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motif. Small segments of the ribbon in red, purple and gold colour show the 

positions of the amino acid polymorphism, while those in light blue, green 

and yellow show the position of the conserved amino acids. The ball and 
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Summary 

 

Colour is an important determinant of quality and customer appeal for Asian noodles 

that are made from bread wheat (Triticum aestivum L.). The Asian noodle market 

represents approximately one third of wheat exports from Australia and as a 

consequence maintaining and improving colour for noodles is an important research and 

breeding objective. The focus of this project is yellow alkaline noodles (YAN) prepared 

using wheat flour and alkaline salts, sodium and potassium carbonate, and for which a 

bright yellow colour is desired. Xanthophylls, primarily lutein, and apigenin di-C-

glycosides (ACGs) have been shown to be important components of this yellow colour. 

ACGs were of particular interest since, in contrast to lutein, the content in flour could 

be increased without adverse effects on colour of other end-products. There was little 

information either on the genetic variation for ACG content or the mechanism and 

genetic control of biosynthesis which was surprising in view of their putative role in a 

wide range of plant processes, food colour and flavour, and possibly human health.  

 

The aims of this project were to provide new information on the role of ACGs in YAN 

colour and genetic regulation of their biosynthesis. To achieve this aims: genetic 

variation in grain ACG traits in bread wheat and related species was surveyed, the 

quantitative contribution  of ACG to the yellow colour of YAN was determined and 

compared to lutein, QTL for ACG content and composition were located, and  

candidate genes associated with variation in ACG composition identified. 

 

Substantial variation in both grain ACG content and the ratio, ACG1/ACG2, were 

identified within bread wheat cultivars and related species. Genotype controlled the 
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major portion of the variation. ACG content appeared to be a multigenic trait whereas 

variation in ACG1/ACG2 was associated with a limited number of chromosomes, in 

particular chromosomes 1B, 7B and 7D. In the absence of chromosome 7B (Chinese 

Spring 7B nullisomics) there was a substantial increase in ACG1/ACG2, i.e. a relative 

increase in the glucose-containing isomer, possibly indicating the presence of a C-

glycosyltransferase on 7B with specificity for UDP-galactose. A similar phenotype 

observed in some wheat cultivars could be explained by a deletion or mutation of a gene 

controlling this enzyme. The results suggest that it should be possible to manipulate 

both ACG content and composition through breeding.  

 

Only 30% of ACG (means 19.3g/g) is recovered in flour, which contributed to 1 to 3 

CIE b* units to the part of the yellow colour of yellow alkaline noodles (YAN) that 

develops specifically in the presence of alkali. The relatively low recovery of ACG in 

flour contrasts with the high recovery of lutein (90%, with means 1.011g/g). Since the 

difference between white salted noodles (WSN) and YAN is approximately 6 b* units, 

this would indicate that another unidentified compound(s) is responsible for the 

difference. Potential for ACG0-based improvement of bread wheat cultivars for YAN 

yellowness is likely to be limited by the range of genetic variation, the location of ACG 

in grain tissues that are largely discarded during milling and the lack of correlation 

between grain and flour ACG content. Moreover, the observed variation in ACG 

recovery in small scale milling was not reflected in larger scale milling anticipated to 

better represent commercial practice. The improvement in flour recovery and the 

amount of ACG recovered in the flour were not significant and not enough to achieve 

the yellowness of commercial noodles. Selection that requires larger scale milling is 

costly, time consuming and not applicable to early generation screening. In this context, 
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further work on QTL associated with variation in ACG content and development of 

marker-assisted-selection would be very useful.  

 

Addition of thirteen new markers to the QTL region for ACG trait on chromosome 7BS 

in a Sunco/Tasman doubled haploid population reduced the size of the QTL interval 

from 28.8cM to approximately 5.5cM. In this revised 7BS map, the major QTL for 

ACG1 and ACG2 content as well as  ACG1/ACG2 ratio were detected within 4.7cM of 

SSR marker Xwmc76. The QTL region linked to Xwmc76 was shown to be syntenic 

with a region in rice chromosome 6S between AP005387 and AP005761 and a region 

on Brachypodium chromosome 1. Based on these comparisons, the most likely 

candidate gene associated with variation in ACG composition appeared to be a 

glycosyltransferase. Alternate alleles at the 7BS QTL may be associated with amino 

acid changes within the C-glycosyltransferase that shift the substrate specificity  from 

galactose (ACG2, Tasman) to glucose (ACG1, Sunco). Alternatively, based on a 

comparison of Chinese Spring nullisomic-tetrasomic lines where nullisomic 7B was 

associated with a phenotype similar to Sunco, it is possible that Sunco contains a null 

allele. Other candidate genes located on the same chromosome that could potentially be 

involved in ACG biosynthesis were identified and included a sugar transporter, which 

could determine the relative sizes of the available pools of UDP-glucose and UDP-

galactose, an epimerase required for inter-conversion of these sugars, other 

glycosyltransferases and a flavone-2-hydroxylase (F2H) involved in the first committed 

step in the pathway to ACG. 

 

Research approaches that could be used to validate the role of the candidate gene are 

discussed along with other options for improving the colour of wheat cultivars for the 
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YAN market. Options for utilizing ACG as yellow pigment of noodles might include 

incorporating the embryo or seed coat materials (pollard and bran) into the flour after 

milling and genetic modification of bread wheat to achieve ACG expression in the 

starchy endosperm. 
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of maize bronze alleles  

cDNA complimentary DNA, synthesise from mRNA 

CHI chalcone isomerase 

CHS chalcone synthase 

CIE Commission Internationale d'Eclairage 

DArT diversity arrays technology 

DFR dihydroflavonol-4-reductase 

EBG early biosynthetic genes 

EST expressed sequence tags 



xl 
 

F2H  2S-flavanone 2-hydroxylase 

F3H flavanone-3β-hydroxylase 

FCGT flavonoid C-glycosyltranferase 

FLS flavonol synthase 

FS1 flavone synthase 1 

FS2 flavone synthase 2 

GAT UDP-glucuronic acid:flavonol-3-O-glucuronosyltransferase 

gDNA genomic DNA 

GT glycosyltransferases 

HPLC high performance liquid chromatography 

IFS  isoflavones synthase 

LAR leucoanthocyanidin reductase 

LBG late biosynthetic genes 

LOX lipoxygenase 

OMT O-methyltransferases 

OsCGT C-glycosyltransferase of rice 

PAC clone P1 artificial chromosome clone 

PPO polyphenol oxidase 

QTL quantitative trait loci 

RFLP restriction fragment length polymorphism  

RT rhamnosyl transferase 

RT-PCR reverse transcription polymerase chain reactions 

SDR short-chain dehydrogenase/reductases 

SNP single nucleotide polymorphism 

SSR simple sequence repeat 



xli 
 

UDP-galactose uridine 5′-diphosphogalactose 

UDP-glucose uridine 5′-diphosphoglucose 

UFGT  UDP glycose:flavonoid-3-O-glycosyltransferase 

 UDPG flavonol 3-O-glucosyl transferase 

VvGT1  UDP-glucose:flavonoid 3-O-glycosyltransferase with ability to 

transfer UDP galactose in Vitis vitifera 

VvGT5 UDP-glucuronic acid:flavonol-3-O-glucuronosyltransferase (GAT) 

of Vitis Vitifera  

VvGT6 UDP-glucose/UDP-galactose:flavonol-3-O-

glucosyltransferase/galactosyltransferase of Vitis Vitifera 

WSN white salted noodles 

YAN yellow alkaline noodles 

Є-LCY Є-cyclase 
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