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The Λ(1405) is unusual in that it lies surprisingly low in mass. At 1405.1MeV, it lies lower
than the lowest-lying odd-parity state of the nucleon, even though it contains a valence strange
quark. We build on our recent success in isolating this otherwise elusive state in lattice QCD using
correlation matrix techniques coupled with source and sink smearing, and present first results from
our world-first calculation of the electromagnetic form factors of this unusual state. We use the
PACS-CS (2+1)-flavour full-QCD ensembles, available through the ILDG.
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Electromagnetic Form Factors of the Λ(1405) in (2+1)-flavour Lattice QCD Benjamin J. Menadue

1. Introduction

The lowest-lying odd-parity state of the Λ baryon, has an unusually low mass of
1405.1+1.3

−1.0 MeV [1]. Indeed, the Λ(1405) lies lower than the lowest-lying odd-parity nucleon state,
even though it possesses a valence strange quark. Consequently, there has been much interest over
the years in the internal structure of this unusual state.

While many previous lattice QCD studies of the Λ baryon have been attempted, most have used
the quenched approximation, and none have identified an odd-parity state low enough in energy to
be identified with the Λ(1405). Our recent work has successfully isolated three low-lying states,
and an extrapolation of the trend for the lowest-lying state to the physical pion mass reproduces
the mass of the Λ(1405) [2]. Subsequent work by the BGR Collaboration has confirmed these
results [3]. To isolate these states, we used a correlation matrix analysis together with source and
sink smearing, and these results are summarised in Figure 1. Using the same techniques, we can
also investigate the electromagnetic structure of excited states, providing information about their
internal structure.

We use the PACS-CS (2+1)-flavour full-QCD ensembles [4], available through the ILDG [5].
They are 323×64 lattices with β = 1.90. There are 5 pion masses available, ranging from 640MeV
down to 156MeV, and in the limit of physical pion mass, the lattice spacing is 0.0907(33) fm. The
strange quark hopping parameter is fixed at κs = 0.13640, however this gives a kaon which is
slightly too heavy, so we partially quench the strange quark sector by using κs = 0.13665 for the
valence quarks. In these proceedings, we focus on the ensemble with the heaviest quark mass, with
κu,d = 0.13700, and have analysed 360 configurations. Statistical uncertainties are estimated via the
jackknife method and best fits are selected by considering the full covariance-matrix-based reduced
χ2.

In the following section we briefly recap the correlation matrix formalism, while in Section 3
we discuss the calculation and extraction of form factors. Finally, in Section 4 we present prelimi-
nary results of this analysis for the electric and magnetic Sachs form factors.
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Figure 1: Masses of the three lowest-lying JP = 1/2− states of the Λ baryon, as found in [2]. An extrapo-
lation to the physical pion mass of the trend for the lowest-lying state reproduces the correct physical mass
of the Λ(1405) indicated on the dashed line indicating the physical pion mass.
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2. Correlation Matrix Technique

Consider a set of N operators χi(x) that couple to the baryon we are interested in, and calculate
the N ×N matrix of cross-correlation functions,

Gi j(Γ; p; t) = ∑
x

e−ip·x tr(Γ⟨Ω|χi(x)χ j(0)|Ω⟩)

=
N

∑
α=1

Zα
i (p)Zα†

j (p)e−Eα (p)t tr
(

Γ∑
s

uα(p, s)uα(p, s)
)

(2.1)

where Zα
i (p) and Zα†

i (p) are the couplings of the operator χi to the state α at the sink and source,
respectively. Now, construct a set of N “perfect” operators ϕ α that completely isolate the N lowest-
lying states, so that

⟨Ω|ϕ α |β , p, s⟩= δ αβ Z α(p)u(p, s) and ⟨β , p, s|ϕ α |Ω⟩= δ αβ Z α†(p)u(p, s), (2.2)

for some couplingsZ α andZ α†. Using the linearity of the operator space, we can (approximately)
write

ϕ α = ∑
i

vα
i (p)χi and ϕ α = ∑

i
uα

i (p)χ i. (2.3)

The coefficient vectors vα and uα form the left and right generalised eigenvectors of the ma-
trices G(Γ; p; t0 +∆t) and G(Γ; p; t0) for some t0 and ∆t:

G(Γ; p; t0 +∆t)uα(p) = e−Eα ∆t G(Γ; p; t0)uα(p)

vα⊤(p)G(Γ; p; t0 +∆t) = e−Eα ∆t vα⊤(p)G(Γ; p; t0). (2.4)

Moreover, the coefficient vectors diagonalise the correlation matrix through

vα⊤(p)G(Γ; p; t)uβ (p) ∝ δ αβ e−Eα t , (2.5)

and hence we can define eigenstate-projected correlation functions that encode correlation functions
for a single energy eigenstate as

Gα(Γ; p; t) := vα⊤(p)G(Γ; p; t)uα(p). (2.6)

More details about this method can be found in [2, 6, 7, 8, 9, 10].
To ensure the successful isolation of energy eigenstates, the original set of operators needs to be

both large and span the space; too few operators and the states won’t separate, while insufficiently
independent operators will make the correlation matrix too ill-conditioned to solve the generalised
eigensystem. To form our basis of operators we exploit both the various possible flavour symmetries
for the Λ and two different Dirac structures [6]. This gives a 3×3 matrix with the operators

χ8
i =

εabc
√

6
(2(u⊤a Ai db)Bi sc +(u⊤a Ai sb)Bi dc − (d⊤

a Ai sb)Bi uc), (2.7)

where (A1, B1) = (C γ5, I) and (A2, B2) = (C, γ5), and

χ1 =−2εabc(−(u⊤a C γ5 db)sc +(u⊤a C γ5 sb)dc − (d⊤
a C γ5 sb)uc). (2.8)

We further increase the size of the operator basis employing gauge-invariant Gaussian smearing at
the source and sink [11]. We use 16 and 100 sweeps of smearing with α = 0.7 to expand the matrix
to a 6×6 one.
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3. Form Factors of Negative Parity States

To extract form factors we calculate both the two- and three-point correlation matrices

Gi j(Γ; p′; t2) = ∑
x2

e−ip·x2 tr(Γ⟨Ω|χi(x2)χ j(0)|Ω⟩)

Gµ
i j(Γ; p′, p; t2, t1) = ∑

x1x2

e−ip′·x2 ei(p′−p)·x1 tr(Γ⟨Ω|χi(x2) jµ(x1)χ j(0)|Ω⟩) , (3.1)

where χi is as before and jµ is the electromagnetic current insertion. As before, we can project
two-point correlation functions for individual energy eigenstates to give

Gα(Γ; t2; p′) := vα⊤(p′)G(Γ; t2; p′)uα(p′), (3.2)

where uα and vα are the eigenvectors as in Equation (2.6).
Using the linearity of the operator space, Equation (2.3), if we act on the three-point correlation

matrix (3.1) from the left and right by vα(p′) and uα(p), respectively, we obtain

vα⊤(p′)Gµ
i j(Γ; p′, p; t2, t1)uα(p) = ∑

x1, x2

e−ip′·x2 ei(p′−p)·x1×

× tr

(
Γ∑

i, j
⟨Ω|vα

i (p
′)χi(x2) jµ(x1)χ j(0)uα

i (p)|Ω⟩

)
= ∑

x1, x2

e−ip′·x2 ei(p′−p)·x1 tr(Γ⟨Ω|ϕ α(x2) jµ(x1)ϕ α(0)|Ω⟩) .

(3.3)

Then, using the definition (2.2) of the “perfect” operators ϕ α , we can see that this object encodes a
three-point correlation function for the same energy-eigenstate as above:

vα⊤(p′)Gµ
i j(Γ; p′, p; t2, t1)uα(p) = Z α(p′)Z α†(p)e−Eα (p′)(t2−t1) e−Eα (p)t1×

× tr

(
Γ ∑

s′, s
u(p′, s′)⟨α , p′, s′| jµ(x1)|α , p, s⟩u(p, s)

)
, (3.4)

and hence we define this to be Gµ
α , an eigenstate-projected three-point correlation function. The

matrix element in (3.4) can be written in the form

⟨α , p′, s′| jµ(x1)|α , p, s⟩=
(

m2
α

Eα(p′)Eα(p)

)1/2

u(p′, s′)
(

F1(q2)γµ + iF2(q2)
σ µν qν

2mα

)
u(p, s),

(3.5)
where q := p′− p is the momentum transferred to the hadron in the interaction and F1 and F2 are
the Dirac and Pauli form factors, related to the Sachs form factors through

G α
E = F1(q2)− q2

(2mα)2 F2(q2) and G α
M = F1(q2)+F2(q2). (3.6)

To eliminate the time dependence in the three-point correlation function, we construct the ratio

Rµ
α(Γ2, Γ1; t2, t1; p′, p) :=

(
Gµ

α(Γ1; p′, p; t2, t1)Gµ
α(Γ1; p, p′; t2, t1)

Gα(Γ2; p′; t2)Gα(Γ2; p; t2)

)1/2

. (3.7)
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We can then further simplify the equation by constructing the reduced ratio

Rµ
α(Γ2, Γ1; t2, t1; p′, p) :=

√
2Eα(p)

Eα(p)+mα

√
2Eα(p′)

Eα(p′)+mα
Rµ

α(Γ2, Γ1; t2, t1; p′, p). (3.8)

Now, a suitable choice of Γ1 and Γ2 allows us to directly extract the Sachs form factors for positive-
parity states α [12]:

G α
E (q2) = R4

α(Γ
+
4 , Γ+

4 ; q, 0) and
|εi jkqi|G α

M(q2) = (Eα(q)+mα)Rk
α(Γ

+
4 , Γ+

j ; q, 0), (3.9)

where

Γ+
j =

1
2

[
σ j 0
0 0

]
and Γ+

4 =
1
2

[
I 0
0 0

]
. (3.10)

For negative-parity states, we repeat the analysis after making the substitutions χi 7→ γ5 χi and χ i 7→
−χ i γ5 to obtain the equivalent negative-parity operators. Using the cyclic nature of the trace, we
see that the equivalent projection operators for negative-parity states are then

Γ−
j =−γ5 Γ+

j γ5 =−1
2

[
0 0
0 σ j

]
and Γ−

4 =−γ5 Γ+
4 γ5 =−1

2

[
0 0
0 I

]
. (3.11)

4. First Results

As demonstrated in Figures 2 and 3, this technique allows us to successfully extract the form
factors for negative-parity excited states. Indeed, we can often begin fitting only one time slice after
the insertion of the current at t1 = 21. Moreover, due to the correlated nature of the statistical errors
in the two- and three-point correlation functions, by taking the ratio in Equation (3.8) we obtain
signals that last for many time slices, allowing for long and precise fits. The q2 is 0.14224(4)GeV2

for the Λ(1405).
The electric form factor for individual quark flavours for the Λ(1405), illustrated in Figure 2,

are almost identical to those of the positive-parity ground-state Λ. This indicates that the quark
distributions are essentially the same between the Λ and Λ(1405), and hence there is no evidence
of a more exotic structure for the Λ(1405) (in particular, a bound meson-baryon structure would
generally manifest as a larger quark distribution radii, and hence smaller form factors). This close
proximity of the quarks to the origin in an orbitally excited state is remarkable. In a potential model,
this suggests that the flavour-singlet potential is particularly attractive; the quarks would feel the
depth of the potential and the system would have an unusually low excitation energy.

For the second and third odd-parity excited states, the electric form factors are significantly
smaller, indicating larger states. The magnetic form factor for these two states has a large contri-
bution from the strange quark and hence the charge-weighted sum is non-zero and negative. This
structure is similar to that of the octet ground state Λ. For the Λ(1405) however, this structure is
not evident; all three quark flavours have approximately the same unit-charge-scaled GM, and so
the total charge-weighted magnetic form factor vanishes within errors.

5
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Figure 2: Sachs electric form factor GE of charge-scaled quark sectors for the three lowest-lying states. Blue
is up quark, red is down quark, gold is strange quark, and black is charge-weighted sum. Due to isospin
symmetry, the fit (not shown) to the down quark is −1/2 that of the up quark.
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