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Abstract

In [28], Mathai and Wu extended the notion of analytic torsion, as first conceived by Ray and Singer
[34], to Zs-graded complexes. The main example of this is the de Rham complex with the flux-twisted
differential dg = d + H, where H is a closed three form, a complex that arises in geometric situations
where there is twisting by a gerbe. We review the formalism required to construct this torsion, and
present the key results. We generalise the analysis found in Farber [12] and Forman [14] to the Zo-
graded situation to study the behaviour of the torsion of families of complexes near points at which
the cohomology jumps. By studying analytical deformations of these complexes, we provide results
showing that in some cases the torsion and some related invariants of this twisted operator are related

to the untwisted torsion only through maps of a cohomological nature.
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