tests on bed joints and found to be approximately 40

mm for the standard Australian brickwork on which these tests were conducted
(230× 110× 76 mm units with 10 mm mortar joints). The inherent shortcoming
of this expression is that it is only applicable to masonry units having the same
dimensions as those to which the value of ξ f was calibrated—for each new type
of masonry it would be necessary to empirically derive a new value of ξ f . This
is evident from equation (E.14), which implies that for a fixed axial load P and
coefficient ξ f the resulting frictional torque capacity T will be constant, irrespective
of scale effects. This clearly cannot hold, since the scale of the masonry units
influences the size of the internal lever arm and therefore the torque capacity. The
applicability of Willis’ equation is further limited by not being expressed in terms
of the friction coefficient, and can therefore only be applied to the particular type
of masonry used in the calibration data set, both in terms of scale and frictional
characteristics.

As an alternative approach for calculating the frictional torque capacity along
a bed joint that does take into account geometric scale effects and the friction
coefficient along the interface, the author proposed the following equation in
previous research [Vaculik et al., 2003]:

mh =
µ σv t3

u
2.614

, (E.15)

where µ is the friction coefficient, σv is the axial stress acting on the bed joint, and
tu is the width of the bed joint. This expression is based on the assumptions of
a uniform stress distribution along the section, with rotation occurring about the
centre of the bed joint (same assumptions and principles used to develop the new
model in Section E.3.2).

Since equation (E.15) is formulated in terms of the friction coefficient and
directly accounts for scale effects, the author considers it to be more versatile than
equation (E.13). By setting equal the moment capacities predicted by equations
(E.13) and (E.15), it can be shown that masonry used by Willis to obtain the value
ξ f = 40 mm has an equivalent friction coefficient of µ = 1.04. Nonetheless, equation
(E.15) is limited in that it is only applicable to a square bed joint. To overcome this,
a more general form of the equation applicable to a generic rectangular section is
derived in the following section.
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t

s

Figure E.2: Uniform shear stress field generated from torsion about the centre of the
section.

e.3.2 New Model

Derivation of an analytical expression for calculating the moment capacity of a
rectangular bed joint subjected to rotation friction will now be presented. For a list
of the assumptions made in the development of the model, the reader is referred to
Section 4.3.3 (p. 133).

It is worth noting that the model described here is very similar to a torsional
friction model developed by Orduña and Lourenço [2005a], which also has the
ability to deal with different (non centred) positions of the rotation point along
the rectangular section.3 The identical equations developed in both cases can be
considered a verification for the derivation process used.

General

Consider a rectangular cross section having the dimensions t and s (representing
the width tu and overlap sb of the bed joint respectively), subjected to torsion about
its centre as shown in Figure E.2. The strategy of the derivation is to divide the
rectangle into two types of triangles: 4A and 4B, as shown by Figure E.3. An
expression is first derived for the torque about the acute vertex of a right triangle.
The contributions of the constituent triangles are subsequently combined to obtain
the torque acting about the overall rectangle (as per Figure E.3).

3This work was belatedly discovered by the author during the course of this research.
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Figure E.3: Rectangular section divided into two types of right triangles.
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Figure E.4: A right triangle section subjected to plastic torsion about one of its acute
vertices (bottom left corner in diagram shown).

Torsion About the Acute Vertex of a Right Triangle

The torsion along a generic right triangle cross section having the base B and height
H as shown by Figure E.4 will now be derived. The total torque along the triangle
may be obtained by integrating the torque contributions of the radial elements
from which it is comprised. Consider a single radial element with length R and
angle dθ (Figure E.4). At the limit dθ → 0, the element becomes triangular and
therefore its area becomes

dA =
1
2

R2 dθ. (E.16)
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The shear force developed along the element by resisting the uniform shear stress
τ is

dF = τ dA =
1
2

τR2 dθ. (E.17)

As the element is triangular, its centroid is located at a distance 2
3 R from the pivot

of rotation. Hence, the torsion generated by the element is

dT =
2
3

R dF =
1
3

τR3 dθ. (E.18)

The radius R of the element is related to the angle θ by the expression

R = B sec θ. (E.19)

The torsion T4 along the overall right triangle (Figure E.4) is obtained by integrating
dT between the angles θ = 0 and θ = α, such that

T4 =
∫ α

θ=0

1
3

τB3 (sec θ)3 dθ. (E.20)

Or alternatively,
T4 = k4τB3, (E.21)

where k4 evaluates to

k4 =
∫ α

θ=0

1
3

(sec θ)3 dθ

=
1
6

[sec α · tan α + ln |sec α + tan α|] . (E.22)

This can be further simplified using the associated trigonometric identities [see for
example Abramowitz and Stegun, 1964]

tan α = m and sec α =
√

1 + m2,

to give

k4 =
1
6

[
m
√

1 + m2 + ln
(

m +
√

1 + m2
)]

, (E.23)

where m represents the triangle’s height to base ratio,

m = H/B. (E.24)
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Torsion About the Centre of a Rectangle

The previously derived equation (E.23) is applicable a right triangle cross section4

with rotation about the acute vertex at its base (Figure E.4). To derive a similar
expression for rotation about the centre of a rectangular cross section5, we divide
the rectangle into two types of right triangles: 4A and 4B (Figure E.3), and use
the previous result. Since, in the generic case where s 6= t, these triangles have
non-identical dimensions when considered with respect to the point of rotation,
they will generate different amounts of torsion and hence their contributions need
to be considered separately.

Define r as the aspect ratio of the rectangular section [analogous to the overlap
ratio as per equation (4.26)], such that

r = s/t. (E.25)

Triangle A has the base B = 1
2 t and aspect ratio m = r, whilst triangle B has the

base B = 1
2 s = 1

2 rt and aspect ratio m = r−1. By substituting these into equations
(E.21) and (E.23), the respective torques of triangles A and B become

T4A =
1
48

τt3
[
r
√

1 + r2 + ln
(

r +
√

1 + r2
)]

(E.26)

and T4B =
1
48

τr3t3
[
r−1

√
1 + r−2 + ln

(
r−1 +

√
1 + r−2

)]
. (E.27)

In the overall rectangular section, there are four instances of each type of triangle
A and B. Therefore, the total torsion about the centre of the rectangle is obtained as

T� = 4
(
T4A + T4B

)
. (E.28)

Substituting T4A and T4B into the above equation gives the generalised expression

T� = k�τt3, (E.29)

where

k� =
1
12

[
2r
√

1 + r2 + ln
(

r +
√

1 + r2
)

+ r3 ln
(

r−1 +
√

1 + r−2
)]

. (E.30)

4Associated variables denoted using the subscript 4.
5Associated variables denoted using the subscript �.
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Capacity of a Masonry Bed Joint

The residual horizontal bending moment capacity of a single masonry bed joint due
to frictional torsion is obtained by substituting the relevant variables into equations
(E.29) and (E.30). The frictional shear stress parallel to the bed joint’s surface is
τ = µσv, where µ is the coefficient of friction and σv is the vertical axial stress
acting normal to the joint. Hence, for a masonry bed joint whose dimensions are tu

by sb, where tu is the brick width and sb is the joint overlap, the horizontal bending
moment capacity mh for a single joint becomes

mh = kbp µ σv t3
u. (E.31)

The parameter kbp, referred to as the plastic torsion coefficient, is calculated using
equation (E.30) by taking r as the bed joint’s overlap ratio ro [refer to equation
(4.26)]. Figure 4.6 plots the coefficient for varying values of the overlap ratio.

e.4 biaxial failure criterion model for ultimate moment

capacity

This section provides the derivation of an expression for the ultimate moment
capacity in diagonal bending, based on a biaxial failure criterion model.

e.4.1 Biaxial Failure Envelope

Suppose that a masonry wall subjected to flexural actions develops a combination
of the vertical and horizontal moments M̄v and M̄h at some arbitrary location. Let
us define the corresponding slope κ and angle θκ of the applied moment, such that

κ = tan θκ =
M̄h

M̄v
, (E.32)

which represents the loading line at the particular point in the wall, as shown by
Figure E.5.

Now, let us denote the uniaxial moment capacities with respect to vertical and
horizontal bending by M̄vc and M̄hc, which may be calculated using the analytical
expressions presented in Sections 4.3.2 and 4.3.3. From this, the orthogonal strength
ratio is defined as

η =
M̄hc

M̄vc
. (E.33)

The proposed model developed in this section is based on the assumption
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Figure E.5: Biaxial bending failure criterion, in the M̄h vs. M̄v format (top), and ηrh vs. rv
format (bottom).

that failure occurs when the loading line intersects the biaxial failure envelope, as
shown by Figure E.5. The overall role of the envelope is to provide a transition
between the orthogonal moment capacities, as well as to account for interaction
(a strengthening or weakening effect) between the flexure and torsion along the
failure surface. The typical approach used to define a failure envelope [e.g. Baker,
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1979; Sinha et al., 1997] is through an empirical relationship between the parameters

rv =
M̄v

M̄vc
(E.34)

and rh =
M̄h

M̄hc
, (E.35)

which represent the respective ratios of the applied moments at failure and their
uniaxial moment capacities. By combining equations (E.32), (E.33), (E.34) and
(E.35), it becomes evident that the loading line (in Figure E.5) can be represented as

rh

rv
=

κ

η
. (E.36)

At the present state of research, there is still uncertainty regarding the appro-
priate form of a failure envelope to describe the failure criterion of unreinforced
masonry subjected to the biaxial bending, largely due to a lack of available experi-
mental data. For example, Baker [1979] proposed the elliptical relationship

rv
2 + rh

2 = 1,

which implies a mutually weakening influence between the orthogonal moment
capacities at the point of failure. Similarly, the work by Willis [2004] on diagonal
bending also suggested a mutually weakening influence. By contrast, Sinha et al.
[1997] proposed the relationship

rv
2 − 0.75 rh rv

2 − 0.25 rh rv + rh
2 = 1,

which instead implies a strengthening effect between the two failure modes.

Since all of these failure envelope relationships are empirical in nature, there is
no reason why the exponents of rv and rh need to necessarily adhere to integer val-
ues. As such, in the proposed approach we will assume the generalised symmetric
failure envelope

rv
1/n + rh

1/n = 1, (E.37)

where n may assume any value greater than zero. As shown by Figure E.5, setting
n = 1 represents a linear envelope and n = 1/2 gives an elliptical envelope. In
general, as n becomes smaller, the weakening effect between the two orthogonal
failure modes also becomes less significant. Therefore, the limit n → 0 represents
the boundary case of no interaction between the failure modes, where failure occurs
once either moment M̄v or M̄h reaches its respective unfactored capacity.
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e.4.2 Ultimate Moment Capacity Along an Inclined Axis

The basic formula to resolve a combined vertical and horizontal moment along an
inclined axis can be written in the moment per length (M̄) form as

M̄d = M̄v cos2 ϕ + M̄h sin2 ϕ, (E.38)

where M̄v, M̄h and M̄d are the vertical, horizontal and diagonal (inclined) moments
per length, and ϕ is the angle of the inclined axis with respect to the horizontal. By
substituting equations (E.34) and (E.35) into (E.38), we obtain the moment capacity
M̄dc along the inclined axis, as

M̄dc = M̄vc rv cos2 ϕ + M̄hc rh sin2 ϕ,

= M̄vc
[
rv cos2 ϕ + η rh sin2 ϕ

]
. (E.39)

A generic formulation of the coefficients rv and rh can be obtained by treating
the envelope diagram using polar coordinates. From Figure E.5 it is seen that at
the failure point, we have

rv = A cos θκ (E.40)

and rh = Aη−1 sin θκ, (E.41)

with A as defined in the diagram.

If we assume the symmetrical failure envelope defined by equation (E.37) and
substitute in equations (E.40) and (E.41), we get

A =
[
(cos θκ)

1/n +
(

η−1 sin θκ

)1/n
]−n

. (E.42)

Substituting these back into equation (E.39) yields the general inclined moment
capacity formula

M̄dc = M̄vc
cos θκ (cos ϕ)2 + sin θκ (sin ϕ)2[
(cos θκ)

1/n + (η−1 sin θκ)
1/n
]n . (E.43)

In order to utilise this equation for calculating the moment resistance along an
inclined crack line as part of a virtual work analysis, it seems reasonable to assume
that the angle of moment inclination is approximately equal to the angle of the
crack:

θκ ≈ ϕ. (E.44)
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Implementing this approximation reduces equation (E.43) to

M̄dc = M̄vc
(cos ϕ)3 + (sin ϕ)3[

(cos ϕ)1/n + (η−1 sin ϕ)1/n
]n , (E.45)

where the diagonal moment capacity M̄dc becomes a function of only the crack
angle ϕ (since M̄vc, η and n are constants).

e.4.3 Model Calibration Using Equation by Willis

In the development of his diagonal moment capacity model, Willis [2004] used the
results of four experimental tests on wallette specimens to calibrate his analytical
expression [equation (4.32)]. The brickwork used comprised standard clay brick
masonry (230× 110× 76 mm units with 10 mm mortar joints) with no applied
axial load (σv = 0) and were subjected to bending along the natural diagonal slope
(hence κ = Gn). These conditions can therefore be used to calibrate the interaction
exponent n in the developed model, so that both models produce identical moment
predictions for the given set of parameters.

The diagonal moment capacity by Willis [equation (4.32)] can be written in the
M̄ form as

M̄dc = M̄vc

[
cos4 ϕ + η sin4 ϕ

]
. (E.46)

Combining equations (E.46) and (E.39) shows that at the calibration state, the
required coefficients rv and rh in the proposed model become

rv =
cos4 ϕ + η sin4 ϕ

cos2 ϕ + Gn sin2 ϕ
and rh = rv

Gn

η
.

Evaluating the strength orthotropy for the aforementioned set of parameters from
the wallette tests using equation (4.34) gives η = 2.86. Similarly, the diago-
nal crack angle and slope evaluated using equation (4.13) are Gn = 0.717 and
ϕ = ϕn = 0.622 rad. Entering these values into the above equations gives the
required coefficients as rv = 0.847 and rh = 0.212, which when substituted into the
symmetrical interaction envelope equation, (E.37), produces equality between the
two models at n = 0.88. This corresponds to a failure envelope that lies between
elliptical and linear interaction (Figure E.5).

Implementing this result into equation (E.45) yields the calibrated moment
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capacity expression

M̄dc = M̄vc
(cos ϕ)3 + (sin ϕ)3[

(cos ϕ)1.14 + (η−1 sin ϕ)1.14
]0.88 . (E.47)

Alternatively, a slightly conservative and simplified version of the moment capacity
equation can be obtained by assuming a linear failure envelope (n = 1), which
gives

M̄dc = M̄vc
(cos ϕ)3 + (sin ϕ)3

cos ϕ + η−1 sin ϕ
. (E.48)

For the particular set of calibration parameters, equation (E.48) predicts a moment
capacity which is only 6% smaller than the calibrated equation, (E.47). By contrast,
assuming an elliptical interaction (n = 1/2) would result in a moment capacity only
14% larger than that given by the calibrated equation. The apparent low sensitivity
of the predicted moment capacity on the type of interaction relationship chosen
is because at the given strength orthotropy and crack inclination parameters used
for calibration, failure is governed primarily by the vertical moment capacity M̄vc,
and therefore interaction does not have a significant effect. This, however, also
highlights the need for additional experimental data to enable calibration of the
model at different diagonal crack inclinations.
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AppendixF
P R O B A B I L I S T I C M E T H O D O L O G Y F O R
H O R I Z O N TA L B E N D I N G

Abstract

This appendix contains additional detail related to Chapter 5.

f.1 distribution fitting to material properties

Figures F.1–F.8 demonstrate fits of the normal, lognormal and Weibull distributions
to the experimental flexural tensile strength ( fmt) data for test walls s1–s8 (based on
material tests reported in Appendix A). Similar graphs are provided for the pooled
fmt data for walls s1–s8 in Figure 5.2; pooled fmt data for walls d1–d5 in Figure 5.3;
and fut data for walls s1–s8 in Figure 5.4.

f.2 comparison of analytical results to test data

Table F.1 provides a summary of experimental results on small scale wallettes
conducted by Willis [2004], as well as detailed results of the stochastic methodology
in Chapter 5 applied to these specimens.

Table F.2 presents detailed experimental and analytical results for walls s1–s8

(Chapter 2) relating to the observed and predicted likelihood of stepped failure.
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AppendixG
C O L L A P S E L O A D P R E D I C T I O N I N D RY
M A S O N RY WA L L S

Abstract

This appendix contains additional detail related to Chapter 6.

g.1 internal work for an in-plane shear panel

This section presents the derivation of a model for calculating the internal work
of a dry-stack masonry (DSM) in-plane panel subjected to shear deformation, as
shown in Figure 6.11. The need for such a model arises due to in-plane deformation
present in the hybrid mechanisms J and B (refer to Figure 6.14). The total resistance
of the in-plane panel when connected to an adjacent out-of-plane panel consists of
three sources:

1. Frictional resistance to the internal shear deformation within the mobilised
panel itself,

2. Frictional resistance to shear sliding along the diagonal crack, and

3. Vertical bending at the interface between the sliding in-plane panel and the
adjacent out-of-plane panel.

The expression derived in this section accounts for the resistance due to the sum of
the first two components above, which are based on translational friction.

569



570 collapse load prediction in dry masonry walls

v
1

s v o

H

D '

d u '

l

d y

y
q '

u '

Figure G.1: Triangular panel undergoing in-plane shear deformation. The solid outline
indicates its original position and the dashed outline its deformed position.

g.1.1 Assumptions

The following assumptions are made:

1. The mobilised panel is assumed to have a triangular shape.

2. Shear deformation within the in-plane panel has a linear profile. This con-
dition is necessary in order to provide displacement compatibility between
the in-plane and out-of-plane panels in mechanisms J and B (refer to Figure
6.14). As a result

du′

dy
= constant,

where y is the vertical position along the panel and u is the displacement.

3. Displacements are assumed to be sufficiently small, such that any reduction
in the bedded area along the diagonal crack can be neglected.

g.1.2 General

Consider the triangular panel subjected to linear in-plane shear deformation along
its height as shown in Figure G.1. The panel has the height H, thickness t, and the
slope of the shear crack measured with respect to the vertical is v. The reference
virtual displacement at the top of the panel is ∆′ and the corresponding virtual
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rotation is equal to

θ′ =
∆′

H
.

The panel is also subjected to vertical precompression σvo along its top edge.

Vertical position is measured from the bottom of the panel and is denoted by y.
Variables that are a function of y, include the vertical compressive stress:

σv = σvo + γ (H − y) ,

the horizontal span:
l = vy,

and the virtual displacement:
u′ = θ′y.

g.1.3 Internal Shear Deformation Within the Panel

At a given vertical position y, the axial force within the triangular panel is

N = σvt l = [σvo + γ (H − y)] tvy.

The resulting frictional force resisting the shear deformation is

V = µmN,

where µm is the coefficient of friction along the masonry’s bed joints. For a
horizontal strip with the width dy as shown by Figure G.1, the increment of virtual
work due to internal shear deformation within the triangular panel is equal to

dU′
s panel = du′ V

= dy
∆′

H
µm [σvo + γ (H − y)] tvy. (G.1)

g.1.4 Shear Sliding Across the Crack

Regardless of whether certain portions of the crack are ‘stepped’ or ‘toothed’, as
long as the slope v of the inclined shear crack is within the limits

0 ≤ v ≤ 1
Gn

,
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then the overlapping bedded area along the crack per unit height, Ā, will stay
independent from the crack slope and equal to

Ā = t
1
2

(
lu + tj

)
hu + tj

=
t

Gn
,

where lu is the brick length, hu is the brick height, tj is the mortar joint thickness,
and Gn is the natural slope of the masonry [refer to equation (4.13)]. Therefore, the
bedded area across the rectangular strip with the width dy, as shown by Figure
G.1, is

dA = Ā dy.

The corresponding increment of axial force acting across the bedded area dA is

dN = σv dA,

and the resulting increment of shear force resisting sliding across the crack is

dV = µm dN.

The increment of virtual work across the rectangular strip due to sliding along the
crack becomes

dU′
s crack = u′ dV

=
∆′

H
yµm [σvo + γ (H − y)] t

1
Gn

dy. (G.2)

g.1.5 Total Internal Work

The total increment of virtual work is the combined work from internal deformation
within the panel and sliding across the crack. For a horizontal strip with width dy
(Figure G.1), this is obtained by summing equations (G.1) and (G.2):

dU′
s tot = dU′

s panel + dU′
s crack

=
∆′

H
µmty [σvo + γ (H − y)]

(
1

Gn
+ v

)
dy. (G.3)

To obtain an expression for the virtual work for the entire panel, U′
s tot, the above

expression must be integrated between y = 0 and y = H. This becomes

U′
s tot =

∫ H

y=0
dU′

s tot
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=
∆′

H
µmt

(
1

Gn
+ v

) ∫ H

y=0
y [σvo + γ (H − y)] dy

= ∆′µmt
(

1
Gn

+ v

) [
1
2

σvo H +
1
6

γH2
]

. (G.4)

An alternative form of this equation, expressed in terms of the stress capacity
function f 〈· · ·〉 for dry-stack masonry [equation (6.22)], is

U′
s tot = 1

2 ∆′µmtH
(

1
Gn

+ v

)
f
〈 1

3 H
〉

. (G.5)

It should be noted that the reference virtual displacement ∆′ in these expressions is
taken at the top edge of the panel, as shown in Figure G.1. When applying these
expressions as part of a virtual work analysis for an overall collapse mechanism, it is
important to account for the ratio between this displacement and the mechanism’s
reference displacement.

g.2 formulations for type G, J, B, K1 and K2 mechanisms

This appendix contains derivations of analytical expressions for calculating the
collapse load multiplier λo for mechanisms Gx, Gy, J, B, K1x, K1y, K2x and K2y (refer
to Figure 6.3). Sections G.2.1–G.2.8 provide expressions for the total internal virtual
work U′

tot, and the total external virtual work premultiplied by the reciprocal of the
lateral load multiplier, λ−1E′tot, for each of the mechanisms. From this, the collapse
multiplier λo is evaluated as

λo =
U′

tot
λ−1E′tot

. (G.6)

Section G.2.9 gives the derivation of the additional internal or external work
generated in type-1 mechanisms as a result of a restrained/unrestrained overburden
load (OBL). Finally, Section G.2.10 provides the derivation of the top edge rotational
restraint factor Rts, to account for the rotational restraint provided by an OBL.

g.2.1 Mechanism J

Mechanism J, whose basic deflected shape is shown in Figure 6.14a, is a proposed
hybrid mechanism that incorporates deformations in orthogonal out-of-plane
panels with in-plane shear deformation in adjacent return walls. An important
feature of the mechanism is its ability to span across multiple out-of-plane and
in-plane panels, depending on the configuration of the masonry specimen. In
this section, we derive equations of work for individual out-of-plane and in-
plane modules. We then consider a simple form of the mechanism in which
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Figure G.2: Individual out-of-plane module involved in mechanism J.

all participating out-of-plane and in-plane modules are assumed to be identical,
and formulate the equations of work for a mechanism comprising of a generic
number of each type of module. The resulting simplified approach is applicable
to simple masonry configurations, including the basic variants shown by Figure
6.3, where the aforementioned assumption will hold due to symmetry. For such
configurations, the simplified approach is guaranteed to find optimal solutions. For
configurations in which the participating out-of-plane and in-plane modules are
not guaranteed to be identical, such as the complex variants shown in Figure 6.3,
the simplified approach becomes either inapplicable, or is not guaranteed to find
optimal solutions. A refined analysis capable of dealing with the complex variants
is described in Appendix G.3.

Independent Geometric Variables

Figure G.2 shows the dimensions of a single out-of-plane module involved in the
mechanism. Let the independent variables defining the geometry include: the total
mechanism height Ht, shape parameter a, and the slope of the in-plane shear crack,
v (as shown in Figure 6.14a).1

As shown by the deflected shape (Figure 6.14a), the reference displacement
increment d∆ is taken as the largest displacement along the out-of-plane module.

1As a result, shape parameter r becomes a dependent variable; however, the choice of which
parameter is taken as independent (a or r) is arbitrary.
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Dependent Geometric Variables

The out-of-plane component of the mechanism must span the full available length
of the wall, and the length of an out-of-plane module is therefore predetermined.
In the simplified treatment, we take the effective length Le as

Le = Lw/nvs,

where Lw is the length of the out-of-plane wall, and nvs is its number of vertical
supports. Other dependent geometric variables (refer to Figure G.2) include: the
effective mechanism height He, which [from equation (6.39) with nhs = 1] is equal
to the total height Ht,

He = Ht;

the horizontal span of block A, defined as

La = aLe;

the horizontal span of block B and the diagonal crack,

Ld = (1− a) Le;

the corresponding vertical span of the diagonal crack,

Hd = GnLd = (1− r) Ht;

and the vertical span of the in-plane block,

Hr = rHt.

Additional dependent variables include β, calculated using equation (6.43); and
α, calculated using equation (6.44). The dependent shape parameter r can be
calculated from a, using

r = 1− α(1− a) .

As can be seen from Figure 6.14a, the relationship between the displacement d∆r

occurring at the top of the in-plane panel and the maximum displacement d∆ of
an adjacent out-of-plane module is

d∆r = r d∆, or ∆′r = r. (G.7)
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Geometric Constraints

The independent variables defined previously may assume any values, as long as
the following constraints are adhered to. The total mechanism height must not
exceed the available height of the wall, so that

0 < Ht ≤ Hw.

The shape parameters a and r must be within the limits

0 ≤ a ≤ 1, 0 ≤ r ≤ 1.

And as discussed in Section 6.4.3, the slope of the in-plane shear crack must be
inside the range

0 ≤ v ≤ 1/Gn.

Internal Work for a Single Out-of-Plane Module

As shown by Figure G.2, an out-of-plane module receives internal work contribu-
tions from four flexural cracks, including the bottom horizontal crack (1), diagonal
crack (2), internal vertical crack (3), and the top edge pseudo-crack (4). In addi-
tion, it may receive the additional work contribution U′

Om from the presence of a
restrained OBL. Hence, its internal virtual work is obtained from the formula

U′
m = U′

(1) + U′
(2) + ζhiU′

(3) + U′
(4) + U′

Om, (G.8)

where U′
(1)–U′

(4) are the contributions from the respective cracks.

The factor ζhi in equation (G.8) is used to account for the activeness of the
internal vertical crack (crack 3 in Figure G.2), effectively acting as a rotation
reduction factor as illustrated by Figure G.3. When considering a wall supported
along both vertical edges (Figure G.3a), the crack must undergo its full required
rotation due to the zero slope condition at the midspan of the overall mechanism.
Therefore, in this scenario the crack will develop its full rotation, and consequently
ζhi is taken as 1. However, when the wall is supported at only one vertical edge
(Figure G.3b), the free edge will tend to exhibit some nonzero slope, which will
act to reduce the rotation of the internal vertical crack. It is evident that the
activeness of crack must be related to the mechanism’s normalised aspect ratio α

[equation (6.44)]: For a mechanism with small α, the crack’s close proximity to the
unsupported vertical edge with which it is parallel will cause it not to develop its
full internal work capacity, since the free edge will tend to exhibit a slope about
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(a) Rotations as implied by the basic mecha-
nism shape, with zero slope at the free verti-
cal edge and full rotation along the internal
vertical crack. This scenario is only appli-
cable only when the wall has both vertical
edges supported.
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(b) Implemented crack rotation factor for the
internal vertical crack, for the case when the
wall has only one of its vertical edges sup-
ported, thus allowing for a nonzero slope at
the free vertical edge.

Figure G.3: Crack rotation factor for the internal vertical crack undergoing horizontal
bending, in mechanisms J and Gx (plan view).

the vertical axis, and therefore, the crack will rotate to a lesser extent. However,
for a wall with a higher α, the crack will be more distant from the unsupported
edge and will therefore undergo a larger rotation, thus causing it realise more of its
capacity. In the most extreme case where the wall’s length tends toward infinity, the
vertical crack will need to undergo its full rotation since the free edge will exhibit
zero slope, and so the crack will reach its full capacity. Therefore, it follows that
when a is equal to 0, ζhi must also equal 0; and when a is 1, ζhi must also equal 1.
Because the actual relationship between these two extreme cases is not known, a
semi-rational approach is adopted, whereby ζhi is assumed to vary linearly and be
equal to the parameter a. Therefore, in the overall implemented approach, ζhi is
taken as

ζhi =

a, if one vertical edge is supported, i.e. nvs = 1;

1, if two vertical edges are supported, i.e. nvs = 2.
(G.9)

As discussed further in Section G.2.4, mechanism Gx is a special case of mechanism
J in which the parameter r is taken as zero. It is therefore noteworthy that the
factor ζhi acts to ensure continuity in the calculated value of λo when transitioning
between the complimentary pair of mechanisms Gx and Gy. It does so by making
the contribution of the internal vertical crack gradual, rather than sudden, when
the aspect ratio α becomes greater than 1.

bottom horizontal crack (1), vertical bending : The crack spans the
length La and its centroid is located at a distance Ht below the top of the wall.
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From equation (6.24) the moment capacity is

Mv = f 〈Ht〉 LaZ̄v,

together with the virtual rotation

θ′v =
1

Ht
,

which gives the internal virtual work contribution

U′
(1) = θ′v Mv =

La

Ht
Z̄v f 〈Ht〉

= βaZ̄v f 〈Ht〉 . (G.10)

diagonal crack (2): The crack spans the horizontal projection Ld and its
centroid is located at a distance Ht − 1

2 Hd below the top of the wall. Hence, from
equation (6.29), the moment capacity is

Md = f
〈

Ht − 1
2 Hd

〉
LdZ̄v cos ϕ,

which, together with the virtual rotation

θ′d =
1

Ht cos ϕ
,

gives the internal virtual work contribution

U′
(2) = θ′d Md =

Ld

Ht
Z̄v f

〈
Ht − 1

2 Hd
〉

= β (1− a) Z̄v f
〈( 1+r

2

)
Ht
〉

. (G.11)

internal vertical crack (3), horizontal bending : The crack’s height
is Ht and its centroid is located at a distance 1

2 Ht from the top of the wall. Therefore,
from equation (6.30), the moment capacity is

Mh = f
〈 1

2 Ht
〉

HtZ̄h,

which, together with the virtual rotation

θ′h =
1

Ht/Gn
,
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gives the internal virtual work contribution

U′
(3) = θ′h Mh = GnZ̄h f

〈 1
2 Ht

〉
. (G.12)

top edge pseudo-crack (4), vertical bending : This hinge spans the length
Le, so its moment capacity according to equation (6.28) is

Mvo = Rts f 〈0〉 LeZ̄v.

It has the virtual rotation
θ′v =

1
Ht

;

therefore, its contribution to the internal virtual work is

U′
(4) = θ′v Mvo = RtsβZ̄v f 〈0〉 . (G.13)

friction against restrained OBL: This contribution is calculated according
to equation (G.126) as

U′
Om = (1−Φm) µoe′m, (G.14)

where [from equations (G.117) and (G.124)] e′m is given by

e′m = 1
2 (1 + a + r− ar) Le tuσvom. (G.15)

total: The total internal work for a single out-of-plane module is obtained by
substituting equations (G.10)–(G.15) into (G.8). This yields the expression

U′
m = Z̄vβ

(
f
〈 1

2 (1 + a + r− ar)Ht
〉
+ Rts f 〈0〉

)
+ ζhiZ̄hGn f

〈 1
2 Ht

〉
+ (1−Φm) µoe′m.

(G.16)

External Work for a Single Out-of-Plane Module

The external work of an individual out-of-plane module includes the self-weight
contributions of blocks (A) and (B) (Figure G.2), in addition to a possible contribu-
tion E′Om from an unrestrained OBL. This gives

E′m = E′W (A) + E′W (B) + E′Om, (G.17)

where E′W (A) and E′W (B) are contributions from the respective blocks.
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self-weight of block (a): From Table 6.1, the virtual volume of the wedge
block is

V ′
(A) = 1

2 LaHt,

which gives the external virtual work

E′W (A) = λγtu
( 1

2 LaHt
)

= λγtuH2
t
( 1

2 aβ
)

. (G.18)

self-weight of block (b): From Table 6.1, the virtual volume of the truncated
triangular pyramid block is

V ′
(B) =

1
6

H2
t

Gn

(
1− r3) ,

resulting in the external virtual work

E′W (B) = λγtuH2
t

(
1
6

(
1− r3)

Gn

)
. (G.19)

weight of unrestrained OBL: This contribution is calculated according to
equation (G.125) as

E′Om = Φmληme′m, (G.20)

where e′m is given by equation (G.15).

total : The total external work for an out-of-plane module is obtained by substi-
tuting equations (G.18)–(G.20) into (G.17). Dividing by λ yields the expression

λ−1E′m = γtuH2
t

(
1
2 aβ + 1

6
1−r3

Gn

)
+ Φmηme′m. (G.21)

Internal Work for a Single In-Plane Module

The internal work U′
r of an in-plane module receives contributions from: internal

deformation due to shear and bending, given by the function U ′
r 〈∆′r, Hr, v〉 [from

equation (6.36)]; and any additional contribution U′
Or from a restrained OBL [ac-

cording to equation (G.126)]. Hence, the general expression for the internal work
of a single in-plane module becomes

U′
r = U ′

r
〈
∆′r, Hr, v

〉
+ (1−Φr) µoe′r, (G.22)
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where [from equations (G.124) and (G.121)] e′r is given by

e′r = ∆′rvHrtuσvor. (G.23)

External Work for a Single In-Plane Module

The external work E′r for single in-plane module consists of

E′r = E′W (R) + E′Or, (G.24)

where E′W (R) is the work due to self-weight, and E′Or is any additional contribution
from a restrained OBL.

self-weight of block (r): From Table 6.1, the virtual displaced volume of
the block is

V ′
(R) = ∆′r

[ 1
3 H2

r v
]

.

This results in the external virtual work

E′W (R) = ∆′r
[
λγtu

( 1
3 H2

r v
)]

. (G.25)

weight of unrestrained OBL: This contribution is calculated according to
equation (G.125) as

E′Or = Φrληre′r, (G.26)

where e′r is given by equation (G.23).

total: The total external work for a single in-plane module is obtained by
substituting equations (G.25) and (G.26) into (G.24). Dividing by λ yields the
expression

λ−1E′r = ∆′r
[
γtu

( 1
3 H2

r v
)]

+ Φrηre′r. (G.27)

Total Internal and External Work in the Simplified Approach

In the simplified treatment, it is assumed that the overall mechanism consists of
Nm identical out-of-plane modules and Nr identical in-plane modules. Hence, the
total internal virtual work is obtained from the formula

U′
tot = NmU′

m + NrU′
r. (G.28)
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Substituting in equations (G.16) and (G.22), whilst also making the replacements
Hr = rHt and ∆′r = r, yields the expression

U′
tot = Nm

[
Z̄vβ

(
f
〈 1

2 (1 + a + r− ar)Ht
〉
+ Rts f 〈0〉

)
+ ζhiZ̄hGn f

〈 1
2 Ht

〉
+ (1−Φm)µoe′m

]
+ Nr

[
U ′

r 〈r, rHt, v〉+ (1−Φr)µoe′r
]

.

(G.29)

Similarly, the total external virtual work is obtained using the formula

E′tot = NmE′m + NrE′r. (G.30)

Substituting in equations (G.21) and (G.27), and making the replacements Hr = rHt

and ∆′r = r, yields the expression

λ−1E′tot = Nm

[
γtuH2

t

(
1
2 aβ + 1

6
1−r3

Gn

)
+ Φmηme′m

]
+ Nr

[
γtuH2

t
( 1

3 r3v
)
+ Φrηre′r

]
.

(G.31)

g.2.2 Mechanism B

Figure 6.14b shows the mechanism’s deflected shape, and Figure G.4 shows the
dimensions of a single out-of-plane module. The independent variables defining
the mechanism’s geometry include: the total height Ht; and the in-plane shear
crack slope v. The mechanism must span the full available length of the wall, and
therefore, the length Le is predetermined as

Le = Lw/nvs,

where Lw is the length of the out-of-plane wall, and nvs is its number of vertical
supports.

As was done for mechanism J in Section G.2.1, a general case of the mechanism
is considered here, in which the overall mechanism comprises of Nm out-of-plane
modules and Nr in-plane modules.

Dependent Geometric Variables

The dependent geometric variables include the effective mechanism height He,
which [from equation (6.39) with nhs = 1] is equal to the total height Ht,

He = Ht;
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Figure G.4: Individual out-of-plane module involved in mechanism B.

and β, calculated using equation (6.43).

Geometric Constraints

The total mechanism height must not exceed the available height of the wall, so
that

0 < Ht ≤ Hw;

and the slope of the in-plane shear crack must be inside the range

0 ≤ v ≤ 1/Gn,

as discussed in Section 6.4.3.

Internal Work for a Single Out-of-Plane Module

As shown by Figure G.4, two cracks contribute to the internal work for a single
out-of-plane module: the bottom horizontal crack (1) and the pseudo-crack along
the top edge (2). In addition, it may receive the additional work contribution U′

Om

from the presence of a restrained OBL. Therefore, the contribution for a single
out-of-plane module is

U′
m = U′

(1) + U′
(2) + U′

Om, (G.32)

where U′
(1) and U′

(2) are the contributions from the respective cracks.

bottom horizontal crack (1), vertical bending : The crack spans the
length Le, with its centroid located at a distance Ht below the top of the wall. From
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equation (6.24), its moment capacity is

Mv = f 〈Ht〉 LeZ̄v,

which, together with the virtual rotation

θ′v =
1

Ht
,

provides the internal virtual work contribution

U′
(1) = θ′v Mv =

Le

Ht
Z̄v f 〈Ht〉

= βZ̄v f 〈Ht〉 . (G.33)

top edge pseudo-crack (2), vertical bending : This hinge spans the length
Le; hence, its moment capacity according to equation (6.28) is

Mvo = Rts f 〈0〉 LeZ̄v.

It has the virtual rotation
θ′v =

1
Ht

,

giving the internal virtual work contribution

U′
(2) = θ′v Mvo = RtsβZ̄v f 〈0〉 . (G.34)

friction against restrained OBL: This contribution is calculated according
to equation (G.126) as

U′
Om = (1−Φm) µoe′m, (G.35)

where [from equations (G.118) and (G.124)] e′m is given by

e′m = Le tuσvom. (G.36)

total : The total internal work of the out-of-plane module is obtained by substi-
tuting equations (G.33)–(G.35) into (G.32). This yields the expression

U′
m = Z̄vβ ( f 〈Ht〉+ Rts f 〈0〉) + (1−Φm) µoe′m. (G.37)
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External Work for a Single Out-of-Plane Module

The external work of an individual out-of-plane module includes the self-weight
contributions of block (A), E′W (A) (Figure G.4), in addition to a possible contribution
E′Om from an unrestrained OBL. This gives

E′m = E′W (A) + E′Om. (G.38)

wedge block (a): The virtual volume of the wedge block is (based on Table
6.1)

V ′
(A) = 1

2 LeHt,

which gives the external virtual work

E′W (A) = λγtu
( 1

2 LeHt
)

= λγtuH2
t
( 1

2 β
)

. (G.39)

weight of unrestrained OBL: This contribution is calculated according to
equation (G.125) as

E′Om = Φmληme′m, (G.40)

where e′m is given by equation (G.36).

total : The total external work for an out-of-plane module is obtained by substi-
tuting equations (G.39) and (G.40) into (G.38). Dividing by λ yields the expression

λ−1E′m = γtuH2
t
( 1

2 β
)
+ Φmηme′m. (G.41)

Internal and External Work for a Single In-Plane Module

Expressions for the total internal and external work for a single in-plane module in
mechanism B are obtained by setting ∆′r = ∆′ (defined as 1) and Hr = Ht to the
respective equations for mechanism J. From equation (G.27), the internal work
becomes

U′
r = U ′

r 〈1, Ht, v〉+ (1−Φr) µoe′r, (G.42)

whilst from equation (G.22), the external work is

λ−1E′r = γtuH2
t
( 1

3 v
)
+ Φrηre′r, (G.43)
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where e′r is determined as
e′r = vHttuσvor. (G.44)

Total Internal and External Work in the Simplified Approach

The total internal virtual work for a total of Nm out-of-plane modules and Nr

in-plane modules is obtained from the formula

U′
tot = NmU′

m + NrU′
r. (G.45)

Substituting in equations (G.37) and (G.42) yields

U′
tot = Nm

[
Z̄vβ ( f 〈Ht〉+ Rts f 〈0〉) + (1−Φm) µoe′m

]
+ Nr

[
U ′

r 〈1, Ht, v〉+ (1−Φr) µoe′r
]

.
(G.46)

Similarly, the total external virtual work is obtained using the formula

E′tot = NmE′m + NrE′r. (G.47)

Substituting in equations (G.41) and (G.43), yields

λ−1E′tot = Nm
[
γtuH2

t
( 1

2 β
)
+ Φmηme′m

]
+ Nr

[
γtuH2

t
( 1

3 v
)
+ Φrηre′r

]
.

(G.48)

g.2.3 Mechanism Gx

Figure 6.15a shows the mechanism’s deflected shape, and Figure G.5 shows the
dimensions of a single out-of-plane module. Let us treat the effective length Le and
total height Ht as the independent variables defining the mechanism’s geometry. In
order to obtain expressions for the total internal and external work for mechanism
Gx, we can take advantage of the fact that the mechanism represents a specific case
of mechanism J (Section G.2.1) where the shape parameter r is set to zero.

Dependent Geometric Variables

The dependent geometric variables (refer to Figure G.5) include: the effective
mechanism height He, which [from equation (6.39) with nhs = 1] is equal to the
total height Ht,

He = Ht;
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Figure G.5: Individual out-of-plane module involved in mechanism Gx.

as well as β from equation (6.43); and α from equation (6.44). From this, the shape
parameter a is obtained as

a = 1− 1
α

.

Geometric Constraints

The independent variables Le and Ht may assume any values, as long as the
following constraints are adhered to. The total mechanism height must not exceed
the available height of the wall, or

0 < Ht ≤ Hw.

The effective mechanism length cannot exceed the available length of the wall, and
must stay within the limits

0 < Le ≤ Lw/nvs,

where nvs is the number of vertical supports for the out-of-plane wall. Finally, the
normalised aspect ratio α must satisfy the condition

α ≥ 1.

Internal Work

Setting r = 0 to equation (G.29) for mechanism J, the total internal work for a
single out-of-plane module (Nm = 1) in mechanism Gx becomes

U′
tot = Z̄vβ

[
f
〈 1

2 (1 + a)Ht
〉
+ Rts f 〈0〉

]
+ ζhiZ̄hGn f

〈 1
2 Ht

〉
+ (1−Φm)µoe′m.

(G.49)
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Figure G.6: Individual out-of-plane module involved in mechanism Gy.

Here, ζhi is the work contribution factor for the vertical crack labelled as (3) in
Figure G.5 and is obtained from equation (G.9). The virtual energy quantity e′m is
obtained by setting r = 0 to equation (G.15), which gives

e′m = 1
2 (1 + a) Le tuσvom. (G.50)

External Work

Setting r = 0 to equation (G.31) for mechanism J, the total external work for a
single out-of-plane module (Nm = 1) in mechanism Gx becomes

λ−1E′tot = γtuLeHt
( 1

6 + 1
3 a
)
+ Φmηme′m, (G.51)

where e′m is obtained from equation (G.50).

g.2.4 Mechanism Gy

Figure 6.15b shows the mechanism’s deflected shape, and Figure G.6 shows the
dimensions of a single out-of-plane module. Let us treat the effective length Le and
total height Ht as the independent variables defining the mechanism’s geometry.

Dependent Geometric Variables

The dependent geometric variables (refer to Figure G.6) include: the effective
mechanism height He, which [from equation (6.39) with nhs = 1] is equal to the
total height Ht,

He = Ht;
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the vertical span of block A, defined as

Hr = rHt;

and the height of the diagonal crack,

Hd = (1− r) Ht.

In addition, we need to calculate β using equation (6.43) and α using equation
(6.44). From this, the shape parameter r is calculated as

r = 1− α.

Geometric Constraints

The independent variables Le and Ht may assume any values, as long as the
following constraints are adhered to. The total mechanism height must not exceed
the available height of the wall, and the effective mechanism length cannot exceed
the available length of the wall. They must therefore be within the limits

0 < Ht ≤ Hw and 0 < Le ≤ Lw/nvs.

In addition, the normalised aspect ratio α must satisfy the condition

α ≤ 1.

Internal Work

As shown by Figure G.6, there are four flexural cracks contributing to the internal
work of a single out-of-plane module, including the internal horizontal crack (1),
diagonal crack (2), vertical edge crack (3), if both vertical edges are supported then
the central vertical crack (4), and the top edge pseudo-crack (5). In addition, it may
receive the additional work contribution U′

Om from the presence of a restrained
OBL. The total internal work for a single out-of-plane module is therefore obtained
using the formula

U′
tot = ζviU′

(1) + U′
(2) + U′

(3) + ζhiU′
(4) + ζvoU′

(5) + U′
Om, (G.52)

where U′
(1)–U′

(5) are the contributions from the respective cracks.

Factor ζvi in equation (G.52) represents the activeness of the internal horizontal
crack (crack 1 as shown in Figure G.6). Effectively it accounts for a reduction in the
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Figure G.7: Crack rotation factors in mechanism Gy.

crack’s rotation since the crack is parallel with the unsupported top edge, which,
due to its translational as well as rotational degrees of freedom, will tend to exhibit
some slope and not have zero slope as implied by the basic mechanism shape. This
is illustrated by Figure G.7. Using the same rationalisation as for the factor ζhi in
mechanism J [refer to equation (G.9) and the accompanying discussion in Section
G.2.1], the factor ζvi is taken as

ζvi = r. (G.53)

This means that when the height Hr (refer to Figure G.6) is small compared to the
overall height, the contribution from the crack will also be small, and as Hr gets
longer, the crack’s contribution factor ζvi will approach 1.

Since the rotation reduction factor ζvi is applied to the internal horizontal crack
(1), a rotation enhancement factor ζvo also needs to be applied to the top edge. As a
result of the top edge exhibiting some rotation, we need to account for the moment
developed in the case of an overburden load providing rotational restraint to the
edge. From basic geometry as shown by Figure G.7b, it follows that the sum of
these two factors must equal 1, and hence ζvo is taken as

ζvo = 1− ζvi. (G.54)

It is important to note that the implemented factors ζvo and ζvi also act to en-
sure continuity in the calculated λo value when transitioning between the pair
of complimentary mechanisms Gx and Gy. They do this by making the internal
work contributions of the horizontal cracks gradual, rather than sudden, across the
limiting condition α = 1.

Factor ζhi in equation (G.52) accounts for the activeness of the central vertical
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crack (4), since the crack only becomes active when both of the wall’s vertical edges
are supported, and therefore

ζhi =

0, if one vertical edge is supported, i.e. nvs = 1;

1, if two vertical edges are supported, i.e. nvs = 2.

internal horizontal crack (1), vertical bending: The crack spans
the length Le, with its centroid located at a depth Hr below the top edge of the wall;
hence, the moment capacity [from equation (6.24)] is

Mv = f 〈Hr〉 LeZ̄v.

It has the virtual rotation
θ′v =

1
Hd

,

thus giving the internal virtual work contribution

U′
(1) = θ′v Mv = f 〈Hr〉

Le

Hd
Z̄v

=
Z̄v

Gn
f 〈rHt〉 . (G.55)

diagonal crack (2): The crack’s horizontal projection is Le, with its centroid
located at a distance of Ht − 1

2 Hd below the top of the wall. From equation (6.29),
this gives the moment capacity

Md = f
〈

Ht − 1
2 Hd

〉
LeZ̄v cos ϕ,

which, combined with the virtual rotation

θ′d =
1

Le sin ϕ
,

gives the internal virtual work

U′
(2) = θ′d Md = f

〈
Ht − 1

2 Hd
〉 Le cos ϕ

Le sin ϕ
Z̄v

=
Z̄v

Gn
f
〈 1

2 (1 + r)Ht
〉

. (G.56)

edge vertical crack (3), horizontal bending : The vertical span of the
crack is Hr, with its centroid located at a depth of 1

2 Hr below the top edge. Its
moment capacity is obtained by multiplying equation (6.30) by the vertical edge
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restraint factor Rvs [determined using equation (6.8)], which gives

Mh = Rvs f
〈 1

2 Hr
〉

HrZ̄h.

Combined with the virtual rotation

θ′h =
1
Le

,

this gives the internal virtual work contribution

U′
(3) = θ′h Mh = Rvs f

〈 1
2 Hr

〉 Hr

Le
Z̄h

= Rvs
Z̄hr
β

f
〈 1

2 rHt
〉

. (G.57)

internal vertical crack (4), horizontal bending : The crack’s height
span is Ht and its centroid is located 1

2 Ht below the top edge of the wall. Its
moment capacity from equation (6.30) is therefore

Mh = f
〈 1

2 Ht
〉

HtZ̄h,

whilst its virtual rotation is the same as for crack (3). This gives the internal virtual
work contribution

U′
(4) = θ′h Mh = f

〈 1
2 Ht

〉 Ht

Le
Z̄h

=
Z̄h

β
f
〈 1

2 Ht
〉

. (G.58)

top edge pseudo-crack (5), vertical bending : This hinge spans the length
Le, so its moment capacity according to equation (6.28) is

Mvo = Rts f 〈0〉 LeZ̄v,

which, together with the virtual rotation

θ′v =
1

Hd
,

gives the internal virtual work contribution

U′
(5) = θ′v Mvo = Rts f 〈0〉 Le

Hd
Z̄v
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= Rts
Z̄v

Gn
f 〈0〉 . (G.59)

friction against restrained OBL: This contribution is calculated according
to equation (G.126) as

U′
Om = (1−Φm) µoe′m, (G.60)

where [from equations (G.120) and (G.124)] e′m is given by

e′m = 1
2 Le tuσvom. (G.61)

total : The total internal work is obtained by substituting equations (G.55)–(G.60)
into (G.52). This yields the expression

U′
tot =

Z̄v

Gn

[
ζvi f 〈rHt〉+ f

〈 1
2 (1 + r)Ht

〉
+ Rtsζvo f 〈0〉

]
+

Z̄h

β

[
ζhi f

〈 1
2 Ht

〉
+ Rvsr f

〈 1
2 rHt

〉]
+ (1−Φm)µoe′m.

(G.62)

External Work

The external work of an individual out-of-plane module includes the self-weight
contributions of blocks (A) and (B) (Figure G.6), in addition to a possible contribu-
tion E′Om from an unrestrained OBL. This gives

E′tot = E′W (A) + E′W (B) + E′Om, (G.63)

where E′W (A) and E′W (B) are contributions from the respective blocks.

self-weight of block (a): From Table 6.1, the virtual volume of the wedge
block is

V ′
(A) = 1

2 LeHr,

which gives the external virtual work

E′W (A) = λγtu
( 1

2 HrLe
)

= λγtuLeHt
( 1

2 r
)

. (G.64)

self-weight of block (b): From Table 6.1, the virtual volume of the triangular
pyramid block is

V ′
(B) = 1

6 LeHd,
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Figure G.8: Individual out-of-plane module involved in mechanism K1x.

which gives the external virtual work

E′W (B) = λγtu
( 1

6 LeHd
)

= λγtuLeHt
( 1

6 (1− r)
)

. (G.65)

weight of unrestrained OBL: This contribution is calculated according to
equation (G.125) as

E′Om = Φmληme′m, (G.66)

where e′m is given by equation (G.61).

total: The total external work for a single out-of-plane module is obtained by
substituting contributions from equations (G.64)–(G.66) into (G.63). Dividing by λ

yields the expression

λ−1E′tot = γtuLeHt
( 1

6 + 1
3 r
)
+ Φmηme′m. (G.67)

g.2.5 Mechanism K1x

Figure 6.16a shows the mechanism’s deflected shape, and Figure G.8 shows the
dimensions of a single out-of-plane module. Let us take the effective length Le and
total height Ht as independent variables that define the mechanism’s geometry.

Dependent Geometric Variables

The dependent geometric variables (refer to Figure G.8) include: the effective
mechanism height He, which [from equation (6.39) with nhs = 1] is equal to the
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total height Ht,
He = Ht;

the horizontal span of block A,
La = aLe;

and the horizontal projection of the diagonal crack,

Ld = (1− a) Le.

In addition, we need to calculate β using equation (6.43) and α using equation
(6.44). From this, the shape parameter a becomes

a = 1− 1
α

.

Geometric Constraints

The independent variables Le and Ht may assume any values, as long as the
following constraints are satisfied. The total mechanism height must not exceed
the available height of the wall, and must stay within the limits

0 < Ht ≤ Hw.

The effective mechanism length cannot exceed the available length of the wall, and
must be within

0 < Le ≤ Lw/nvs,

where nvs is the number of vertical supports for the out-of-plane wall. Finally, the
normalised aspect ratio α must satisfy the condition

α ≥ 1.

Internal Work

As shown by Figure G.8, there are four flexural cracks contributing to the inter-
nal work of an out-of-plane module, including the bottom horizontal crack (1),
diagonal crack (2), vertical edge crack (3), and the top edge pseudo-crack (4). In
addition, it may receive the additional work contribution U′

Om from the presence
of a restrained OBL. The total internal work for a single out-of-plane module is
therefore determined from the formula

U′
tot = U′

(1) + U′
(2) + U′

(3) + U′
(4) + U′

Om, (G.68)
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where U′
(1)–U′

(4) are the contributions from the respective cracks.

bottom horizontal crack (1), vertical bending : The crack spans the
length Le, with its centroid located at a depth of Ht below the top edge of the wall.
Hence, its moment capacity [from equation (6.24)] is

Mv = f 〈Ht〉 LeZ̄v,

which, together with the virtual rotation

θ′v =
1

Ht
,

provides the internal virtual work

U′
(1) = θ′v Mv = f 〈Ht〉

Le

Ht
Z̄v

= Z̄vβ f 〈Ht〉 . (G.69)

diagonal crack (2): The crack’s horizontal projection is Ld, with its centroid
located at a distance of 1

2 Ht below the top of the wall. From equation (6.29), the
crack has the moment capacity

Md = f
〈 1

2 Ht
〉

LdZ̄v cos ϕ.

Combined with the virtual rotation

θ′d =
1

Ht cos ϕ
,

the internal virtual work becomes

U′
(2) = θ′d Md = f

〈 1
2 Ht

〉 Ld

Ht cos ϕ
Z̄v cos ϕ

=
Z̄v

Gn
f
〈 1

2 Ht
〉

. (G.70)

edge vertical crack (3), horizontal bending : The crack’s vertical span
is Ht, with its centroid located at a depth of 1

2 Ht below the top edge. The moment
capacity is obtained by multiplying equation (6.30) by the vertical edge restraint
factor Rvs [determined using equation (6.8)], giving

Mh = Rvs f
〈 1

2 Ht
〉

HtZ̄h.
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Combined with the virtual rotation

θ′h =
1
Ld

,

the internal virtual work contribution becomes

U′
(3) = θ′h Mh = Rvs f

〈 1
2 Ht

〉 Ht

Ld
Z̄h

= RvsZ̄hGn f
〈 1

2 Ht
〉

. (G.71)

top edge pseudo-crack (4), vertical bending : The hinge has the length
span La, so its moment capacity according to equation (6.28) is

Mvo = Rts f 〈0〉 LaZ̄v.

Together with the virtual rotation

θ′v =
1

Ht
,

its internal virtual work is

U′
(4) = θ′v Mvo = Rts f 〈0〉 La

Ht
Z̄v

= RtsZ̄vaβ f 〈0〉 . (G.72)

friction against restrained OBL: This contribution is calculated according
to equation (G.126) as

U′
Om = (1−Φm) µoe′m, (G.73)

where [from equations (G.119) and (G.124)] e′m is given by

e′m = 1
2 (1 + a) Le tuσvom. (G.74)

total : The total internal work is obtained by substituting equations (G.69)–(G.73)
into (G.68). This yields the expression

U′
tot = Z̄vβ

[
f 〈Ht〉+ Rts a f 〈0〉+ (1− a) f

〈 1
2 Ht

〉]
+ RvsZ̄hGn f

〈 1
2 Ht

〉
+ (1−Φm)µoe′m.

(G.75)
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External Work

The external work of an individual out-of-plane module includes the self-weight
contributions of blocks (A) and (B) (Figure G.8), in addition to a possible contribu-
tion E′Om from an unrestrained OBL. This gives

E′tot = E′W (A) + E′W (B) + E′Om, (G.76)

where E′W (A) and E′W (B) are contributions from the respective blocks.

self-weight of block (a): From Table 6.1, the virtual volume of the wedge
block is

V ′
(A) = 1

2 LaHt,

giving the external virtual work

E′W (A) = λγtu
( 1

2 LaHt
)

= λγtuLeHt
( 1

2 a
)

. (G.77)

self-weight of block (b): From Table 6.1, the virtual volume of the rectan-
gular pyramid block is

V ′
(B) = 1

3 LdHt,

which gives the external virtual work

E′W (B) = λγtu
( 1

3 LdHt
)

= λγtuLeHt
( 1

3 (1− a)
)

. (G.78)

weight of unrestrained OBL: This contribution is calculated according to
equation (G.125) as

E′Om = Φmληme′m, (G.79)

where e′m is given by equation (G.74).

total: The total external work for a single out-of-plane module is obtained by
substituting contributions from equations (G.77)–(G.79) into (G.76). Dividing by λ

yields the expression

λ−1E′tot = γtuLeHt
( 1

3 + 1
6 a
)
+ Φmηme′m. (G.80)
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Figure G.9: Individual out-of-plane module involved in mechanism K1y.

g.2.6 Mechanism K1y

Figure 6.16b shows the mechanism’s deflected shape, and Figure G.9 shows the
dimensions of a single out-of-plane module. Let us treat the effective length Le and
total height Ht as the independent variables defining the mechanism’s geometry.

Dependent Geometric Variables

The dependent geometric variables (refer to Figure G.9) include: the effective
mechanism height He, which [from equation (6.39) with nhs = 1] is equal to the
total height Ht,

He = Ht;

the vertical span of block A, defined as

Hr = rHt;

and the height of the diagonal crack,

Hd = (1− r) Ht.

In addition, we need to calculate β using equation (6.43) and α using equation
(6.44). From this, the shape parameter r is calculated as

r = 1− α.
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Geometric Constraints

The independent variables Le and Ht may assume any values, as long as the
following constraints are adhered to. The total mechanism height must not exceed
the available height of the wall and the effective mechanism length cannot exceed
the available length of the wall. They must therefore be within the limits

0 < Ht ≤ Hw and 0 < Le ≤ Lw/nvs.

In addition, the normalised aspect ratio α must satisfy the condition

α ≤ 1.

Internal Work

As shown by Figure G.9, there are four flexural cracks contributing to the internal
work of an out-of-plane module, including the bottom horizontal crack (1), diagonal
crack (2), vertical edge crack (3), and if both vertical edges are supported, then
the central vertical crack (4). In addition, it may receive the additional work
contribution U′

Om from the presence of a restrained OBL. The total internal work for
a single out-of-plane module is therefore determined using the formula

U′
tot = U′

(1) + U′
(2) + U′

(3) + ζhiU′
(4) + U′

Om, (G.81)

where U′
(1)–U′

(4) are the contributions from the respective cracks.

Factor ζhi in equation (G.81) accounts for the activeness of the central vertical
crack (4), since the crack is only active when both of the wall’s vertical edges are
supported, and therefore

ζhi =

0, if one vertical edge is supported, i.e. nvs = 1;

1, if two vertical edges are supported, i.e. nvs = 2.

bottom horizontal crack (1), vertical bending : The crack spans the
length Le, with its centroid located at a depth Ht below the top edge of the wall;
hence, its moment capacity [from equation (6.24)] is

Mv = f 〈Ht〉 LeZ̄v.
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Combined with the virtual rotation

θ′v =
1

Hd
,

it provides the internal work contribution

U′
(1) = θ′v Mv = f 〈Ht〉

Le

Hd
Z̄v

=
Z̄v

Gn
f 〈Ht〉 . (G.82)

diagonal crack (2): The internal work contribution of this crack is the same
as that of crack (2) in mechanism Gy (Figure G.6). Hence, from equation (G.56) we
get

U′
(2) =

Z̄v

Gn
f
〈 1

2 (1 + r)Ht
〉

. (G.83)

edge vertical crack (3), horizontal bending : Crack spans the height
Ht, with its centroid located at a depth of 1

2 Ht below the top edge. Its moment
capacity is obtained by multiplying equation (6.30) by the vertical edge restraint
factor Rvs [determined using equation (6.8)], giving

Mh = Rvs f
〈 1

2 Ht
〉

HtZ̄h,

which, together with the virtual rotation

θ′h =
1
Le

,

provides the internal work contribution

U′
(3) = θ′h Mh = Rvs f

〈 1
2 Ht

〉 Ht

Le
Z̄h

= Rvs
Z̄h

β
f
〈 1

2 Ht
〉

. (G.84)

internal vertical crack (4), horizontal bending: The crack spans
the height Hr, with its centroid being located 1

2 Hr below the top edge of the wall.
Its moment capacity from equation (6.30) is therefore

Mh = f
〈 1

2 Hr
〉

HrZ̄h,
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whilst its virtual rotation is the same as for crack (3). It hence provides the internal
virtual contribution

U′
(4) = θ′h Mh = f

〈 1
2 Hr

〉 Hr

Le
Z̄h

=
Z̄hr
β

f
〈 1

2 rHt
〉

. (G.85)

friction against restrained OBL: This contribution is calculated according
to equation (G.126) as

U′
Om = (1−Φm) µoe′m, (G.86)

where [from equations (G.120) and (G.124)] e′m is given by

e′m = 1
2 Le tuσvom. (G.87)

total : The total internal work is obtained by substituting equations (G.82)–(G.86)
into (G.81). This yields the expression

U′
tot = 2

Z̄v

Gn
f
〈( 3

4 + 1
4 r
)

Ht
〉

+
Z̄h

β

[
Rvs f

〈 1
2 Ht

〉
+ ζhir f

〈 1
2 rHt

〉]
+ (1−Φm)µoe′m.

(G.88)

External Work

The external work of an individual out-of-plane module includes the self-weight
contributions of blocks (A) and (B) (Figure G.9), in addition to a possible contribu-
tion E′Om from an unrestrained OBL. This gives

E′tot = E′W (A) + E′W (B) + E′Om, (G.89)

where E′W (A) and E′W (B) are contributions from the respective blocks.

self-weight of block (a): The external work of this wedge block is equiva-
lent to that of block (A) in mechanism Gy (Section G.2.4). Hence, from equation
(G.64),

E′W (A) = λγtuLeHt
( 1

2 r
)

. (G.90)

self-weight of block (b): From Table 6.1, the virtual volume of the rectan-
gular pyramid block is

V ′
(B) = 1

3 LeHd,
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Figure G.10: Individual out-of-plane module involved in mechanism K2x.

which gives the external virtual work

E′W (B) = λγtu
( 1

3 LeHd
)

= λγtuLeHt
( 1

3 (1− r)
)

. (G.91)

weight of unrestrained OBL: This contribution is calculated according to
equation (G.125) as

E′Om = Φmληme′m, (G.92)

where e′m is given by equation (G.87).

total: The total external work for a single out-of-plane module is obtained by
substituting contributions from equations (G.90) and (G.91) into (G.89). Dividing
by λ yields the expression

λ−1E′tot = γtuLeHt
( 1

3 + 1
6 r
)
+ Φmηme′m. (G.93)

g.2.7 Mechanism K2x

Figure 6.17a shows the mechanism’s deflected shape, and Figure G.10 shows the
dimensions of a single out-of-plane module. Let us take the effective length Le and
total height Ht as independent variables that define the mechanism’s geometry.
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Dependent Geometric Variables

The dependent geometric variables (refer to Figure G.10) include: the effective
mechanism height He, which [from equation (6.39) with nhs = 2] is equal to half of
the total height 1

2 Ht,
He = 1

2 Ht;

the horizontal span of block combination A,

La = aLe;

and the horizontal projection of the diagonal cracks,

Ld = (1− a) Le.

In addition, we need to calculate β and α according to equations (6.43) and (6.44).
From this, the shape parameter a becomes

a = 1− 1
α

.

Geometric Constraints

The independent variables Le and Ht may assume any values, as long as the
following constraints are satisfied. The total mechanism height must not exceed
the available height of the wall, and must stay within the limits

0 < Ht ≤ Hw.

The effective mechanism length cannot exceed the available length of the wall, and
must be within

0 < Le ≤ Lw/nvs,

where nvs is the number of vertical supports for the out-of-plane wall. Finally, the
normalised aspect ratio α must satisfy the condition

α ≥ 1.

Internal Work

As shown by Figure G.10, there are six flexural cracks contributing to the overall
strength, including the bottom horizontal crack (1), top edge pseudo-crack (2),
diagonal cracks (3) and (4), vertical edge crack (5), and the internal horizontal
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crack (6). The total internal work for a single out-of-plane module is therefore
determined from the formula

U′
tot = U′

(1) + U′
(2) + U′

(3) + U′
(4) + U′

(5) + U′
(6), (G.94)

where U′
(1)–U′

(6) are the contributions from the respective cracks.

bottom horizontal crack (1), vertical bending : The crack spans the
length Le, with its centroid being located at a depth of 2He below the top edge of
the wall. Hence, from equation (6.24), it has the moment capacity

Mv = f 〈2He〉 LeZ̄v,

which, combined with the virtual rotation

θ′v =
1

He
,

provides the internal virtual work

U′
(1) = θ′v Mv = f 〈2He〉

Le

He
Z̄v

= Z̄vβ f 〈2He〉 . (G.95)

top edge pseudo-crack (2), vertical bending: The horizontal span of
the hinge is Le; thus, from equation (6.28) it has the moment capacity

Mvo = Rts f 〈0〉 LeZ̄v.

Since the hinge has the same rotation as crack (1), its internal virtual work contri-
bution becomes

U′
(2) = θ′v Mvo = Rts f 〈0〉 Le

He
Z̄v

= RtsZ̄vβ f 〈0〉 . (G.96)

diagonal cracks (3) and (4): The combined resistance of the two cracks
is equivalent to a single diagonal crack with vertical projection 2He and whose
centroid is located at the midheight of the mechanism or He below the top edge
of the wall. Hence, from equation (6.29), the equivalent crack has the moment
capacity

Md = f 〈He〉
2He

Gn
Z̄v cos ϕ.
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The cracks undergo the virtual rotation

θ′d =
1

He cos ϕ
,

so their combined internal virtual work becomes

U′
(3) + U′

(4) = θ′d Md =
2Z̄v

Gn
f 〈He〉 . (G.97)

edge vertical crack (5), horizontal bending : Crack spans the height
2He and its centroid is located at a depth of He below the top edge. Its moment
capacity is obtained by multiplying equation (6.30) by the vertical edge restraint
factor Rvs [determined using equation (6.8)], which gives

Mh = Rvs f 〈He〉 2HeZ̄h.

Combined with the virtual rotation

θ′h =
1
Ld

,

this gives the internal virtual work contribution

U′
(3) = θ′h Mh = 2RvsZ̄hGn f 〈He〉 . (G.98)

midheight horizontal crack (6), vertical bending : The crack spans
the length La, with its centroid located at a depth of He below the top edge of the
wall, so it has the moment capacity [from equation (6.24)]

Mv = f 〈He〉 LaZ̄v.

Combining with the virtual rotation

θ′v =
2

He
,

gives the internal virtual work

U′
(6) = θ′v Mv = f 〈He〉

2La

He
Z̄v

= 2Z̄vaβ f 〈He〉 . (G.99)
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total : The total internal work is obtained by substituting equations (G.95)–(G.99)
into (G.94). By also replacing He with 1

2 Ht, this yields the expression

U′
tot = Z̄vβ

[
f 〈Ht〉+ Rts f 〈0〉+ 2 f

〈 1
2 Ht

〉]
+ 2RvsZ̄hGn f

〈 1
2 Ht

〉
.

(G.100)

External Work

As shown by Figure G.10, the external work for an individual out-of-plane mod-
ule is the sum of contributions from block combinations (A) and (B), calculated
according to the formula

E′tot = E′W (A) + E′W (B). (G.101)

self-weight of block combination (a): From Table 6.1, the virtual vol-
ume of the combined wedge blocks is

V ′
(A) = 1

2 LaHt,

giving the external virtual work

E′W (A) = λγtu
( 1

2 LaHt
)

= λγtuLeHt
( 1

2 a
)

. (G.102)

self-weight of block combination (b): From Table 6.1, the virtual volume
of the combined rectangular pyramid blocks is

V ′
(B) = 1

3 LdHt,

which gives the external virtual work

E′W (B) = λγtu
( 1

3 LdHt
)

= λγtuLeHt
( 1

3 (1− a)
)

. (G.103)

total: The total external work for a single out-of-plane module is obtained
by substituting contributions from equations (G.102) and (G.103) into (G.101).
Dividing by λ yields the expression

λ−1E′tot = γtuLeHt
( 1

3 + 1
6 a
)

. (G.104)
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Figure G.11: Individual out-of-plane module involved in mechanism K2y.

g.2.8 Mechanism K2y

Figure 6.17b shows the mechanism’s deflected shape, and Figure G.11 shows the
dimensions of a single out-of-plane module. Let us treat the effective length Le and
total height Ht as the independent variables defining the mechanism’s geometry.

Dependent Geometric Variables

The dependent geometric variables (refer to Figure G.11) include: the effective
mechanism height He, which [from equation (6.39) with nhs = 2] is equal to half of
the total height 1

2 Ht,
He = 1

2 Ht;

the vertical span
Hr = rHe;

and the height of the diagonal crack,

Hd = (1− r) He.

In addition, we need to calculate β using equation (6.43) and α using equation
(6.44). From this, the shape parameter r is calculated as

r = 1− α.
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Geometric Constraints

The independent variables Le and Ht may assume any values, as long as the
following constraints are adhered to. The total mechanism height must not exceed
the available height of the wall, and the effective mechanism length cannot exceed
the available length of the wall. They must therefore be within the limits

0 < Ht ≤ Hw and 0 < Le ≤ Lw/nvs.

In addition, the normalised aspect ratio α must satisfy the condition

α ≤ 1.

Internal Work

As shown by Figure G.11, there are six flexural cracks contributing to the overall
strength, including the bottom horizontal crack (1), top edge pseudo-crack (2),
diagonal cracks (3) and (4), vertical edge crack (5), and the internal vertical crack (6).
The total internal work for a single out-of-plane module is therefore determined
from the formula

U′
tot = U′

(1) + U′
(2) + U′

(3) + U′
(4) + U′

(5) + ζhiU′
(6). (G.105)

where U′
(1)–U′

(6) are the contributions from the respective cracks. Factor ζhi accounts
for the activeness of the internal vertical crack (6), since the crack is only active
when both of the wall’s vertical edges are supported, and therefore

ζhi =

0, if one vertical edge is supported, i.e. nvs = 1;

1, if two vertical edges are supported, i.e. nvs = 2.

bottom horizontal crack (1), vertical bending : The crack spans the
length Le and its centroid is located at a depth 2He below the top edge of the wall.
Hence, it has the moment capacity [from equation (6.24)]

Mv = f 〈2He〉 LeZ̄v,

combined with the virtual rotation

θ′v =
1

Hd
,
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which gives the internal virtual work

U′
(1) = θ′v Mv = f 〈2He〉

Le

Hd
Z̄v

=
Z̄v

Gn
f 〈2He〉 . (G.106)

top edge pseudo-crack (2), vertical bending: The horizontal span of
the hinge is Le, so it has the moment capacity [according to equation (6.28)]

Mvo = Rts f 〈0〉 LeZ̄v.

Since the hinge has the same rotation as crack (1), it provides the internal virtual
work contribution

U′
(2) = θ′v Mvo = Rts f 〈0〉 Le

Hd
Z̄v

= Rts
Z̄v

Gn
f 〈0〉 . (G.107)

diagonal cracks (3) and (4): The combined resistance of the two cracks
is equivalent to a single diagonal crack with vertical projection 2Hd and whose
centroid is located at the midheight of the mechanism or He below the top edge of
the wall. Hence, from equation (6.29) the equivalent crack has the moment capacity

Md = f 〈He〉
2Hd

Gn
Z̄v cos ϕ.

Both cracks undergo the virtual rotation

θ′d =
1

Hd cos ϕ
,

so their combined internal virtual work becomes

U′
(3) + U′

(4) = θ′d Md =
2Z̄v

Gn
f 〈He〉 . (G.108)

edge vertical crack (5), horizontal bending : The crack has the verti-
cal span 2He, with its centroid being located at a depth of He below the top edge.
Its moment capacity is obtained by multiplying equation (6.30) by the vertical edge
restraint factor Rvs [determined using equation (6.8)], which gives

Mh = Rvs f 〈He〉 2HeZ̄h.
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Together with the virtual rotation

θ′h =
1
Le

,

the internal virtual work becomes

U′
(5) = θ′h Mh = 2Rvs

Z̄h

β
f 〈He〉 . (G.109)

internal vertical crack (6), horizontal bending : The crack vertical
span is 2Hr and its centroid is He below the top edge of the wall. Its moment
capacity from equation (6.30) is therefore

Mh = f 〈He〉 2HrZ̄h,

whilst its virtual rotation is the same as for crack (5). This gives the internal virtual
work contribution

U′
(6) = θ′h Mh = f 〈He〉

2Hr

Le
Z̄h

=
2rZ̄h

β
f 〈He〉 . (G.110)

total: The total internal work is obtained by substituting equations (G.106)–
(G.110) into (G.105). By also replacing He with 1

2 Ht, this yields the expression

U′
tot =

Z̄v

Gn

[
f 〈Ht〉+ Rts f 〈0〉+ 2 f

〈 1
2 Ht

〉]
+ 2

Z̄h

β
(Rvs + ζhir) f

〈 1
2 Ht

〉
.

(G.111)

External Work

As shown by Figure G.11, the external work for an individual out-of-plane mod-
ule is the sum of contributions from block combinations (A) and (B), calculated
according to the formula

E′tot = E′W (A) + E′W (B). (G.112)

self-weight of block combination (a): From Table 6.1, the virtual vol-
ume of the combined rectangular pyramid blocks is

V ′
(A) = 1

3 Le (2Hd) ,
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which gives the external virtual work

E′W (A) = λγtuLeHt
( 1

3 (1− r)
)

. (G.113)

self-weight of block combination (b): From Table 6.1, the virtual volume
of the combined wedge blocks is

V ′
(B) = 1

2 Le (2Hr) ,

giving the external virtual work

E′W (B) = λγtuLeHt
( 1

2 r
)

. (G.114)

total: The total external work for a single out-of-plane module is obtained
by substituting contributions from equations (G.113) and (G.114) into (G.112).
Dividing by λ yields the expression

λ−1E′tot = γtuLeHt
( 1

3 + 1
6 r
)

. (G.115)

g.2.9 Effects of OBL Restraint in Type-1 Mechanisms

As discussed in Section 6.3, the presence of an OBL at the top of the wall has the
following influences on the internal and external work terms when considering
type-1 mechanisms in which the top edge is considered laterally unrestrained:

1. Additional internal work is done by translational friction between the wall
and the OBL. This comes into effect only when the OBL is restrained against
lateral movement.

2. Additional external work is done on the wall by the horizontal component of
the OBL, if the OBL is not restrained against lateral movement.

3. An increase occurs in the internal crack energies due to a higher internal
vertical stress throughout the wall. This is already accounted for by the
precompression stress σvo in the stress capacity function f 〈· · ·〉 [equation
(6.22)] used within the moment capacity expressions for the various types of
bending.

Therefore, we need expressions for calculating the additional energies resulting
from points 1 and 2 above.
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Figure G.12: Increments of displaced area at the top of the wall for the various mechanisms.

Virtual Displaced Areas

We start by deriving expressions for the increment of displaced area at the top edge
of each mechanism. We can denote the displaced area in either the incremental
notation as dA, or as A′ in Lagrange notation [refer to equation (6.9)], where

A′ =
dA
d∆

.

We define the virtual displaced area as the virtual displacement u′〈x〉 at the top of
the wall, integrated over the length of the wall L as

A′ =
∫ L

x=0
u′〈x〉dx, (G.116)

in which x is the horizontal position.

mechanism J: For a single out-of-plane module in mechanism J (Figure G.12a),
we have

dA = d∆ a Le + 1
2 (r d∆ + d∆) (Le − aLe) ,

which gives
A′ = 1

2 (1 + a + r− ar) Le. (G.117)
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mechanism B: For a single out-of-plane module in mechanism B (Figure G.12b),
we have

dA = d∆ Le,

which gives
A′ = Le. (G.118)

mechanisms Gx and K1x: For a single module in mechanisms Gx and K1x

(Figure G.12c), we have

dA = d∆ a Le + 1
2 d∆ (Le − aLe) ,

which gives
A′ = 1

2 (1 + a) Le. (G.119)

mechanisms Gy and K1y: For a single module in mechanisms Gy and K1y

(Figure G.12d), we have
dA = 1

2 d∆ Le,

which gives
A′ = 1

2 Le. (G.120)

in-plane modules in hybrid mechanisms J and B: For a single in-plane
module (Figure G.12e), the increment of displaced area is

dA = d∆rvHr,

which gives
A′ = ∆′rvHr. (G.121)

External Work from an Unrestrained OBL

The external virtual work performed on the wall by an unrestrained OBL is obtained
by integrating the product of the virtual displacement u′〈x〉 and the acting lateral
force Fh from the OBL over the length of the wall, according to the formula

E′ =
∫ L

x=0

(
u′〈x〉 dFh

dx

)
dx.
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When the axial load is uniformly distributed along the wall, the lateral force per
unit length is constant such that

dFh

dx
= Φλησvot,

where: Φ is the degree-of-freedom (DOF) factor for the OBL, taken as 1 when the
OBL is unrestrained and 0 when it is restrained; λ is the lateral load multiplier; η

is the ratio of the component of the overburden weight free to act laterally and
that which acts vertically, defined according to equation (6.4); σvo is the vertical
stress acting at the top of the wall due to the OBL; and t is the thickness of the wall.
Therefore, we get

E′ = Φλησvot
∫ L

x=0
u′〈x〉dx,

where the integral term is equivalent to the virtual displaced area A′ for the
mechanism, as per equation (G.116). This results in the expression

E′ = ΦλησvotA′. (G.122)

The external work contribution is easily calculated using the above formula, by
substituting in A′ from equations (G.117)–(G.121) for the mechanism under consid-
eration.

Internal Work from a Restrained OBL

The internal virtual work performed due to friction between the wall and a re-
strained OBL is obtained as the product of the virtual displacement u′〈x〉 and the
acting frictional force Ff , integrated over the length of the wall according to the
formula

U′ =
∫ L

x=0

(
u′〈x〉

dFf

dx

)
dx.

For an axial load which is uniformly distributed along the wall, the frictional force
per unit length is constant and equal to

dFf

dx
= (1−Φ) µoσvot,

where µo is the coefficient of friction along the interface between the wall and the
OBL. The factor (1−Φ) makes the term only active when the OBL is restrained and
therefore Φ = 0. From this we get

U′ = (1−Φ) µoσvot
∫ L

x=0
u′〈x〉dx,
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where the integral term is equivalent to the virtual displaced area A′ [as per
equation (G.116)], and therefore, we can simplify this to get the expression

U′ = (1−Φ) µoσvotA′. (G.123)

The internal work contribution for the predefined mechanisms is readily calculated
using the above formula, by substituting in A′ from equations (G.117)–(G.121) for
the mechanism under consideration.

A Minor Simplification

By recognising that the external and internal work contributions [equations (G.122)
and (G.123)] both contain the terms σvotA′, we can define this as the reference
virtual energy e′, such that

e′ = σvotA′. (G.124)

The external work contribution then becomes

E′ = Φληe′, (G.125)

whilst the internal work contribution becomes

U′ = (1−Φ) µoe′. (G.126)

This formulation is used for the equations presented in Section 6.5.

g.2.10 Top Edge Rotational Restraint Factor Rts

Here we derive the equivalent rotational restraint factor Rts used for calculating the
moment capacity about the top edge of the wall in the presence of an overburden
load. The factor is subsequently used in the developed virtual work (VW) approach
for calculating the load capacity of the various mechanisms and is applicable
to any part of the top edge belonging to a sub-plate undergoing rotation about
the horizontal axis. This includes: type-2 mechanisms, where the top edge also
has translational restraint; as well as certain type-1 mechanisms in which the top
edge is free to move laterally, but satisfies the aforementioned condition. Of the
mechanisms considered here, this moment capacity becomes applicable to type-1
mechanisms Gx, J, B and K1x; and type-2 mechanisms K2x and K2y. It is also
applied to mechanism Gy, for reasons discussed in Section G.2.4. Hence, only K1y

is unaffected by the OBL eccentricity.
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As can be seen from Figure 6.6, the moment Mvo acting about the centroid of
the cross section is

Mvo = Wvola,

where Wvo is the precompression force and la is the lever arm, which is equal to

la =
( 1

2 − ε
)

tu,

with tu being the thickness of the wall. For a hinge with length L, the acting force
Wvo is related to the acting vertical stress σvo according to

Wvo = σvoLtu.

This gives the acting moment Mvo as

Mvo = σvoLt2
u
( 1

2 − ε
)

. (G.127)

We define the rotational restraint factor Rts as

Mvo = Rts Mv, (G.128)

where Mv is the moment capacity of a crack in vertical bending calculated from
equation (6.24). By substituting in Mvo from equation (G.127) and Mv from equa-
tions (6.24) and (6.25), we get the expression

Rts = 1− 2ε. (G.129)

Hence, the rotational restraint factor is dependent only on the load eccentricity ε.
When the load acts upon the upward-deflecting point along the section (ε = 0), as
is the case for a slab connection, the restraint factor achieves its maximum value of
1. When the load acts at the centre of the wall’s thickness (ε = 1/2), the restraint
factor becomes zero and the hinge provides zero net moment. If the load was to
act at the downward-deflecting edge (ε = 1) then the restraint factor would be −1,
since the hinge would provide a negative moment contribution, or in other words,
it would exert an overturning moment onto the wall.

g.3 general formulation for mechanism J

A significant feature of the hybrid mechanism J is its ability to span over multiple
consecutive out-of-plane walls separated by in-plane return walls. As discussed
in Section 6.5.2, since the simple treatment of the mechanism derived in Section
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Figure G.13: Generic configuration of out-of-plane walls connected in series.

G.2.1 makes the inherent assumption that all out-of-plane and in-plane modules
present in the overall mechanism are equivalent, it can only be applied to simple
specimen configurations in which all out-of-plane walls have the same length, such
as those shown in Figure 6.12. Furthermore, from the configurations shown in
Figure 6.12, the simple approach is only guaranteed to find optimal solutions for
(a), (b) and (c), but not (d). This is because at the optimal state, all non-equivalent
modules will tend to adopt different geometries, which the simple treatment is
unable to deal with due a insufficient number of shape variables that are treated as
independent. A more versatile approach is developed here, which overcomes these
limitations and may be applied to any generic configuration consisting of a chain
of out-of-plane walls separated by in-plane walls, as shown in Figure G.13. The
approach is best suited to implementation using computer software such as Excel

or Matlab.

g.3.1 Assumptions

In addition to assumptions made previously by the simplified approach, the main
assumption made by the presented approach is that all participating in-plane and
out-of-plane walls undergo an equal unit rotation about the horizontal axis. This
assumption is valid as long as torsional deformation of the out-of-plane panels
about the horizontal axis remains negligible. We denote the reference increment of
rotation as dθv, which may be assigned any arbitrary value.
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g.3.2 Definition of Specimen Configuration

As shown by Figure G.13, a generic specimen may consist of a series of internal
out-of-plane walls, and two external out-of-plane walls, one on each end. The
configuration of the specimen is specified by the user at the start of the analysis
using the following information:

• The number of in-plane walls/modules present, denoted by Nr. This value
must be greater than or equal to 1.

• Whether or not a left-most external wall is present. We denote this by the
Boolean variable firstExtWall (= either true or false).

• Whether or not a right-most external wall is present. We denote this by the
Boolean variable lastExtWall (= either true or false).

g.3.3 Indexing

Figure G.13 demonstrates the indexing convention used for in-plane walls, out-of-
plane walls and out-of-plane modules.

In-Plane Walls/Modules

In-plane walls are referred to using the index k, which ranges from k = 1 to Nr.

Out-of-Plane Walls

Out-of-plane walls are referred to using the index i.

The number of internal out-of-plane walls in the specimen, Niw, is directly
calculated from the number of return walls, as

Niw = Nr − 1. (G.130)

Hence, the indices of internal out-of-plane walls range from i = 1 to Niw.

As shown by Figure G.13, if a left-most external wall is present, then it is
assigned the index i = 0. If a right-most external wall is present, then its index is
i = Nr.

Therefore, the index of the first out-of-plane wall in any configuration is

istart =

0, if firstExtWall = true,

1, if firstExtWall = false.
(G.131)



620 collapse load prediction in dry masonry walls

Similarly, the index of the last out-of-plane wall is

iend =

Nr − 1, if lastExtWall = false,

Nr, if lastExtWall = true.
(G.132)

Out-of-Plane Modules

Out-of-plane modules are referred to using the index j. As shown by Figure G.14,
these modules can be either left or right. Left modules are defined as those that
are coupled to a return wall on their left, and have odd indices j = 1, 3, 5, . . ..
Right modules are coupled to a return wall on their right, and have even indices
j = 0, 2, 4, . . ..

Indices of left modules within internal out-of-plane walls range from j = 1 to
2Niw − 1, whilst indices of right modules within internal out-of-plane walls range
from j = 2 to 2Niw.

The module that corresponds to the left-most external out-of-plane wall has
the index j = 0. Similarly, the module corresponding to the right-most external
out-of-plane wall has the index j = 2Niw + 1.

Therefore, the index of the first out-of-plane module in any configuration is

jstart = istart, (G.133)

and the index of the last out-of-plane module is

jend =

2Niw, if lastExtWall = false,

2Niw + 1, if lastExtWall = true.
(G.134)

g.3.4 Summary of Properties

The geometric properties described here are also illustrated by Figure G.14.

In-Plane Walls/Modules

Properties belonging to individual in-plane walls are denoted using the index k,
ranging from k = 1 to Nr. The following properties are constants based on the
specimen geometry, that need to be defined at the start of the analysis:
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Figure G.14: Geometry of an internal out-of-plane wall and its associated modules.
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constants

σvor(k) Precompression stress acting on the kth in-plane wall.
Φr(k) OBL degree-of-freedom factor for the kth in-plane wall.
ηr(k) OBL orthogonal factor for the kth in-plane wall.

The following variables are treated as independent:

independent variables

Hr(k) Height of the mobilised in-plane panel in the kth in-plane module.
v(k) Slope of the in-plane shear crack in the kth in-plane module.

Dependent properties that get assigned during the analysis include:

dependent variables

d∆r(k) Increment of displacement at the top of the kth in-plane module.
dUr(k) Internal work increment for the kth in-plane module.

λ−1dEr(k) External work increment for the kth in-plane module, premultiplied
by λ−1.

C1–C4 Optimisation constraints for the kth in-plane module.

Out-of-Plane Walls

Properties belonging to individual out-of-plane walls are denoted using the index i,
ranging from i = istart to iend. The following are constants based on the specimen
geometry, that are defined at the start of the analysis:

constants

Lw(i) Length of the ith out-of-plane wall.
σvow(i) Precompression stress acting on the ith out-of-plane wall.
Φw(i) OBL degree-of-freedom factor for the ith out-of-plane wall.
ηw(i) OBL orthogonal factor for the ith out-of-plane wall.

Rtsw(i) Top edge rotational restraint factor for the ith out-of-plane wall.

The following variables are treated as independent:

independent variables

Lt(i) Length of mechanism covering the ith out-of-plane wall.
Ht(i) Height of the mechanism covering the ith out-of-plane wall.

Dependent properties that become assigned during the analysis include:
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dependent variables

d∆w(i) Increment of displacement at the top of the ith out-of-plane wall.
Hp(i) Projected maximum height of the mechanism along the ith out-of-

plane wall.
dUw(i) Internal work increment for the ith out-of-plane wall.
C5–C8 Optimisation constraints for the ith out-of-plane wall.

Note that in the simple treatment of mechanism J presented in Section G.2.1, the
mechanism length Lt was not treated as independent, and was assumed to span
the full available length of the wall. In the treatment presented here, we allow for
the possibility that the overall mechanism does not span the full available length of
the overall specimen, as it is possible for the optimal solution (at which the collapse
multiplier is minimised) to correspond to such scenarios.

Out-of-Plane Modules

Properties which belong to individual out-of-plane mechanism modules are de-
noted using the index j, ranging from j = jstart to jend. All of these properties are
dependent variables that become assigned during the analysis, and include:

dependent variables

Le(j) Length of the jth out-of-plane module.
He(j) Height of the jth out-of-plane module.
La(j) Length of horizontal crack in the jth out-of-plane module.
Ld(j) Horizontal projection of diagonal crack in the jth out-of-plane mod-

ule.
Hd(j) Vertical projection of diagonal crack in the jth out-of-plane module.
hr(j) Height of the adjacent in-plane module for the jth out-of-plane

module.
ζhi(j) Work contribution factor for the vertical crack in the jth out-of-plane

module.
σvom(j) Precompression stress acting on the jth out-of-plane module.
Φm(j) OBL degree-of-freedom factor for the jth out-of-plane module.
ηm(j) OBL orthogonal factor for the jth out-of-plane module.

Rtsm(j) Top edge rotational restraint factor for the jth out-of-plane module.
dUm(j) Internal work increment for the jth out-of-plane module.

λ−1dEm(j) External work increment for the jth out-of-plane module, premulti-
plied by λ−1.

C9–C11 Optimisation constraints for the jth out-of-plane module.
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g.3.5 Calculations

In-Plane Walls/Modules

The calculations presented here are performed for each in-plane wall present, for
indices ranging from k = 1 to Nr.

First, calculate the increment of displacement at the top of the mobilised in-plane
panel as

d∆r(k) = dθvHr(k), (G.135)

where dθv is the reference increment of rotation for the overall mechanism. We de-
fine the stress capacity function for the particular in-plane wall under consideration
as

fr(k)〈d〉 = σvor(k) + γd. (G.136)

By expanding equation (G.22) using equations (6.36) and (G.23), the increment of
internal work for the in-plane wall becomes

dUr(k) = d∆r(k)

[
1
2 µm tuHr(k)

(
1

Gn
+ v(k)

)
fr(k)

〈
1
3 Hr(k)

〉
+

Z̄v

Gn
fr(k)

〈
1
2 Hr(k)

〉
+
(

1−Φr(k)

)
µov(k)Hr(k)tuσvor(k)

]
.

(G.137)

Similarly, from equation (G.27), the increment of external work premultiplied by
λ−1 is calculated as

λ−1dEr(k) = d∆r(k)

[
γtu

(
1
3 Hr

2
(k)v(k)

)
+ Φr(k)ηr(k)v(k)Hr(k)tuσvor(k)

]
. (G.138)

Out-of-Plane Walls

For all out-of-plane walls (i = istart to iend), calculate the increment of displacement
at the top of the wall as

d∆w(i) = dθvHt(i). (G.139)

For internal out-of-plane walls only (i = 1 to Niw), we need to define the boundary
between its pair of out-of-plane modules. As shown by Figure G.14, the boundary
is taken at the intersection of the diagonal projections made from the bottom of the
adjacent in-plane modules. The projected height at the intersection is calculated as

Hp(i) = 1
2

(
Hr(k=i) + Hr(k=i+1) + GnLt(i)

)
, (G.140)
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where k = i is the adjacent in-plane wall to the left, and k = i + 1 is the adjacent
in-plane wall to the right of the out-of-plane wall under consideration.

Out-of-Plane Modules

The calculations presented here are performed for each out-of-plane module present,
for indices ranging from j = jstart to jend.

One of the main considerations in formulating the VW equations is ensuring
that the formulation is numerically stable and that any potential divisions by zero
are avoided for all admissible values of the independent variables. A problem
with directly using the equations derived in Section G.2.1 for a single out-of-
plane module [equations (G.16) and (G.21)], is the dependence on the parameter
β [calculated using equation (6.43)], which contains He in the denominator and
will therefore cause numerical problems when He → 0. This is because for certain
wall configurations, the optimal state corresponds to particular walls becoming
effectively inactive, which will cause their He to approach 0 during the optimisation
process. The equations presented here are slight reformulations of the equations
presented in Section G.2.1, which will avoid the associated numerical problems.

Certain dependent properties of the out-of-plane module take on values directly
from its parent out-of-plane wall or adjacent in-plane wall.

The index of the parent out-of-plane wall is

ip =

(j + 1)/2, for left out-of-plane modules (j = 1, 3, 5, . . .),

j/2, for right out-of-plane modules (j = 0, 2, 4, . . .).
(G.141)

The associated properties include: axial stress at the top of the wall,

σvom(j) = σvow(i=ip); (G.142)

OBL degree-of-freedom factor,

Φm(j) = Φw(i=ip); (G.143)

OBL orthogonal factor,
ηm(j) = ηw(i=ip); (G.144)

the top edge rotational restraint factor,

Rtsm(j) = Rtsw(i=ip); (G.145)
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the displacement increment,

d∆m(j) = d∆w(i=ip); (G.146)

and the effective module height,

He(j) = Ht(i=ip). (G.147)

The index of the adjacent in-plane wall is

ka =

(j + 1)/2, for left out-of-plane modules (j = 1, 3, 5, . . .),

(j + 2)/2, for right out-of-plane modules (j = 0, 2, 4, . . .),
(G.148)

which relates to the height of the adjacent in-plane module,

hr(j) = Hr(k=ka). (G.149)

The length of the out-of-plane module is

Le(j) =

Lt(i=ip), if j = 0 or j = 2Niw + 1,(
Hp(i=ip) − hr(j)

)
/Gn, otherwise.

(G.150)

The first case above corresponds to the out-of-plane module belonging to an
external out-of-plane wall, in which case the length is taken as the full length of
mechanism covering the wall. The second case corresponds to the out-of-plane
module belonging to an internal out-of-plane wall, whereby Le is taken as the span
to the intersection point of the diagonal projections, as illustrated in Figure G.14.

The remaining properties are all dependent only on properties of the out-of-
plane module itself. They include: the vertical projection of the diagonal crack,

Hd(j) = He(j) − hr(j); (G.151)

horizontal projection of the diagonal crack,

Ld(j) = Hd(j)/Gn; (G.152)

and the length of the horizontal crack,

La(j) = Le(j) − Ld(j). (G.153)

The work contribution factor for the vertical crack [refer to equation (G.9)] is taken



g.3 general formulation for mechanism J 627

as

ζhi(j) =

La(j)/Le(j), if j = 0 or j = 2Niw + 1,

1, otherwise.
(G.154)

We define the stress capacity function for the particular out-of-plane module under
consideration as

fm(j)〈d〉 = σvom(j) + γd. (G.155)

By expanding the internal work for an out-of-plane module from equation (G.8)
using equations (G.10)–(G.14), expressing it in terms of the various crack spans
previously calculated, and premultiplying it by the increment of displacement at
the top of the module d∆m(j), we obtain the following expression for the increment
of internal work:

dUm(j) = dθv

{
Z̄vLa(j) fm(j)

〈
He(j)

〉
+ Z̄vLd(j) fm(j)

〈
He(j) − 1

2 Hd(j)

〉
+ ζhi(j)Z̄hGnHe(j) fm(j)

〈
1
2 He(j)

〉
+ Rtsm(j)Z̄vLe(j) fm(j)〈0〉

+
(

1−Φm(j)

)
µoσvom(j)tu

[
La(j)He(j) + 1

2 Ld(j)

(
hr(j) + He(j)

)] }
.

(G.156)

Similarly, from equation (G.17) with equations (G.18)–(G.20), we get the following
expression for the increment of external work premultiplied by λ−1:

λ−1dEm(j) = dθv

{
γtu

[
1
2 H2

e (j)La(j) + 1
6

(
H3

e (j) − h3
r (j)

)
/Gn

]
+ Φm(j)ηm(j)σvom(j)tu

[
La(j)He(j) + 1

2 Ld(j)

(
hr(j) + He(j)

)] }
.

(G.157)

Total Internal and External Work, and Collapse Multiplier

The total increments of internal and external work for the overall mechanism are
calculated by summing the contributions from all participating out-of-plane and
in-plane modules. Hence, the total internal work increment is calculated as

dUtot =
jend

∑
j=jstart

dUm(j) +
Nr

∑
k=1

dUr(k), (G.158)
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and the total external work increment premultiplied by λ−1 is calculated as

λ−1dEtot =
jend

∑
j=jstart

λ−1dEm(j) +
Nr

∑
k=1

λ−1dEr(k). (G.159)

From this, the collapse multiplier becomes

λo =
dUtot

λ−1dEtot
. (G.160)

g.3.6 Optimisation and Constraints

The constraints enforced during the optimisation process used to solve for the
critical value of λo depend on the type of analysis being conducted. Two types of
analysis should be considered for any wall specimen, which include:

1. Unrestricted wall participation, whereby all walls/modules are allowed to
participate in the overall mechanism;

2. and restricted wall participation, whereby certain walls are selectively denied
from participating in the overall mechanism. This analysis is further subdi-
vided into each of the various permutations of active and inactive walls that
are possible for a given wall configuration.

Analysis Permutations

By recognising that an admissible mechanism must have a horizontal span that is
continuous over the wall specimen, we can restrict wall participation by declaring
in-plane walls that will act as boundaries to the mechanism. These in-plane
boundary walls not only prohibit any outside walls/modules from participating,
but also become inactive themselves (Hr(k) = 0). The additional important effect
of this is that the out-of-plane wall that is immediately adjacent to a boundary
in-plane wall will have relaxed constraints on the length of mechanism (Lt(i)) that
it can accommodate. Two boundary in-plane walls may be declared: a left one and
a right one. We denote their respective indices (equivalent to k) as Bleft and Bright.
For the left boundary, Bleft may assume integer values in the range

0 ≤ Bleft ≤ Nr, (G.161)
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i =  0 i =  1 i =  2

k =  1 k =  2

i =  3 i =  4

L e f t  b o u n d a r y

k =  3 k =  4

R i g h t  b o u n d a r y
B l e f t  =  1 B r i g h t  =  4

i n a c t i v e a c t i v e i n a c t i v e

Figure G.15: Example of an analysis with enforced limited wall participation.

whereby Bleft = 0 corresponds to the left boundary being effectively unrestricted.
For the right boundary, Bright may assume integer values in the range

1 ≤ Bright ≤ Nr + 1, (G.162)

such that the case Bright = Nr + 1 corresponds to the right boundary being ef-
fectively unrestricted. Furthermore, any selected values of Bleft and Bright must
satisfy

Bleft < Bright. (G.163)

Figure G.15 shows an example of enforced limited wall participation for a wall
specimen with Nr = 4 and both external out-of-plane walls. The left boundary
in-plane wall is placed at Bleft = 1 and the right wall at Bright = 4. Doing this
precludes the external walls from participating in the mechanism, and allows only
the internal out-of-plane walls to participate. Furthermore, since the boundary
in-plane walls are, by definition, non-participating, this allows the mechanism
along internal walls which are immediately inside of the boundaries (i = 1 and
i = 3) to not be restricted to the full length of the wall. By contrast, any walls that
are not adjacent to the boundary in-plane walls, such as wall i = 2 in this example,
must accommodate a mechanism along its full length.

The number of analysis permutations that need to be considered depend on
the configuration of the specimen. Figure G.16a illustrates the three permutations
which exist for a specimen with Nr = 1, whilst Figure G.16a shows the six possible
permutations for a specimen with Nr = 2. In general, the number of permutations,
P, that need to be considered is

P = 1
2 (Nr + 1) (Nr + 2) . (G.164)



630 collapse load prediction in dry masonry walls

1 2  ( n o n e )
B r i g h t

B l e f t

0
( n o n e )

1

a c t i v e

RL

a c t i v e

RL

10 2k: 10 2k:

a c t i v e

RL

10 2k:

(a) Specimen with a single in-plane wall, Nr = 1.
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(b) Specimen with two in-plane walls, Nr = 2.

Figure G.16: Possible analysis permutations for specimens with Nr = 1 and Nr = 2.
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Furthermore, it is seen from Figures G.16a and G.16b that the unrestricted wall
participation scenario mentioned earlier effectively corresponds to the particular
case of the restricted participation analysis, with Bleft = 0 and Bright = Nr + 1.
Therefore, it becomes sufficient to consider all of the permutations in the restricted
participation analysis. In implementing the method using a programming approach,
the optimisation process may be placed two nested loops as follows:

for Bleft = 1 to NR

for Bright = Bleft+1 to NR+1

... perform optimisation ...

end

end

Constraints

In total, there are 11 different types of constraint that need to be satisfied in the
optimisation process. We denote these as

C1, C2, C3, . . . , C11,

and formulate them so that each must satisfy

C1 ≥ 0, C2 ≥ 0, C3 ≥ 0, . . . , C11 ≥ 0.

in-plane walls For every in-plane wall with the index k, there are four con-
straints, C1(k)–C4(k). These must satisfy{

C1(k), C2(k), C3(k), C1(k)

}
≥ 0, for k = 1 to Nr. (G.165)

The first constraint is
C1(k) = Hr(k), (G.166)

which ensures that Hr(k) always stays positive.

The second constraint enforces an upper limit on Hr(k), and is formulated as

C2(k) = Hrmax − Hr(k), (G.167)
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where Hrmax is the maximum allowed height, such that

Hrmax =

Hw, if Bleft < k < Bright,

0, otherwise.
(G.168)

The two cases above correspond to in-plane walls that are participating and non-
participating, respectively.

The third and fourth constraints

C3(k) = v(k) and C4(k) = 1/Gn −v(k) (G.169)

act to ensure that the in-plane crack slope stays inside the limits prescribed by
equation (6.33).

out-of-plane walls For every out-of-plane wall with the index i, there are
four constraints: C5(i)–C8(i), which must satisfy{

C5(i), C6(i), C7(i), C8(i)

}
≥ 0, for i = istart to iend. (G.170)

The first constraint
C5(i) = Ht(i) (G.171)

is used to ensure that Ht(i) stays positive.

The second constraint places an upper limit on Ht(i), and is formulated as

C6(i) = Ht max − Ht(i), (G.172)

where Ht max is the maximum allowed height, and is taken as

Ht max =

Hw, if Bleft ≤ i ≤ Bright − 1,

0, otherwise.
(G.173)

The two cases above correspond to out-of-plane walls that are participating and
non-participating, respectively.

The third constraint places a lower bound value on the length Lt(i), and is
formulated as

C7(i) = Lt max − Lt(i), (G.174)
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where Lt max is the minimum allowed value, taken as

Lt max =


0, if i = Bleft and i 6= 0,

0, if i = Bright − 1 and i 6= Nr,

Lw, otherwise.

(G.175)

The first two cases above correspond to scenarios where the out-of-plane wall
under consideration is a participating internal wall adjacent to one of the boundary
in-plane walls. This constraint effectively acts to relax the length restriction for
such walls. The third case corresponds to any other wall.

The fourth constraint ensures that Lt(i) does not exceed the length of the wall,
and is taken as

C8(i) = Lw − Lt(i). (G.176)

out-of-plane modules For every out-of-plane module having the index j,
there are three constraints: C9(j)–C11(j), which must satisfy{

C9(j), C10(j), C11(j)

}
≥ 0, for j = jstart to jend. (G.177)

These constraints are

C9(j) = La(j), C10(j) = Ld(j), C11(j) = Hd(j), (G.178)

which act to ensure that the spans La(j), Ld(j) and Hd(j) all stay positive.

g.4 worked examples

This section contains several examples demonstrating calculation of the collapse
load multiplier λo using the DSM mechanisms presented in Section 6.5.

g.4.1 Example 1: A Non-Loadbearing Wall

Problem

Using mechanism J, calculate the collapse load multiplier (λo) for the non-loadbearing wall
shown in Figure G.17. The wall spans 10 bricks in length and 21 courses in height. Both
of its vertical edges are supported whilst the top edge is free. Use the brick dimensions
and material properties from Restrepo Vélez’s tests given in Table 6.2. Whereas normally
the independent variables parameters a, v and Ht would be optimised to minimise λo, in
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Figure G.17: Non-loadbearing wall used in Example 1. Illustration from Restrepo Vélez and
Magenes [2009]. (Graphic used with permission from IUSS Press.)

this example assume that a = 0.15, v = 0 (i.e. that the in-plane shear crack is oriented
vertically) and that the height of the mechanism spans vertically across 12 courses of bricks.

Solution

Start by calculating the geometric constants for this type of masonry, which include
the moment moduli for vertical and horizontal bending, Z̄v and Z̄h respectively and
the diagonal crack slope Gn. These parameters should be calculated first because
they are independent of the type of mechanism and its dimensions.

The modulus for vertical bending is calculated using equation (6.24) as

Z̄v = t2
u/2 = (39.7 mm)2/2 = 788.0 mm3 per mm.

For horizontal bending, firstly calculate the bed joint overlap which for DSM is half
of the brick length sb = lu/2 = (79.8 mm)/2 = 39.9 mm, from which the bed joint
overlap ratio is obtained as ro = sb/tu = 39.9/39.7 = 1.005. Substituting ro into
equation (4.31) gives kbp = 0.3855. The resulting moment modulus is evaluated
using equation (6.31) as

Z̄h = µm kbp t3
u/(hu + tj) = 0.71× 0.3855× (39.7 mm)3/28.2 mm

= 607.3 mm3 per mm.

The diagonal crack slope [from equation (4.13)] is

Gn = 2× 28.2 mm
79.8 mm

= 0.7068.

Next, determine the number out-of-plane and in-plane modules involved in the
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mechanism. The scenario considered in this example can be visualised through
Figure 6.14a, which depicts a single out-of-plane wall (Nw = 1) with both of its
vertical edges supported (nvs = 2). The resulting number out-of-plane modules,
as per equation (6.45), is Nm = 1× 2 = 2, which correspond to the two identical
halves of the out-of-plane panel mirrored by the vertical line of symmetry as shown
in Figure 6.14a. The number of in-plane modules simply equals to the total number
of return walls in the specimen; therefore Nr = 2.

Now determine the dimensions of each of the out-of-plane modules. The
length of the wall is specified to be 10 bricks across, which equates to Lw =
10× 79.8 mm = 798 mm. For mechanism J, the length of the out-of-plane module
is always predetermined, such that the mechanism spans the maximum available
length across the wall. Therefore, [from equation (6.42)] the length of a single
out-of-plane module is Le = 798 mm/2 = 399 mm. The height of the mechanism
is not predetermined; however, in this example it has been assumed to span
over 12 courses of bricks. This corresponds to a height of Ht = 12× 28.2 mm =
338 mm. The resulting out-of-plane module aspect ratio [from equation (6.43)] is
β = 399 mm/338 mm = 1.18.

Now determine values of the auxiliary variables, including r, ζhi, e′m and e′r,
using the specific equations for mechanism J, provided in Section 6.5.2. Using the
assumed value a = 0.15, from equation (6.46) we get

r = 1− βGn(1− a) = 1− 1.18× 0.7068× (1− 0.15) = 0.292.

Since both vertical edges are supported, the central vertical cracks are able to
develop their full internal work and the factor ζhi is taken as 1 [as per equation
(6.47)]. As the wall is non-loadbearing, σvom = σvor = 0 and hence e′m = e′r = 0,
which causes the associated internal and external work contributions to drop out.

Furthermore, for a non-loadbearing wall the total internal and external work
terms can be simplified by recognising that the stress capacity function [equation
(6.22)] reduces to f 〈d〉 = γd. By substituting equation (6.36) into (6.50), the total
internal work becomes

U′
tot = γHtNm

[ 1
2 Z̄vβ (1 + a + r− ar) + 1

2 ζhiZ̄hGn
]

+ r2γHtNr

[
1
6 µmturHt

(
1

Gn
+ v

)
+ 1

2
Z̄v
Gn

]
,

whilst the external work term, from equation (6.51) becomes

λ−1E′tot = γH2
t tu

[
Nm

(
1
2 aβ + 1

6
1−r3

Gn

)
+ Nr

( 1
3 r3v

)]
.
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That both of these terms are directly proportional to the unit weight γ means that
λo becomes independent of the density of the material and solely dependent on unit
geometry and frictional properties. In fact, this is the case for all non-loadbearing
DSM walls, regardless of the mechanism used for the analysis.

Dividing the above expressions for internal and external work by γHt and
evaluating, gives

(γHt)
−1 U′

tot = 2×
[

1
2 × 788.0 mm2 × 1.18× (1 + 0.15 + 0.292− 0.15× 0.292)

+ 1/2× 1× 607.3 mm2 × 0.7068
]

+ (0.292)2 × 2×
[

1
6 × 0.71× 39.7 mm× 0.292× 338 mm

× (1/0.7068 + 0)

+ 1
2 × 788.0 mm2/0.7068

]
= 1, 935 mm2,

and

(γHt)
−1 λ−1E′tot = 338 mm× 39.7 mm×

[
2×

(
1
2 × 0.15× 0.292

+ 1
6

(
1− (0.292)3)/0.7068

)
+ 0
]

= 8, 555 mm2.

From this, the collapse multiplier is evaluated as

λo =
1, 935 mm2

8, 555 mm2 = 0.226.

In this example, λo has been calculated using arbitrarily chosen values of the
independent variables a, v and Ht. By using the optimisation tool Solver in Excel,
the critical solution is shown to be λo = 0.224, occurring for a = 0.160, v = 0
and Ht = 365 mm. Although the height Ht corresponds to a non-integer value for
the number of brick courses (365 mm/28.2 mm = 12.9), accepting such a solution
is conservative, in that any deviation from the optimal values of independent
variables will result in a higher value of λo.

g.4.2 Example 2: Loadbearing Walls

Figure G.18 shows examples of different types of overburden load conditions and
the resulting implications toward the parameters used in the analysis. In Figures
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G.18a and G.18b, the wall is subjected to an overburden load using joists supported
by the façade panel and return walls, respectively. In both of these cases, the joists
are unrestrained from lateral movement and therefore they are able to perform
additional external work on the wall. In Figure G.18c, the joists are supported by
on the façade panel; however, they are restrained from lateral movement. This
example considers the two cases where the joists are supported by the façade panel.

Problem

Recalculate λo for the same wall as used in Example 1 (Section G.4.1), if it is subjected to
each of the loadbearing conditions described below. In each scenario, the overburden load is
applied onto the façade through eight equally spaced joists as shown in Figures G.18a and
G.18c, with each joist exerting a vertical reaction of 16.46 N. Assume that the joists place
the load at the midpoint of the wall’s cross section. There is no loading on the return walls.

Consider the following situations:

A. The joists are restrained from horizontal motion (Figure G.18c) and the surface
between the joists and wall is smooth enough that any friction should be ignored
(µo = 0).

B. As in Part A, the joists are restrained (Figure G.18c), but the surface between the
joists and wall provides some frictional resistance. Assume a friction coefficient of
µo = 0.4.

C. The joists are not restrained against lateral movement (Figure G.18a) and the ratio of
the total overburden weight to the resulting vertical reaction is ηm = 1.3.

Apply mechanism J and use the same values for a, v and Ht as were used in Example 1.

Solution Steps Common to All Three Parts

Values of certain parameters can be directly retained from Example 1, including:
Z̄v, Z̄h and Gn, since the type of masonry remains unchanged; nvs, Nm, Nr and
Lw, since the wall geometry is unchanged and; β and r, since we are assuming
the same values for a, v and Ht. The main differences between the analysis of a
loadbearing wall as opposed to a non-loadbearing wall are that in the case of a
loadbearing wall, the full stress capacity function must be used including the σvo

term [equation (6.22)], and furthermore, that the additional terms in the internal
and external work due to e′m and e′r can potentially become active depending on
the nature of the overburden load’s restraint.
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(a) Wall r35. Joists present on main wall and
free to move horizontally; hence Φm = 1. Due
to the position of the weights along the joists,
ηm = 1.3 (from the lever arm ratio).

(b) Wall r36. Joists present on return wall
and free to move horizontally; hence Φr = 1.
Weights are evenly distributed between the left
and right return walls; therefore, ηr = 1.0.

(c) Wall r41. Joists present on main wall and
restrained from moving horizontally; hence
Φm = 0. Since the overburden load cannot per-
form work on the wall, the ηm factor becomes
irrelevant.

Figure G.18: Examples of various types of overburden load conditions and the resulting
influence on parameters used in the analysis. The shown walls correspond to test walls r35,
r36 and r41 tested by Restrepo Vélez and Magenes [2009] (Graphics used with permission
from IUSS Press.).
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By making the assumption that the joists are spaced closely enough so that a
uniformly distributed load develops at the top of the wall, the acting stress can be
calculated the total load spread over the out-of-plane wall’s total bedded area, as

σvom = 8× 16.46 N/ (10× 79.8 mm× 39.7 mm) = 4.156× 10−3 N/mm2.

From equation (6.48), the e′m term is

e′m = 1
2 × (1 + 0.15 + 0.292− 0.15× 0.292)× 399 mm× 39.7 mm

× 4.156× 10−3 N/mm2

= 46.05 N.

There is no overburden load being supported by the return walls (σvor = 0);
therefore e′r = 0.

Since the joists apply the vertical load at the centre of the wall’s cross section,
the eccentricity parameter ε is taken as 1/2. Hence, the rotational restraint factor
along the vertical edge [from equation (6.27)] becomes Rts = 0. As a result, the
term Rts f 〈0〉 in equation (6.50) does not provide an internal work contribution.

Next, the stress capacity function f 〈d〉 needs to be evaluated using equation
(6.22) for the various arguments of d occurring in the internal work term, given by
equation (6.50). A question then arises, whether σvom or σvor should be assigned as
σvo in equation (6.22) for the internal work contribution along the vertical edges
themselves. Whilst the flow of the applied stress through the masonry panel is
complex and could be calculated to a better accuracy using more refined methods,
the approach used here and recommended by the author is a simplified one, where
the stress applied to the main wall σvom is used for all cracks along the main wall
(the f 〈· · ·〉 terms in the internal work expression which are multiplied by Nm) and
the stress applied to the return wall σvor is used for all cracks along the return
wall ( f 〈· · ·〉 terms which are multiplied by Nr). The user may otherwise choose to
implement a more refined approach if required.

The two f 〈· · ·〉 terms for the out-of-plane wall evaluate to

f
〈 1

2 (1 + a + r− ar)Ht
〉

= 4.156× 10−3 N/mm2

+ 1
2 × (1 + 0.15 + 0.292− 0.15× 0.292)

× 338 mm× 26.8× 10−6 N/mm3

= 10.50× 10−3 N/mm2,
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f
〈 1

2 Ht
〉

= 4.156× 10−3 N/mm2

+ 1
2 × 338 mm× 26.8× 10−6 N/mm3

= 8.694× 10−3 N/mm2.

Noting that
Hr = rHt = 0.292× 338 mm = 98.7 mm,

and that no vertical precompression is acting on the return walls, the two f 〈· · ·〉
terms for the in-plane component of the mechanism [introduced through equation
(6.36)] are evaluated as follows:

f
〈 1

2 Hr
〉

= 0 + 1
2 × 98.7 mm× 26.8× 10−6 N/mm3 = 1.323× 10−3 N/mm2,

f
〈 1

3 Hr
〉

= 0 + 1
3 × 98.7 mm× 26.8× 10−6 N/mm3 = 0.8818× 10−3 N/mm2.

Solution for Part A—Restrained OBL with Frictionless Connection

Since the overburden load is restrained (Φm = 0), there is no external work
contribution from e′m. As the boundary surface has been assumed to be smooth
(µo = 0), the frictional internal work term due to e′m is also zero. Hence, the only
influence of the overburden load is the strengthening effect due to an increase in
the crack capacities and the associated f 〈· · ·〉 terms.

The total internal work from equation (6.50) incorporating equation (6.36)
evaluates to

U′
tot = 2×

[
788.0 mm2 × 1.18× 10.50× 10−3 N/mm2

+ 1× 607.3 mm2 × 0.7068× 8.694× 10−3 N/mm2

+ 0
]

+ 2×
[
0.292×

[ 1
2 × 0.71× 39.7 mm× 98.7 mm×

( 1
0.7068 + 0

)
× 0.8818× 10−3 N/mm2

+ 788.0 mm2

0.7068 × 1.323× 10−3 N/mm2]
+ 0
]

= 28.85 N.

The external work in this case is the same as in Example 1, which by using the
earlier result2, gives

λ−1E′tot = 8, 555 mm2 × 26.8× 10−6 N/mm3 × 338 mm = 77.59 N.
2Where the external work term had been divided by λHt.
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Therefore, the collapse multiplier becomes

λo =
28.85 N
77.59 N

= 0.372.

Using Excel’s Solver, the critical collapse multiplier is found to be λo = 0.316

(for a = 0.132, v = 0 and Ht = 465 mm) which corresponds to a 41% increase in
strength compared to the non-loadbearing wall from Example 1. This increase in
strength is solely caused by the increased crack capacities due to the additional
axial load.

Solution for Part B—Restrained OBL with Frictional Connection (µo = 0.4)

In this scenario, there is a further strengthening effect relative to Part A, due to
the friction developed between the top of the wall and the joists. This increase in
strength is accounted for by the additional internal work term

Nm
[
(1−Φm) µoe′m

]
= 2× [(1− 0)× 0.4× 46.05 N]

= 36.84 N.

Adding this to the internal work computed in Part A and dividing by the external
work, results in

λo =
28.85 N + 36.84 N

77.59 N
= 0.847.

This value is more than double of that previously calculated in Part A where the
boundary friction was neglected and the same values of a, v and Ht were used.
Using Excel’s Solver, the critical solution is found to be λo = 0.521, occurring
at the values a = 0.266, v = 1.41 and Ht = 592 mm. In this case, conducting
the minimisation process alleviates λo quite significantly; however, the overall
increase in strength relative to Part A is still considerable. At the optimal state, the
mechanism spans the wall’s full height of 21 courses and the angle of the in-plane
shear crack follows the natural diagonal slope of the masonry (v = 1/Gn). This
result indicates that frictional restraint along the top edge of the out-of-plane wall
makes it energetically feasible for the mechanism to adopt a form tending more
toward shear failure of the in-plane walls as opposed to flexural failure of the
out-of-plane panel.

Solution for Part C—Unrestrained OBL with Orthogonal Factor of ηm = 1.3

In this scenario, the wall undergoes a weakening effect since it must resist a
horizontal component of the OBL. When conducting an analysis using the equations
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presented in Section 6.5, it is assumed that the strength of the connection between
the joists and wall is sufficient to generate full transfer of horizontal load (i.e. that
slip between wall and OBL will not occur). As the load is unrestrained, Φm is taken
as 1. The corresponding additional external work term becomes

Nm
(
Φmηme′m

)
= 2× (1× 1.3× 146.05 N) = 119.74 N.

Noting that the internal work remains unchanged from Part A and adding the
above contribution to the external work already calculated in Part A, gives

λo =
28.85 N

77.59 N + 119.74 N
= 0.146.

Using Excel’s Solver, the critical solution is found to be λo = 0.143, occurring at
a = 0.232, v = 0 and Ht = 355 mm. This corresponds to a 55% strength reduction
compared to the scenario in Part A in which the load was assumed to be restrained.

g.5 additional parametric study results

Figures G.19 and G.20 provide results for additional parametric studies to com-
pliment the discussions in Section 6.7. The results are for the same type of wall
configuration as the analyses used to generate Figures 6.21 and 6.22 (i.e. based on
walls r7–r10 tested by Restrepo Vélez); however, with different fixed length and
height dimensions of the mechanism. For varied Ht (Figures G.19a and G.20a), Le

was kept fixed such that Le/lu = 3 and Le/tu = 6.0. For varied Le (Figures G.19b
and G.20b), Ht was kept fixed such that Ht/hu = 21 and Ht/tu = 14.9.
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Figure G.19: Parametric study implementing a weight-proportional stress capacity function.
This is representative of non-loadbearing DSM or mortar-bonded URM with very weak bond
cohesion.
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Figure G.20: Parametric study implementing a constant stress capacity function. This is
analogous to mortar-bonded URM with strong bond cohesion.



AppendixH
L O A D - D I S P L A C E M E N T M O D E L L I N G

Abstract

This appendix contains additional detail related to Chapter 7.

h.1 load-displacement capacity based on rocking

This appendix contains derivations of the load-displacement relationships for the
rocking component of a wall’s response presented in Table 7.1. The relationships
are derived for the full family of type K mechanisms (discussed in Section 6.2.3 and
illustrated by Figure 6.3), which are subdivided into: type K1 where, the top edge
of the wall is unrestrained; and type K2, where the top edge is laterally restrained.
Each of these types are further subcategorised into their x and y forms, K1x/K1y

and K2x/K2y, with x occurring for a high L/H aspect ratio (α ≥ 1) and y occurring
for a low aspect ratio (α ≤ 1).

h.1.1 General

Sources of Resistance

The derived relationships are based on the rocking response of blocks comprising
each mechanism. As a lateral load and displacement are applied to the wall,
the blocks rotate about some fixed set of pivot points. The resulting uplift of
the blocks provides a restoration moment and therefore resistance to the applied
load. This corresponds to the r-component (Section 7.2.1) of the wall’s overall
load-displacement capacity model presented in Section 7.2.

645
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Allowance is also made for the presence of an overburden load (OBL) at the
top of the wall with respect to the considerations outlined in Section 6.3.2. These
include:

• Enhancement of the wall’s general strength due to increased restoration
moment;

• Ability of the OBL to act as an additional unrestrained mass along the top
edge of the wall (possible for type K1 mechanisms only); and

• Control over the vertical line of action of the OBL by the eccentricity parameter
ε (refer to Figure 6.6).

Note that throughout the derivations for the type K1 mechanisms (Section H.1.3),
allowance is also made for the presence of a restoring frictional force exerted onto
the wall by a restrained OBL, which effectively corresponds to the s-component
described in Section 7.2.3. Because of its frictional nature, this load becomes always
oriented opposite to the wall’s motion and therefore has inelastic hysteresis. As
such, it is not a part of the wall’s elastic resistance due to rocking. Nonetheless,
this frictional force is still included during the derivation process, as it is easily
separated from the elastic rocking component at the end of the derivation.

Frictional resistance from horizontal bending is ignored in the presented deriva-
tions; however, its contribution is included in the overall load-displacement capacity
model as an additional inelastic component whose capacity may be calculated using
the virtual work method (the h-component described in Section 7.2.2).

Symbolic Notation

The load-displacement relationships are derived in the λ-δ format, with λ as defined
by equation (2.3) and δ defined by equation (2.2).

For definition of properties related to overburden loads, including overbur-
den weight ratio ψ, degree-of-freedom (DOF) factor Φ, orthogonal factor η, and
eccentricity factor ε, the reader is referred to Section 6.3.2.

Properties specifically related to the type K mechanisms, including Le, He, Ht,
a, r and α, are defined in Section 6.5.

Derivation Strategy

The first step of the derivation process is to formulate equations of force equilibrium
for a generic cross section of the mechanism when subjected to a known reference
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displacement δ and an unknown lateral load multiplier λ. The geometry of a cross
section is expressed in terms of a dimensionless shape parameter ρ, which varies
along the horizontal position x according to a known relationship. By considering
a vertical strip with thickness dx, a moment equilibrium equation is derived in the
differential form dM/dx in terms of only δ, λ and ρ and other known constants.
The differential moment equation is then integrated along x, so that the zero net
moment condition is satisfied for the overall mechanism, which leads to an equation
relating λ to δ.

Assumptions

The following general assumptions are made:

1. The wall is subjected to a uniformly distributed lateral load according to its
mass, to reflect the inertial nature of seismic loading.1

2. Wall deformations are assumed to be limited to rotations about crack lines,
and the sub-plates forming the mechanism are assumed to act as rigid blocks.

3. Horizontal and diagonal cracks are assumed to undergo rotations with
stresses being concentrated along the extreme compressive fibre of the section.

4. Moment contributions from vertical cracks where horizontal bending may be
present are ignored, and furthermore, supported vertical edges are assumed
to provide only simple support without any moment restraint.

5. As described previously, in the derivation process the wall is discretised into
a series of vertical strips. It is assumed that both the lateral and vertical
inertia-based external forces applied onto each strip are transmitted to the
supported horizontal (top or bottom) edges of the wall within the strip itself.
In other words, there is no net flow of these forces between adjacent strips.

h.1.2 Type K2 Mechanisms (K2x and K2y)

Equilibrium Equations for a Vertical Strip

Consider mechanisms K2x and K2y when subjected to the maximum surface dis-
placement ∆c (Figure H.1). The cross section of a generic vertical strip with thickness
dx, taken along either of the mechanisms, is shown by Figure H.2. The shape of the

1In the type K1 mechanisms, where the top edge is free, allowance is made for the possibility
that an unrestrained OBL could apply additional horizontal loading to the wall.
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Figure H.1: Class K mechanisms (K1x, K1y, K2x and K2y) subjected to the maximum
surface displacement ∆c. The shape of a generic vertical cross section is dependent on ρ,
which varies along x as shown.
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Figure H.2: Generic cross section for mechanisms K2x and K2y.

cross section relates to the parameter ρ, which varies along the horizontal position
x and can assume values in the range 0 ≤ ρ ≤ 1. When the section cuts across the
diagonal cracks (ρ < 1) the cross section effectively consists of three rigid blocks:
two individual T-blocks and a pair of combined S-blocks forming a single rigid
block.

Since mechanisms K2x and K2y have both of their top and bottom horizontal
edges supported, the deflected shape becomes mirrored by the horizontal line
along the mid-height. Therefore, as per equation (6.39), the effective height He is
equal to

He =
1
2

Ht (for type K2 mechanisms). (H.1)

The various block heights and incremental weights may subsequently be defined
in terms of He.
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block heights Referring to Figures H.1 and H.2, the height of a T-block is

HT = ρHe, (H.2)

and the height a single S-block is

HS = (1− ρ) He. (H.3)

block weights For a strip of thickness dx, the effective weight dWeff (which
is used as the reference weight in the derivations) is defined as weight over the
effective height He, such that

dWeff = dx t He γ, (H.4)

where t is the thickness of the wall, and γ is the weight density of the masonry
material. From this, the height of a T-block is

dWT = ρ dWeff, (H.5)

and the height of a single S-block is

dWS = (1− ρ) dWeff. (H.6)

The total weight over the full height Ht is therefore

dWtot = 2 dWeff (for type K2 mechanisms). (H.7)

Noting equation (6.1), the weight of the overburden load, dWvo, is related to the
OBL weight ratio ψ through the expression

ψ =
dWvo

dWtot
, (H.8)

which gives
dWvo = 2ψ dWeff (for type K2 mechanisms). (H.9)

displacements Throughout the derivations, it is convenient to measure the
displacement profile along the height of a generic cross section with respect a
projected reference displacement ∆p, as defined in the respective Figures H.2 and
H.3. This reference displacement is related to the maximum surface displacement
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along the overall mechanism, ∆c, according to

∆c =

∆p, for the x-form mechanisms K1x and K2x,

(1− r) ∆p, for the y-form mechanisms K1y and K2y.
(H.10)

As stated previously, the first aim of the derivation is to obtain an expression for
dM/dx, where dM is the moment taken about a fixed axis. For this, the axis passing
through point A will be used (Figure H.2), as its global position remains fixed
regardless of ρ. The unknown variables include the following external reactions:

• horizontal force reactions at the top and bottom edges, dVA and dVD;

• vertical force reaction at the base, dND; and

• moment dT which keeps the combined S-blocks in rotational equilibrium and
is transferred to the adjacent vertical edge support;

As well as the unknown internal forces:

• shear forces dVB and dVC; and

• axial forces dNB and dNC.

The last unknown is the lateral load multiplier, λ. This gives a total of nine un-
knowns, which can be solved for using the nine available equations of equilibrium
(three equilibrium equations for each of the three rigid blocks).

step 1 Take moment equilibrium for the combined S-blocks about point C, to
obtain a relationship between dT and dVB in terms of λ:

0 = ∑ MC

0 = dT − 2 dWS × 1
2 t− 2λ dWS × (1− ρ) He

+ dVB × 2 (1− ρ) He. (H.11)

step 2 Take vertical force equilibrium for top T-block:

0 = ∑ Fy

0 = dNB − dWvo − dWT, (H.12)

which enables direct solution for dNB, such that

dNB = (2ψ + ρ) dWeff. (H.13)
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step 3 Take moment equilibrium for the free body consisting of the combined S-
blocks and the bottom T-block about point D in order to obtain a second relationship
between dT and dVB in terms of λ:

0 = ∑ MD

0 = dT + dVB × (2− ρ) He − 2λ dWS × He

− dWTλ× 1
2 ρHe + dNB ×

(
t− ρ∆p

)
+ 2 dWS ×

( 1
2 t− ρ∆p

)
+ dWT ×

( 1
2 t− 1

2 ρ∆p
)

. (H.14)

The two equations (H.11) and (H.14) contain only two unknowns, dT and dVB;
hence, they can be solved simultaneously. Substituting dNB from equation (H.13)
into (H.14) and solving for dVB gives

dVB =
1
2

dWeff

ρHe

(
−4t + ρt + 4λHeρ− 3ρ2λHe − 4ψt + 4ψρ∆p − ρ2∆p + 4ρ∆p

)
.

(H.15)

step 4 Take moment equilibrium for the top T-block about point A, in order to
obtain an expression for the moment increment dM:

dM = ∑ MA

dM = dWvo × ε t + dWT ×
( 1

2 t− 1
2 ρ∆p

)
+ λ dWT × 1

2 ρHe

+ dVB × ρHe − dNB ×
(
t− ρ∆p

)
. (H.16)

The axis along point A remains fixed regardless of ρ; therefore, it will be possible
to subsequently integrate dM to obtain the total moment for the top sub-plate in
the respective mechanisms K2x and K2y. Into the above equation, substitute dNB

[from equation (H.13)], dVB [from equation (H.15)], dWeff [from equation (H.4)]
and replace ∆p = δpt. After rearranging, we get

1
γt2He

· dM
dx

= [2ψε− 2ψ− 2]

+ ρ

[
4ψδp + 2δp + 2λ

He

t

]
+ ρ2

[
−λ

He

t

]
, (H.17)

This is the fundamental equation relating λ to δ for the generic mechanism K2 cross
section (Figure H.2). All parameters in this equation are physical constants, except
for the independent variable δ; dependent variable λ; and shape parameter ρ,
which is related to x according to the relationships shown in Figure H.1. Equation
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(H.17) is a second order polynomial with respect to ρ; hence, it is convenient to
express it in terms of its coefficients as

dM
dx

= γt2He
(
C0 + C1ρ + C2ρ2) ≡ RK2〈ρ〉, (H.18)

where

C0 = [2ψε− 2ψ− 2] , C1 =
[

4ψδp + 2δp + 2λ
He

t

]
, C2 =

[
−λ

He

t

]
. (H.19)

For simplicity, equation (H.18) together with its coefficients (H.19) will be referred
to using the notation RK2〈ρ〉. This equation will now be integrated for the K2x and
K2y mechanisms to obtain their respective λ-δ relationships.

Mechanism K2x

The total moment of a free body corresponding to the top sub-plate taken about
point A (Figure H.2) is obtained by summing the integrals of RK2〈ρ〉 [equation
(H.18)] over the diagonal crack region and the central horizontal crack region (refer
to Figure H.1). To satisfy moment equilibrium this sum must equal zero; therefore

0 =
∫ Ld

0
RK2

〈
1
Ld

x
〉

dx︸ ︷︷ ︸
=I1

+
∫ La

0
RK2〈1〉dx︸ ︷︷ ︸

=I2

. (H.20)

The first integral, I1, corresponds to diagonal crack region where the shape param-
eter ρ is dependent on the horizontal position such that ρ = x/Ld, with Ld being
the horizontal projection of the diagonal crack (refer to Figure H.1). The second
integral, I2, corresponds to the central horizontal crack region along which ρ = 1

and where La is the length of the central horizontal crack.

Evaluating I1 gives

I1 =
∫ Ld

0
RK2

〈
1
Ld

x
〉

dx

= γt2He

∫ Ld

0

(
C0 + C1

1
Ld

x + C2
1
L2

d
x2

)
dx

= γt2He Ld
[
C0 + 1

2 C1 + 1
3 C2
]

, (H.21)

and evaluating I2 gives

I2 =
∫ La

0
RK2〈1〉dx
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= γt2He

∫ La

0
(C0 + C1 + C2) dx

= γt2He La [C0 + C1 + C2] . (H.22)

Adding I1 and I2, as per equation (H.20), and substituting La = aLe and Ld =
(1− a) Le results in

0 = C0 + C1
( 1

2 + 1
2 a
)
+ C2

( 1
3 + 2

3 a
)

. (H.23)

This equation ensures that moment equilibrium is satisfied for mechanism K2x. By
substituting coefficients C0, C1 and C2, given by equations (H.19), into equation
(H.23), we get

0 = [2ψε− 2ψ− 2]

+
[

4ψδp + 2δp + 2λ
He

t

] ( 1
2 + 1

2 a
)

+
[
−λ

He

t

] ( 1
3 + 2

3 a
)

.

Rearranging in terms of λ and making the substitutions δp = δc [from equation
(H.10)] and He = 1

2 Ht [from equation (H.1)], gives

λ = λr =
t

Ht
· 4 [1 + ψ (2− ε)]− δc [2 (1 + a) (1 + 2ψ)]

2
3 + 1

3 a
. (H.24)

This defines the fundamental elastic rocking λ-δ relationship in the positive dis-
placement range (δ > 0). The ultimate load resistance from rocking, λro, occurs at
the limit

λro = lim
δ→0+

λr,

which, due to the continuous nature of the equation with respect to δ, is obtained
simply by assigning δ = 0. This yields

λro =
t

Ht
· 4 [1 + ψ (2− ε)]

2
3 + 1

3 a
. (H.25)

The rocking instability displacement δru, defined as the displacement at which
λr = 0, is equal to

δru =
2 [1 + ψ (2− ε)]
(1 + a) (1 + 2ψ)

. (H.26)
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Mechanism K2y

The total moment of the top sub-plate taken about point A (Figure H.2) is obtained
by integrating RK2〈ρ〉 [equation (H.18)] over the diagonal crack region (refer to
Figure H.1). In the y-form mechanisms K2y and K1y, the cross sectional shape
parameter ρ varies along the horizontal position x according to

ρ =
(

1− r
Le

)
x =

(
α

Le

)
x,

where r is the shape parameter for the y-form mechanisms as illustrated in Figure
H.1, and α is the normalised mechanism aspect ratio defined by equation (6.44).
Therefore, in order to satisfy moment equilibrium, the equation

0 =
∫ Le

0
RK2

〈
α

Le
x
〉

dx (H.27)

must hold. Evaluating, yields

0 =
∫ Le

0

(
C0 + C1

α

Le
x + C2

α2

L2
e

x2
)

dx

= γt2He Le
[
C0 + 1

2 αC1 + 1
3 α2C2

]
,

from which we get the moment equilibrium equation

0 = C0 + 1
2 αC1 + 1

3 α2C2, (H.28)

which is applicable to both mechanisms K2y and K1y when used with their re-
spective C coefficients. For mechanism K2y, coefficients C0, C1 and C2 as given by
equations (H.19) are substituted into (H.28), yielding

0 = [2ψε− 2ψ− 2]

+ 1
2 α

[
4ψδp + 2δp + 2λ

He

t

]
+ 1

3 α2
[
−λ

He

t

]
.

Rearranging in terms of λ and making the substitutions δc = αδp [from equation
(H.10)], He = 1

2 Ht [from equation (H.1)], and α = 1− r [from equation (6.59)], gives

λ = λr =
t

Ht
· 4 [1 + ψ (2− ε)]− δc [2 (1 + 2ψ)]

α
( 2

3 + 1
3 r
) . (H.29)
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This is the elastic rocking λ-δ relationship in the positive displacement range (δ > 0).
The corresponding ultimate load resistance λro is determined by assigning δ = 0,
which yields

λro =
t

Ht
· 4 [1 + ψ (2− ε)]

α
( 2

3 + 1
3 r
) . (H.30)

The rocking instability displacement δru is obtained by assigning λ = 0, as

δru =
2 [1 + ψ (2− ε)]

1 + 2ψ
. (H.31)

h.1.3 Type K1 Mechanisms (K1x and K1y)

Equilibrium Equations for a Vertical Strip

Consider mechanisms K1x and K1y, when subjected to a maximum surface dis-
placement ∆c, as shown in Figure H.1. The generic cross sectional shape, shown by
Figure H.3, relates to the parameter ρ, which varies along the horizontal position
in the mechanism and may assume values within the range 0 ≤ ρ ≤ 1. Two cross
sections need to be considered: (i) ρ < 1, where the vertical component of the
overburden load dWvo acts upon the S-block (Figure H.3a); and (ii) ρ = 1 (occurring
only in mechanism K1x), where dWvo acts directly on the T-block (Figure H.3b). The
reason that these sections need to be considered separately is that dWvo produces a
different amount of moment about the rotating T-block in each case.

Since mechanisms K1x and K1y have only one of their horizontal edges sup-
ported, the effective height becomes equal to the full height [as per equation (6.39)].
Therefore, we have

He = Ht (for type K1 mechanisms). (H.32)

Similarly, the weight of a strip of thickness dx is

dWeff = dWtot (for type K1 mechanisms). (H.33)

Combining equation (H.8) with (H.33) gives

dWvo = ψ dWeff (for type K1 mechanisms). (H.34)

Several equations presented previously for type K2 mechanisms are also applicable
to type K1 mechanisms, including heights of the T and S blocks (HT and HS)
[equations (H.2) and (H.3)], effective weight dWeff [equation (H.4)], and weights of
the T and S blocks (dWT and dWS) [equations (H.5) and (H.6)]. For convenience,
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(a) Case for ρ < 1 (Overburden load dWvo acting upon the S-block).
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Figure H.3: Generic cross section for mechanisms K1x and K1y. Orientation of the inelastic
frictional force between the wall and OBL assumes that wall movement is in the same
direction as its displacement.
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the projected displacement at the top edge ∆p is used as the reference displacement
along the cross section (Figure H.3). This displacement is related to the maximum
surface displacement ∆c through equation (H.10).

To derive an expression for dM/dx for a generic cross section, the axis along
point C (Figure H.3) will be used, since its global position remains fixed regardless
of ρ. The two cases shown by Figures H.3a and H.3b need to be considered
individually. Steps 1–3 lead to the derivation of the dM/dx expression for the first
case (ρ < 1), whilst step 4 considers the second case (ρ = 1).

In the case where ρ < 1, the unknown variables include the external reactions
dNC, dVC and dT; internal forces dVB and dNB; and λ. These six unknowns can
be solved for using the six available equations of equilibrium (three equations for
each of the two blocks).

step 1 In the case where ρ < 1, take vertical force equilibrium of the S-block:

0 = ∑ Fy

0 = dNB − dWS − dWvo, (H.35)

which allows for direct solution for dNB, such that

dNB = (1− ρ + ψ) dWeff. (H.36)

step 2 Take horizontal force equilibrium of the S-block (for ρ < 1):

0 = ∑ Fx

0 = Φηλ dWvo − (1−Φ) µo dWvo + λ dWS − dVB. (H.37)

This provides dVB in terms of λ, such that

dVB = [Φηλψ− (1−Φ) µoψ + λ (1− ρ)] dWeff. (H.38)

step 3 Take moment equilibrium of the T-block about point C, in order to
determine an expression for the increment of moment dM for this particular case
(i.e. ρ < 1):

dM = ∑ MC

dM = dNB ×
(
t− ρ∆p

)
− dVB × ρHe

+ dWT ×
( 1

2 t− 1
2 ρ∆p

)
− λ dWT × 1

2 ρHe. (H.39)
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The axis along point C remains fixed regardless of ρ; therefore, it will be possible to
subsequently integrate dM to obtain the total moment for the bottom sub-plate in
the respective mechanisms K1x and K1y. Substitute in dNB [from equation (H.36)],
dVB [from equation (H.38)], dWeff [from equation (H.4)] and replace ∆p = δpt.
After rearranging, we get

1
γt2He

· dM
dx

= [1 + ψ]

+ ρ

[
− 1

2 − δp − ψδp − λ
He

t
(1 + Φηψ) +

He

t
(1−Φ) µoψ

]
+ ρ2

[
1
2 δp + 1

2 λ
He

t

]
. (H.40)

This is the fundamental equation relating λ to δ for the K1 cross section when ρ < 1

(Figure H.3a). The equation is a second order polynomial with respect to ρ; hence,
it is convenient to express it in terms of its coefficients, such that

dM
dx

= γt2He
(
C0 + C1ρ + C2ρ2) ≡ RK1,ρ<1〈ρ〉, (H.41)

where

C0 = [1 + ψ] ,

C1 =
[
− 1

2 − δp − ψδp − λ
He

t
(1 + Φηψ) +

He

t
(1−Φ) µoψ

]
,

C2 =
[

1
2 δp + 1

2 λ
He

t

]
.

(H.42)

For simplicity, equation (H.41) together with its coefficients (H.42) will be referred
to using the notation RK1,ρ<1〈ρ〉.

step 4 In order to determine an expression for the increment of moment dM for
the case where ρ = 1 (Figure H.3b), take moment equilibrium of the T-block about
point C:

dM = ∑ MC

dM = dWvo ×
(
t (1− ε) ∆p

)
−Φηλ dWvo × He + (1−Φ) µo dWvo × He

+ dWeff ×
( 1

2 t− 1
2 ∆p

)
− λ dWeff × 1

2 He. (H.43)

Note that the only difference between this case and ρ < 1 (Figure H.3a) is the
length of the lever arm at which the overburden load dWvo acts on the rotating



660 load-displacement modelling

T-block. When ρ < 1, the force dWvo is always transferred to the T-block at the
hinge point B (Figure H.3), regardless of the value of ε. However, when ρ = 1,
dWvo is transferred to the T-block at the specific point as defined by ε.

Next, substitute dWeff from equation (H.4) into equation (H.43) and replace
∆p = δpt. This gives

1
γt2He

· dM
dx

= 1
2 −

1
2 δp + ψ− ψε− ψδp − λ

He

t
( 1

2 + Φηψ
)
+

He

t
(1−Φ) µoψ

(H.44)

≡ K0,

where the right-hand side of the equation will be abbreviated as K0. Alternatively,
the above can be written as

dM
dx

= γt2HeK0 ≡ RK1,ρ=1, (H.45)

which we shall denote using the notation RK1,ρ=1. Since ρ is constant in this case
(ρ = 1) with respect to x, the moment derivative equation RK1,ρ=1 is also constant.

Mechanism K1x

Moment equilibrium for the bottom sub-plate in mechanism K1x is satisfied when
the following holds:

0 =
∫ Ld

0
RK1,ρ<1

〈
1
Ld

x
〉

dx︸ ︷︷ ︸
=I1

+
∫ La

0
RK1,ρ=1 dx︸ ︷︷ ︸

=I2

. (H.46)

The first integral, I1, corresponds to the diagonal crack region where ρ = x/Ld,
with Ld being the horizontal projection of the diagonal crack (refer to Figure H.1).
The second integral, I2, corresponds to portion of the mechanism along the length
La (Figure H.1). Integral I1 has already been evaluated previously, resulting in
equation (H.21). Noting that RK1,ρ=1 is independent of x, integral I2 evaluates to

I2 = γt2He LaK0. (H.47)

Adding I1 and I2, and substituting La = aLe and Ld = (1− a) Le gives

0 = (1− a)
[
C0 + 1

2 C1 + 1
3 C2
]
+ aK0. (H.48)

This equation ensures that moment equilibrium is satisfied for mechanism K1x. Sub-
stituting coefficients C0, C1 and C2, as per equations (H.42) and K0 from equation
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(H.44), results in

0 = (1− a) [1 + ψ]

+ (1− a)
[
− 1

2 − δp − ψδp − λ
He

t
(1 + Φηψ) +

He

t
(1−Φ) µoψ

]
+ (1− a)

[
1
2 δp + 1

2 λ
He

t

]
+ a

[
1
2 −

1
2 δp + ψ− ψε− ψδp − λ

He

t
( 1

2 + Φηψ
)
+

He

t
(1−Φ) µoψ

]
.

Rearranging in terms of λ and making the substitutions δp = δc [from equation
(H.10)] and He = Ht [from equation (H.32)], gives

λ =
t

Ht
·
[ 3

2 −
1
2 a + 2ψ (1− aε)

]
− δc

[ 2
3 + 1

3 a + ψ (1 + a)
]
+ Ht

t (1−Φ) µoψ (1 + a)
2
3 + 1

3 a + Φηψ (1 + a)
.

(H.49)
We can split this relationship into the separate components

λ = λr + λso, (H.50)

where λr is the fundamental elastic rocking λ-δ relationship in the positive dis-
placement range (δ > 0), given by

λr =
t

Ht
·
[ 3

2 −
1
2 a + 2ψ (1− aε)

]
− δc

[ 2
3 + 1

3 a + ψ (1 + a)
]

2
3 + 1

3 a + Φηψ (1 + a)
, (H.51)

and λso is the capacity from the friction between the wall and OBL (active only
when Φ = 0), which is taken as

λso = (1−Φ)
µoψ (1 + a)

2
3 + 1

3 a
. (H.52)

The ultimate load resistance from rocking, λro, is obtained by assigning δ = 0 to
equation (H.51), yielding

λro =
t

Ht
·

3
2 −

1
2 a + 2ψ (1− aε)

2
3 + 1

3 a + Φηψ (1 + a)
, (H.53)

whilst the rocking instability displacement δru is obtained by assigning λr = 0 to
equation (H.51), which gives

δru =
3
2 −

1
2 a + 2ψ (1− aε)

2
3 + 1

3 a + ψ (1 + a)
. (H.54)
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Mechanism K1y

Moment equilibrium for mechanism K1y is satisfied through equation (H.28) (pre-
viously used for mechanism K2y) by incorporating the coefficients for the K1 cross
section, as per equations (H.42). Substituting these into equation (H.28) gives

0 = [1 + ψ]

+ 1
2 α

[
− 1

2 − δp − ψδp − λ
He

t
(1 + Φηψ) +

He

t
(1−Φ) µoψ

]
+ 1

3 α2
[

1
2 δp + 1

2 λ
He

t

]
.

Rearranging in terms of λ and making the substitutions δc = αδp [from equation
(H.10)], He = Ht [from equation (H.32)], and α = 1 − r [from equation (6.59)],
produces the expression

λ =
t

Ht
·
[ 3

2 + 1
2 r + 2ψ

]
− δc

[ 2
3 + 1

3 r + ψ
]
+ Ht

t (1−Φ) µoψα

α
( 2

3 + 1
3 r + Φηψ

) . (H.55)

This may be split into λr and λso, as per equation (H.50), where

λr =
t

Ht
·
[ 3

2 + 1
2 r + 2ψ

]
− δc

[ 2
3 + 1

3 r + ψ
]

α
( 2

3 + 1
3 r + Φηψ

) (H.56)

is the fundamental λ-δ relationship due to elastic rocking in the positive displace-
ment range (δ > 0), and

λso = (1−Φ)
µoψ

2
3 + 1

3 r
(H.57)

is the capacity of the friction between the wall and OBL (active only when Φ = 0).
The ultimate strength λro due to rocking is obtained by assigning δ = 0 to equation
(H.56), which yields

λro =
t

Ht
·

3
2 + 1

2 r + 2ψ

α
( 2

3 + 1
3 r + Φηψ

) . (H.58)

The rocking instability displacement δru is obtained by assigning λr = 0 in equation
(H.56), resulting in

δru =
3
2 + 1

2 r + 2ψ
2
3 + 1

3 r + ψ
. (H.59)
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h.2 influence of the load shape function on the load capacity

The modal response analysis procedure, which forms the basis for displacement-
based (DB) seismic analysis, requires that the structure (i.e. the wall) is subjected to
a loading pattern spatially distributed according to the acting inertial force. Under
dynamic loading, the spatial distribution of the inertial force is in turn dependent
on not only the mass distribution but also the mode shape, since regions of higher
displacement will undergo proportionally higher accelerations.2 However, the
various load capacity prediction methods presented throughout this thesis have
been based on the assumption that the acting load is spatially distributed directly
according to the wall’s mass (i.e. a uniform acceleration profile). These include the
virtual work (VW) method, which was applied to prediction of the load capacity of
mortar-bonded walls in Chapter 4 and dry masonry walls in Chapter 6; as well as
the rocking load-displacement relationships derived in Appendix H.1.

A factor will now be derived, which for a given mode shape relates a force
capacity based on a mass-proportional load distribution, to a force capacity based
on a modal inertia-proportional load distribution. This derivation is made possible
by the assumption that the mode shape, and therefore the internal work of the
structure (wall), is independent of the loading function. It will be demonstrated
that the resulting factor is in fact equivalent to the ratio of the effective mass and
actual mass (M∗/M) used in the substitute structure approach [equation (7.41)].
A practical implication of this result is that the value of λ calculated using the
λ-δ capacity relationships presented in Section 7.2, which are based on mass-
proportional loading, can be used directly in the capacity spectrum (CS) method
without the need for scaling of the capacity curve along the acceleration axis of
the a-∆ diagram. This is demonstrated in Section 7.4.2. A similar simplification
also results in the case of DB assessment using the secant stiffness approach, as
demonstrated therein.

Consider a generic MDOF structure in a single spatial dimension, x, as shown
in Figure H.4. Let the spatial distribution of the structure’s mass M be defined
according to the mass density function

ρ〈x〉 =
dM
dx

. (H.60)

The deformation profile of the structure is defined by the displacement function
∆〈x〉 in accordance with the mode shape function Φ〈x〉, which are in turn related

2This is based on the assumption that the structure undergoes purely harmonic response, which
is used in transformation of the actual multi-degree-of-freedom (MDOF) system to an equivalent
single-degree-of-freedom (SDOF) system.



664 load-displacement modelling

x

M D O F  s t r u c t u r e
r ( x )

M a s s  d i s t r i b u t i o n
F ( x )

M o d e  s h a p e
D ( x )

D i s p l a c e m e n t
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Figure H.5: The two alternative types of loading patterns.

by

Φ〈x〉 =
∆〈x〉
∆ref

, (H.61)

where ∆ref is some reference displacement.

Let us denote the spatial distribution of the force F acting on the structure by
the function

w〈x〉 =
dF
dx

, (H.62)

and consider the following pair of loading scenarios shown by Figure H.5:

scenario 1 The structure is subjected to a load function directly proportional to
its mass distribution, such that

w1〈x〉 = ρ〈x〉 a1, (H.63)
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where a1 is an acceleration scalar. This is analogous to the structure experiencing a
uniform acceleration along x. In terms of seismic loading, this scenario assumes
modal acceleration to be negligible compared to ground acceleration.

scenario 2 The structure is subjected to a load function proportional to the
modal inertia force (product of the mass and mode shape functions), such that

w2〈x〉 = ρ〈x〉Φ〈x〉 a2, (H.64)

where a2 is an acceleration scalar. In relation to seismic loading, this condition
treats the ground acceleration as being negligible in comparison to the structure’s
modal acceleration, and corresponds to the loading scenario typically assumed in
the modal response analysis.

In the general case, the external work done on the structure by the applied load
is given by the integral

E =
∫

X
dE, (H.65)

where the external work increment dE is the product of the displacement and force
increment, such that

dE = ∆〈x〉dF. (H.66)

Combining equations (H.61), (H.65) and (H.66), the total external work becomes

E = ∆ref

∫
X

Φ〈x〉w〈x〉dx. (H.67)

Let us now consider the specific loading scenarios discussed previously, as shown in
Figure H.5. The total external work for the first scenario is obtained by substituting
equation (H.63) into (H.67), giving

E1 = ∆ref a1

∫
X

Φ〈x〉 ρ〈x〉dx. (H.68)

For the second scenario, substituting equation (H.64) into (H.67) gives

E2 = ∆ref a2

∫
X

(Φ〈x〉)2 ρ〈x〉dx. (H.69)

However, since the structure is subjected to the same deformation function ∆〈x〉
in both of these scenarios, in each case it must undergo the same internal work U.
From conservation of energy it therefore follows that

U = E1 = E2. (H.70)
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By equating equations (H.68) and (H.69), the ratio of the scalar accelerations a1 and
a2 must be

a2

a1
=

∫
X

Φ〈x〉 ρ〈x〉dx∫
X

(Φ〈x〉)2 ρ〈x〉dx
. (H.71)

In other words, the ratio a2/a1 must satisfy the above equation in order for both
loading functions w1〈x〉 and w2〈x〉 to generate the same amount of external work.

Now consider the total force F (or base shear) resisted by the structure in the
two scenarios. In the general case, the total force is obtained by the integral

F =
∫

X
dF, (H.72)

which, by noting equation (H.62), can also be expressed as

F =
∫

X
w〈x〉dx. (H.73)

In the first scenario, the force resisted is obtained by substituting equation (H.63)
into (H.73), which gives

F1 = a1

∫
X

ρ〈x〉dx. (H.74)

In the second scenario, substituting equation (H.64) into (H.73) gives

F2 = a2

∫
X

ρ〈x〉Φ〈x〉dx. (H.75)

Therefore, the ratio of the two force capacities becomes

F2

F1
=

a2

a1
·

∫
X

ρ〈x〉Φ〈x〉dx∫
X

ρ〈x〉dx
. (H.76)

Finally, substituting in a2/a1 from equation (H.71) and using Fo to denote the force
capacity under uniform acceleration loading and F∗o for the force capacity under
modal acceleration loading, yields the formula

F∗o
Fo

=

(∫
X

ρ〈x〉Φ〈x〉dx
)2

(∫
X

ρ〈x〉dx
)(∫

X
ρ〈x〉 (Φ〈x〉)2 dx

) . (H.77)

It can be seen that this ratio is equivalent to the ratio of the effective and actual
mass used in transformation of the system from MDOF to SDOF in the substitute
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structure approach [as per equation (7.41)]. That is,

F∗o
Fo

=
M∗

M
. (H.78)

The implication of this result toward the DB assessment approach (either by the CS

method or secant stiffness method) was discussed earlier.
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