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Abstract

Quantum Chromodynamics (QCD) is widely accepted as the theory that de-

scribes the strongest force in Nature (by coupling constant), aptly named the

strong nuclear force. The challenge is to understand the phenomena that emerge

from this fundamental quantum field theory. Hadronic spectroscopic calculations

can be performed utilising the formalism of lattice QCD by discretising space-time

onto a hypercube. This is the only known non-perturbative ab-initio approach

for studying QCD. Equipped with a tractable formalism, we consider some recent

work done extracting resonances, in particular the Roper and the Λ(1405) reso-

nances studied at the CSSM in Adelaide. These studies are done with three quark

interpolators, and as such we expect to be extracting resonances having strong

overlap three-quark states. In order to rule out the possibility of contamination

from more exotic five-quark states, and to extract multi-particle states in their

own right, the use of five-quark interpolators is of considerable interest. We first

construct five-quark interpolating fields for the p, Λ and ∆++. The corresponding

correlation functions are calculated which can be of considerable size. Relevant

elements of the all-to-all propagator (the so-called loop propagator), are calcu-

lated using stochastic estimation techniques. Dilution in spin, colour and time

are implemented as a means of variance reduction. We conclude by presenting ef-

fective mass plots for the five-quark interpolators, the relevant contributions from

fully connected and loop containing pieces, and comparing them to the masses

extracted from standard three-quark operators.
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