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Abstract

The present study seeks to examine the effects of co-flow, confinement and a shaping jet on the mixing and com-
bustion characteristics of a precessing jet flow. In particular, scientific analysis is used to investigate the physical
mechanisms by which the control and optimisation of heat transfer and pollutant emissions from natural gas burn-
ers for rotary kilns can be achieved. To achieve these aims, a range of experimental techniques in reacting, non-
reacting, confined and unconfined conditions have been employed. The precessing jet, in conjunction with a shap-
ing jet, is shown to provide continuous control of mixing characteristics and corresponding combustion character-
istics. Hence the optimum mixing characteristics for the maximum heat transfer and minimum emissions and the
conditions under which the precessing jet nozzle produces such mixing characteristics are determined. A scaling
procedure is also proposed for the precessing jet nozzle that, for the first time, provides a method to relate the

results of small-scale isothermal mixing experiments to operating rotary kilns.

Flow visualisation using a two colour planar laser-induced fluorescence technique in an unconfined, isothermal
environment is used to demonstrate that a central axial jet is the most effective form of shaping jet for controlling
the mixing from a precessing jet nozzle. The characteristics of the combined jet flow are shown, by a semi-quan-
titative image processing technique, to be controlled by the ratio of the central axial jet momentum to the combined
jet momentum, denoted by T =Geaf/(GprtGeay)- The flow visualisation results also demonstrate that, when the
momentum ratio is in the range 0< T’y 0.2, corresponding to low proportions of flow through the central axial
jet, the combined flow field visually appears to be “precessing jet dominated”. For momentum ratjos in the range

0.23< T4y <1, the flow appears visually to be dominated by the features of the central axial jet.

The effect of a central axial jet on the characteristics of a precessing jet flame is assessed in an unconfined envi-
ronment by recording the visible flame luminescence photographically. The results demonstrate that a significant
change in the flame volume, length and width is achieved by varying the proportion of central axial jet to total flow
rate and hence the momentum ratio, I'¢-4 . These parameters were correlated with changes in the global residence
time, radiant fraction and NO, emissions based on scaling criteria from the literature. These correlations suggest
that, consistent with the flow visualisation results, the momentum ratio, ¢4, controls the combustion character-

istics, which in turn change significantly in the precessing jet and central axial jet dominated flow regimes.

Confined combustion experiments are undertaken in a pilot-scale cement kiln simulator to quantify the heat flux
and NO, emission characteristics as a function of the combined precessing jet and central axial jet flows and to
compare them with that of a conventional burner in a well controlled, confined facility. These experiments dem-
onstrate that the central axial jet provides good control over the heat flux profile, consistent with the experience in
industrial installations. Furthermore, the heat transfer from a precessing jet burner is shown to be enhanced relative
to a conventional burner and the NO, emissions reduced if the relationship between heat transfer, emissions and

process interaction is taken into account.
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To quantify the mixing characteristics of each of the above flows and so to provide insight into the characteristics
of relatively “good” and “bad” mixing for the optimisation of combustion in rotary kilns, concentration
measurements are performed in a confined, isothermal environment. The effect of co-flow, continement and the
central axial jet on the mixing from a precessing jet nozzle are also assessed. The experiments are performed in a
water-tunnel using a quantitative planar laser-induced fluorescence technique to provide measurement of a
conserved scalar. The effect of the central axial jet is quantified with respect to its influence upon concentration
decay, concentration fluctuations, jet width and probability distribution functions. The effect of co-flow and
confinement are also quantified by measurement of the concentration decay, concentration fluctuations, jet width
and probability distribution functions. The data is used to develop equations relating the flow conditions and
geometry to the mean concentration on the jet axis and jet spread. These equations can be used to describe the entire
mean concentration distribution in the far field of the precessing jet flow. Based on the modelling equations, a
scaling procedure is proposed that provides a method to scale the precessing jet flow, i.e. to relate isothermal
laboratory scale investigations to full scale plant. The scaling procedure is based on a first order assessment of the
separate effects of confinement, velocity ratio and mass flow ratio on the scalar mixing. The final scaling parameter
represents an additional correction to a modified form of the well known Thring-Newby scaling criterion which
distorts the mixture fraction ratio, i.e. the air-fuel ratio, in the model from that in the industrial scale. This correction
enables similarity of the jet mixing characteristics to be preserved while correcting for the geometric distortion of
the confinement ratio. The new scaling procedure is used to show that the isothermal concentration measurements
are representative of the mixing conditions within the pilot-scale combustion facility and hence that the scaling

procedure is appropriate for the precessing jet nozzle.

The optimum combustion characteristics of the precessing jet nozzle, defined as the maximum heat transfer and
minimum NO, emissions, are shown to occur at the maximum momentum ratio that still, generates a flow
characterised as precessing jet dominated. The mixing characteristics associated with high radiation and low NO,
emissions are shown, by the quantitative mixing experiments, to be associated with the maximum mean
concentration and the widest range of instantanteous concentrations measured on the jet axis of any flows produced
by the combined precessing jet and central axial jet flows. This suggest that such mixing characteristics are desired
from any natural gas burner for the maximum heat transfer and minimum emissions in a rotary kiln. The optimal
mixing characteristics for the maximum efficieny and lowest emissions from a gas-fired rotary kiln are hence

shown to be generated by the precessing jet-central axial jet nozzle at a momentum ratio of 0.17< 'y <0.23.
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Notation

Abbreviations and Constants

AAJ
ASI
CAJ
CCD
EINO,
FPJ/P]
MCB
MPJ
Nd:YAG
PDF/pdf
PLIF
RMS
SNR

(¢

Adjacent Annular Jet

Annular Shaping Jet

Central Axial Jet

Charge-Coupled Device

Emission Index of Nitrogen Oxides
Fluidic Precessing Jet
Multi-Channel Burner

Mechanical Precessing Jet
Neodium Yttrium Aluminium Garnet laser
Probability Distribution Function
Planar Laser-Induced Fluorescence
Root Mean Square

Signal to Noise Ratio

Stefan-Boltzmann constant = 5.67x1 0 8W/m2.K4

Roman Symbols

Ajj

b

by(n)
bij ()
by ()

Correction for the spatial distribution of absorption of laser intensity
Absolute path length (m)

Position of pixel (i) along the r-axis of a CCD camera image

Position of pixel (i;j) along the x-axis of a CCD camera image
Corrected position of pixel (i,j) along the r-axis of a CCD camera image
Corrected position of pixel (i,f) along the x-axis of a CCD camera image
Spatial distribution of the background noise of a CCD camera

Fluid concentration

Fluid concentration measured at pixel location (i,/)

Reference concentration representing 100% jet fluid

Jet exit diameter (m)

Centre-body diameter (m)

Central axial jet exit diameter (m)

Momentum or effective diameter of a jet (m)

PJ nozzle inlet orifice diameter (m)

PJ nozzle chamber diameter (m)

PJ nozzle exit orifice diameter (m)

Molecular diffusion coefficient (m2/s)
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min

max

Pres

0

Qrad
an.\'.\'
Qwall,ab.\'
Qwull, emit
Q_ﬂame
O

r

Diameter of a confining duct (m)

Diameter of a kiln (m)

Frequency (Hz)

Frequency of precessional motion (Hz)

Fluorescence intensity

Jet source momentum (N or kg.m/sz)

Momentum of the central axial jet at the jet exit (N or kg.m/sz)

Spatial distribution of the gain response of a CCD camera and optics

Momentum of the precessing jet calculated at the upstream orifice inlet to the nozzle chamber
N or kg.m/sz)

Momentum of the shaping jet at the jet exit (N or kg.m/sz)

The excess momentum flux of a jet relative to the surrounding co-flow (N or kg.m/sZ)
Spatial distribution of laser intensity

Incident laser intensity

Concentration decay constant

Spreading rate (slope) of the jet concentration half-width

Protrusion distance of the central axial jet exit from the face of the centre-body (m)
Local length scale in a flow (m)

Distance between the upstream face of the centre-body and the inlet orifice of the PJ nozzle cham-
ber (m)

Momentum radius of a jet in a co-flow (m)

Chamber length of the PJ nozzle (m)

Spatial resolution of a measurement probe or volume (m)

Flame length (m)

Craya-Curtet scaling parameter

Mass flow rate (kg/s)

Mass flow rate of co-flow/secondary fluid (kg/s)

Mass flow rate of jet fluid (kg/s)

Instantaneous laser power in image n

Minimum instantaneous laser power in a set of images

Maximum instantaneous laser power in a set of images

Calculated reference laser power for the correction of laser power fluctuations
Rate of energy transfer (W)

Total measured rate of radiant energy transfer (W)

Rate of total heat transfer through the kiln simulator walls (W)

Rate of radiant energy absorbed by the kiln simulator walls (W)

Rate of radiant energy transfer emitted by the kiln simulator walls (W)

Rate of radiant energy transfer directly emitted by the flame (W)

Energy input in the fuel (W)

Span-wise (radial) location in cylindrical co-ordinates (m)
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reep Size of the CCD array in pixels along the r-axis

Threak Radial distance from the PJ nozzle axis at which the jet edge “breaks” due to the effects of confine-
ment (m)

T Jet centreline concentration half-width (m)

s, Ocular distance of the optical system of a CCD camera

Sp Average signal strength from the laser power reference cell

Seref Average signal strength from the jet reference concentration cell

E,:,- Spatial distribution of fluorescence intensity

R Background dye concentration

t Time (s)

Ty Non-adiabatic flame temperature (°K)

T, Wall surface temperature (°K)

Th Becker scaling parameter

u Fluid velocity (m/s)

U Bulk mean fluid velocity (m/s)

U, Bulk mean velocity of co-flow/secondary air or water (m/s)

U, py Estimated velocity of the precessing jet at the exit of the nozzle chamber (m/s)

U,, Velocity of the precessing jet at the inlet orifice to the PJ nozzle chamber (m/s)

Vitame Flame volume (m?)

W, Axial width of the centre-body (m)

Wiame Maximum flame width (m)

X Stream-wise (axial) location in cylindrical co-ordinates (m)

Xpreak Axial distance from the PJ nozzle exit at which the jet edge “breaks” due to the etfects of confine-
ment (m)

Xcep Size of the CCD array in pixels along the x-axis

X0,1 Virtual origin based on the inverse concentration {m)

X0,2 Virtual origin based on the jet concentration half-width (m)

Greek Symbols

o Constant of proportionality in the equation relating the Kolmogorov and Batchelor length scales
Ratio of the laser power signal strength to the jet reference concentration signal strength

X Non-dimensional axial distance on the jet axis, =(z -z, {)/d,

e Flame radiant fraction

A Difference

€ Extinction coefficient of a fluorescent dye

€ Emissivity
Non-dimensional radial distance from the jet axis, = t/(z -2 5)

0 Quantum efficiency of a fluorescent dye

r* Momentum ratio based similarity parameter for swirl and bluff-body nozzles
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T

shaping

Tcas

K¢
Ty
Tpul.\'e

T_)"rame

g

Sij

g

Erms
Wshaping

Vcas

Ratio of shaping jet momentum to the sum of the momentum of the precessing jet, calculated at the
upstream orifice inlet to the nozzle chamber, and shaping jet = Ggy,nina” (Gpy + Ggpaping)

Ratio of central axial jet momentum to the sum of the momentum of the precessing jet, calculated
at the upstream orifice inlet to the nozzle chamber, and central axial jet = G/ (Gpy + Geay)
Reference concentration ratio scaling parameter

Resolution length scale (m)

Batchelor length scale (m)

Kolmogorov length scale (m)

Experimental uncertainty

Thring-Newby parameter

Fluid density (kg/ms)

Standard deviation

Global flame time scale (s)

Batchelor time scale (s)

Laser pulse-ﬂuorescenée time scale (s)

Laser pulse repetition rate and camera frame rate (s)

Conserved scalar jet concentration

Conserved scalar jet concentration measured at pixel location (i,/)

Mean jet concentration

Root mean square of jet concentration fluctuations

Mass proportion of the total jet flow rate through the shaping jet = mg,,;, ./ (thpy + thgy )

aping
Mass proportion of the total jet flow rate through the central axial jet = me, /(Mpy + Mgay)

Non-Dimensional Parameters

Re
Sc
Fr

St

(29

i

St

Subscripts

Reynolds number = %

Schmidt number =

Tl<

Froude number = 1R

Jgl

Strouhal number of jet excitation = %d

Strouhal number of precession from the fluidic precessing jet nozzle, based on jet source momen-

2
tum = Mﬂ.
JG

Strouhal number of precession from the mechanical precessing jet = %j-

Denotes quantity in the co-flow/secondary flow
Estimated quantity for the precessing jet
Flame

Denotes quantity at a given pixel (i;j) of a CCD array
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min Minimum value

max Maximum value

n n'" measurement, e.g. image number

r radiation

ref Reference value

rms Root Mean Square of fluctuating component
w Wall

Denotes quantity at the jet source
oo Denoles quantity in the ambient environment/far-field

Time mean value
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