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Abstract:  

Production forecasting, well spacing, and well pattern optimization are key tasks in coal-bed 

methane field development plan. Desorption area around a production well is an important factor in 

well performance and reserve estimation. Analytical models are found to be simple and practical 

tools for drainage area calculation and well deliverability in conventional reservoirs. However, up to 

now, we have found no such analytical model for coal-bed methane wells with two-phase flow in 

which the gas desorption in coal is the controlling mechanism while the water is flowing in the cleat 

system. 

In this paper, we present a mathematical model to predict how the size of desorption area is 

changing with pressure propagation during gas and water production. The pressure profiles at 

different production stages are determined using diffusivity equation which is solved using the 

known method of “continuous succession of steady states”. For the case of two-phase flow of gas-

water system, the pressure squared concept is used for linearization in middle and late times, while 

the pressure concept is used in early times when water flow is dominated. We have combined 

pressure from the solution of diffusivity equation with the material balance equation in order to 

develop our predictive model which is applicable for vertical wells for both cases of with or without 

hydraulic fractures.  

This model is verified by numerical simulation and is in excellent agreement with the numerical 

solutions. Furthermore, the developed model is applied in one coal-bed methane well group in 

Hancheng field in China. It is found that desorption area is expanded outward in elliptical shape and 

the area can be calculated by the gas production data. The results show that two sample wells in the 

group have interfered with each other after producing for 525 days. 

Key words: coal-bed methane; desorption area; gas-water two-phase flow; hydraulic fracture; 

predictive models 

1. Introduction 

In coal-bed methane reservoirs, the gas is mainly stored in micro pores of coal surface by the 

mechanism of adsorption in contrary with the conventional reservoirs which free gas is stored in 

rock porosity system [1-4]. To release the adsorbed gas from the coal surface and to produce it 



through the natural cleat system, the reservoir pressure should be reduced to a critical desorption 

pressure by dewatering operation. During this reservoir depressurizing, the desorption area expands 

outward with pressure propagation. To date, both analytical [5, 6] and numerical approaches [7, 8] 

have been used to predict the expansion of desorption area. However, it is found that the previous 

analytical models are not working accurately in the case of two-phase flow of gas-water system 

because not only the flow behavior in this case is more complex [3, 9]; but also, the working 

condition of CBM well is frequently changing as a result of work-over, shut-in well, and so on. In the 

case of numerical modeling, many different data set are required to run the simulation such as the 

geological model, coal and fluid properties [8, 10] and petrophysical properties for example 

permeability, porosity, and relative permeability curves which are hard to obtain [11]. In contrary to 

numerical simulation, an analytical model does not need most of those data sets and it is simple and 

fast. 

In this paper, we first present different mechanisms of pressure propagation and desorption 

area expansion during the production. Then, a simplified mathematical model is developed for the 

pressure distribution in CBM based on the characteristic of gas-water ratio. Furthermore, the 

pressure equations are solved using the method of continuous succession of steady states. Next, a 

mathematical model for desorption area in a coal-bed methane well is developed combined with 

material balance equation. Then, it is shown that the developed new model is validated with 

numerical simulation.  Finally, the predictive model has been applied in Hancheng CBM field in China 

and the results are discussed in detail.  Some conclusions are presented in the last section.  

2. Pressure propagation and desorption area expansion  

It is necessary to review different flow mechanisms occurring in CBM reservoirs for the 

development of a mathematical modeling. Throughout the production from under-saturated CBM 

reservoirs, the following three stages are commonly taking place:  1- dewatering stage; 2- stable 

production stage; and 3- decline stage [3]. In all three stages, either single-phase or two-phase flows 

can occur depending on the relative permeability of each phase. During the early stage of 

depressurizing, since no gas has been desorbed, single phase water flows only. Once the pressure 

reaches the critical desorption pressure, the gas phase will change from adsorbed gas to free gas 

state. By the time the gas phase reaches the critical gas saturation, a two-phase gas-water flow will 

develop in the cleat system. As a result, the following characteristics for pressure propagation in each 

stage will occur: 

(1) During the dewatering stage, since the flow behavior is only a single phase, the pressure 

propagates through the water in the cleat system. The pressure propagation will interfere with other 

neighboring wells at the flow boundary. After reaching to the boundary, the pressure drop in the 

drainage area will be proportional to the water production rate. 

(2) During stable stage, since the reservoir pressure is reduced to the critical desorption 

pressure, and the gas begins to desorb and diffuse through the coal matrix to the cleat system, the 



desorption area begins to expand (Figure1). At this time, a single-phase water flow is changed to 

two-phase flow. In this case, the resulting flow resistance in two-phase system is obviously higher 

than single phase flow. However, on the other hand, the matrix system acts as a source supplying gas 

to the cleats therefore, it slows down the trend of pressure drop. In overall, the expansion of 

desorption area is controlled by both desorption and two-phase flow. The expansion of desorption 

area will end when desorption front reaches the boundary. 

(3) During decline stage, once the gas saturation is at the highest and the water saturation 

decreases to immobile residual saturation, the flow system becomes a single-phase again; however, 

this time is gas-flow only. 

3. Mathematical Model 

3.1 Simplified approach for two-phase flow equation of CBM 

The partial differential equations for two-phase flow in coal seam are given in the following 

equations [12-14]: 
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The above equations are basically the combination of mass balance and Darcy’ law in which the 

quantity of desorption gas is given by equilibrium sorption model [5]: 
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Where Cd is the desorption compressibility： 
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Multiplying Eq. 

rg g d

g g g g3.6

KK S q
P

B t B B





   
                            (1) by Bg，and Eq. 

rw w

w w w3.6

KK S
P

B t B





   
     

     by Bw, and adding the two equations together, we have: 

 
*

3.6

g w t
g w

g g w w

K K C P
B P B P

B B t



 

    
            

 (5) 

Where C t * is the modified form of total system compressibility and it is given as the following 

[5]:  

 *

t d f g g w wC C C C S C S     (6) 



By expanding the differential operators of the left terms in Eq. (5), we have: 
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The total mobility of gas and water, and gas-water ratio (GWR) are defined in the following two 

equations:  
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The third term in Eq. (7) can be written in terms of GWR as: 
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We can simplify the Eq. (7) by defining the early stage of low GWR and later stage of high GWR 

as following: 

(1) Early two-phase flow stage including single-phase water flow (low GWR) 

In this stage, the gas saturation is around the critical saturation and the gas flow rate is very low, 

therefore,  both GWR and  GWR P  are assumed to be negligible [13]. Thus, Eq. (7) is changed 

into Eq (11) as following：            
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It is assumed that the water permeability Kw, water viscosityμw and formation volume factor of 

water Bw are all constant in early production stage, so  

 w

w w

K
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Therefore the second term in Eq. (11) becomes zero and the diffusivity equation is： 
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 (2) Middle two-phase and late single-phase gas flow stages (High GWR)  

In these two stages, the gas phase production is dominated while the water rate is declining. In 

this case, the resulting GWR is high, and 1/GWR can be neglected [12-14]. We can write the second 

term of Eq. (7) in terms of GWR as the following: 
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Where  1 WGR P  can be neglected.  Therefore Eq. (7) becomes 
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The gas saturation throughout the drainage area is increased steadily with time when the 

pressure front reached the boundary [16], therefore, the gas effective permeability can be assumed 

constant. For low pressure coal seams, the product of gas viscosity and Z-factor is also assumed to be 

constant [12], thus: 
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Where α is constant. Substituting Eq. (16) into (15) yields [12-14]  
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As seen in Eq. (17), the flow differential equation for middle and late stages is described by 

pressure squared, while in early stage, it is described by pressure only as seen in Eq. (13). 

3.2 Approximation solution of pressure profiles  

In order to solve the transient flow equations of 13 and 17, the concept of “continuous 

succession of steady states” [16, 17] is used. The pressure profile at any production time of CBM 

wells could be determined by pressure solution of steady-state flow until desorption area reaches 

the boundary. In the early stage of two-phase flow (including single phase water flow stage), the 

diffusivity equation is described by Eq. (13), therefore, the pressure solution for steady-state radial 

flow is given by the following: 
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Where rd is the radius of desorption area. 

In the middle and late stages, the diffusivity equation is described by pressure squared 

approach (Eq. (17)); therefore, the pressure solution for steady-state radial flow is given by: 

 
 

2 2

2 2 ln
ln

d wf

wf w

d w

P P
P P r r

r r


 

                         

(19)

 

As we mentioned before, the equations (18) and (19) are for the pressure propagation in CBM 

wells in radial geometry with no hydraulic fracture stimulation. We have solved the same equations 

of 13 and 17 in elliptical geometry for the cases of fractured wells. It is reported that the pressure 

propagates in elliptical geometry when the well is vertical and hydraulically fractured [18-20]. For 

example, in the case of low permeability coal bed methane in Hancheng region in China, hydraulic 

fracturing is always necessary and commonly used to increase the production rate and make the 

development of CBM economical level. In order to transform the elliptical geometry into linear 

geometry we have used conformal transformation by the following equations [18-20]: 
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The pressure profile in steady state flow in early stage and later stages are then given by:  
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wf w

d w

P P
P P  

 


  


                      

(21) 

Middle and late stages：  
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Where ξw=0, the major and minor semi-axis of the elliptical desorption area are calculated by 

the following equations： 

d d d dx L ch y L sh    ；
                     

(23) 

3.3 Desorption radius in vertical well with no fractures 

For radial flow, the desorption front expands outward in circular geometry. If we consider the 

control volume, a fixed region in space (shaded area in Figure 2a), we may write   

[The cumulative production] = [The volume of desorption gas] - [The volume of free gas remain 

in cleats]. The material balance formula in differential form is written as  
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The volume of free gas remained in the cleats can be neglected because the cleat porosity is 

small (about 2% for Hancheng field) and the pressure of coal seam is low, thus, the Eq. (24) becomes: 
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By integration of gas desorption in whole region, the cumulative production is given below: 
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Therefore, if all parameters are known, desorption radius (rd) can be calculated by Eq. (26). For 

example, if the cumulative production Gp is obtained from field data, and pressure profiles are 

determined by Eq. (18) or (19), desorption radius rd can be solved by iteration algorithm. Also, we 

need to mention that if rd is calculated based on Eq. (18) (pressure approach), it will be the minimum 

value of desorption radius, while if rd is calculated based on Eq. (19) (pressure squared approach), it 

will be the maximum value. Therefore，the minimum and maximum value of desorption radius can 

be estimated by combining Eq. (26) with Eq. (18) or Eq. (19) respectively. 

3.4 Desorption area in vertical well with hydraulic fractures 

For elliptical flow, the desorption front expands outward in elliptical form in the control volume, 

as shown in Figure 2b. If the free gas in cleat system is also neglected, the cumulative production in 



whole desorption area is given by 
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Where dAhdV  ，A represents the elliptical area as the following: 
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Substituting Eq. (28) into Eq. (27) 

 2 2
d

w

d L L
p

L d L

PV PV
G hL ch d

P P P P




  

 
  

  


                  

(29) 

In Eq. (29), ξd is the unknown parameter. Then, the major semi-axis xd and minor semi-axis yd 

can be obtained from Eq. (23). Similar to radial case if ξd is calculated based on Eq. (21) (pressure 

approach), it is the minimum value of desorption radius, while if ξd is calculated based on Eq. (22) 

(pressure squared approach), it is the maximum value. Therefore，the minimum and maximum 

value of desorption area can be estimated by combining Eq. (29) with Eq. (21) or Eq. (22) 

respectively. 

4. Numerical Simulation 

Two CBM numerical models are built to show how the results from the developed analytical 

model are matched with a numerical simulation. The input data for two models are shown in Table 1. 

The first model (Model I) represents a CBM well located in a circular closed reservoir with uniform 

thickness and isothermal condition. In this simulation, the grids were radial and the drainage radius 

was set equal to 350m (Figure 3a). In the second model (Model Ⅱ), a hydraulic fractured well is 

considered with elliptical geometry as shown in Figure 3b. The fracture half-length is assumed to be 

73.5 m. In this model, rectangular grids were used in a 700 m×700 m rectangular reservoir area.  

Figure 4a shows the pressure profile after 4.8*105 m3 cumulative productions from model I. In 

this figure, the square dots represent the results from simulation, while the dashed line and solid line 

represent the results by our model for radial flow by pressure and pressure squared approaches 

respectively. In early times, the pressure approach was used until the 50th day and the pressure 

squared approach was used for the later times. As it is seen, the results from the analytical model are 

good matched with numerical simulation. It is verified that the unsteady pressure profile during 

production can be approximated by the approaches of “pressure” or “pressure squared” in steady 

state condition.  

Based on the cumulative production data, the desorption radius are calculated and compared to 



the simulation results. As shown in Figure 4b, in early times when the gas production is not high, the 

pressure approach can match the simulation. However, in middle and late times, it is confirmed that 

the pressure squared approach is the proper methodology. In general, we can conclude that all 

simulation values are not less than the values from the pressure approach and also are not higher 

than the values from the pressure squared approach. Therefore, the pressure and pressure squared 

approaches can create a window for the maximum and minimum values of simulation.  

For hydraulic fractured well of Model Ⅱ, as seen in Figure 5, it is confirmed that the major semi-

axis of elliptical desorption area starts with fracture half-length (73.5m) and expands outward 

(Figure 5a), while the minor semi-axis starts from the wellbore radius (Figure 5b). It is also shown 

that the desorption area calculated by pressure squared approach is closer to the simulated results. 

The reason for this finding is that, since there is a large gas-water ratio in the early production stage 

as a result of hydraulic fracturing, the pressure approach is not applicable here. 

5. Field Application 

The development of coal-bed methane in China focuses mainly in two basins of Qinshui basin in 

Shanxi province and Ordos Basin in Northwest China. The Southeastern of Ordos Basin is Hancheng area 

where coal-bed methane reservoirs have been developed for several years. In this study, we have analyzed 

the data from four wells (A, B, C, and D) drilled in Hancheng area. The well locations are shown in Figure 

6. Well A and B were put into production in August 18, 2005, while the production in well C and well were 

started in January 18, 2007, and in February 14, 2007 respectively.  

As the first task in field data analysis, desorption area expansion of well A and B were analyzed 

before well C, and D were into production. The reservoir and well data including Langmuir constant PL 

and VL  are shown in Table 1. Also, the desorption pressure is 1.4 MPa, the net thickness of well A and B 

are 5.40 m and 4.05 m respectively and the fracture half-length is assumed to be 60 m. To predict the 

desorption area, we have used our developed model based on the cumulative production and well 

bottom-hole pressure, and it is assumed that the desorption area of well A and well B are not 

interfered with each other. Figure 7 shows the major and minor semi-axis of desorption ellipse 

of well A and well B. It is seen that the difference between the major semi-axis and minor semi-axis 

decreases with time. After 250 days of production (January 18, 2007), the major semi-axis of 

desorption ellipse of well A ranges from 150.5 m to 188 m, while the minor semi-axis ranges from 138 

m to 178 m. Similarly, the major semi-axis of well B ranges from 170 m to 215 m, while the minor semi-

axis ranges from 159 m to 206.5 m. Figure 8a and 8b illustrated the maximum and minimum of desorption 

area in January 18, 2007 respectively. In this case, the desorption fronts in well A and B have been 

interfered with each other in the 390th day. Also, the desorption front of well A has reached the 

desorption area of well D. Also the desorption front in direction of fracture orientation of well C 

interferes with well A right after the production due to the effect of hydraulic fracturing. In the latter 

case, the distance between desorption front of well A and well B is only 13.0 m apart, therefore, the 

two wells will interfere with each other soon.  Furthermore, the distance between desorption front of 



well A and fracture tip of well C is 29.5 m while the distance between desorption front of well A and 

the location of well D is 32.0 m. In general, the proposed models can be used as a simple and fast 

technique to predict the desorption area expansion.  

6. Conclusions 

1) An analytical model is developed for the prediction of desorption area in CBM reservoirs. The 

model is based on simplified approach of two-phase flow equations when desorption is controlling 

the gas production.  Our model is developed for both non stimulated and hydraulically fractured 

vertical wells.  

2) Unlike the numerical simulation, the developed model is based on material balance and does 

not require cleat permeability and gas-water relative permeability curves.  The model is validated by 

a good match with numerical simulation. It was found that in early production, the pressure 

approach can match the simulation; however, in middle and late times, the pressure squared 

approach matches the simulation. 

3) The proposed model was applied on a CBM well group in Hancheng field, China. It is found 

that desorption area expands with elliptical geometry. The size of desorption area has been 

estimated by the gas production and bottom-hole pressure data. The results predict that well A and 

well B have interfered with each other after 525 days of production. Also, it is predicted that Well C 

and well D will be in contact with the desorption area of well A if they are put into the production.  

4) It is also concluded that although if the desorption front reaches the boundary (drainage area 

interference), the proposed models are not applicable, the desorption area and the timing before the 

start of interference can be determined. 
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Nomenclature 

A        the area of desorption area, m2 
b      Langmuir isotherm constant, MPa-1 
Bg        gas FVF, fraction 
Bw       water FVF, fraction 
Cd     desorption compressibility, MPa-1 
Ct*     modified total compressibility, MPa-1 
Cf      rock compressibility, MPa-1 
Cg      gas compressibility, MPa-1 
Cw     water compressibility, MPa-1 
Gp       cumulative production, m3 

K      absolute permeability, md 

http://www.iciba.com/special/


Krg      effective permeability to gas, dimensionless 
Krw      effective permeability to water, dimensionless 
L      fracture half-length, m 
P      reservoir pressure, MPa 
Psc       reservoir pressure at standard conditions, MPa 
Pd     critical desorption pressure, MPa 
Pwf    well bottom hole pressure, MPa 
PL     Langmuir pressure, MPa 
qd     quantity of desorption gas from matrix to cleat, m3/(m3·h) 
r      radius, m 
rd     desorption radius, m 
rw        wellbore radius, m 

Sg        gas saturation, fraction 
Sw       water saturation, fraction 
Tsc       absolute temperature, K 
T      absolute temperature at standard conditions, K 
t      production time, days   
V        the volume of desorption area, m3 
Vm       Langmuir pressure, m3/m3 
x, y    Cartesian coordinate, m 
Z      compressibility factor, fraction 
Zsc     compressibility factor at standard conditions, fraction 

Greek symbols 

μg     gas viscosity, mPa·s 
μw       water viscosity, mPa·s 
φ      cleat porosity, fraction 
ξ、η   elliptical coordinates, m 
λt     total mobility of gas and water, md/(mpa·s) 
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 Table 1- input data for numerical simulation 

Parameter Model Ⅰ Model Ⅱ 

Langmuir volume, VL(m3/m3) 33 33 

Langmuir Pressure, PL (MPa) 2.4 2.4 

Formation thickness, h(m) 8 8 

Desorption pressure, Pd (MPa) 4 1.5 

Initial pressure, Pi (MPa) 4.5 3 

Well radius, rw (m) 0.085 0.085 

Flowing bottom-hole pressure , 

Pwf (MPa) 
0.3 0.3 

 

 
 
 

 

 

 

 

 

 



 

 

 

 

 
Fig.1. The schematic of desorption area expansion in a CBM well 

 
 

(a)                                        (b) 

 
Fig.2. The infinitesimal element of gas flow in a CBM reservoir around a wellbore, (A) Radial; (B) Elliptical. 

 

(a)                                           (b) 

        
Fig.3. Well model geometry: (A) radial geometry, (B) elliptical geometry 

 



 (a)                                                                        (b) 

     
Fig.4. The comparison of the results with numerical simulation: (a) Pressure profile in desorption area; (b) 

Relationship between desorption radius and cumulative production 

 
 

(a)                                                                                    (b) 

 

    
Fig.5. The comparison of the results with numerical simulation: (a) Major semi-axis of elliptical desorption area;  

(b) Minor semi-axis of elliptical desorption area 

 

 
Fig.6. The schematic of different well locations 
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 (a)                                                                                      (b) 

   

    
Fig.7. The expansion of desorption area with time: (a) Well A; (b) Well B 

 
(a)                                                 (b) 

 
Fig.8. The prediction of desorption area after 525 days: (a) Maximum; (b) Minimum 
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