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ABSTRACT 37 

 38 

The knowledge concerning redox and reactive oxygen species (ROS) mediated 39 

regulation of early embryo development is scarce and remains controversial. The aim of this 40 

work was to determine ROS production and redox state during early in vitro embryo 41 

development in sperm mediated and parthenogenetic activation of bovine oocytes. Sperm 42 

mediated oocyte activation was carried out in IVF-mSOF with frozen-thawed semen. 43 

Parthenogenetic activation was performed in TALP plus ionomycin and then in IVF-mSOF with 44 

6-dimethylaminopurine plus cytochalasin B. Embryos were cultured in IVF-mSOF. ROS and 45 

redox state were determined at each 2-h interval (7–24h from activation) by 2´,7´-46 

dichlorodihydrofluorescein diacetate and RedoxSensor Red CC-1 fluorochromes, respectively. 47 

ROS levels and redox state differed between activated and non-activated oocytes (p<0.05). In 48 

sperm activated oocytes an increase was observed between 15 and 19h (p<0.05). Conversely, in 49 

parthenogenetically activated oocytes, we observed a decrease at 9h (p<0.05). In sperm 50 

activated oocytes, ROS fluctuated throughout the 24h, presenting peaks around 7, 19 and 24h 51 

(p<0.05), while in parthenogenetic activation, peaks were detected at 7, 11 and 17h (p<0.05). In 52 

the present work, we found clear distinctive metabolic patterns between normal and 53 

parthenogenetic zygotes. Oxidative activity and ROS production are an integral part of bovine 54 

zygote behavior, and defining a temporal pattern of change may be linked with developmental 55 

competence. 56 

 57 

 58 

INTRODUCTION 59 

 60 

 Oxidative stress has been widely reported in biological sciences to describe an enhanced 61 

state of oxidants in cells, a situation in which the concentration of reactive oxygen species 62 

(ROS) increases above its biologically normal levels (Sikka et al., 2001). Oxidative stress, 63 

mediated by ROS results in an imbalance of the intracellular redox potential towards an 64 

oxidized potential (Balaban et al., 2005). The role of ROS in biological processes is still 65 

controversial. It was found that the oxidative modification of cell components due to the action 66 

of ROS is one of the most potentially damaging processes for normal cell function, leading to 67 

inactivation of proteins, lipid membrane peroxidation and DNA alterations (Yang et al., 1998). 68 

However, it has been observed that at physiological concentrations, ROS participate in normal 69 

cell processes as major factors in growth and development regulation (Hancock et al., 2001). 70 

 The procedure for producing embryos in vitro in cattle is still unsatisfactory, with 71 

results ranging from 35 to 50% blastocyst rate at day 7/8 of development (Lim et al., 2007, 72 

Shirazi et al., 2009). Chemical activation presented significantly different success rates and 73 Comment [a1]: Improved? 
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blastocyst formation compared with IVF (Ruggeri et al., 2012), demonstrating that the process 74 

of oocyte activation is a major factor for successful production of reconstructed embryos by 75 

somatic cell nuclear transfer (Wells et al., 1999). ROS generation has been implicated as a 76 

major cause of poor development of bovine embryo in vitro. ROS has been suggested to 77 

participate in meiotic arrest in oocytes (Nakamura et al., 2002), and embryonic block and cell 78 

death (Hashimoto et al., 2000). It has been advanced that high levels of ROS may cause oocyte 79 

meiotic arrest (Downs and Mastropolo, 1994). Within the oocyte, a critical intracellular 80 

concentration of ascorbic acid is necessary for normal cytoplasmic maturation and embryo 81 

developmental competence (Tatemoto et al., 2001). It has been observed that an excessive 82 

amount of glucose in the maturation medium produces high ROS concentrations and exerts a 83 

negative effect on subsequent bovine embryo development to the blastocyst stage (Hashimoto et 84 

al., 2000). The importance of regulating ROS levels is revealed by the observation that 85 

cumulus–oocyte complexes (COCs) have developed significant antioxidant strategies to control 86 

ROS production (Cetica et al., 2001, Tatemoto et al., 2001, Dalvit et al., 2005a). 87 

On the other hand, some evidence exists demonstrating that ROS are important to 88 

spermatozoa in regulating every aspect of sperm function examined, including their movement 89 

characteristics, capacitation, sperm-zona interaction, acrosome reaction and sperm-oocyte 90 

fusion (Baker and Aitken, 2004, Rivlin et al., 2004). Some studies have also documented that 91 

the addition of natural antioxidants to oocyte maturation medium failed to modify the 92 

percentage of bovine embryos produced in vitro (Blondin et al., 1997) or even diminished the 93 

rate of embryo production (Dalvit et al., 2005b). Other cell-permeable antioxidants inhibited the 94 

precocious resumption of meiosis in rat oocytes, suggesting a regulatory function of ROS in the 95 

maturation process (Takami et al., 1999). 96 

Several transcription factors involved in diverse developmental processes are now 97 

known to be regulated by the intracellular redox potential (Dickinson and Forman, 2002; Funato 98 

et al., 2006; Imai et al., 2000; Liu et al., 2005; Rahman et al., 2004; Zhang et al., 2002). The 99 

recent discovery that these factors can be sensitive to oxidation by ROS or S-glutathionylation, 100 

or require NAD(P)H (the reduced form) or NAD(P)
+
 (the oxidised form) is opening new 101 

insights in the regulation of embryonic development (Dumollard et al., 2007). It has been 102 

observed that redox state and ROS levels are negatively associated within the cell. A high 103 

cellular oxidative activity (eg. increased mitochondrial oxygen consumption rate) is usually 104 

associated with lower ROS production and vice verse (Boveris and Cadenas, 1982). In the early 105 

mouse embryo, the fundamental importance of redox state and ROS regulation of early embryo 106 

development has also been demonstrated (Dumollard et al., 2007).     107 

Previous studies from our group have documented variations in ROS production 108 

attributable to oocyte and early embryo metabolic activities during bovine in vitro maturation 109 

(IVM) and embryo development (Dalvit et al., 2005a; Morado et al., 2009). In addition, 110 



- 4 - 

 

temporal changes in oxygen consumption were detected in bovine oocytes undergoing the 111 

transition from oocyte to zygote (Lopes et al., 2010).  Accordingly, the aim of this work was to 112 

determine the production of ROS and redox state during early in vitro embryo development in 113 

sperm mediated and parthenogenetic activation of bovine oocytes. 114 

 115 

 116 

MATERIALS AND METHODS 117 

 118 

The materials used in these experiments were obtained from Sigma-Aldrich (St. Louis, 119 

Missouri), unless otherwise indicated.  120 

 121 

Recovery and classification of cumulus-oocyte complexes 122 

 123 

Bovine ovaries were obtained from an abattoir within 30 min after slaughter and kept 124 

warm (30-33°C) until they were brought to the laboratory. Ovaries were washed in 125 

physiological saline containing 100000 IU/l penicillin and 100 mg/l streptomycin. COCs were 126 

recovered by aspiration of antral follicles (2–5 mm in diameter) and classified according to 127 

cumulus morphology under a stereomicroscope. Only oocytes completely surrounded by 128 

compact and multiple layers of cumulus cells were employed. 129 

 130 

Oocyte in vitro maturation 131 

 132 

Groups of 50 COCs were cultured in 500 µl of medium 199 (GIBCO, Grand Island, 133 

NY, USA) supplemented with 0.2 mg L
-1

 porcine follicle-stimulating hormone (FSH; 134 

Folltropin-V; Bioniche, Belleville, Ontario, Canada), 2 mg L
-1 

porcine luteinizing hormone (LH; 135 

Lutropin-V; Bioniche), 5% (v/v) fetal bovine serum (FBS, Internegocios, Mercedes, Buenos 136 

Aires, Argentina)  and 50 mg/l gentamycin sulphate under mineral oil (Squibb & Sons Inc., 137 

Princeton, NJ, USA) at 39ºC for 22 h in an atmosphere of 5% CO2 in humidified air. 138 

 139 

Sperm mediated activation of matured oocytes 140 

 141 

In vitro fertilization (IVF) was carried out using frozen–thawed Holstein bull semen 142 

from a male of proven fertility. Semen was thawed at 37ºC in modified synthetic oviductal fluid 143 

(mSOF) (Takahashi and First, 1992) with 10 mmol/l theophylline, centrifuged at 500 xg twice 144 

for 5 min and then resuspended in fertilization medium to a final concentration of 2 x10
6
 motile 145 

spermatozoa/ml. Co-incubation of COCs and spermatozoa was performed in IVF–mSOF 146 

medium, consisting of mSOF supplemented with 10 IU/ml heparin and 5 mg/ml BSA, under 147 
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mineral oil at 39ºC, 5% CO2 in humidified air during 24 h. Different nuclear early embryo 148 

development stages were evaluated within 24 h of culture by the fluorescent stain Hoescht 149 

33342 as described below. 150 

 151 

Parthenogenetic activation of matured oocytes 152 

 153 

Oocytes matured in vitro were denuded in phosphate buffer saline (PBS) supplemented 154 

with 3 mg/ml bovine serum albumin (BSA) by gentle pipetting with a Pasteur pipette. Oocytes 155 

were considered mature when the first polar body was present. 156 

Only mature oocytes were incubated in TALP supplemented with 3 mg/ml BSA with 5 157 

µM ionomycin for 5 min and then in mSOF added with 2 mM 6-dimethylaminopurine (6-158 

DMAP) + 7.5 µg/ml cytochalasin B for 3 h as described by Grupen et al. (2002). They were 159 

then washed and placed in IVF-mSOF under mineral oil at 90%N2: 5%CO2: 5%O2 and 100% 160 

humidity for 21 h. 161 

 162 

Determination of redox state and nuclear stage 163 

 164 

To determine redox state and nuclear stage, matured oocytes, putative zygotes and 165 

parthenotes were collected from culture media at 2-h interval from 7 to 24 h post-166 

activation/insemination. They were then denuded and incubated in PBS supplemented with 3 167 

mg/ml BSA in the presence of 1 nM RedoxSensor Red CC-1 (Molecular Probes, Eugene, OR, 168 

USA) plus 1 μM of Hoechst 33342 for 10 min in the dark at 39.5°C. 169 

All oocytes were then washed in PBS supplemented with 3mg/ml BSA and mounted on 170 

glass slides. Fluorescence was measured by means of digital microphotographs using a Jenamed 171 

II epifluorescence microscope with an x12 objective using 450-490 nm (excitation) and 570 nm 172 

(emission) filters for RedoxSensor Red CC-1. Pixel intensity within microphotographs of each 173 

oocyte/zygote/parthenote was determined using Image J 1.240 software (National Institutes of 174 

Health, Federal Government of the United States). To normalise measurements between 175 

different replicates, the fluorescence of matured oocytes was set at a consistent level. Nuclear 176 

stage was evaluated at x400 using 330-380 nm (excitation) and 420 nm (emission) filters for 177 

Hoechst 33342. 178 

Redox state measurements were expressed as Arbitrary Units/oocyte or 179 

zygote/parthenote. 180 

 181 

Determination of ROS production and nuclear stage 182 

 183 
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To measure ROS production and nuclear stage, matured oocytes, putative zygotes and 184 

parthenotes were collected from culture media at 2-h interval from 7 to 24 h post 185 

activation/insemination, denuded and incubated in PBS supplemented with 3 mg/ml BSA for 30 186 

min in the presence of 5 µM 2´,7´-dichlorodihydrofluorescein diacetate (DCHFDA) (Le Bel et 187 

al., 1992) and 1 μM of Hoechst 33342. To measure esterase activity, 25% of the cells of each 188 

sample were incubated in the dark at 39.5˚C in PBS supplemented with 3 mg/ml BSA for 15 189 

min in the presence of 0.12 µM fluorescein diacetate (FDA). 190 

After exposure to DCHFDA plus Hoechst 33342 or FDA, all oocytes were washed in 191 

PBS supplemented with 3 mg/ml BSA and mounted on glass slides. Fluorescence was measured 192 

as described above using 450-490 nM (excitation) and 520 nM (emission) filters for DCHFDA 193 

and FDA.  194 

Both DCHFDA and FDA fluorescence are dependent on the endogenous esterase 195 

activity, therefore, a pixel intensity ratio between DCHFDA fluorescence and the mean FDA 196 

fluorescence (for the subset measured) at each time point for each oocyte was determined as 197 

justified by Lane et al. (2002). ROS levels were expressed as Arbitrary ROS Units/oocyte or 198 

zygote/parthenote. 199 

 200 

Experimental design and statistical analysis 201 

 202 

Data were expressed as mean ± SEM. Values at different time points were compared 203 

using ANOVA. A p-value < 0.05 was considered significant. 204 

 205 

 206 

RESULTS 207 

 208 

Sperm mediated oocyte activation 209 

 210 

 In sperm mediated activation, following insemination, pronuclei formation began by 9 h 211 

and peaked at 13-15 h (around 80% of the zygotes), then slightly decreased until 24 h. Syngamy 212 

began around 13 h and reached a plateau at 17-24 h (around 40% of the zygotes). First cleavage 213 

of embryos began at 21 h (Figure 1). 214 

 215 

Parthenogenetic oocyte activation 216 

 217 

 In parthenogenetically activated oocytes, by the first observation at 7h, all oocytes were 218 

at pronuclear stage and maintained up to 17 h from the initiation of activation, when they 219 
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abruptly decreased. Chromosomal fusion and cleavage began at 17 h, with most parthenotes 220 

(around 76%) appearing about 19-21 h (Figure 2). 221 

 222 

Redox state in non-activated, sperm and parthenogenetically activated oocytes 223 

 224 

In sperm activated oocytes, oxidative activity presented an increase between 15 and 19 225 

h (p<0.05) (Figure 1; Figure 3, a - d). On the other hand, in parthenogenetically activated 226 

oocytes, we observed a decrease at 9 h (p<0.05) which did not alter until 24 h (Figure 2, Figure 227 

3, e – ch). 228 

To determine whether the oxidative activity detected during early oocyte activation 229 

depended on activation or simply reflected the length of time since maturation, in vitro matured 230 

non-activated oocytes were cultured in vitro for 24 h, observing a significant decrease between 231 

11 and 17 h (p<0.05) (Figure 4). 232 

 233 

Reactive oxygen species production in non-activated and sperm and parthenogenetically 234 

activated oocytes 235 

 236 

ROS production was compared between sperm-activated oocytes and 237 

parthenogenetically activated oocytes. In sperm-activated oocytes, ROS levels fluctuated 238 

throughout the 24  h of development, presenting clearly discernable peaks around 7, 19 and 24 h 239 

(p<0.05) (Figure 1; Figure 5, a - d), while in parthenogenetically activated oocytes, peaks were 240 

detected at 7, 11 and 17 h (p<0.05) (Figure 2, Figure 5, e - h). 241 

To determine whether the rise in ROS levels depended on oocyte activation or reflected 242 

ROS production in the aging matured oocyte, non-activated oocytes were cultured in vitro for 243 

24 h, in which we observed a significant decrease after 0 h (p<0.05) (Figure 4).  244 

 245 

 246 

DISCUSSION   247 

 248 

To our knowledge, this is the first time significant shifts in both ROS production and 249 

redox state have been observed in association with temporal developmental events in bovine 250 

oocyte sperm mediated and parthenogenetic activation. 251 

Different temporal patterns of nuclear events were observed between both types of 252 

activation. Within putative zygotes stemming from sperm mediated activation, there was a 253 

temporal spread in the major developmental events after fertilization. In contrast, and not 254 

surprisingly, parthenogenetically activated oocytes behaved in a highly synchronized manner 255 

throughout development to the first cleavage division. The temporal sequence of developmental 256 

Comment [a2]: What is appearing – 
cleavage? 

Comment [a3]: I changed this 

Comment [a4]: I changeed this as well 
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events observed with both types of activation are similar to those previously reported for bovine 257 

zygotes (Gordon, 1994). The difference in the patterns observed is attributed to the asynchrony 258 

of sperm penetration, which lasts about 4 h in bovine (Jiang, 1991). Nevertheless, the 259 

synchronous nuclear progression observed in parthenogenetic activation does not necessarily 260 

equate to improved embryo development in vitro (Monaghan, 1993). 261 

RedoxSensor Red CC-1 is a fluorescent dye that has been used as an indicator of 262 

oxidative activity in living cells (Chen and Gee, 2000). The increase in oxidative activity 263 

observed in sperm-activated oocytes corresponds with the initiation of pronuclear formation and 264 

first mitotic division in putative zygotes, suggesting increased demands of energy for these 265 

events. It has been observed that one and two cell bovine embryos are dependent on 266 

mitochondrial oxidative phosphorylation for energy supply, consuming oxidative substrates to 267 

produce ATP (Kim et al., 1993, Thompson et al., 1996). Coincidently, a higher oxygen 268 

consumption rate was detected prior to cleavage in bovine zygotes (Lopes et al., 2010). 269 

In contrast, parthenotes initially have a high oxidative activity, which then declines from 270 

7 h following activation and remains low thereafter during the developmental process with some 271 

small, non-significant, oscillations despite the events of chromosomal fusion and first cleavage. 272 

To our knowledge, there is no published data concerning the metabolism of bovine parthenotes, 273 

but an increase in the metabolic activity is expected in any type of embryo which undergoes cell 274 

division. In coincidence with our findings, in mouse, parthenogenetic 1- to 2-cell embryos 275 

present a lower glucose metabolism, glycogen content, ATP content and adenylate kinase 276 

activity than fertilized embryos (Han et al., 2008). This difference in metabolic behavior 277 

between both groups of activated oocytes could in part be responsible for the markedly lower 278 

developmental competence of the parthenogenetically activated oocytes. 279 

It has been shown that the DCFHDA probe is oxidized by hydrogen peroxide, its 280 

derived oxidants, other peroxides and indirectly by the superoxide anion when generating 281 

hydrogen peroxide, thus providing a useful test to evaluate ROS production (LeBel et al., 1992). 282 

In sperm activated oocytes, ROS peaks appear before and/or during structural events associated 283 

with early embryo cleavage. The first peak occurs during preparative stages prior to pronuclear 284 

formation (7 h), such as sperm penetration and sperm head decondensation and the second and 285 

third peaks with association of pronuclei (19 h) and first mitotic division (24 h), respectively. 286 

On the contrary, in non-activated oocytes ROS levels dropped after 7 h of culture and remained 287 

low until 24 h. These results are in agreement with those reported for murine zygotes, in which 288 

only fertilized oocytes showed a rise in ROS production, while unfertilized oocytes presented 289 

declining levels over the same period (Nasr-Esfahani and Johnson, 1991). It has been suggested 290 

that certain levels of ROS are needed for the interaction between the spermatozoa and oocytes 291 

during bovine IVF, indicating that they may play different roles depending on the moment and 292 

the quantity in which they are present (Blondin et al., 1997). Very recently, a new class of 293 

Comment [a5]: Changed this 
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dioxigenases have been identified, the Ten-eleven translocation proteins (Tet 1-3) that are key to 294 

the hydroxylation of 5-methylcytosine to 5-hydroxymethylcytosine, thereby initiating the first 295 

steps towards DNA de-methylation (Kriaucionis and Heintz, 2009; Tahiliani et al., 2009).  As 296 

DNA demethylation is a key process within early embryo development immediately following 297 

fertilization and pro-nuclear formation, perhaps the rise we have observed here in ROS 298 

production and elsewhere in oxygen consumption (Lopes et al., 2010) reflects Tet protein 299 

activity. In support of this, bovine pro-nuclear zygotes have significant levels of 300 

hydroxymethylcytosine in the male pronucleus, but not the female pronucleus, which appears 301 

largely due to the activity of Tet 3 (Wossidlo et al., 2011). 302 

In parthenotes, high levels of ROS were observed, coinciding with a high rate of 303 

oocytes at the pro-nuclear stage (7 and 11 h) and prior to cleavage (17 h). Once again, ROS 304 

production seems to be associated with structural events related to early embryo development. 305 

Coincidently, an increase in ROS production in parthenogenetically activated murine oocytes 306 

was also observed (Nasr-Esfahani and Johnson, 1991). 307 

Of interest was the lack of synchronicity between the peaks in ROS levels and those of 308 

oxidative activity in both types of activation, indeed their behavior were contrasting during 309 

development. It is known in somatic eukaryotic cells that mitochondria in a resting respiration 310 

state (state 4) produce higher levels of ROS than those with active oxygen consumption (state 311 

3); some of the electrons passing through the mitochondrial electron transport chain are 312 

transferred to molecular oxygen to form superoxide anion, which can then derive hydrogen 313 

peroxide (Boveris and Cadenas, 1975 and 1982). 314 

During fertilization, the stimulation of mitochondrial respiration by sperm-triggered 315 

Ca
+2

 oscillations has been observed (Campbell and Swann, 2006; Dumollard et al., 2003, 2004; 316 

Schomer and Epel, 1998). Thus, the lack of oxidative burst observed in parthenotes could also 317 

be related to the single Ca+2 peak induced by parthenogenetic activation, which would not be 318 

efficient to stimulate mitochondria consistently. 319 

There is scarce information about metabolic changes which occur in early bovine 320 

zygotes, especially in parthenogenetically activated oocytes. In the present work, we found clear 321 

and distinctive metabolic patterns between non-activated oocytes, in vitro fertilized and 322 

parthenogenetically activated oocytes. Characteristic behaviors in redox activity and 323 

fluctuations of ROS production during early development could be integrated in our 324 

understanding of measurements of oocyte and early embryo competence. The differences 325 

observed in parthenogenetic zygotes with respect to these oxidative patterns could in part 326 

explain their impaired developmental competence. Further studies into the metabolic control of 327 

parthenogenetic activation could contribute to improve the performance of these embryos for 328 

different biotechnological applications, such as somatic cell nuclear transfer for genetic 329 

improvement through cloning and transgenesis. 330 
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LEGEND OF FIGURES 489 

 490 

Figure 1: 491 

A) Nuclear stage of putative zygotes in sperm mediated oocyte activation, n= 1612 492 

zygotes. 493 

B) Redox state in sperm mediated oocyte activation. Values are expressed as mean 494 

arbitrary units/oocyte or zygote ± SEM. n = 134 putative zygotes. 
a,b

 Values with 495 

different superscripts are significantly different (p<0.05). 496 

C) Reactive oxygen species production/total esterase activity in sperm mediated oocyte 497 

activation. Values are the ratio between DCHFDA and FDA assays; they are expressed 498 

as mean Arbitrary ROS Units/oocyte or zygote ± SEM. n = 1478 putative zygotes. 
a,b,c,d,e

 499 

Values with different superscripts are significantly different (p<0.05). 500 

 501 

Figure 2:  502 

A) Nuclear stages observed in parthenogenetic oocyte activation, n= 630 parthenotes. 503 

B) Redox state in parthenogenetically activated oocytes. Values are expressed as mean 504 

arbitrary units/oocyte or parthenote ± SEM. n = 172 parthenotes. 
a,b,c

 Values with 505 

different superscripts are significantly different (p<0.05). 506 

C) Reactive oxygen species production/total esterase activity in parthenogenetically 507 

activated oocytes. Values are the ratio between DCHFDA and FDA assays; they are 508 

expressed as mean Arbitrary ROS Units/oocyte or parthenote ± SEM. n = 458 509 

parthenotes. 
a,b,c

 Values with different superscripts are significantly different (p<0.05). 510 

 511 

Figure 3: Representative activated oocytes or putative zygotes stained with RedoxSensor Red 512 

CC1 (x120). (a) to (d) Sperm activated oocytes at 0, 7, 11 and 19 h from activation and (e) to (h) 513 

Parthenogenetically activated oocytes at 0, 7, 11 and 19 h from activation. Bar = 50 µm. 514 

 515 
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Figure 4:  516 

A) Redox state in non-activated oocytes. Values are expressed as mean arbitrary 517 

units/oocyte ± SEM. n = 180 oocytes. 
a,b

 Values with different superscripts are 518 

significantly different (p<0.05). 519 

B) Reactive oxygen species production/total esterase activity in non-activated oocytes. 520 

Values are the ratio between DCHFDA and FDA assays; they are expressed as mean 521 

Arbitrary ROS Units/oocyte ± SEM. n = 200 oocytes. 
a,b,c

 Values with different 522 

superscripts are significantly different (p<0.05). 523 

 524 

Figure 5:  Representative activated oocytes or putative zygotes stained with 2,7 – 525 

dichlorodihydrofluorescein diacetate (x120). (a) to (d) Sperm activated oocytes at 0, 7, 11 and 526 

19 h from activation and (e) to (h) Parthenogenetically activated oocytes at 0, 7, 11 and 19 h 527 

from activation. Bar = 50 µm. 528 
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