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Abstract: Fuoride phosphate glass has the ability to detect ionizing radia-
tion, and thus can be utilized in various forms for the purposes of dosimetry.
To further understand the potential of this material, the luminescence prop-
erties have been studied using techniques such as thermoluminescence (TL)
and optically stimulated luminescence (OSL). Short luminescent lifetimes
and shallow electron trap depths were measured. At the main TL peak at
60 °C, the activation energy was calculated to be 0.5 eV with a frequency
factor of 19x1(° st and lifetime of 21x1(? s at 293 K. Fast timing results
yield an OSL rise-time of 12.2 ps. Results indicate the material studied is
well suited for monitoring applications where the time between radiation
exposure and OSL read-out is in the order of several minutes.

© 2013 Optical Society of America

OCIS codes:(060.2290) Fiber materials; (060.2370) Fiber optics sensors; (160.2540) Fluores-
cent and luminescent materials; (160.2750) Glass and other amorphous materials; (260.3800)
Luminescence.
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1. Introduction

Fluoride phosphate glass has been previously studied for the purposes of radiation dosime-
try [1, 2]. In previous work this material was fabricated into optical fibers to create a fiber
based radiation dosimeter, where the optical fiber itself acts as the radiation sensing compo-
nent [2]. Determining the depth and structure of traps provides an insight into the suitability
of the material for various dosimetry applications, such as applications that require continu-
ous monitoring, in contrast to applications that require cumulative measurements over weeks
or months. In previous studies, it was found that a brief optical stimulation was sulfficient to
completely bleach the material [2]. This result suggested the presence of shallow trap depths,
and short trap lifetimes, prompting further investigation into the detail of these traps. Therefore,
to further understand the behaviour of these fibers with respect to their luminescence properties
additional investigations were performed, focusing on the properties of electron traps, and how
they affect the luminescence signal.

In addition to the properties of traps and their associated luminescence characteristics, the
luminescence kinetics of the material during optical stimulation was also studied. Using pulsed
OSL in the micro-second time scale the detrapping and relaxation efficiency can be measured.
This was done to determine the time period from initial stimulation to luminescence photon
production, a parameter that becomes relevant we seek to make measurements indicating the
spatial position of a signal along the fibre length, such as optical time domain reflectometry
(OTDR).

In this paper we study the luminescent properties of commercially available Schott N-FK51A
fluoride phosphate glass, a material that has previously been identified as a suitable material for
an OSL-based fiber dosimeter [1, 2]. The material is a low index (1.49 at 405 nm), low disper-
sion glass, and has a transmission window extending into the UV to 360 nm. The composition
in atomic weight percentis 18(Mg, Ca, Sr,Ba) - 11 Al-6 P-230-43 F.

2. Thermoluminescence experiments

Thermoluminescence (TL) allows us to examine the properties of electron traps within the
material. A detailed explanation of the application of TL to dosimetry can be found in Ref.
[3,4]. The important parameters for this study are the trap defihsrequency factorss

and lifetimes ¢). These parameters allow us to establish the capabilities of the material in a
practical dosimetry application, indicating the temperatures and time-scales in which a device
made from this material would be most effective.

TL and initial rise measurements were performed on a Risg TL/OSL DA-20 Reader, which
incorporates 8°SrPOY beta source, gas-cooled heating plate, optical stimulation using an LED
module at 470 nm and an optically filtered EMI 9235QB photomultiplier tube for lumines-
cence detection. TL emission spectra measurements were performed on a 3D TL spectrome-
ter [5]. Samples of fluoride phosphate glass were ground into grains with diameters from 150
to 250 um. Several samples were used, where the mass of material was approximately 12-14
mg per sample. All experiments were performed following a dose of 1 Gy delivered at ambient
temperature.
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2.1. Thermoluminescence

TL measurements were performed between 0 - 300 °C at a heating rate of 1 °C/s under a nitro-
gen atmosphere. No filters were used here, the light sum (luminescence intensity) is the total
detected signal collected over the sensitive range of the photomultiplier tube. The experiment
was also run on an un-irradiated sample to provide a background measurement to subtract the
incandescence detected at higher temperatures. TL results are shown in Fig. 1. The peak at 65
°C indicates the presence of a population of shallow traps, while the lack of any peaks at higher
temperatures indicates that no deeper traps producing TL are present. The falling edge found
between 0 - 30 °C is due to shallow traps for which the ambient room temperature is sufficient
to rapidly excite electrons into the conduction band.

Following the results shown in Section 2.2, which shows TL emission centered at 400 nm,
further TL measurements were performed using filters to isolate a waveband centered at 400
nm which contains the principal TL emission band. This was done using Schott BG39 (3 mm
thick) and Corning 7-59 (4 mm thick) coloured glass filters, the transmission at 400 nm of this
composite filter is 40%. Results can be seen in Fig. 1.
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Fig. 1. Thermoluminescence of fluoride phosphate glass. Filtered data was taken using
Schott BG39 and Corning 7-59 filters, and therefore shows the thermoluminescence emis-
sion centered at 400 nm. Transmission window FWHM = 100 nm.

2.2.  Thermoluminescence emission spectra

Spectral information on the thermoluminescence was obtained using a thermoluminescence
emission spectrometer [5]. As this is a separate instrument to the Risg Reader, it is important to
note the radiation source was also different. This radiation source, althougiai#8Y, has

a different activity, and hence dose rate, which means an applied dosage of 1 Gy requires more
time. Given the short luminescent lifetime of this material, as is reported here, this difference in
irradiation time may affect the total light-sum in comparison to experiments performed in the
Risg instrument. It is also important to note the heating rate required was 5 K/s, causing the TL
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peak to appear at a higher temperature than the 1 K/s heating rate used for other TL experiments
in this study. The results are shown in Fig. 2. The low-temperature TL peak is again seen, with a
broad emission peak centered at 400 nm. This emission, centered in the violet, prompted further
TL analysis using filters, shown in Section 2.1.

Wavelength (nm)
700 600 500 400
VT T

Intensity (counts)

Sample Temperature (°C)

3 35
Photon Energy (eV)

= .
2
Sample Temperature (°C) 50 Photon Energy (eV)

Fig. 2. Thermoluminescence emission spectra of fluoride phosphate glass, measured after
administering a 1 Gy dose.

2.3. Initial rise method
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Fig. 3. Initial rise thermoluminescence of fluoride phosphate glass for successive heating
to the temperatures (in °C) as shown.

Determining the activation energy of traps can be achieved using the initial rise TL method de-
scribed in McKeever [4]. In summary, following radiation exposure, TL is measured to a certain
temperature, then cooled to room temperature. TL is again measured to a temperature slightly
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higher than the initial measurement, and this process repeated up to the chosen temperature.
For this study, this process was repeated at 20 °C increments up to a temperature of 300 °C
using a heating rate of 1 K/s. 300 °C is high enough to resolve the TL peak, without going

to a temperature where incandescence introduces unnecessary background. The measurement
was also done with an un-irradiated sample to obtain a background measurement. The data can
be seen in Fig. 3. Calculation of the activation energy is performed using the relation given in
McKeever [4]:

It =c. exph—_ﬂ Q)

wherel; is the thermoluminescence intensityis a constantkE is the activation energ¥ is
Boltzmann’s constant arifl is temperature. A plot din(l) vs. 1/T over the initial rise region
will yield a linear relationship with a slope efE /k which can be used to calculate the activa-
tion energy. Calculation of the frequency factgiis achieved using the relation

BE -E

T = SeXp | — 2
Pl (2)

where 3 is the heating rate an@, is the maximum temperature of the thermoluminescence

peak. The trap lifetimes are also calculated using the equation:

1 E
== — 3
= Loo[ ] 0
The activation energy, frequency factors and lifetimes calculated from the data shown in Fig.
3 are listed in Table 1. The data shows shallow trap energies, and the resulting short lifetimes

derived for electron retention in these traps.

Table 1. Activation Energy (E), Frequency Factor (9 and Lifetimes at T = 293 K (1) for Fluoride

Phosphate Glass Using Initial Rise Data
Tm (°C) E (eV) s(s?) T (S)

60 050+0.039 19x1¢P 2.1x107

80  063+0.041 51x10 1.2x10°

100 069+0.016 14x10° 6.4x1C°

120  Q76+£0.027 29x10° 3.7x10*

140  089+0.030 51x1(P 5.0x10°

3. Isothermal decay

Isothermal decay was performed on the glass using a method similar to that outlined by Mc-
Keever [4]. This measurement gives information on the decay kinetics of the population of
trapped electrons over time at varying temperatures. The change in luminescence intensity with
time is monitored at a constant temperature, measurements were taken at room temperature,
40, 50, 60, 70 and 80 °C. At successively higher temperatures, the shallower components of
the excited population are removed before measurements commence, hence decay is observed
only from successively deeper traps. To avoid excessive depletion of the excited population,
short, low-power pulses of stimulation were used for the measurements. Optical stimulation
was performed at 470 nm. Measurements were taken at 10, 17, 26, 42, 78, 184, 490 and 1496
s. All values have been adjusted to account for the duty cycle times of components within the
Risg instrument.

In the case where a material has an exponential decay, a piotlgfo) vs.t will produce
a linear relationship, wherkis the intensity|g is the initial intensity and is time. Figure
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Fig. 4. Fit of optically stimulated isothermal decay data to I@(l /lp) vs.t and (b)
(1/19)(3-P)/b ys_t. Data shown is for measurements taken at ambient temperature.

4(a) shows this material does not produce a linear trend, and does not have first order kinetics.
For materials with higher order kinetics, a plot(®f1o)* /P vs.t can be used, substituting

an appropriate value dif. This can be used to establish the kinetic order of the decay. This
was attempted for second order kinetibs=(2), and as indicated by Fig. 4(b), the relationship

is not linear. The kinetic order was not obtained for any value where «, indicating we
cannot assume any simple model such as de-trapping from a broad distribution of traps. It is
also possible that a combination of re-trapping, tunnelling and a broad range of energy levels
associated with a given defect, due to the amorphous structure of glass all contribute to the
complex behaviour measured, this will be discussed in Section 5.

4. Photon arrival time

Depending on the application, the decay kinetics of the OSL can be important. In systems
where gated or pulsed timing is used the production time of the luminescence - the time elapsing
between the absorption of the stimulation photon and the emission of the luminescence photon -
is important. Likewise, for optical fiber applications utilizing optical time domain reflectometry,
this parameter is also relevant. Measurements were conducted to determine this parameter.
Decay kinetics were analyzed using the pulsed optically stimulated luminescence function on
the Risg instrument. Following irradiation, samples were exposed to microsecond pulses of
stimulation at 470 nm, data was collected using the photomultiplier during both the on and off
periods of optical stimulation. A Hoya U-340 UV-pass filter was used to isolate the signal from
any stimulation light.

Results can be seen in Fig. 5, where data for optical stimulation pulse widths of 50, 100 and
200 us are shown. The data was fitted with a sum of two exponential functions and used to
calculate a luminescence production lifetime photon arrival time of £2123 us, when the
photon intensity reached the 1/e value of 682 counts.

5. Discussion

The measurements shown here explain the behavior found in previous studies of this mate-
rial [2], where a short optical stimulation of five seconds was found to efficiently remove the
population of trapped electrons. Electrons in low temperature traps are released very quickly,
and the lack of deeper traps removes any long-lifetime component that would require substan-
tial bleaching. TL, TL emission spectrometry and TL initial rise data all indicate shallow traps
with low activation energies and consequently short lifetimes at ambient temperatures.
Isothermal decay results indicate complex de-trapping and recombination pathways. Based
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Fig. 5. Fast-timing decay kinetics of fluoride phosphate glass. The pulse width of the optical
stimulation for each measurement is shown.

on the complex kinetics measured, re-trapping of excited charge is most likely occurring. Tun-
nelling of charge between adjacent traps may also be contributing to this behavior [3, 6], but is
yet to be confirmed. The interaction between defect sites as addressed by Townsend et. al [7]
possibly has merit as an explanation for the processes occurring within this material, given the
number of elements from which the glass is formed. A complex network of lattice distortions,
allinteracting and not independent, could provide the opportunity for several effects. Tunnelling
between adjacent sites, a complex path back to recombination sites and the opportunity for re-
trapping of free charge. In addition, the amorphous lattice structure of a glass material creates
a wide distribution of trap energies.

Various models for trap distribution have been addressed in the past [8-10]. Calculations
have been made for materials where the distributions follow ‘top-hat’, decreasing and increas-
ing exponential functions [8]. Results calculated for the ‘top-hat’ model are not dissimilar to
the results measured here at room temperature for fluoride phosphate glass, however it is not
enough to adequately describe the trap structure of this material. It is likely the fluoride phos-
phate glass has a distribution of traps loosely following a top-hat function, but with some slight
variation.

Measurements using the TL emission spectrometer show luminescence occurring over a wide
range of wavelengths centered at 400 nm. This region is at the edge of the transmission spec-
trum for this glass, but it is a useful region for practical device design due to the high detection
efficiency of photomultiplier tubes, as well as the variety of filters available to isolate lumines-
cence signals at these wavelengths. There exists the possibility of introducing dopant ions to
tailor the emission of these glasses, such as using transition metal or rare earth ions [1].

Pulsed optically stimulated luminescence results show that the material has a luminescence
production time of 12.2t 1.3 pys. Where spatially resolved measurements and optical time-
domain reflectometry techniques are used, this value will need to be taken into account. The
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delay in time between stimulation and luminescence emission may be due to re-trapping and
the complex recombination path discussed above.

It is interesting to compare fluoride phosphate glass with other dosimeter materials. The
extensively-used AlD3:C has a high sensitivity for both OSL and TL compared with most
other luminescent materials, for OSL the intensity is approximatelyhigher than for fluo-
ride phosphate glass. However, it suffers from its efficient signal-retention, i.e. the difficulty
of fully resetting it during readout. For very low-dose applications (MGyfAIC shows ef-
ficient signal bleaching and re-usability [11], however for higher dosages the material requires
long stimulation periods to largely drain the population of excited electrons [12]. If repeated
measurements are required, dose information carried over from a previous measurement will
frequently affect subsequent measurements. This has been addressed through various methods,
such as only measuring the fast and medium components of the OSL curve and applying ap-
propriate correction values [13]. Another method involves applying a 20 Gy pre-dose before
commencing measurements [14]. In comparison, fluoride phosphate glass has particularly ef-
ficient bleaching characteristics: a short pulse of stimulation is sufficient to revert the material
back to its pre-irradiated state.

From these results, we can establish this glass is suitable for a certain range of applications,
and unsuitable for others. Due to its shallow traps and short lifetime at ambient temperature,
this material is suitable for applications where interrogation of the material occurs on a rapid
duty cycle, or where the material does not need to sit in a passive environment for time periods
longer than several minutes. This also makes the material ideal for applications where fast and
efficient bleaching is required, and/or where repeatability from one measurement to the next
is necessary. Applications for which this material would not be suitable include environments
where there is a significant delay between radiation exposure and interrogation.

6. Conclusion

Fluoride phosphate glass, N-FK51A purchased from Schott Glass Company, was studied for
its luminescence characteristics, and its response to various TL and OSL measurements. Very
shallow electron traps were measured with an activation energy of approximately 0.5 eV, with a
median lifetime of 2Lx1(? s at 293 K. A broad TL emission peak was measured, centered at 400
nm. The trap distribution was found to be complex, with the decay kinetics possibly attributed
also to re-trapping and tunnelling. The luminescence production mechanism was measured to
have a time-constant of 12.2 us between stimulation photon incidence and luminescence photon
emission. The material was found to be suitable for short-lifetime dosimetry measurements
where efficient and complete bleaching of the dosimeter is required. The potential suitability of
this material for spatially resolved dosimetry in real time is identified.
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