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Abstract: The current fluoroindate glass optical fiber loss is dominated by 

extrinsic absorption and scattering loss. Attempts were made to reduce 

fluoroindate glass fiber loss by optimizing glass melting conditions, preform 

extrusion process and fiber drawing conditions. Our results show that 

fluorination of the glass batches (with 99.99% InF3) at 450 °C by addition of 

ammonium bifluoride reduced un-dissolved particles (potential scattering 

losses) in the glass. Glass flow analysis was carried out to provide insights 

into the glass temperature-viscosity behavior and the relationship between 

preform surface roughness and extrusion temperature, which enabled 

fabrication of preforms with low surface roughnesses and eventually 

reduced the fiber scattering loss. Fiber surface crystallization was reduced 

via conducting chemical etching and polishing (with colloidal silica) on both 

glass billets and preforms, extending the heating zone for fiber drawing, and 

applying additional weight at the bottom of preforms. As a consequence, the 

fiber surface roughness decreased, resulting in decreased fiber scattering 

loss and enhanced fiber strength. 

©2013 Optical Society of America 

OCIS codes: (160.2290) Fiber materials; (160.2750) Glass and other amorphous materials. 
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1. Introduction 

Fluoride glasses have attracted much interest as potential materials for high power fiber 

delivery in the mid-infrared spectral region due to their unique optical properties [1]. They 

show a wide transmission range from the ultraviolet to the mid-infrared region, and have 

significantly lower theoretical optical loss than that of conventional silicate glass fibers [2]. 

Shibata et al. estimated the theoretical minimum fluoride fiber loss to be <10
2

 dB/km at     

2-3 μm, one magnitude lower than that of silica fiber. This estimate was based on losses due to 
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Rayleigh scattering and IR edge absorption which are the dominant intrinsic loss factors in 

fluoride glasses [3]. However, the losses of fabricated fluoride fibers are higher than the 

theoretically estimated value. It is important to note that Rayleigh scattering, which ultimately 

determines the attainable loss, represents only a small contribution to the fiber loss for fibers 

fabricated to date, and elimination of many other extrinsic losses caused by absorptions and 

scatterings are challenging. The lowest fiber loss reported so far is 0.7 dB/km at 2.6 μm 

measured by Kanamori and Sakaguchi on a 30 m long fluorozirconate fiber [4], which is still 

higher than the theoretical loss. Since fluoride glasses have significantly lower crystallization 

stability than oxide glasses, impurities in the raw materials and moisture in the atmosphere 

during preparation of fluoride glasses can easily induce crystallization which leads to 

scattering centers and increases the loss [5]. Absorption of impurities such as transition metals 

and rare earth ions in the raw materials also contributes to the loss of the glass, resulting in 

absorption losses in the fibers [6]. 

Many researchers have reported efforts towards the development of low-loss fluoride glass 

fibers by reducing sources of extrinsic absorption and scattering. Hydroxyl ion, transition 

metals and rare earth elements in the raw materials, which result in absorption loss in glass 

fibers, are major problems to be overcome in the production of ultra-low loss fluoride glass 

fibers. Defects that cause scattering can be divided into volume and surface defects. Volume 

defects (e.g., contaminations from platinum crucible, bubbles, un-dissolved particles and 

crystals [7]) are imperfections within the glass matrices that are principally formed during 

glass melting. Surface defects (e.g., surface contaminations, micro-cracks, scratches [8] and 

surface crystallization) originate from the contact of the glass surfaces with molds or extrusion 

dies during casting and extrusion [9] and from the reaction of the glass surface with moisture in 

the atmosphere during fiber fabrication or storage. 

The first step in reducing extrinsic losses in these glasses is to reduce oxide impurities in 

the starting materials used for the glass melts. This is achieved using a fluorination process 

during the glass melting, which can reduce the concentration of oxide impurities in the 

glasses [6,10], resulting in reduced scattering in the glasses. One traditional approach to 

fluorination is the use of ammonium bifluoride (NH4HF2) during glass synthesis to fluorinate 

all non-fluoride impurities in the raw materials [11]. In particular, this method plays a critical 

role in reducing the content of oxides and oxy-hydrides, which would otherwise increase the 

IR absorption or shorten the IR cut-off wavelength and result in substantial loss in the 

glasses [12]. 

In principle, by conducting all glass preparation under fluorination with ammonium 

bifluoride, the level of oxides and oxy-hydrides can be significantly reduced. However, other 

sources of extrinsic loss such as bubbles and poor surface quality (caused by e.g., surface 

crystallization) will cause an increase in fiber loss. Hence, it is critical to reduce loss in fluoride 

fibers by improving preform and fiber fabrication conditions. Casting techniques (e.g., 

rotational casting and suction casting methods) have been used successfully for preparation of 

fluoride glass preform and fluoroindate glass fibers [13–15]. An alternative technique is billet 

extrusion, which can be used to form long preforms of a desired diameter as well as a range of 

internal structures [16,17]. Compared to the casting method, the extrusion technique is a 

versatile method for the production of low-loss microstructured optical fibers with various 

shapes produced from different types of glasses [18–20]. It also has been demonstrated that the 

extrusion method is suitable for the preparation of bubble-free rods, which typically exhibit 

better surface finish and fewer bubbles than cast rods [9]. However, both casting and extrusion 

methods unavoidably introduce surface contaminations (i.e., metallic particles and graphite 

particles) and surface scratches (leading to high roughness) generated during contact with 

molds or dies. Poor surface quality associated with these surface contaminations and scratches 

will cause low fiber strength and high loss in air-clad (i.e., unstructured) fibers and air/glass 

microstructured fibers unless the contaminated layer can be removed [8]. The surface quality 

can be improved by chemical etching, which allows a uniform and rapid dissolution of surface 
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regions in fluoride glasses. The etching method can also smooth the fiber surface (i.e., reduce 

the surface roughness), which enables the preparation of fluoride fibers with low transmission 

loss and high fiber strength [21]. Although chemical etching prior to fiber drawing can 

effectively remove defects on the preform surface, fiber preform drawing presents a new set of 

challenges such as precise control of temperature and atmosphere. Since the viscosity of 

fluoride glasses shows a strong temperature dependence and sensitivity to surrounding 

atmosphere, an accurate control of the drawing temperature and atmosphere is critical to the 

preparation of long-length, low-loss and high-strength fibers [8,22]. 

In our previous study [9], the extrusion technique was demonstrated to be a suitable 

method for the production of low loss fluoroindate fibers made from 

32InF3-20ZnF2-20SrF2-18BaF2-8GaF3-2CaF2 (IZSBGC) glass. This fluoroindate glass 

composition is particularly promising for applications in the mid-infrared spectral region due 

to its high transmission and relatively low rate of crystallization compared to ZBLAN 

glass [9]. However, the presence of surface crystallization (e.g., white precipitates) and 

roughness on the preforms, which were major scattering centers, caused high fiber loss and 

low fiber strength in our previous work [9]. The aim of this study is therefore to reduce the 

fiber scattering loss and to improve mechanical strength of unstructured fibers by minimizing 

surface crystallization and roughness through optimization of fluorination processes, extrusion 

and fiber drawing conditions. 

2. Experimental conditions and measurement techniques 

2.1 Glass melting 

All glass fabrication steps including weighing of the raw materials (batching), fluorination at 

235 °C (45 min) or 450 °C (1 h), melting at 900 °C for 2 or 3 h, and casting were conducted in 

a controlled dry N2 atmosphere (99.99%) melting facility. The temperature ramp speed was set 

to 5 °C/min. The glasses were prepared using commercially available fluorides as starting 

materials which were thoroughly mixed into 30-130 g batches and then melted in a platinum 

alloy crucible containing 5% gold (internal volume: 100 or 300 ml). We used two different 

InF3 raw materials: 99.99% (metal purity) InF3·3H2O (labeled with a star ’*’ in Table 1), and 

anhydrous 99.99% (metal purity) InF3 (labeled with double star ‘**’ in Table 1). To fluorinate 

oxide impurities in the batch, NH4HF2 was added to the batch before melting. However, H2O 

in InF3·3H2O reacts with InF3, resulting in In(OH)3 and gaseous HF. Hence, for glass batches 

using InF3·3H2O, a higher amount of excess NH4HF2 (6.7 wt% of the batch weight) was used 

to compensate the loss of fluorine due to the formation and loss of HF, while for glass batches 

containing anhydrous InF3 a lower amount of NH4HF2 was used (2.4 wt% of the batch weight) 

due to higher fluorine content in the raw material. The glass batches were first fluorinated at 

235 °C or 450 °C, followed by melting at 900 °C. Finally, the glass melts were cast into a 

pre-heated mold. For basic glass characterization (samples A-C in Table 1), small melts of 

~30 g were cast into rectangular glass blocks of dimensions of 15×10×30 mm
3
. For preform 

extrusion, larger glass melts (up to 130 g) were prepared and cast into a cylindrical mold, 

resulting in glass billets of 30 mm diameter and 20-30mm height. 

2.2 Chemical etching and mechanical polishing 

To improve the surface quality of the cast billets and extruded preforms, mechanical polishing 

and/or chemical etching surface treatments were applied. More specifically, after glass 

melting, cylindrical billets were polished using 3 µm diamond pastes and then suspensions of 

40 nm colloidal silica, which produced scratch-free surfaces [23,24]. For comparison 

purposes, some of the billets and/or preforms for chemical etching were suspended in a 1.36 M 

ZrOCl2(aq) solution (with stirring applied) at room temperature for about 30 min to remove a 

~0.5 mm thick outer layer, followed by a rinse in methanol in an ultrasonic bath for 30 min and 

final hand polishing with 40nm colloidal silica solution (hereafter referred to as 
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chemo-mechanical treatment). The published etching solution recipe, i.e., 0.4 mol 

ZrOCl2·8H2O in 1L 1N HCl for ZBLAN glasses [21] resulted in the formation of a white layer 

on a glass preform during etching. However, when a 1.36 M ZrOCl2(aq) solution (optimized 

concentration) was used, white layer was not observed on the preform (immersed in etching 

solution) during the etching process. After etching, the preform was rinsed with methanol for 

30 min and then was dried out using a N2 gas gun. A few regions of light white layers were, 

however, found on the dried and etched billet or preform surface. Hence, we polished etched 

billets or preforms with a 40 nm colloidal silica suspension to remove white layer formed 

during etching. In comparison with our previous work, etching with 15 wt% HCl(aq) solution 

resulted in a significant white layer giving rise to a high loss [9]. 

2.3 Extrusion 

Billet extrusion technique has been demonstrated as a suitable method for fluoroindate glass 

preform fabrication [9]. Extrusion conditions for fluorindate glasses were based on previous 

work on fluorozirconate glass extrusion [20]. Graphite has been successfully used as a die 

material for fluorozirconate glass extrusion due to the relatively low friction between the die 

and glass surfaces. Fluorozirconate glass could be extruded at a higher viscosities (~10
8
 Pa·s), 

i.e., lower temperatures, using a graphite die compared with a stainless steel die. Extrusion 

with a graphite die allowed fluorozirconate preforms to be extruded below the onset of glass 

surface crystallization temperature (290 °C [25]) which is 62 °C lower than the glass 

crystallization temperature measured by DSC (Tx = 352 °C [26]). In this work, graphite was 

also used as the die material for the extrusion of IZSBGC glass at a temperature below the 

onset of glass crystallization temperature [9,20]. Surface crystallization of IZSBGC glass was 

observed for a 330 °C extrusion temperature, which is ~60 °C lower than Tx = 389 °C 

determined by DSC in our previous work [9]. Therefore, following polishing or 

chemo-mechanical treatment, the cylindrical billets were extruded into rod-shape (cylindrical) 

preforms of 5-10 mm in diameter at temperatures in the range of the glass transition 

temperature (Tg = 307 °C) (Fig. 2) to Tg + 23 °C under N2 controlled atmosphere. Four types of 

graphite dies (a-d) with different die channel lengths and diameters (Table 2) were used to 

extrude unstructured rods. Die types (a) (8 mm die channel diameter) and (d) (5 mm die 

channel diameter) were used for the extrusion of 65 g (batch weight) glass billets, whereas die 

types (b) and (c) were used for extrusion of 100 g (batch weight) glass billets. 

The extrusion trials were conducted at a fixed temperature and ram speed, while the 

extrusion force was varied. For the calculations described in Section 3.2, we used the extrusion 

force applied after the die was completely filled with glass, i.e., when the rod started to emerge 

from the extrusion die (Fig. 1). The other details of the extrusion set-up, die types and error 

analysis used in this work can be found in [16]. For analysis of the extrusion data in Table 2, 

errors for the viscosity values were obtained based on relative errors for the temperature 

measurements (0.90-0.95%) and ram force, F (3-17% in the region when a rod emerged from a 

die). 
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Fig. 1. Extrusion force profile for a fluoroindate extrusion trial using die (c) at 320 °C. 

2.4 Fiber drawing 

All preforms were pulled into unstructured fibers with diameters ranging from 130 to 180 μm 

under N2 controlled atmosphere. The induction heating furnace used in the fiber drawing tower 

comprises a cylindrical graphite ring, which acts as the susceptor and therefore the heat source 

of the furnace. In a fiber-drawing furnace, the temperature that controls the furnace 

temperature is usually measured at a point close to the heat source (in our case the susceptor). 

However, earlier studies showed that the glass temperature varied significantly along the 

length of the furnace and also depended upon the heat source length [27,28], which 

corresponds to susceptor length for our fiber drawing furnace. Two types of graphite 

susceptors with the same inner and outer diameters but different heights (2 cm or 4.5 cm-long) 

were used to explore the impact of the furnace working temperature and the maximum preform 

temperature for fluoroindate glass fiber fabrications. For some preforms, an additional weight 

of ~190 g was applied to the bottom of the preforms during fiber drawing to decrease the 

temperature at which a drop is formed, thereby reducing the surface crystallization on the 

preform. 

2.5 Measurements 

The characteristic temperatures, i.e., glass transition temperature (Tg), glass crystallization 

temperature (Tx) and peak of crystallization temperature (Tp), of samples A and C (Fig. 2) were 

measured using a Setaram Differential Scanning Calorimetry (DSC) 131 equipment with 

experimental errors of ± 2 °C. This measurement was conducted from room temperature up to 

530 °C at a heating rate of 10 °C /min under N2 atmosphere. 

For thermal dilatometric measurement, we used a piece of 5 mm diameter rod that was 

extruded at 320 °C. This measurement was conducted from room temperature up to 500 °C at a 

heating rate of 5 °C/min using a Dilatometer (Netzsch DIL 402, Germany), with experimental 

errors of ± 0.01 °C. 

The surface roughness of preforms and fibers were measured using an optical 

interferometric profiler (model Contour GT-K1 Optical Profiler Stitching System from 

Veeco). From the optical profiler images, roughness parameters, Sa (average roughness), and 

Sq (root mean square (RMS) roughness) defined in Eqs. (4) and (5), respectively [9], were 

determined using the following expressions 

 
1 1

0 0

1
( , )

M N

a k l

k l

S z x y
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 
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   (1) 
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where M and N are the numbers of the measured points and Z(xk, yl) is the distance from each 

measured point to the central plane on the surface of the tested preform sample. Three surfaces 

areas, each being ~120×160 μm
2
, were probed in the preforms, while five areas, each being 

~25×160 μm
2
, were measured in the fibers. 

To investigate the impact of fabrication conditions on fiber loss, we selected 1550 nm as a 

wavelength for spot loss measurements and broadband spectral range of 500-1750 nm for 

white light source measurements. The fiber losses were measured based on the cutback method 

using a 1550 nm laser (spot loss measurement) and a bulb (broadband loss measurement) as 

the light sources. The output power of the fiber under test during spot loss measurement at 

1550 nm was recorded by a power meter and for broadband loss measurement with an optical 

spectrum analyzer. The relative errors for spot loss measurements varied from 2.2% to 5.9% of 

the average value. The uncertainties of the broadband loss measurements were up to 10% of 

measured values. 

The mid-IR fiber transmission was measured from 2 to 8 µm using a fiber-coupled Bruker 

Vertex 70 FTIR spectrometer with a liquid nitrogen cooled HgCdTe detector. The fiber loss 

was determined via a cut-back measurement. 

The cross-section and side surfaces of the fibers were imaged by a scanning electron 

microscope (SEM; Philips XL30 field emission SEM) to study the surface defects. 

The mechanical strength of the fibers was determined by measuring the fiber bending 

radius at fiber breakage (minimum bending radius) [29]. Fiber pieces of approximately 15 cm 

length were bent and held between two vertically parallel plates as shown in Fig. 2. One of the 

plates was held stationary, while the other was mounted to a movable rail driven by a stepper 

motor. The latter plate was set to move at a speed of 0.3 mm/s towards the fixed plate until 

fiber breakage. Measurements were repeated to estimate the minimum bending radius at least 

10 times. The calculation of the strain was based on Eq. (3): 

 = 0.42sτ r D  (3) 

where 
sτ  is the breaking strain which can be measured from D, the minimum distance 

between the plates when the fiber fractures, and r is the fiber diameter. 

 

Fig. 2. Bending strength measurement approach. 
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3. Results and discussions 

3.1 Optimization of glass melting 

Table 1 lists the fluorination and melting conditions, and characteristic temperatures (Tg, Tx, 

and Tp) of samples A, B and C. The difference ΔT = Tx-Tg is used as a measure of glass 

stability. 

Table 1. Melting conditions and properties of glass samples fabricated in this study. 

Melting 

condition 

Dwell Time 

@ 235 °C 

Dwell Time 

@ 450 °C 

Dwell Time 

@ 900 °C 

 Tg  

(°C) 

 Tx  

(°C) 

Tp  

(°C) 

ΔT 

(°C) 

A* 45 min --- 3 h 307 385 409 78 

B** 45 min --- 3 h 307 389 409 82 

C** --- 1h 2 h 308 389 407 81 

           *raw material InF3·3H2O with~99.99% metal content 

 **raw material InF3 with ~99.99% metal content 

DSC measurements (Fig. 3, Table 1) show that different fluorination and melting 

conditions had negligible impact on Tg; the variations were within the temperature error of 

DSC measurements. However, it was found that Sample B contained a few un-dissolved 

particles. Mohammed [30] introduced 500 °C for elimination of NH4HF2 products prior to 

melting, for preparation of their fluoride glasses. Fluorination at 450 °C prior to melting in this 

work for Sample C may effectively reduce the remaining (i.e., non-reacted) NH4HF2 in the 

final glass. The un-dissolved particles in Sample B are attributed to possible residual products 

from NH4HF2 in the glass, which could not be eliminated by fluorination at 235 °C. 

 

Fig. 3. DSC curves for glasses prepared under three different conditions. 

Figure 4 shows the linear thermal expansion curve of the 5 mm diameter rod piece which 

was melted under the same condition as C** and extruded at 320 °C. The slope changes 

slightly at 308 ± 2 °C, which corresponds to the glass transition temperature (Tg). This value 

measured using a thermal dilatometer agrees well with the Tg value of the sample melted under 

condition C** (melted under the same conditions) obtained from DSC. 
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Fig. 4. Linear thermal expansion curve of IZSBGC sample obtained using 5 °C/min heating 

rate. 

3.2 Extrusion 

To achieve a good surface quality for glass items extruded through graphite dies, the extrusion 

force must be as low as possible while the temperature must be below the onset of glass surface 

crystallization temperature [9]. A low extrusion force minimizes shedding of graphite particles 

from the die onto the glass and reduces the chance of die breakage. Shedding can degrade the 

surface quality of extruded rods, whereas die breakage can lead to premature stopping of an 

extrusion trial. While higher temperatures decrease the extrusion force, they can increase the 

probability of the undesired surface crystallization. Therefore, the maximum temperature that 

can be used for extrusion of preforms with good surface quality will be limited by the onset of 

glass surface crystallization temperature. 

For the IZSBGC fluoroindate glass, characteristic temperatures are around 307-308 °C for 

Tg and 385-389 °C for Tx (Table 1) depending on melting conditions. In our previous work [9], 

preliminary extrusion trials were conducted at 317 °C, 322 °C and 330 °C. In this work, to 

identify the best die design and advance our understanding of temperature-viscosity behavior 

and the impact of temperature on extrusion force and rod surface quality, we performed 

extrusion trials using different die designs and temperatures between 317 °C and 330 °C. 

According to the previously published results [16,31,32], we can assume that the extrusion 

flow of fluoroindate glass follows the Poiseuille law, and that the glass can be regarded as a 

Newtonian fluid. Hence, the force or pressure required to extrude a glass through a circular die 

channel can be approximated by the following equation [16]: 

 
128

=
π ( +8 )

1

0 03

1 1

L
P A V η

D D α
 (4) 

where subscript ‘0’ and ‘1’ refer to the billet and die, respectively, P = F/A0 is the pressure P 

calculated from the measured force F and billet cross section area A0, L1 is the die channel 

length, D1 is the die channel diameter, Vo is the ram speed, η is the glass viscosity, and α is the 

slip coefficient at the glass/die boundary. 

According to Eq. (4) and assuming a constant slip coefficient, the extrusion pressure is 

proportional to the die channel length and the inverse of the fourth exponent of the channel 

diameter. Metal dies made from stainless steel or nickel alloys were found to have no slip 

(α = 0, i.e. constant slip coefficient) when they were used for the majority of oxide glass 

extrusions [16,32]. By contrast, graphite is a non-wetting material [32]. A slip at the glass/die 

boundary was observed previously by using graphite as an extrusion die material [16]. For 

extrusion of fluoroindate glass through graphite dies, we found that with the shorter die 

channel in die (c), compared to dies (a) and (b), the extrusion force did not decrease linearly 
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with the die channel length, L1, which cannot be explained by Eq. (4) assuming a constant slip 

coefficient. Analysis of published data on extrusion of silicate glasses through graphite dies 

with different die channel length [16] revealed that the slip coefficient decreased linearly with 

decreasing die channel length, and can be approximated by: 

 2= 0.5557 +0.5652 (R = 0.950)1α(mm) L (mm)  (5) 

Equation (5) indicates that α decreases with L1. Therefore, the extrusion force decreases 

with L1 in a nonlinear manner in Eq. (4), which explains our findings of the nonlinear decrease 

of the extrusion force with L1 in the extrusion of fluoroindate glasses. Assuming that the 

dependence of die channel length on the slip coefficient for IZSBGC glass/graphite die 

interface is equal to that for silicate glass/graphite die interface, we used Eq. (5) to calculate the 

slip coefficients for different die channel length for our extrusion trials (Table 2). 

Once the slip coefficient α is known, Eq. (4) can be used to calculate the viscosity from the 

measured extrusion force and other parameters in the extrusion trials conducted using different 

temperatures and graphite die geometries [16]. Table 2 shows the experimental parameters 

used for this calculation and the calculated viscosities. In Fig. 5, the calculated viscosity values 

are plotted as a function of the reciprocal of the glass temperature for fluoroindate glass 

extrusion trials, assuming die temperature is equivalent to glass temperature. 

Table 2. Extrusion Parameters: Preform surface roughness, Sa and Sq, Extrusion 

temperature, T, Die Channel Diameter, D1, Die Channel Length, L1, Ram Speed, V0, Ram 

Force, F, Ram pressure, P, Slip coefficient, α, Glass viscosity, η.§ 

Extrusion 
No 

Preform surface 
roughness Die 

Type 
T 

(°C) 
D1 

(mm) 
L1 

(mm) 
V0 

(µm/s) 
F 

(kN) 
α 

(mm) 

log η 

(log 

Pa·s) 
Sa (nm) Sq (nm) 

IE1 — — a 322 8 8 0.60 10.85 5.08 
9.44 

( ± 0.06) 

IE2 — — a 325 8 8 0.60 7.15 5.08 
9.26 

( ± 0.04) 

IE3 — — a 330 8 8 0.60 2.24 5.08 
8.76 

( ± 0.03) 

IE4 
49.47 

( ± 5.68) 

59.46 

( ± 10.83) 
b 330 10 7 0.60 1.41 4.51 

8.88 

( ± 0.04) 

IE5 — — b 324 10 7 0.33 4.01 4.51 
9.59 

( ± 0.05) 

IE6 — — c 317 10 2 0.33 19.00 1.69 
10.52 

( ± 0.03) 

IE7 
141.96 

( ± 14.22) 

162.62 

( ± 6.96) 
c 318 10 2 0.33 18.10 1.69 

10.50 

( ± 0.03) 

IE8 
190.50 

( ± 10.90) 

234.35 

( ± 21.65) 
c 316 10 2 0.33 22.05 1.69 

10.58 

( ± 0.03) 

IE9 
67.11 

( ± 7.20) 

84.33 

( ± 7.61) 
c 320 10 2 0.33 8.34 1.69 

10.16 

( ± 0.05) 

IE10 
64.29 

( ± 1.88) 
78.86 

( ± 0.96) 
c 324 10 2 0.33 3.58 1.69 

9.79 
( ± 0.04) 

IE11 — — d 320 5 2 0.33 34.25 1.69 
9.76 

( ± 0.06) 

§: Note that only glass for IE11 was melted under condition C** and the glasses for IE1-10 were all melted under 
condition A*; the surface roughness Sa and Sq are the average values by repeating measurements 3 times. 
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Fig. 5. Calculated viscosity values as a function of extrusion temperature. 

For a limited viscosity range at the temperature between 317 and 330 °C, the experimental 

viscosity data can be well fitted with a two-parameter Arrhenius equation [31]: 

 = A + B/logη T  (6) 

where η is the viscosity (in Pa·s), T is the temperature (in K) and A and B are empirical 

constants. For the fluoroindate glass reported in this work, we determined the Arrhenius 

equation of the temperature viscosity curve from glass viscosity calculated from extrusion 

trials. The linear fitting of Arrhenius equation for our fluoroindate glass yields 

log η (in Pa·s) = 69.754 + 47368/T (in K) (Fig. 5). 

Using the dilatomer measurement (Fig. 3), the dilatometric softening temperature (i.e. the 

temperature, at which a sample reaches maximum expansion in a length versus temperature 

curve during heating of the sample [33]) was measured to be 330 °C for our fluoroindate glass. 

Note that the viscosity at this dilatometric softening temperature corresponds to 

10
8
-10

9
 Pa·s [33], which is in agreement with the viscosity at 330 °C in Fig. 5, determined 

using the extrusion trials. This suggests the calculated viscosity results in Fig. 5 are reliable. 

The surface roughness results for extruded preforms (Table 2) demonstrate that the 

roughness decreases with increasing extrusion temperature, which was also reported for 

extruded polymer preforms [34]. There are several reasons that possibly explain this 

observation. Firstly, the surface is smoothened by fire-polishing at elevated temperatures, i.e. 

at low glass viscosities [35]. The fire-polishing also occurs during extrusion. The glass 

preform is still hot when it emerges from the die exit and moves slowly out of the hot zone; this 

leads to fire-polishing of the preform surface. The fire-polishing process softens or melts the 

surface, which deliquesces and rounds sharp edges, and also fills pits (e.g., scratches) due to 

lower viscosity [36]. Consequently, the fire-polishing results in a smoothed preform surface 

and the surface roughness is reduced. The effects of fire-polishing will become more 

prominent with increasing temperature, thus leading to a smoother preform surface as the 

extrusion temperature increases. 

Secondly, for a not completely wetted interface, a certain degree of slip occurs at the 

fluid/solid interface. For a Newtonian fluid, there exists a general nonlinear relationship 

between the amount of slip and the local shear rate at a solid surface [37]. The velocity gradient 

(shear rate) in viscous fluid flow generates a tangential force (mechanical shear stress) which is 

proportional to the viscosity when the fluid is under shearing [38]. When the temperature 

increases, the extrusion can be achieved at a lower viscosity with a lower shear stress. The 

lower shear stress, therefore, reduces the shearing at the graphite die surface, leading to 

reduced surface roughness and improved glass surface finish (e.g., less extrusion stripes). It 

also reduces the shearing of the graphite particles that can contaminate the glass surface, and 

therefore improves glass surface quality. Furthermore, higher extrusion forces can lead to 
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changes in the slip behavior at the fluid/die interface, which can result in melt fracture 

extrusion instabilities and increase the extruded preform’s surface roughness [39]. Low 

extrusion forces at high extrusion temperatures are therefore desired to improve the surface 

roughness of extruded glass preforms. 

Our recent work [9] on fluoroindate glass annealing tests demonstrated that a temperature 

of 330 °C for preform extrusion could cause potential surface crystallization, whereas 322 °C 

for extrusion was sufficiently low to avoid potential surface crystallization. Therefore, to 

achieve a low extrusion force and eliminate shear-induced surface roughness with no glass 

surface crystallization, we chose the extrusion temperatures of 320-322 °C for fiber drawing 

trials IF1-6 in the next section. 

3.3 Fiber drawing 

Table 3 summarizes the experimental details of fibers IF1-6 drawn under different conditions, 

and presents results of fiber surface roughness and fiber spot loss measurements at 1550 nm. 

To understand the surface roughness value of a fiber without surface crystallization, we also 

measured the surface roughness of an unstructured fiber made from commercial F2 

lead-silicate glass for comparison (Schott Glass Co.) (Table 3). SEM analysis (Fig. 6) shows 

the features of the cross-sections and the surface of fibers IF1-6. 

During fluoride fiber drawing, one of the most important aims is to minimize surface 

crystallization of the preform neck-down, because experiments have shown that this surface 

crystallization significantly correlates to degraded mechanical strength in the drawn fibers and 

increases fiber loss for air-clad (i.e., unstructured) fibers and air/glass microstructured 

fibers [28]. 

Chemical etching has been demonstrated to improve fluorozirconate glass surface quality 

and hence reduce surface crystallization [8]. Thus, we commenced with investigating the 

impact of etching on fluoroindate glass surface crystallization during fiber drawing. A preform 

extruded at 320 °C was cut into two pieces that were used for IF1 and IF2 fiber drawing trials 

using 2 cm heating zone. The difference between the two fiber drawing trials was that the IF2 

preform was etched with 1.36 M ZrOCl2(aq) to remove a ~0.5 mm thick outer layer and then 

polished with 40 nm colloidal silica suspension, while the IF1 preform remained unetched. 

Surface roughness measurements of the IF2 preform before and after chemo-mechanical 

treatment revealed that the average roughness dramatically decreased from 70 to 7 nm (Fig. 7). 

Table 3. Fiber drawing conditions, results of spot loss measurements and surface 

roughness of fibers IF1-6 

Fiber 

No 

Glass 

melting 
condition§ 

T 

(°C) 

Surface 

treatment 

Susceptor 

(cm) 

Additional 

weight 
(g) 

Fiber surface roughness Spot loss at 

1550 nm 
(dB/m) 

Sa (nm) Sq (nm) 

IF1 A* 320 none 2 0 
172.0 

( ± 77.0) 

223.0 

( ± 103.0) 
27.8 

IF2 A* 320 Preform 2 0 
149.0 

( ± 29.0) 
205.0 

( ± 38.0) 
20.1 

IF3 C** 320 Preform 4.5 0 
13.8 

( ± 4.1) 

15.9 

( ± 4.4) 
7.8 

IF4 C** 320 Preform 4.5 190 
10.5 

( ± 1.1) 
15.2 

( ± 3.8) 
4.1 

IF5 C** 320 Billet/preform 4.5 190 
9.3 

( ± 1.8) 

12.9 

( ± 2.3) 
3.6 

IF6 C** 322 Billet/preform 4.5 190 
9.1 

( ± 0.4) 
12.8 

( ± 1.9) 
2.3 

F2† 

fiber 
— 560 — 4.5 0 

8.0 

( ± 0.8) 

12.0 

( ± 1.2) 
— 

§: For glass melting conditions for IF1-6, please refer to Table 1. 
†: Commercial F2 glass billet (outer diameter: 30 mm) was used to fabricate extruded preform and unstructured fiber. 
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Fig. 6. Scanning electron microscopy images of fiber surfaces and cross-sections (IF1-6). 

To investigate the effect of the chemo-mechanical treatment on the preform during fiber 

drawing, IF1 and IF2 preform neck-down surfaces were examined under an optical microscope 

(Fig. 8). During fiber drawing, re-heating of the IF1 preform resulted in the formation of 

corrugation patterns on the surface of the preform neck-down (Fig. 8(a)). This corrugation 

pattern is attributed to surface crystallization during glass re-heating. In contrast, no 

corrugation patterns were observed on the IF2 preform neck-down (Fig. 8(b)) except for 

several small crystal spots on the surface. The fiber surface roughness of IF2 was reduced to 

149 ± 29 nm (Sa), as compared to 172 ± 77 nm (Sa) for IF1 (Table 3). This clearly indicates that 

the chemo-mechanical treatment applied to IF2 preform effectively reduced surface 

crystallization during fiber drawing. 

 

Fig. 7. Optical interferometric profiler images (colored images) of preform surface for IF2 fiber 

drawing (a) before chemo-mechanical treatment; the data in (a) is one of the measurements used 
for the surface roughness calculation of IE9 preform, Table 2; (b) after chemo-mechanical 

treatment. Images in grey scales in (a) and (b) are optical microscope images of the preform 

surfaces before and after chemo-mechanical treatment. 

In Fig. 6, all the fibers from IF1 to IF6 were cleaved at a tension as low as possible to 

prevent a mirror-mist hackle pattern, which was otherwise observed to occur at high tensions. 

In addition, each fiber was cleaved at least 20 times to ensure that fiber surfaces (Fig. 6) were 

reproducible and representative. For all the cleaved surfaces of IF1, the fiber cross-section 

shows fracture patterns that resemble a mirror-mist hackle pattern (Fig. 6(a)). It is likely that 

this fracture pattern arises from surface crystallization and propagated rapidly when the fiber is 

fractured [8]. For IF2 fiber, its preform was chemo-mechanically treated before fiber drawing, 

resulting in significantly reduced mirror-mist hackle pattern (Fig. 6(b)). 

 

Fig. 8. Surface images of the fiber drop neckdown of IF1-4. 
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For the IF2 fiber, surface crystallization was reduced but not completely suppressed, as 

demonstrated by observation of crystal spots on the preform neck-down. Sakaguchi et al. [28] 

successfully minimized surface crystallization in the neck-down region of a fluorozirconate 

glass by extending the heating zone of the furnace used for fiber drawing. As fluoride glass has 

a steep temperature-viscosity dependence, small temperature fluctuations cause large 

variations in the glass viscosity. Thus, instabilities in drawing such as variations in diameter 

(± 30 μm for IF2) and drawing tension are caused by a shorter heating zone with a higher 

maximum preform temperature and steeper preform temperature gradient along the drawing 

axis [28]. The steeper temperature gradient requires higher maximum glass temperature to 

form a preform drop, which may lead to an increase in surface crystallization. In contrast, for a 

longer heating zone, the reduced temperature gradient and larger heat spread in axial direction 

allows the preform to drop at a lower maximum temperature, which reduces the probability of 

surface crystallization during fiber drawing. The neck-down shape using a longer heating zone 

is elongated, which indicates that the duration time for glass in the heating zone is increased 

compared to that of a shorter heating zone. The reduction of surface crystallization for a longer 

heating zone indicates that the impact of temperature on crystallization is more significant than 

the time the glass dwells in the hot zone [28]. 

For our fiber drawing furnace, we have confirmed that the susceptor length correlates with 

the length of the heating zone. To investigate the impact of increased heating zone length on 

surface crystallization for our fluoroindate glass fibers, we used a larger susceptor length of 

4.5 cm for IF3 compared with 2 cm-long susceptor for IF2. IF3 was drawn at a furnace 

temperature being ~75 °C lower than that of IF2. This confirms that, for a longer heating zone, 

a lower maximum temperature can be used to form a preform drop. The length of neck-down 

of IF3 was observed to be elongated compared to that of IF2 (Fig. 8), consistent with results by 

Sakaguchi et al. [28], indicating lower maximum glass temperature. Although the neck-down 

surface of IF3 contained similar small crystal spots compared with those of IF2 (Fig. 8), the 

number of spots was significantly reduced. SEM images revealed that the mirror-mist hackle 

patterns of IF3 were greatly suppressed (Fig. 6(c)). In addition, the fiber surface roughness (Sa) 

was reduced from 149 ± 29 nm for IF2 to 13.7 ± 4.1 nm for IF3 (Table 3). These results 

demonstrate a decrease in surface crystallization for IF3, due to the reduced maximum preform 

temperature of IF3 combined with reduced temperature gradient along the drawing axis as a 

result of the longer heating zone used for IF3 than that for IF2. 

For IF4, we applied an additional weight at the bottom of its preform to decrease the 

preform temperature required to form a drop during fiber drawing. The decreased preform 

temperature also reduced the surface crystallization rate (without wasting a significant length 

of the preform). The fiber drop temperature for IF4 decreased by 15 °C in comparison with 

IF3. No crystallization was found on the neck-down of IF4 on inspection with an optical 

microscope (Fig. 8 (d)). Both surface roughness of IF4 (Table 3) and mirror-mist hackle 

patterns of cleaved fiber cross-section (Fig. 6) were reduced due to the reduced crystallization 

of the fiber surface. Note that all billets for IF1-4 were polished mechanically. 

For comparison, chemo-mechanical treatment was applied to IF5 and IF6 billets before 

extrusion. The only difference between IF5 and IF6 was that the preforms for these two fiber 

drawing trials were extruded at different temperatures (320 °C for IF5 and 322 °C for IF6). By 

comparing the fiber surface roughness of IF4 and IF5, we find that the chemo-mechanical 

treatment of IF5 billet before extrusion slightly improved the IF5 fiber surface quality and 

resulted in a reduced surface roughness relative to IF4 (Table 3). The improved fiber surface 

quality of IF5 is attributed to an improved billet surface quality after chemo-mechanical 

treatment, superior to use of only mechanical billet polishing before extrusion (for IF1-4). 

Chemo-mechanical treatment of the billet for IF5 removed surface micro-cracks and 

micro-scratches before extrusion, thereby enabling IF5 to have a lower fiber surface 

roughness. IF6, which was fabricated from a preform extruded at 322 °C, exhibits the lowest 

surface roughness (Table 3) of all fluoroindate fibers fabricated, and no mirror-mist hackle 
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patterns were found on this fiber cross-section (Fig. 6(f)). It is also the longest fiber obtained in 

this work with a length of 38 m. These results are attributed to the better surface quality of the 

IF6 preform by extruding the preform at 2 °C higher than those used for extrusion of IF1-5, 

resulting in a lower force for extrusion of IF6 preform. As discussed above, lower force results 

in an improved preform surface quality, which finally leads to improved fiber surface quality. 

The spot loss measurement results at 1550 nm shown in Table 3 and Fig. 9 are consistent 

with the broadband fiber loss measurement results (Fig. 9). Note that no fiber of IF1 with 

adequate length was available for broadband loss measurements to be performed after spot loss 

measurement, due to low production yield of this fiber. The broad absorption band at 1000 nm 

of IF2 (Fig. 9) is thought to be due to absorptions from 3d transition metals (e.g., Fe
2+

, Co
2+

, 

Cu
2+

) from the raw materials used for IF2. Both spot loss and broadband fiber loss results 

demonstrate that the loss is remarkably decreased from IF1 to IF6, which correlates with 

reduction of the fiber surface roughness. As IF1 and IF2 were made from the same billet and 

preform, the lower loss of IF2 compared with IF1 demonstrates that the loss is determined by 

surface scattering due to surface roughness caused by surface crystallization. Similar 

correlation is observed for IF3 to IF6 made from glass using C** melting condition. The 

reduction of surface crystallization from IF1 to IF6 resulted in a smooth fiber surface with low 

surface roughness, which effectively reduced light scattering and thus fiber loss. 

IF6, which has the lowest loss in the near-infrared region of all fibers investigated in this 

work, also exhibited low loss in the mid-infrared region; the fiber loss of IF6 at 2, 4, 5 μm was 

measured to be 2.0, 1.5 and 2.2 dB/m, respectively. The lowest loss of 1.3 dB/m was located at 

2.7 μm. In comparison, an unstructured ZBLAN fiber, which was made using commercial raw 

materials with comparable purity, fluorination with NH4HF2 at 235 °C, identical controlled 

atmosphere melting facility and the extrusion technique for preform fabrication, demonstrated 

a similar fiber loss of 1.1 ± 0.5 dB/m at 4.0 µm [20]. 

A 2 m-long fiber with 1.9 dB/m fiber loss at 1550 nm was drawn from an un-etched 

preform in our previous work [9], while IF6 with 2.3 dB/m was obtained with a length of 38 m. 

The significantly larger fiber yield for IF6 is attributed to the higher fiber drawing stability 

achieved. This is believed to be due to the improvements in the fiber fabrication conditions, 

resulting in the suppression of fiber surface crystallization during fiber drawing. Although 

chemical etching and additional weight were applied to prevent crystallization during fiber 

drawing in this work, IF6 exhibited a slightly higher fiber loss of 2.3 dB/m compared to the 

previously obtained fiber with 1.9 dB/m [9]. This can be explained by the relatively high levels 

of impurities in the raw materials used in this work: ZnF2 - this work: 99%, work in [9]: 99.9%; 

and BaF2 - this work: 99.99%, work in [9]: 99.999%. Those high purity raw materials used in 

our previous work are no longer available for purchase. 

To further study the correlation between fiber loss and surface roughness, we also 

measured the fiber surface roughness of an unstructured F2 soft glass fiber. Ref [18]. 

demonstrated that the loss of air-clad and air/glass microstructured fibers was dominated by 

surface scattering associated with surface roughness compared with the loss of the bulk 

material, and that extruded F2 glass fibers showed the same loss as that of the F2 bulk glass 

within the measurement errors. This indicates that the surface roughness of unstructured F2 

fiber is so low that it does not contribute to fiber loss. The indium fluoride fiber IF6 shows a 

surface roughness of 9.1 ± 0.4 nm (Sa), which is very close to the F2 fiber surface roughness of 

8.0 ± 0.8 nm (Sa). This result confirms that the reduced surface roughness from IF1 to IF6, due 

to reduced surface crystallization, leads to a decrease in light scattering and hence reduces fiber 

loss both in spot loss and broadband fiber loss measurements. 

The fiber breaking strains gradually increased from IF1 to IF6 (Table 4 and Fig. 10), which 

correlates with the observed decrease in fiber surface roughness (Table 3). A smooth fiber 

surface without defects (e.g. crystals) is, unsurprisingly, an important characteristic of high 

strength fibers [28]. The enhanced breaking strain of the fibers from trial IF1 to IF6 is 
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attributed to the reduced surface roughness due to the reduced crystallization on the fiber 

surfaces during fiber drawing via improvement of the preform and fiber fabrication conditions. 

 

Fig. 9. Fiber loss spectra and spot loss measurement results at 1550 nm of IF2-6. 

Table 4. Fiber strain of Trial IF1-6 

 IF1 IF2 IF3 IF4 IF5 IF6 

Mean of measured radius (µm) 62.34 83.23 71.85 84.28 88.25 77.21 

Mean of calculated strain (10-3) 4.49 4.94 5.59 6.21 7.43 10.54 

The standard deviation of calculated strain (10-3) 1.90 1.69 1.34 1.10 0.93 0.79 

 

Fig. 10. Breaking strain of IF1-6. 

4. Conclusions 

We have presented a systematic characterization of factors responsible for scattering loss in 

fluoroindate glass fibers. The results showed that this systematic refinement of the glass and 

fiber fabrication processes reduced the fiber loss by an order of magnitude: from 27.8 dB/m to 

2.3 dB/m. This improvement is attributed to the reduction in fiber surface roughness achieved 

by optimizing the melting, preform and fiber fabrication conditions. 

Sample C melted using anhydrous InF3 raw material with higher fluoride content 

demonstrated a higher glass crystallization stability compared to Sample A melted using 

InF3·3H2O raw material. High fluorination temperature of 450 °C for sample C enabled 

successful preparation of a crystal-free glass and eliminated the remaining NH4HF2 in the 

glass. 

The preform surface properties including surface roughness and crystallization of extruded 

fluoroindate glass rods essentially depended upon the extrusion temperature. A relatively high 

temperature reduced the extrusion force, which minimized graphite shedding, cracking of dies 

and slip instabilities between glass and die surface. The fire-polishing effect became prominent 
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with increasing temperature, thus leading to a smoother preform surface as the extrusion 

temperature increased. Both these effects were found to be essential to minimizing rod surface 

roughness. However, even for rods with good surface finish, sufficiently high temperature 

eventually resulted in surface crystallization. In this study, the optimum temperature for 

extrusion was found to be around 322 °C. 

The maximum fiber drawing temperature was reduced by expanding the length of the 

heating zone in the drawing furnace. The chemo-mechanical treatment of billets and preforms 

reduced the surface crystallization observed on the preform neck-down and fibers at the 

elevated temperatures experienced during fiber drawing. Surface crystallization was 

completely suppressed by using additional weight at the bottom of preforms. 

In conclusion, the fiber surface roughness due to surface crystallization was reduced by 

optimizing the preform and fiber drawing conditions (including the extrusion temperature; 

chemo-mechanical treatment; expanding the heating zone length to decrease the maximum 

preform temperature; additional weight). This also reduced the loss of the fabricated fibers and 

the increased fiber strength from trial IF1-6. Furthermore, the improved fiber drawing 

conditions significantly increased the yield of low-loss fiber (~1.5 dB/m at 4 µm wavelength in 

the mid-IR region) from a 2 m achieved in our previous work [9] to 38 m for IF6 in this work. 

However, the fluoroindate fiber IF6 has a significantly lower fiber loss of 1.8 dB/m at 4.7 µm. 

This is because that fluoroindate glasses have longer multi-phonon edge wavelengths 

(> 4.7 µm) [9] compared to ZBLAN (<4.7 µm) [20]. 

In addition to extrinsic scattering loss in fluoroindate glasses discussed above, extrinsic 

absorption loss is another factor causing high fiber loss. As commercially available fluoride 

raw materials often contain transition metals and oxides impurities, it limits the reduction of 

extrinsic absorption loss in fibers [40]. Sublimation and distillation techniques are established 

methods of purification for high-purity fluorides [40]. In the future, we will aim to quantify the 

contributions of both extrinsic scattering and absorption to IZSBGC glass fiber loss to 

determine which one is the major contribution. This future work will guide us to the pathways 

for further improvement of the fabrication conditions. 
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