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Abstract 6 

In previous studies, a finite difference procedure has been developed to analyze the dynamic 7 

response of simply supported normal reinforced concrete (NRC) slabs under blast loads. 8 

Ultra high performance concrete (UHPC) is a relatively new material with high strength and 9 

high deformation capacity in comparison to conventional normal strength concrete. Therefore, 10 

the finite difference procedure for analysis of conventional reinforced concrete members 11 

against blast loads needs to be significantly adapted and extended to accommodate UHPC. In 12 

this paper, an advanced moment-rotation analysis model, employed to simulate the behavior 13 

of the plastic hinge of a UHPC member, is incorporated into the finite difference procedure 14 

for the dynamic response analysis of reinforced UHPC slabs under blast loads. The accuracy 15 

of the finite difference analysis model which utilized the moment-rotation analysis technique 16 

was validated using results from blast tests conducted on UHPC slabs. The validated finite 17 

difference model was then used to generate pressure impulse (PI) curves. Parametric studies 18 

were then conducted to investigate the effects of various sectional and member properties on 19 

PI curves. Based on the simulated results, two equations were derived which can be used to 20 

normalize a PI curve. Further numerical testing of the normalization equations for UHPC 21 

members was then undertaken. The generated normalized PI curve, accompanied by the 22 

derived normalization equations, can be used for the purposes of general UHPC blast design.  23 

  24 

Introduction 25 

The protection of structures against explosive loading is of growing importance for 26 

engineering communities and government agencies due to recent terrorist attacks (Luccioni et 27 

al. 2004; Thompson et al. 2004; Osteraas 2006; Islam and Yazdani 2008). Ultra high 28 

performance concrete (UHPC) is a relatively new construction material that is of high 29 



strength, deformation capacity and toughness in comparison to conventional concrete. The 1 

superior strength and ductility of UHPC endows it with the ability to absorb remarkable 2 

amounts of energy before failure, making it a material suitable for the construction of military 3 

structures and strategically important buildings as protection against blast and impact loading 4 

(Gupta et al. 2005; Luo et al. 2007; Ngo et al. 2007; Wu et al. 2009a). Although experimental 5 

studies have been conducted on blast resistance of UHPC members (Wu et al. 2009a), 6 

surprisingly little research has been conducted to investigate its dynamic performance under 7 

blast loads numerically and analytically. Due to the significant difference in mechanical 8 

properties of UHPC, conventional analytical methods, such as single degree of freedom, 9 

finite difference and finite element models, need to be extended to accommodate UHPC. It 10 

has been proven that the finite difference analysis method is an accurate and fast running 11 

method suitable for the prediction of the behavior of normal reinforced concrete (NRC) 12 

members subjected to high intensity, short duration dynamic loads such as those associated 13 

with impacts and explosions (Krauthammer et al. 1993, 1994; Jones et al. 2009). It is 14 

expected that the finite difference model can also be used for the dynamic analysis of UHPC 15 

members subjected to blast loads.  16 

 17 

The finite difference (FD) model incorporates the variation of blast loading distribution and 18 

mechanical properties of the cross section along the member, and accommodates shear and 19 

flexural deformations with strain rate effects. Such a model has been developed by Jones et al. 20 

(2009) to predict the behavior of NRC members subjected to blast and impulsive loading. 21 

Within this FD model, a moment-curvature relationship, determined assuming full interaction 22 

between the steel bar and concrete, is utilized for NRC members. When analyzing a RC beam 23 

in flexure, once the elastic limit is reached, it is assumed that a plastic hinge region forms in 24 

which a large amount of rotation occurs over a discrete region, known as the hinge length. 25 

The hinge length is determined empirically and there is no general agreement on the value or 26 

even which parameters to use to find the hinge length (Haskett et al. 2009). Traditionally, the 27 

rotation is found by multiplying the hinge length by the curvature obtained from the moment-28 

curvature relationship and, due to this, is deemed only to be an empirical method. Recently, 29 

an advanced mechanics based approach was developed by Haskett et al. (2009) to determine 30 

the rotation of a NRC section taking into account the slip characteristics of the reinforcing 31 

steel and the softening wedge of concrete. Based on this, it is possible to derive a more 32 

accurate moment-rotation relationship for the plastic hinge of a NRC member. However, due 33 

to the addition of small steel fibers into the UHPC mix, while NRC is assumed to have no 34 



tensile strength in analyses, UHPC has a flexural tensile strength of approximately 30 MPa. 1 

To accommodate such differences, the moment-rotation model developed for NRC members 2 

by Haskett et al. (2009) needs to be extended for UHPC members.   3 

 4 

Currently, pressure impulse (PI) diagrams based on the equivalent single degree of freedom 5 

(SDOF) approach and numerical approaches have been adopted for use during building 6 

design in order to assess the effects of blasts on structures (UFC-3-340-02 2008; Fallah and 7 

Louca 2007; Shi et al. 2008). Fallah and Louca (2007) derived analytical formulae (quasi-8 

static and impulsive asymptotes) which can be used to determine a normalized PI diagram. 9 

The formulae are based on a SDOF system with a bi-linear resistance deflection curve, i.e. 10 

elastic-plastic hardening, elastic-plastic softening or elastic-perfectly plastic. Although the 11 

use of the bi-linear resistance deflection curve is more appropriate, the SDOF model can not 12 

consider a spatially and temporally varying distribution of blast loading, and is incapable of 13 

allowing for variations of mechanical properties of the cross section along the member. Shi et 14 

al. (2008) attempted to derive analytical formulae which can be used to derive a normalized 15 

PI diagram for reinforced concrete (RC) columns. The analytical formulae are functions of 16 

the properties of the member, such as reinforcing ratio and depth of the member. The 17 

formulae are limited by the small range of parameters which were investigated in the 18 

parametric study. For example, the effects of steel bars with strain hardening properties and 19 

also the effects of higher strength (above 50MPa) concretes were not investigated. Therefore, 20 

the PI diagram and the analytical formulae presented by Shi et al. (2008) cannot be used for a 21 

UHPC member, or for a member containing steel bars which are not perfectly elastic-plastic. 22 

Also, to apply the formulae, the conditions of the parametric study which were held constant, 23 

such as cover and reinforcing bar placement, must be replicated.  24 

 25 

In this study, the finite difference model for NRC members is extended to accommodate 26 

UHPC members by incorporating the properties of the blast load and the advanced moment-27 

rotation model into the analysis. The extended finite difference model is validated using data 28 

from blast tests conducted on UHPC members. With the validated finite difference model, 29 

parametric studies are carried out to derive PI diagrams, which have been widely used in the 30 

design of conventional RC structures against blast loads, for UHPC members. Using the 31 

simulated results, two equations, which can be used to normalize a PI curve for a UHPC 32 

member, have been identified and tested. A normalized PI curve has been derived which, 33 



when accompanied by the two normalization equations, can be used for the generic 1 

assessment of structures to establish safe response limits for given blast loading scenarios.  2 

 3 

Moment-rotation analysis of UHPC members 4 

A novel approach to incorporate the uncracked tension force of UHPC, steel fibers and steel 5 

forces in the cracked section, and a softening wedge in the compression zone into the rigid 6 

body rotation analysis developed by Haskett et al. (2009), as shown in Figure 1, was 7 

developed to determine the moment-rotation relationship for UHPC members by Dragos et al. 8 

(2010). The steel fibers are responsible for a significant increase in the tensile strength of 9 

UHPC. The tensile force contributed by the fibers in UHPC is obtained through an 10 

experimental stress-crack width relationship by Jungwirth and Muttoni (2004) using a slice 11 

approach. This approach, usually referred to as the layered capacity method (Wu et al. 2009b), 12 

involves splitting the cracked tensile zone, as seen in Figure 1, into thin horizontal slices. 13 

Each slice has a given crack width, and thus has a given stress which can be determined using 14 

the above mentioned stress-crack width relationship. For each slice, these stresses can then be 15 

converted to forces which contribute to the overall moment. To incorporate an uncracked and 16 

cracked tensile force, due to the steel fibers, the method developed by Haskett et al. (2009) 17 

had to be modified by assuming a linear strain profile. This allowed the model to determine a 18 

moment-rotation relationship and a moment-curvature relationship for a given section. The 19 

incorporation of steel fibers within this type of analysis enabled more accurate moment-20 

rotation curves to be determined.  21 

 22 

The new model was divided into four stages to incorporate the uncracked tension force of 23 

UHPC, effects of steel fibers, steel forces in the cracked section and softening wedge in the 24 

compression zone. The four stages are Stage 1: Prior to cracking; Stage 2: Crack below the 25 

reinforcement; Stage 3: Before formation of softening wedge; and Stage 4: After formation of 26 

softening wedge. In stage 1, since the tensile region is uncracked, all forces in the 27 

compressive and tensile region can be obtained by the assumption of a linear strain profile. 28 

The curvature and moment can be obtained by achieving force equilibrium. In stage 2, when 29 

a crack forms below the reinforcement, additional forces within this cracked region due to the 30 

steel fibers in the cracked section are calculated based on the stress-crack width relationship. 31 

All other forces are obtained based on the linear strain profile assumption as above. Now that 32 

a crack has formed, a moment, curvature and a rotation can be determined for this stage and 33 



all subsequent stages. In stage 3, the crack apex is above the steel reinforcement, therefore a 1 

slip exists between the steel reinforcement and the concrete on the inside crack face, denoted 2 

by sreinf in Figure 1. Partial interaction theory is used to determine the tension force of steel 3 

reinforcement based on a given slip. The partial interaction model, developed by Haskett et al. 4 

(2007), is the method in which a local bond stress strain relationship, between the steel 5 

reinforcement and concrete, is used to determine a global load slip relationship. A bi-linear 6 

bond slip relationship was adopted and equations, based on this, were derived for the load 7 

slip relationship by Muhamad et al. (2010) and used in the analysis. The same procedures as 8 

in stage 2 are used to determine all other forces. Stage 3 ends when the strain in the top fiber 9 

of the slab reaches the crushing strain. In stage 4, a softening wedge forms as the strain in the 10 

top fiber of the slab has exceeded the crushing strain. In this stage, the concrete compressive 11 

force is divided into two parts. The first is the ascending region, which is calculated using 12 

Hognestad’s concrete stress-strain model and acts below the wedge. The second is the 13 

softening force due to the formation of the softening wedge. The rest of the forces are 14 

calculated using the procedures discussed in stage 3. In any stage, the analysis stops when bar 15 

fracture, bar debonding or wedge failure occurs. 16 

 17 

The moment-rotation analysis was used to determine a moment-curvature and moment-18 

rotation relationship for slab D2B, which was used in the 2008 static test program. The 2008 19 

static test program, by Ciccarelli et al. (2008), consisted of two-point bending tests of 2 20 

UHPC slabs (D2B and D3B) resting on simple supports. It also consisted of compression 21 

tests of UHPC cylinders which were utilized to assure the suitability of using Hognestad's 22 

concrete stress-strain model for the ascending portion of the compression region for UHPC 23 

members. Parameters for the compressive behavior of UHPC were obtained from the cylinder 24 

tests, where as all other parameters were provided by the manufacturer. The reinforced UHPC 25 

slab, D2B, has a span of 2000mm, width of 1000mm and a thickness of 100mm. It is 26 

reinforced with a 12.7mm diameter mild steel mesh with yield strength of 600 MPa that is 27 

spaced at 100mm centers in the major bending plane (0.8%) and at 200mm centers in the 28 

minor plane. The UHPC had an average compressive strength of 175 MPa, tensile capacity of 29 

22 MPa and Young’s modulus of 47 GPa. The moment-curvature and moment-rotation 30 

relationships were used to derive a theoretical load deflection relationship which was 31 

compared to the experimental load deflection relationship of slab D2B in Figure 2. 32 

 33 

Although the dynamic response model as a whole is primarily interested in the behavior of 34 



UHPC members at or near ultimate state, Figure 2 helps to justify why it is worth modelling 1 

the sectional behavior at the early stages of cracking. For a NRC section, cracking typically 2 

occurs at a very low moment. However, for a UHPC section, cracking occurs at a moment 3 

which can be up to 70% of its ultimate moment capacity. This is due to the addition of fibers 4 

in the UHPC material, which causes the material to have a significantly larger tensile strength 5 

which cannot be ignored. This can be seen in Figure 2 as the horizontal portion, at 6 

approximately 250kN, represents the point at which cracking occurs. As this region 7 

influences the dynamic behavior of members against large blasts which cause failure, it is 8 

deemed important to model this region more accurately. From Figure 2, it can be seen that 9 

there are large discrepancies between the theoretical and experimental curves in the rising 10 

branch, shown by the horizontal arrow, but the results are much more reasonable at ultimate 11 

conditions. As the stress-crack width relationship determined by Jungwirth and Muttoni 12 

(2004) was used, this is attributed to the difference in material properties between the UHPC 13 

material used in this study and that used in their study. Therefore, the deflections caused by 14 

larger loads are quite accurate, whereas the deflections caused by smaller loads are not as 15 

accurate. The above moment-rotation analysis model provides moment-curvature and 16 

moment-rotation relationships which are inputs for the finite difference model for 17 

determining the dynamic response of UHPC members against blast loads. Although the 18 

model is not fully accurate, what is most important is the concept of modelling the response 19 

of the plastic hinge via a moment-rotation relationship in a dynamic model.  20 

 21 

Finite difference analysis of UHPC members 22 

The Timoshenko Beam Theory (Weaver and Timoshenko 1990) accounts for shear 23 

deformation and rotational inertia, being solved for in the FD model. The dynamic 24 

equilibrium equations are as follows: 25 

 26 
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Where: M = bending moment, Q = shear force, q = load acting transverse to the beam, Pa = 1 

axial load in the beam, A = cross sectional area, I = moment of inertia of the beam, ρm = mass 2 

density of the beam, β = rotation and v = transverse displacement.  3 

Numerical method 4 

The response of the member is determined using the finite difference method. The numerical 5 

techniques were redeveloped from that of Ciccarelli et al. (2008), which were extensions 6 

from the work on Krauthammer et al. (1993). Equations 3 and 4 show how the rotation and 7 

displacement, respectively, of node i at time t + 1 are calculated.  8 
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 10 

To calculate the rotation and displacement for the new timestep using equations 3 and 4, 11 

respectively, the shear force at each node must be known. The shear force at each node is 12 

calculated as a function of shear strain. The shear strain, seen in equation 5, is calculated by 13 

converting the partial derivative into finite difference form (Krauthammer et al. 1993). 14 

 15 
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 16 

To calculate the rotation for the new timestep using equation 3, the bending moment at each 17 

node must be known. At the non plastic hinge regions, the bending moment of a node is 18 

calculated as a function of curvature using the moment-curvature relationship. At the plastic 19 

hinge region, the bending moment of a node is calculated as a function of its rotation using 20 

the moment-rotation relationship. The moment-curvature relationship and moment-rotation 21 

relationship of a member are both derived using the moment-rotation model. The curvature, 22 

seen in equation 6, is also calculated by converting the partial derivative into finite difference 23 

form (Krauthammer et al. 1993). 24 

 25 
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 1 

The plastic hinge region was modeled in such a way that the discrete rotation of the plastic 2 

hinge occurred between two adjacent nodes. Therefore, by knowing the rotation of the 3 

adjacent nodes,
 

t

left  and 
t

right , the discrete rotation of the plastic hinge, as defined by 4 

Haskett et al. (2009), can be calculated and can be seen in equation 7. 5 

 6 
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 7 

It is important to note that modelling of the plastic hinge begins at the onset of cracking of a 8 

particular node. This was done by calculating the curvature in which cracking occurs, so that 9 

when the curvature of the node reaches the cracking curvature, moment-rotation is then used 10 

to model that region as a plastic hinge. A plastic hinge was assumed to only form at the center 11 

for a simply supported member, and they were assumed to form at the ends and the center for 12 

a member fixed at both supports.  13 

 14 

The finite difference method allows an arbitrary blast load to be applied on each node of the 15 

member as a function of time. This allows one to determine the structural response of a 16 

member due to a pressure history which has been derived by codes, equations or measured 17 

directly through experiments. However, due to the assumption of the positions in which the 18 

plastic hinges form, only blast loads which are symmetrical about the midspan can be 19 

applied.  20 

Shear behavior 21 

Linear shear stress strain theory was used to calculate the shear force, Q, from the shear 22 

strain, as can be seen in equation 8. 23 

xzxz KAGKAQ    (8) 

 24 

Where: G = shear stiffness, σxz = shear stress, γxz = shear strain and K = correction factor 25 

which is used to take into account the constant cross sectional shear stress assumption. 26 

 for rectangular cross sections, as given by Krauthammer et al. (1993).  27 

 28 



Validation of structural response model 1 

The model developed by Jones et al. (2009) successfully predicted the response of NRC slabs 2 

subjected to external blast loads. Therefore, the validation of UHPC slabs under external blast 3 

loads was the main focus of this section. As can be seen in Table 1, two blast events involving 4 

UHPC slabs with a span of 2000mm, 1000mm wide and 100mm thick were chosen for 5 

validation; events 6 and 7 (Ciccarelli et al. 2008). During event 6, slab D2B was subjected to 6 

a blast from a cylindrical charge, whereas during event 7, slab D3B was subjected to a blast 7 

from a cylindrical charge. Both cylindrical charges were oriented in the radial direction, 8 

meaning the primary axis of the cylindrical charge was directed parallel to the plane of the 9 

slab. No overpressure history data was obtained from these tests, so they had to be estimated 10 

from the research done by Burge et al. (2009). This involved converting the peak reflected 11 

overpressure and impulse predicted by UFC guidelines (UFC-3-340-02 2008) for a spherical 12 

charge to that of a cylindrical charge of the same scaled distance in the radial direction. It 13 

should be emphasized that the predicted pressure history will have a significant influence on 14 

the results, so should be considered when evaluating the suitability of the structural response 15 

model.  16 

 17 

During the validation process, it had to be decided whether to model the response under 18 

pinned or fixed end support conditions. From the blast tests, Ciccarelli et al. (2008) observed 19 

that the end restraints, which each consisted of two steel equal angles bolted together to act as 20 

a clamp, could not be considered to be fully fixed or fully pinned. They witnessed that for 21 

large blasts, which caused large deflections, the clamps would give way, but for small blasts, 22 

causing small deflections, the clamps would remain fully intact. Therefore, it was deduced 23 

that when the moment developed at the ends of the slab was believed to be large, due to a 24 

large blast causing large deflections, the restraint could be considered pinned. Conversely, for 25 

small developed moments at the ends of the slab, due to small blasts causing small 26 

deflections, fixed end conditions could be considered more suitable. For each blast event, this 27 

was how the end support conditions were chosen during validation. 28 

 29 

Figure 3 shows the deflection history for event 6. This response is of slab D2B subjected to a 30 

blast with a small scaled distance, which caused the member to collapse. The model correctly 31 

predicts that the member fails. It also roughly estimates at what time and deflection collapse 32 

of the member occurs. The discrepancy due to the increased initial stiffness of the 33 



theoretically developed moment-curvature relationship can be observed, as the theoretical 1 

deflection at failure occurs earlier than the experimental deflection at failure.  2 

 3 

Figure 4 shows the deflection history for event 7. This is the response of slab D3B under a 4 

charge which caused a significant deflection. It can be seen that the model reasonably 5 

predicts the maximum deflection in this case. The discrepancy in the time to reach the 6 

maximum deflection can be accredited to the increased initial stiffness of the theoretically 7 

developed moment-curvature and moment-rotation relationships of slab D3B. The 8 

discrepancy in the falling branch can not only be described by the increased initial stiffness, 9 

but also because of the fact that the structural response model does not attempt to model the 10 

post peak behavior of the member response. Therefore, the unloading curve of the member 11 

response may not be correct. The correct post peak behavior was not modeled as only the first 12 

peak of the deflection history was required for this research and because modeling of the post 13 

peak response can be very difficult.  14 

 15 

After observing Figure 3 and Figure 4, it can be seen that for larger blast loads, and thus 16 

larger deflections, the differences in the results are quite small. This is because the inaccuracy 17 

of the moment-rotation model in the elastic region, before cracking occurs, has a negligible 18 

effect on the response of structural members near ultimate state. As this research is more 19 

interested in the response of structural members under large blasts, which cause large 20 

deflections, the model was considered to be appropriate.  21 

 22 

Overpressure impulse curve 23 

Blast loads can cause failure at various combinations of peak reflected pressure and impulse. 24 

A PI curve is the envelope of all overpressure histories, plotted on axes of impulse and peak 25 

reflected overpressure, which cause failure. The PI curve can be used as a tool to design 26 

members against blast loads, if the peak reflected overpressure and impulse of the blast are 27 

known.  28 

PI curve generation 29 

The structural response model was extended from that of Ciccarelli et al. (2008) to then 30 

determine the PI curve of a given member. This was possible because the moment-rotation 31 

model could accurately predict the rotation at which failure occurred. This ultimate rotation 32 



of the plastic hinge was then used as the failure criteria. The PI curve developed for slab D3B 1 

can be seen in Figure 5. To generate a PI curve, the minimum peak reflected overpressure and 2 

a very large impulse, altered by manipulating td, had to be chosen. They had to be chosen 3 

such that it was known those two parameters for a particular blast load would cause failure 4 

for the given member. The program then decreases the impulse, by decreasing td, without 5 

changing Pr and runs the structural response simulation. This process is iterated until it is 6 

found that the member survives a simulation. The peak reflected overpressure and impulse of 7 

this particular overpressure history is then plotted on the PI diagram axes. The peak reflected 8 

overpressure is then increased, which in turn also increases the impulse of the blast load as td 9 

is not changed. For example, in Figure 5, if point B was known, to find the next point on the 10 

PI curve, the structural response model would first increase Pr without changing td, seen as 11 

arrow 1. Then it would incrementally reduce the impulse, seen as arrows 2, 3 and 4, until 12 

point C has been located. That is the next point in which the member survives a simulation. 13 

The above process is repeated such that many points are plotted on the PI diagram. These 14 

points then form the PI curve.  15 

 16 

Figure 5 shows how for large impulses, the peak reflected overpressure of the PI curve 17 

converges to a minimum value, Prmin. It also shows that for large peak reflected overpressures, 18 

the impulse of the PI curve converges to a minimum value, Imin. Finally, between these 19 

extremes lies a transition zone, for example point C. A blast load which lies in the lower right 20 

hand side of the PI diagram, for example point A in Figure 5, can be thought of as an 21 

explosion from a large charge weight and a large standoff distance. This is because such a 22 

blast will cause a pressure history with a small peak reflected overpressure, a large duration, 23 

td, and also a large impulse. Conversely, a blast load which lies in the upper left hand side of 24 

the PI diagram, for example point D in Figure 5, can be thought of as an explosion from a 25 

small charge weight but a small standoff distance. This is because such a blast will cause a 26 

pressure history with a large peak reflected overpressure, a small duration, td, and also a small 27 

impulse. Figure 5 also displays the safe zone and failure zone of the PI curve of slab D3B, 28 

which shows whether the member will fail or survive under any given external blast load. 29 

The structural response model assumes that the overpressure history is uniformly distributed 30 

on the slab. Therefore, the effects of angles of incidence along the slab are ignored, and the 31 

effects of time of arrival differences along the slab are also ignored. As the angle of incidence 32 

increases, the pressure history typically becomes less damaging. Therefore, as long as the 33 

maximum pressure history is assumed to act on the entire slab, the developed PI curve can be 34 



thought of as conservative.  1 

 2 

Normalization of PI curves 3 

The structural response model can be used to generate PI curves for a given member for 4 

collapse. Using this data, the normalization of PI curves will take place. This includes 5 

understanding what factors affect the PI curve of given members so that empirical equations 6 

of proportionality or empirical normalization equations, for slabs with pinned supports, can 7 

be developed. This allows the designer to quickly draw a PI curve based on the member and 8 

sectional properties of the slab.  9 

Methodology 10 

The effects of member and sectional properties on PI curves were investigated. The member 11 

properties investigated included span and depth whereas the sectional property investigated 12 

was the moment-rotation relationship. As this study only applies to one-way slabs, the effects 13 

of the width of the slab on the PI curve were not investigated as the width of a one-way 14 

spanning slab has no effect on its response.  15 

 16 

To normalize the PI curves the effects of member and sectional properties on the minimum 17 

impulse, Imin, and minimum peak reflected overpressure, Prmin, asymptotes were studied. 18 

Therefore, the concept of a control specimen had to be introduced. When manipulating a 19 

property, for example the span of the member, the asymptotes had to be factored up or down 20 

from that of the control specimen to understand how it affected Prmin and Imin. It should be 21 

noted that the aim of this section is to determine equations for Prmin and Imin only. Any PI 22 

curve, with asymptotes of unity, can be used in conjunction with the equations developed in 23 

this study to determine the PI curve of a given member.  24 

Span of a member 25 

To normalize the span of a member, a section with a certain width, depth and moment-26 

rotation relationship was chosen. The span was then altered to find the effects of this 27 

parameter on Prmin and Imin. PI curves for slabs of varying spans can be seen in Figure 6. From 28 

Figure 6, Prmin and Imin values can be determined for each span. The ratio of these 2 values, 29 

for each span, to those of the control specimen (Prmin,o and Imin,o, respectively) can be plotted 30 

to find how the span affects the PI curve. In this case, the slab with length 1.78m is the 31 



control specimen. The plots can be seen in Figure 7 for Prmin and Imin, respectively. 1 

 2 

Figure 7(a) shows that Prmin is inversely proportional to L
2
. This is expected since a blast 3 

which is controlled by peak reflected overpressure is similar to that of a static uniformly 4 

distributed load, as it has a longer duration. For slabs with the same moment capacity 5 

subjected to static uniform overpressures, the overpressure capacity is also inversely 6 

proportional to L
2
. Figure 7(b) shows that Imin is proportional to L

-0.25
. This is different since 7 

other additional factors are affected by the slabs span, such as its total mass and its ability to 8 

absorb energy. These additional factors also affect the slab's ability to resist impulse 9 

controlled blasts. 10 

Moment-rotation relationship 11 

To understand how the shape of the moment-rotation relationship affected Prmin and Imin, a 12 

control slab was chosen, and PI curves were determined for many slabs with moment-rotation 13 

relationships which differ from the control slab. All slabs contained UHPC, reinforced with 14 

high strength steel bars, with an ultimate strength of 1800MPa, in the tensile region only. To 15 

produce different moment-rotation relationships, the reinforcing ratio, from 1% to 3.5%, and 16 

bond stress characteristics between the steel bars and concrete were changed.  17 

 18 

Using the structural response model, PI curves were determined for each of the slabs with 19 

differing moment-rotation relationships. From these PI curves, Prmin and Imin were determined. 20 

The aim was then to develop equations which can be used to determine Prmin and Imin based 21 

on any moment-rotation relationship. To do this, it was necessary to identify the main points 22 

on the moment-rotation relationship which affected Prmin and Imin. As all moment-rotation 23 

relationships were of bi-linear shape, three values, corresponding to two points on the 24 

moment-rotation relationship, were recognized as having influence over Prmin and Imin. These 25 

values were the ultimate moment (Mu), yield moment (My) and the ultimate rotation (θu). 26 

 27 

When investigating the effects of the moment-rotation relationship on Prmin, it was observed 28 

that Prmin was proportional to the product of 3 terms. The first term is the ultimate moment 29 

which has the most influence over Prmin. The other 2 terms were factors derived from the 30 

three influential moment-rotation relationship values. The two factors were named, Yield 31 

Factor (Pressure) (Eq. 9) and Dynamic Ductility Shape Factor (Eq. 10): 32 

 33 



  (9) 

  (10) 

 1 

Therefore, if the control specimen was denoted with subscript “o”, the analyses resulted in 2 

the following: 3 

 4 

  (11) 

 5 

The derivation of equations 9, 10 and 11 can be seen in Table 2. kyp,power and kduc,power 6 

represent the exponents used in kyp and kduc, respectively. The exponents were determined 7 

using a goal seek method to minimize the average of the absolute errors. 8 

 9 

Using the same approach for Prmin, Imin was found to be proportional to the square root of one 10 

term and inversely proportional to the square root of another term. The first term was named 11 

the Energy Absorption Capacity Factor (Eq. 12) and the second term was named the Yield 12 

Factor (impulse) (Eq. 13): 13 

 14 

  (12) 

   
(13) 

 15 

Similarly, denoting the control specimen with subscript “o”, the analyses resulted in the 16 

following: 17 

 18 

  (14) 

 19 

The derivation of equations 12, 13 and 14 can be seen in Table 3. kyi,power represents the 20 

exponent used in kyi. This exponent was determined using a goal seek method to minimize the 21 

average of the absolute errors. 22 



 1 

Finally, it was necessary to define ultimate moment, yield moment in such a way that the 2 

width of the slab had no effect on Prmin and Imin. Therefore, Mu and My were defined as 3 

ultimate moment per unit width and yield moment per unit width, respectively.  4 

Depth of a member 5 

Manipulating the depth of a member affects both the moment-rotation relationship and the 6 

member’s total mass. Therefore, it affects Prmin and Imin both at the sectional and member 7 

level. When changing the depth of the slab, the cover to the center of the reinforcing bars was 8 

held constant, say 30mm. As the moment-rotation relationship for each depth was known, 9 

equations 11 and 14 were used to normalize Prmin and Imin, respectively, at the sectional level. 10 

For both Prmin and Imin, it was observed that further manipulation was required to normalize 11 

the PI curves based on depth. The results indicated that Prmin was also proportional to D
0.586

 12 

and that Imin was also proportional to D
0.616

.  This additional proportionality is how the depth 13 

affects the PI curve at the member level, due to the addition of mass. 14 

 15 

The effects of the depth of the member on Prmin are quantified in Table 4. The exponent, 16 

Dp,power, was determined using a goal seek method to minimize the average of the absolute 17 

errors. In Table 4, columns 2, 3 and 4 represent the effects of the moment-rotation 18 

relationship which occurs when a change in depth is chosen. This had to be normalized 19 

before the effects of the depth could be determined. 20 

 21 

The effects of the depth of the member on Imin are quantified in Table 5. The exponent, 22 

Di,power, was determined using a goal seek method to minimize the average of the absolute 23 

errors. In Table 5, columns 2 and 3 show the effects of the moment-rotation relationship 24 

which occurs when a change in depth is selected. This had to be normalized before the effects 25 

of the depth could be determined. 26 

Normalization equations 27 

As the effects of the span, depth, width and moment-rotation relationship had been identified, 28 

they were then combined to produce normalization equations for Prmin (Eq. 15) and Imin (Eq. 29 

16).  30 

 31 



  (15) 

  (16) 

 1 

Equations 15 and 16 show that, if Prmin,o and Imin,o, and all the discussed parameters of the 2 

control specimen and the desired specimen are given, Prmin and Imin for the desired specimen 3 

can be calculated. For all parameters used in Equations 15 and 16, any units can be used. 4 

However, the same units used for a parameter with a subscript "o" should also be used for its 5 

corresponding parameter without a subscript "o". The equations are valid for one way slabs 6 

with a span between 1m and 4m and a depth between 100mm and 240mm. Also, the 7 

equations are valid for an ultimate hinge rotation of less than 0.23rad or 13
o
. This is 8 

significantly large considering that ASCE Guidelines (ASCE, 1997 & ASCE, 2008) suggest 9 

that 8
o
 is a high level of rotation. As the entire PI curve, for a typical RC slab subjected to an 10 

external blast, can be defined by Prmin and Imin, this allows one to determine the PI curve for 11 

any desired RC slab, based on member and sectional properties, for the purpose of 12 

preliminary design. Although the equations are not completely based on structural dynamics 13 

principles, but are purely empirical, they can still be used to gain insight into how slabs resist 14 

various types of blast loads. Also, they can be used as a starting point for deriving 15 

normalization equations for PI curves based on structural dynamics principles.  16 

 17 

To derive a normalized PI curve based on equations 15 and 16, a control specimen with a 18 

given Imin and Prmin is required. The parameters of the control specimen are shown in Table 6. 19 

After substituting all the parameters of the control specimen into equations 15 and 16, a 20 

normalized PI curve, seen in Figure 8, with corresponding normalized PI curve equations, 21 

seen as Equations 17 and 18, can be developed. Due to the nature of Equations 15 and 16, the 22 

units used for parameters in Equations 17 and 18 should correspond with that used for the 23 

control specimen parameters, as shown in Table 6.  24 

 25 

 
(17) 

  (18) 

 26 



Equations 17 and 18 can be used in the normalized PI curve, shown in Figure 8, where the 1 

coordinates, Pr and I, should be scaled up by, Prmin and Imin given above, respectively. The 2 

shape and equation of the normalized PI curve in Figure 8 is that of a typical RC slab 3 

subjected to an external blast load. This normalized PI curve can be replaced with any other 4 

normalized PI curve, with vertical and horizontal asymptotes of unity. 5 

 6 

When studying the effects of sectional properties on Prmin and Imin, it was observed that the 7 

cracking moment had very little effect on the results, therefore it was ignored. Also, the initial 8 

stiffness of the moment-curvature relationship was ignored as this would have very little 9 

effect on the structural response due to large blasts, causing nearly ultimate deflections. Also, 10 

although the Timoshenko Beam Equations take into account deflections due to shear using a 11 

linear shear stress strain relationship, the effects of shear properties were not considered in 12 

our investigation. This is because most span to depth ratios of conventional slabs, designed 13 

against blasts, range from 10 to 50, so the effects of shear properties were considered 14 

insignificant. However, it is known that, even for slabs with larger span to depth ratios, for 15 

large blasts with a small standoff distance, shear behavior can influence the response. This 16 

type of blast corresponds to the impulse controlled region of the PI diagram. Therefore, the 17 

use of the normalized PI curve for blasts within this region should only be used if it is known 18 

that shear behavior has no dominant influence on the response of the slab to such blasts. Also, 19 

this approach is not suitable for blasts with extremely small standoff distances as local 20 

damage of the slab can occur. This is because the structural response model can only simulate 21 

the global response of the member and not the local damage of the material itself due to 22 

concentrated effects of the blast.  23 

Numerical testing of normalization equations 24 

Although numerically derived results for many different slabs were used to produce the 25 

normalization equations, further numerical testing of the equations was undertaken. This was 26 

done by generating PI curves for slabs with varying depths and reinforcing ratios, using both 27 

the normalization equations and the structural response model, and comparing them. Figure 9 28 

shows PI curves for 2 slabs which differ in depth and reinforcing ratio, in comparison to that 29 

of the control slab. It can be seen that the results are quite good as Prmin, Imin and the transition 30 

zone match up quite well for both cases. 31 

 32 

In the tests shown in Figure 9, the maximum error of the asymptotes, Prmin and Imin, between 33 



the numerically derived results and that obtained through the normalization equations, is 5%. 1 

It can be seen that the instability within the structural response model can sometimes occur 2 

and can sometimes cause noticeable errors within the transition zone of the generated PI 3 

curves. However, it should be noted that the aim of this section is to only derive 4 

normalization equations for the asymptotes, Prmin and Imin. It can be seen that at the extremes 5 

of the generated PI curves, towards Prmin and Imin, the instability, which is represented by zig-6 

zagging, decreases significantly. This is why the maximum errors experienced, when 7 

calculating Prmin and Imin, are only 5%. These errors are attributed to the uncertainty involved 8 

in determining Prmin and Imin for various UHPC slabs used to derive the normalization 9 

equations. Also, as a moment-rotation relationship is never exactly bilinear, the errors are also 10 

attributed to the judgment which should be used when determining the moment at yield, My.  11 

 12 

Conclusion 13 

An innovative approach was developed to predict the sectional behavior of a reinforced 14 

UHPC member accurately. The approach used modified rigid body analysis, curvature 15 

analysis and incorporated a stress-strain/crack width relationship to develop a new moment-16 

rotation relationship. The moment-rotation and moment-curvature relationships were 17 

incorporated into a finite difference model which was validated using blast test data. With the 18 

validated finite difference model, the entire dynamic structural response model was recreated 19 

and also extended to generate PI curves. From an extensive parametric study, a normalized PI 20 

curve, accompanied by two equations for the asymptotes, were also derived. This was done 21 

by developing empirical equations of proportionality for various sectional and member 22 

properties, which can be used to generate a PI curve for any given member. 23 
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Table 1 Charge properties and slab models used in blast events for validation 

Event No Slab No Charge mass 

(kg) 

Standoff 

distance (m) 

Scaled distance 

(m/kg
1/3

) 

Charge 

shape 

6 D2B 14 1 0.4 cylindrical 

7 D3B 8 1 0.5 cylindrical 

 



Table 2 Quantification of the effects of the moment rotation relationship on Prmin 
Properties  Prmin/Prmin,o  

n bars kτ kyp kyp/kyp,o kduc kduc/kduc,o M/Mo numer. theor. Error (%)

5b 2.2 0.913 0.946 0.240 0.905 0.779 1.500 1.500 0.000

5b 1.25 0.991 1.026 0.269 1.017 0.676 1.430 1.418 0.870

5b 0.9 0.993 1.029 0.280 1.056 0.637 1.460 1.445 1.011

8b 1.25 0.966 1.001 0.266 1.003 0.888 1.120 1.122 0.166

5b 0.5 0.992 1.027 0.306 1.155 0.587 1.430 1.435 0.348

10b 1.25 0.966 1.000 0.265 1.000 1.000 1.000 1.000 0.000

15b 1.25 0.951 0.985 0.277 1.046 1.261 0.750 0.770 2.605

18b 1.25 0.953 0.987 0.302 1.142 1.363 0.660 0.651 1.359

  
kyp,power

  
kduc,power

 

average 0.908

0.29256 0.16817   
 



Table 3 Quantification of the effects of the moment rotation relationship on Imin 
Properties  Imin/Imin,o   

n bars kτ kyi kyi/kyi,o W W/Wo numer. theor. Error (%) 

5b 2.2 0.734 0.827 5.732 0.335 1.580 1.571 0.561

5b 1.25 0.969 1.091 8.632 0.505 1.440 1.471 2.139

5b 0.9 0.977 1.101 9.597 0.561 1.400 1.401 0.089

8b 1.25 0.890 1.003 13.756 0.804 1.090 1.117 2.456

5b 0.5 0.973 1.096 13.904 0.813 1.190 1.162 2.386

10b 1.25 0.887 1.000 17.110 1.000 1.000 1.000 0.000

15b 1.25 0.844 0.951 35.499 2.075 0.690 0.677 1.901

18b 1.25 0.849 0.956 69.907 4.086 0.480 0.484 0.800

  

kyi,power 

  

average 1.476

1.0   

 



Table 4 Quantification of the effects of the depth of the member on Prmin 
  Prmin/Prmin,o   

Depth kyp/kyp,o kduc/kduc,o Mu/Muo (D/Do)
Dp,power theor. numer. Error (%)

100 1.000 1.000 1.000 1.000 1.000 1.000 0.000

135 0.976 0.815 2.271 1.192 0.464 0.455 2.011

170 0.967 0.705 4.029 1.363 0.267 0.270 1.128

205 0.968 0.626 6.265 1.521 0.173 0.175 1.122

240 0.963 0.573 9.128 1.667 0.119 0.118 0.874

  

Dp,power

  

average 1.284

0.584   

 



Table 5 Quantification of the effects of the depth of the member on Imin 
  Imin/Imin,o   

Depth kyi/kyi,o W/Wo (D/Do)
Di,power theor. numer. Error (%) 

100 1.000 1.000 1.000 1.000 1.000 0.000 

135 0.976 1.531 1.447 0.645 0.650 0.740 

170 0.967 2.036 1.922 0.477 0.490 2.599 

205 0.968 2.428 2.420 0.391 0.380 2.797 

240 0.963 3.047 2.938 0.313 0.315 0.576 

  

Di,power 

  

average 1.678 

0.616   

 



Table 6 Parameters of the control specimen 
Lo Do Mu,o My,o θu,o Imin,o Prmin,o 

(m) (mm) (kNm/m) (kNm/m) (rad) (kPa.ms) (kPa) 

2.07 100 215.2 191.4 0.0795 3550 340 
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Figure 3 Deflection time history for event 6 
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Figure 4 Deflection time history for event 7 
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Figure 5 PI curve for slab D3B 
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Figure 6 PI curves for slabs of varying spans 
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Figure 7 Effects of span on Prmin (a) and Imin (b)  
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Figure 8 Normalized PI curve 

0

5

10

15

20

0 0.5 1 1.5 2 2.5P
e
ak

 R
e
fl
e
ct
e
d
 P
re
ss
u
re
 ‐
P
r
(k
P
a)

Impulse ‐ I (kPa.ms)

Normalised PI Curve ‐ UHPC

Norm. PI Curve

Imin

Prmin
Imin

Prmin



(a)      (b) 

Figure 9 Numerically derived and theoretical PI curves for 2 separate specimens 
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