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ABSTRACT

Liquefaction has caused significant failures and represents a significant problem for the
community and geotechnical engineering designers (Pyrah et al., 1998). However, in
practice, a single reliable method for assessing the liquefaction potential of soils is not
well defined, particularly for aged soils. Thisis due mainly to the fact that most research
has been based on ‘clean sand’ as the calibration to define the boundary between
liquefaction and non liquefaction behaviour. Therefore, a well defined procedure for
liquefaction assessment which is applicable to soils of any age is a crucid first step in
reducing the risk of substructure failures and mitigating casualties resulting from

earthquakes.

The research presented herein is focused on investigating the capability of the cone
penetration test (CPT) and flat dilatometer test (DMT) for liquefaction assessment on
natural soils considering soils deposited more than 1100 years ago at Gillman, South
Australia. The recommended CPT procedure from the 1996 NCEER and 1998
NCEER/NSF Workshops is employed. In addition, the age correction factor proposed by
Hayati et al. (2008) is used to revise the cone resistance ratio (CRR) values obtained from
the NCEER/NSF procedure. The DMT procedure is selected as another contender in this
liquefaction assessment because some researchers, such as Yu et a. (1997), Sladen
(1989) and Marchetti (1999), claimed that the DMT is able to capture the ageing effect of

the soils.

Extensive study to define the peak ground acceleration for this liquefaction assessment is
conducted by using one-dimensional, site-specific ground response analysis (SHAKE91
and EERA). The most recent and significant natural earthquake motions recorded by two
separate accel erogram stations are obtained and manipulated to suit the data entry format
of the response analysis methods. The soil unit weight and its shear wave velocity are
derived from CPT and DMT data by using several empirical correlations. The results are

then applied individually to each procedure.



i Abstract

The critical state approach for liquefaction assessment introduced by Jefferies & Been
(2006) is used to verify the assessment of both the CPT and DMT procedures. The smple
critical state parameter test proposed by Santamarina & Cho (2003) is undertaken on 6

soil samples taken from the study site to estimate the in-situ state parameter.

Liquefaction assessment using the CPT data incorporating ageing and DMT procedures
(i.e. Marchetti, 1982 and Monaco et al., 2005) are presented and a comparison between all
procedures is carried out. Re-examination using critical state approach is made. In
addition, the consequences of the liquefaction in terms of ground settlement are also
investigated.

Finally, this study shows that soil ageing increases the ability of soil to resist during the
seismic loading. Furthermore, by assuming that the critical state approach represents the
true conditions of the study site, the liquefaction assessment method proposed by
Marchetti (1982) from DMT data provides better prediction than the others.
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Erratum 1

Setiawan, Bambang: Assessing Liquefaction Potential of Soils Utilising In-situ Testing, 2011

p.i: Line 19 should read:
... (1989) and Marchetti (1997), claimed that the DMT is able to capture the ageing effect of ...

p.3: Line 15 should read:
... originally by Schnabel et al. (1972) and EERA by Bardet et al. (2000). For the ...

p-4: Line 22 should read:
... (Schnabel et al., 1972) and EERA (Bardet et al., 2000). The results of the site-specific ground

p.10: Last line should read:

... dilative behaviour or a strain hardening response. Although cyclic mobility can occur slightly
below the normalising state parameter, 1 is an important parameter to detect liquefaction flow,
which often causes disastrous failures on structures (Martin & Lew, 1999).

p.12: Line 12 should read:
... less than approximately 10% clay-size fines (< 0.002 mm), and a liquid limit (LL) in the ...

p.12: Line 14 should read:
... with more than approximately 10% clay-size fines and a LL more than or equal to 32% are ...

p.13, Table 2.1: The correct table is:

Liquid Limit' | .
Liquid Limit <32% Liquid Limit =232%

Clay-size Content 2

Further Studies Required (Considering
Susceptible plastic non-clay sized grains - such as
Mica)

Clay-size Content
<10%

Further Studies Required
(Considering non-plastic clay sized Not Susceptible
grains — such as mine and quarry tailings)

Clay-size Content?
= 10%

Notes:
1Liquid limit determined by Casagrande-type percussion apparatus.
2Clay-size content defined as grains finer than 0.002 mm.

p.15: Line 16 should read:
... cyclic loading (Glaser & Chung, 1995). Moreover, obtaining high quality undisturbed sandy
samples is difficult and costly. Thus, in-situ testing is very useful and usually ...

p.175: Line 6 should read:
... 6.4, 6.5 and 6.6 to depict the impact of different magnitude of earthquake at study site. As seen
in the plots, the CSR values increase when the earthquake...

p-180: Line 2 to 3 should read:
... (identified by green shading) occurs at a depth of approximately 2.2 m; (2) the layer which
exhibits the highest impact during an earthquake is the layer ata ...

p.180: Line 5 to 6 should read:
... shading); and (3) an increase of 0.5 in earthquake magnitudes causes a rise of the thickness by a
factor of 1.5.

p.181: Line 1 should read:
... highest impact during an earthquake is a layer at a depth of between 7.8 to0 9.8 m ...



Erratum

Setiawan, Bambang: Assessing Liquefaction Potential of Soils Utilising In-situ Testing, 2011

p.202, Table 6.9: The correct table is:

SOIL TYPES CRITICAL STATE APPROACH LIQUEFACTION ASSESSMENT FOR M=5.0
REMARKS
METHOD | METHOD
SOIL TYPES SCREENING
No need for further testing

Potental to liquefy

Need further testing

CRITICAL STATE APPROACH

Fine grained soils
(Not applicable for
critical state approach)

Dilatve

. Contractve

LIQUEFACTION ASSESSMENT

No liquefaction

. Liquefaction

#1* DMT liquefaction
assessment method
proposed by
Marchetti (1982)

#2** DMT liquefacton
assessment method
proposed by
Monaco etal. (2005)




Erratum

Setiawan, Bambang: Assessing Liquefaction Potential of Soils Utilising In-situ Testing, 2011

p.203, Table 6.10: The correct table is:

SOIL TYPES CRITICAL STATE APPROACH LIQUEFACTION ASSESSMENT FOR M=5.5
REMARKS
METHOD | METHOD
SOIL TYPES SCREENING
No need for further testing

Potental to liquefy

Need further tesing

CRITICAL STATE APPROACH

Fine grained soils
(Not applicable for
critical state approach)

Dilatve

. Contractive

LIQUEFACTION ASSESSMENT

No liquefaction

. Liquefaction

#1* DMT liquefacton
assessment method
proposed by
Marchett (1982)

#2** DMT liquefaction
assessment method
proposed by
Monaco etal. (2005)




Erratum

Setiawan, Bambang: Assessing Liquefaction Potential of Soils Utilising In-situ Testing, 2011

p.204, Table 6.11: The correct table is:

SOIL TYPES CRITICAL STATE APPROACH LIQUEFACTION ASSESSMENT FOR M=6.0

DMT REMARKS
BH#1 | BH#2 | CPT#1| CPT#2 | CPT#3| DMT | CPT#1 | CPT#2 | CPT#3 [ METHOD | METHOD

Depth (m)

SOIL TYPES SCREENING

. No need forfurther testing

Potential to liquefy

. Need further testing

CRITICAL STATE APPROACH

#* #

Fine grained soils
(Not applicable for
crifical state approach)

Dilatve

Contractive

LIQUEFACTION ASSESSMENT

No liquefaction

. Liquefaction

#1* DMT liquefacton
assessment method
proposed by
Marchett (1982)

#2** DMT liquefaction
assessment method
proposed by
Monaco etal. (2005)




Erratum

Setiawan, Bambang: Assessing Liquefaction Potential of Soils Utilising In-situ Testing, 2011

p.205, Table 6.12: The correct table is:

SOIL TYPES CRITICAL STATE APPROACH LIQUEFACTION ASSESSMENT FOR M=6.5

DMT REMARKS
BH#1 | BH#2 | CPT#1| CPT#2 | CPT#3| DMT | CPT#1 | CPT#2 | CPT#3 [ METHOD | METHOD

Depth (m)

SOIL TYPES SCREENING

. No need for further testing

Potential to liquefy

. Need further testing

CRITICAL STATE APPROACH

#* #

Fine grained soils
(Not applicable for
crifical state approach)

Dilatve

Contractive

LIQUEFACTION ASSESSMENT

No liquefaction

. Liquefaction

#1* DMT liquefacton
assessment method
proposed by
Marchett (1982)

#2** DMT liquefaction
assessment method
proposed by
Monaco etal. (2005)

12.61

13.04

13.44

13.84




Erratum

Setiawan, Bambang: Assessing Liquefaction Potential of Soils Utilising In-situ Testing, 2011

p.206, Table 6.13: The correct table is:

Depth (m)

2.21

2.61

3.0

344

3.81

424

6.6

12.64

13.04

13.44

13.84

SOIL TYPES CRITICAL STATE APPROACH LIQUEFACTION ASSESSMENT FOR M=7.0
DMT REMARKS
BH#1 | BH#2 | CPT#1 | CPT#2 | CPT#3| DMT | CPT#1 | CPT#2 | CPT#3 | METHOD | METHOD
#* #o
SOIL TYPES SCREENING

_

. No need for further testing

Potential to liquefy

. Need further testing

CRITICAL STATE APPROACH

Fine grained soils
(Not applicable for
critical state approach)

. Dilatve
. Contractive

LIQUEFACTION ASSESSMENT

No liquefaction

. Liquefaction

#1* DMT liquefacton
assessment method
proposed by
Marchett (1982)

#2** DMT liquefaction
assessment method
proposed by
Monaco etal. (2005)




Erratum

Setiawan, Bambang: Assessing Liquefaction Potential of Soils Utilising In-situ Testing, 2011

p.207, Table 6.14: The correct table is:

SOIL TYPES CRITICAL STATE APPROACH

LIQUEFACTION ASSESSMENT FOR M=7.5

Depth (m)

BH#1 | BH#2 | CPT#1| CPT#2 | CPT#3 | DMT

CPT#1

CPT#2

DMT REMARKS

CPT#3 | METHOD

#*

METHOD
Ho

_

12.64

13.04

13.44

13.84

SOIL TYPES SCREENING

. No need for further testing

Potential to liquefy

. Need further testing

CRITICAL STATE APPROACH

Fine grained soils
(Not applicable for
critical state approach)

. Dilatve
. Contractive

LIQUEFACTION ASSESSMENT

No liquefaction

. Liquefaction

#1* DMT liquefacton
assessment method
proposed by
Marchett (1982)

#2** DMT liquefaction
assessment method
proposed by
Monaco etal. (2005)




Erratum

Setiawan, Bambang: Assessing Liquefaction Potential of Soils Utilising In-situ Testing, 2011

p.216: Line 5 should read:
... specific ground response analysis using the SHAKE9I (Schnabel et al., 1972) and EERA...

p.216: Line 6 should read:
... (Bardet et al., 2000) techniques. The results of the site-specific ground response analysis ...

p.223: Line 28 should read:
... properties of a stiff, overconsolidated clay. Ph.D. Thesis, Faculty of Engineering, The
University of Adelaide, Adelaide, 469pp.

p.224: Lines 19 to 20 should read:
... penetrometer tests to estimate settlements of shallow footing on calcareous sand. Proceedings
7" Australia-New Zealand Conference on Geomechanics, Adelaide, pp. 909 - 914.

p.227: Lines 15 to 16 should read:
... conventional field testing. Proceedings 2007 Conference on Earthquake Engineering in
Australia. Australian Earthquake Engineering Society, Paper No. 40, Wollongong, November.
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