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Abstract

Quantum Chromodynamics (QCD) is widely accepted as the theory that de-
scribes the strongest force in Nature (by coupling constant), aptly named the
strong nuclear force. The challenge is to understand the phenomena that emerge
from this fundamental quantum field theory. Hadronic spectroscopic calculations
can be performed utilising the formalism of lattice QCD by discretising space-time
onto a hypercube. This is the only known non-perturbative ab-initio approach
for studying QCD. Equipped with a tractable formalism, we consider some recent
work done extracting resonances, in particular the Roper and the A(1405) reso-
nances studied at the CSSM in Adelaide. These studies are done with three quark
interpolators, and as such we expect to be extracting resonances having strong
overlap three-quark states. In order to rule out the possibility of contamination
from more exotic five-quark states, and to extract multi-particle states in their
own right, the use of five-quark interpolators is of considerable interest. We first
construct five-quark interpolating fields for the p, A and A*™*. The corresponding
correlation functions are calculated which can be of considerable size. Relevant
elements of the all-to-all propagator (the so-called loop propagator), are calcu-
lated using stochastic estimation techniques. Dilution in spin, colour and time
are implemented as a means of variance reduction. We conclude by presenting ef-
fective mass plots for the five-quark interpolators, the relevant contributions from
fully connected and loop containing pieces, and comparing them to the masses

extracted from standard three-quark operators.
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Chapter 1

Introduction

Physics in general and quantum theory in particular has impacted our modern
lives significantly. With the “quantum hypothesis” of Planck in 1900 and the
subsequent development of quantum mechanics in the 1920’s came the necessary
knowledge to study semi-conductors. A few decades later, the transistor, a fun-
damental constituent of modern electronics was developed. One would surely be
hard pressed to think of a more influential technology than the digital computer
chip. Other technologies such as global communication, the laser, electron mi-
croscopes and even USB flash drives, just to name a few, owe their existence - in

part - to developments in quantum mechanics.

Since the 1920’s, remarkable progress has been made. Quantum Electrody-
namics (QED) - with its apt acronym - was developed through the middle part of
the 20th century, making experimental predictions with unprecedented precision,
consequently prompting Feynman to refer to it as the “Jewel of Physics”. The
first non-Abelian gauge theory was constructed by Yang and Mills in 1954, Gell-
mann and Zweig proposed their quark model in 1963, and the demonstration that
Yang-Mills Theory was renormalisable (given symmetry breaking assumptions)
was made by t’Hooft and Veltman in 1971. By this time quantum theory was
truly coming of age, perhaps emphasized in the mid 1970’s by the unification
of three of the four fundamental forces as a relativistic Quantum Field Theory
(QFT), known as the Standard Model (SM).

The three forces described by the SM, that is the strong and weak nuclear
interactions and the electromagnetic interaction, are mediated by gauge bosons.
The strongest of these forces (by coupling constant), aptly named the strong
nuclear force is responsible for the interaction between the quarks and gluons

making up the hadrons, and is governed by the non-Abelian gauge theory, Quan-
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tum Chromodynamics (QCD).

As the QCD gauge group of SU(3) is non-Abelian, the gauge boson of QCD
- the gluon - in addition to mediating the force between colour charged quarks,
carries colour charge itself giving rise to self interactions. These self interactions
give rise to the non-trivial QCD vacuum, colour confinement and dynamical mass
generation. This dynamically generated mass is responsible for approximately
97% of the nucleon mass.

Due to this added non-perturbative complexity which is not present in Abelian
Quantum Electrodynamics (QED), traditional perturbative techniques lead to an-
alytic intractability in the low energy regime. Thus, in order to study low energy
QCD we must either resort to continuum phenomenological arguments that are
non-ab-initio, or employ the formalism of Lattice QCD, which is not continuum
based but is ab-initio. Fortunately in 1974, Wilson developed a method for quan-
tising a guage theory onto a hypercube [1]. By discretising space-time onto this
hypercube physicists were able to perform Monte Carlo simulations in the low en-
ergy region of QCD on massively parallel supercomputers, signaling the birth of
Lattice QCD. QCD’s property of asymptotic freedom then enables a connection
back to continuum physics via perturbation theory.

In this work we use the formalism of lattice QCD to study multi-particle
baryon spectroscopy. We therefore begin with a brief motivation outlining the
relevance of such a study, followed by a discussion of the continuum theory we

alm to simulate.

1.1 Motivation

In Nature a significant number of particles are resonances. Consequently, there
has been substantial interest in studying the excited baryon spectrum both ex-
perimentally in places such as Jefferson Lab [2], and using lattice QCD [3-15].
Resonances cannot be associated with a single energy level of the Hamiltonian as
in the stable particle case, and so considerably more effort is required to determine
their mass and width.

A standard approach proposed by Liischer [16-18] begins by considering the
multi-particle finite volume energy spectrum. By virtue of the discretisation of
space-time onto a finite lattice with spacing a, we necessarily quantise momentum

as

n (1.1)
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where N N
——= <= 1.2
5 <S5 (1.2)
N, is the number of lattice points in the x direction, and of course
L, =aN, (1.3)

is the extent of the lattice box in the x direction. The total energy E of two

particles 1 and 2 in a finite volume box with zero total momentum is then given

by

E = \/m%+|m2+\/m§+|ﬁ12 (1.4)
where P’ is the momentum for each particle!. We then immediately see upon
substituting (1.1) into (1.4), that the energy has a 1/L dependence due to the
momentum quantisation. This can be seen in the left diagram of Figure 1.1. Suc-
cessive curves going as 1/L are shown, which correspond to the various momenta
of the states. For example, the lowest energy curve corresponds to the smallest
possible two-particle momentum.

However, (1.1) is valid for non-interacting particles, but when the interaction
is turned on this is replaced with a Liischer formula [19]. This has the effect of
rearranging the energy levels near the resonance energy as seen in the right plot
of Figure 1.1, which is called an avoided level crossing (ALC). This somewhat

unusual behaviour is the signal of the presence of a resonance.

2.2 T T 2.2 -
RN SR

1.8

1.8

1.6 1.6

1.4

1.4

1.2 T~

1.2

1 T 1 T

Figure 1.1: The spectrum of two non-interacting particles (with the 1/L be-
haviour) is on the left. The resonance energy is shown by the flat line at 1.4. The

right diagram depicts the ALC near the resonance energy. Figure from [19].

Recently, the CSSM lattice collaboration has been studying the A(1405)[9, 20]
and Roper [12-14, 21] resonances with conventional three quark interpolators via

correlation matrix techniques. Results are presented in Figures 1.2 and 1.3.

'We note this approximation does not take into account discretisation artefacts.
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Figure 1.2: The masses of the odd-parity, J¥ = 1/27, states of the A baryon. The
correlation matrix analysis allows the isolation of the three lowest lying states.

Figure courtesy of B. Menadue [9].
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Figure 1.3: Masses of the positive parity states of the nucleon at various quark
masses. The lattice results for the Roper are the red triangles. The black data
points to the far left are the physical values obtained from [22]. Figure courtesy
of S. Mahbub [21].

Although the trend of the lowest lying state reproduces the correct physical

mass for the anomalously low A(1405), we can’t be absolutely certain of the true
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nature of this state. That is, whether the extracted states are best described by
a conventional three-quark baryon or a more exotic kaon-nucleon (for the A) or
pion-nucleon (for the Roper) state. It is for this reason that multi-particle interpo-
lators are important, as owing to their higher overlap with more exotic five-quark
states, they will be able to resolve the resonances and extract a multi-particle
state. This is essential for a complete understanding of the Roper resonance for
example.

We therefore aim to construct these five-quark interpolators and perform spec-
troscopic calculations with them. Before doing so however, we review QCD and

the method employed for discretising it onto a lattice hypercube.

1.2 Continuum QCD

The dynamics of strongly interacting particles are governed by the QCD Lagra-

nian density?

1

Ny
Locp =Y Wilx)(iv" Dy — mi)ihi(x) — S Tr(Fu F), (1.5)
=1

where we have suppressed colour and Dirac indices. Here v;(x) is a Dirac 4-spinor
representing the fermion field with flavour 4, Ny is the number of flavours, v* are

the Dirac y-matrices, D, is the covariant derivative
D, =0,+1igA,, (1.6)
and F),, is the field strength tensor given by
Fue) = S5 Fuo), (1.7
where
Fi, = 0,4, —0,A; — gfabcAfLAf,. (1.8)

The field strength tensor can also be written as a commutator of covariant deriva-

tives

igF, = [D,, D). (1.9)

The \* are the generators of the gauge group SU(3), f®¢ are the structure con-

stants, and A, is the gluon field which are proportional to the generators of

2Excellent introductory discussions can be found in [23-26].
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SU(3)
A,(x) = Z?qg(x). (1.10)

The group generators are a basis for traceless Hermitian 3 x 3 matrices satisfying

PREDL

Tr[A*A’] = 6% and {7,5] = i f*N. (1.11)

For our lattice simulation it is often useful to consider the action. The QCD

action Sgcp is given by taking the space-time integral of the Lagranian density
(1.5)

SQCD == /d4$£QCD

2
— Sp + Sg, (1.12)

- /d%@ﬂ(x)(m“Du —m)(x) — 1/d4:10T7"(FW,F’“’)

where we have suppressed the sum over the flavour indicies and Sy and Sg are the
fermionic and gauge actions (in Minkowski space) respectively. However, actions
in Euclidean space are necessary to perform lattice simulations. We therefore

0

perform the transformations 2° — —ix, and A° — +iA4, which gives us the

transformation property [26]
goMin. _, _ gHucl. (1.13)

Our Euclidean action is therefore given by

- 1
St = [ ateb@(# D+ mila) + 5 [ daTr(Fu )
— gucl. + SEUCL. (114)

Having written down our action we should verify that it gives the fermions the
correct dynamics, that is, that we can recover the relativistic wave equation for
fermions, the Dirac equation. Differentiating the integrand of Sz® with respect

to ¢ and substituting into the Euler-Lagrange equations, we obtain
(V" D, +m)(x) = 0, (1.15)

which is indeed the Dirac equation (in Euclidean space), as required. The ac-
tion (and the Lagrangian) must also necessarily be invariant under a change of

physically irrelevant gauge.

3From here on the Eucl. superscript will be taken to the implicit unless otherwise stated.
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1.3 Gauge Invariance

Physically, it is clear that under global gauge transformations our action must
be invariant. We can readily see for example that the fermion action is invariant

under the transformations
(x) = (z) = W(x), Y(x) — P (x) =), (1.16)

owing to the unitarity of Q (as 2 € SU(3)). However, the principle of gauge
invariance requires us to have an action that is also invariant under the local

transformations
U(a) = @' (x) = U)o (z), d(x) — ¢ (z) = ()2 (2), (1.17)
where here Q(x) € SU(3) represents an independent SU(3) matrix at each space-

time point. We start by considering the fermionic part of the action.

1.3.1 Fermion Action

Invariance of the fermion action Sy under the local transformations (1.17), means

SF = SF[’QDanaA] = SF[w,JZ,?AI] = S%’ (118)

where the prime refers to the transformed objects as usual. Applying our trans-

formations (1.17) to the fermion action (1.14), and enforcing (1.18) we obtain
Sp= [ ded @00+ igh) + mw' (@)
— [ @i @0 (0, + igA) + M) ()

= [ dtwi@) (40, + igA,) + mpv o). (1.19)
Then noting €2 is unitary, we can see that in order to ensure gauge invariance we
must have
D(@) (D + igAu () (x) = ()2 (2)(8, + ig A}, (2))Q(x)Y (z)

(@)
V()2 (2) (0, 0x) ¥
+ 1) (@) (U (2)(2)) 9,9
+ 19 (2)QN (2)ig Al (2)Q(2)y
= P(@)(0 + Q' (2)(0,2(x)) + igQ" () A, (2)Q())
= O +igAu(r) = 0, + QN (2)(0,2(x)) + igQ" (2) A, ()Q(x).  (1.20)
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Solving for Aj,(x) then enables us to write down the transformation property of

the gauge field
Au@) = 4,() = )AL @) + 2O,V (@). (121

This transformation property is a necessary consequence of demanding the in-

variance of the fermion action under local gauge transformations.

1.3.2 (Gauge Action

Demonstrating the required gauge invariance of our action
SalA] = SqlA] (1.22)

is straightforward. We begin by obtaining the transformation condition for the

covariant derivative
D,(z) — D) (z) = 0, +igAl,(z) = Qz) D, ()2 (z) (1.23)

from (1.20). Then using Equations (1.9) and (1.23) we obtain the tranformation

condition for the field strength tensor,

Fu(z) = F, = Q(z)F.Q (2). (1.24)
Our gauge action
1 174 1 a a
SalA] = 3 / d*aTr(F,, F") = 1 / d*zTx(F5,Fy), (1.25)

(from (1.14)) is therefore gauge invariant given the transformation property of
F,, (as Q(x) is unitary and the trace is invariant under cyclic permutations). It is
instructive to note the similarities of our QCD action to that of electrodynamics.
Our QCD action is a sum over colour components, (indexed by a in Equation
(1.25)) each term of which has the familiar form of the QED action. The qualita-
tive difference between terms occurs in the non-linearity of the colour components
of the field strength tensor. Inspecting Equation (1.8), we see the first two terms
of F,, are linear in the gauge field just like QED, but the third term is quadratic
in the gauge field. When inserting our aforementioned expression for Fj,, into
(1.25), we therefore obtain cubic and quartic terms in addition to the familiar
quadratic terms from QED. It is these cubic and quartic terms that allow three
and four gluon vertex Feynman diagrams, giving rise to self interactions of the

gluon, and ultimately the most prominent feature of QCD, colour confinement.
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1.4 The Path-Integral Formalism

In field theory, the information about the physics of the system is stored in a
set of vacuum expectation values of time ordered products of field operators, the
correlation functions or Green’s functions. The standard approach to quantise a
field theory is via the path-integral (PI) formalism, where the PI representation
of the correlation functions is built on integrals over anti-commuting Grassmann
variables. We begin by introducing some of the properties of these Grassmann
variables and make use of them to write down a PI representation of the inverse
of the Dirac operator. We will see in Chapter 3 that calculating this inverse
is crucial to this work. We then proceed to discretise the actions introduced
in Chapter 1, discussing improvements to the naive discretisation scheme. This

discussion closely follows that given in [26].

1.4.1 Calculus with Grassmann Variables

A set ny,m, ...,y are generators of a Grassmann algebra if they anti-commute.
That is,

In general, some arbitrary element of a Grassmann algebra can be Taylor ex-

panded in 7;,

f(n) = fo+ Zfﬂ?i + Zfijnmj + .o fiNm N, (1.27)
i i

which obviously terminates after a finite number of terms, as is it clear from
(1.26) that

”=0 VYi=1,...,N, (1.28)

Integration

Integration will be the main thing we wish to do with Grassmann numbers. In
order to do functional integration we need not define definite integrals explicitly,
only integrals over all values of the variable. Momentarily restricting ourselves to

integrals over one variable, we can see as a consequence of (1.28) that

/dnf(n) = /dn(CH + Can) (1.29)
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where C] and Cy are constants. We also require our integral to be invariant under

the shift of integration variable n by a constant 7.. That is,

/d’l] (01 + 0277) = /dn((C’l + 02770> + 0277). (130)

We can see that a solution to this condition can be found by defining, as in [27]

/dmm =1 (1.32)

The rules

are therefore sufficient to evaluate an arbitrary integral of the form

/ Hdmf (n), (1.33)

where f(n) takes the most general from given in (1.27). It is also important to note
when evaluating multiple integrals, that the integration measures anti-commute

with both themselves and the variables. That is to say,

We can now apply these rules to calculate integrals. One such useful integral,

sometimes referred to as the Mathews-Salam Formula, is given by?,

/D(ﬁn) exp (—7An) = det 4, (1.35)
where N
D(in) = Hdﬁidm- (1.36)
i=1
Differentiation

The rules for differentiation of a general f(n) with respect to a Grassmann variable

7; are given by:

e If f(n) is independent of n;, then %f(n) = 0.

4For a derivation see for example [28] and [29].
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o)
on;

commuting 7; all the way to the derivative on the left, and then applying

e If f(n) is dependent on 7;, then the left derivative is calculated by anti-

0

—n; = 1. 1.37
o (1.37)

—

e Similarly, the right derivative a% is calculated by anti-commuting 7; all the

way to the derivative on the right, and applying

—

0

" o (1.38)

It is then clear from these differentiation rules together with the integration rules
of (1.32) that the properties

[ dmsn) = 5-s (1.39)

o 0
— Y =0, 1.40
{3771- 0%-} (1.40)

These properties can then be used to show® that

and

hold for Grassman variables.

/D(T_m)nﬁ exp (—7An) = (det A)A™, (1.41)

which together with (1.35) will be used shortly.

1.4.2 The Path Integral

We begin our discussion of the path integral formalism by introducing the gen-

erating functional in Euclidean space given by
Z = / DyyDipe 5" WAl (1.42)

where the integration measure D¢ for a field ¢ roughly represents an integral over
all possible field values at all points in space-timeS. Here, ¢ and ¢ are Grassmann

variables representing the fermion fields and S®u:[+), 4, A] is the Euclidean action

5See [26] for a full derivation.
5A more detailed discussion of functional integration can be found in [26].
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given in (1.14). In the presence of fermion source fields n and 7 the generating

functional is then given by
Zln, 7] = /D@Z,D@Eefd4z(—£(z)+ﬁ(w)w(w)+n(w)¢(r))' (1.43)
In order to calculate n-point functions we take derivatives with respect to n and

7, and set the source fields to zero in order to get the relevant terms. For example,

the 2-point correlation function from z to y which is the fermion propagator , is

given by
@roi@ = 5 (55) (- 50 )20l (40
where
Zy = / DyyDipe | T'#E@), (1.45)

In order to evaluate this, we invoke the definition of the functional derivative
—555] of F[¢] with respect to ¢, which is given by

/ dio()2E o i PV F €0l = FIY]

d
I c = Fly+edl| (1.46)

where ¢ is some smooth test function. In evaluating (1.44) we see functionals
of the form Fy[¢)] = e/ @#¥@e(®)  which can be easily calculated using (1.46)
obtaining
SRy
01
Using (1.47) we can then evaluate (1.44) obtaining

= p(x)Fy[¢]. (1.47)

(QUTY(y)e(x)|Q) = J fgﬁggqﬁjﬁ (—_zﬁﬁi;b) : (1.48)

where M = (v#D,, + m) is the fermion matrix. Then using the values of these

integrals that we have seen in (1.41) and (1.35), we can see

(QUTY(y)(2)|Q) = M~ (y, ). (1.49)

That is, the fermion propagator is given by the inverse of the fermion matrix. We

further discuss the calculation of propagators on the lattice in Section 3.4.
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Expectation Values

We can now apply the path integral formalism to calculate vacuum expectation

values of operators, and hence observables. Observables in QCD are given by [30]
1 - - uel. 1y
()= 5 [ DeDIDA O, G, Al 05, (1.50)

where

Z = / DYDYDA 5" WAl (1.51)

(1.50) can then be evaluated using Grassmann algebra giving [26]
1 1
)= / DA O(M", A) det(M)e—4 /<™ Fun) (1.52)

We note that the operator O is dependent on the inverse of the fermion matrix,
and the gauge field. The determinant encodes the role of the quark loops present
in the vacuum, and is very computationally expensive. Earlier lattice simulations
(for example [31-33]) set this value to a constant, effectively turning off sea quark
loops. This is known as the quenched approximation. Recent developments in
technology and lattice techniques allow us to avoid this approximation, using
instead dynamical fermions which we discuss later.

We can also see from (1.52) that observables are calculated by performing
the path integral over all possible vacuum gauge field configurations A. This
concludes our discussion of continuum QCD and the formalism within which

observables are calculated.
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Chapter 2

QCD On the Lattice

As briefly discussed in Chapter 1, QCD is asymptotically free. The coupling
constant has the peculiar property that as we study higher energies, or equiva-
lently probe smaller distances, the coupling constant becomes small, enabling us
to employ the perturbative techniques used in QED. In the low to moderate en-
ergy region in which we live, the coupling constant is large, and the perturbative
techniques that one would naturally appeal to are rendered ineffective. It is in
this region that we apply the formalism of lattice QCD, discretising space-time
onto a 4-D hypercube with spacing a. Futhermore, while in perturbution theory,
regularisation is performed by introducing a momentum cut-off or dimensional
regularisation (for example). However, by introducing a minimum distance a,
we also introduce a maximum momentum p = . This regularises the theory,
meaning all loop integrals on the lattice are convergent. The formalism of Lat-
tice QCD is currently the only known non-perturbative first-principles approach
to studying QCD; that is, amplitudes can be evaluated without the introduction
of constraints or parameters. It is this property that makes it particularly at-
tractive. Our goal is therefore to discretise continuum QCD onto the lattice so
that the action retains as many features of its continuum counterpart as possi-
ble, while avoiding excessive computational cost. The author has found [23, 24]

particularly useful as references in writing this section.

2.1 The Fermion Action on the Lattice

We begin with the naive discretisation of the fermion action. We will see that
improvements must necessarily be made to this straightforward discretisation

scheme, and we therefore outline the subsequent alteration to our action.

15
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2.1.1 The Naive Discretisation

Naturally, the starting point is the discretisation of continuum space-time onto a

4-D hypercube. This is achieved by restricting
# — an” (2.1)

where a is the lattice spacing, and n* are the sites on the lattice. As we obviously
have a finite number of CPU hours to run our simulation we restrict ourselves to

a finite volume
V = LiLt = ngathgNt (22)

where N, and N, are the number of lattice sites in the spatial and temporal
direction respectively, as; and a; are the relevant spacings with L, and L; be-
ing the corresponding lengths. In our simulations we use a lattice with spacing
as = 0.126fm (with equal spacing in the temporal direction), and N, = 20,
N; = 40 with periodic boundary conditions. For the fermion propagators, we
impose periodic boundary conditions in the spatial direction, and fixed boundary
conditions in the temporal direction'. As we now have quantised space-time, it
makes no sense to talk about a derivative or integral as infinitesimal distances

are not defined, and hence we replace the derivative with a finite difference

1

0 0(w) — 5 [V(n+ ) = v — )], 23)

It’s also necessary to replace integrals with sums

/ d'z —a'y . (2.4)

xT

Thus we obtain the lattice free fermion action (setting A, = 0) from (1.14)
together with (2.4) and (2.3)

SF

=) [wa(” FR D )| (25)

nel

Recall in Chapter 1 we saw gauge fields necessarily arose by imposing local gauge

invariance in the continuum. We now consider the situation on the lattice.

'We note that the choice of boundary condition in the temporal condition depends on the
calculation we are performing as the time-dependence of correlation functions is affected by this
choice.
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Gauge Fields in the Fermion Action

The condition for local gauge invariance on the lattice is simply (2.6) with 2 — n,
that is,

¥(n) = ¢'(n) = Qn)w(n), P(n) — ' (n) = Y(n)Q'(n). (2.6)

We can readily see as in the continuum case, that the mass term is gauge invariant
and the ¥(n)y(n + i) term is not. Analogously to the case in the continuum, if

we define the gauge transformation of the field U,(n) to be

Uy (n) — UL (n) = Qn)U, (m) Q2 (n + ) (2.7)
then
P(n)Uu(n)(n + 1) — &' (n)U,, (n)¢' (n + fi)
= (n)Q"(n)U},(n)Qn + ) (n + 1)
= P(n)Uu(n)Y(n + f1), (2.8)
and hence
Sr = a*3 o) | 3, PR UV )| (20)
nel p=1

is gauge invariant. This is the naive discretisation of the fermion action. These
gauge fields U, (n), have both a direction p and position n associated with them,
and hence live on the links between lattice points. For this reason they are often

referred to as link variables. In (2.9)
U_u(n) = Uf(n — fi) (2.10)

relates the positively oriented link variable U,(n — ji) to the negatively oriented

U_,(n). Using (2.10) and (2.7), one can immediately show
U_u(n) — U, (n) = Qn)U_.(n)Q(n + ), (2.11)

and therefore readily verify that the naive fermion action (2.9) is in fact gauge
invariant as advertised. However, it is important to note that the link variables
U,(n) which were introduced as elements of the gauge group, must be related to
the gauge field A
known that

which was introduced as elements of the algebra. It is well

exp {ig/CA-ds}], (2.12)

o

G(z,y) =P
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where P denotes path ordering and G(z,y) is the gauge transporter from z to y
along some curve C'. This has the same transformation properties as U,. That
is, replacing U, — G(z,y), equation (2.7) is satisfied given the path goes from n
to n + 1. Therefore, the link variable can be thought of as the lattice version of
the gauge transporter between the points n and n + ji. The relation between the

link variables and the algebra-valued gauge fields can then be written
Uu(n) = exp (igaA,(n)), (2.13)
where we have approximated the integral in (2.12) along C' from n to n + i by
the value of A, at the starting point n multiplied by a. This approximation is
good to O(a). By Taylor expanding U, (n) around a = 0,
U.(n) =1+igaA,(n) + O(a®)

U_,(n) =1—igaA,(n — )+ O(a®) (2.14)

and substituting into (2.9) to O(a?) we obtain

Sp = a4Z1ﬁ(n)Z

n pn=1

(1 4+ igad,(n)v(n+ ) — (1 —igaA,(n — )Y(n — Q)
H 2a

n

+ m@b(n)]

igTaZZw(n)’yﬂ [Au(n)wOl + )+ Au(n — @)(n — /2)]

n p=1

+

=" > U V’(” HR O | () + igAu(”)w(n)} o

= Sp + Sp + Ofa) (2.15)

=
where we have made use of
Aun = i) = A, + O(a)
bln + 1) = ¥(n) + O(a) (2.16)
and ST denotes the interaction term. It is now straightforward to see that one can
recover the continuum fermion action (1.14) from (2.15) in the naive continuum

limit @ — 0. Unfortunately, this version of the discretised action leads to the

infamous fermion doubling problem.
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Fermion Doubling Problem

Observing (2.3), we can see that the central difference will only couple sites that
are separated by 2a, meaning even numbered sites are only coupled to other even
numbered sites, and odd only to odd. We could therefore expect to get twice
the number of possible the fermion species in each dimension, giving a total of
2% = 16 fermion fields instead of one. In order to further clarify the situation, we

write our action in terms of the Dirac operator

UEZ (n)én,mm

4 b(n
Ua n+ﬂ,m -
nl, n2 E ’Yaﬁ

5 + My 1y 0 00p,  (2.17)

as

Sp=a' Z ZZ@D“ n1) Dgj(na, ng)dzﬂ(ng) (2.18)

ni,n2 a,b «o,B
Then taking the Fourier transform of our Dirac operator for free fermions (that

is for trivial gauge fields), we obtain

1

[7(]?17}72) = =

V E 6—11)1-7’11&D(n1’ n2)61p2~n2a

ni,n2

elaP2)u _ p—ia(p2),
:_Z i(p1—p2 nla(zvﬂ © +m)

ni,n2

= 5(?1 —P2)D(P1) (2.19)

where V = Nz x Ny x Nz x Nt and

D(py) = é’m sin((p1),a), (2.20)

taking the sum over repeated Lorentz indicies p to be implicit. So in order to
compute the inverse of the Dirac operator in position space, we can therefore

invert D(p;) and then invert the Fourier transformation. That is,

D~ (ny,ny) Z D~ Y(p)eiar(mnz), (2.21)

This is the quark propagator. This should come as no surprise upon recalling we
showed in (1.4.2) that the fermion propagator could be calculated by inverting the
fermion matrix. We know the quark propagator is one of the fundamental objects
used in spectroscopic calculations, and as such we postpone a more detailed
discussion until (3.4), where we discuss both standard point-to-all propagators

and the stochastic estimator techniques that we employ to calculate the so-called
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loop elements of the all-to-all propagator. For the purposes of the doubling
problem, it is sufficient to consider that calculation of D~'(p). Using the identity

, B a — 1y,b,
bo| =&l 9.29
aving| =S 22
for a,b, € R, we obtain
Pri(p) = i esin(ue) (2.23)
m? + a=*y, sin(pya)?
If we now consider the case of the massless fermion, we have
D7), = e
m=0" =2y, sin*(p,a)
a—0 — P
S # (2.24)

p

We can see that in the continuum the propagator has a single pole at p =
(0,0,0,0). On the lattice we have additional poles, as the denominator on the
first line of (2.24) vanishes when all components of p, are either 0 or T For each
component of p there are two choices giving 2* = 16 zeros, the physic%l zero and

15 unwanted doublers.

2.1.2 Wilson Fermions

Having 16 poles instead of 1 is clearly a serious problem, and a possible solution
was first suggested by Wilson [1]. By adding an extra term to the Dirac oper-
ator we can avoid the unwanted poles, while retaining the correct action in the
continuum limit. This extra term is called the Wilson term, and is added to the
Dirac operator obtaining,
P =

D(p)=m+ — sin(p,a) + — 1 — cos(p,a)). 2.25

(p) a Z’Vu (Pua) a Z ( (Pu )) ( )

p=1 p=1

As before, we can make use of (2.22) to write down the inverse

m+a”! Zu (1 — cos(pua)) —ia" 1y, sin(pua)

D™} (p) = 7
[m +a Y, (1- cos(pua))] + >, sin’(p,a)

(2.26)

Considering the massless case we can see that the only pole is now the physical

pole at p = (0,0,0,0), as the new term makes a contribution of 2/a at p, = 7/a,
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effectively giving the doublers a mass of m + 2n/a (where n is the number of
momentum components with p, = m/a). Therefore, in the continuum limit the
doublers become infinitely heavy and decouple from the theory. The action can

then be succinctly written as

S = /d%zﬂ(m) [W + %A + m]w(x), (2.27)

where the Wilson coefficient r will be set to unity as is standard,

1
YV =4V, = 2—@7“[TM ~- T, (2.28)
and
;A
AZEZP—T#—TJ], (2.29)
p=1

where we have defined the transport operator 7}, as

Tab(n) = dn+ i), Tho(n) = v(n — ). (2.30)

It is useful to introduce T}, for the gauge field U, in order to write expressions in

terms of operators. This definition allows us to write
—ad
T =e (2.31)

in the continuum. However, just as we imposed local gauge invariance by replac-
ing 0, with D,, we can redefine the continuum version of the transport operators
as

T,=ePr,  Tf=ePn (2.32)

It can then be shown [34] that this is equivalent to setting 7T}, (z) = U, (x)e®,
and hence we can put gauge fields on the lattice by defining the transporters to

be

Tub(n) = Uu(n)p(n+p),  Ti(n) = Ul(n— f)g(n — ). (2.33)
We now have a basic formulation for the fermionic part of the action on the
lattice. However, when choosing a lattice spacing a, we are often forced to choose
a sufficiently small spacing such that the physics essentially doesn’t vary with
a. Failure to do so may mean that taking the naive continuum limit for some
observable doesn’t yield the desired quantity. It can easily be shown by Taylor
expanding the Wilson-Dirac operator Dy, that

Dy = D + O(a), (2.34)
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and hence the Wilson fermion action has O(a) discretisation errors. It turns
out that these O(a) errors are relatively large. As the computational cost of
the simulation typically increases as some inverse power of a, actions with large
discretisation errors, such as the Wilson action above, are clearly non-optimal.
As such, further modification of the action is performed with the goal of reducing
the discretisation error, enabling the simulations to be performed at larger lattice
spacing and hence lower computational cost. The techniques for doing this are

called improvement.

2.1.3 Improving the Fermion Action

By definition, it is obvious that some kind of improvement is beneficial. However,
which specific method of improvement is best, and how to measure the quality
of an improvement scheme is not as clear as we may have imagined. This is
because improvement deals with irrelevant operators vanishing in the continuum
limit. There does not exist an improvement scheme which fixes everything, and in
almost all circumstances there is a price to pay for the improved action, not least
of which is rising computational cost. Consequently, certain symmetries present
in continuum QCD are non-trivial to maintain on the lattice. In particular chiral
symmetry is notoriously difficult to maintain on the lattice. We can see that
the Wilson term doesn’t anti-commute with 5 and hence explicitly breaks chiral
symmetry. The difficultly in obtaining a chirally symmetric action free of doubled
fermion species can be summed up by the well known Nielsen-Ninomiya No-Go
theorem [35-37)2.

Nielsen-Ninomiya No-Go Theorem. It is not possible to find a discretised

Dirac operator D, such that all the following conditions are simultaneously true.

e D, has the correct continuum limit that is lim, o D, = 1P, where D, is the

continuum covariant derivative.

e All non-continuum modes of the Dirac operator decouple in the continuum

limit. That is we are free from doubled fermion species.

e The norm of the D, matrix elements decays exponentially as |z — y| in-

creases. In this case D, is said to be exponentially local.

e D, does not explicitly break chiral symmetry, that is {D,,~v5} = 0.

2 Alternatively [38] also contains a good discussion.
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This can be avoided by imposing a lattice deformed version of chiral symmetry,
obtaining the computationally expensive overlap fermion action [39]. We however
work with a cheaper fermion action. It is obvious that if we can afford the
computational cost, an action with a smaller discretisation error is preferable.
We therefore consider the same spirit used when constructing the Wilson action,
permitting ourselves to add terms to the action in order to reduce error given
they vanish in the continuum limit. We know that the central difference gives an
error of O(a?), that is

Y =1+ O(a?). (2.35)

The Wilson term however introduces errors of O(a) as seen in (2.34). In order to
remove the O(a) error, we first write the Wilson-Dirac operator Dy, in terms of

transport operators

4

Dy = 5 Z; 2 — [(1 = 7)Tp + (1 + 7T (2.36)

Then observing T, = e*P+ and T} = e *P» (2.32), and Taylor expanding we

obtain

pn=1
D 2
+ <1 + %) (1 aD, + (aD,,) + O(a3)>}
4 2
aD
=D WD — =" +0(®). (2.37)
pn=1
Using the identity
2 1 Y
DZ = lD - Z[’yua’y ][D;mDy]a (238)
together with our expression for the field strength tensor in (1.9) we can then
write
a 2 g 9
DW:m—§(ID —ia-F)—l—(’)(a ), (2.39)

where we have made use of the definition
7

5 s Wl (2.40)

Oy =
We can immediately see that any solution to the Dirac equation

(D +m)y(z) =0, (2.41)
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is also a solution to the Klein-Gordan equation
(1 = m) (B +m)(x) = 0. (2.42)

We therefore redefine the bare lattice mass mpae to be

2
Mpare = M + %; (243)
in order to rewrite (2.39) as
_ ag 2
Dw+mbare—lD+m+Za-F+(9(a ). (2.44)

We can now see that an improvement to the Wilson-Dirac operator can easily
be made by subtracting off the piece with the field strength tensor (called the
clover term) decreasing the discretisation error. This action is known as the
Sheikholeslami-Wohlert action [40] and is given by

Ssw = Sw = SU(2)o - Fo(a). (2.45)

2.1.4 The Field Strength Tensor on the Lattice

In order to properly define the Sheikholeslami-Wohlert action in (2.45) on the
lattice, we clearly need a discretised field strength tensor. We begin by briefly
digressing to a discussion on an intuitive discretisation used later in the construc-
tion of the gauge action, followed by subsequent improvements that facilitate
error reduction for use in the fermion action. Beginning with the case in the

continuum, we recall from (1.9), that
igF,, = [D,,D,], (2.46)

and hence
[Dy. D,)'[D,,, D)) = ¢°Fu. Fu, (2.47)

as D, is anti-Hermitian. We can then analogously define a discretised version®

VI VIV V] = FL (2.48)
where .
V;:a@;—n. (2.49)

3This discretisation procedure follows the essential steps outlined by Kamleh [24].
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We then observe .

2

letting us write

GELF = [V VITVE v

prs pv
1
= E[Tw Tl/] [Tw TV]T
1
= (1,1, ) (1T - T4T)
=(2—-Pu—P},) (2.51)

appealing to the unitarity of 7, on the final line, and setting
P, =T,T,T T} (2.52)

P,, is known as the plaquette, and is the smallest possible closed loop on the
lattice. The plaquette is revisited during the construction of the gauge action in

(2.2). We adopt the standard practice of writing

Pouio(n) = U ()e(n) (2.53)

and henceforth using U, (n), which is the product of the links U, starting at the
point n on the lattice, in the order prescribed by (2.52). That is,

Uw(n) = U, (n)U,(n+ ap)Ul(n + a2)Ul(n). (2.54)

G S S
| | | l
| ' ' |
- - t—<— ——
Y A
s o ——
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v | I | |

— — — b —— 4 — b

1

Figure 2.1: The smallest possible closed loop on the lattice, the plaquette U, (n).
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Using (2.54) and (2.51), we can then see

1

G FL(n)F},(n) = (1 —Ul,(n) (1= Upu(n)). (2.55)

It is this definition of the field strength tensor that we use later in the construc-
tion of the gauge action. However, while the continuum field strength tensor is
Hermitian, F Ijj, as defined above is not. We therefore consider the substitution
D, — V, in (1.9),

igFuw = [Dy, Dy, (2.56)

and hence look for a discretised solution F ﬁ,l/ of
[V Vil (n) = igFp; (n)i(n). (2.57)

We know upon Taylor expanding

1 1 a —a
Vo= (T, T)) = . L (e
2 3
[(1 +aD, + ”) + (a%‘) + O(a4)>
2 3
. (1 —GDu‘i‘ (CLDH) o (aDM) +O(a4))1
2 6
1
=D, + aaQDi + O(a®), (2.58)
and hence
V., V.,] =[D,,D,] + O(a?). (2.59)
By performing the Taylor expansions
Y(n+ap) =19Y(n)+ O(a) U,=1+0(a), (2.60)

and appealing to the unitary of the gauge links it can be shown that by expanding
(2.57) one can obtain [24]

[V Vol 02) = o | (Ui ) = US (0) 90 + (U-al) = UL, ) 00)
+ (Uam) = UL, 00)90) + (U ) = ULy () )|,

(2.61)
where we have made use of (2.59) to cancel O(a) error terms. We can then define
the standard clover C),, to be

Coon) = (Unal) + Umagln) + V) + U (). (262)
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Figure 2.2: The terms that contribute to the clover C,,(n).

In order to satisfy (2.57), the clover discretisation of the field strength tensor
F¢%(n) is then given by

Fib(n) = 50 (Col) = Cl () (263)
which is equal to the continuum field strength tensor up to O(a?).

However, this clover discretisation has significant O(a?) errors [41]. In the
early days of the FLIC action, extra loops terms were added to the clover dis-
cretisation [42] in the same spirit as in the fermion action, with the goal of further
reducing the discretisation error. To incorporate these higher loop terms we first

define

mxn 1
F;WX (n) =

= W(men(n) — Cm ™ (n)). (2.64)

pv

Here C77*"(n) represents the sum of the four m x n loops. Although two, three
and four loop terms can be added to our expression for the improved field strength
tensor in addition to the plaquette term already present, in the interests of lower
computational cost the addition of two extra loops was employed. The resulting

improved field strength tensor is then given by

3 3 1
FS — _F1><1 - F2><2 F3X3. 265
) = St = 5ps b+ oo (2.65)

However, more recent work [43] has shown the somewhat remarkable result that
the 1-loop clover term is preferrable to the 2-loop O(a?)-improved and the 3-loop
O(a*)-improved definitions of the lattice field strength tensor. The 1-loop action

provides reduced fluctuations in hadron correlators, and hence smaller statistical
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uncertainties. This is understood to be as a result of the 1-loop action having
more local field strength than the 2-loop or 3-loop actions, meaning it is less
susceptible to large fluctuations. We therefore use the 1-loop definition of the

field strength tensor given in (2.63).

2.1.5 Mean Field Improvement

Here the mean link, or mean field parameter uq is defined as the fourth root of

the average plaquette

N

o — <%ReTrUW(n)> | (2.66)

n,u<v

ug is central to the idea of mean field improvement. Mean field improvement

becomes useful when comparing lattice operators to the corresponding continuum

operator. In order to perform this comparison, Taylor expansion is performed.
For example,

Uu(n) — 1+iagA,(n). (2.67)

However, we encounter problems as higher order terms don’t contain increasing
powers of a as we might expect. These terms are referred to as tadpole terms.
These tadpole terms have additional powers of agA,, which exactly cancel the
higher powers of a as Ai o 1/a®. The tadpole terms then go with powers of g,
which in the region of interest are not sufficiently small. The idea of mean field

improvement or tadpole improvement is to perform the replacement?
(2.68)

in our action and all relevant operators. This has the effect of compensating for
the tadpole terms, resulting in an operator with much closer behaviour to the

continuum analogue.

2.1.6 The FLIC Fermion Action

We are now in a position to discuss the fermion action that has been used in this
research, the Fat-Link Irrelevant Clover (FLIC) action and its advantages over
the actions encountered thus far. The clover action has the problem of the quark
propagator exhibiting singular behaviour at low masses. Consequently, the use

of coarse lattices is prevented [45, 46], increasing computational cost. The FLIC

4For a more detailed discussion of mean field improvement see [44].
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action is therefore of interest, as the fermion matrix inversion that is necessary
to create propagators and dynamical gauge configurations is more efficient than
inversions using Wilson or Clover actions [47]. The use of smeared “fat links”
in the irrelevant dimension-5 terms also serve to filter out short distance fluctu-
ations and their associated large perturbative renormalizations of operators. We
also use the so-called spin projection trick (outlined in [24, 48, 63]) to reduce
computational cost.

When the FLIC action was first conceived, the fat links [49] were computed
on APE smeared links [50-52] whereby the links are smeared or “fattened” with

a gauge covariant averaging procedure implemented via the replacement

o
Up(n) = Ul = (1= ) Up(n) + 5 37 Uy(0)Uy(n + a2)UL(n + ap)
tr#p
« -

= (1—a)Uy,(n) + G Y ElL(n) (2.69)

tr#p
followed by a projection back to SU(3) as SU(3) is not closed under addition.
Here « is the smearing fraction. We then select the unitary matrix U, 5 L which

maximizes

ReTr(USFUT), (2.70)

by iterating over the three SU(2) diagonal subgroups of SU(3). The smearing and
projection procedure is then repeated n times. However, the projection back to
SU(3) is not unique and is somewhat problematic. We therefore use an alternate
smearing procedure known as stout link smearing [53]. In this procedure, we start

by taking a weighted sum of staples
Cu(n) = pu(n)E,.(n), (No Sum over p.) (2.71)

where p,,(n) are the weights, which in this research is isotropic and taken to be
0.7. We can then define

Qu(n) = C(m)UJ (n), (2.72)
and .
= (@)~ 0um) — TTHOL) )| @27)

Qu(n) is both traceless and Hermitian and its exponential is therefore in SU(3).

Qu(”)

We therefore calculate the fat links via the replacement

Uu(n) — U, = exp (iQu(n)) Uy(n). (2.74)
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Note that our isotropic p,, = 0.7 is equivalent to APE smearing to first order.
The FLIC action can now be written [47]

1 1
DfliC:W+§(A—§O"F)+m, (275)

where Y, A and F have all been mean field improved, and A and F have been

constructed with fat links. Alternatively, it can be written
FL FL UK S
Sew = Ow’ — 5@0‘7 - Fy, (2.76)

where we have set the (Sheikholeslami-Wohlert) clover coefficient Csyy to its tree
level value of 1 and absorbed the mean field improvement into F), in (2.63).
k = 1/(2m + 8) is the quark hopping parameter. Once again, as in (2.75) two
sets of links are used. The “normal” links for the naive Dirac operator, and
the fat links for the Wilson and clover terms. This is because the process of
smearing removes short-distance physics, and hence it is preferable to only smear

the irrelevant operators that vanish in the continuum limit.

2.2 The (Gauge Action on the Lattice

Now that we have discretised the fermion action, we turn our attention to the
gauge action. We begin by recalling from (2.54) that the smallest non-trivial
closed loop on the lattice is the plaquette

U (n) = Uu(n)U, (n + ap)Uf (n + a2)U(n). (2.77)
Then making use of (2.13) we obtain

U'wj (n) _ eiagAu (n)eiagA,, (n—l—aﬂ)6—iagAu(n+af/)e—iagAu(n) ) (278)

As our gauge group is non-Abelian we can’t add exponents, and instead use the

Baker-Campbell-Hausdorff formula

eAeB — eA-i—B-i—%[A,B]-‘r...7 (279)
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obtaining

U (n) = exp (iagA,(n) +iagA,(n + afi) — %[Au(n), A,(n+ap)] + O(a*))

x exp ( — tagA,(n + ad) — iagA,(n) — ——[Au(n + av), A,(n)])

(

CL292

= exp (iagAu(n) +iagAy(n + aj) — —=[Au(n), Au(n + aft)]
2

a

2g [Au(n + ap), Ay (n)]
+ % [[Au(n), Au(n+ av)] + [Au(n), Ay (n)]

—tagA,(n + av) —iagA,(n) —

A (0 + at), Au(n + ad)] + [Ay(n + aft), Amﬂ] n o<a3>).

(2.80)
Then using the Taylor expansions
A,(n+ i) = A,(n) + ad,A,(n) + O(a?)
Au(n+70) = Au(n) + ad, A,(n) + O(a?), (2.81)
we can show
Uuw(n) = exp (iagAu(n) +iag(Ay(n) + ad, A, (n)) —iagA,(n)
—iag(Au(n) + ad, Au(n)) — GT[AM(n), A, (n) + ad,A,(n)]
+ S [Au(m), Au(n) + a0, Au(n)] + [A,(n) + ad, Ay (n), A, ()]

—exp (i0%9(0,A,(0) ~ 9,4, 0) + il A, n). AL 0)]) + O

= exp (a’[Dy, D] + O(a?))
= exp (z'angW + O(a3)), (2.82)

where we have made use of the expression for the continuum field strength tensor

in (1.9) on the final line. Taylor expanding (2.82) we see

4.2

U = 1 +ia2gF,, — %FWFW +0(d%), (2.83)
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and hence taking the real part of the trace we can obtain

(I4g2 v 6
D Re[Tr(I = Uw)] =) — - Te(Fu ) + O(a’). (2.84)
Comparing to the continuum gauge action (1.25), we must be careful when sum-
ming over i and v not to double count our plaquettes. There are 6 possible
plaquettes corresponding to each combination of 1 and v such that p # v, and

hence we sum over all combinations such that ¢ < v. In doing this we obtain

Sa =SS 3 Tr(Fu ) =533 %Re [Tr(1 - U,)], (2.85)

T pu<v

where

6
b= (2.86)

This disretisation is the Wilson gauge action®.

2.2.1 Improving the Gauge Action

In the same way as we applied improvement schemes to the fermion action, in
particular by adding terms to remove O(a?) errors, we aim to replicate the process
with the Wilson gauge action. Using the clover discretisation of the field strength
tensor F, (2.63) in the gauge action, and expanding using the definition of Cj,,
(2.62), we find that not only do we have the plaquette terms but also higher loops
of vertical R>s' and horizontal R}* rectangles, as well as a “half clover” loop
Rl To save computational cost, we only incorporate the rectangle terms as
the “half clover” has higher multiplicity per lattice site. This gives rise to the

plaquette plus rectangle gauge action

SER — g SN Re[Tr{Cp (1 U (n) + Cr(1— B2 () + Cr(1- RL2(n)) }],

(2.87)
where the constants C'p and C'r determine the relative weightings of the plaquette
and rectangle terms. Expanding the Wilson loop corresponding to the plaquette
and the rectangle, one can show that a choice of Cp = 5/3, and Cg = —1/12 will
enforce the absence of errors up to O(a?) at tree-level. We also incorporate mean
field improvement into the gauge fields to remove the QCD tadpoles as discussed

in (2.1.5). The relevant powers of the mean field improvement parameter are

°For a more detailed discussion see [54].
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determined by the number of links present in the term. This results in the tree-

level tadpole improved Liischer-Weisz gauge action [55]

S = 50 S Re[Te{ (1= () = gz (1= R () = 2 (1= B3 (0)} .

n  u<v
(2.88)

The improvement scheme can be extended to higher order [56], but beyond one

loop lattice perturbation theory becomes particularly laborious. Consequently,
further improvements are sometimes made using nonperturbative renormalization-

group (RG) inspired improvement.

RG inspired improvement

So far we have seen the mean field improvement scheme which attempts to con-
struct an action correct up to some order of a. RG improvement on the other
hand is motivated by contemplating an action without cutoff effects. In principle,

we can obtain such an action with the following scheme.

e For the set of field variables {¢)} defined with a cutoff a, introduce a new

set of so-called “coarse grained” variables {¥} with some new cutoff a'.

e Integrate out these “coarse grained” variables to obtain a new action
08/ (W) _ / i e~ PIT V) 5] (2.89)

Here ST (W, 1)) relates the course grained variables to the fine grained ones
and is known as the blocking kernel.

The procedure is then repeated multiple times.

However, in repeatedly integrating (2.89), one obtains increasingly complicated
actions which are truncated in practice, reducing appeal. In spite of this, two RG
improved gauge actions have received interest. These are both constructed with

a plaquette and a rectangle

SE7 = 057 S Re[TH{Cr (1~ Uyulm) + (1~ B2 () + (1~ B2 ()},

n  u<v

(2.90)
and have Bpiqq. = Bco, Brect. = Bc1, with the normalization condition ¢y +8¢; = 1.
They are known as the Iwasaki action [57] with ¢; = —0.331, and the doubly-
blocked Wilson 2 (DBW2) action [58-61] with ¢; = —1.4088. This concludes our

discussion of the discretisation of QCD on the lattice.



34

CHAPTER 2. QCD ON THE LATTICE



Chapter 3
Spectroscopy in Lattice QCD

Now that we have a well-defined formalism for quantising QCD onto the lattice,
we proceed by outlining the method for extracting a ground state mass. This
begins with a discussion of the method of extracting a mass given a correlation (or
two-point Green’s) function. The construction of a relevant interpolating operator
for the proton, A and the A** is then outlined, and the corresponding correlation
functions are calculated at the quark level. We then cover the calculation of
both the point-to-all and so-called loop propagators, and the dilution techniques
employed in order to reduce the variance of the stochastically estimated loop
propagators. This puts us in a position to present effective mass plots for our

interpolators.

3.1 Correlation Functions at the Baryon Level

We begin by writing down the two-point correlation function! G(¢, ) in momen-

tum space at the baryon level in the standard way [10, 62, 63]
G(t,7) = Y e (0] T x(2)x(0)| 0), (3.1)

where T' denotes time ordering, y and x are the creation and annihilation oper-
ators respectively, and | 0) denotes the O-particle vacuum state. On the lattice
we consider amplitudes corresponding to propagation forward in time so our time
ordering condition is automatically satisfied, allowing us to drop the explicit time

ordering. We continue via the insertion of a complete set of states B with mo-

"'We shall henceforth use the terminology “two-point function” and “correlation function”

interchangeably.

35
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mentum p” and spin s,

> BB s)(B. sl =1, (3.2)

B:ﬁ’»s

obtaining

G(t,7) = Y_> e 70| x(x)|B, 5", 5)(B, 5", s x(0)] 0). (33)

Bjpls &

Using the relation
X(z) = e x(0)e ™, (3.4)

with four-momentum P we then obtain

Gt 7) = Y > e P (0] e (0)e " B, 7, 5)(B, 7, 5| x(0) | 0)

B,jp',s &

- Z e—iEBtZ o~ i (") (0| x(0)|B,p’, s)(B,p",s| x(0)0)
Bj',s Z

— Ze Epts (0| x(0)|B, 5, s)(B,7’, s x(0)]0)
B“I

HZe E24(0] x(0) | B, 7, 5)(B. 7. 5| x(0) | 0), (3.5)

where we have transformed into Euclidean space t — t, on the final line. At
this stage we can see what our general tactic to compute the energy of some
state (B”,p”,s”| might look like. We would pick some operator x, that creates
a state from the vacuum with the quantum numbers of the state (B”,p”, s”|
(with corresponding x that annihilates the state). Then the matrix element
(B, p,s| x(0)]0) will vanish if the state does not have the same quantum numbers

as (B",p",s"”|. The first state that contributes to the sum will be the state
(B D, s| = (B” 7", s"|. Other excited states and multi-particle states with higher
energies (Bsy, pa, 32] , (Bs, D3, s3] ... will have non-zero overlap with y(0) | 0), and
hence will also contribute to the sum. However, we can see from (3.5) that states
are suppressed exponentionally proportional to the energy. Looking at sufficiently
large times should then enable the extraction of a ground state mass. We can
also simplify equation (3.5) by evaluating the matrix elements. The overlap of x

and Y with the even-parity state BT can be written as

<0 | X(O) |B+7ﬁ? 5> = Ap+ Es: 75U<pB+; 5)

MB+
EB+

(BT, 7,5 x(0)|0) = =Ap+ PB+, S)7s, (3.6)
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where Mg+ is the mass of state B*, Eg+ = \/Mp+ + p? is the energy of state B*
(with corresponding momentum pp+), u(pp+, s) and @(pp+, s) are Dirac spinors,
and X\ and A are the coupling strengths of the interpolators to the sink and
source respectively. Note the presence of the 75 matrices which invert the parity
transformation properties. This is done as the interpolating operators that we
will consider transform negatively under parity (see Appendix E), as opposed to
the more standard positive parity interpolators (as in [11]). We use the Dirac
representation of Bjorken and Drell [64] for the gamma matrices (see Appendix
B). We also employ the standard convention of quark fields transforming as
q(p,s) — Y4q(p,s) under parity, where p = (pg, —p) with py = \/m as
pp+ is on shell.

Similarly, for interpolators with a coupling to odd parity states, the expressions

for the matrix elements are

O1X(O)[B75) = Ay J2ulos )
(B7751 %(0) 0) = Ap-| 2o 5). (3.7

Here we have chosen the normalisation factor 4/ ]\E%I such that
B

% (p, 8)upe (p, 5) = 0°7. (3.8)

Next we can make use of the identity

Zu(p,s)ﬂ(p,s) = .—a (39)
2M

s

and the related identity

S ysulp, s)a(p, s)is = 2N
- ) ) 2M )

(3.10)
to write down the even and odd parity contributions to our two-point function.
To consider the even parity contribution, we substitute (3.6) and (3.10) into (3.5)

obtaining

_ - Mg+ B
Gp+(t,p) = — E e Pt p Ap+ EB+ Ysu(pp+, s)u(pp+, s)7vs
B
Bt,s

- . — Mp+)
_ Ani\ —EB+t(,Y PB+ B 311
; B+AB+E€E 2EB+ 5 ( )
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and similarly for the odd parity states substituting (3.7) and (3.9) into (3.5), we
obtain

_ e 4 Mo
() =ZABfABfe‘EBJ(7 ng: 5). (3.12)

We see that at p’ = 0, the odd parity state will propagate in the upper left
Dirac quadrant ((1,1) and (2,2) components) of the two-point function, while the
even parity state propagates in the bottom right Dirac quadrant ((3,3) and (4,4)
components). This is the opposite case to usual, as the interpolators which we
will use transform negatively under parity as opposed to the more widely used

positive parity operators. We can therefore apply the parity projection operator

1
'y = 5(1 T %), (3.13)

to our full two-point function

v -p+ — Mp+
G(t,p) = Z/\B+)\B+e B+t( ];EB+ 5+)

_ Dre - Mno
+Z)\37A376_EBJ(7 ngJr ) (3.14)
_ B~

and take the spinor trace to obtain the parity projected two-point function

Gy (t, 6) = Trspinor [Fig(ta 6)]
= Z/\B:t/_\B:tG_EBit

t~>oo

)\Ozt)\(]:te Moit, (315)

where 0F labels the lowest energy state with the given set of quantum numbers.
The last line is possible as higher energy states are exponentially suppressed
proportional to their energy as we have seen. The effective mass of our baryon

state can then be written

ef1 () — In G (t,0)
M (8) = 1<—Gi(t+1’5)>, (3.16)

from which we can obtain the ground state mass as we take the large ¢ limit as

before
ME (1) =2 Mye. (3.17)

Our tactic will then be to extract the ground state mass by fitting a constant in
time to the effective mass, using a linear least squares fit. We employ the jackknife

method in order to obtain a measure of confidence by calculating the error [38, 65].
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3.2 Interpolating Fields

Now that we can extract a mass given a two-point function at the baryon level, we
proceed via the construction of interpolating fields? that create a state with the
correct set of quantum numbers. Our Baryon states of interest are classified by
their parity, total spin and flavour structure, either according to SU(2) isospin,
or SU(3) flavour. However, in our lattice calculations we impose exact isospin
symmetry as is standard, setting m, = my. The details of the standard two and
three quark local interpolators [12-15, 63, 66-68] for the particles relevant to this
work are detailed below in Table 3.1.

Particle Interpolator x(z) Isospin I Isospin Projection I3
Proton ps \%E“bc (uT(2)Cysd®(z) ) us(z) i +3
Neutron n \%e“bc (u"*(x)Crysd’ () d () 3 -3

Pion 7+ —d®(z)ysuc(z) 1 +1

Pion 7° —% (d°(z)ys5de(z) — u(z)“ys5uc(x)) 1 0
Kaon K~ u(z)y5s¢ () 3 -1
Kaon K° —d®(z)y55¢(z) : +3

Lambda A} —2¢abe

Lambda A

(uT () Cysd"(
Lambda A} e (uT () Crys s (z
c b

Table 3.1: The classification of the various particles relevant to this work and

their corresponding interpolating fields.

The integer subscript explicitly distinguishes the three quark operator inter-

2“Interpolating field”, “interpolator” and in some contexts “interpolating operator” are used
synonymously.
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polator from the five quark interpolator which we are going to see shortly. We
also note that neither the proton nor the A™* contain strange quarks and so have
strangeness S = 0, while the Kaons have S = —1. The various terms also com-
bine in such a way to give the correct flavour structure. For example, the singlet
A} vanishes under U-spin, V-spin and isospin raising and lowering operators, and
hence is a pure flavour singlet. Similarly, applying the isospin raising operator

It on x4 (for example) we find

Il = e (w2 () Oyt () ()

V2
1

=0, (3.18)

where we have freely taken the transpose as the diquark term is a Dirac scalar,
and relabeled the colour indicies. Therefore, the interpolator is isospin 1/2 as
advertised. The process of applying the relevant isospin operator can be similarly
repeated for the other interpolators. A discussion of the properties of the above

operators under Lorentz and Parity transformations can be found in Appendix
E.

However, our aim is to construct multi-particle interpolators, as discussed in
the motivation (Section 1.1), so that resonances can be resolved and multi-particle
states be identified. We are now in a position to construct these interpolators from
the table entries. Beginning with the proton, we aim to construct a nucleon-pion
NP-type interpolator with the same quantum numbers as the proton. Similarly,
we also construct nucleon-kaon NK-type interpolators for the A, and a NP-type
interpolator for the AT,

In the case of the A™* baryon we aim to construct a good candidate to reveal a
lowest-lying state consistent with a multi-particle state. For example in Nature,
the AT baryon with I(J¥) = 2(17) has a resonance energy at 1620 MeV.
This is to be compared with the two-particle threshold My + M, = 1080 MeV.
It is with this in mind that we construct our interpolating fields. As isospin
is mathematically equivalent to spin, we read off the relevant Clebsch-Gordan

coefficients, (see Appendix C) and together with the properties of Table 3.1 we
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0= g irt) = )

obtain

(3.19)

Therefore

0= 5 oo e ]

+ (u"(2)Cysd’(z)) d° () [d° ()55 (x)}] . (3.21)

++
XsA = ‘p:ﬂ +>
1 abc a c Jje e
= — e (u"(2) Cysd(2) ) u(x) [d°(@)ysu(z)]. (3.22)
V2
Although our NK-type interpolator for A is isospin zero it is not pure flavour sin-
glet, as it does not vanish under U-spin and V-spin raising and lowering operators.

In order to construct a pure flavour singlet A interpolator we propose

o = |ad), (3.23)

where

/

_1[
"=

Uysu° + dysd° + 5°955°]. (3.24)
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Therefore we obtain

Xg\l = %eabc (uT“(x)C%db(x))sc(ﬁ) — (uT“(x)C'%sb(:r))dc(x)

+ (dTa(a:)C'vg,sb(x))uc(x)} {(ue%ue) + (Jey5de) + (567586) )
(3.25)

As we know that Xg\l is a pure flavour singlet of isospin zero, we can readily
see that Xé\l also vanishes under U-spin, V-spin and isospin raising and lowering

operators, and hence is also an isospin zero pure flavour singlet.

3.3 Correlation Functions at the Quark Level

Now that we can extract a mass given a correlation function at the baryon level,
and have suitable multi-particle interpolators to create and annihilate our states
on to and off of the lattice, we proceed by calculating the correlation function at
the quark level given an interpolating field. This amounts to calculating expres-

sions of the form
(O] x(2)x(0)]0), (3.26)

and transforming to momentum space in the standard way as specified in equa-
tion (3.1). We proceed by rewriting the vacuum expectation value of time-ordered
products of field operators in (3.26), as a combinatorics problem involving prop-
agators. The prescription to do this is given by Wick’s Theorem (see Appendix

D for a more complete discussion)
T{p12...0n} = :0102... b, + all possible contractions:, (3.27)

where the normal ordering of any uncontracted operator gives zero by definition.
The contraction of any two fields is then the Feynman propagator. On the lattice
we can calculate quark propagators representing the propagation amplitude of the
creation of a quark at some space-time point x with flavour f, and annihilating
the same flavour quark at another space-time point y. With explicit colour and

Dirac indices the propagator Sa%(y, x) from z to y is then given by

Sias(y, ) = (0lug (y)@s(2)[0), (3.28)

where © and wu create and annihilate quarks with flavour u. We will see how

to calculate this on the lattice in Section 3.4. We now proceed to take all the
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contractions for the interpolators in Section 3.2 in order to write our two-point
functions in terms of quark propagators. Here we present the two-point functions
after we have imposed isospin symmetry, that is set S, = Sy or equivalently m,, =
myg, picked a particular set of v matrices, and performed colour index relabeling
in order to cancel like terms and reduce compute time. The full correlation
functions before setting S, = Sy, with arbitrary y-matrices in the interpolator
are in Appendix F. The maximally cancelled two-point functions for the NK type
A interpolator, and the NP type A™" and proton interpolators are given by,

gé\(t,m _ Z efiﬁ-feabc‘ga’b’c/ |:

+ 288 (2,0)(C5) 85" (0,0)75.55" (2, 0)75.55" (2, 2)(C5) S5 (, 0)

— 485 (2, 2)75.5¢ (2, 007555 (0,0)(Cs) S& (2, 0)(Cy5) S (, 0)

— 459 (2,0)(C5) 2" (2, 0)(Cs) S (0, )55 (1, 075,55 (0, 0)

— 485 (2, 2)75.55 (2, 007555 (0, 0)Tr [(Cy5) SEY (2, 0) (Cy5) S (, 0)]
— 250 (2, 0) Tr [(Cy5) S2 (2, 0) (C5) S5 (0,0)755 (2, 0)7585 (, 2)]
+ 259 (2,0)(Cs) S (2, 0)(C) S (2, 0) Tr [45.55 (2, 0) 5.5 (0, )

+25‘w (z, O)Tr[(C’%)Sbb (, 0)(075)S°C (:E,OH [ 5566 (x,0) 555/6(0@)] )
(3.29)

A‘H' —ipZ abc ab/’
P = {

’

+ 52 (2, 0)Tr [(Cy5) S¥ (w, )7 S (2, 0) (C5) S (0, 007555 (, 0)]
+ 82 (,0)(Cy5) S5 (0,0)95.85" (2, 0)(C5) SE° (, 2)75.55 (, 0)

+ 82 (2,0)7555 (0,0)(C5) S (007555 (w, ) (Cy5) S5 (0, 0)
— 88 (,0)(Cy5) S5 (0,0)75.85" (2, 0)75 55 (x, )(C5) S (2, 0)
— 82 (2, 007585 (0,0)(C5) S&™ (,0)(Cy5) S (. )55 (2, 0)
— 84 (2, 0) Tr[(C5) St (, 2)5.85° (w,0)75.55 Y (0,0) (Cy5) Se (2, 0)]
— 8% (, 0)Tr[(Cy5) S (, 0)(Cy5) S5 (2, 0)75.55 < (0, 2)75.5" (,0)]
— 84 (,0)(Cy5) SY (2, 0)(Cy5) S (, 0)75.55 °(0, )5 55 (x, 0)
— 829(2,0)7555 (0, )75 55" (2, 0) (Cy5) S5 (,0)(C5) ¢ (,0)

+ 88 (,0)(Cy5) SE (2, 0)(Cy5) S (, 0) T [45.55 (1, 0) 75,55 (0, )]

— 82 (2, 0)75.85 “(0, 2)75.55” (2, 0) Tr [(C5) 2 (2, 0) (C5) S (2, 0)]
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+ Sﬁa/ (ZE, O)TI [(075)8317/ (l’, 0) (0'75)35(:@ (% 0)} Tr [755581 (‘T’ O>75SZ,8(07 :L‘)} :
(3.30)

Gi(1, ) = 3 e Pree [

a/

)Tr[ (Cs) Sbe (z,x) 75Seb (x,0)(075)S§/C/T(0,0)7555‘3@(%0)}
)T [(Cs) St (2, 2)75.55° (2, 007555 ¥ (0,0)(Cs) S5 (2, 0)]
)(Cy5) S (2,0)7555 " (2, 2)(Cy5) S (2, 007555 “ (0, 0)
)(Cs) S22, 0)(Cys) S5 (, )55 (2, 0)75.55 (0, 0)
1555 (2,0)(Cy5) 85" (0,0)758%" (2,0)(C5) S (, 0)
1555 (2, 007555 (0,0)(Cys) 2" (, 0)(Cy5) S (2, 0)
— 955 (,0)(C5) S (2,0)7555" (0, 2)7555" (x,0)(C5) S (2, 0)
+ 655 (2,0)(Cy5) SE (2,0)(C5) S (2, 0) T [4555 (2, 0) 75,55 (0, )]
9S“€<a:,x>vssm’<x 0)(Cy5)SH" (2,0)(Cy5) S (2, 0)7555 (0, 0)
o (2, 2)7585 (2, 007555 (0,0)Tr [(Cy5) S (2, 0)(Cs) S (, 0)]
553&’ 2, 0)Tr [(C5) S (2, 0)(Crys) e (2, 0)75.55 " (0, 2) 755 (,0)]
(2, 0)Tr [(Cy5) SY (2, 0)(Cy5) S5 (, 0)] Tr [4555 (2, 0)7555 (0, )]
— 355 (2,0)75.55 ' (0,0)(C5) S (2, 0)7555" (x, 2)(Cy5) S5 (, 0)
+ 355 (2007555 (0,0)(Cs) S (2, 0)(Cy5) S5 (, ) 7555 (, 0)
+ 385 (2, 2)7555" (2, 0) Tr[(Cs) Si (2, 007555 ¥ (0,0)(Cys) Se” (, 0)]
+ 355 (2,0)(Cy5) SE" (,0)(C5) S (2, 0)75.85 (0, ) 555 (, 0)

(z,

(z,
+ 955 (z,

— 959 (z,

+95%(x, x
—95%(x,x

a/

553

0
0
0
0
)
)

0
+ 655 (x,0
0
0

u

0)
+ 355 (2, 0)7555 (0, 2)75 55" (2, 0)(Cy5) SE (2, 0)(Cys) S (2, 0)

+ 355 (2, 0)7555 (0, 2)7555" (2, 0) Tr [(Cs) 2 (2, 0)(Cys) S&” (2, 0)]
— 352 (,0)(C5) S (0,0)75.8%" (2, 0)(Cys) S (0, )5 5 (, 0)
—1—353“/ x,0)(Cs5)S: b/T(O 0)75566 (x 0)75866 (z, x)(C'%)SCC (x,0)

— 355 (2, )58 (2, 0) Tr[(Cs) S (2, 0) (Cy5) S (0,0)75.8 (2, 0)]
+ 350 (2007555 (0, 0)Tr [(Cy5) S (, )75 (2, 0) (C5) S5 (, 0)]
— 857 (2, 0)Tr [(Cs) Sb (2, 007555 (0, 2)75.55" (2, 0) (Cy5) S5 (x, 0)]
— 355 (2,0)7555 ' (0,0)Tr [(Cy5) S5 (2, 0)(Cys) S5 (2, 007555 (w, )]
+ 8 (2, 0)Tr [(Cy5) S (, 0)95.55 ¥ (0, 0)(Cy5) S5 (w, 0075557 (, )]



3.4. PROPAGATORS 45
— S (2, 0)Tr [(Cy5) S (2, 0)(Cy5) SE " (0,0)7555" (,0) 7555 (w, )]
(3.31)

Due to the size of the correlation function for Xg\l, it is not presented here. Instead

it can be found in Appendix F.

3.4 Propagators

We can see from the two-point functions in the preceding section that we require
four different “types” of propagators corresponding to the four combinations of

0 and x for the source and sink points in (3.28).

Figure 3.1: The “fully-connected” (left) and “loop-containing” (right) contribu-
tions to the two-point functions given in section (3.3) for the five quark operators
in section (3.2). Note the four “types” of propagators we require to evaluate such

diagrams.

The calculation of the point-to-all propagator S(x,0) has been a crucial com-
ponent of spectroscopy on the lattice since the origin of such investigations owing
to its omnipresence in the two-point functions of the mesons and baryons. The
standard method of computation is in principle straightforward, although cal-
culating propagators is the most computationally costly step in this research.
Following on from (1.49) where we showed the propagator was the inverse of the

fermion matrix, we solve

M St = (3.32)

for some source vector n by performing a matrix inversion for each colour index ¢
and Dirac index A. This amounts to n. x ny = 12 inversions, which are calculated
via the BiStabilised Conjugate Gradient algorithm [69]. The so-called all-to-point
propagators S(0, z) are also easily calculated by appealing to the propagator’s 7s-
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hermiticity property
(15955(x,0)75) " = S54,(0, ), (3.33)

which relates the backward propagating propagator or anti-quark propagator to
the forwards propagating one. The loop propagator at the source S(0,0), is also
easy to calculate by virtue of it being a subset of the values stored in S(x,0).
As S(z,0) stores values representing propagation amplitudes from one point on
the lattice 0 to all other points x, setting x = 0 gives the loop propagator at the
source. That is,

5(0,0) = S(z,0)] (3.34)

z=0"
However, the loop propagator at z, S(x,z) requires a different approach. While
not impossible with the latest supercomputers, calculating S(z, x) with the same
algorithm, that is performing (3.32) for each z is sufficiently expensive to discour-
age its use. In addition, it would also be a terrible waste of resources as we would
have effectively calculated the all-to-all propagator while only requiring the x to
x loop propagator.

We therefore resort to the standard method to calculate all-to-all propagators,
via stochastically estimating inverse matrix elements. An excellent introductory
discussion can be found in [70, 72]. We begin by generating an ensemble of
random independent column noise vectors 7 ...ny with the properties of white
noise [70]. That is,

(n(x) @n'(y)) = duy, (3.35)

where < e > denotes the expectation value over the noise vectors, and each com-

ponent of n has modulus 1
n%(x) *n? (z) = 1. (No sum.) (3.36)

We can then obtain solution vectors by inverting against the fermion matrix in
the same way we did when calculating the point-to-all propagator. We therefore

obtain a solution vector x;(z) for each corresponding noise vector 7; via solving

xi(z) = M~ 'ni(y). (3.37)

The stochastic estimate of the all-to-all quark propagator is then given by [70, 71]

My, 2)ih = (x® n*)ff; = lim Z Xe i)k (x (3.38)

We simply set y = x in (3.38) to calculate our loop propagators. Any noise that
satisfies (3.35) and (3.36), will work, but some will work better than others. As
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our technique converges to the exact result as N — oo, we consider the variance
of an element of the inverse matrix as a rough measure of the “goodness” of the
noise. It has been shown that the variance of an inverted matrix element due to

our stochastic estimation method is given by [73]

Var(M}) = — [(M;;fc? > (. (3.39)
v#B

where

= \/% Z: ((nimr) = 1), (3.40)

is a measure of the deviation of the diagonal element 7;n; from unity. The second
term in (3.39) is independent of the noise chosen and hence we want to pick a
noise with minimal diagonal error. Consequently Z, [71, 72], Z, [75, 76] and U(1)
[74] noises have been all been previously used owing to their vanishing diagonal
error®. We use the sufficient Z noise, which gives similar results to Z, or U(1)
noise [74].

However, simply applying the above prescription results in unsatisfactorily
large errors [78], and hence we employ a variance reduction technique known
as dilution [71, 78]. Rather than invert the fermion matrix with the entire noise
source as in (3.37), we first “dilute” the noise vectors such that it only has support
for a particular set of indicies. Dilution is performed in time, spin and colour
indicies such that

Nal(Z,t) Z nabt, (3.41)
b,B,t'
where
ngbﬁt (Z,t) = 6050 0um® (T, 1). (No summation). (3.42)

We now invert the fermion matrix as in (3.37) for each of our diluted sources

ab,
naﬂt (

improved” stochastic estimate of our loop propagators at x for a single noise vector

t), and obtain the corresponding solution vectors X ' (Z,1). The “dilution

is then given by
ca —» cb, t' ab,t’
S5al@,8) = Y x5 (@ g’ (3,1). (3.43)
bt/
To obtain the stochastic estimate for multiple noise vectors, Equation (3.43) can

be calculated for each noise vector and the average taken.

3We note that the latest techniques to stochastically estimate elements of the all-to-all
propagator (such as the Laplacian Heavyside quark smearing technique employed in [75-77])
are more involved than the computationally cheaper technique presented here.
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In order to calculate our propagators, we require a typical snapshot of the
gauge field, a gauge configuration. These are created in the standard way via Hy-
brid Monte Carlo using the dynamical FLIC action for the sea quarks. Excellent
discussions of the algorithm can be found in [24, 79].

To decide on how much dilution is necessary and how many noise vectors are

sufficient, we proceed by calculating
(Tr[DS(z, z)]) (3.44)

for the interleaved time dilution and full time dilution cases. In the process of
employing interleaved time dilution, the noise vector is given support only on
certain time-slices. Using interleaved 4-time dilution would therefore consist of
performing calculations with a noise vector that only has support on every 4%
time-slice. Here (...) denotes the averaging over all space-time points and gauge
configurations. Full spin and colour dilution is performed in both cases. We can
also compare this stochastic estimation with a similar expression containing a
point-to-all propagator

(Tr[TS(2,0)|2=0]), (3.45)

where (...) now denotes averaging over gauge configurations only, and we set
x = 0 in order to read off the “loop” element. In order to save computational
time, this initial testing was performed with 100 quenched 16 x 24 lattices at
[ = 6.0 using the Wilson action with x = 0.148. Results for various choices of I"
are shown for one noise vector in Tables 3.2 and 3.3 for full and interleaved time
dilution respectively. These can be compared with the trace values calculated
with S(z,0)|,—¢ in Table 3.4. Results for two noise vectors are shown in 3.5 and
3.6.

It is important to note that the values derived from S(x, z) have been averaged
over all spatial points and time-slices 5 — 20. Taking the average over all space-
time points would encounter contamination from the fixed boundary conditions
in the temporal direction. The value derived from S(z,0)|,—¢ is at a single space-
time point one quarter of the way in from the boundary in the temporal direction,
that is at (1,1,1,6) on our 16% x 24 lattices. In the interests of readability we
have retained four decimal places in all but the last entry.

We can see that apart from the trace of the propagator, all the other terms are
either consistent with zero or close to consistent with zero. This is expected, as
we know the tree-level propagator is proportional to v-p+ m. It would therefore

not be unreasonable to expect that taking the trace with a v-matrix gives zero as
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r Re(Tr[I'S(z,z)])  Jacknife error
v —4.4394 x 1079 25849 x 107

vo o 449721 x 1079 25041 x 107

vz —1.8418 x 107 2.6838 x 107

v4e +5.1559 x 1071 2.3169 x 10710

I 11.236305 0.000319

Table 3.2: The values of various traces for the stochastically estimated propagator
with full spin, colour and time dilution. The average is taken over all space-time

points and gauge configurations. One noise vector has been used.

there is no preferred direction. Simply taking the trace picks up the mass term
which would be non-zero. In fact, the value for the quark condensate can be
calculated in a similar fashion*. We can also take encouragement in comparing
Table 3.2 with Table 3.3.

r Re(Tr[I'S(z,z)]) Jacknife error
Y —4.5228 x 107*  2.5935 x 1074

Y2 +4.9581 x 107 2.5228 x 1074

v3 —1.9181 x 107*  2.6848 x 1074

Y4 +6.6066 x 107%  9.8755 x 1076

I 11.236319 0.000318

Table 3.3: The values of various traces for the stochastically estimated propagator
with full spin and colour dilution and interleaved 4-time dilution. The average is
taken over all space-time points and gauge configurations. One noise vector has

been used.

4To calculate a condensate, whether it be a quark condensate or quark-gluon condensate
the essential object is the loop propagator S(x,z). The condensate then goes as the Tr[S(z, x)]
(in the case of the quark condensate) or 3, Tr[S(z, )0, G| (in the case of the quark-gluon
condensate) for example. A more detailed discussion of condensates can be found in [80, 81].
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The full time diluted results, that is the results where the noise vector has
support on every time slice, are all quite similar to the the interleaved 4-time
diluted results where the noise vector only has support on every fourth time slice.
In particular the trace of the propagator shows encouraging agreement, perhaps
initially suggesting that interleaved time dilution may be sufficient.

We now compare the numbers for the various traces of S(z,z) presented in
Tables 3.2 and 3.3, with the same traces using S(x,0)|.—o presented in Table 3.4.
Once again, encouragement can be taken from the relatively big and precise value
for the I' = I case and consistency or near consistency with zero for the other
values. The overlapping error bars are of significant encouragement, particularly
for the I' = I case.

I Re(Tr[I'S(x,0)|,—0]) Jacknife error
901 +1.0065 x 107° 1.2455 x 107

Yo 1+0.1208 x 107 1.1319 x 1079

V3 +2.6777 x 1073 0.9258 x 1073

Y4 —4.9245 x 1074 9.2896 x 1074

I 11.237010 0.006640

Table 3.4: The values of various traces for the standard point-to-all propagator,
with the “all” x set to the “point value”, to make a loop. The average is taken

over gauge configurations.
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It is now instructive to compare our results using a single noise vector, to those
obtained averaging over two noise vectors. Results for the trace values using two

noise vectors are presented in Tables 3.5 and 3.6.

r Re(Tr[I'S(z,z)]) Jacknife error
Y —0.1930 x 107*  1.8348 x 1074

Yo —0.8029 x 107*  1.6775 x 1074

v —0.6087 x 1074 1.6129 x 1074

Y4 +1.3703 x 107> 0.8115 x 107°

I 11.235797 0.000265

Table 3.5: The values of various traces for the stochastically estimated propagator
with full spin and colour dilution and interleaved 4-time dilution. Two noise
vectors are averaged over in addition to the averaging over all space-time points

and gauge configurations.

r Re(Tr[T'S(z,z)])  Jacknife error

v —0.1798 x 107%  1.8434 x 10~™

¥e  —0.8979 x 107 1.6649 x 107

vz —0.8798 x 107 1.5973 x 10~

ve —1.2291 x 10710 1.7619 x 1010

I 11.235784 0.000264

Table 3.6: The values of various traces for the stochastically estimated propagator
with full spin, colour and time dilution. Two noise vectors are averaged over in

addition to the averaging over all space-time points and gauge configurations.

Ideally, we would like to observe the same level of error in both the one noise
vector and two noise vector cases, indicating the uncertainty is entirely dominated
by gauge noise. However, while the errors are not invariant, the error generally
decreases by less than a factor of V2. In addition, the trace values for the diluted

cases are more precisely determined than those for the standard point-to-all case,
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also suggesting one noise vector may be sufficient. It is helpful to recall that in
the full dilution limit, that is performing full dilution in all space-time, spin and
colour indices, we would be calculating S(x, z) exactly. Thus, increasing the level
of dilution will allow acceptable results to be obtained with less noise vectors. We
therefore propose to use full spin, colour and time dilution with one noise vector
per gauge configuration.

In order to test the veracity of our proposition we calculate the pion correla-
tor (motivated by Appendix A2 in [82]). This can be done simply by performing
the replacement = = 0 in Equation (3.38) rather than x = y. Equipped with a
stochastic estimate of the point-to-all propagator S(z,0), we can calculate the
aforementioned pion correlation function. The corresponding mass plots are pre-
sented in Figures 3.2 and 3.3. Attempting to produce similar plots with inter-
leaved time dilution yields an effective mass plot with spikes wherever the noise

vector has support. The use of interleaved time dilution is therefore avoided.

09

0.8

M(GeV)

8 10 12 14 16 18 20 22
Euclidean Time
Figure 3.2: An effective mass plot for the pion using the stochastically

estimated S(z,0) in the pion correlation function.

A quick comparison shows virtually identical effective mass plots. It is impor-
tant to recall, that although the stochastic S(x,0) is created via the use of noise
vectors while the standard S(z,0) is not, the stochastic propagator also requires
more N; = 24 times more inversions if one considers all time slices. We note
the opportunity for savings by calculating only at the time slices of interest (e.g.
t = 14 — 22 in this case). For our results in Chapter 4 we use full dilution with

one noise vector per gauge configuration.
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T T T T T T
window 16 — 22
09  fit.1 0.682 +-— 0.003 .
x%/dof 1.108
0.8
=
©
e
=
0.7
0.6 T
| | | | | |
8 10 12 14 16 18 20 22

FEuclidean Time

Figure 3.3: An effective mass plot for the pion using the standard point-

to-all propagator S(z,0) in the pion correlation function.

At this point it is worthwhile to briefly summarize our progress for clarity. We
have constructed relevant multi-particle interpolators, with the same quantum
numbers as the corresponding three-quark state. The calculation of two-point
functions was then performed with these interpolators, and all the relevant tech-
nology required for the calculation of the various propagators in the correlation
function was presented. Now using the method outlined in Section (3.1) we can
extract masses for the two-point functions calculated. This puts us in a position

to present effective mass plots for the various interpolators.
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Chapter 4
Simulation Results

Here we present correlation function plots and effective mass plots for the five
quark operators, in addition to the standard three quark interpolator plots which
are used for comparison. As the A plots are presented at the SU(3) flavour
limit, there is a corresponding degeneracy in various correlation functions which is
demonstrated in Appendix F. Once a plot has been presented, further degenerate
cases will not be shown. Rather, a brief reference will be made to the plot in

question.

The Euclidean time scale shown for the correlation functions corresponds to
the time over which the fit is performed. Naturally, the time scale is truncated
to show only the region of interest within which the fit was performed. All the
fit windows shown are selected via consideration of the covariance-matrix based
x?%/dof, as is standard. The solid line shows the fit, while the error bars are
depicted with dashed lines. For this study we use 75 (2 + 1)-flavour dynamical
20% x 40 lattices with the FLIC action and 8 = 3.94, x, = 0.1324. The lattice

spacing is 0.126 fm in the temporal and spatial directions.

We note here that although one cannot take the fully-connected and loop-
containing pieces of the correlation function by themselves in a fully rigorous
manner, the results are presented keeping in mind future correlation matrix anal-
ysis. A pictorial representation of the loop-containing and fully-connected pieces

of the correlation function was presented in Figure 3.1.

95
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4.1 The Even-Parity Proton

4.1.1 Correlation Functions

We begin by presenting the correlation functions relevant for the even-parity
proton. In addition to performing the calculation for the standard three-quark
nucleon at zero momentum, we also present results for the nucleon and pion
with one unit of momentum each. This is necessary as we are looking at the
positive parity state from the five-quark interpolator, and wish to compare this
to the Ey + E, energy level. As the pion has negative parity and the nucleon
has positive parity, we must give each one unit of momentum to have overlap
with a positive parity state with relative orbital angular momentum [ = 1. These
extracted energies are used in the Ey + E, energy level shown. In the same
way, when dealing with the negative parity state in Section 4.2 we compare with
My + M.

10 T T T 10 T T T

10 P fuclidean Time % 10 P fuclidean Time %
(a) A correltation function plot of the (b) A correlation function plot for the
standrad three-quark nucleon operator at standard three-quark nucleon operator
zero momentum. with one unit of momentum.

Figure 4.1: Correlation function plots for the three-quark nucleon operator with

zero momentum and one unit of momentum.
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1 1 1 _30 1 1 1

10 15 20 25 30 10 15 20 25 30
Euclidean Time Fuclidean Time
(a) A correlation function plot for the pion (b) A plot of the five-quark proton opera-
with one unit of momentum. tor correlation function.

Figure 4.2: Correlation function plots for the pion and five-quark proton operator.
We can observe that the correlator for the five-quark proton operator is very
similar to the correlator obtained for the standard three-quark nucleon shown in
Figure 4.1 (b).

10 T T T

-30 1 1 1 1 1 1 1 1 1 1

10 o B2 30 o 4l 8 20 2
(a) A plot of the loop-containing piece of (b) A plot of the fully-connected piece of
the five-quark proton operator correlation the five-quark proton operator correlation
function. function.

Figure 4.3: The correlation function plots for the loop-containing and fully-
connected pieces of the five-quark proton operator. We observe that the loop-
containing piece of the five-quark proton operator in (a) is virtually indistin-
guishable from the total five-quark operator correlation function in Figure 4.2

(b), indicating that this piece is the dominant contribution.
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—40 | Loop—containing Piece =
Fully—connected Piece
_50 - —
| | | | | | |
10 12 14 16 18 20 22 24

Fuclidean Time

Figure 4.4: A comparison of the loop-containing and fully-connected
pieces of the five-quark proton operator correlation function. Here we
observe the fully-connected piece has a greater slope indicating this

piece is associated with more massive contributions.
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4.1.2 Effective Mass Plots

29

The effective mass plots corresponding to the correlators plotted in the previous

section are shown here.

3.0 T T
indow 21 - 29
it 1.661 +— 0.035

25
x3/dof  0.186

2.0 T T
Window 21 — 30
Fit 0.913 +- 0.012

1.035

x2/dof

05

0.0 L L

0.0 L L
15 20
Fuclidean Time

(a) An effective mass plot for the stan-

dard three-quark nucleon operator with

one unit of momentum.

25

30 15 20

Fuclidean Time

with one unit of momentum.

5 30

(b) An effective mass plot for the pion

Figure 4.5: Effective Mass plots for the nucleon and pion with one unit of mo-

mentum each.

2.5

20

T
indow 22 — 29
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T T

+— 0.023

15

20 30

Fuclidean Time

25

Figure 4.6: An effective mass plot for the standard

three-quark nucleon operator at zero momentum.
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Figure 4.7: A mass plot for the five-quark proton operator compared to
the extracted three-quark nucleon result at zero momentum shown in

Figure 4.6.

Loop—containing Piece

12

14 16 18

20

22 24

Euclidean Time

Figure 4.8: A comparison of the effective mass plots for the fully-

connected and loop-containing pieces. Recall that the total correlation
function is almost entirely dominated by the disconnected piece, and as

such they are virtually indistinguishable.
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It is encouraging to note that the fully-connected piece of the correlation func-
tion appears to be displaying substantial overlap with a more exotic state before
decaying to a N + 7 state. This suggests that further studies using correlation
matrix techniques will successfully enable the extraction of more states. Further-
more, the form of this piece looks similar to that of pentaquarks (studied in [62]
for example), which also possesses a pure five-quark connected piece diagram as
its correlator.

The error bars on this piece of the correlation function are clearly of significant
size, and further work, in particular with new GPU’s, will enable more inversions
to be performed and hence will reduce uncertainties. We also observe that the
five-quark mass plot is completely dominated by the loop-containing piece of
the correlation function. We know from earlier chapters that our signal decays
exponentially proportional to the mass, and hence such a result is not unexpected.
This mass extracted from the five-quark operator displays good agreement with
the mass obtained from the corresponding three-quark operator, indicating that
the possibility of quark annihilation is vital to obtaining a low-lying mass. It will

be interesting to study this effect in the limit of light quark masses.
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4.2 The Odd-Parity N*

4.2.1 Correlation Functions

We now turn our attention to the odd-parity N* and present the relevant corre-

lation function plots.

-30 - -30 e
1 1 1 1 1 1 1 1
10 12 14 16 18 20 10 12 14 16 18 20
Euclidean Time Euclidean Time
(a) A correlation function plot for the (b) A correlation function plot for the five-
three-quark proton interpolator. quark proton interpolator.

Figure 4.9: Correlation function plots for the three-quark and five-quark proton

interpolators.

10 12 Fuelidean Time 1 & 10 12 Fuclidean Time 1 %
(a) A correlation function plot for the (b) A correlation function plot for the
loop-containing piece of the five-quark in- fully-connected piece of the five-quark in-
terpolator. terpolator.

Figure 4.10: Correlation function plots for the loop-containing and fully-

connected pieces of the five-quark proton interpolator.
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Figure 4.11: A comparison of the loop-containing and fully-connected
pieces of the five-quark proton correlation functions.
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4.2.2 Effective Mass Plots

The effective mass plots corresponding to the correlators in the previous section

are presented here.
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(a) An effective mass plot for the three-

quark proton interpolator.

Figure 4.12: Effective Mass plots for

pion at p'= 0.
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(b) An effective mass plot for the pion at

7€ro momentum.
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. An effective mass plot for the five-quark proton operator.
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Figure 4.14: An effective mass plot comparing the loop-containing and

fully-connected pieces of the five-quark proton.
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As was the case for the even-parity proton, it is encouraging to note the fully-

connected piece displaying overlap with a more massive state before decaying to

the N + 7 mass. This suggests further correlation matrix studies will successfully

extract more states. Once again we observe that the total five-quark operator

displays good agreement with the mass extracted from the corresponding three-

quark operator reinforcing the idea that the possibilty of quark annihilation is

vital to obtaining a low-lying mass. Similar to what we observed for the even-

parity proton the loop-containing piece of the correlation function is also the

dominant contribution to the five-quark operator mass. As was the case in the

preceding section future studies with more statistics and lighter quark masses will

be interesting.
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4.3 The Even-Parity A"

We now present the relevant plots for the even-parity spin—% ATT. We also make

use of the nucleon and pion results with one unit of momentum presented in the
preceding section.

4.3.1 Correlation Functions

We begin by examining the relevant correlation function plots

10

10 12 14 16

18 20
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Figure 4.15: A correlation function plot for the five-quark A** interpolator.
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(a) A correlation function plot for the

loop-containing piece of the five-quark in-
terpolator.

(b) A correlation function plot for the

fully-connected piece of the five-quark in-
terpolator.

Figure 4.16: Correlation function plots for the loop-containing and fully-

connected pieces of the five-quark AT,
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Figure 4.17: A comparison of the loop-containing and fully-connected

pieces of the five-quark A*™ correlation functions.
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4.3.2 Effective Mass Plots

Here we present a first look at the results for the spin—% AT baryon corresponding

to the correlators calculated in the previous section.
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Figure 4.18: An effective mass plot for the five-quark A™* operator.
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Figure 4.19: An effective mass plot comparing the loop-containing and

fully-connected pieces of the five-quark A+,
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The lowest-lying A baryon state with I(JF) = %(%+

star status resonance at 1750 MeV. This five-quark operator is therefore a good

) in Nature is the one

candidate to reveal a lowest-lying state that is consistent with a multi-particle
state. As expected we observe consistency with the Ey + E,. threshold. Due to
the massive nature of the state, the results produced from the five-quark operator
are expected to be statistically challenging which is indeed what we observe.
Future work with more statistics as discussed in the preceding section will assist
in extracting masses with a higher level of precision.

As was the case with the proton in the preceding section, the loop-containing
piece of the correlation function is the dominant contribution to the total five-
quark operator mass. The fully-connected piece of the correlator once again has
higher overlap with more massive states, providing optimism that the extraction
of a higher number of states via correlation matrix techniques will be successful.

It is interesting how the low-lying two-particle state is dominated by the loop-
annihilation containing piece of the correlation function. Quark loops implicit in
the gauge fields and loops associated with various time orderings of the valence
propagators are sufficient to describe these low-lying multi-particle states. Indeed,
one can anticipate that a similar calculation with a spin - !/, projected three-

quark ATT interpolator would produce a similar result.
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4.4 The Odd-Parity A"

4.4.1 Correlation Functions

We now present the correlation function plots for the odd-parity Spin—% AT,

10 T T T T

10 12 14 16 18 20
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Figure 4.20: A correlation function plot for the five-quark A™" interpolator.
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(a) A correlation function plot for the (b) A correlation function plot for the
loop-containing piece of the five-quark in- fully-connected piece of the five-quark in-
terpolator. terpolator.

Figure 4.21: Correlation function plots for the loop-containing and fully-

connected pieces of the five-quark AT,
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Figure 4.22: A comparison of the loop-containing and fully-connected

pieces of the five-quark A*™ correlation functions.
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4.4.2 Effective Mass Plots

Here we present the effective mass plots corresponding to the odd-parity spin—%

ATt correlators in the preceding section.
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Figure 4.23: An effective mass plot for the five-quark A*™* operator.

Fully—connected Piece |
Loop—containing Piece

15 20 25 30 35
Fuclidean Time

Figure 4.24: An effective mass plot comparing the loop-containing and

fully-connected pieces of the five-quark A+,
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In Nature the lowest-lying resonance of the A baryon with I(JF) = 2(17)
is at 1620 MeV, and possesses a four star status. However, we anticipate the
two-particle N7 state will dominate the correlator at large Euclidean times. The
intrinsic parity of the pion places the odd-parity two-particle threshold at My +
M. As expected the odd-parity state is less statistically demanding and lies
below the even-parity state. We observe the mass extracted from the five-quark
operator to lie below the N 4+ mass, which is not unexpected due to the nucleon-
pion attractive interaction in a finite volume box.

Once again the loop-containing piece is the dominant contribution to the total
five-quark operator correlation function, while the fully-connected piece displays
overlap with more massive states. The fully-connected piece is particularly inter-
esting, as while clearly exhibiting overlap with more massive states, it eventually
shows consistency with the N + 7 threshold, suggesting it possesses a rich struc-

ture useful in future correlation matrix studies.
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4.5 The Odd-parity A

The underlying composition of the 1405 MeV resonance of the A baryon has
puzzled researchers for many years. Further discussion of lattice results for this
resonance can be found in reference [20]. It is the lowest-lying excited state of
the A, and it possesses negative parity. Moreover, it lies lower than the lowest
negative-parity state of the nucleon, even though it contains a valence strange
quark. The internal structure of this resonance has remained a mystery for many
years. On one hand, it is regarded as a conventional three-quark state, while on

the other it is interpreted as an anti-kaon/nucleon bound state.

Here we present results for the five-quark negative parity A. Recall that
all plots are presented at the SU(3) flavour limit. The kaon mass is therefore
identical to the pion mass, and the octet A correlator is identical to the nucleon
correlator (see Appendix F), although of course we extract the mass from different

components as we are studying different parity states.

4.5.1 Correlation Functions

©
s
S-10
-15
=20 L L L L ]
10 12 14 16 18 20 10 12 14 16 18 20
Fuclidean Time Fuclidean Time
(a) A correlation function plot for the (b) A correlation function plot for the
flavour-singlet three-quark A} interpola- “common” three-quark A§ interpolator.
tor.

Figure 4.25: Effective mass plots for the flavour-singlet and “common” three-
quark A interpolators.
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Figure 4.26: Correlation function plots of the three-quark octet interpolator and
five-quark operator for the A.
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Figure 4.27: Plots of the loop-containing and fully-connected pieces for the five-
quark operator A.

We observe that the loop-containing piece of the five-quark A operator in
Figure 4.27 (b) is virtually indistinguishable from the total five-quark operator

correlation function in (b) of Figure 4.26, indicating that this piece is the domi-
nant contribution.
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Figure 4.28: A comparison of the fully-connected and loop-containing
pieces of the five-quark A interpolator. As was the case with the proton
and ATt we observe the fully-connected piece possessing a steeper slope

and therefore is associated with more massive parts of the spectrum.
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4.5.2 Effective Mass Plots

We now present effective mass plots corresponding to the correlation functions in

the preceding section.
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(a) An effective mass plot for the A in- (b) An effective mass plot for the A§ in-
terpolator. terpolator.
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(c) An effective mass plot for the A} in-

terpolator.

Figure 4.29: Effective Mass plots for various three-quark A interpolators.

We note that the error bars for the fits overlap for all three A interpolators
shown in Figure 4.29. At this precision we are unable to isolate the various
masses. Therefore, we use the mass extracted from the A! interpolating field
when making a comparison with the corresponding five-quark operator. We do
however note here that the lowest lying odd-parity state of the A is predominately

flavour-singlet [9].
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Figure 4.30: An effective mass plot for the five-quark A interpolator.

12

14 16 18 20

22 24

Euclidean Time

26

Figure 4.31: A comparison of the fully-connected and loop-containing
pieces of the five-quark A interpolator. The nucleon mass is presented
in Section 4.1. (Recall that as we are at the SU(3) flavour limit the

kaon is identical to the pion - see Appendix F.)
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As was the case for the proton, we again observe a reproduction of the three-
quark operator Az mass, with the total five-quark operator As (at the SU(3)
flavour limit). As was the case with the proton and A*T, the total correlation
function is almost indistinguishable from the loop containing piece, once again
indicating that the possibility of quark annihilation is vital to obtaining a low-
lying mass from the five-quark operator.

Furthermore, we also observe the fully-connected piece displaying overlap with
higher energy states, before dropping to the level of the N + K mass. This
is particularly encouraging for future correlation matrix studies. These results
should be viewed as an encouraging first step toward studies with higher precision
and the pure flavour singlet five-quark interpolator whose correlation function
is given in Appendix F. It would also be of interest to move away from the
SU(3) flavour limit, and simulate at lighter quark masses to see if (and how) the

contributions from the different pieces of the correlator are altered.



80

CHAPTER 4. SIMULATION RESULTS



Chapter 5
Conclusion

The calculation of hadron masses is of general fundamental importance to our
understanding of the world around us. In this work we have presented results
from spectroscopic calculations using the only known non-perturbative ab-initio
approach to working with QCD, that of lattice QCD. We have provided an im-
portant first step towards future correlation matrix studies with five-quark inter-
polating fields which will enable the extraction of multi-particle masses in their

own right.

With this ultimate goal in mind we have constructed five-quark operators,
that we naturally expect to have higher overlap with these more exotic states.
The corresponding correlation functions that turned out to contain a considerable
number of terms was then presented. As these correlation functions possess loop-
containing diagrams, we then employed stochastic estimation techniques in order
the calculate the corresponding loop propagators. In particular, we showed that
a stochastic estimate of the point-to-all propagator yields encouraging results in

the case of the pion.

We then presented mass plots extracted from our five-quark interpolators,
and have seen that these interpolating fields show good agreement with the mass
extracted from the three-quark operators in the case of the proton and the A.
We further observed the fully-connected terms of the correlation functions having
good overlap with more massive excited states. In the case of the proton and the
A, these fully-connected pieces eventually ended up being consistent with the
En+ E., My + M, and My + Mg levels for the even-parity proton, odd-parity
N* and odd-parity A respectively. While one cannot take these fully-connected
terms of the correlation function on their own in a rigorous manner, the results

are promising for future correlation matrix analysis.
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In the case of A™™ baryon, the interpolating field was constructed in order
to give access to I(J) = %(%i) states, of which the lowest-lying resonances in
Nature are at 1620MeV (odd-parity)! and 1750MeV (even-parity)?. The idea was
to consider quantum numbers where the lowest-lying states would be two-particle
scattering states. In the odd-parity case we observed the mass lying just below
the My + M, threshold which we noted was expected given the attraction felt
by the nucleon and pion in finite volume. The more massive even-parity state
was found to be statistically challenging which was expected. The two-particle
threshold of Ey + E, was observed.

In all cases the total correlation function was almost completely dominated by
the loop-containing piece for the lowest-lying states examined herein, indicating
the importance of the possibility of quark annihilation in obtaining a low-lying
mass from a five-quark operator.

Further work will include calculating correlation functions with three-quark
creation operators to five-quark annihilation operators, and visa versa. This will
enable a correlation matrix analysis to be performed, enabling the extraction
of multi-particle states in their own right. Furthermore, with the CSSM in the
process of obtaining significant GPU computing power, more inversions will be
possible, allowing us to simulate at lighter masses, larger volumes and average
over more gauge configurations. In addition, the use of more advanced stochastic
estimation techniques as mentioned in Chapter 3, could be employed in light of
these extra resources.

On a final note, fully automated code to produce the evaluated two-point cor-
relation function from arbitrary interpolators will be completed shortly. As such,
any spectroscopic calculation with interpolating fields of considerable size (for

example mX-type interpolators for the A) would constitute a natural extension.

1 As discussed previously this state possesses a four star status.
2 As discussed previously this state possesses a one star status.



Appendix A

The Gell-Mann Matrices

The Gell-Mann complex 3 x 3 matrices are a representation of the generators of
SU(3). As SU(3) has dimension 8, there are eight generators which satisfy the
commutation relation

iy A = i f 75N, (A1)
where the structure constants f¥* are anti-symmetric in 4,5 and k. The most
commonly used group representation is the particular choice of fundamental rep-

resentation given by

010 0 —2 0 1 0 0
AM=11 00 Ay = 0 O A= 10 —1 0
000 0 0 O 0 0
0 01 0 0 —1 0 00
AM=10 00 =10 0 0 =10 0 1
1 00 1 0 0 010

00 O 1 1 0 O

)\7 =10 0 —2 )\8 =—10 1 0

0 ¢« 0 V3 0 0 =2
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Appendix B

v-Matrices

Here we present two different representations of the y-matrices, and some useful
algebraic properties that were helpful in the calculation of our simplified two-point
functions in (3.29), (3.30) and (3.31).

B.1 Dirac Representation

The Dirac representation used in Bjorken and Drell for example [64], is the usual

representation used for algebraic manipulation, with a defining relation

{’Vu,%} = 20, for p,v =10,1,2,3 (B.1)

where the metric g, is given by

1 0 0 0
0 -1 0 0
v = B.2
9u 00 -1 0 ( )
0 0 0 -1

The y-matrices can then written

% = lé _0[] %= [_Oa %Z] , (B.3)

where o; are the 2 X 2 complex, unitary, Hermitian Pauli matrices given by

01 0 — 1 0
o1 = [1 0] 09 — [Z 0] 03 = [0 _1] . (B4)

85



86 APPENDIX B. v-MATRICES

We also define a ~; matrix to be

i .
V5 = — €y v5v57, = 0N Y2 )3

24
0010
0001
= (B.5)
1000
0100

In this representation some useful properties are

o’yg:]
o =1
"YSZ’YO
‘7;275
Y =—

® 070 = Tu
* {¥5,7%}=0

In our two-point function calculation we have also used the charge conjugation
matrix C
C = ’i’}/o’}/z, (B6)

which has the following useful properties
o (T=C1=C"=-C
o (C) =—Crs

(CW)T =C

70CTy = C

% (C7) "0 = 1.C

T
%C¥57% = Cv5 = =0 (075) Yo

-y = Cy,C7 = CMy,C
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B.2 Pauli Representation

On the lattice, it is often useful to deal with Hermitian matrices, and as such the
Pauli representation used by Sakurai for example [83], is used on the lattice. The

defining relation can be written

{'Vw%} = 20,0, for p,v =1,2,3,4. (B.7)
In this representation the y-matrices can be written
0 —io; I 0
i = = , B.8
i I (3:)
and 5 is defined
1 Q
Vs = 57" V86T = NPV

0 1
) o

In this representation some useful properties are

° *yZ:]
o =1
e 7l =
o %T):%
i {75;%}20-

In the Sakurai representation
C = Y472, (B].O)

which is exactly the same as C' in the Dirac representation. It has the useful

properties

¢« (T=Cl=(Cl=—C
o (Cys)" = —Cns
(Cy)" = C,
(1.0)" = wC

% (Cy) "0 = 1.C

—} = Cr,C7' = Cly, C.
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Appendix C

Clebsch-Gordan Coefficents

The rules for combining states of a given isospin are the same as for spin, as
they are mathematically equivalent. The Clebsch-Gordan coefficients! provide
constants to enable us to decompose the direct product of two irreducible repre-
sentations of the rotation group into a direct sum of irreducible representations.

That is,
I, )T, 1Y) = Zc§i§22§3|1 I3), (C.1)

where C1LL) 1“1 are the Clebsch-Gordan coefficients and [ is total isospin with
isospin prOJectlon I3. These coefficients can also be used to decompose a state

into a linear combination of composite states,

11,15) = Z Clriri |, I, I5). (C.2)

I/ +I//

In this work we make use of (C.2) with I' =1/2,I" =1/2,and I' =1,1" = 1/2,

and hence we include the relevant table of coefficients.

1
1/2x1/2 i1 T 5
| +12 +1/2 1 0 0
+1/2 -1/2 1/2 1/2 1
-1/2 +1/2 1/2 -1/2 -
-1/2 -1/2 1

Figure C.1: Clebsch-Gordan coefficients for the case I' = 1/2,I" = 1/2. Recall there

is an implicit square root sign over the positive part of each table entry.

1See [84] for an introductory discussion to Clebsch-Gordan coefficients.
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3/2
1x1/2 +3/2 302 172
| +: +1/2 1 +1/2 +1/2
+1 -1/2 1/3 2/3 3/2 1/2
0 +1/2 2/3 -1/3 -1/2 -1/2
0 -1/2 2/3 1/3 32
-1 +1/2 1/3 -2/3 -3/2
-1 -1/2 1

Figure C.2: Clebsch-Gordan coefficients for the case I' = 1,1” = 1/2. Recall there is

an implicit square root sign over the positive part of each table entry.



Appendix D

Wick’s Theorem

When calculating correlation functions, we need to calculate vacuum expecta-
tion values of time-ordered products of free field operators. That is, we need to

evaluate expressions of the form:

(O] T{p1(21)¢1(x2) - . - @1(x0)} |0) (D.1)

where ¢; denotes the interaction picture field, which can be written explicitly as:

d3p 1 —ip-x t ipx
outx) = v GO S

In order to calculate expressions of the form in equation D.1, we could of course

(D.2)

z0=t—to

substitute in D.2 and chug away with brute force. However, there is a much
simpler way to calculate these expressions, which we can see by considering a
form that is easily generalized!. First we note that we can make a decomposition

of ¢7(x), into positive and negative frequency components, that is

¢1(z) = ¢ (x) + ¢7 (v), (D.3)

where

. d3p 1 —ipx. — o dgp 1 ip-T
(b?(.l’) _/(27_(_)3 \/Eape ) ¢I (I‘) _/(27_‘_)3 \/ma’;r)e+ : (D4>

This decomposition is useful, as we can now exploit the fact that

¢1(2)|0) =0 and (0] ¢y (x) = 0. (D.5)

Now we consider the case 3 > z,

!The outline of Wick’s Theorem presented here essentially follows that given by Peskin and
Schroeder [85].
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T{r(x1)¢r(22)} = @1 (x2)07 (x1) + ¢f (w2)¢ (x1) + @7 (w2) @7 (1)
+ o1 (22) 97 (71)
= o1 (x2)d] (x1) + b (21)] (22) + by (22)0] (1)
+ ¢ (22)¢7 (1) + 67 (22), @1 (21)]. (D.6)

and similarly for 29 > 29,

T{o1(z1)d1(22)} = ¢ (21)¢7 (v2) + ¢F (v1)¢1 (v2) + @1 (21)¢] (v2)
+ o1 (21)97 (22)
= o1 (x1)0] (x2) + b (22)d] (1) + by (21)] (22)
+ ¢ (21)07 (w2) + [o7 (1), &7 (22)]- (D.7)

We now note that all non-commutator terms are normal ordered, that is all ap
are to the right of all aI), and therefore by equations D.5 have zero vacuum ex-
pectation value. We will therefore find it convenient to define the contraction of

two fields ¢ = ¢(z1) and ¢y = ¢(z2) as:

@2:{ (@7, 6] for 2t > 2} (D.3)

(63,011 for o > af

where we have dropped the I subscript, as contractions always involve interaction
picture fields. This definition still holds for non-adjacent fields. The time ordered

product of two fields can now be written as:

[
T{p1d2} = P12 + d16ho:? (D.9)

We can now generalize D.9 to arbitrarily many fields arriving at:

Wick’s Theorem.
T{p12...0n} = :0102... b, + all possible contractions: (D.10)

Proof. Motivated by the equation form we do proof by induction. Suppose D.10
is true for n — 1 fields. Now relabel our points such that 2 > x5 > ... 2% noting
that D.10 is invariant under relabeling. Applying Wick’s Theorem to the fields

¢ ... ¢, we obtain:

2Here we have adopted the convention of denoting the normal ordering of two fields ¢; and

@2 as :p109:
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T{¢1¢2 oo ¢n} = ¢1¢2 cee ¢n
= ¢1:¢5 ... ¢, + all possible contractions without ¢;:

= (¢ + ¢1):d2 ...}, + all possible contractions without ¢;:
(D.11)

First we consider the term without any contractions:

(67 +61):2- - It = ¢ 2. dnt + dr:62. .. Pu:
= ¢T¢2¢n + ¢1_¢2¢n

The ¢ cannot be moved inside the normal ordering as its not normal ordered

like ¢;, so we put it in normal order by commuting it with the other ¢.

¢—1i_¢2¢n :[ T>¢2¢n]+¢2¢n¢—f
=07 oo Gt (D] 0203 b+ DD B3 ]Pa P+

— —
=0 oo Pn + G10203. . n + P12tz Pnt . (D.12)

So now we have all possible terms with a single contraction of ¢; with another field
together with 1o . . . ¢,: which comes from part of the ¢; term from (D.11)
combining with the first term in (D.12). Similarly, replicating the procedure for
terms in (D.11) with a single contraction yields all possible terms with both that
contraction and the contraction of ¢; with one of the other fields. Performing this
procedure for all the terms present in (D.11) will therefore produce all possible
contractions of all the fields. O
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Appendix E

Transformation Properties of

Interpolating Fields

Here we outline the transformation properties of the interpolators given in Table
3.1. We first note that our requirement of the interpolators creating a colour
singlet state is satisfied in the meson case by the sum over repeated colour indicies,
and in the baryon case by the Levi-Cevita tensor €. The Levi-Cevita tensor also

ensures gauge invariance. To see this we consider the local gauge transformation

Y(z) — G (2)p (). (E.1)
Our baryon interpolator will then transform as
X(@) = G ()G ()G () (2)p" ()9 (2) ..., (E.2)

where we have suppressed Dirac indicies for brevity. We can now see that
G ()G ()G (z) = ¥ det [G(z)]
= Ve, (E.3)

as G(z) € SU(3). Hence we see that the presence of the Levi-Cevita tensor

ensures the gauge invariance of our baryon interpolators which take the form

X(@) = ePepiyhys .. (E4)
Of course our meson interpolators are clearly gauge invariant as
V(@) = Gla)p(x),  o(z) = ()G (2) (E.5)
ensures any interpolator of the form
X(z) = Ug(2)d(2) (E.6)

is automatically gauge invariant as G(x) € SU(3) is unitary.
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E.1 Lorentz Transformations

We know that quarks being spin 1/2 particles transform as

Ve — S(A) o (Az), (E.7)
where
S(A) = e mw ™ (E.8)
Similarly,
v — Y (Az)S(A) (E.9)

E.1.1 Meson Interpolators

Using the transformation properties in (E.7) and (E.9), we see that the meson

interpolators we've used which are of the form ¥g(x)y5¢§(z), transform as
X(@) = o (Az)S(A) 10 (15)apS () gty (Ax). (E.10)
Then using the properties
Y5 S(A) "Ly = et (159" 75) and V5ot s = ot (E.11)
we can see that

S(A)1S(A) = elme™ qgemim ™ = A 2eiwn oy ot
—= 7562'(“)#7/(’750#”’75)efiwl“’o-#u
= 7S5(A)71S(A)

and hence our meson interpolators transform as a scalar under Lorentz transfor-

mations. That is,

X() = U (@) (15)asth (). (E.13)

E.1.2 Baryon Interpolators

We now perform a similar analysis for the terms of our Baryon interpolators x,,(x)

that are of the general form

Xn(2) = e [a” (2)(T1)apts ()] (T2)yotts (). (E.14)



E.1. LORENTZ TRANSFORMATIONS 97

Under the Lorentz transformation (E.7), the baryon interpolator (E.14) trans-

forms as

Xn() = €[0S (Mo (T1)asS (A) o] (T2)nsS (M) 55, (E.15)

where we have supressed space-time indicies for clarity, and are aiming to con-
strain the interpolator to be Lorentz covariant. We first turn our attention to the
term in the square brackets, the Dirac scalar. Here we have the term (STT',S)y 5.
We then observe that

STC = O te im0
= CC" (1 = iwu o™ + (—iwy,o™ ") +...)C
_ Cefiw#,,CU“”TCT

_ Ciwuya‘“’
=CS™, (E.16)
where we have used properties of the charge conjugation matrix C' from Appendix

B, and
Co"TOT = —ghv. (E.17)

Then using (E.12) together with
S() S (A) = A, (E.15)

we can see that we want I'y — CT';, where I'; can be I, 5 or in the case of spin
3/2 baryons 7,. We also note in (E.15) that as

[s,5] =0, (E.19)

(which can be shown using {73, 7,} = 0 from Appendix B), we can pull S(A)sy to
the front if 'y = 75 (or of course I). Tt is therefore sufficient to use I'y = 5 or I.
We can now consider explicitly the Lorentz transformation on our interpolators.

For the octet baryon interpolator terms

1

Xy () — Eeabc (Ve (A7) S(A)aa (C5)asS (M) sty (Az) | S (A) iy (Az).
(E.20)
Then using (E.16) together with (E.19), we can see that
1
X () = Eﬁabc [va" (Az)(C5)astp(Az)| S (A) gyl (A)

= S(A) gy Xy (A1), (E.21)
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as the diquark in brackets is a Dirac scalar, and hence the octet baryon interpo-
lators transform like spinors. Similarly, for the A decuplet baryon interpolator

we have

++ 1
Xﬁn,:& - Eeabc WZ/ (Al’)S(A)aa/ (C'Vu)aﬁS(A)Bﬁ’wg’ (A‘T)] S(A)nn’wg’ (Ax)
1
= EA”# e [ (Az)(C)wp 0y (Ax)] S(A)y i (Ax)
ATT

= AV,U, S(A)nn’ Xl/,r]’73 (E22>

where we have made use of (E.16) together with (E.18). Of course A”, is the
Lorentz transformation for four-vectors, and therefore our A " interpolator trans-

forms as a vector times a spinor under Lorentz transformations.

E.1.3 Two-Particle Interpolators

We now repeat the above with our two-particle interpolators which have terms

of the general form

Xy () = %E“bc [va" (@)(Cs)aps ()] 1 (2) [95 () (5) 505 (2)]. (E.23)

Under a Lorentz transformation y,(z) then transforms as

Yol) — \if (12 (A2)S(A) oot (C5) s S () 0 (A S(A) % (A)

2
X [1/7?’ (Ax)S<A>(;’(1S (75)5pS<A>pp’wg/ (A.T})]
= S(A) gy Xy (M), (E.24)

where we have made use of (E.12), (E.16) and (E.19). The two-particle interpo-

lators therefore transforms as a spinor under Lorentz transformations.

E.2 Parity

Under a parity transformation the quark fields ¢(x) transform as

Y(x) = P(a)PT = y00(@), (E.25)

where T = (9, —). Similarly,

b(x) = PY(x)Ph = 4 (&) 0. (E.26)
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Applying these transformation rules to our meson interpolator ¥ (x)ys1(z) we

obtain

X(x) = P(B)1075700(E) = —(E)59(F), (E.27)
as {7s,7.} = 0 and of course 7§ = I (see Appendix B). Our meson interpola-
tor therefore transforms as a pseudo-scalar. Hence, as our meson interpolator
transforms negatively under parity and as a scalar under a Lorentz transforma-
tion, it has the correct transformation properties for the J* = 0~ states. Sim-
ilarly, applying the transformation rules to our octet baryon interpolator terms
x(z) = [0 (2)(Cys)¥(x)]¢(x) used in Table 3.1 we find (suppressing colour and

Dirac indicies in addition to flavour for clarity)

X(@) = [(0)" (@) (Crs)70% ()| 10 (7)
= [T (@) (Cys)(2)] 10t (7), (E.28)
as 70C757% = Cs (once again see Appendix B). However, our decuplet A:;f

interpolator contains a Lorentz index. Therefore we consider,

A %eabc ($7* (@)1 Cy08" (@) 100" (&), (E-29)

separately for the case
p=0 = %Cy7=-Cy, (E.30)
and
p=1 = %Cvv% = Cv,.. (E.31)
Substituting the two cases into (E.29), we see that our interpolator transforms
as a pseudovector under parity.

Our multi-particle interpolators in (3.19), (3.21) and (3.22) has each term of the

form

X'() = [ (2)(Cs)v (@) (@) (V(2)15(2))
= x"(@)x" (v), (E.32)
where xZ(x) and x(z) refer to the octet baryon term and meson interpolators

respectively that we have used above, and x’(x) denotes a single term of x(z). But

we have already seen how xZ(z) and x™ (x) transform under parity. Therefore

X (2) = x"(@)x™ (2) — —0x” (@)x" (@) = =X (7). (E.33)
We note the presence of the minus sign. This is of importance as it results in a
given parity state propagating in the opposite Dirac quadrant of the correlation
function, as compared to an interpolator that transforms without the sign. This

was observed in section 3.1.
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Appendix F

Correlation Functions

The two-point correlation functions for the five-quark operator proton, A** and
A interpolators, with an arbitary set of v-matrices, before imposing isospin sym-
metry are presented here. We denote the NK-type correlation function as G2 to
distinguish it from the pure flavour singlet correlator which is denoted Qé\l. In
addition, the maximally canceled two-point function for the flavour singlet A is
presented here rather than in the text due to its size, and is denoted gﬁ . We
also demonstrate the equivalence of various two-point functions after imposing

isospin symmetry, and at the SU(3) flavour limit.
F.1 Two-Particle Proton Correlation Function

- Y
gg(t,m _ Ze szeabCEabc |:
T

— AT5D* (2, 0)(7I5y0) Tr [T D (2, 2)T'5
x U (2,0) (vl 170)" D" (0,0) (vl 7o) U (, 0)]
+ 479D (2, 0) (Yo '§y0) Tr [T D¥ (2, 2)T'5
x U (2,0) (3T 570) D (0,0) (0T fr0) U (2, 0)]
+ 4Ty D (x,0) (70Fh0)Ue“IT (x, O)FSTDbeT (z,2)I'T
x U (,0) (70 570) D (0,0) (30 by0)
— AT, DY (2, 0) (4ol 70) U (2, 0)T, D* (, 2)T;
x U (x,0)(10I570) D7 (0, 0) (oI $70)
+ ATy Dz, 2)T5U (2, 0) (70D 70) T DY (0, 0) (oI o)
x U (x,0)0'1D% (z,0) (v 70)
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— 4T, D (, 2)T3U (2, 0) (oI 70) D (0, 0) (oI }0)
x [ (m 0)Iy DY (z, 0)(70F270)
— 4T, DY (2,0) (vl 170) U (x, 015 D" (0, ) (0L Sy0) "
x U (2,0)T', D" (z,0)(7l570)
+405D% (2,0) (YT T70)U*” (2, 0)T1 D™ (2, 0) (0T §0)
x Tr [FgUee (x, O)(70F3%)De/e(0,x)]
— ATy D (z, 2)T3U (2, 0) (7ol 7o) T DY (2, 0)TT
x U (z,0) (vl k0) D7 (0, 0) (oI }y0)
+ 4Ty D (x, x)FgUee (x, 0)(70F370)D” (0, 0)(70F270)
x Tr[T1 DY (2, 0) (v Tyo) U (x,O)}
+ 405D (z, 0) (vl §70) Tr [T DY (2, 0) (v0T {70
x U (2, 00TT D" (0, ) (vl §70) U (x,0)]
— 4T, D (x, O)(’yOFQ’yO)Tr [F DY (x, 0)(70F170)
x U (2,0)] Tr [[3U° (,0) (v $70) D*(0, )]
— 2T, D (2,0) (701 §70) D (0, 0) (oI {0) U (, 0)T'§
x D" (2, 2)TTU (2, 0) (70T 0)
+ 205 D% (2, 0) (3T $y0) DY (0, 0) (3T {70) U (w, 0)T,
Dbe(x x)FgUec (z, 0)(70F270)
+ 20, DY (2, 0) (v 70) U (2, 0)TE D*" (2, 2)TT
x U (x,0)(yoT'§70) Tr [(30T70) D (0,0)]
— 205 DY (2, 0) (4ol 70) U (, 0)T; D*(, 2)T
x U (2,0) (7T }0) Tt [(10T570) D¢ (0, 0)]
+ 20, D%z, 2)T5U (2, 0) (70D 70) T DY (0, 0) (v o)
x DY (z,0)TTU (z,0)(voI0)
— 2Ty D*(2, 2)T3U (, 0) (oI bo) Tr [T
x D" (x,0) (70T §70) D (0,0) (T 7o) U™ (2, 0)]
— 25D (,0) (30T 7o) U (2, 0)TF D" (0, 2) (vl $y0) "
x D" (2, 0)TTU* (,0) (T §0)
+ 20, DY (2,0) (3T 190) U (2, 0)T1 D™ (2, 0) (7oL o)
X Dele(O x)FgU“ (ZE,O)(’70F2’70)
— 20, D (z, 2)T3U (, 0) (7ol 7o) DY (2, 0)TT
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x U (x,0)(voT'§70) Tr [(30T70) D7 (0,0)]
+ 205 D% (2, 2)T3U (, 0) (oI hy0) Tr [T
x D" (2,0) (3D }70) U (2, 0)] Tr[(70L 7o) D (0, 0)]
+ 205D (,0) (30T 370) D7 (0, ) [3U (2, 0) (v [70) "
x D" (2, 0)TTU (2, 0) (7T o)
— 205D (x,0) (oI 570) D“(0, 2)T3U (2, 0) (70T 70)
x T[T DY (2,0) (3T 170) U (2,0)]
— 20, D% (2,0) (7L 170) U (0, 0) (oL 5y0) " U (2, 0)T'y
x D¥(x,2)3U° (,0) (v ko)
+ 20, DY (2, 0) (v 70) U (2, 0)TE D" (2, 2)TT
x U (,0) (90T 570) U (0,0) (oI hy0)
+ 205 DY (2, 0) (7T T 70) U™ (0, 0) (o iy0) TU” (2, 0)TE
x D' (a, 2)I U (x,0) (10T o)
— 20, DY (2, 0) (o 70) U (2, 0)TT D" (2, 2)TT
x U (2,0) (70l y0) Tr [(30T10) U< (0,0)]
— 20, DY (2, 0) (4ol iv0) U (z,0)1 D*(z, )T
x U (2,0) (3T §10) U (0,0) (voI570)
+ 20, D (2, 0) (v T70) U (z, 0)Ty D" (a, 2)T's
x U (,0) (7o'} %)TT[(%F %)U(0,0)]
+ 2y D(x, x)FgUec (z,0) ('yOFQ’yO)Tr [Fl
x D (x,0) (3T }70) U (0,0) (vl §r0) U (2, 0)]
— 20, D (z, 2)T5U (2, 0) (7ol 7o) DY (2, 0)TT
x U (,0)(%I5%) U (0,0) (70T $70)
— 2Ny D (x, l’)FgUee (z, 0)(70I‘370)U” (0, 0)(70F170)
x D" (2,0)TT U (2, 0) (oI b0)
+ 20, D (z, 2)T5U (2, 0) (7ol 7o) T DY (2, 0)TT
x U (2,0)(3I0) Tr [(9T570) U (0, 0)]
+ 2T, D (x, 2)D3U (2, 0) (7T ko) U (0, 0) (7o h0)
x Tr[D T DY (2,0) (70T 7o) U (x,O)}
— 219 D% (2, 2)T3U (, 0) (oI ho) Tr [T
x D" (,0)(vl}70) U™ (z,0)] Tr [(vl 7o) U< (0, 0)]
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— 205U (2, 0) (7T 10) " D7 (0,0) (0T 7o) " U (, 0)T'y
x D (z, 2)Ts D (z,0)(v0k0)
+ 215U (2, 0) (oI0) DY (0, 0) (v To) U™ (2, 0)T
x D" (2, 2)T3D* (x,0) (70T §0)
+ 205U (2, 0) (vl 70) " D" (2, 0)TT DY (2, 2)TT
x U (2,0)(7I570) D7 (0,0) (vl 5 7o)
— 2050 (2, 0) (90I"70) D (0, 0) (oI 70) Tr [Ty
x Dz, 2)T3 DY (2,0) (ol j70) U (2,0)]
+205U° (2,0) (0l 70) " D7 (0, 0) (vl o) U (2, 0)Iy
x D (x,0)(vT o) Tr [D3D%(z, z)]
— 205U (2, 0) (70T ko) DY (0, 0) (70Tl 40) U (2, 0)T
x D* (z,0) (oL} y0) Tt [D3D%(z, z))
— 205U (2, 0) (7T }90) " D? (2, 0)T5 D7 (0, ) (v $y0) "
x U (2,0)I'1 D™ (x,0) (oI }y0)
+ 205U (2, 0) (30T §70) D““(0, )3 D? (22, 0) (30T | 70)
x U (2, 0)' D™ (,0) (0T o)
— 205U (2,0) (vl [70) " D*" (, 0)TT U (, 0) (voT §0)
x D“?(0,0) (7ol 0) Tr [D3D%(z, z))
+ 2T,U° (, 0) (7o lk0) D (0, 0) (7o Do) Tr [rl
x DY (2,0 (7T 1o)UY "z, 0)] Tr[T3D*(x, z)]
+ 205U (2, 0) (voI 7o) D" (2, 0)TTU (2, 0) (oI 50)
x D(0,2)3D° (x,0) (oI 0)
— 205U (2, 0) (Y01 70) D“*(0, 2)T's D (, 0) (oI 30
x Tr[[ DY (x,0) (7T 1r0) U (2,0)]
= ToU (x,0) (oI 170)" D" (0,0) (0T §0) " D™ (2, 0)1F
x DY (a, 2)IT U (2,0) (70T o)
+ U (2,0) (30T y0) Tt [T D (, )Ty
x D (2,0)(v0I570) D7 (0, 0) (T 1)U (x,0)]
+ DU (2, 0) (voI T 70) " D (2, 0)TT D*" (2, 2)T'T
x U (x,0) (oI by0) Tr [(70T70) D7 (0, 0)]
— ToU (2,0) (vl 5y0) Tr [T D" (2, )Ty
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x DY (2,0)(oliy0) U (x, 0)] T [(70F§70>De'e’(07 0)]
+ ToU (2, 0) (3T T70) "D (0, 0) (vl $y0) " D™ (, 0)TT
x U (z, 0)(70I‘270)Tr [FgDee(x,x)}
— DU (2, 0) (30T by0) Tr [T D% (2, 0) (70T §70)
x DY (0,0) (7o) U (2,0)] Tr [D3D(z, z)]
— DU (2,0) (90T {70) " D" (2, 0)T5 D" (0, 2) (voT§30)"
x D' (2,0)TU* (,0)(7I570)
+ DU (2, 0) (oI by0) Tr [T1D* (2, 0) (0T §70)
x D(0,2)T3D% (z,0) (7T 170) U (2,0)]
— DU (2,0) (7oL 170)" D™ (2, 0)TT U (x, 0) (vT'§0)
x Tr[T3D%(x,x)] Tr[(voT§y0) D (0, 0)]
+ FQUCC/(x,O)(%FQWO)Tr [F Dbb/(ac O)(%Fl%)
x U™ (z,0)] Tr [[3D*(x, )] Tr [ (voTky0) D (0, 0)]
+ LU (2, 0) (3T 70) " D" (2, 0)TT U (2, 0) (30T by0)
x Tr [FgDee (z, O)(%F?)%)De/e(o,xﬂ
— U (x, O)(’yOszyO)Tr [FlDbb/ (z, 0)(70F1’yo)
x U™ (2,0)] Tr [[3 D (2, 0) (oL 570) D(0, )]
— ToU (2, 0) (vl §y0) Tr [Ty D" (2, )T
x D% (2,0)(7I150) U (0,0) (vl h0) U (2,0)]
+ DU (2, 0) (4ol i90) T DY (2, 0)TT DY (2, 2)I'T
x U™ (2,0) (7T $0) U (0,0) (T 1y0)
+ 10U (2, 0) (30T 5y0) U (0, 0) (30T} 70) " D™ (2, 0)T5
x Db (z, x)FTU‘w (z, 0)(70F2fyo)
— DU (x,0)(vol0) T DY (2, 0)TT D" (2, 2)I'T
x U (x,0)(7I'by0) Tr [(vI§70) U< (0, 0)]
— DU (2, 0) (%I 5%0) U (0, 0) (o §0) Tr [Ty
x D%z, 2)T3 DY (2,0) (D7) U (2,0)]
+ ToU (2, 0) (vl §y0) T [Ty D" (2, )Ty
x D% (2,0) (vl 150) U™ (x,0)] Tr[(vI k) U (0,0)]
+ ToU (2, 0) (305 y0) T [T D (2, 0) (70T T 70)
x U (0,0) (vl ko) U (z,0)] Tr [[5 D(x, )]
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/

— ToU (2, 0) (0L 170)" D™ (2, 0)TT U (2, 0) (0] §0)
x U (0,0) (7o 270)TT[F3D66(9U7$)}
— ToU (z,0) (vl ko) U (0,0) (vl 1 70) " D*" (2, 0)T]
x U (z,0) (v ) Tr [D3D%(z, z))
+ U (2,0) (901 70) " D" (2, 0)TTU (, 0) (70T o)
x Tr[[3D%(x, )}Tr[(%F Y0) U (0, 0)]
+ DU (2, 0) (%I y0) U (0,0) (30T o) Tr [Ty
x D" (2,0)(570) U™ (2,0)] Tr[[3 D (x, x)]
— ToU (2, 0) (7T by0) Tr [[1 DY (2, 0) (40T T0)
x U™ (z,0)] Tr [[3D(x, )] Tr[ (3T 570) U (0,0)]
— 205U (2, 0) (70T 50) D™ (0, 0) (v Tr0) U™ (, 0)T
x U (z,2)T1D" (z,0) (7l by0)
+ 205U (2,0) (30T 190) D (0, 0) (oL o) U (2, 0)IF
x U (2, 2)T'1 D" (z,0) (7l 570)
+ 205U (2, 2)T5U* (2, 0) (30T T70) "D (0, 0) (vl $y0)”
x U (2,001 D" (x,0) (oI by0)
— 205U (2, 0) (70T 170) T DY (0, 0) (70T ky0) 'U” (2, 0)Ty
x DY (z, O)(VOFﬂO)Tr[FgUee(x,x)]
— 205U (2, 2)T5U° (2, 0) (voT§0) D7 (0, 0) (0T |70)
x U (2, 0)T' D™ (2, 0) (10T o)
+ 205U (2, 0) (40T 50) DY (0, 0) (4o i0) U (2, 0)1y
x DY (x, 0)(70I’270)Tr [TgUee(:c, x)]
+ 205U (2, 0) (70T 570) D (0, 0) (70T 5 70) T [T
x D" (2,0) (5 y0) U (2, 0)TT U (2, 2)]
— 205U (2, 0) (oI 170) T D™ (2, 0)TTU (1, )T
x U (z, O)(’Yors”Yo)De/Cl(Oa 0)(70@70)
— 20U (z, 2)T5U (2, 0) (7ol ino) T D" (2, 0)TT
x U (x,0) (70l §70) D7 (0,0) (70l 1y0)
+ 20,0 (2,0) (30T 90) D" (2, 0)LT U (z,0) (vaT§v0)
x D(0,0)(vl}y0) Tr[T3U (2, 2)]
+ 2T, U (2, 2)TsU° (2, 0) (70 570) D (0, 0) (7o h0)
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x Tr [T, DY (2,0) (3T 7)) U (2,0)]
— 215U (2, 0) (30T §70) D' (0, 0) (oI by0) Tr [Ty
x DY (z,0) (o} ~o) U (x,O)}Tr[FgUee(x,x)}
— DU (2,0) (vl by0) Tr [T1 D™ (2, 0) (0T 7o)
x DY (0,0) (3T 170) U (2, 0T5 U (x,2)]
+ DU (2,0) (3T [70) " D" (0,0)(voT o) " D™ (, )T
x U(, 2)T3U (z, 0) (oI o)
+ U (2, 2)T5U (2,0) (vl |50)" D" (0,0) (0T §0)”
x D" (2, 0)TTU (2, 0) (o bv0)
— ToU (x,0) (70T 170)" D" (0, 0) (v0T§0) " D (, )T
x U (x,0) (vl So) Tt (03U (z, x)]
— DU, 2)3U° (2, 0) (70T 570) Tr [T
x D' (z,0)(v570) D (0, 0) (v T70) U™ (,0)]
+ DU (2,0) (30T 7o) Tr [T1.D* (2, 0) (voT 50
x DY (0,0) (7T ) U (2,0)] T [D3U (2, )]
+ DU (2, 0) (T y0) T [FlDbb/ (2,0) (70 0)
x U (2,00T5U (2, 2)] Tr[ (10T $70) D (0, 0)]
— DU (2,0) (70T 10) T D" (2, 0)TT U (2, 2)T
x U (2,0) (vl b70) Tr [(voT$70) D (0, 0)]
— ToU(x, 2)T5U (z, 0) (oI iy0) T D" (z,0)0F
x U (2,0)(vI'0) Tr [(voT§70) D¢ (0,0)]
+ ToU (x,0) (vl 170) " D" (2, 0)TT U (2, 0)(70T'§0)
x Tr[T3U(x, 2)] Tr[(vliy0) D (0,0)]
+ DU (2, 2) 03U (2, 0) (70T 5y0) Tr [T
x D (,0) (vl 1)U (2, 0)] Tr [(0T570) D7 (0, 0)]
— ToU (2,0) (oI 50) Tr [T D" (2, 0) (70T §70)
x U (x, )}Tr [FgUee(x x)}Tr[(%Fg%)D” (0, O)}
— DU (2,0) (30T 0) U (0, 0) (0T {0) " D" (, 0)TT
x U (2, 2)T3U° (x,0)(vI50)
+ LU (2,0) (7T 570) U (0, 0) (0T o) T [F
x D" (,0) (vl 7o) U (2, 0)TTU" (x, )]
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+ DU (2, 0) (Yo hy0) Tr [T4 D™ (2, 0) (30T} 0)
x U“™"(0,0) (vl 5y0) U (2, 0T U (2, )]
— 12U (2,0) (0l '§70) Tr [Flpbb (,0) (7'} 70)
x U (2, 0T U (2, 2)] Tr[(30T5r0) U7 (0, 0)]
— DU (x,0) (4ol 70) T D" (x,0)TT U (x, 2)Ts
x U (,0)(7%I50) U (0,0) (val'§ o)
+ DU (2, 0) (oI v0) T D (2, 0)TTU (2, 2)Ts
x U (2,0)(vT570) Tr [ (YT §r0) U< (0, 0)]
+ DoU(, )30 (2, 0) (oL hyo) Tr [Ty
x D" (2,0) (3T T70) U (0,0) (vl $y0) U (x,0)]
— DU (2, 2)T5U (2, 0) (oL i) T DY (,0)TT
x U (2,0)(vI570) U (0,0) (voI'by0)
— DU (2, 0) (oI y0) T ¥ D" (2,0) (70 ~0)
x U (0,0) (ol §70)TU" (2, 0)] T [T5U (2, )]
+ DU (2, 0) (30l 7o) Tr [T D™ (, 0) (oI | 70)
x U (,0T3 U (0,2) (vl %) U (,0)]
+ DU (2,0) (3D 7o) D (2, 0)LT U (, 0) (0L y0)
x U (0,0) (oI 'bo) Tr [[3U° (2, )]
— ToU (2, 0) (7L 70)" D" (2, )T U (2, 0) (0L o)
x U“°(0,2)T3U° (2, 0) (vl 7o)
— DU (2, 2)T3U° (2, 0) (30T 570) U (0,0) (T |70)"
x D" (2, 0)0TU (2,0)(vol o)
+ DU (z, 2)T5U (2, 0) (oI Iv0) T D" (2, 0)IF
x U (2,0) (I 50) Tr (4T 70) U< (0,0)]
+ U (2, 0) (3L o) U (0,0) (0T 170) " DP" (2, 0)T]
x U (z,0) (v ) Tr [D3U(,2)]
— DU (2,0) (70l %70) U (0, 2)T5U (2, 0) (T | 70) "
x D" (2,0)T7 U (2, 0) (70T} 0)
= ToU (x,0) (70T 170)" D" (2, 0)TT U (2, 0) (70T §0)
x Te[T3U(x, 2)] Tr[ (vl $70) U (0, 0)]
+ U (2,0) (v 1 70) "D (2, 0)IF U (2, 0) (0T o)
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x Tr[l sU (2, 0) (7050 U (0, )]
+ DU, 2)T3U° (2, 0) (YT 530) U (0, 0) (0T by0)

x Tr[01D" (2,0) (3T 0) U (2, 0)]
— ToU (2, 2)T3U° (2,0) (vl by0) Tr [Ty

x DY (,0) (3T 170) U (2, 0)] Tr [(3T§70) U (0, 0)]
— ToU (2,0) (v 50) U (0, 0) (0T} %)Tr[Fl

x DY (z,0) (7o) U (x, 0)] Tr[TsU(z, z)]
+ DU (2, 0) (I o) U*(0, 2) LU (2, 0) (0T by0)

x Tr [T DY (z,0) (3T 170) U (2,0)]
+ DU (i, O)WOFQ%)TY[F D" (2,0) (70l 70)

x U (2, 0)] Te[DsU (2, )] Tr [ (70T 70) U (0, 0)]
— DU (2,0) (30T '§0) Tr [T D™ (2, 0) (oI 1 70)

x U™ (2,0)] Tr [[3U° (z,0) (7T o) US(0, )]
(F.1)

F.2 Two-Particle A Correlation Function

i Y
Qé\(t,ﬁ) _ Ze szeabceabc |:
T

+ DU (2,0) (7l'1%0) " DY (0, 0) (705%0) S (2, )15

X U“T(x, x)FlDbC (x,0)(vI'2v0)
— DU (2, 2)T35° (2, 0) (70 570) D (0, 0) (30T 170)

x U (2,0)I1D* (x,0)(70l'27)
— U (2,0)(vol1790) T D™ (2, 0)TTU (2, )T

xS (2,0)(70I57%0) D7 (0,0) (v0I'270)
+ DoU (2, 2)T35° (2, 0) (30T'370) D (0, 0) (T 270)

x Tr[[y DY (z,0)(7T170) U (,0)]
— U« (x,0)(~vol'97y0) Tr [FlDbb/(:c, 0) (vl 170)

x U (0,0)(v00570)7 5" (z,0)TLU*" (, 7)]
+ DU (2,0) (vol170) " D" (2, 0)TTU* (2, )T

xS (2,0)(7I'570) U (0,0) (vI'270)
+ DU (w, 2)T35° (2, 0) (10T '570) U (0, 0) (0T 170) "
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x DM (2,0)T7U* (2, 0)(v0T'270)
— ToU (2,0)(v0T'17%)" D" (2, 0)TT U (x,0) (vaT'20)

x Tr [FgSee/(x, 0)(7ol370) U (0, )]
— U%(x, x)rsseel (z, O)(’Yors”Yo)UelC/(Oa 0)(70I'27%0)

x Te[[1 DY (2,0) (30T 190) U (x,0)]
+ DU (x,0)(~vol'27y0) Tr [FlDbb/(x, 0)(vol'170)

x U (2,0)] T [[35° (z,0)(70T370) U (0, )]
—T9D% (2, 0)(voT'270) Tr [T D" (2, 2)T'3

x 8¢ (2,0)(70L'57%) D" (0,0)(L170) U™ (2, 0)]
+ Ty DY (2,0) (oT170) U (2, 0)T1 D (, 2)T's

x 5% (z,0)(1I'57%) D (0,0) (YoT'2%0)
+ Ty D (2, 2)T'35° (2, 0) (%L370) D" (0, 0) (oI '170)

x U (z,0)T1.D" (z,0)(7T270)
— T, D (2,0)(7'1790) U (2, 0)T'1 D" (2, 0) (0] 270)

x Tr [F;),See (, )(70F370)Dee(0 a:)}
— IaD*(x, 2)T'35° (x,0)(10I'370) D (0, 0) (oI 270)

(

/

x T[T DY (2,0) (3T 17) U (z,0)]
+ Ty D% (2, 0)( OFQ’yO)Tr[FlDb/(x, 0)(7oT"'170)
x U (z,0)] Tr [[35° (z,0)(70T370) D<(0, z)]
+ T2 DY (,0) (yol'170) U< ( 10)(0T'370)" 5% (,0)T§
x DY (z ,:E)FTU“C (2,0)(v02v0)
— T2 DY (x,0)(30I'170) U (2, 0)T1 D™ (, )5
x5 (x,0)(70T'570) U (0,0) (0T '270)
— Ty D%z, 2)T'35° (2,0) (%0l 570) U (0,0) (ol170) "
x D" (2, 0)ITU (2, 0)(70I'2%)
+ Do D (2, 2)T35° (2, 0) (70I'370) U (0,0) (30T 270)

x Tr [ DY (,0)(yT170) U (2,0)] (F.2)

1 it 1300
é\ (tym — E e zpz€abc€abc |:
z

+ T55% (2, 0)(vol270) Tt [T1 D™ (2, 0) (voT'170)
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10T

x U (0,0)(vT'370)TU" (2, 0)TT U (z, z)]

— 55 (x,0)(70T'27%0) Tr [[1. D™ (,0) (70T 170)

x U (2,005 U (2, 2)] Tr[(7T370) U (0, 0)]

— 18 (2, 0)(vI'270) Tr [T1D™ (2, 0) (y0I'170)

1 1T

x U“"(0,0) (ol s70)TU" (2, 0)] Tr [[5U° (2, )]

+ 155 (2, 0) (70I'270) Tr [T D™ (, 0) (voT'170)

x U (2, 0)TTU" (0, 2) (3 T570) TU" (2, 0)]

+ 25 (2, 0) (70T '270) Tr [[1. D™ (2, 0) (70T 170)

111

x U’ (z,0)] Tr[[5U(z, z)] Tt [(%FWO)UEIQI (0,0)]

— I35 (2,0)(y0I'2%) Tr [L1 D" (z, 0) (oI 170)

x U (2,0)] Te[T5U° (2, 0) (40D 570)U<(0, )]

+ 125 (2,0) (3T 1790) U (0,0)(0L'5%0) U (2, 0)IF
x U (z, )Ty D¥ (2, 0) (o 270)
— T55% (2,0)(7170) U (z,0)0EU*" (2, 2)Ty
x D" (x,0)(10T'270) Tr [(7T'370) U< (0, 0)]
— T28% (2, 0)(%I'170) U (0,0) (vl '570) " U (, 0)Iy
X Dbcl(aj, 0)(7v0l'270) Tr [FgUee(x, x)}
+ 25 (,0) (voT'190) U (2, )5 U (0, 2) (70T '5%)”
x U (2,0)T, D" (z,0)(vol270)
+ 125 (2,0) (3T 190) U (2, 0)T1 D™ (, 0) (70T 2%0)
x Tr[D3U(z, z)] Tr [(voL'370) Ue (0, 0)]
— 155 (,0) (vl'1790)U*” (2, 0)'1 D™ (z,0) (v0T'20)
x Tr[T3U (z,0)(7I'57) U (0, 7)]
+ T55% (2,0) (Yo 170) D (2, 0)TT U (2, )T
x U (z,0)(7I'570) U (0,0) (vI'270)
— T55% (2,0)(voT170) D™ (2, 0)TT U (2, )T
x U (x,0)(y0I270) Tr [(%Fzﬂo)UG,el (0,0)]
— T28%(2,0)(l'19%0) D™ (2, 0)IT U (,0) (0I'370)
x Ue'e (0,0)(vol'2v0) Tr [FgUee(x, m)]
+ 25 (2,0) (voT'190) D™ (2, 0)TTU (2, 0) (0T 370)
x U(0, 2)D3U° (,0) (70T 270)
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/

+ 28 (2, 0) (90T'170) D™ (2, )T U (2, 0) (0T 270)
x Tr[D3U(z, )| Tr [(’}/Org’}/o)Ue,e (
— T28%(2,0)(0l'19%0) D™ (2, 0)IT U (2, 0) (01" 2%0)
x Tr[T3U (z,0)(yI'57) U (0, 7)]
+ T55% (2, 0) (vl ay0) Tt [FlDbe, (x,0)(v0I'370)
x DY(0,0)(3190) U (2, 0)TEU*" (2, )]
— T55% (2, 0)(vol270) Tr[T1.D* (, 0) (70 370)
x DY (0,0)(vT170) U (2,0)] T [D3U (2, )]
— 25 (,0) (yT'2%0) Tr [[1. D™ (2, 0) (v0I'170)
s U (2, 00U ()] T [(30T'430) D7 (0,0)]
+ 55 (2, 0) (30T '270) Tr [[1 D™ (2, 0) (70T 170)
x U (x, 0)] Tr[TsU*(z, )] Tr [(70F3VO)D6/6/ (0,0)]
+ 158 (z,0) (T 170) U (2, 0)TEU*" (2, 2)Ty
x D™ (x,0)(70I'370) D (0,0) (v0I'270)
— 155 (,0)(vT'190)U*" (2, 0)T1D* (,0) (70T 370)
x D (0,0)(yol'270) Tt [D3U°(z,2)]
— 55 (2,0)(7T170) U (z,0)TEU*" (2, 2)Ty
x D" (x,0) (70 '27%0) Tr [(70I'370) D¢ (0, 0)]
+ 125 (2,0) (3T 190) U (2, 0)T1 D™ (, 0)(v0L'2%)
x Tr[T3U% (2, 2)] Tr[(vI'370) D¢ (0, 0)]
+T25% (2,0) (7l'170) D" (0,0) (70T '370) " D™ (, 0)I']
x U (x,2)03U° (,0)(v0T270)
— T58% (2,0)(%I'19%) D" (0,0)(70T'57%)" D*" (,0)I']
x U (x,0) (vl 2v0) Tt [D3U°(z, 2)]
— T8 (2,0)(7ol'170) D™ (2, 0)TT U (2, 2)Ty
x U (x,0)(70l'2%) Tr[ (70T 570) D (0, 0)]
+ 158 (2,0) (3T 190) D™ (2, 0)TTU (2, 0) (0T 2%)
x Tr[D3U(z, )] Tr [(VOF;WO)De/eI(O, 0)]
+ T55% (,0) (vT'37%) S (0, 0) (o T2y0) Tr [Ty
x D" (2,0)(50170) U (x,0)TT U (2, 2)]
— 25 (2,0) (70I'370) S (0, 0) (YT’ %) Tr [Ty

/

0,0)]
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x DY (z,0) (7ol 170) U™ (x, 0)] Tr[T5U*(z, x)]

— 55 (2, 0) (7T '270) Tr [[1. D™ (,0) (70T 170)

x U (z,0)TTU*" (x, )] Tr[(vT'37%) S (0, 0)]

+ FQSCC/ (.ZE, O)(’yoFg’yO)Tr [FlDbb,<£L', 0) (")/Orl")/o)

113

x U (2, 0)] Te [T U (2, 2)] Tr [ (70T570) S (0, 0)]

+ 125 (,0)(6D370) S (0,0) (3ol 170) U™ (x, 0)T'F

x U (z, )1 D" (z,0)(voI270)
— 5% (2,0)(7T'370) S (0, 0) (%o l170) U™ (2, 0)Ty

x Db (x,0)(voI'27y0) Tr [FgUee(:z:, x)}
— 55 (2,0)(7T170) U (x,0)TFU*" (2, 2)Ty

x D" (,0)(vl'270) Tr [(oL'570) S (0, 0)]
+ T55% (2,0) (7T 170) U (2, 0)T, D* (2, 0) (70T270)

x Tr[T3U (2, 2)] Tr[(7T'370) S (0, 0)]
+ 55 (2, 0) (70 370) 5 (0, 0) (voT'170) D™ (,0)I'T

x U(x, x)FgUecl (x,0)(vI'270)
— T55% (,0)(70'370) 5 (0, 0) (o1 70) D™ (, )T

x U (z,0)(v0l'270) Tr [F3U56($, :)3)}
— T35 (2,0) (7oL 170) D*" (2, 0)TT U (2, )T

x U (2,0)(70T'2%) Tr[(7T'57%)5 (0, 0)]
+ 25 (2,0) (y0T'190) D™ (2, 0)TTU (, 0) (70l 2%0)

x Tr[D3U(x, )| Tr [(70F370)Se/6,(0, 0)]
+ T2 DY (,0) (7I'170) U™ (0,0)(70I'57) U (2, 0)T§

x U (z,2)I'1.5% (z,0) (70l 270)
— T3 DY (2,0)(4170) U (z,0)TTU" (2, 2)T,

xS (2,0) (YT '270) Tr[ (YT 's70) U (0, 0)]
= T2 DY (,0)(3T170) U (0, 0) (70T 's70) U (, )T

xS (z,0)(yolyyo) Tr [D3U° (2, 2)]
+ T2 DY (,0) (yol'170) U (2, )T U (0, ) (vl 570) "

x U (x,0)01.5% (,0) (70 270)
+ T2 D% (2,0) (3T 190) U (z,0)I1S (2,0) (y0T'270)

x Tr[D3U(z, z)] Tr [(voL'370) Uee (0, 0)]
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— 2D (2,0)(yl'1790) U™ (2,0)T'18™ (2, 0) (voT'270)

x Tr[TU (2, 0) (70T 570) U (0, 2)]
+ oD (x,0)(voI'2y0) Tr [Fleb/ (x,0)(vI'170)

x U (0,0) (vl 370) U (2, 0)TT U (x, )]
— [y D% (2, 0) (70T '270) Tr [T15™ (2, 0) (voT'170)

x U (2, 0)TTU" (2, 2)] Tr[(7T370) U< (0, 0)]
— 5D (,0) (0T 270) Tr [[1.5™ (, 0) (voT'170)

x U“"(0,0)(v0l570)TU" (2, 0)] Tr [T5U (2, )]
+ T30 (,0) (70 270) Tt [Fleb/ (x,0)(voI'170)

x U (2, 0)TTU" (0, 2) (7T37%) U (2, 0)]
+ T D (2, 0)(yT270) Tr [T1.S™ (z,0) (70170

x U™ (2,0)] Tr [[3U (2, 2)| Tr[(v0D570) U (0, 0)]
— 2D (2,0) (v0l'270) T [[1.5™ (2, 0) (v0T'170)

x U9 (2,0)] Te[D3U° (2, 0) (40D 570) U< (0, )]
+ DD (,0) (700170) TS (2, 0)TTU* (2, 2)D

x U (2,0) (7T '570) U (0,0)(voT'2%)
— T3 D (,0)(7ol170) T S?" (2, 0)TTU* (2, 2)T5

x U (x,0)(700270) Tr [ (70T'370)U (0, 0)]
— T2 D (2,0)(vT'130)"S™" (2, 0)IT U (2, 0) (0T'370)

x U (0,0)(voI'2v0) Tr [FgUee(x, az)}
+ DD (,0) (700 170)TS?" (2, 0)TTU (2, 0) (4o I'570)

x U(0,2)TsU (,0) (10l '270)
+ Ty D (2,0) (4oL170) T S?" (2, 0)TTU (2, 0) (702 70)

x Tr[D3U(xz, )] Tr [(vgfgvo)Ue,e/ (0,0)]
— T2 D (2,0) (70T '1350)"S™" (2, 0)IT U (2, 0) (0T 2%)

x Tr[T3U (z,0)(7I'57) U (0, 7)]
+ 15D (2,0)(70L'370) D (0,0) (30T 170) U (2, 0)TF

x U (x,2)T15% (2, 0)(v0I'2%0)
— T2 D (,0) (v0I'570) D (0, 0) (vaT'170) U™ (, O)Ts

x 5% (x,0)(yol'yv0) Tt [D5U(z, z)]
—T3D% (2,0)(7l1790) U (z, 0T U (2, )Ty
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x 5™ (x,0)(70I'270) Tr[ (70T '370) D (0, 0)]
+ T2 D% (2,0) (3T 19%) U (z,0)I'1S™ (2, 0) (y0T'270)

x Tr[D3U(z, )] Tr [(Vofgyo)Dele/(O, 0)]
+ 5D (,0) (vL'370) D (0, 0) (yoI'2%0) Tr [Ty

x S (2,0)(yoT170) U (2, 0)TTU" (2, z)]
— 5D (z,0)(7I570) D (0, 0) (30T 270) Tr [Ty

xS (2,0) (5D 190) U (2, 0)] Tr [T3U (x, )]
— 3D (2,0) (70I'270) Tr [[1.5™ (2, 0) (70T 170)

x U (2, 0)TTU" (x,2)] Tr [ (voT'370) D (0, 0)]
+ 5D (,0)(YoT'270) Tr [[1.5™ (, 0) (voT170)

x U (2, 0)] Te[TsU (2, 2)] Tr[(70T570) D€ (0, 0)]
+ T2 D% (2,0) (v '570) D (0,0) (y0T'170) " S* (2, 0)T']

x U (x,z)[3U° (,0)(v0T270)
— 2D (z,0)(%I'570) D (0, 0) (0L 170) "S™" (2, 0)T]

x U (z,0) (vl 270) Tt [D3U° (2, 2)]
— Ty D (,0)(7ol170) T S?" (2, 0)TTU (2, 2)T3

x U (2,0)(v0l270) Tr[(70L370) D (0, 0)]
+ 2D (2,0) (vl '170)"S™" (w, 0)TTU (2, 0) (70T 2%0)

x Tr[D3U(x, )] Tr [(fyol“g,fyo)De/e/(O, 0)]
+ Dy DY (2, 0) (v T170) U (2, ) TE U (2, )T,

x S (,0)(7I'370)5 (0,0) (vl '2%0)
— Ty DY (2,0) (7T 170) U (2, 0)T15* (2, 0) (70T'370)

X SEIC/(O, 0)(7vol'270) Tr [F;;Uee(:t, ZB)}
— T3 DY (2,0)(4170) U (2, 0)TT U (2, 2)T,

xS (2,0) (Yo '270) Tr[ (v '570) S (0, 0)]
+ oD% (2, 0) (3T 170) U (2, 0)T1.8™ (2, 0) (7T20)

x Tr[D3U(z, )| Tr [(%F;ﬂo)Se/e,(O, 0)]
+ oD% (,0) (7o 270) Tt [Flsbe/ (x,0)(v0I'370)

x SY(0,0)(yol170) U (2, )T U (2, )]

— FgDCC/(x 0)(v0l'270) Tr [1" Sbe (z,0) (’70]_—‘3’)/0)

x S (0,0) (ol 170) U (x,O)]Tr[F3U66($,QI>]
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— T30 (2,0)(yT'270) Tr [T1.5" (2, 0) (7oT'170)

x U™ (z,0)TE U (2, )] Tr[(70T570)5¢¢ (0, 0)]
+ T30 (,0) (70 270) Tt [Fleb/ (x,0)(vI'170)

x U (x, 0)] Tr[TsU*(z, )] Tr [(’yof‘g”yo)Selel(O, 0)]
+ T2 D (2,0) (90T '170) """ (0, 0) (0T '370)"'S™"" (, 0)T']

x U (x,z)[3U° (,0)(v0T270)
— T2 D (2,0)(70T'1750) 'S (0,0) (0l '57) " 5™ (2, 0)T'T

x U (x,0) (vl 270) Tt [D3U°(z, x)]
—T3D (2,0) (70l 170) " S™" (2, 0)TTU (1, 2)Ts

x U (x,0)(70l2%) Tr[(7T'570)5° (0, 0)]
+ 15D (2,0)(v0l170)"'S™" (2, 0)LT U (2, 0) (70I'270)

x Tr[D3U(xz, )] Tr [(70F3’Y0)56/8/<0, 0)]
+ DU (x, ZZ’)FgUee/ (z,0) (70F370)U€la/ (0,0) (70T 170)"

x D" (2,0)T',.8* (2, 0)(70l27)
— DU (2, 2)T5U (z, 0) (voT170) D (2, 0)Iy

X S*(2,0) (YT '270) Tr[ (7T 's70) U (0, 0)]
— 12U (&,0)(3T570) U (0,0)(3T170) " D" (, 0)T,

X Sbc,(x, 0)(vol2v0) Tr [FgUee(x, x)]
+ DU (2, 0) (7T s70) U (0, 2)TsU (2, 0) (30T 170)

x D" (2,0)T1.5% (x,0) (vol'270)
+ DU (2,0) (vl'170) " DY (2, 0)01.8% (2, 0) (702 70)

x Tr[D3U(x, )] Tr [(fyol“gfyo)Uele/ (0,0)]
— DU (2,0)(v0L'170)" D" (2, 0)11S* (, 0) (yoT'27%0)

x Tr[[3U° (,0)(0I370) U (0, )]
+ DUz, 2)D3U° (2,0) (70T 370) U (0, 0) (0T 170) T

x S (z,0)TT D™ (2, 0)(voT'270)
— DU (@, @)T5U* (2, 0) (oL '170) "™ (2, 0)T
x D" (z,0)(oI'270) Tr[ (YT '570) U< (0, 0)]
— U (2,0)(7I'370) U (0,0) (voI170) " S™" (2, 0)T']

x D (x,0)(v0270) Tr [F3U€G(CL’, m)}
+ ToU (2,0) (30I'370) U (0, 2)TsU (2, 0) (0T '170)
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x " (2,0)I7 D (2, 0) (10T"270)

+ U (2, 0) (T 19%)" 8™ (,0)I] D™ (, 0) (70T 2%0)

x Tr[D3U(z,z)] Tr [(VOF;},%)Ue/e/ (0,0)]
= ToU (x,0) (voT'170) " S™" (2, 0)T] D (i, 0) (0T 2%0)

x Tr[T3U° (2, 0)(I'370)U(0, )]
+ DU (2, 2)T5U (2, 0) (Y0l 370) U (0, 0) (v0I'270)

x Tr[[18% (,0) (vl170) D™ (2, 0)]
— ToU (2, 2)T3U (2,0) (0T 2y0) Tr [Ty

x S% (2,0)(7L190) D (2, 0)] Tr [(vLs70) U< (0, 0)]
— DU (2,0)(70T370) U (0, 0) (yoT'yy0) Tt [y

x S (x,0)(7I170) D™ (2,0)] Tr[T3U (z, 7)]

+ ToU (2, 0) (7T '570) U“(0, 2) T3 U (2, 0) (voI'270)

X Tr[l“lsbb (z,0)(voT170) D™ (a:',O)}
+ ToU (z,0) (70T 970) Tt [T1S™ (2, 0) (30T 170)

x D" (z,0)] Tr[T3U(x, )] Tr [(vT370) U (0, 0)]
— ToU (2, 0) (Yol '27%0) Tr [T1.5™ (2, 0) (oI '17%0)

x D™ (,0)] Te[T3U (2, 0) (yT370) U (0, 7)]
+ DoU (2, 2)T3U (2, 0) (vT190) "D (0,0) (v0T'370)”

x D" (x,0)0'15" (2, 0) (v 270)
= ToU (x,0) (yoT'170) " D" (0,0)(70T'570) " D™ (, 0)T"y

xS (z,0)(yolyy0) Tr [L3U°(z, 2)]
— ToU(z, 2)T5U (z,0) (70T170) T D (2, 0)T,

x 5" (2,0)(vol'270) Tt [ (vT'370) D€ (0, 0)]
+ToU (2,0) (0T 19%) " D (2, 0)I'1 S (2, 0) (40T '2%0)

x Tr[D3U(x, )] Tr [(Vofgyo)Dele/(O, 0)]
+ DU, 2)T5U (2, 0) (40T 1790) TS (2, 0)TT

x D" (x,0)(70T'370) D (0, 0) (yaT'2%0)
— ToU (x,0) (70T'170)" S™" (2, 0)T] D (2, 0) (0I'370)

X DEICI(O, 0)(v0l270) Tr [F;;Uee(a:, x)}
— ToU (2, 2)TsU (2, 0) (7ol170) " S™" (2, 0)IT

x D™ (z,0)(70I'27%) Tr[(70370) D (0, 0)]

T
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+ 15U (2,0)(90I'170) "™ (2, 0)I D* (2, 0) (0T"270)

x Tr[T3U(x, )] Tr[(vI'370) D¢ (0,0)]
+ DoU(, 2)D3U° (2, 0) (v ay0) Tr Iy

x 5™ (2,0)(70I'170) D7 (0,0) (v0T'370)" D*" (x, 0)]
— [0 (2,0) (0l 270) Tr [T15™ (2, 0) (0T 170)

x D" (0,0) (700 570) T D* (2,0)] Tr [D3U° (2, )]
— U (x, x)FgUeC (x,0)(vol'270) T [Fl

x §" (2,0)(vl'170) D™ (2, 0)] Tr[(70I'37%0) D (0, 0)]
+ oU (2,0) (v 27y0) Tt [FISW (2,0)(7v0I'170)

x D" (2,0)] Tr[T3U(, 2)] Tr [ (voT'370) D (0, 0)]
+ Dol (a, ) T30 (,0) (ol 170) " D™ (2, 0)Ty

xS (2,0)(701370)5 (0,0) (voI"'270)
— ToU (x,0) (yoT'170)" D" (2, 0)T'1.8" (i, 0) (0I'370)

x 5¢¢(0,0) (7o a0 Tr [D3U°(z, x)]
— DU (2, 2)T5U (z, 0) (voT170) D (2, 0)Iy
x 5" (2,0)(v0T270) Tt [ (7T'570) S (0, 0)]

+ U (2,0)(0l'170) " D" (2, 0)11.S™ (2, 0) (70T 2%0)

x Tr[D3U(xz, )] Tr [(yofgvo)se’el(O, 0)]
+ ToU (@, 2)I5U (2, 0) (v0T'170) S (0,0) (v 570) "

x S*" (2,0)TT D* (z, 0)(voT20)
— U (2,0)(70T'17%)" S (0,0) (vl570)" ™" (, 0)L'T

x D (z,0)(yol270) Tt [D3U°(x,2)]
— DUz, 2)T5U (x,0) (yol170) T 5™ (2, 0)TT

x D (x,0)(70l270) Tr[ (7T'370) 5 (0, 0)]
+ U (2,0) (vol'170) "™ (x, 0)T] D (2, 0) (0I'2%0)

x Tr[T3U% (2, 2)] Tr[(vI'37%0) S (0, 0)]
+ ToU(z, 2)D3U° (z, 0) (oL 2y0) Tt [Ty

x 8" (2,0)(10I'370) 5% (0,0) (90T 190) D" (z,0)]
— DU (2, 0) (Yl '27%0) Tr [T1.5% (, 0) (vT's%0)

x S5¢Y(0,0)(700170) D™ (x,0)] Tr [[3U(x, )]
— DU (2, 7)T3U° (2, 0) (70T270) Tr [T
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x 8% (2,0) (5L 170) D (2, 0)] Tr [(7T370) S (0, 0)]
+ ToU (7,0) (70T 270) Tt [T15™ (2, 0) (30T 170)

x D" (x, ())]Tr [FgUee(a:, x)]Tr[(%Fg%)Se/el(O, 0)}
+T25% (2, 0)(vol270) Tt [T D*(2, 2)T3

x DV (x, )( %L170) U (0,0)(Y0T3%0) U (2, 0)]
. (x,0)(v0I'270) r[F (x,2)l3
(

/

/

x D (2,0)(7T170) U (z,0)] Tr [(7T370) U< (0, 0)]
— 55 (2, 0)(70T'270) Tr [[1. D™ (,0) (v0T'170)
x U (0,0)(1T'370)TU*" (z,0)] Tr[[3 D(z, z)]
+T25% (2, 0) (30T 270) Tt [T1 D™ (2, 0) (7oT'170)
x U9 (2,0)] Tr[[s D (x, )] Tr [(vT370) U (0, 0)]
+ 125 (2,0) (vT'1790) U (0,0) (v0L'57) U (z, 0)Iy
x D*(x,2)3D (z,0)(y0I'270)
— T8 (2, 0)(vT170) U™ (z,0)T, DY (2, )T
x D (x,0)(yoT'270) Tr [(I'370) U (0, 0)]
— T28% (2, 0) (%I 170) U (0,0) (vl '570) " U (, 0)Iy
x D (,0)(v0l270) Tr [FgDee(l‘, a:)]
+ 158 (2,0) (70l170) U (2, 0)T1 D (2, 0) (oT'2%0)
x Tr[[3D(z, )] Tr [(fyOFg’yo)Uele/(O, 0)]
+ T55% (2,0) (7o 170) D (2, 0)TT D*" (2, 2)T'T
x U (2,0)(v'570) U (0,0) (0T 270)
— 158 (2,0) (7o 170) D" (2, 0)TE DY (, )T
x U (2,0) (0l '2%) Tr [(7I'370) U (0, 0)]
— T25 (x,0) (voT'170) D™ (2, )T U (, 0) (70T 370)
x U (0,0) (70 270)Tr [[3D%(z, z)]
+T28% (2,0) (90T 19%0) D™ (2, )T U (2, 0) (10T 270)
x Te[T3D%(x, )] Tr (v 370) U (0,0)]
+ 155 (2, 0) (yoI27y0) Tt [[1D*(z,2)T3
x D (z, 0)(’YOF3’YO)D€b (0,0)(L'19) U (2,0)]
— FZSCC/(x 0)(7vol'270) Tr [1" (z,z)T3
(@,

x D (x,0)(ol'17%0) U (xa0)]T1“[(70F370)D6/e/(070)}
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— T'55% (2, 0)(vol270) Tr[T1.D* (, 0) (v '370)

x DY (0,0)(vT170) U (2,0)] Tr [[3D%(z, z)]
+ 55 (,0) (v 270) Tr [FlDbe/ (2,0)(7v0'370)

x D¢(0, )3 D (x,0) (4oL 170) U™
+ T55% (2, 0) (vl a0) Tt [FlDbb/ (x,0)(voI'170)

x e’ (x, 0)} Tr [FgDee(x, x)] Tr [(WOF;),%)DeISI(O, 0)}
— T35 (2,0)(v0l270) Tr [T1 DY (2, 0) (YoT'170)

x U (2,0)] Te[[5 D (, 0) (7oT'570) D(0, )]
+ T35 (2,0) (70T 170) U (x,0)01 DY (2, 2)Ts

x D (2,0)(70I'370) D (0,0) (oI '270)
— T8 (2, 0)(vT170) U™ (z,0)1 D¥(z, 2)Ts

x D (z,0)(70I'270) Tr [(70I'370) D (0, 0)]
= T28% (2,0)(%l'19) U (2, 0)T'1 D (2, 0) (01370

x D“?(0,0)(70l270) Tt [[3 D% (z, )]
+ T2 (2,0) (3T 190) U (2, 0)T1 D™ (x, 0) (70T 57%)

x D¢(0,2)T3D (,0) (70270)
+T55% (2,0) (1l1790) U (2, 0)T1 D (2,0) (y0T'270)

x Tr[T3D%(z, )] Tr[(v0L370) D¢ (0, 0)]
— 155 (x,0) (vol'190)U*” (2, 0)T'1D* (x,0) (v0T'2%0)

x Tr[T3D% (z,0) (v 37) D (0, z)]
+T25% (2,0) (7l'170) D" (0,0) (70L'370) " D" (, 0)I

x D" (x,2)TTU (2, 0)(voI'270)
— T55% (2,0)(7T'170) D" (z, 0)TT D*" (2, 2)T'T

x U (2,0) (70l 27%0) Tr [(70T'370) D7 (0, 0)]
— 155 (2,0)(3T170) D" (0,0) (0T'570) " D™ (, 0)T]

X U“C/(x, 0)(yol2v0) Tr [F3D66<£L', a:)]
+ 58 (2, 0) (90T 19%) D" (, 0)TF D" (0, 2) (0T'370)”

x D" (z,0)TTU* (2, 0) (70 270)
+ 28 (2, 0) (9oT'170) D™ (2, )T U (2, 0) (0T 270)

x Tr[[3D(z, 2)] Tr[(voT'370) D¢ (0,0)]
— T28% (2, 0)(0l'19%0) D™ (2, 0)IT U (2, 0) (0T 2%0)

1T

(z, O)]
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x Tr[T3D° (z,0) (v 37) D (0, z)]
+ 95 (2,0)(7'37) S (0, 0) (YoT'270) Tr [Ty
x D¥(z,2)03 DY (x,0)(7l170) U (2,0)]
— T25% (,0)(v'370) S (0, 0) (yoT270) Tr [Ty
x D% (z, )( W 170)U” (2,0)] Tr[[5 D (x, )]
. (x,0)(voI'270) r[F (x,2)l3
X DEb/( )(’YOFWO)UM (35 0)]T1"[(’YOF3’YO)56/6/(070)}
+ 155 (2, 0) (0T270 Tr[F D% (z,0)(v'170)
x U™ (z,0)] Tr [[3D(x, x)]Tr[(%ngo)Se/e/(0,0)}

+ 25 (2,0) (3I'370) S (0,0) (yoT'170) U (2, 0)T',

x D" (z, 2)T3D* (2,0)(v0l'270)
— T55% (2, 0)(70L'370) 5 (0, 0) (voT170) U™ (z,0);

x DY (x,0)(vol'270) T [F3D€€<£If, x)}
— T55% (2,0)(1o170) U (2, 0)T, D (x, 2)T

x D (,0)(vI'2%) Tr [(vT'370) 5 (0, 0)]
+ 155 (2,0) (70T170) U (2, 0)T, D* (2, 0) (70T 270)

x Tr[T3D%(z, )] Tr[(7L370) 5% (0,0)]
+ [y8° (x, 0)(70F370)S€’b’ (0, 0)(70F170)Dea/T (z,0)%

x D" (z,2)TTU (2,0)(voI'270)
— 28 (2,0) (3I'370) S (0, 0) (oI 190) D" (2, 0)I']

x U (,0)(v0l270) Tr [FgDee(a:, x)]
— T8 (2,0) (7o 170) D" (2, 0)TF DY (&, 2)I'T

x U (2, 0)(70T270) Tr [(70T'570) S (0, 0)]
+ T55% (2,0) (7oL 170) DY (2, 0)TTU (2, 0)(oT'270)

x Tr[[3D%(x, x)}Tr[(%Fg%)Se/el(0,0)}
+ Do D (2, 2) T3 D (2, 0) (70T 170) U™ (0,0)(v0T'370)”

x U (x,0)01.5% (,0)(70l270)
— T3 D%z, 2)T3 D (2, 0)(41790) U (2,0);

x 5™ (x,0)(70I'270) Tr[ (4 370) U< (0, 0)]
— T, D% (2,0)(70T170) U (0, 0)(vol370)TU” (z, 0)Iy

x 5% (x,0) (7ol yy0) Tt [[3D°(z, z)]
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+ T DY (2,0)(90I'170) U™ (2, 0)T'1.S™ (, 0) (70T'27%0)

x Tr[T3D%(x, )] Tr[(voT370) U (0,0)]
+ Do D%(z, 2)T3 D (,0) (7o yy0) Tt Iy

x 8™ (2,0)(%T'170) U (0,0) (vl '570) "U™” (2, 0)]
—T9 D% (2, 2)T3D° (2, 0) (ol 270) Tr [T

x S™(2,0)(T170)U*” (2, 0)] Tr[(10T'370) U (0, 0)]
— 5D (,0) (0T 270) Tr [[1.5™ (, 0) (0T'170)

x U“"(0,0)(v0l570) U (2,0)] Tr[[3D*(x, z)]
+ oD% (z,0) (y0l270) Tr [Fleb/ (2,0)(7v0'170)

x U™ (2,0)] Tr [D3D(x, )] Tr[(7T3750) U (0, 0)]
+ oD%z, 2)03D° (2, 0) (7oT1790) " SY" (, 0)TT

x U (,0)(0I'570)U (0, 0) (oI'270)
— Ty D%(z, )30 (2, 0) (vo170) " 8™ (2, 0)TT

x U (2,0) (70 '27%0) Tr [(3I'370) U (0, 0)]
— T30 (2,0)(70170) T S™" (2, 0)LTU* (2, 0) (70 '370)

x U0, 0)(v0L270) Tr [T D (2, )]

+ DD (,0)(760170) TS (2, 0)TTU (2, 0) (v0T'270)

x Tr[[3D(z, 2)] Tr[(voT'370) U (0,0)]
+ Dy D%(z, 2)Ts D (,0) (70'370) DY (0, 0) (voT'170)

x U (2,0)T1.5% (x,0) (vol'270)
— Ty D(z, 2)T3D% (2, 0) (vo170) U (2, 0)I;

x 8" (2,0)(v0T'2%) Tr[(vT'570) D (0, 0) ]
— 5D (z,0)(%L'57%) D (0,0) (yol'1790) U (2, 0)I'y

xS (z,0)(yolyy0) Tr [[3D%(z, z))
+ 9D (2, 0) (70I'570) D (0, )3 D (, 0) (70170

x U (2,0)T1.5% (x,0) (vol'270)
+ T2 D% (2,0)(3I170) U™ (2,0)I15 (2, 0) (v0T'270)

x Tr[[3D(z, )] Tr [(yofgyo)Delel(O, 0)]
— T2 D (2,0) (30T'170) U (2, 0)T'1.S* (2, 0)(70T'270)

x Tr [FgDee/ (2,0) (70T 370) D(0, z)]
+ Ty D% (x, 2)T3D% (2, 0) (0L '370) D (0, 0) (0T '270)
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x Tr[[18" (2, 0)(vl170) U (,0)]
— T9 Dz, 2)T3D° (2, 0) (ol 270) Tr [Ty
x S (x,0)(1ol1y0) U
— oD% (,0)(76570) D (0, 0) (70l '270) Tr [Ty
x S (z,0)(vol190) U (z, 0)] Tr[T3D*(, z)]
+ 2D (2,0)(70T'57%) D“*(0, )5 D° (,0) (30T 2%0)
x Tr[[18% (,0)(vl170) U (,0)]
+ T2 D (2, 0) (10T'270) Tr [T1.S™ (2, 0) (YoT'170)
x U (2,0)] Tr [[5D(x, )] Tr [ (voT'370) D (0, 0)]
— T2D% (2,0)(yT270) Tr [T1.5™ (2, 0) (7oT'170)
x U (2, 0)] Te[T5 D (, 0) (7oT'570) D (0, )]
+ oD (x, )T D (2,0) (v0T'370) D (0, 0) (7ol 170) "
x S (z,0)TTU (,0) (70 2v0)
— [y D(z, 2)T3D (2, 0)(7oL170)T 5™ (z,0)I'T
x U (,0)(70T'270) Tr [(70I'370) D (0, 0) ]
— T D% (2,0)(vI'570) D% (0, 0) (76T 170) T 5™ (2, 0)TT
x U (z,0)(v0l270) Tr [FgDee(:v, x)]
+ [y D (x, 0)(’)/0]._‘3’)/0>De,e(0, x)FgDea, (z,0) (7ol 1y0)"
x G (z, O)FlTU“/ (2,0)(70270)
+ Ty D™ (x, 0)(70F170)T5bb/T(33> 0)IT U™ (x,0)(70I'2%0)
x Tr[[3D(z, 2)] Tr[(voT'370) D¢ (0,0)]
— T3 D (2,0) (70 170) " S?" (2, 0)TTU (2, 0)(oI'270)
x Tr[T3D° (z,0) (v 37) D (0, z)]
+ T2 D(2, )T D (2, 0) (3T 170) U (x, 0)T
x S (2,0)(70I'370)S” (0,0) (v0I"2%0)
— 2D (2,0) (7L 170) U (2, 0)T15" (2, 0)(7T'37%)
X Se,CI(O7 0)(vol'270) Tr [FgDee(x, x)]
— Ty D(x, x)FgDeb/ (z, 0)(70F170)Ua“/T (x,0)T
x 5™ (x,0)(yI'27%0) Tr[(70'370) S (0, 0)]
+ T2 D (2,0)(3T170) U™ (2, 0)T1.5™ (,0) (yoT'2%0)
x Tr [FgDee(m‘, x)} Tr [(70F370)S€/e/(0, 0)}

" (2,0)] Tr [(70T'570) D (0, 0)]
[

T
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+ Ty D%(z, 2)T3D% (2, 0) (yoT2y0) Tt [Ty
x 5" (,0)(30T370)S" (0, 0) (T170) U™ (2, 0)]
— Ty D% (2,0)(7T'270) Tr [T'1.5* (, 0) (30 370)
x SV (0,0)(7T170) U (2,0)] Tr [T D(x, x)]
— T9 D% (2, 2)T3D° (2, 0) (voT270) Tr [T
x 8™ (2,0)(I'190) U (2, 0)] Tr[(10I'37%0) 57 (0, 0)]
+ [yDe (x,0)(vol'2y0) Tr [Flsbb/ (x,0)(voI'170)
x U (2,0)] Te[D3 D, )] Tr[(voT570)5¢€ (0, 0)]
+ Ty D(z, 2)T3D° (z,0) (vol'170) S (0,0) (voT570)”
x S*" (2, 0)TTU* (2, 0)(v0T'270)
— T, D (2,0)(7T17) 75" (0, 0)(70T'370) T 5% (z,0)IT
x U (z,0)(y0Ta70)Tr [[3D°(z, z)]
— Ty D%(z, )30 (2, 0) (vo170) " S™" (2, 0)TT
x U (2,0)(70I'270) Tr [(0L'570) S (0, 0)]
+ T2 D™ (,0)(voT'1390)" ™" (2, 0)TT U (2, 0) (0T 270)
x Tr [FgDee(:c, x)] Tr [(fyoFg'yo)Sele/(O, 0)}
+ U (2,0) (3T 570) U™ (0,0) (voT'130) D" (2, 0)I'F
x D" (z,2)T'15% (z,0) (I 270)
— U (2,0)(vol170) D" (z, 0)TT D" (2, 2)I;
x S*(2,0) (0T 270) Tr[(70T's70) U (0, 0)]
— ToU* (2, 0)(16L'570) U (0,0) (0L 170) " D™ (2, 0)Ts
x 5% (2,0) (v ay0) Tt [T3 D% (2, v)]
+ DU (2,0) (vol170) " DY (2, 0)11.5% (2, 0) (7ol 2v0)
x Tr[T3D%(x, )] Tr[(voT370) U (0,0)]
+ DU (,0) (10T570) U (0, 0) (0T '170) " S™" (2, )T
x D*(z, 2)T'sD (x,0)(vo'270)
— ToU (2, 0)(vol170) 78" (2, 0)TT D*(z, 2)T';
x D (x,0)(70I'270) Tr [(90I'570) U (0, 0)]
— ToU (2, 0) (T '570) U (0,0) (roT'170)" S*" (, 0)T'T
x D% (z,0) (7ol 270) Tt [D3D(x, )]
+ U (2,0) (vol'170) "™ (2, 0)T] D (2, 0) (0I'2%0)
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x Tr[T3D%(z, )] Tr[(vL37) U (0,0)]
+ ToU (2,0) (Y0l 570) U (0, 0) (0T 270) Tr [Ty

x S (z, 0)(70F170)DG“IT (z, O)FgD“eT (z, )]

— DU (2,0)(30T'27) Tr [T15" (2, 0) (30T 170)
x D" (, 0)F3TD“6T (z, a:)] Tr [(70P3’70>Ue/6,
— DU (2,0)(70I'37%) U (0, 0) (ol '270) Tr Ty

x S (2,0) (7o) D™ (x, 0)] Tr[T3D*(x, z)]

+ ToU (2, 0) (70T 270) T [T15™ (2, 0) (30T 170)

x D" (2,0)] Tr [[3D° (2, 2)] Tr[(vT370) U

+ ToU (x,0) (v0T'170) " D" (0, 0) (70T 's70) " D*" (x, 0)T§
x D" (z,2)115" (x,0)(yol270)
— U (2,0)(voT'1790) T D" (2, 0)TT D*" (2, )T,
x 5" (2,0)(yoL'27) Tr [(vT570) D (0, 0)]
— U (2,0)(v0T'1%)" D" (0,0) (40I's%0)" D" (2, 0)T'y
x Sb (x,0)(vol'270) Tr [FgDee(x, x)]
+ LU (2,0) (L' 170) " DY (2, 0)T5 D" (0, ) (30T '370) "
x D" (z,0)T15% (2,0) (7 27)
+ DU (2, 0)(70T170) " D (2, 0)T1.5% (2, 0) (o270
x Tr[D3D(z, )] Tr[(vo'370) D I(O,O)}
= ToU (2, 0)(70l'170)" D" (2, 0)T'1S™ (, 0) (7oL 2%0)
x Tr[[3D* (z,0) (70 370) D (0, 7)]
+ ToU (2,0)(vT170) TS (2, 00T Dz, 2)T's
x D (2,0)(7I'370) D (0,0) (o '270)
— ToU (2, 0)(vol170) 78" (2, 0)TT D*(z, 2)I;
x D (,0) (vl '270) Tr[(0L'370) D7 (0, 0)]
— DU (2,0)(30T170) "™ (2, )T D™ (, 0) (voT'370)
x D (0,0)(vol270) Tr [FgDee(x, x)]
+ ToU (x,0) (10T'170) " S™" (2, 0)TT D (,0) (0I'370)
x D°(0,2)T3D* (,0) (y0l'20)
+ U (2,0) (7l 19%)" 8™ (2, 0)I] D™ (, 0) (70T 2%0)
x Tr[[3D(z, )] Tr [(70F370)D8/e/(0, 0)]

/
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0,0)]
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= ToU (2, 0)(70L'19%)" S*" (, 0)I] D™ (, 0)(v0I'27%0)

x Tr [FgDeel (2,0) (70T 370) D¢(0, )]
+ U (2,0) (v 27y0) Tt [Fleb/ (2,0)(7v0'1v0)

x DY (0,0) (50 570) " D" (2, 0)T2 D" (2, )]
— [0 (2,0) (ol 270) Tr [T15” (2, 0) (0T 170)

x D" (z,00[FT D*" (x, z)|Tr [(WOF;),%)Delel(O, 0)]
— T,U (z,0) (v 270) Tr [T1.5™ (z, 0) (30T 170)

x DU (0,0) (70 570) " D" (,0)] Tr [[3 D (, )]
+ oU (2,0) (70T 27y0) Tt [FISW (2,0)(7v0'17v0)

x D" (2,0)TF D" (0, 2) (3T370) " D*” (x,0)]
+ ToU (2, 0) (70T 2y0) Tt [Fleb/(:p, 0)(7voI'1v0)

x D" (,0)] Tr[[3D° (2, 2) | Tr [(oL570) D (0, 0)]
— DU (2,0) (30T'270) Tr [T1.5" (2, 0) (70T'170)

x D" (z,0)] Tr[[3D% (2, 0) (vL370) DE(0, z)]
+ DU (2,0)(voT'170) " D (2, 0)TT D (2, )y

x " (2,0)(101570)5 (0,0) (voI'270)
= ToU (2,0)(70T'19%) " D (2, 0)T15™ (, 0) (7oL 3%0)

x S¢(0,0) (ol 270) Tr [T D% (, x)]
— U (2,0)(vol1790) D" (2, 0)TT D" (2, 2)I;

xS (1, 0) (30T 270) Tr [ (70T '370) 5 (0, 0)]
+ U (2,0) (v0T'19%0) " D (2, 0)I'1 ™ (2, 0) (40T '27%0)

x Tr[[3D(z, )] Tr [(fyongo)Se/e/(O, 0)]
+ U (2,0) (vl '170) "5 (0,0) (3T '570)"'S™" (, O)I

x D*(x,2)I'3D° (x,0) (0l 270)
= ToU (,0) (70T'170)" S (0,0) (vaI'570) " ™" (2, 0)I']

x Do (x,0)(~vol'97y0) Tr [FgDee(:zc, l’)}
— ToU (2, 0)(vol170) 78" (2, 0)TT D*(z, 2)T;

x D (x,0)(70I'270) Tr [(70I'370) 57 (0, 0)]
+ U (2,0) (vl '170) "™ (2, 0)T] D (2, 0) (0T'270)

x Tr[T3D%(x, )] Tr[(v0370) 5 (0,0)]
+ U (2,0) (v 270) Tt [Flee/ (2,0)(v0'370)
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x SV (0,0)(vT170) D" (2, 0)TE D" (z, x)]
— U (x,0)(v0'270) r[F Sbe (x,0)( 70F370)
x SV (0,0)(vl170) D™ (2, 0)] Tr[[3 D% (2, )]
— I U (z,0)(7o"270 Tr[ Sbb (z,0)(7v017)
x D" (2,075 D™ (2, 2)] Tr[(10T'370) 57 (0,0)]
+ DoU (2,0) (70T 270) Tt [Flsbbl (2,0)(7v0'1v)
x D" (,0)] Tr[T3D% (2, 2) | Tr [(oT570) S (0, 0)]
+ I55%(z, )35 (, 0) (70T270) Tt ¥
x D" (2,0)(10T'170) U (0,0) (T'57) U (,0)]
— 95 (z, x)['35 ( 0)(y0l270) Tr [Fl
x DY (2,0)(3T190) U (2, 0)] Tr [(70T'570) U (0, 0)]
— Ty5¢ (x,0)(voI'270) Tr[ Dbb (x,0)(vI'170)
x U9 (0,0)(7l'57) U (x,0)] Tr [['55°(x, 7)]
+ 195 (2,0) (70T 2y0) Tr [[1. DY (2, 0) (70T 170)
x U (2, 0)] Tr[[35% (2, 2)] Tr[(7570) U (0, 0)]
+ 1952, 2)T35% (2, 0) (%6 D170) U (0,0) (70 s70) "
x U (x,0)1.D% (2, 0)(voI'270)
— 158%(z, )55 (2, 0) (76T1790) U (2, 0)Ty
x D" (,0) (70l 270) Tr [(70T'570) U (0, 0)]
— T8 (2,0) (YT 190) U (0,0)(70T370) U (2, 0)T;
x D" (z,0) (vl 270) Tt [[35°(xz, )]
+ 125 (2,0) (3T 190) U (2, 0)T1 D™ (, 0)(70L'2%0)
x Tr[T35%(z, 2)] T [(vI'37%) U (0,0)]
+ T35 (z, )35 (2, 0) (v 170) D* (2, 0)TT
x U (,0)(%I's%) U (0,0) (70 270)
— 155 (x, 2)35 (2, 0) (3ol170) D* (2, 0)I'T
x U (,0)(70T'270) Tr [(70I'370) U (0, 0)]
— T28% (2,0) (7oL 170) D™ (2, 0)TT U (2, 0) (70T 370)
x U“?(0,0)(oT'2%0) Tr [[35° (2, 7)]
+ 25 (,0) (voT'170) D™ (2, )T U (x, 0)(%Fﬂo)
o

/

x Tr [FgSee(x, x)}Tr[(vongo) 0, O)]
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+ T55%(z, )35 (2, 0) (yoL20) Tt ¥
x D" (2,0)(7I'37%) D" (0,0)(T'17%) U™ (,0)]
— [58%(x, )35 (,0) (v a0) Tt [Ty
x DM (2,0)(Y0T170) U™ (2, 0)] Tr [(10T'370) D (0, 0)]
— T8¢ (,0)(v0l'2v0) Tr[ Dbe (x,0)(v0I'370)
x DY(0,0) (7o) U (JJ,O)]TI"[F;;S%(I,I)}
+ T55% (2, 0)(vol270) Tt [[1 D™ (2, 0) (voT'170)
x U (2,0)] Tr [rgsee(x, )] Tr[(4T370) D¢ (0, 0)]
+ T55%(x, )35 (, 0) (yoT170) U (ZE 0)Iy
x D™ (x,0)(70I'370) D (0,0) (v0I'270)
— 158%(z, )55 (,0) (7oT1790) U (2, 0)Ty
x D" (x,0)(70I'270) Tr [(70I'370) D7 (0, 0)]
— T28% (2,0)(%l'19) U (2, 0)I'L D (2, 0) (01'370)
x D (0,0)(vol27y0) Tr [[35°(z, x)]
+T25% (2,0) (1l'170) U (2, 0)T1 D (2, 0) (y0T'27%0)
x Tr [ngee(x, a:')] Tr [(fyOFg’yo)Delel(O, 0)}
+ o8 (2, )35 (2, 0) (0T170) D" (0, 0) (70T370) "
x D" (z,0)IT U (x,0)(yoI'270)
— [y8%(x, 2)035% (2, 0) (yol170) D* (2, 0)TT
x U (x,0)(70l'270) Tr [(70I'370) D (0, 0) ]
— 125 (2,0)(70I'170) D™ (0,0) (30T '570)" D™ (z, 0)I']
x U (x,0)(yol270) Tt [[35°(xz,2)]
+ 28 (2, 0) (90T'170) D™ (2, )T U (2, 0) (10T 270)
x Tr[T35%(z, 2)] Tr[(vI'570) D¢ (0,0)]
+ 195 (2, 2)T'35° (2, 0) (30I'370) S (0, 0) (v "2 %0)
x Tr [T DY (2,0) (3T 1790) U (2,0)]
— 58 (z, 2)T'35° (,0) (7o '270) Tt [Ty
x D" (,0)(vl170)U" (,0)] Tr [(oT570) S (0, 0)]
— 55 (2,0)(0I'370) S (0, 0) (0T '270) Tr [Ty
x DY (z,0)(7ol170) U (x, 0)] Tr[['35°(z, x)]
+ 25 (2,0) (70I'370) S0, 2)T'35° (, 0) (yoI'2%0)
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x T[T DY (2,0) (3T 1790) U (2,0)]
+ 155 (2, 0) (yoT270) Tt [FlDbb,(m, 0)(7v0'170)
X U““/T(x, 0)] Tr[T'35%(z, z)] Tr [(%ngo)Se/el(O, 0)]
— 18 (2, 0)(vI'270) Tr [T1D™ (2, 0) (v0I'170)
x U9 (2, 0)] Tr[[55° (2, 0) (ol 570) S (0, )]
+ 8% (2, 2)T'35 (2, 0) (30I'370) S (0, 0) (YT '17%0)
x U (2,0)0,D* (,0) (voT'270)
— [58%(z, )55 (2, 0) (7oT1790) U (2, 0)Ty
x D" (x,0)(7l'270) Tr [(v0T'370) S (0, 0)]
— T8 (,0) (10I'370) 5% (0, 0) (90T 170) U™ (, 0)I'y
x D (z,0) (7o a0 Tt [[35°(z, x)]
+ 128 (2,0) (30I'370) S (0, 2)T'35 (, 0) (yoI'1%0)
x U (2,00, D* (2, 0) (voT'270)
+T58% (2,0)(vl170) U (2, 0T D (z, 0)(70F270)
x Tr[T35%(x, )] Tr[(7oT570) S (
— 195 (2, 0)(vol170) U (,0)Ty D™ (2, 0) (702 70)
X Tr[FgS“ (2,0)(70T570)5¢ (0, z)]
+ 195 (, 2)T35° (2, 0) (30I'370) 5" (0, 0) (YoI'170)
x D" (x,0)TTU™ (x,0) (40 270)
— T35 (z, )35 (,0) (vT'170) D* (2, 0)TT
x U (@,0) (70l 270) Tr [(70T'370)5 (0, 0)]
— 155 (2,0) (%I '57%) S (0,0) (yoI'170) D" (, 0)I']
x U (x,0)(vol'270) Tr [F;;S“(:z:, w)]
+ 55 (2, 0) (Yl '570) S (0, )55 (, 0) (YT '170)
x DY (2,007 U (,0) (YoT'270)
+T28% (2,0) (90T 19%0) D™ (2, )T U (2, 0) (101270
x Tr[[35°(z, )| T [(70F370)Se,€/(0, 0)]
— T28%(2,0)(0l'19%0) D™ (2, 0)IT U (2, 0) (01" 2%0)
x Tr [FgSeel(x, O)(’yOFg”yO)Sele(O,x)]
+ T2 D% (2,0) (7T 19%0) U (0,0)(30T'37%) U (2, 0)T'y
x 8% (z, 2)T'35% (z,0) (10 '270)

0,0)]
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— Ty DY (2,0) (4l 170) U (z,0)01.8%(z, 2)Ts

x 8¢ (x,0)(v0T270) Tr [(70T570) U (0, 0)]

1 1T

— Ty DY (2,0)(7T170) U (0,0) (yoT'370) U (2, 0)T,

x 5" (z,0) (v 2y0) Tr[T35%(x, )]

+ oD% (2,0)(4oT170) U (2, 0)T1.8% (, 0) (voT270)

x Tr [ngee(x, x)] Tr [(yofgvo)Uelel (0, 0)}

—+ FQDCC/ (.CIZ', 0)(’}/0F2’}/0)TI' [Flsbe<.’l§', $)F3

x S (2,0)(7%I170) U (0,0)(7T3%) U (2,0)]

— T2D* (x,0) (T '270) Tr [[1.5% (2, )T

x SV (z,0) (VOFI’YO)UM/T (z, O)] Tr [(VOF?)’YO)UEIEI (0, O)]

— [2D% (2, 0) (70T 270) Tr [T1.5™ (2, 0) (v0T'170)

x U (0,0)(v0T570) U (, 0)] Tr [[38° (x, )]

+ FQDCC/ (l’, 0)(’}/0F270)TI' [Flsbbl (.CL', O) (W/Orl’)/o)

x U (z, 0)] Tr[[35°(x, x)] Tr [(’701—‘3’70)[]6/6/ (0,0)]

+ DD (,0) (700 170) TS (2, 0)TT %" (2, 2)TT

x U (z, 0)(’70F3’70)U6/Cl(07 0)(v0l2v0)

— T D (2,0) (7o 170) S (2, 0)TT 8% (2, 2)TT

(
x U (,0)(7I'270) Tr [(vL'370) U< (0, 0)]

— 5D (z,0)(7L170) " S?" (, 0)TTU* (, 0) (v0T'370)

X Ue,c,<07 O) (70F270)Tr |:F3See (SU, l’):|

+ oD (2,0)(vol170) 8™ (2, 0)TTU (2, 0) (70T 270)

x Tr[[35°(z, )] Tr [(fyOngo)Ue/e/(O, 0)]

+ T2 D (2,0) (70I'570) D (0, 0) (1oT'170) U (x, 0)'y

x S*(z, 2)T'35° (2,0) (v '270)

— T3 DY (2, 0)(vol170) U™ (z,0)01.8% (2, 2)T3

x 5% (2,0)(vT'27%) Tt [ (vT'370) D (0, 0)]

— T2 D (z,0)(%'57%) D" (0, 0) (yal'1750) U (2, 0)I'y

x S (x,0)(yoI'270) Tt [ngee(x, x)}

+ oD (2,0) (vl '170) U™ (2, 0)T'18* (2, 0) (0T 2%)

x Tr[[35%(x, )] Tr[(7Ts70) D (0,0)]

+T5D% (2,0) (70T370) D (0,0) (voTay0) Tr [Ty
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1T

x 5% (z, )58 (2, 0) (vl 170) U™
— FgDccl(x, 0)(v0l'270) Tr [Flee(x, x)l3

x S (,0)(7l190) U™ (2, 0)] Tr [(v0570)
- F2D66/ (z,0) (70F3’YO)D€,C/(O> 0)(70l'270) Tr [Fl

x S (,0)(yoT1790) U (x,0)] Tr [[35(x,
+ Ty D (x,0)(~vol'27y0) Tr [Flsbb/(x, 0)(vol'170)

(,0)]

X U“a/T(:L’, 0)} Tr [F;),See(x, x)} Tr [('yOFg'yO)De,e/

+ T2 D% (z,0) (4I'57%) D (0,0) (L' 170) S (2, 0)TF
x S*" (2, 2)TTU (x,0) (70 270)
— T D (2,0)(7oT170) " S (2, 0)TT 8% (2, 2)TT
x U (z,0) (0270 )Tr[(70I'370) ) D (0, 0)]
— 2D (2,0)(0L'370) D (0,0) (vol'170)"'S™" (2, 0)T']
x U (x,0) (vl 270) Tt [[35°(z,2)]
+ DD (2,0) (70T 170)TS™" (2, 0)LTU (2, 0)(voT20)
x Tr[T'35%(z, z)] Tr[(vl'370) D (0,0)]
+ T DY (2, 0)(vol170) U (z,0)1.8% (2, 2)T
x 8¢ (2, 0)(70I'57%) S (0,0) (vaI'270)
—T2DY (2,0) (1T '170) U (2, 0)T1 5™ (, 2)T'y
xS (2, 0)(Yol'2%) Tr[(v0T'570) S (0, 0)]
— T2 D% (2, 0) (3T 170) U (2, 0)T1.8™ (2, 0) (70T'370)
X Selc/(O, 0)(vol'270) Tr [FgSee(x, x)]
+ T DY (2,0)(vT190) U™ (2, 0)T1.5% (2, 0) (70L370)
X Sele(O,x)FgSec/(x, 0)(v0270)
+ T2 D% (2, 0)(30T170) U™ (w, 0)T1.5™ (x, 0)( 0L10)
X TI'[FgSee($ x)}Tr[( ~Yol'370)S¢ (
— 2D (2,0)(3L170) U (2, 0)T15" (x,0)(7T27)
x Tr[[35° (,0)(1I370)S° (0, 7)]
+ Ty D (x,0)(~vol'27y0) Tr [Flsbe(x, )3
x S° (2, 0)(70T'370)5°" (0,0) (vl 170) U
— 2D (2, 0) (0l 270) Tr [[1.5* (2, )T
x S (,0)(yl170)U" (,0)] Tr [(voT570)

l

0,0)]
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D (0,0)]

(0,0)]

(x, O)]

59¢(0,0)]
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— 13D (x,0) (yoI'2%0) Tr [T'1.5™ (2, 0) (v0T'370)

x 5<Y(0, 0)(70F170)Ua“,T (z, O)} Tr [FgSee(x, x)}
+ oD (x,0)(voI'2y0) Tr [Flee/ (x,0)(70I'3v0)

x 5€(0, 2)T'35 (,0) (o' 1y0) U
+ 2D (2, 0) (0T 270) Tr [[15™ (, 0) (v0T'170)

x U’ (z,0)] Tr[[35°(z, z)| Tr [(yofgvo)Se/e/(O, 0)]
— T30 (2,0)(yI'270) Tr [T1.5™ (2, 0) (7oT'170)

x U (2,0)] Tr[T55° (2, 0) (oT570) S (0, )]
+ DD (2,0) (3T 1790) "S<Y (0, 0) (30 T50) 'S (2, 0)TF

x ¥ (a, £)TTU (z,0)(yol270)
— T, D* (2,0)(yI'170) " S (z,0)15 S*" (2, 2)I']

x U™ (x, )(70F270)Tr[(70F370)566 (0,0)]
— T2D* (2,0)(vl'170)"'S”"" (0,0) (vl '570)"'S™" (2, 0)T]
x U (z,0)(yl270) Tr [[35°(z, )]

+ oD (2,0) (vT170) 7S (2, 0)TE S (0, 2) (0T 570) "

x §*" (x,0)TTU (x,0) (4o 270)
+ oD (2,0) (YoT'1790) " 8™ (2, 0)TTU (,0) (02 70)

x Tr [ngee(x,x)]Tr[(’yongo)Selel(O, 0)]
— T2 D (2,0)(v0T'130)"S™" (2, 0)IT U (2, 0) (0T 2%)

x Tr [FgSeE/(.T, O)('yoFgfyg)Se/e(O,x)]
+ DU (2, 0) (%I'370) U™ (0, 0) (yoI'13%0) " D™ (2, 0)T

x 5% (x, )55 (2,0) (70T 270)
— DU (2, 0) (7oT1y0) T D" (i, 0)T1 8% (, ) T's

x 5 (2, 0)(voT270) Tr [ (7T '570) U (0, 0)]
— DU (2,0)(7T5750) U (0,0) (vl 170) T D (2, 0)T,

x 5% (x,0)(yolyy0) Tt [[35°(z,2)]
+ U (2,0) (30T'19%0)" D" (2, 0)I'1 ™ (2, 0) (40T '27%0)

x Tr[[35°(z, )| Tr [(yofgvo)Ue/el(O, 0)]
+ U (2, 0) (901'37%0) U™ (0, 0) (oI 170) " S (2, 0)T'§

x S*" (z, 2)TT D (,0) (70 270)
— U (2,0)(vol1790) TS (z, 00T 8% (2, 2)TT

1T

(,0)]
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x D (,0)(70I'270) Tr[ (7T 570) U (0, 0)]
— U (2,0)(10L'570) U (0,0) (0L 170)"S™" (2, 0)T]

x D% (z,0)(yol270) Tt [[35°(x,2)]
+ U (2, 0) (70l 190)" S*" (z,0)I] D™ (, 0) (70T 2%0)

x Tr[[35°(z, )| T [(70F370)U6/e,(0, 0)]
+ ToU (2, 0) (3 370) U (0, 0) (7oT270) Tr [T

x S%(x, 2)T35 (,0)(yl170) D™ (2,0)]
— DU (,0) (0T 270) Tt [[15% (2, z)l

x 8% (2,0)(90I'190) D" (x, 0)] Tr [(4T'57%0) U (0, 0)]
— DU (2,0) (70I'370) U (0,0) (30T 270) Tr [Ty

x S (,0)(7oT170) D" (2, 0)] Tr[[55% (2, )]
+ DoU (2,0) (70T 270) Tt [FISW (2,0)(7v0'1v0)

x D" (x, O)] Tr [F:),See(l', x)} Tr [(%Fgfyo)Ue/el(O, 0)}
+ U (2,0)(v0T'19%) " D" (0,0) (40T's70)" D" (2, 0)T'y

x S (x, )5S (2, 0) (70 20)
— ToU (2,0) (vl 1790) T D" (2, 0)T1 5% (, 2)T's

x 5% (x,0)(yoI'270) Tr[ (70 '370) D (0, 0)]
— U (2,0)(v0T'1%) " D" (0,0) (30T's70)" D" (2, 0)T'y

x 8% (2,0)(yol270) Tr[[55° (2, x)]
+ DU (2,0) (voT1790) T D (2, 0)T1.5% (2, 0) (voT270)

x Tr[T35%(z, 2)] Tr[(vI'570) D¢ (0,0)]
+ ToU (2, 0)(vol1790) TS (2, 0) T 5% (2, 2)TT

x D™ (z,0)(v0L'370) D (0,0) (y0I'270)
— DU (2,0)(vol170) TS5 (z, 0)TT 5% (2, 2)I'T

x D™ (,0)(70l'27%) Tr[(v0T570) D (0, 0)]
— DU (2,0)(30T170) "™ (2, )T D™ (, 0) (voT'370)

x D“(0,0)(vol'270) Tr [[35°(z, )]
+ DoU (2, 0) (L' 190)" S*" (2, 0)0 D™ (z, 0) (7oL 2%0)

x Tr[T35%(x, 2)] Tr[(7T'570) D¢ (0, 0)]
+ U (2,0) (70T 20) Tr [[15% (2, )T

x 8 (2,0)(3T'1750) D" (0,0) (7oL 570) " D™

T

(x,0)]
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— T2U (2,0) (v 270) Tr [T1.5% (2, 2)Ts
x S (x,0) (7T 170) D" (2, 0)] Tr [(7T'370) D¢ (0, 0)]
— DU (2, 0) (Yl '27%0) Tr [T1.5%' (2, 0) (voI"170)
x D" (0, 0)(70F370)TD“/T (x, 0)} Tr [FgSee(x, :U)]
+ ToU (2,0) (0T 270) Tr [T1.8™ (2, 0) (vT'170)
x D" (z,0)] Tr[[55°(z, z)| Tr [(nggvo)De/e/(O, 0)]
+ DU (2,0) (vol170) T D (2, 0)T, 5% (, 2)T's
x 5% (2,0)(%I370) S (0,0)(v0I'270)
— U (2,0)(voT'1790) T D" (x,0)0'1 5% (2, )3
x 5 (2,0) (70T 270) Tr (70T 570) 5 (0, 0)]
— U (2,0)(vl'17%0)" D (, 0)I1S" (2, 0) (v0T's7%0)
x5 (0,0) (ol ay0) Tt [[35°(z, )]
+ U (2,0) (vol'170) " D (2, 0)T'1.8* (2, 0) (0T'370)
xS0, 2)[35° (x, 0) (vl 270)
+ U (2,0) (v0T'19%0)" D (2, 0)I'1 ™ (2, 0) (v0T'27%0)
x Tr[T35%(x, 2)] Tr[(7T'570) S (0, 0)]
= ToU (2, 0)(7l'190)" D" (2, 0)T'15™ (, 0) (oI 2%0)
x Tr[[35° (,0)(1I'570)S (0, 7)]
+ ToU (2, 0)(70L'190)" S (0, 0)(0L'370)" S (, 0)T
x 5% (z,2)IT D™ (x,0) (7T '270)
— DU (2, 0) (vol170) 75" (2, 0)TT 5% (2, 2)I'T
x D (z,0)(70T270) Tr [(70T370) 57 (0, 0)]
= ToU (x,0)(70T'170)" S (0,0) (voT'570) "™ (, 0)T']
x D (x,0)(vol270)Tr [FgSee(x, a:)}
+ U (2,0)(90L'170) 7S (2, 0)TF S (0, ) (vI'570)”
x 5% (,0)TT D™ (2, 0) (voT'270)
+ U (2,0)(90l'170) "™ (2, 0)I D* (2, 0) (0T'270)
x Tr[[35°(z, )] Tr [(yofgvo)Sele/ (0,0)]
= ToU (x,0) (voT'170) """ (2, 0)T] D (,0) (0T 2%0)
x Tr [ngee/(I, O)(%Fg%)Sele(O,x)]
+ oU (2,0) (v 27y0) Tt [[15% (2, z)l
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x 8¢ (2,0)(70T'57%) 5% (0,0) (vl'170) D™ (, 0)]
— DU (,0) (70T 270) Tt [[15% (2, )l

x S (,0)(l170) D (2,0)] Tr[(7T'370)5¢ (0, 0)]
— DU (,0)(y0l'270) Tr [T15* (2, 0) (Yo 570)

x 5Y(0,0) (7ol 170) D% (x,0)] Tr [[35(z, z)]
+ DoU (2,0) (70T 270) Tt [Flsbe’ (2,0)(v0'370)

x S0, 2)035% (x,0)(7T170) D (x,0)]
+ U (7,0) (70T 270) Tt [T1.S™ (2, 0) (30T 170)

x D’ (x, 0)} Tr [F?,See(x, x)} Tr [(%Fm)se’e/(o, 0)]
— DU (2,0) (30T'270) Tr [T15" (2, 0) (30T 170)

x D" (z,0)] Tr[[35° (, 0)(70T'570) S<(0, )]
(F.3)

g;\(ltan (t ﬁ») — e*iﬁ-feabcea’b/c’ |:
) E
T

+ Sg“/(a:,O)Tr[(C’%)SZb, z,0)(Cns)

1T

)(
x 8¢ (0,0)7585 (2007555 (2, )]
— 250 (2, 0)Tr [(Cy5) SY (2, 0)(Cys)
X SSCIT(:U,O)V ce (x,x)]Tr[%SZ/el(0,0)]
— 25;”/ (x,0)Tr [(C’%)Sbb,(ﬂc, 0)(Cs)
x 8¢ (0,0)7585" (2, 0)] Tr [15.55° (2, 7)]
—l—Sg“/(x,O)Tr[(C%)Sbb/(:v,0)(C 5)
x S (2, 007555 (0, 2)755¢" (2,0)]
+ 482 (2,0)Tr[(Cy5) S2 (2, 0)(Cys)
X SCCIT(:U,O)}Tr['yg)S“(x :c)]Tr [755'“ (0, O)}
252 (2, 0)Tr [(Cy5) SY (2, 0)(Cs)
x 8¢ (2,0)] Tr[1555 (2, 0)7555 (0, )]
— 2557 (2,0)(C5) 55" (0,0)7555" (x,0)7
x St (2, 2)(C5) S5 (2, 0)
+452 (2,0)(C5) S (2,0)755% (2, )(Cs)
x S (2,0)Tr [1555¢ (0,0)]
+452 (2,0)(C5) 55" (0,0)7585" (2,0)(C5)
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x 5 (x,0)Tr (1555 (@, 2)]
— 255 (2,0)(C5) S (w,00955 " (0, )75
x SP (2, 0)(Cys) 5 (2, 0)
— 855 (2, 0)(Cy5) S (2, 0)(Cy5) S5 (, 0)
x Tr[v55(z, ) ]Tr[’yg,See (0,0)]
+ 485 (2,0)(Cy5) S (,0)(C5) S5 (, 0)
X Tr[%See ,0)755¢(0, )]
— 259 (2,0)(Cys) S (2, 0)
X See (x,

Cv5) S, (z, )75
0)7555 < (0,0)
+ 455 (2,0)(C5) S (2, 0)(C5) S5 (, )5

x S&(2,0)Tr[1552¢(0,0)]
+ 482 (2, 0)(Cys) S (,0)(Cy5) & (2, 0)s

x 5S¢ (0,0)Tr (1555 (@, )]
— 259 (2, 0)(Cys) S (2, 0)(Cys) S (2, 0)7s

x S50, 2)7555 (x,0)
+ 82 (x,0) Tr [(0’75)526/(557 0)7s

x 527(0,0)(Cs) Se”" (2, 007555 (@, )]
- QSéwl (z,0)Tr [(O%)Sﬁe' (z,0)7s

x SgY(0,0)(Cy5) e (,0)] Tr [1555° (z, )]
— 282 (2,0)(C5) S5 (2, 00955 (2, 2)(Cys)

x S5 (2,0)7555 (0,0)
— 282 (2,0)(C5) 85" (0,0)75.55" (,0)(Cvs)

x S, )7555° (x,0)
+ 92 (2, 0)755¢“ (0,0)Tr [(Cys)

x S (2,0)(Cs) e (2, 009555 (7))
— 25 (2,0)755¢ (0, 0)Tr [(Cys)

X Sbb’(x 0)(075)S§C,T(x, O)}Tr [75856@, x)}
— S““ (x, O)Tr[(C'%)Sbb/(x 0)(Cs)

X Sec ( x,0)755:° (w,x)]Tr[’yg,S:/el(0,0)}
+ 25““ (x, O)Tr[(C’vg,)Sbb (,0)(Cs)

x S (2,0)] Tr[155 (, )] Tr [155¢° (0, 0)]

\_//'\\_//‘\
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— 255 (2,0)7555 ™ (0,0)(C5) S5 (075

X SZe (x,x)(C%,)S;C (z,0)
+ 455 (,0)7555 " (0,0)(Cy5) SY" (2, 0)(Cys)

X Sff/ (x,0)Tr [75556(95, x)]
+255 (2,0)(C5) S5 (2, 007555 (, 2)(Cs)

x S (2,0)Tr [55¢¢ (0,0)]

— 455 (2,0)(Cy5) S (,0)(Cys) S (=, 0)

x Tr [75S§€(m, x)} Tr [755'5,6/(0, 0)}
— 255 (2,0)7555 (0,0)(Cy5) SE" (,0)(Cys)

x 8¢ (x,2)v555 (x,0)

+ 255 (2,0)(C5) S5 (2,0)(C5) S (2, )5
x S (x,0)Tr [55(0,0)]
— 2557 (2,0)(C5) 55" (0,0)7555" (x,0)7

x Sb" (2, 2)(C5) S5 (2, 0)
+450 (2,0)(C5) S (2,0)755% (x, )(Cs)

x S (2,0)Tr [1552 ¢ (0,0)]
+4557 (2,0)(C5)55 " (0,0)7585" (2,0)(C5)

X S;:C, (,0)Tr [755’56(2:, x)]

— 2557 (2,0)(Cy5) S5 (2,0)7555 " (0, 2)7s
sbe’T(a; 0)(Cv5) 8% (,0)
— 854 (,0)(Cs)SE" (x,0)(C5) S5 (, 0)
x Tr[y5S5% (2, 2)] Tr[1555 ¢ (0, 0)]
+ 4857 (2,0)(Cy5) S (,0)(Cys) SE° (, 0)
x Tr[y595 (x,0)75.55 (0, 7)]
+ 25 (2,0)Tr [(Cs) S (,0) (Cys)
SB/CIT (0, 0)75566/T (z, 0)75556T (z, 1’)}
— 453“/ (x,0)Tr [(C’%)Ssbl(:v, 0)(Cs)

x 8¢ (2,0)9585 (z,2)] Tr [4555 (0,0)]
4S“a (x, O)Tr[(C”yg))Sbb/(x, 0)(Cs)
09555 (x,0)] Tr [15.55° (z, )]
)

/T

0
x S€¢7(0,0
+ 25 (2,0)Tr [(Cs) S (2,0
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x S (2,0)7555" (0, 2)7555 (2, 0)]
+ 853‘1/ (x,0)Tr [(C’%)Sgb (z,0)(Cs)
x S (,0)] Tr [755 (, 2) | Tr[45.5¢ € (0, 0)]

/

— 453“/ (x,0)Tr [(C%)Sgb (x,0)(Cs)
x 5o (2,0)] Tr (3555 (2, 007555 (0, )]
— 2557 (2,0)(Cy5) S2" (2, 0)(Cy5) S5 (2, )5
x Sg¢ (2, 0)7555 (0, 0)
(
)

)
0
+ 459 (2,0)(Crys) S (2, 0)(Cys ) S (, ) s
0
0)

/

x S (,0)Tr [1552¢(0,0)]
+ 4857 (2,0)(Cy5) ST (2, 0)(Cys) S5° (2, 0)y
X SSICI(O, 0)Tr [75556(55, 3:)}
— 2857 (2,0)(Cy5) SY" (2, 0)(Cy5) S5 (2, 0y
x S5€¢(0, 2)v55 (x,0)
— 855 (2,0)(C5) 2" (2,0)(C5) S (x,0)
x Tr[v55¢ (@, 2) | Tr [1555 61(0,0)}
+ 4857 (2,0)(Cy5) SY" (,0)(Cys) S (, 0)
X Tr[’}/5566 ,0)755¢(0, z)]
— 255 (2,0)75.55 ' (0,0)(Cy5) S5 (x, 0)7s
x St (2, 2)(Cs) SE (, 0)
+ 485 (,0)7555 ™ (0,0)(Cy5) SE (,0)(Cys)
x S (x,0)Tr (1555 (z, )]
+250 (2,0)75.55 “ (0,0)Tr [ (Cys)
x S (2,0)(C5) S5 (2, 0)7585 (x, )]
— 485 (,0)7555 ' (0,0)Tr [(Cvs)
X Sgb/ (z, 0)(075)SZC/T (z, O)] Tr [75556(1’, x)}
— 255 (007555 (0,0)(Cy5) S2" (,0) (C5)
x S (x, 2)555 (2, 0)
+ 485 (,0)7555 " (0,0)(Cy5) SY" (2, 0)(Cys)
x 5 (x,0)Tr (1555 (@, 2)]
— 255 (2,0)(C5) S (2,0)755%" (2, ) (Cys)
x S5 (2,0)755¢(0,0)
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+ 455 (2, 0)(Cy5) S (2, 0)(Cy5) S¢° (2, 0)s
x S€(0,0)Tr [55% (z, z)]
+ 252 (2,0)(Cy5) S (, 007558 (, ) (C'ys)
X SSCC/ (x,0)Tr [755’5,6/(0, O)}
— 455" (,0)(C5) S (w,0)(Cy5) S (,0)
x Tr [’}/5556(1‘, x)} Tr [75586/6,(0, 0)}
+ 250 (2, 0) Tr [(Cr5) 52 (, 0) 75
x SV (0,0)(Cs) S (2, 00755 (2, )]
— 455 (2,0)Tr[(Cs) 52 (, 0)7
x SV (0,0)(Cy5) S (,0)] Tr 1555 (2, ) ]
- 253“1 (x,0)Tr [(075)521’/(90, 0)(Cs)
X SZC/T(x, 0)75566 (x, :z:)}Tr [75556/(0, 0)]
+ 455 (,0)Tr[(Cr5) S2 (2, 0) (Cys)
X SfflT (, )}Tr [75556(96,:5)]Tr [7555/6,(0, 0)}
— 2507 (2,0)(C5)S"" (0,0)75.5%" (w, 0)(Cys)
x Se(x, x)759: (2, 0)
+ 455 (,0)(C5)S"" (0,0)75.5% (w,0)(Cys)
X Sff/(x 0)Tr [755’66(1: x)]
+ 2557 (2,0)(Cy5) SY" (2, 0)(Cys) S5 (2, )5
x S (2, 0)Tr [155¢°¢(0,0)]
— 455" (,0)(C5)S2" (2, 0)(Cy5) S (x,0)
x Tr[v55(x, z)] Tr [7555/6/(0, 0)]
— 250 (2, 2)7555" (,0)755; “ (0,0)(Cs)
x S (2,0)(Cs) S (x,0)
+482°(w, )75 (%, 0)(C5) 2" (w,0)(Cs)
X SSCC/ (x,0)Tr [755’Zlel(0, O)}
— 253 (2,0)75.95 (0, 2)755:" (2, 0)(Cys5)
x S (2, 0)(Cs) S (2, 0)
— 250%(x, 2)7555° (2, 0)7555 ' (0,0)(Cys)
x S (x,0)(Cs) S (z,0)
+482°(2, )75 (2, 0)(C5) S (w,0)(Cs)
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X Sff/ (x,0)Tr [755'2/6/(0, O)}
— 253 (2,0)7595 (0, 2)755;" (2, 0) (Cy5)
x S (2,0)(Cys) S (2, 0)
+ 255 (2, 2)755¢" (2, 0)755; “ (0, 0)
x Tr[(Crs)S% (,0)(Crs) S (2, 0)]
— 485w, )55 (2, 0) Tr [(Cys)
x S% (2,0)(Cs) S (2, 0)] Tr[155¢ € (0, 0)]
+ 250 (w,0)75.55 (0, 2)7555" (, 0)
X Tr[(C5)SY (2,0)(Crys) S (2,0)]
— 282(w, 2)75.55" (x, 0)(C5)55 " (0,0)75
x S (2,0)(Cy5) < (, 0)
— 282%(w, 2)75.55" (%, 0)(C5)S2" (, 0)(Cs)
x S (2, 007555 (0,0)
+25%¢(x, 1‘)755’6“' (x,0)Tr [(075)
x % (,0)(Crys)S" (0,0)7555" (x,0)]
— 282(w, 2)75.55" (%, 0)(C5)S2" (, 0)(Cs)
x 8¢ (2,0)755¢(0,0)
+ 259 (2, 2) 7555 (2, 0)(Cs) SY (2, 0)(Cys)
xS (2, 0)Tr [15.55 (0, 0)]
— 282(w, 2)75.55" (2, 0)(C5)S5"" (0,0)75
x 82 (2, 0)(Cys) S (, 0)
+280(w, )75 (%, 0)(C5) 2" (, 0)(Cs)
X Sff/ (x,0)Tr [75556,6/(0, O)}
+ 288 (2, 2) 595" (2, 0) Tr[(Cys)
x St (2, 09555 (0,0)(C5) S5 (,0)]
— 2502, 2)7555" (2, 0)Tr [(Cys)
x S%(,0)(Crys) S (,0)] Tr [155¢¢(0,0)]
+ Sa“ (z, O)Tr[(C'%)S “(z,x)7s
x S (2, 0)(C5)S5 " (0,007585" (x,0)]
- 25;1“/ (x,0)Tr [(C%)Sze(x, x)7Ys
x S (w,0)(Cy5) S5 (w,0)] Tr[75.5¢ (0, 0)]
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+ Sga/ (z,0)Tr [(075)536(377 )75

x S (2007555 (0,0)(Cy5) S5 (2, 0)]
+ Sga’ (x,0)Tr [(C’%)Sze/ (x,0)7s

x 820, 2)7585 (x,0)(C5) S (x,0)]
+ 82 (2, 0)755¢ ' (0,0)Tr [(Cvs)

x Sz, 2)7555 (2,0)(Cs) S (2,0)]
— 82 (2,0)Tr [(Cs) S&(z, )7

x S (x,0)(Cs) S5 (,0)] Tr [4555 (0, 0)]
+ 8%z, 2) 7555 (, 0) Tr [(Cys)

x S (2,0)(C5) S5 (0,0)7555 (,0)]
— 258(x, 2)75.55 (, 0)Tr [(Cs)

X SM(2,0)(C5) S (2,0)] Tr[1555 (0, 0)]
— 59 (2, 0)Tr[(Cy5) S (2, 0) (Cy5)

X SSICIT(O, 0)75556/T (x, 0)} Tr [755’;6(1‘, $)]
+ 23;“/ (,0)Tr [(C’%)Szb/ (x,0)(Cs)

X SfflT(:U, 0)} Tr ["}/55’:6(1', :1:)] Tr [75556/(0, 0)}
— 252%(x, 2)75.55 (2, 0)(Cy5) S5 " (0,0)75

x Sb (,0)(Cs) S (x,0)
+ 485 (2, 2)75.55" (2, 0)(C5) S (,0)(Cys)

X Sff/ (,0)Tr [7555,6/(0, 0)}
+ 252 (2,0)(C5) 55" (0,0)7585" (2,0)(Cs)

x S (z,0)Tr (1555 (z, )]
— 4557 (2,0)(Cy5) S (,0)(Cys) S (=, 0)

x Tr [75556(% :17)} Tr [755'5,6/(0, 0)}
— 255z, 2)7555" (2, 0)(C5) S (,0)(Cys)

x 8¢ (x,0)7555 (0,0)
+ 255 (2,0)(Cy5) S (w,0)(Cys) S5 (, 0y

X SEICI(O, 0)Tr [75S§e(x, x)]
+ S%¢(x, x)’yg)Sj“/ (x,0)Tr [(0’75>

x S (x,0)7555"(0,0)(C5) 55" (,0)]
— 529 (2,0)Tr [(Cy5) 82 (x, 0)75
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x SEY(0,0)(Cy5)Se” (x,0)] Tr [155¢(x, )]
+ 58, 2)75.9¢ (w,0)7555 “ (0, 0)
X Tr[(C5)SY (2,0)(Crys) S (2,0)]
— 52w, x)7555" (w,0) Tr [(Cys)
x S (w,0)(Cy5) S5 (,0)] Tr[75.5¢ (0,0)]
— 52 (2, 0)75.5¢ “ (0, 0)Tr[(Cs)
x S% (2,0)(Cs) S (2, 0)] Tr[5.5¢ (z, x)]
+ 52 (w, 007555 (0, )75 (, 0)
X Tr[(C5)S? (2,0)(Crys) S (2,0)]
+ 57 (,0)Tr [(cmszb’ <x 0)(Cys)
X SCC z,0)] Tr[v555 (2, x }Tr[’yg,S” (0,0)]
~ 5z, O)Tr[(c%)sbb/(x 0)(Cs)
x ge” z,0)]Tr [75566 2,0)755(0, )]
— 250(z, 1)755:° (x, 0)755” (0,0)(Cs)
X Szb (z, 0)(075)55’3/(%0)
+282(w, )75 (%, 0)(C5) S2" (, 0)(Cs)
x S (2, 0)Tr [5.5¢ (0, 0)]
+ 252 (w,0)75.5¢ ' (0,0)(Cy5) S (,0)(C5)
x S (2,0)Tr [155%(, x)]
— 255 (2, 07555 “(0, 2)75595 (, 0)(Cs)
x S (2,0)(Cv5) 5 (2, 0)
— 282 (2,0)(C5) S8 (w,0)(C5) S5 (, 0)
x Tr[y559¢(x, x ]Tr['yg,S” (0,0)]
+ 252 (2, 0)(C5) S0 (, 0)(Cy5) S5 (, 0)
x Tr [75566 (ac,O)%Sse(O,x)]
25 (2,0)(C5) S5 (0,0)75.58"" (2, 0)(Cys)
X S (x, )79 (x,0)
+ 482 (2, 0)(C5) S (w,0)(C5) S<° (, 2)75
X Ssecl (x,0)Tr [755’Zlel(0, O)}
+255% (,0)(C5)S5 " (0,0)75.55" (2, 0)(Cys)
x S (x,0)Tr (1555 (z, )]
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— 455" (,0)(Cs) S (w,0)(Cy5) S (,0)
x Tr[y5S¢ (2, 2)] Tr[1555 ¢ (0, 0)]
+ 25‘” (x, O)Tr[(C’%)Sbe(x )5
x S (2,0)(Cy5) S5 (0,0)7555" (,0)]
45““ (x, O)Tr[(C’%)Sbe( ,T)Ys
x S (x,0)(C5) 8" (2,0)] Tr[4555 7 (0,0)]
259 (x, O)TI'[(C"}%)S "(2,0)(Cys)
(0,0)755ce (x, 0)}Tr[75S§e(x,x)]
+450 (x, 0>Tr[<c%> Y(2,0)(Cs)
x S« (z,0 0)] Tr [7555(z, )] Tr [755'2/6/(0, 0)]
— 2557 (2,0)(C5) S (200755 (, 2)(Cs)
x S¢ (2,0)7555 (0, 0)
+4857 (2,0)(Cy5) S (2, 007555 (2, 2)(C5)
X Sff/ (x,0)Tr [7555,6/(0, 0)}
+ 250 (2,0)(C5) S2" (2, 0)(Cs) S (2, 0)5
X SZIC/(O, 0)Tr [75556(:6, :1:)]
— 455" (,0)(Cs) S (2, 0)(Cy5) S (,0)
x Tr [75556(% a:)} Tr [755'5,8/ (0, 0)}
— 255 (,0)7555 " (0,0)(Cy5) SY" (,0)(Cys)
x 8¢ (x,x)y595 (x,0)
+250 (2,0)75.55  (0,0)(Cs) S22, 0)(Cys)
x S (z,0)Tr (1555 (z, )]
+ 2536/ (z, 0)7555%,(& 0)Tr [(C%)
x S (x,2)755 (x,0)(Cy5) S (2,0)]
— 285 (2,0)75.55“ (0,0)Tr [(Cys5)
X Sbb (z, 0)(075)5“ (x,O)]Tr [755566(3:,95)}
— 255 (,0)7555 " (0,0)(C5) S (2, 0)7s
x SP" (z, ) (Cys) S (2, 0)
+ 255 (,0)7555 (0,0)(Cy5) SY" (,0)(Cys)
x S (x,0)Tr (1555 (z, )]
— 2557 (2,0)(Cy5) SE" (2, 0)(Cy5) S5 (2, )5

/
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x S5 (x,0)755¢¢(0,0)
+ 2507 (2,0)(C5) S8 (,0)(C5) S (, )75
x S (,0)Tr [155¢¢(0,0)]
+ 2557 (,0)(Cs)Su" (w,0)(Cy5) S (2, 0)35
x 5S¢ (0,0)Tr (555 (, )]
— 2557 (2,0)(Cy5) S (2, 0)(Cy5) S5 (2, 0)y5
x S<°(0,2)7555 (2, 0)
— 2557 (2, 0)(Cy5) S (2, 0)(C5) S5 (, 0)
x Tr[v55¢ (@, z) | Tr [ 55616/(0,0)}
+2857 (2,0)(Cy5) SE" (=, 0 ><C%>Scc (,0)
x Tr[y55 (z,0) )755¢¢(0, )]
+ 2857 (2, 0)Tr[(Cys) S2 (, ) s
x 87 (x,0)75.8"(0,0)(Cy5) Se” (, 0)]
— 255 (2, 0) Tr [(Cy5) S22, 2)7s
x S (x,0)(Cs) S (,0)] Tr [55¢¢ (0, 0)]
- 253al (z, O)TYKC’YE))Sbe (z,0)7s
x SE(0,0)(Cy5) e (, 0)] Tr [4555 (z, )]
+ QSZG/ (x, 0)Tr [(C%)Sge (x, 0)vs
x S0, 2)75S< (2, 0)(C) S (2, 0)]
+ 250 (,0) Tr [(Cy5) S2 (2, 0) (Cys5)
x S (2, 0)] Tr[15.5¢(, )] Tr[55¢ (0, 0)]
— 285" (2, 0)Tr[(Cy5) S2 (2, 0)(C5)
x 8¢ (2,0)] Tr [4555 (2, 0)7555 (0, 2)]
— 2557 (2,0)(C5) 55" (0,0)7555" (x,0)75
X SﬁeT (x, x)(C%)Sff/(x, 0)
+2857 (2,0)(Cy5) S (2, 00755 (2, 2)(Cs)
x S (x,0)Tr[155¢¢(0,0)]
+2857 (2,0)(C5) S5 (0,0)75.5%" (2, 0)(C5)
x 5 (x,0)Tr (1555 (@, 2)]
— 2557 (2,0)(C5) S (2, 007555 (0, 2)7s
x Sb (2,0)(Cy5) S (x, 0)
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— 255" (,0)(Cs) S2" (w,0)(Cy5) SE° (,0)

x Tr[v55¢(xz, ) }Trhg,S” (0,0)]
+ 2557 (,0)(Cs) S2 (2, 0)(Cy5) S (, 0)
[

x Tr[y55% (z,0)755 (0, z)] (F.4)
F.3 Two-Particle AT Correlation Function

A‘H't —j § :efzp:v abc ab”|:

+ ToU (2, 0) (ol o) Tr [T D (2, )T

x U (2,0)(0}70)T D" (0,0) (70T 50) U™ (,0)]
— DU (,0) (3T 170) " D" (0, 0) (v $y0) U (2, 0)Ty

x D*(x,2)T3U° (,0) (10T ko)
— ToU (2,0) (%I §70) DY (0, 0) (voT T70) U” (2, 0)TF

x D" (z, 2)TTU (z,0) (oI5 70)
+ DU (2, 0) (3T 70)" D (0,0) (T §y0) U (2, 0)TF

x D" (z,2)TTU (z,0)(yoT70)
+ LU (,0) (70T o) DY (0, 0) (7o i) U™ (2, 0)Ty

x D" (x,2)03U° (,0) (70T o)
— ToU (2, 0) (vl y0) Tt [Ty D (2, )Ty

x U (x,0) (3T 570) D (0,0) (0T T70) U (x,0)]
— DU (2,0)(70I'by0) Tr [[1 D (2, 0) (oL | 0)
x U (2,0)T5 D (0,2) (T §0) U (x,0)]

+ DU (2,0) (7T 70) T DY (2, 0)TTU (2, 0) (70§ 0)

X Dee(O :U)F;),Uec (z, 0)(")/0F2”}/0)
+ DU (2, 0) (3T 570) D°(0, 2)T3U (2, 0) (oL [ 70) "

x DM (2, )T U (2, 0) (70T 50)
— DU (2, 0) (0L 7o) D" (2, )T U (, 0) (70T §70)

x Te[T3U (,0) (I 570) D (0, 2)]
— U (2,0) (7T 50) D°(0, )15 U (, 0) (7T 1y0)

x T[T DY (2,0) (3T 70) U (2,0)]
+ FQUCC/(ZE, 0)(')/0F270)Tr [FlDbb (x, O)(%Fl'yo)
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x U (2, 0)] Te[T5U° (2, 0) (40T 570) D(0, )]
(F.5)

F.4 Equivalence of Correlation Functions

In this section we briefly demonstrate that some of the correlation functions
corresponding to the interpolators outlined in table 3.1 are identical at the SU(3)
flavour limit (or simply after imposing isospin symmetry where no strange quarks
are present). We begin with the simple case of demonstrating the equivalence of
(0|xﬂ0(x)xjr0(0)|0> and <0|XW+($)X7TT+(O)|O>- Starting with 7% we see

Xot (7) = d(2)psut(x) = XL (@) = —u (2)75d” (2), (F.6)
and therefore
Xt (@)L (0) = =d5 () (75 )apufy (2) 5 (0) (75) e i (0)
= ey (0)dg, (2)ufy ()1 (0) (5)as(Vs) o (F.7)
Now taking all possible contractions as ameliorated in appendix D we obtain
O+ ()X (0)]0) = DEA(0, 2)Ug (15)as (15)grar

= D5 (0,2) (15)apUg (75) grar
= Tr[S7°(0,2) (1) S (w,0) ()], (F.8)

where we have imposed isospin symmetry on the final line, denoting the propa-

gator S. Similarly, using

Xro(2) = —= (d°(2)75d° (2) — T (2)y5u(x))

T

Xpo () = —= (@ ()50t (2) — d°(2)y5d(2)) (F.9)

Sl =Sl

we obtain

X0 (0) = 5[ (& ()05 () — 55 2) 5 ) ()

x (5/0) ()i (0) = d5(0) ()i (0)

/

() () (05 (0) — () () (05 (0)

Gl@)ug (x)ug (0)ug (0) + UE(x)ﬂi(x)dZ'f(O)J%'f(O)] (¥5)ap(¥5) grar-
(F.10)
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Taking contractions and imposing isospin symmetry as before we arrive at

(00 () x10 (0)]0) = %[Dgz(x,@ 55(0,0) = D, (x, ) D55 (0, 0)
+ D5 (2,0) D550, 2) — Uge (2, 2)US5 (0,0)
+ Uy (2,0)US5,(0,2) + U (x, Jf)DZ,%'(OaO)] (75)as(75) prar
[see (2, 2)555,(0,0) — S5 (, ) 5550, 0)
+ S5 (2, 0)S55,(0, ) — St (, 2)555,(0,0)
+ S (2,0)54,(0,2) + S5 (2, 2) 555 (0,0) | (18)as ()7
50 (2,0)55,(0,2) () (¥5) 1o

= 8212(07 :L’) (75)«1555%/' ('T7 0) (75)5’0’
= T[S0, 2) ()5 (2, 0)(35)] (F.11)

As we can now see this two-point function is the same as the two-point function
for x,+ in equation (F.8). That is,

(0100 (2) L0 (0)10) = {0]xz+ ()X (0)]0). (F.12)

Furthermore, it is clear that the correlation functions for x,.— = @°(z)y5s(z) and

Xgo = d®(x)755°(x), are identical upon imposing isospin symmetry. That is,

(O1x - (@)X (0)]0) = (O x go (2)xko (0)]0) (F.13)

It is also immediately obvious in the SU(3) flavour limit that the interpolators
X, +: Xje— and Xgzo are identical. We can therefore write (in the SU(3) flavour
limit)
O (2)xG¢- (0)]0) = (Olx o ()X 50 (0)]0)
= (0]xzo () x10(0)[0)
= (0xz+ (2)x]+(0)]0). (F.14)

Now turning our attention to the proton and A, we begin by calculating the
correlation function for the proton. We therefore start with the interpolator X%,

given in table 3.1
X5 () = ﬁeabc (u(2)(Cys)d" (x) ) u’(x)

() = —%e Ve () (@ (2) (O )™ (2)). (F.15)
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x| (WE (@) (Cs aadh (@) (275, (0) (a8 (0) (C5) vt (0) |

_16abc€a’b’c’
2

x [l (o) s ()85 (0) % (0) (0)(Cr5)as (C) v
(F.16)

Then taking all possible contractions as before we obtain

(O[x5 (x)x5(0)]0) = ; e Ut (e, 0)USh (,0) Dl (,0)
— Ui, 0) U (,0) DYy (2, 0)] (C5)as (Cs) e

1 N l / !/
= —5e™ e |UsS (2, 0)(C5)as Dl (@, 0)(Cs ) Ut

— Usi(,0)(Cys) 5 DIy (2, 0)(C5) U (2, 0)|
1 AN} I / / 1T

= —éeabce“ YU (2,0)Te [(Crys) D™ (2, 0)(Cys) U |
+ U (2,0)(Cy5) D" (2,0)(Crs)U (2,0)],  (F.17)

where we have picked up three signs on the final line for taking the transpose off
two Cvs and swapping a < ¢. Turning our attention to the A, we start with the

interpolator

i (@) = % [2(u"(2) () (1)) 5°(2) + (uT(2) (Cr)s (1)) ()

— (d" (@) ()" ) ()] (F.18)

and hence

o) = == [ = (@) @O @) + () @) Cr)™ (@)

+ 925 (2) (& (2)(Crys)a™ (x))] . (F.19)

Therefore,

_ 1 abe a/ /C/
W ()T (0) = —etee
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+ (ul(2)(C5)apst (1)) d5 ()
— (d5*(@)(Cs)assl(@)) 5 )]
x | = a5 (0) (35 (0)(Cs) gl (0)
o+ d5,(0) (55(0)(Cys ) rar 2 (0)

+ 253’,«))(c?g,(o)(c%)awugf"(o)ﬂ]

6

= e | o (@) (n)s ()5 ()5 (O)TLE (0)
+2u“< ) <x>s («) 3( >sﬁ,<o>

0)aZ (0) | (C5)ap(Cs) pra-
(F.20)

Then taking all possible contractions as before and going to the SU(3) flavour

limit we have

(O )X (0)10) = e | — 205 (2, 0) Dl (2, 0853 (. 0)
20728 ,0) D (2, 0) 5% (2,0
+4U%%(z, O)D%,(m 0)55%,(z,0)
+ U5 (x, 0)SEy (w,0) D5t (x, 0)
+ U (x, O)Sﬁﬁ/(ilf 0)D$S, (z,0)
—2U%%(x, O)Sﬁ/\,(:v O)D/\ﬂ,(x,O)
+ D% (x, )Sg%,(x 0)USS, (x,0)

aao!

+ D2 (2,0) 8% (z, 0) U2 (z, 0)
— 2D (2, 0S8 (2, 0) U5t (2, 0) | (C15)as(Cs )

1 v
= —Eeabcfabc [_ 2 a}\/(l' O)Sﬂa/(l‘ O)S)\ﬂ/( )

- 45aa (z, O)Sﬁ,\/(ﬂf O)S)\,B’( 0)
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+ 652 (2, 015 (x, 0)S55 (x, 0)
+ 2585 (2, 0) 585 (x, 0) S50 (2, 0)
— 2528 (2, 0) S5 (x, 0)95% (2, 0) | (C5)ap(Cs) prar

(F.21)

We have, of course, denoted the propagator in the SU(3) flavour limit by .S, as

per our previous convention. We then obtain

(0P @R O)]0) = —ee |

6
—2S§‘7é/(x, 0)(Cs)pra /ﬁ J (2,0)(C5) 5o S5 (, 0)
455 (x, 0><Ov5>gafs L (2,0)(Cy5)ap m/<x,0>
+ 6555 (2, 0)(C5)ap Sy (2, 0)(Cys) rar Sty (2, 0)
+ 2859 (2, 0)(Cys) L 5 SBY5 (2,0)(Cys) B M,(x,())
— 2550(,0)(C5) St (2,0)(C5)as S (2, 0)
= eV | 5 (1 0)Tr(Cys)SY (, 0)(Cys) S (2, 0)
+ 5% (2,0)(C5) ™ (2, 0) (C5) 5 (2, 0) .
(F.22)

where we have taken the transpose off C'y5 for a sign and performed colour index
relabeling on the final line. We can see that this is in the same form as the three

quark proton two-point function given in (F.17).
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