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Abstract 

In hydraulic stimulations, which are widely utilised in petroleum and gas industries to 

enhance the permeability of reservoirs and improve the productivity of wells, an injection of 

proppant (or small particles) is normally needed to avoid the closure of the opened artificial 

and natural fractures under confining stresses. The residual openings of these fractures 

determine the efficiency and, in general, success of the hydraulic stimulations. Despite the 

vast number of papers devoted to fluid driven fractures and hydraulic stimulation procedures, 

there is not much research focusing on the residual fracture profiles. This problem is 

characterised by a strong non-linearity and represents a challenge for numerical modelling. In 

this paper a simple semi-analytical method for calculating the residual openings of fractures 

partially filled with proppant is developed. It is based on the Distributed Dislocation 

Technique and Terzaghi's classical consolidation model. One of the results of simulations 

indicates that the proppant distribution and its mechanical properties have a significant 

influence on the residual fracture profiles.  

Keywords: Hydraulic well stimulation, Well productivity, Residual fracture opening, 

Distributed Dislocation technique, Terzaghi’s consolidation model 

1 Introduction 

Hydraulic stimulations are very common in oil and gas industries to enhance the 

hydrocarbon recovery of geological reservoirs. These stimulations normally include a 

fracture initiation stage with the following propagation and opening of the artificial or natural 
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fractures by a pressurised fluid. On a later stage, granular particles (proppant) are injected 

with the fracturing fluid to avoid closure of the opened fractures during the production stage. 

These fractures filled with proppant can significantly enhance the permeability of reservoirs 

and improve the productivity of wells. 

Over the past fifty years several approaches have been developed to model the stress 

state, fracture initiation conditions and profile of fractures driven by various pressurised 

fluids. These approaches are widely used in the design of hydraulic stimulation procedures 

and comprehensive reviews can be found, for example, in text books and review articles [1–

4]. Nevertheless, not much attention has been given to the residual openings, which take 

place after the hydraulic pressure is released. Meanwhile, these residual openings are directly 

linked to the fracture conductivity [5] and, therefore, represent the main outcome of well 

stimulations. The residual openings significantly affect the productivity of reservoirs and, 

finally, determine the success of the stimulation procedures.  

Among other parameters, such as the level of the opening pressure, magnitude of the 

confining stresses, length of the fracture and mechanical properties of the proppant and 

surrounding rock/medium, the residual openings also depend on the proppant distribution 

inside the fracture. In a general case (see Figure 1 as an illustration only), a hydraulic fracture 

can be partially filled with proppant leading to the reduction of the fracture opening profile in 

comparison with the case when the proppant occupies the whole space within the fracture.  

The pioneering study by Kern et al. [6] first investigated the transport of sand in 

vertical hydraulic fractures. It was observed a significant settling of proppant near the 

wellbore area. This normally leads to the build up of a mound of settled sand on the bottom 

face of a vertical fracture, as illustrated in Figure 1. The proppant build up develops and 

grows until the fluid flow velocity is relatively high to provide the vertical movement to the 

injected particles.  

After Kern et al. [6], a number of other experimental works on proppant transport were 

conducted for horizontal fractures; see for example [7,8].  Numerical and analytical studies 

on proppant settling were reviewed in [9]. All these works, including [10–15] and, more 

recently, [16] have confirmed the rise of the profile of the settled proppant in the vicinity of 

the wellbore. The outcomes of the above theoretical studies were validated with the use of 

experimental approaches utilising the sonic borehole televiewer, the Formation MicroScanner 

tool, impression packers, down-hole closed circuit television, and mapping techniques (see 

[17] for a comprehensive overview). 
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In the absence of other fracture opening mechanisms (such as the shear slip opening 

[18–20]), once the hydraulic pressure is removed, the fracture surfaces will be subjected to 

confining stresses leading to the closure of the opened fractures developed during the initial 

stages of hydraulic stimulation. Therefore, the distribution of the proppant along the fracture 

is expected to significantly influence the residual profile of the fracture along with the 

compressibility of the proppant and mechanical properties of the surrounding rock.  

In this paper we develop a simplified semi-analytical method for calculating the 

residual opening of fractures partially filled with proppant, which takes into account the non-

linear compressibility of the proppant. This method is based on the Distributed Dislocation 

Technique (DDT) [21,22], that is applied to simulate the mechanics of cracks. The response 

of the proppant to the applied stress is modelled by Terzaghi's classic consolidation model 

[23]. The choice of the Terzaghi’s model is justified by its simplicity and wide use; however 

the developed method can easily accommodate other models of mechanical behaviour of 

proppant, such as models of low consolidated media available in the literature (e.g. [24,25]). 

Further, we also utilise an iterative procedure to obtain a solution to the strongly non-linear 

problem of determining the fracture closure. It was found surprising that the same method 

can be applied to a totally different area of composite patching repair widely used in aircraft 

industry to restore the strength of damaged structures. This is due to the similarity of the 

mathematical formulations of both problems. Thus, the previous works on composite 

patching provided a benchmark solution against which the present method was validated. 

In the beginning of the paper we will formulate the mechanical model, which will be 

followed by a mathematical formulation of the closure model. After that, a method for 

calculating the residual opening will be presented and the validation of the model and its 

comparison to available benchmark solutions will follow. The paper will be concluded with a 

discussion of the obtained results and possible future work.  

2 Mechanical Model 

Consider a hydraulic fracture of half length a  with an internal fluid pressure p , as 

shown in Figure 2a. In the absence of the hydraulic pressure, p , the confining stresses, 
∞σ , 

will lead to a reduction of the original fracture opening, as illustrated in Figure 2b. This 

change in the fracture opening depends on the proppant mechanical response to the 

compression loading as well as on the distribution of the proppant inside the fracture.  
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The closure of a hydraulic fracture is a very complex phenomenon due to the coupling 

of many non-linear physical processes [26]. In order to develop a mathematical model of this 

phenomenon we have to adopt some simplifications and assumptions, which are typical for 

analytical and numerical studies. These simplifications and assumptions will be briefly 

introduced and discussed next. 

In the beginning we will reduce the number of dimensions of this complex three-

dimensional problem. In the following we will consider a two-dimensional (2D) centred 

fracture in an infinite elastic medium placed along the line segment ax ≤ , 0=y . The 

medium is assumed to be impermeable, isotropic, homogeneous, and linearly elastic with 

Young’s modulus E  and Poisson’s ratio ν . The fracture is subjected to a remote, normal, 

uniform compressive stress, 
∞σ , such that 

( ) ∞=∞→+ σσ 22 yxyy . (1) 

A fluid pressure, p , is acting inside the fracture. The induced pressure by the fluid is 

assumed to be uniform over the total length of the crack. Generally, when the medium is 

permeable and fracture openings are relatively small, the pressure may change significantly 

along the fracture length. The fluid flow in narrow openings is normally described by 

equations of lubrication theory [27–29], namely local and global continuity equations and the 

Poiseuille law. This theory predicts that the fluid pressure behaves at fracture tips as 

( )xp ln∝  for the case of infinite fracture toughness and as 31−−∝ xp  in the case of zero 

fracture toughness [30]. This extremely complicates the matter because a fluid cannot sustain 

infinite suction (negative pressure) and, therefore, further assumptions have to be introduced 

to resolve this issue. Nonetheless, in the present work, as well as in a number of other studies 

(e.g. [31–33]), it is assumed that this zone is very small and does not affect significantly the 

stress state surrounding the fracture neither the fracture conditions. Hence, according to the 

linear fracture mechanics, a constant fluid pressure, 0>p , inside the fracture and remote 

confining stresses, 0<∞σ , will lead to an initial fracture opening, ( )x0δ , if 0>+∞ pσ , as 

illustrated in Figure 2a. The fracture profile is then given by the classical equation 

( ) 22

0 4 xa
E

p
x −

+
=

∞σ
δ ; (2) 

E  being the reduced or generalised Young’s modulus defined as: EE = , for plane stress, 

and ( )21 ν−= EE , for plane strain conditions. The latter is more appropriate for large 
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fractures in geological reservoirs [1–4]. The stress intensity factor associated with the initial 

opening can be calculated as 

( ) apK πσ += ∞
0 . (3) 

Following the removal of the fluid pressure inside the fracture, the proppant distributed 

inside the fracture will prevent the fracture from full closure (as illustrated in Figure 2b). The 

residual opening ( )xδ , being ( ) ( ) ( )xxx 0δδδ +∆= , will be obtained from the governing 

equations for the problem under consideration. These equations will be introduced in the next 

section. 

The mechanical model discussed above leads to the following set of boundary 

conditions of the problem, which have to be satisfied by the solution: 

( ) ∞=σσ yxyy , , ∞→+ 22 yx ; (4a) 

and, at 0=y , 

( ) ( )xyx nyy σσσ ′−= ∞, , bx ≤ , (4b) 

( ) 0=xδ , ax > ; (4c) 

where b  is the settled proppants length and nσ ′
 
is the normal effective stress due to proppant. 

The latter can depend both on the fracture residual opening and mechanical properties 

(response) of the proppant.  

The settled proppants length depends on the transport, settling and concentration of 

proppants after the proppant injection phase is complete [3]. However, the modelling of these 

very important phenomena is beyond the scope of the present paper.  

It is also assumed that the pressure inside the fracture at the production stage are 

negligible in comparison with the confining stresses, and, therefore, can be disregarded in the 

calculation of the residual opening and stresses along the fracture. Next, the governing 

equations will be presented followed by a mathematical model describing the proppant 

mechanical response. 

3 Mathematical Model 

There are a number of mathematical approaches that can be employed to solve the 

problem presented above, such as the Distributed Dislocation Technique (DDT) [21,22], 

formulations based on integral equations with hypersingular kernels [34–37] and numerical 
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techniques based on the Boundary Integral Equation Method [38,39]. In this work we applied 

the DDT as it has proved to be a very efficient method for solving Fracture Mechanics 

problems. 

Therefore, from the boundary conditions presented above (see Eq. (4)) along with the 

aid of the DDT it is possible to obtain the governing equation for the problem. This equation 

is derived below for an arbitrary model of the proppant mechanical response. Later, in order 

to conduct an analysis of the residual openings, we will formulate a specific mechanical 

model for the proppant physical behaviour, which utilises Karl Terzaghi’s classical 

consolidation model for cohesionless particles (e.g. sand). The use of such model is justified 

as sand is often utilised as proppant in hydraulic stimulations [8].  

3.1 Governing Equations 

In their classic work Bilby and Eshelby [40] postulated that the perturbation of the 

uniform stress field in a body owing to the presence of a fracture may be deemed due to the 

existence of a distribution of dislocations along ax ≤ , 0=y . Therefore, for the formulated 

boundary conditions of the problem under consideration, the stresses along the fracture 

opening can be found from the dislocation density ( )xρ  as [41]: 

( ) ( )
ξ

ξ
ξρ

π
σ d

x

E
x

a

a

xx ∫
− −

=
4

 (5) 

and 

( ) ( ) ∞

−

+
−

= ∫ σξ
ξ
ξρ

π
σ d

x

E
x

a

a

yy
4

. (6) 

The out-of-plane stress component being a consequence of the accepted plane strain 

assumption is then given by 

( )yyxxzz σσνσ += . (7) 

The dislocation density is not known a priori and it has to be found from the solution of 

the problem. The dislocation density ( )xρ  must be found in such way that it fulfils the 

following integral equation: 

( ) ( )xd
x

E
n

a

a

σσξ
ξ
ξρ

π
′+−=

−
∞

−
∫4

, ax ≤ . (8) 
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An additional requirement, which has to be satisfied with the dislocation representation 

of the fracture, is that the net content of a fracture should vanish, giving rise to the following 

additional single-valued condition for the dislocation density function [21]: 

( ) .0=∫
−

ξξρ d

a

a

 (9) 

The dislocation density ( )xρ  and the fracture residual opening ( )xδ  are related to each other 

by the following equation [22]: 

( ) ( ) ξξρδ dx

x

a

∫
−

−= . (10) 

The exact solution of the singular integral equation (8) with the additional condition (9) 

introduced above is not straightforward and requires inversion of the non-linear integral 

equation with Cauchy kernel. This can be achieved with a numerical procedure based, for 

example, on Gauss-Chebyshev quadrature method, which will be discussed in Section 4. 

3.2 Proppant response 

One of the most important properties of non-consolidated particles is its 

compressibility. One of the first models describing its mechanical response was developed by 

Karl Terzaghi and since then several other mathematical models were suggested by many 

researchers aiming to simulate the compressive behaviour of cohesionless particles. Pestana 

and Whittle [42] provided an overview of such mechanical models from which it becomes 

evident that their accuracy over Terzaghi’s original model comes at the expense of additional 

unknown parameters or coefficients, which need to be obtained experimentally. This, 

however, significantly complicates the modelling without providing an explicit superiority 

over the original work by Terzaghi. Therefore, in the current study we adopt the classical 

Terzaghi model to estimate the proppant response due to compressive loading. 

In the one-dimensional Terzaghi’s consolidation model both pore water and particles 

are assumed to be incompressible. Thus, only changes in the volume of voids can be directly 

linked to the deformations [23]. The model also relies on the non-consolidated particles 

compressive behaviour. This behaviour is generally non-linear and geotechnical engineers 

usually described it by using the index property cC  (which is a function of the void ratio e  

and of the normal effective stress nσ ′ )  in conjunction with qualitative descriptions of stress 
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levels, such as presented by Vesic and Clough [42,43]. The settlement deformation ( )xδ∆  

can be written as [23] 

( ) ( ) ( )( )00 ln nn xxCx σσδδ ′′=∆ ; (11) 

with C  being the particles assembly compressibility, 0nσ ′  the initial normal effective stress 

acting on the particles, and ( )x0δ  is the fracture initial opening given by Eq. (2). As 

mentioned above, C  relates to the compression index cC  and to the initial void ratio 0e  by 

the following equation [44]: 

( )01 eCC c += . (12) 

Coduto [44] suggested a classification of the particle assembly compressibility (see 

Table 1) based on the C  value. 

With the introduction of the identity 

( ) ( ) ( )xxx δδδ −=∆ 0  (13) 

and after some algebraic manipulation with Eq. (11), the normal effective stress acting on the 

proppants, ( )xnσ ′ , can be rewritten as 

( ) ( )( ) 0exp nn Cxx σλσ ′=′ , (14) 

where the non-dimensional parameter ( )xλ  is given by 

( ) ( ) ( )( ) ( )xxxx 00 δδδλ −= . (15) 

If the condition ( ) ( )xx 0δδ ∝  holds, the parameter ( )xλ  is then reduced to a constant. For this 

case, ( )xnσ ′  will also be a constant. 

Although Eq. (14) is not applicable for low stress conditions (i.e. when the proppant 

assembly has an unstable behaviour) it works well for conditions of moderate to high stresses 

(i.e. after the proppant packing has acquired a stable condition).  

The mechanical response of the proppant presented above is just one of several models 

available in the literature [42]. However, there is no conceptual limitation that prevents the 

utilisation of more complicated or more comprehensive models in the solution procedure, 

which will be presented next. 
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4 Solution Procedure 

The governing singular integral equation, Eq. (8), has to be solved for the unknown 

density of dislocations, ( )xρ . As it was pointed out above, an exact analytical solution is not 

possible with a strong non-linear mechanical response of the proppant. Furthermore, the 

singular term, ( ) 1−− ξx , known as the Cauchy kernel of the integral, requires special integral 

procedures for obtaining a viable solution. One of the effective solution approaches is based 

on the Gauss-Chebyshev quadrature method, which will be implemented in the current study, 

and it will be discussed next.  

4.1 Numerical formulation 

The first step in the numerical solution method is to introduce a length normalisation to 

transform the interval [ ]aa +− ,  to [ ]1,1 +−  as follows: 

as ξ=  (16a) 

and 

axt = . (16b) 

At the tips of the cracks the dislocation density ( )sρ  tends to infinity as an inverse 

square root while at the same time s  approaches the unity. Thus, the dislocation density can 

be represented as a product of the fundamental solution, 211 s− , and an unknown regular 

function, ( )sφ , such that [22,41,45,46] 

( ) ( ) 21 sss −= φρ . (17) 

Therefore, with the application of the normalisations as introduced in Eq. (16) along 

with the Gauss-Chebyshev quadrature for N  sampling points, the governing equations (8) − 

(10) can be transformed to a system of non-linear algebraic equations as 

( ) ( )
jn

N

i ij

i t
st

s

N

E
σσ

φ
′+−=

−
∞

=
∑

14
, (18) 

( ) 0
1

=∑
=

N

i

is
N

a
φ

π
, (19) 

and 
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( ) ( )∑
=

=
j

i

ij s
N

a
t

1

φ
π

δ ; (20) 

with Ni …2,1= , 12,1 −= Nj …  and is , jt  being the discrete integration and collocation 

points of the Gauss-Chebyshev method given, respectively, by 








 −
=

N

i
si

2

12
cos π  (21a) 

and 








=
N

j
t j πcos . (21a) 

Additionally, following Eq. (14), the normal effective stress acting on the proppant at a 

position jt , ( )jn tσ ′ , can be written as 

( ) ( )( ) 0exp njjn Ctt σλσ ′=′ . (22) 

Substituting Eq. (20) into Eq. (15), the non-dimensional parameter, ( ) jjt λλ = , becomes 

( ) ( )∑
=

−=
j

i

i

j

j s
tN

a

10

1 φ
δ
π

λ . (23) 

The numerical equations detailed above represent a system of non-linear algebraic 

equations, which can be solved computationally using, for example, an iterative procedure, 

which will be described next. 

4.2 Computational formulation 

The non-linear numerical equations presented above can be rewritten in a matrix or 

array form and solved computationally via the well known Newton-Raphson iterative 

scheme. In this scheme, the problem solution is obtained by truncating the Taylor expansion 

of a function at the l th iteration, ( )( )lf φ , after the linear term [47]. In matrix notation the 

Newton-Raphson solution of the dislocation vector φ  assumes the form 

( ) ( ) ( )llll SJφφ 11 −+ −=  (24) 

for the following set of arrays: 

{ }N

T ϕϕϕ ⋯21=φ , (25) 
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( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) 

















∂∂∂∂∂∂

∂∂∂∂∂∂

∂∂∂∂∂∂

=



















=

NNNN

N

N

NNNN

N

N

fff

fff

fff

JJJ

JJJ

JJJ

ϕϕϕϕϕϕ

ϕϕϕϕϕϕ
ϕϕϕϕϕϕ

⋯

⋮⋱⋮⋮

⋯

⋯

⋯

⋮⋱⋮⋮

⋯

⋯

21

22212

12111

,2,1,

,22,21,2

,12,11,1

J , (26) 

and 

{ }N

T SSS ⋯21=S . (27) 

The elements of the dislocation vector, iϕ , represent the value of the unknown function 

φ  at the point is  ( )( )ii sφϕ = . From Eqs. (18) and (19) it is possible to obtain both the 

Jacobian matrix, J , and the confining stress vector, S , components, which are given by 

( ) ( )
( )
( )j

jn

ij

ij
t

t

NC

a
ij

stN

E
J

0

, H
4 δ

σπ ′
−+

−
= , (28a) 

NaJ iN π=, , (28b) 

∞=σjS ,  (29a) 

0=NS ; (29b) 

with Ni …2,1= , 12,1 −= Nj … , ( )jn tσ ′  given by Eq. (22), and ( )ij −H  being the well 

known Heaviside step function. 

Rearranging Eq. (24) yields the following NN ×  system of non-linear equations at the 

l th iteration: 

( ) ( )
S∆φJ =− ll 1 , (30) 

with the improved dislocation solution being 

( ) ( ) ( )lll
∆φφφ += −1 . (31) 

The system given by Eq. (30) is solved for … 3 2, 1,=l  by the utilisation of standard methods 

(e.g. Gaussian elimination) until ( )l
∆φ  is sufficiently small.  

To verify if the solution has reached an acceptable value, an appropriate convergence 

criterion must be employed. One of such has been discussed in [48] and it simply consists of 

verifying at each iteration step the following relationship: 

( )

( ) ε≤
2

2

l

l

φ

∆φ
,  (32) 

where ε  is the dislocation convergence tolerance.  
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4.3 Analysis of Stresses 

Once an appropriate solution for the unknown function ( )isφ  is obtained it is then 

possible to determine the stresses along the fracture as well as the stress intensity factors.  

An asymptotic analysis of the crack tip opening displacement (CTOD) can be 

performed for the singular points (tips of the crack) providing the following expression for 

the stress intensity factor [21]: 

( )14
±= φπa

E
K . (33) 

Equation (20) allows the determination of the residual opening as a function of ( )isφ  

and from equations (5) and (6) the stresses along the fracture opening can be calculated as  

( ) ( )
∑
= −

=
N

i ij

i
jxx

st

s

N

E
t

14

φ
σ ,  (34) 

and 

( ) ( ) ∞

=

+
−

= ∑ σ
φ

σ
N

i ij

i
jyy

st

s

N

E
t

14
. (35) 

The out-of-plane stress component ( )jzz tσ  can be found from Eq. (7). 

Furthermore, the residual opening together with compressive stresses along the fracture 

can be used to find the permeability of the fracture channel as well as the increase in 

production rate of a wellbore. Moreover, an indication of the initiation of a local fracture or 

secondary fracturing, which can significantly affect the production rate [49], may come from 

the known stress state along the fracture length. As the current paper goal is, however, the 

development of a computational approach, these interesting and important problems are 

beyond the scope of the current study. 

5 Results and Discussion 

5.1 Validation of the proposed method 

A similar problem of residual opening was considered earlier with relation to composite 

patching repair, which is widely used in aircraft industry to restore the strength of damaged 

structures. Therefore, we perform in this chapter a validation of the developed method against 

results obtained in these previous studies.  
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Cox and Rose [50] work focused on the modelling of the non-linear behaviour of 

composite patching repair to arrest or slow down the growth of a fatigue crack. Despite 

having a different nature, the mechanical model of composite patching repair has a very 

similar mathematical formulation to the problem under consideration. The results presented 

by these authors were adopted as a benchmark for comparison and validation of the 

mathematical model described in Section 3 and numerical solution method. The work by Cox 

and Rose [50] utilises elastic/perfectly-plastic springs to model the crack bridging patch. The 

geometry of the problem addressed by these authors is illustrated in Figure 3. The 

formulation of the composite patch problem can be reduced to the following system of 

boundary conditions: 

( ) ( )xyx nyy σσσ ′−= ∞, , axb ≤≤ , 0=y ; (36a) 

( ) ( )xkExn δσ =′ , ( ) px δδ < ; (36b) 

( ) ppn kEx δσσ ==′ ; (36c) 

where k  denotes a constant characterising the spring stiffness in the linear range, pσ  is the 

yield stress, and pδ  is a characteristic crack opening beyond which the spring response 

changes from being elastic to being perfectly plastic. Additionally, the initial stress intensity 

factor 0K  and the initial crack opening 0δ  are both zero. The above formulation is much 

simpler than that for the residual closure of a fracture filled with proppant considered in the 

current work. 

The approach presented by Cox and Rose [50] for the stress intensity factor K  and the 

crack opening ( )xδ  is based on a numerical solution of a system of non-linear equations 

incorporating Eq. (36) and two other relationships well known from fracture mechanics 

textbooks: 

( )
∫

−

′
−= ∞

a

b

n dx
xa

x
aaK

22

2 σ
π

π
πσ ,  (37) 

and 

( ) ( ) ξξσ
ξ

ξ
π

σ
δ d

xaa

xaa

E
xa

E
x n

a

b

′
−−−

−+−
−−= ∫

∞

2222

2222

22 ln
44

. (38) 

This system can be rewritten in a numerical fashion and solved computationally by 

means of a self-consistent numerical procedure. 
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A concise description of the results can be achieved by the adoption of the following 

normalisations: 

πkaA 4= , (39a) 

πkbB 4= , (39b) 

and 

pN kKK σ= ; (39c) 

with A  being the normalised crack length, B  the normalised notch length and NK  the 

normalised stress intensity factor. 

The magnitude of the normalised stress intensity factor NK  for various normalised 

fracture lengths A  as predicted by the developed method, for a varying number of integration 

points, N , is compared against Cox and Rose [50] approach (Eqs. (37) and (38)). This 

comparison is presented in Figure 4. This figure demonstrates that there is an excellent 

agreement between the current method and equations presented by Cox and Rose [50] if a 

sufficient number of integration points, N , is utilised in the numerical solution. Moreover, 

the convergence of the solution with an increase in the number of integration points is 

illustrated in Figure 5. 

5.2 Stress Intensity Factor  

The stress intensity factor for a crack filled with compressible particles has to be 

bounded by two critical values. The first one is the value of the stress intensity factor, 0K . It 

corresponds to the fracture which is fully filled ( )ab =  with incompressible particles. The 

second limiting value is zero and this corresponds to the opposite case: when the fracture is 

filled with highly compressive particles or when b  tends to zero. The formulation presented 

earlier (Sections 2 to 4) fully comply with these physical limitations, as it can be seen from 

the results presented below. 

In the following we introduce a new normalised stress intensity factor, ∗
NK  and a 

normalised stress, P , which are given by   

0KKKN =∗  (40a) 

and by  
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∞

∞

+
−′

=
σ
σσ

p
CP n , (40b) 

respectively. 

A full agreement to the above limitations can be found from Figure 6. Figure 6a shows 

that K  is approaching 0K , i.e. 1→∗
NK , for situations where the fracture is fully filled with 

slightly compressive particles ( )1.0<C . On the other hand, Figure 6a verifies that the 

presence of highly compressible particles ( )2.0>C  forces K  to zero, i.e. 0→∗
NK . 

Additionally, an assessment of the effect of the reduction of the settled proppant length is 

provided by three curves in Figure 6 corresponding to three different lengths. It is obvious 

that K , once again, tends to zero when the settled proppant length, b , is approaching zero, 

i.e. 0→ab . 

From Figure 6 one can see the changes in the compressive behaviour of the particle 

assembly due to variations in the initial effective stress, 0nσ ′ . This parameter describing the 

mechanical behaviour of the proppant along with the proppant compressibility index, Eq. 

(12), provide the combined effect of the proppant mechanical properties on the residual 

fracture opening and, consequently, on the well productivity. 

5.3 Fracture Profiles 

When assessing the efficiency of a stimulation procedure it is of paramount importance 

to have an accurate prediction of the fracture residual opening because of the direct 

connection between the residual opening and the permeability of the fracture channel. From 

the approach derived above (Sections 2 to 4) it is possible to describe the fracture profiles of 

hydraulic fractures either fully or partially filled with proppants.  

Figure 7 shows the normalised fracture face displacement U  (crack opening 

displacement), 

( ) ( )x
pa

E
U δ

σ +
= ∞4

, (41) 

against the normalised position along the fracture, t  − see Eq. (16b). Several ab  ratios were 

considered, demonstrating the effect of the settled proppant length on the fracture residual 

opening profile. 



16 

 

From Figure 7 it is possible to draw a few conclusions regarding the influence of the 

settled proppant on the residual fracture openings. When 1=ab (or fracture is fully filled 

with proppant) the maximum possible fracture residual opening profile can be achieved.  

When the fracture is partially filled with proppant, or 10 << ab , the residual openings 

experience an abrupt drop at bx =  due to the lack of the reaction support provided by the 

proppant inside the fracture. The stresses along the fracture are redistributed causing the 

reduction in the maximum opening at the centre of the crack. Finally, in the case of 0=ab , 

the residual opening tends to zero. This corresponds to the case of full closure after the 

hydraulic fracture is fully removed in the absence of proppant.  However, with the presence 

of deviatoric stresses in rock formations the full closure of the fracture channels may be 

prevented by other fracture opening mechanisms, such as, for example, the shear slip opening 

mechanism [19]. Further, the calculated opening profiles can be utilised to evaluate the 

permeability of the fracture channel and estimate the increase of the productivity. 

6 Conclusions 

Despite the success of stimulation procedures targeted to improve well productivity 

being significantly influenced by the residual opening of fluid driven fractures, only a few 

authors have addressed this very important problem. This study made an effort aimed to fulfil 

this gap. A new 2D mathematical model based on the Distributed Dislocation Technique is 

first developed and presented along with an effective solution method for calculating the 

residual openings of fractures fully or partially filled with proppant. In this mathematical 

model there are no limitations on the use of any other particular approach to describe the 

mechanical response of the proppant to compressive loading. Due to its simplicity and 

efficiency, the Karl Terzaghi’s classical consolidation model was utilised to analyse the effect 

of both the mechanical properties of the proppant and its distribution inside the fracture on 

the residual openings. 

It was found that the mathematical formulation of the model for composite patching 

repair of fatigue cracks in the aerospace industry [50] bears some similarities to the problem 

being considered in this work. These similarities allowed a proper validation of the results 

obtained by the method employed to solve a system of non-linear system of integral 

equations. The present method was found to be in an excellent agreement with the previous 

works as well as the expected physical behaviour for the limiting situations. Furthermore, it 
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was shown that the proppant properties and distribution strongly influence the fracture 

residual opening profile. 

The method for calculating the residual openings can be employed to estimate the 

increase in the production rate of hydraulically stimulated reservoirs, whereas the calculated 

stress field provides a means of investigating other important phenomena that can influence 

the well productivity, such as the secondary cracking. 
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Table 1. Classification of the particle assembly compressibility [44] 

Compressibility, C  Classification 

0 – 0.05 Very slightly compressible 

0.05 – 0.10 Slightly compressible 

0.10 – 0.20 Moderately compressible 

0.20 – 0.35 Highly compressible 

> 0.35 Very highly compressible 
 



 

Figure 1. Proppant build up in a hydraulic fracture. The cross section 'AA  is depicted in 

detail in Figure 2a (not to scale). 

 

 

 

 

 

Figure 2. The opening of a fracture due to an internal pressure p  (a) is reduced after such 

pressure is removed (b). The full closure of the fracture is prevented by the normal stress due 

to proppant, nσ ′ . 

 



 

Figure 3. The geometry of the composite patching repair of fractures problem. 

 

 

 

 

Figure 4. Normalised stress intensity factor NK  development for both elastic and 

elastic/perfectly-plastic cases. Situations (a) with zero notch length ( )0=B  and (b) with 

moderate notch length ( )2=B  are shown. 

 



 

Figure 5. Stress intensity factor error versus the number of integration points. 

 

Figure 6. Normalised stress intensity factor ∗

NK  versus the normalised stress P  as a function 

of various 0nσσ ′∞  ratios. Both fully filled (a) and partially filled (b and c) fracture opening 

cases were considered. 



 

Figure 7. Normalised residual fracture profiles for a variety of ab  ratios. The dashed curve 

represents the normalised fracture initial opening. When 0=ab , ( ) 0=tU . 

 

 


