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ABSTRACT

Liquefaction has caused significant failures and represents a significant problem for the

community and geotechnical engineering designers (Pyrah et al., 1998). However, in

practice, a single reliable method for assessing the liquefaction potential of soils is not

well defined, particularly for aged soils. This is due mainly to the fact that most research

has been based on ‘clean sand’ as the calibration to define the boundary between

liquefaction and non liquefaction behaviour. Therefore, a well defined procedure for

liquefaction assessment which is applicable to soils of any age is a crucial first step in

reducing the risk of substructure failures and mitigating casualties resulting from

earthquakes.

The research presented herein is focused on investigating the capability of the cone

penetration test (CPT) and flat dilatometer test (DMT) for liquefaction assessment on

natural soils considering soils deposited more than 1100 years ago at Gillman, South

Australia. The recommended CPT procedure from the 1996 NCEER and 1998

NCEER/NSF Workshops is employed. In addition, the age correction factor proposed by

Hayati et al. (2008) is used to revise the cone resistance ratio (CRR) values obtained from

the NCEER/NSF procedure. The DMT procedure is selected as another contender in this

liquefaction assessment because some researchers, such as Yu et al. (1997), Sladen

(1989) and Marchetti (1999), claimed that the DMT is able to capture the ageing effect of

the soils.

Extensive study to define the peak ground acceleration for this liquefaction assessment is

conducted by using one-dimensional, site-specific ground response analysis (SHAKE91

and EERA). The most recent and significant natural earthquake motions recorded by two

separate accelerogram stations are obtained and manipulated to suit the data entry format

of the response analysis methods. The soil unit weight and its shear wave velocity are

derived from CPT and DMT data by using several empirical correlations. The results are

then applied individually to each procedure.
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The critical state approach for liquefaction assessment introduced by Jefferies & Been

(2006) is used to verify the assessment of both the CPT and DMT procedures. The simple

critical state parameter test proposed by Santamarina & Cho (2003) is undertaken on 6

soil samples taken from the study site to estimate the in-situ state parameter.

Liquefaction assessment using the CPT data incorporating ageing and DMT procedures

(i.e. Marchetti, 1982 and Monaco et al., 2005) are presented and a comparison between all

procedures is carried out. Re-examination using critical state approach is made. In

addition, the consequences of the liquefaction in terms of ground settlement are also

investigated.

Finally, this study shows that soil ageing increases the ability of soil to resist during the

seismic loading. Furthermore, by assuming that the critical state approach represents the

true conditions of the study site, the liquefaction assessment method proposed by

Marchetti (1982) from DMT data provides better prediction than the others.
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FS Factor of Safety,
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ISSMFE International Society of Soil Mechanics and Foundation Engineering

k soil specific coefficient proposed by Jefferies & Been (2006)
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Kc correction factor of fines content

KD dilatometer horizontal stress index

KDR factor to correct the effect of aging

kh dilatometer coefficient of permeability

LCD Liquid Crystal Displays

LL Liquid Limit

m rigidity specific coefficient proposed by Jefferies & Been (2006)

M earthquake magnitude.

M compression modulus of the membrane material

MCC Modified Chinese Criteria

MDMT dilatometer vertical drained constrained modulus

MPU Microprocessor Unit

MSF Magnitude Scaling Factor

n exponent that varies with soil type

NCEER National Center for Earthquake Engineering Research

NSF National Research Foundation

OCR Overconsolidation Ratio
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p0 dilatometer corrected first reading

p1 dilatometer corrected second reading

Pa 1 atm of pressure

PGA Peak horizontal Ground Acceleration

PGV Peak Ground Velocity

PL Plastic Limit

Q normalised parameter of tip resistance

qc field cone penetration resistance measured at the tip.

qc1N normalised penetration resistance

qc1N,cs, equivalent clean sand normalized tip resistance,

qD. penetration resistance of dilatometer blade

Qp dimensionless cone resistance based on mean stress

RAM Random Access Memory

rd stress reduction coefficient/factor

S ground settlement

SASW Spectral Analysis of Surface Waves

SPT Standard Penetration Test

t age or time since initial soil deposition or last critical disturbance

T wave transmission

TL termoluminescence

TUK the accelerogram at Mt. Osmond, Adelaide

U0 pre-insertion pore water pressure

USCS Unified Soil Classification System

Vs shear wave velocity

Vsr shear wave velocity of the bedrock

z depth below the surface
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ρ soil mass density

ψ in-situ state parameter
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 Setiawan, Bambang: Assessing Liquefaction Potential of Soils Utilising In-situ Testing, 2011 

p.i: Line 19 should read: 
... (1989) and Marchetti (1997), claimed that the DMT is able to capture the ageing effect of ... 
 
p.3: Line 15 should read: 
... originally by Schnabel et al. (1972) and EERA by Bardet et al. (2000).  For the ... 
 
p.4: Line 22 should read: 
... (Schnabel et al., 1972) and EERA (Bardet et al., 2000).  The results of the site-specific ground 
... 
 
p.10: Last line should read: 
... dilative behaviour or a strain hardening response.  Although cyclic mobility can occur slightly 
below the normalising state parameter, ψ is an important parameter to detect liquefaction flow, 
which often causes disastrous failures on structures (Martin & Lew, 1999). 
 
p.12: Line 12 should read: 
... less than approximately 10% clay-size fines (< 0.002 mm), and a liquid limit (LL) in the ... 
 
p.12: Line 14 should read: 
... with more than approximately 10% clay-size fines and a LL more than or equal to 32% are ... 
 
p.13, Table 2.1: The correct table is: 

 
Liquid Limit1 

Liquid Limit1<32% Liquid Limit1 ≥≥32% 

Clay-size Content 2 

Clay-size Content 2 
<10% Susceptible 

Further Studies Required (Considering 
plastic non-clay sized grains - such as 
Mica) 

Clay-size Content2 
≥ 10% 

Further Studies Required 
(Considering non-plastic clay sized 
grains – such as mine and quarry tailings) 

Not Susceptible 

Notes: 
1Liquid limit determined by Casagrande-type percussion apparatus. 
2Clay-size content defined as grains finer than 0.002 mm. 

 
p.15: Line 16 should read: 
... cyclic loading (Glaser & Chung, 1995). Moreover, obtaining high quality undisturbed sandy 
samples is difficult and costly.  Thus, in-situ testing is very useful and usually ... 
 
p.175: Line 6 should read: 
... 6.4, 6.5 and 6.6 to depict the impact of different magnitude of earthquake at study site.  As seen 
in the plots, the CSR values increase when the earthquake... 
 
p.180: Line 2 to 3 should read: 
... (identified by green shading) occurs at a depth of approximately 2.2 m; (2) the layer which 
exhibits the highest impact during an earthquake is the layer at a ... 
 
p.180: Line 5 to 6 should read: 
... shading); and (3) an increase of 0.5 in earthquake magnitudes causes a rise of the thickness by a 
factor of 1.5. 
 
p.181: Line 1 should read: 
... highest impact during an earthquake is a layer at a depth of between 7.8 to 9.8 m ... 
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 Setiawan, Bambang: Assessing Liquefaction Potential of Soils Utilising In-situ Testing, 2011 

p.202, Table 6.9: The correct table is: 
 

  

SOIL TYPES SCREENING

No need for further testing

Potential to liquefy

Need further testing

CRITICAL STATE APPROACH

Fine grained soils
(Not applicable for 
critical state approach)

Dilative

Contractive

LIQUEFACTION ASSESSMENT

No liquefaction

Liquefaction

#1* DMT liquefaction 
assessment method
proposed by 
Marchetti (1982)

#2** DMT liquefaction 
assessment method
proposed by 
Monaco et al. (2005)

REMARKS
CPT#2

0.2

0.6

1.0

1.4

2.2

2.6

3.0

3.4

3.8

1.8

CPT#1 CPT#2 CPT#3

CRITICAL STATE APPROACH
De

pt
h 

(m
)

CPT#3 DMT

SOIL TYPES

BH#1

4.2

4.6

5.0

5.4

5.8

6.2

6.6

7.0

7.4

7.8

8.2

8.6

9.0

9.4

9.8

10.2

13.0

13.4

13.8

10.6

11.0

11.4

11.8

12.2

12.6

BH#2

LIQUEFACTION ASSESSMENT FOR M=5.0

DMT
METHOD 

#1*
METHOD 

#2**
CPT#1
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 Setiawan, Bambang: Assessing Liquefaction Potential of Soils Utilising In-situ Testing, 2011 

p.203, Table 6.10: The correct table is: 
 

 
  

SOIL TYPES SCREENING

No need for further testing

Potential to liquefy

Need further testing

CRITICAL STATE APPROACH

Fine grained soils
(Not applicable for 
critical state approach)

Dilative

Contractive

LIQUEFACTION ASSESSMENT

No liquefaction

Liquefaction

#1* DMT liquefaction 
assessment method
proposed by 
Marchetti (1982)

#2** DMT liquefaction 
assessment method
proposed by 
Monaco et al. (2005)

De
pt

h 
(m

) SOIL TYPES CRITICAL STATE APPROACH LIQUEFACTION ASSESSMENT FOR M=5.5

REMARKS
BH#1 BH#2 CPT#1 CPT#2 CPT#3 DMT CPT#1 CPT#2 CPT#3

DMT
METHOD 

#1*
METHOD 

#2**

0.2

0.6

1.0

1.4

1.8

2.2

2.6

3.0

3.4

3.8

4.2

4.6

5.0

5.4

5.8

6.2

6.6

7.0

7.4

7.8

8.2

8.6

9.0

9.4

9.8

10.2

10.6

11.0

11.4

11.8

12.2

12.6

13.0

13.4

13.8
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 Setiawan, Bambang: Assessing Liquefaction Potential of Soils Utilising In-situ Testing, 2011 

p.204, Table 6.11: The correct table is: 
 

 
  

SOIL TYPES SCREENING

No need forfurther testing

Potential to liquefy

Need further testing

CRITICAL STATE APPROACH

Fine grained soils
(Not applicable for 
critical state approach)

Dilative

Contractive

LIQUEFACTION ASSESSMENT

No liquefaction

Liquefaction

#1* DMT liquefaction 
assessment method
proposed by 
Marchetti (1982)

#2** DMT liquefaction 
assessment method
proposed by 
Monaco et al. (2005)

De
pt

h 
(m

) SOIL TYPES CRITICAL STATE APPROACH LIQUEFACTION ASSESSMENT FOR M=6.0

REMARKS
BH#1 BH#2 CPT#1 CPT#2 CPT#3 DMT CPT#1 CPT#2 CPT#3

DMT
METHOD 

#1*
METHOD 

#2**

0.2

0.6

1.0

1.4

1.8

2.2

2.6

3.0

3.4

3.8

4.2

4.6

5.0

5.4

5.8

6.2

6.6

7.0

7.4

7.8

8.2

8.6

9.0

9.4

9.8

10.2

10.6

11.0

11.4

11.8

12.2

12.6

13.0

13.4

13.8
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 Setiawan, Bambang: Assessing Liquefaction Potential of Soils Utilising In-situ Testing, 2011 

p.205, Table 6.12: The correct table is: 
 

  

SOIL TYPES SCREENING

No need for further testing

Potential to liquefy

Need further testing

CRITICAL STATE APPROACH

Fine grained soils
(Not applicable for 
critical state approach)

Dilative

Contractive

LIQUEFACTION ASSESSMENT

No liquefaction

Liquefaction

#1* DMT liquefaction 
assessment method
proposed by 
Marchetti (1982)

#2** DMT liquefaction 
assessment method
proposed by 
Monaco et al. (2005)

De
pt

h 
(m

) SOIL TYPES CRITICAL STATE APPROACH LIQUEFACTION ASSESSMENT FOR M=6.5

REMARKS
BH#1 BH#2 CPT#1 CPT#2 CPT#3 DMT CPT#1 CPT#2 CPT#3

DMT
METHOD 

#1*
METHOD 

#2**

0.2

0.6

1.0

1.4

1.8

2.2

2.6

3.0

3.4

3.8

4.2

4.6

5.0

5.4

5.8

6.2

6.6

7.0

7.4

7.8

8.2

8.6

9.0

9.4

9.8

10.2

10.6

11.0

11.4

11.8

12.2

12.6

13.0

13.4

13.8
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 Setiawan, Bambang: Assessing Liquefaction Potential of Soils Utilising In-situ Testing, 2011 

p.206, Table 6.13: The correct table is: 
 

 
  

SOIL TYPES SCREENING

No need for further testing

Potential to liquefy

Need further testing

CRITICAL STATE APPROACH

Fine grained soils
(Not applicable for 
critical state approach)

Dilative

Contractive

LIQUEFACTION ASSESSMENT

No liquefaction

Liquefaction

#1* DMT liquefaction 
assessment method
proposed by 
Marchetti (1982)

#2** DMT liquefaction 
assessment method
proposed by 
Monaco et al. (2005)

De
pt

h 
(m

) SOIL TYPES CRITICAL STATE APPROACH LIQUEFACTION ASSESSMENT FOR M=7.0

REMARKS
BH#1 BH#2 CPT#1 CPT#2 CPT#3 DMT CPT#1 CPT#2 CPT#3

DMT
METHOD 

#1*
METHOD 

#2**

0.2

0.6

1.0

1.4

1.8

2.2

2.6

3.0

3.4

3.8

4.2

4.6

5.0

5.4

5.8

6.2

6.6

7.0

7.4

7.8

8.2

8.6

9.0

9.4

9.8

10.2

10.6

11.0

11.4

11.8

12.2

12.6

13.0

13.4

13.8
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 Setiawan, Bambang: Assessing Liquefaction Potential of Soils Utilising In-situ Testing, 2011 

p.207, Table 6.14: The correct table is: 
 

  

SOIL TYPES SCREENING

No need for further testing

Potential to liquefy

Need further testing

CRITICAL STATE APPROACH

Fine grained soils
(Not applicable for 
critical state approach)

Dilative

Contractive

LIQUEFACTION ASSESSMENT

No liquefaction

Liquefaction

#1* DMT liquefaction 
assessment method
proposed by 
Marchetti (1982)

#2** DMT liquefaction 
assessment method
proposed by 
Monaco et al. (2005)

De
pt

h 
(m

) SOIL TYPES CRITICAL STATE APPROACH LIQUEFACTION ASSESSMENT FOR M=7.5

REMARKS
BH#1 BH#2 CPT#1 CPT#2 CPT#3 DMT CPT#1 CPT#2 CPT#3

DMT
METHOD 

#1*
METHOD 

#2**

0.2

0.6

1.0

1.4

1.8

2.2

2.6

3.0

3.4

3.8

4.2

4.6

5.0

5.4

5.8

6.2

6.6

7.0

7.4

7.8

8.2

8.6

9.0

9.4

9.8

10.2

10.6

11.0

11.4

11.8

12.2

12.6

13.0

13.4

13.8
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 Setiawan, Bambang: Assessing Liquefaction Potential of Soils Utilising In-situ Testing, 2011 

p.216: Line 5 should read: 
... specific ground response analysis using the SHAKE91 (Schnabel et al., 1972) and EERA...  
 
p.216: Line 6 should read: 
... (Bardet et al., 2000) techniques.  The results of the site-specific ground response analysis ... 
 
p.223: Line 28 should read: 
... properties of a stiff, overconsolidated clay. Ph.D. Thesis, Faculty of Engineering, The 
University of Adelaide, Adelaide, 469pp. 
  
p.224: Lines 19 to 20 should read: 
... penetrometer tests to estimate settlements of shallow footing on calcareous sand.  Proceedings 
7th Australia-New Zealand Conference on Geomechanics, Adelaide, pp. 909 - 914. 
 
p.227: Lines 15 to 16 should read: 
... conventional field testing.  Proceedings 2007 Conference on Earthquake Engineering in 
Australia.  Australian Earthquake Engineering Society, Paper No. 40, Wollongong, November. 
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