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Nomenclature

Notation

Bold text represents a vector. A hat (for example r̂) represents a unit

vector. A quantity that is normally a vector that is not in bold (for example

r) represents the magnitude of that vector. Parameters are relative to the

central body of that phase, except where identified with an astronomical

symbol.

@ Astronomical symbol for the Sun

C Astronomical symbol for the Earth

K Astronomical symbol for the Moon

B Astronomical symbol for Venus

D Astronomical symbol for Mars

E Astronomical symbol for Jupiter

Chapter 3

t0 Start of the phase (symbolic)

tf End of the phase (symbolic)

p Set of optimisable parameters

x Set of state parameters

u Set of control variables

F Cost function

σ Cost function weighting factor (-)

L Lagrangian (see Section 3.3.3) (symbolic)

λi Equality Lagrangian/KKT multipliers (-)
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µi Inequality Lagrangian/KKT multipliers (-)

α Optimisation step size (-)

Chapter 4

ε Specific orbital energy (m2s�2)

εk Specific orbital kinetic energy (m2s�2)

εp Specific orbital potential energy (m2s�2)

v Velocity of spacecraft (ms�1)

µ Gravitational constant of central body (m3s�2)

r Distance of spacecraft from central body (m)

I Impulse (ms�1)

p Momentum (kgms�1)

Isp Specific impulse (s, see Section 4.8.1)

g0 Standard Earth gravity (9.80665 ms�2, Bureau Interna-

tional des Poids et Mesures 1901)

gprq Classic gravity relative to the primary body at r metres

from its centre (ms�2)

mexhaust Mass of exhaust (kg)

vexhaust Exhaust velocity (ms�1)

∆v Delta-v (ms�1, see Section 4.8.2)

m Mass of spacecraft (kg)

T Applied thrust (N)

D Aerodynamic drag (N)

γ Velocity vector angle (�, see Figure 4.9)

α Body axis angle (�, see Figure 4.9)

ε Thrust angle (�, see Figure 4.9)

rSOI Radius of sphere of influence (m)

as Semimajor axis of the secondary body’s orbit about the

primary body (m)

ms Mass of the secondary body (kg)

mp Mass of the primary body (kg)

r Position of spacecraft relative to primary body (m)
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v Velocity of spacecraft relative to primary body (ms�1)

a Keplerian element semimajor axis (m)

e Keplerian element eccentricity (-)

i Keplerian element inclination (�)

ω Keplerian element argument of periapsis (�)

Ω Keplerian element longitude of the ascending node (�)

ν Keplerian element true anomaly (�)

p Modified equinoctial element semilatus rectum (m)

f Modified equinoctial element f (-)

g Modified equinoctial element g (-)

h Modified equinoctial element h (-)

k Modified equinoctial element k (-)

L Modified equinoctial element true longitude (�)

îr Unit vector in radial direction

îθ Unit vector tangential to primary body

îh Unit vector in direction of orbital momentum

∆r Total force acting on spacecraft in the îr direction (N)

∆θ Total force acting on spacecraft in the îθ direction (N)

∆h Total force acting on spacecraft in the îh direction (N)

∆q Total force on spacecraft due to third bodies (N)

dj Position of third body j relative to spacecraft (m)

sj Position of third body j relative to primary body (m)

∆g Total force on spacecraft due to primary body oblateness

(N)

J2 Second zonal harmonic coefficient of Earth

J3 Third zonal harmonic coefficient of Earth

J4 Fourth zonal harmonic coefficient of Earth
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W Orbital energy (J)

Φ Energy due to angular momentum of orbit (J)

V Gravitational potential energy of orbit (J)

P̄nm (sinφ1) Normalised associated Legendre polynomials

Cn,m Normalised gravitational coefficient

Sn,m Normalised gravitational coefficient

rperi Periapsis of the orbit (m)

∆@ Total force on spacecraft due to solar radiation (N)

β Optical reflection constant (-)

Aeff Effective cross-sectional area of spacecraft (m2)

r@ Distance of satellite from centre of Sun (m)

∆T Total force on spacecraft due to thrust (N)

û Unit control vector governing thrust direction

Chapter 5

E Energy level in the batteries (J)

P Net power generation or consumption (W)

Ln Normalised longitude (-)

Chapter 6

η Power efficiency

αu Half-angle of umbral cone (�)

αp Half-angle of penumbral cone (�)

R@ Radius of the Sun (m)

RC Radius of the Earth (m)

rC Position of the Earth from the Sun (m)

rK Position of the Moon from the Sun (m)

Q Solar energy flux (Wm�2)

ηa Area efficiency of solar cells (-)

ηc Power efficiency of solar cells (-)

ηDC Power efficiency of voltage regulator (-)
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Ψ@ Angle of Sun on solar panels (�)

R Power degradation of solar cells (-)

F Equivalent fluence of solar cells (-)

Acronyms

AOCS Attitude & Orbit Control System

ASTOS Aerospace Trajectory Optimisation Software

BFGS Broyden-Fletcher-Goldfarb-Shanno

CAD Computer Aided Design

CAMTOS Collocation and Multiple Shooting Trajectory Optimisation

Software

CGA Constrained Genetic Algorithm

COTS Commercial Off-The-Shelf

CNES Centre National d’Études Spatiales

DLR Deutsches Zentrum für Luft- und Raumfahrt

DSN Deep Space Network

EADS European Aeronautic Defence and Space Company

ECI Earth Centred Inertial

ECR Electron Cyclotron Resonance

EML Earth-Moon Lagrange point

ESA European Space Agency

ESOC European Space Operations Centre

ESTEC European Space Research and Technology Centre

ET Ephemeris Time

GCR Galactic Cosmic Ray

GESOP Graphical Environment for Simulation and Optimisation

GEO Geostationary (Earth) Orbit

GSLV Geosynchronous Satellite Launch Vehicle

GTO Geosynchronous Transfer Orbit

HEO High Earth Orbit

HLO High Lunar Orbit
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IAU International Astronomical Union

ICRF International Celestial Reference Frame

IEEE Institute of Electrical & Electronic Engineers

IERS International Earth Rotation Service

IFR Institut für Flugmekanik und Flugregelung

IRS Institut für Raumfahrtsysteme

ISRO Indian Space Research Organisation

ITRF International Terrestrial Reference Frame

JAXA Japanese Aerospace Exploration Agency

JD Julian Date

JGM3 Joint Gravity Model 3

JPL Jet Propulsion Laboratory

KKT Karush-Kuhn-Tucker

LEO Low Earth Orbit

LLO Low Lunar Orbit

LP165 Lunar Prospector Gravity Model, degree and order 165

NASA National Aeronautics & Space Administration

NIMA National Imagery & Mapping Agency

NLP Non-Linear Programming

ODE Ordinary Differential Equation

PPT Pulsed Plasma Thruster

PROMIS Parameterised tRajectory Optimisation by direct MultIple

Shooting

PTFE Polytetrafluoroethylene (TeflonTM)

SEL Sun-Earth Lagrange point

SEPTOP Solar Electric Propulsion Trajectory Optimization Program

SIMPLEX Stuttgart Impulsing MagnetoPlasmadynamic thruster for

Lunar EXploration

SNOPT Sparse Nonlinear OPTimiser

SOCS Sparse Optimal Control Software

SOI Sphere of Influence

SPE Solar Particle Event

SQP Sequential Quadratic Programming
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SSO Sun Synchronous Orbit

STK Satellite Tool Kit

TALOS Thermal Arcjet for Lunar Orbiting Satellite

TLI Trans-lunar Injection

TROPIC Trajectory OPtimisation by dIrect Collocation

TT Terrestrial Time

UTC Universal Coordinate Time
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Abstract

The University of Stuttgart is conducting a research program to build a

succession of small satellites. The ultimate goal of this program is to build

and launch a craft named Lunar Mission BW-1 (after the federal state

that Stuttgart is situated in, Baden-Württemberg) into lunar orbit, for

eventual impact with the Moon. As with the majority of space missions,

launch cost is a severely limiting factor so it is necessary to carefully plan

the trajectory before launch, to ensure lunar capture and minimise the

amount of fuel needed by the spacecraft.

This thesis outlines work conducted to find a robust fuel-optimal trajec-

tory for Lunar Mission BW-1 to reach the Moon. Several unique aspects

of this craft require a novel approach to that optimisation. Firstly, the

spacecraft uses a new low-cost propulsion system, severely limiting ma-

neouvrability and accessibility of transfer trajectories. Secondly, to reduce

the mass and complexity of moving parts, the solar panels are fixed to the

body; consequently, the craft must rotate itself to point its solar panels

towards the Sun to recharge. No thrusting can occur during this time.

This magnifies the effect of the third design decision, which is to restrict

the dry mass of the craft by giving it very little on-board power storage.

After approximately an hour of accelerating it is expected to need to coast

for several hours to recharge its batteries, resulting in a relatively high

frequency stop-go-stop thrust profile.

Due to these constraints, the trajectory optimisation is one of the most

complex ever attempted. Since the craft will be built and launched, many

simplifications made in purely theoretical studies could not be utilised, such

as neglecting the weaker forces acting on the spacecraft in cis-lunar space.
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The very low thrust results in very long transfer times, during which even

small magnitude forces acting on the spacecraft can significantly perturb its

trajectory. However, including these forces creates non-linearities in the

equations of motion associated with spacecraft trajectories, limiting the

optimisation methods that could be used, and increasing computational

complexity.

Optimisation methods for low-thrust spacecraft trajectories have been

the subject of much research, but most studies conclude that knowledge is

still lacking in this area. Furthermore, many optimisation methods inves-

tigated in existing literature are incompatible with the intermittent thrust

profile required by the Lunar Mission BW-1 thrusters. For this reason it

was necessary to thoroughly review available optimisation methods and de-

termine which may be adapted to this scenario. The resulting optimisation

method was applied to the Lunar Mission BW-1 scenario to determine an

efficient thrusting profile that will get the craft to the Moon.

It was found that very few established optimisation algorithms can sup-

port the number of variables required for such a complex, long duration

trajectory. The Sparse Optimal Control Software (SOCS) marketed by

The Boeing Corporation was used via an interface developed at the Uni-

versity of Stuttgart called the the Graphical Environment for Simulation

and Optimisation (GESOP). Due to unknown constraints such as launch

date, the phases defined by the mission architecture were modelled and

optimised independently. This approach allows mission planning flexibil-

ity while still providing reliable estimates for optimal fuel use, mission

duration and power limitations.

A trajectory is presented for each of the phases, ascending from the

intial geosynchronous transfer orbit (GTO) to the eventual low lunar or-

bit (LLO). The resulting science phase is propagated forward in time to

ensure orbital lifetime meets the mission requirements. Recommendations

are subsequently made for the continuing development of the mission ar-

chitecture.

The primary outcome of this study is a procedure for developing an

operational trajectory for Lunar Mission BW-1 after launch details are
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known. Given the current mission architecture and assumed launch de-

tails, the thermal arcjet requires 1205 hours (50.2 days) of operation while

consuming 93 kg of ammonia propellant, and the pulsed plasma thrusters

require 29177 hours (3.3 years) of operation while consuming 19 kg pro-

pellant. Power constraints were not found to be mission limiting for the

current spacecraft configuration. Consequently, although the laboratory

testing burden on the PPTs is already quite heavy, it is recommended that

the mission architecture be adjusted to shorten arcjet phases and lengthen

PPT phases. Furthermore, this project found that the optimisation pack-

age SOCS was the best commercially available option for low-thrust tra-

jectory optimisation, but that it would benefit greatly by adaptation to

a parallel shooting algorithm that may be distributed amongst multiple

computer processors.
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Chapter 1

Introduction

1.1 Historical background

The idea of electric propulsion was first published by Konstantin Tsi-

olkovsky in 1911 (Choueiri 2004). During the 1960s when space travel

was becoming a reality, the theory of electric propulsion was extended to

low-thrust spacecraft transfers. Unfortunately there were many techno-

logical hurdles to realising these thrusters as primary propulsion at the

time, so interest in the topic waned. From the early 1990s, enough of these

hurdles were overcome to allow the first electric spacecraft thrusters to be

developed and tested. Since then there has been a resurgence of research

into how best to utilise low thrust engines in missions ranging from Earth

orbit transfers to interstellar travel.

The advantage of low-thrust propulsion is that it is capable of delivering

a greater payload fraction compared to conventional chemical propulsion

systems, as highlighted in literature such as Kluever and Pierson (1995)

and Yang (2007). Greater payload fraction means less fuel mass is required

to propel a given payload into orbit. This results in large savings, because

as Manzella (2008) points out, despite advances in launch-vehicle technol-

ogy over the past 40 years, the cost of space launch has remained nearly

constant at around USD$10,000 per kilogram.

The aim of this project was to design a fuel-optimal lunar trajectory
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for a specific very-low-thrust, power-limited spacecraft.

1.2 Lunar Mission BW-1

The inspiration for this project came from the Small Satellites Program

(Kleinsatellitenprogramm) being run at the Institut für Raumfahrtsystem

(IRS) of Universität Stuttgart. The ultimate objective of this program

is to launch the craft Lunar Mission BW-1 to the Moon, as proposed

by Röser et al. (2006). The latest CAD model of the vehicle is shown in

Figure 1.1. Immediately apparent are the 6 square metres of triple junction

gallium arsenide solar panels, which fold up against the cubic metre body

for launch. The communications dishes are fixed with respect to the frame,

and consist of an S-band dipole antenna for good atmospheric penetration,

and a parabolic Ka-band antenna that provides higher bandwidth (and

therefore data rate) but is more susceptible to weather conditions.

Figure 1.1: Lunar Mission BW-1

Lunar Mission BW-1 will be propelled by a combination of Pulsed
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Plasma Thrusters (PPTs), developed at IRS by Nawaz et al. (2008) and

a thermal arcjet similarly developed at IRS by Bock et al. (2007). Perfor-

mance parameters for these thrusters based on laboratory tests are listed

in Table 1.1. The thrusters will be arranged as seen in Figure 1.2, with

an arcjet surrounded by four PPTs. This arrangement was recommended

to allow reaction wheel desaturation in pitch and yaw; the deflector plate

was a conceptual idea to allow roll desaturation. The author declines to

comment on the efficacy of this mechanism, as it is well outside the scope

of this project.

Table 1.1: Performance parameters of Lunar Mission BW-1 thrusters

Propulsion system Arcjet PPT

Number of active units 1 4
Power required per unit (W) 801 52

Thrust produced per unit (mN) 102.5 1.22
Exhaust velocity (ms�1) 4768 27000

Figure 1.2: Arrangement of arcjet (centre) and 4 PPTs on Lunar Mis-
sion BW-1, with a conceptual mechanism allowing for thrust vectoring.
Image used courtesy of Röser et al. (2006).

Due to the design decision to fix both the solar panels and the thrusters

with respect to the body, the spacecraft will have to alternate between

thrusting along the desired vector with reduced power generation, and

coasting in order to orient the solar panels towards the sun. Consequently

on-board power storage is required, to hold the charge generated during

the coasting arcs and discharge it during the thrust arcs.
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Table 1.2: The phases of Lunar Mission BW-1, as published by Institut
für Raumfahrtsysteme, Universität Stuttgart (2008).

The Lunar Mission BW-1 mission architecture has been broken down

into the seven phases shown in Table 1.2. Phase one is expected to be pro-

vided by a commercial launch vehicle such as the Indian Space Research

Organisation (ISRO)’s Geosynchronous Satellite Launch Vehicle (GSLV),

seen in Figure 1.3, which launches from Sriharikota, India. Phase two,

concerning ascent from GTO to an orbit above the van Allen belts, has

undergone preliminary analysis by Letterio (2005). Phase four has under-

gone preliminary study by Möllman (2005), while the specifications for the

lunar orbit (phase six) have been developed by Zeile et al. (2010). Vari-

ous impact scenarios have been developed by Trawny et al. (2004). The

research presented in this thesis brings these preliminary studies together,

including more detailed and accurate constraints, and examines the inter-

dependencies between phases 2 to 5.
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Figure 1.3: Indian Geosynchronous Satellite Launch Vehicle. Image used
courtesy of Indian Space Research Organisation (2013).

1.3 GESOP

Lunar Mission BW-1 is intended to feature and exploit as much in-house

technology as possible, a philosophy that extends to mission design tools.

Trajectory optimisation in particular has a long heritage at Universität

Stuttgart. In 1989 a number of optimisation algorithms were coded for

specific application to trajectory optimisation at Deutsches Zentrum für

Luft- und Raumfahrt (German Centre for Aeronautics and Astronautics,

DLR) in Oberpfaffenhofen. This project was continued at the Institut für

Flugmekanik und Flugregelung (Institute of Flight Mechanics and Flight

Control, IFR) in Stuttgart from 1994 and designated GESOP (Graphical

Environment for Simulation and Optimisation). A graphical front end and

model library was developed for this software called ASTOS (Aerospace

Trajectory Optimisation Software), shortly before the development was

privatised under the name ASTOS Solutions GmbH. The development

continues in close cooperation with the university, so it was suggested that
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by using ASTOS less detailed knowledge of the optimisation process would

be needed for the project. Midway through the project it was discovered

that the ASTOS interface was too restrictive for the task, so the dynamics

were modelled in C and applied to the GESOP programming interface.

1.4 Summary

A mission called Lunar Mission BW-1 is being pursued by the University of

Stuttgart Institute for Space Systems. This mission is intended to feature

in-house technology. A coarse mission architecture has been established,

but needs to be refined and optimised for fuel efficiency. This project

aims to take initial steps towards that goal, by modelling the system and

performing some optimisation using the program GESOP. This mission

design will help quantify whether a relatively low cost mission, with a very

low thrust propulsion system, is capable of reaching the Moon, and further

into the solar system. This will hopefully encourage other universities and

associated groups around the world to launch their own missions, and bring

electric propulsion into more mainstream use.
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Chapter 2

Scope of research

2.1 Introduction

Published studies in the area of low-thrust trajectory optimisation, such as

Petropoulos et al. (2007), frequently conclude that available optimisation

techniques require further improvement, particularly in the areas of global

search and modelling fidelity. Thus the most important question in this

research project is how best to optimise a low-thrust trajectory.

The primary objective of optimising a low-thrust trajectory leads into

two very interesting secondary outcomes of this project. Firstly, investigat-

ing the severity of perturbing forces on the spacecraft during transit, and

to what extent they can be exploited. Secondly, developing a robust model

to include a variety of non-linear trajectory constraints in the optimisation

process.

2.2 Optimisation of a low-thrust trajectory

The broad objective of optimising a low-thrust trajectory was broken down

into the following tasks.

1. Derive an appropriate model for the spacecraft, moving within a

realistic space environment.
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Figure 2.1: A simplified trajectory prepared for demonstration purposes
early in the Kleinsatelliten program.

2. Examine optimisation techniques and select one appropriate to this

scenario.

3. Explore different initial guesses for the optimisation, based on knowl-

edge of orbital mechanics and exploitation of perturbing forces.

4. Apply non-linear constraints to the optimisation.

2.2.1 Modelling

A complete description of the spacecraft and space environment model is

presented in Chapter 4. Although there are multiple solutions available

for each modelling hurdle, there are fairly well established best-practice

solutions for the high fidelity modelling required over the long durations

associated with low-thrust missions.

2.2.2 Investigation of optimisation techniques

Optimisation techniques suitable for trajectory optimisation were exam-

ined. Reviewed literature repeatedly cited the inadequacies of existing
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search methods as a major problem with existing optimisation methods,

as addressed in detail in Chapter 3. In particular, it was noticed that pre-

vious optimisations generally ignore non-linear thruster constraints, due

to the additional complexity and stiffness they add to the optimisation

problem. Therefore finding a computationally efficient way to include non-

linear constraints over long time spans was essential to the suitability of

the optimisation techniques used for this mission.

2.2.3 Exploring different initial guesses

Most optimisation techniques require an initial guess of the solution to be

input into the algorithm, from whence they can improve their objective

function. Existing search methods often have strong dependencies on the

initial guess, as adressed frequently in literature such as Dachwald (2005).

Consequently it is important to investigate the performance of the opti-

misation under a variety of initial guesses. Based on orbital mechanics

theory, a number of potentially optimal scenarios were investigated in this

thesis, as outlined in Chapter 7. These were then compared to a num-

ber of randomly chosen initial guesses, to determine the breadth of the

basin of convergence and the ability of the optimiser to handle multiple

basins. Additionally a number of severely sub-optimal initial guesses were

examined.

2.2.4 Application of non-linear constraints

There are a number of very unique constraints on Lunar Mission BW-1.

The thrusters produce substantially less thrust than modelled in most pre-

vious studies, resulting in a much narrower range of possible trajectories.

The craft used in this program is also very limited by onboard power stor-

age. This is yet another practical engineering issue barely considered in

existing literature. Every few hours the craft must rotate to point its solar

panels towards the Sun, and recharge its batteries. Once fully charged, it

then rotates back to continue thrust vectoring for guidance control. Con-

sequently the optimisation model must allow for variable thrust, including
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the ability to constrain thrust magnitude (to zero) at certain times. De-

veloping a method to optimise intermittent thrust profiles like this will

ensure the theoretical research of trajectory optimisation is applicable to

real spacecraft.

First, a highly simplified low-thrust lunar trajectory was developed.

This assisted in developing an initial guess for the final optimisation.

From this state, the optimiser was developed to include more complex

constraints. Coast phases were introduced to the existing constant-thrust

profile, producing a bang-bang control scenario. Then the length of these

coasting and thrusting phases was released, followed by the magnitude

of the thrust. The electric power consumed during a thrust phase was

modelled, with the constraint that it cannot drop below zero. An ap-

proximation of power generated by the solar panels was implemented, and

then improved based on sunlight angle of incidence, Earth shadow and

solar panel decay. This technique identified coasting phases required for

recharging the spacecraft, providing constraints on the Attitude Control

System (ACS). Propellant use was modelled, based on the thrust profile

and constrained by power availability. Reaction wheel desaturation will be

required to improve the fuel usage model, although this improvement is de-

pendent on other project members working on the ACS and consequently

has not been addressed.

2.3 Investigation of perturbations

This project provides a rare opportunity to actually test a low-thrust tra-

jectory in orbit. Due to the prohibitive cost of space exploration, most

studies of this nature are purely academic. Academic studies such as Betts

(2000) often simplify or neglect the more awkward perturbing forces act-

ing on the spacecraft such as solar radiation and inhomogeneous gravity

fields, for the sake of elegant mathematical solutions. The combination of

very-low-thrust and the fact that the trajectory resulting from this study

will actually be flown, requires that it take into account a much greater

range of possible perturbations than most previous studies. The question
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of how significant these perturbations are, and particularly to what extent

they may be exploited to reduce the effort needed to propel the spacecraft

towards the Moon, may greatly affect the final launch.

To address this question, once a robust model was developed for the

trajectory optimisation, the impact of perturbations on the trajectory was

investigated. This objective was required to highlight two major charac-

teristics of the trajectory: firstly, the robustness of the trajectory in the

event of unanticipated perturbations, and secondly whether anticipated

perturbing forces may be exploited to propel the spacecraft.

It is well known from interplanetary trajectories such as those presented

by Petukhov et al. (2007) that a large amount of propulsive effort can be

saved by exploiting gravitational assists. Some textbooks, such as Kemble

(2006), and other publications such as Letterio (2005) discuss the possi-

bility of exploiting the Moon’s gravity in a series of lunar “resonances”

to assist a low thrust lunar transfer. A small number of missions have

succeeded in doing this, such as NASA’s ARTEMIS (Angelopoulos 2011,

Sweetser et al. 2011). These anticipated perturbations are implicitly ex-

ploited by the optimiser since they represent optimal scenarios, however

due to imperfections in optimisation algorithms the initial guess strongly

affects whether the gravitational assist is found.

2.4 Investigation of non-linear constraints

As additional constraints and non-linearities were progressively added to

the model, the impact of each constraint on the behaviour of the optimi-

sation process was investigated to determine its effect on both the opti-

misation process and the resulting optimal trajectory. Optimal intermit-

tent thrust profiles were compared with results for a comparable continual

thrust profile to demonstrate the improvement (for example, thrusting

twice as much at periapsis and then coasting compared to thrusting con-

tinuously throughout the orbit).

Other issues that were addressed in this project, that have been ne-

glected or ignored in most previous studies, include the spacecraft tran-
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siting through the Earth’s shadow (eclipse), the possibility of varying the

thrust level to conserve power, integrating the probable battery charge

level throughout the transfer (based on sunlight received versus power

used), intervals required for attitude control and reaction wheel desatura-

tion and the amount of propellant required, and position monitoring and

communication windows from the available groundstations. Many of these

non-linear constraints have not been considered in previous studies, so the

question of how to mathematically represent them such that they may be

included in the optimisation is very important.

2.5 Limits of the scope

It was anticipated that by judiciously choosing the thrust phases, the fuel

efficiency could be improved. However, there are always limitations to such

a project. The optimal thrust profile for this mission is very closely tied

to the Attitude Control System (ACS). This provides further constraints

on the project, and adds another whole level of modelling complexity.

However, the ACS for Lunar Mission BW-1 is still being finalised and will

be tested on the forthcoming test satellites Flying Laptop and Perseus.

Consequently modelling and optimising the ACS is beyond the scope of

the project.

Throughout this thesis it is assumed that the ACS can provide the

attitude required, when required, for as long as required. A corrollary of

this assumption is that the spacecraft may be modelled as a point mass.

Another consequence is that reaction wheel saturation cannot yet be pre-

dicted. Thus reaction wheel desaturation could not be included in this

project, although given the rotation rate of 1� per second specified in the

design it was anticipated that the time required to reorient the spacecraft

would have negligible effect on the thrust profile. This assumption was

found to be valid, as the results presented in Chapter 8 demonstrate a

maximum required rotation rate of 10�5 degrees per second.

A thorough outline of factors influencing the trajectory is presented

in Table 2.1. Many of the factors have been considered and subsequently
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neglected, usually for reasons presented later in this thesis. Some depend

on design parameters that are yet to be defined, but have been accounted

for in the model.

Finally, the project was intended to encompass a single continuous op-

timisation for the entire trajectory. Computational constraints restricted

the optimisation to five distinct, contiguous sections, one representing each

phase as described in Table 1.2. This limitation is addressed in further de-

tail in Section 7.2.4.

2.6 Summary of research scope

Several fundamental objectives have been outlined for optimising the tra-

jectory of Lunar Mission BW-1. These objectives include establishing reli-

able modelling and optimisation techniques within the Institute for Space

Systems, determining efficient ways to model the non-linear forces present

on an exo-atmospheric trajectory, and investigating how significant those

forces are over the course of the the trajectory. Establishing some ground

rules for practically optimising the trajectory of a spacecraft in this manner

will improve the existing knowledge of low-thrust spacecraft trajectories.
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Table 2.1: Inclusion of factors influencing the spacecraft trajectory.

Factor Inclusion

Perturbing forces
Primary gravity Inherent in equations of motion
Earth gravity field JGM3 included in Moon-centred

phases to degree and order 20
Moon gravity field LP165 included in Earth-centred

phases to degree and order 20
Sun gravity Included
Mercury gravity Not included
Venus gravity Included
Mars gravity Included
Jupiter gravity Included
Saturn gravity Not included
Solar radiation pressure Included as a time-average
Vehicular constraints
Thruster duty cycle Neglected (see Section 6.1)
Thruster power Included (see Section 6.1)
Solar panel power Included (see Section 6.3.1)
Payload power To be defined (see Section 6.3.2)
Communications power To be defined (see Section 6.3.2)
Battery capacity Included (see Section 6.3)
ACS Neglected (see Section 2.5)
Reaction wheel desaturation Neglected (see Section 2.5)
Communications windows To be defined (see Section 6.3.2)
Navigation windows To be defined
Observation windows To be defined
Thermal effects Neglected

Environmental considerations
Radiation Neglected (see Section 4.9.1)
Debris Neglected (see Section 4.9.2)
Eclipse Included (see Section 6.2)
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Chapter 3

Review of relevant literature

3.1 Introduction

There are two major fields of literature relevant to this project. Firstly,

studies and technical reports delivered within engineering organisations

relating to real spacecraft missions are examined, and compared to Lu-

nar Mission BW-1. Secondly, there has been a long history of theoretical

study into optimising spacecraft trajectories, from early impulsive space-

craft research to more recent low-thrust scenarios. A brief explanation

of optimisation theory is provided, followed by a more in-depth investi-

gation into recent application of these methods to low-thrust trajectory

optimisation.

3.2 Past missions

While LePage (1991) shows that there have been numerous Earth-orbiting

satellites using electric thrusters for attitude control or station keeping,

only a small number of spacecraft have ever escaped the Earth’s sphere of

influence using electric propulsion as the primary thrust. These are listed

in Table 3.1, along with key specifications of their respective propulsion

systems. Within the table, thrust represents the maximum force that the

primary propulsion system can exert on the craft. Power consumption is
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the amount of electrical power used to operate at this maximum thrust.

Specific impulse, Isp, is the momentum added by the thrusters per unit

weight-on-Earth of propellant, and consequently represents the fuel effi-

ciency of the thrusters. Electric propulsion is characterised by relatively

high Isp.

Table 3.1: Past low-thrust missions to escape Earth’s sphere of influence

Spacecraft Propulsion type Total Power
Consumption

(W)

Total
Thrust
(mN)

Isp (s)

DS-1a Electrostatic Ion
Thruster

2100 92 3300

Hayabusab 4� Microwave
ECR Thrusters

1400 32 3200

SMART-1c Hall Effect
Thruster

1200 73 1640

Dawnd Electrostatic Ion
Thruster

2100 90 3100

Lunar Mission
BW-1e

4� Pulsed Plasma
Thrusters

220 4.9 2753

Thermal Arcjet 801 103 486

aJet Propulsion Laboratory (2008b)
bJapanese Aerospace Exploration Agency (2008)
cEuropean Space Agency (2008b)
dJet Propulsion Laboratory (2008a)
eInstitut für Raumfahrtsysteme, Universität Stuttgart (2008)

For the purposes of comparison, the Apollo program trans-lunar injec-

tion (TLI) was performed using a chemical propulsion system providing a

thrust of approximately 1 MN (9 orders of magnitude greater than Lunar

Mission BW-1 ) on a mass of 119,900 kg (only 3 orders of magnitude greater

than Lunar Mission BW-1 ) at a specific impulse of 421 s. The Saturn V

third stage that performed the TLI is shown at launch in Figure 3.1.
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Figure 3.1: Saturn V from the Apollo program. Image used courtesy of
National Aeronautics and Space Administration (2012).

3.2.1 Deep Space One

Deep Space One (DS-1), shown conceptually in Figure 3.2, was launched on

24 October 1998 with a mass of 374 kg (Jet Propulsion Laboratory 2008b).

After launch, an electrostatic ion thruster took over propulsion on its one-

way mission to the asteroid 9969 Braille and the comet 19P/Borrelly. This

thruster generated 92 mN of thrust at a maximum input power of 2100 W.

DS-1 had several similarities to the intended mission of Lunar Mission

BW-1. Rayman and Lehman (1997) state that once or twice each week

the spacecraft had to rotate away from its thrust vector in order to collect

optical navigation data and communicate with the Deep Space Network

(DSN) on Earth, which required shutting down the propulsion system.
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Figure 3.2: Deep Space One. Image used courtesy of Jet Propulsion
Laboratory (2008b).

Key differences from Lunar Mission BW-1 however, include the frequency

and duration of these thrusting and coasting phases, and the nature of

the trajectory. The interplanetary trajectory of DS-1 was dominated by a

heliocentric orbit, with gravity assists from the Earth, Mars and a number

of asteroids. This means that the thrust vector was almost tangential to

the orbital velocity around the Sun, and therefore the optimal orientation

of solar panels (towards the Sun) was always perpendicular to the desired

thrust vector (around the Sun). In contrast to this, Lunar Mission BW-1

will occupy a cis-lunar orbit. This poses two difficulties: not only will

the trajectory optimisation have to switch its reference frame from Earth-

centric to lunar-centric in mid-flight, but optimal orientation of the solar

panels relative to the direction of thrust is constantly changing. To over-

come this the thrusting profile of Lunar Mission BW-1 must shut down

much more frequently than DS-1 did: hourly, rather than weekly, so that

it can point its solar panels towards the Sun to recharge.

Rayman et al. (1999) provide a brief outline of the optimisation strate-

gies used to design the DS-1 trajectory. A legacy in-house routine called

the Solar Electric Propulsion Trajectory Optimization Program (SEP-
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TOP) was used to determine an intial guess, implementing a calculus-of-

variations optimisation technique. To reduce computational complexity,

the heliocentric trajectory was constrained to month-long thrust arcs with

a thrust vector fixed relative to a rotating frame. SEPTOP was then used

to perform sensitivity analysis and to examine failure scenarios, before the

coarse trajectory was then refined in a custom-built tool called the Com-

puter Algorithm for Trajectory Optimization (CATO). This trajectory was

then uploaded to the on-board navigation system AutoNav.

3.2.2 Hayabusa

Hayabusa (launched 9 May 2003), shown conceptually in Figure 3.3, was

designed by the Japanese Aerospace Exploration Agency (JAXA) to per-

form a rendesvouz with asteroid 25143 Itokawa (Japanese Aerospace Ex-

ploration Agency 2008). It had a launch mass of 510 kg, including 130 kg

of xenon gas used by the four microwave ECR (Electron Cyclotron Reso-

nance) thrusters, providing 4�8 mN = 32 mN thrust at maximum input

power of 4�350 W = 1400 W.

Hayabusa had a similarly weak thrust to Lunar Mission BW-1, but

was once again in a heliocentric orbit. Hayabusa successfully re-entered

Earth’s atmosphere and was recovered near Woomera, South Australia in

June 2010, despite numerous failures including almost complete failure of

all four ECR thrusters. The original trajectory design was published by

Masatoshi et al. (2003) in Japanese, but remains unverified due to the

repeated major revisions required due to system failures.

3.2.3 SMART-1

Small Missions for Advanced Research in Technology One (SMART-1)

(launched 27 September 2003) had a Hall effect plasma thruster providing

73 mN thrust at 1200 W power consumption (European Space Agency

2008b). The craft, shown conceptually in Figure 3.4, was a comparable

size to Lunar Mission BW-1, but twice as heavy: 367 kg including 80 kg

of xenon propellant. On September 3, 2006 SMART-1 was deliberately
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Figure 3.3: Japanese Hayabusa probe. Image used courtesy of National
Space Science Data Center (2008).

crashed into the Moon’s surface. This mission profile is closest to that

intended for Lunar Mission BW-1, but had an order of magnitude higher

thrust.

Unlike Lunar Mission BW-1, SMART-1 had a mechanism to adjust

the solar panel angle relative to the body to maximise incident sunlight.

Estublier et al. (2007) provides a useful summary of SMART-1 performance

data, including that the GaAs solar panel performance started at 23.7%

efficiency, and decayed to 18-19%. To allow continued thrusting during

eclipse, Li-ion batteries were included allowing up to 2.1 hours of thrust.

The Snecma PPS-1350G Hall effect thruster was mounted on a gimbal to

allow reaction wheel unloading.

Schönmäkers (2004) outlines the procedure and design factors influ-

encing the trajectory design, but does not expound on optimisation meth-

ods used. Amongst a comprehensive summary of the entire mission and

spacecraft design, Racca et al. (2002) provides some information on the

techniques used. SMART-1’s first phase (GTO to 20,000 km periapsis)

simply thrusted continuously along the orbital tangent. Phases 2 (cruise

to 338,000 km apoapsis) was optimised using the Pontryagin maximum

principle, by optimising the length of thrust and coast arcs within each or-

bit. Out-of-plane components were allowed, particularly during the higher
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Figure 3.4: SMART-1. Image used courtesy of U.S. Geological Survey
(2008).

orbits later in the phase, to perform a plane change. The third phase, incor-

porating the difficult lunar capture, utilised a gradient projection method

to optimise a set of parameters defining the control law, thereby limiting

the computational complexity of optimising a continuously variable thrust

vector. Finally, the lunar descent from 60,000 km once again used the Pon-

tryagin maximum principle to optimise the right ascension of the ascending

node and arrival epoch of the final LLO, although thrust was constrained

to the negative velocity vector thus severely limiting the computational

complexity of the optimisation. Backwards integration was used to avoid

the difficulties associated with lunar capture.

3.2.4 Dawn

Dawn (launched 27 September 2007) is using the same thrusters devel-

oped for DS-1 to propel it towards the dwarf planet 1 Ceres by 2015 (Jet

Propulsion Laboratory 2008a), following a successful rendezvous with the

main-belt asteroid 4 Vesta in June 2011. Getting to Vesta it consumed

275 kg xenon, and will use another estimated 110 kg to get to Ceres, out
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of a total of 425 kg of on-board propellant. Dawn, shown conceptually in

Figure 3.5, had a total launch mass of 1250 kg.

Figure 3.5: Dawn. Image used courtesy of Jet Propulsion Laboratory
(2008a).

Genetic algorithms and simulated annealing were investigated during

Dawn mission planning (Lee et al. 2005a), but the mission resorted to the

same optimisation methods used by Deep Space-1 (Rayman et al. 2007).

3.2.5 Planned missions

Planned electrically propelled missions include SMART-2, also known as

LISA Pathfinder (European Space Agency 2008a), and Space-Technology 7

(ST-7) to be launched by NASA. Common to all of these missions is thrust

substantially higher than Lunar Mission BW-1 will have available, and

consequently Lunar Mission BW-1 will have a less flexible escape trajec-

tory.

Lunar Mission BW-1 will be only the fifth electrically propelled space-

craft to leave Earth orbit, and the first mission with this type of electric

propulsion. To increase its chances of success, a fuel-optimal trajectory

must be sought.
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3.3 The process of optimisation

Optimisation is, intuitively, the process of finding a set of inputs that

minimise (or maximise) a given output. This is achieved by defining an

objective function or cost function to rank results based on perceived value,

allowing the result with the highest score to be chosen. The difficulty of

performing optimisation arises from the potentially large number of results,

and the difficulty of mathematically defining what is “good” or “bad”.

3.3.1 Problem formulation

Typically, optimal control problems are formulated to find the required

control history uptq to deliver something (in this case, a vehicle) from an

initial state xpt0q to a final state xptf q while minimising the cost function

F , where t is some smoothly increasing or decreasing parameter.

Along with the control history there are several other parameters (such

as departure date, slackness within the initial and final conditions, and

phase lengths) that make up the optimisable parameter set p. The generic

optimisation problem is

minF puptq,pq. (3.1)

This optimisation is, of course, subject to certain equality constraints geq

and inequality constraints gineq which depend on the state x, control pa-

rameters u, optimisable parameters p and independent parameter t,

geqpxptq,uptq,p, tq � 0, (3.2a)

gineqpxptq,uptq,p, tq ¥ 0. (3.2b)

The differential equation (3.3) then describes how the state evolves over

the trajectory,
dx

dt
� fpxptq,uptq,p, tq. (3.3)

For computational reasons (see Section 5.6.2), upper and lower bounds
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are supplied for the states, controls and optimisation parameters,

xl ¤ xptq ¤ xu, (3.4a)

ul ¤ uptq ¤ uu, (3.4b)

pl ¤ p ¤ pu. (3.4c)

The cost function F must be defined with the same parameters, but

may include components evaluated at the start of the trajectory, end of

the trajectory, and integrated over the trajectory, added together with

appropriate weighting factors σ,

F0 � fpxpt0q,upt0q,p, t0q, (3.5a)

Ff � fpxptf q,uptf q,p, tf q, (3.5b)

Fi �

∫ tf

t0

fpxptq,uptq,p, tq dt, (3.5c)

F � σ0F0 � σfFf � σiFi, (3.5d)

where the subscripts 0, f , and i represent initial, final and integrated cost

functions, respectively.

3.3.2 Trajectory propagation

The path between initial and final states is defined by a differential equa-

tion of motion as outlined in equation (3.3). A number of numerical meth-

ods are available for approximating the solution to differential equations

such as these. In general, the gradient at some starting point is used

to estimate another point a small distance away. Most common are the

Runge-Kutta methods, which use an iterative estimate of the gradient at

the midpoint to get a more accurate estimate for the endpoint. The fourth
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order Runge-Kutta method for y1 � fpt, yq is calculated by

yn�1 � yn �
1

6
(k1 � 2k2 � 2k3 � k4) , (3.6a)

k1 � hf (tn, yn) , (3.6b)

k2 � hf

(
tn �

h

2
, yn �

k1
2

)
, (3.6c)

k3 � hf

(
tn �

h

2
, yn �

k2
2

)
, (3.6d)

k4 � hf (tn � h, yn � k3) , (3.6e)

where h is the step size (Kreyszig 1979, p. 797). A similar, commonly

used method in optimal control is Hermite-Simpson interpolation (Kreyszig

1979, p. 197).

Adaptive Runge-Kutta methods use the difference between two fixed-

step Runge-Kutta methods to place bounds on the accuracy of the esti-

mated endpoint. If the accuracy is not within some predefined tolerance,

the interval size is revised. Particular care must be taken when integrating

a non-linear differential equation over an extended duration such as the

Lunar Mission BW-1, due to the accumulation of numerical errors.

Regardless of the numerical method used, trajectory optimisation re-

quires solving the differential equations over a span of time; low-thrust tra-

jectory optimisation requires very long timespans. Every integration step

is associated with a potential error, which accumulates over the timespan.

Methods that integrate from the start to the finish, termed direct shooting

or single shooting methods, become increasingly error-prone as the times-

pan increases. Small changes early in the trajectory create large changes

later on, which can make the constraints behave very non-linearly (Betts

1998).

If some intermediate states can be reliably guessed, the integration may

be started anew from that “node”. Any discontinuity at the node is added

to the set of constraints, resulting in a relatively larger number of optimi-

sation variables. Methods that perform multiple independent integrations

like this, termed multiple shooting methods, are less prone to integration
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error, but convergence is heavily dependent on the accuracy of the interme-

diate state guesses (Betts 1998, Fischer et al. 2008). Consequently, many

multiple shooting methods now incorporate automatic initial guess estima-

tion. Multiple shooting is sometimes called parallel shooting, because each

segment may be calculated in parallel. This method therefore lends itself

well to parallel processing, across multiple core processors or even clusters

of networked computers.

Finally, to reduce computational complexity the changes in control

and/or state over time may be approximated by a piecewise linear or poly-

nomial function. Any algorithm that uses a simplification like this is said

to solve the parameterised optimal control problem. If the algorithm ap-

proximates control and state nodes at the same points, it is a collocation

method. Since this reduces the number of nodes required, collocation is

generally faster than multiple shooting, but not as accurate.

3.3.3 Optimisation methods

Any trajectory propagated as in Section 3.3.2 that satisfies the boundary

value problem stated in Section 3.3.1, within acceptable error bounds, is

a potential solution to the optimal control problem. These solutions may

then be ranked using the objective function presented in equation (3.5).

The remaining task is to evaluate enough potential solutions to be confident

that the highest scoring one is indeed optimal.

There are two general approaches to this problem, classified consistently

across literature such as Betts (1998) and Fischer et al. (2008). Indirect

methods attempt to solve the derivative of the cost function and thus

determine a stationary point in the function space. Direct methods simply

evaluate the cost function at a number of nearby points in the function

space, and repeat the process from the best solution found. Once no

adjacent points in the function space possess better costs, an optimum has

been attained. Both of these methods satisfy the necessary and sufficient

conditions of an optimum.



3.3. The process of optimisation 27

Necessary and sufficient conditions

Pierre de Fermat first proved that optima of unconstrained problems are

found at stationary points in the objective function (Fermat 1891–1912).

The addition of inequality constraints adds some complexity in that the

global optimum may be located on the edge of the acceptable set; that is,

where an active constraint disallows any points deeper along the gradient.

These constraints may be appended to the objective function to form a

Lagrangian, which modifies the overall problem into an unconstrained set.

Because this test requires the gradient or first derivative of the Lagrangian

(called the Jacobian) to be calculated, it is called a first order condition.

Satisfying the first order condition is necessary for the point to be a local

optimum.

While the first order test identifies points that might be optima, it

does not disinguish a minimum from a maximum or an inflection point.

When the objective function is twice differentiable, these cases can be dis-

tinguished by checking the second derivative (the gradient of the gradient,

called the Hessian). The conditions that distinguish maxima, or minima,

from other stationary points are called second order conditions. If a can-

didate solution satisfies the first order conditions, then satisfaction of the

second order conditions is sufficient to establish at least local optimality.

Indirect methods rely on these tests to determine search direction. Di-

rect methods include these tests implicitly by adjusting the search space

towards the most favourable solution (consequently along the steepest gra-

dient) until there is no more favourable solution nearby (the gradient is

zero). If the second order test were not satisfied, better solutions would be

found adjacent to the candidate solution. Both types of methods require

evaluation of the Lagrangian.

Lagrangian

As mentioned above, adding the constraints to the cost function transforms

the constrained problem into an unconstrained problem. The resulting cost
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function is known as the Lagrangian, L, and is defined as

L � F puptq,pq �
∑

λgeqpx,u,p, tq �
∑

µgineqpx,u,p, tq, (3.7)

where the cost function F was explained in Section 3.3.1. The Karush-

Kuhn-Tucker (KKT) multipliers, λ and µ, are added to the set of optimis-

able parameters, and subject to additional constraints (λi ¥ 0 and µi ¥ 0

for all i). This forms the complementary slackness condition. For any

feasible solution, the equality constraints and active inequality constraints

will give gpxq � 0. Since the inactive inequality constraints gpxq ¡ 0, their

respective KKT multipliers will be driven down to improve the Lagrangian

until λ � 0. Therefore, minimising the Lagrangian minimises the objective

function and ensures all constraints are met.

Indirect methods

Indirect methods attempt to solve the optimal control problem by finding

a stationary point in the solution space that satisfies the second order

condition of being an optimum. Traditionally this is achieved analytically

through the calculus of variations, using Pontryagin’s minimum principle

(Pontryagin et al. 1962).

Pontryagin’s minimum principle requires solution of the adjoint equa-

tions. The existence of an analytical solution consequently becomes highly

dependent on the linearity of the adjoint equations, but assumptions and

simplifications can sometimes be made in order to determine a general so-

lution to the equations. These assumptions are usually only valid for short

duration scenarios such as the missile trajectory described by Ohlmeyer

and Phillips (2006) and the re-entry of the two exo-atmospheric stages of

the Saturn V rocket presented by Haeussermann (1965). Given the long

durations and non-linearities present in low-thrust trajectories, an analyt-

ical solution usually cannot be found.

An alternative to solving the infinite-dimensional optimal control prob-

lem is to discretise the problem and solve the resulting high- but finite-

dimensional problem using indirect numerical methods. Forgoing a general
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solution to the objective function, these methods break the problem down

into many sub-problems, each of which may be solved locally. This is

collectively known as nonlinear programming (NLP) (Stryck and Bulirsch

1992).

The general approach to nonlinear programming is to take a candidate

solution, x0. An iterative procedure is then used to improve this solution

by varying the state a certain amount, α, in a certain direction, k, as

defined in equation (3.8). The sign of the step direction, α, determines

whether the algorithm finds a minimum or a maximum,

xn�1 � xn � αk. (3.8)

Gauss (1827) pioneered gradient-based methods in the early 19th cen-

tury, by using the Jacobian of the Lagrangian with respect to the state

vector, ∇L, as the search direction,

xn�1 � xn � α∇Lpxnq. (3.9)

This technique is also known as the method of steepest descent, because

the Jacobian matrix functions as a multi-dimensional gradient. When a

candidate solution is found with no gradient that leads to a better solution,

the candidate solution must be a local optimum.

Pure gradient methods are prone to slow optimisation, particularly with

stiff problems. A second-order variant on this scheme is often referred to as

Newton’s method because it uses the iterative root-finding scheme devised

by Newton (1711, 1736) to determine the zeroes of the gradient. Since

the gradient is itself a derivative of the Lagrangian, this technique requires

computation of a second derivative,

xn�1 � xn � α
∇Lpxnq
∇2Lpxnq

. (3.10)

The curvature information held within the second derivative matrix (called

the Hessian matrix, ∇2L) allows this technique to converge faster, but each
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iteration takes more computational effort.

Various schemes exist to calculate the step size, α. These algorithms,

collectively called a line search, can often be very computationally ineffi-

cient and time consuming. When the step size, α is equal to one, gradient

methods assume a linear behaviour in the vicinity of the candidate solu-

tion, and select the next iteration accordingly. Newton’s method assumes

a quadratic behaviour in the vicinity. Variations on Newton’s method

have been used to great success in many optimisation applications, not

least trajectory optimisation, leading to the techniques being collectively

named sequential quadratic programming (SQP). Quasi-Newton methods

such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method use an ap-

proximation of the Hessian to speed up computation while retaining the

benefits of second-order gradient information.

In certain applications such as low thrust trajectories, the long propaga-

tion times requiring many grid points result in very large, sparse Jacobian

and Hessian matrices. A sparse matrix is characterised by very few non-

zero terms (Stoer and Bulirsch 2002), due to very loose coupling; changes

early in the trajectory do not have a direct effect on the later stages of

the trajectory except by influencing all of the intervening states. Some

algorithms are able to exploit this sparsity to calculate the Hessian and

Jacobian matrices very efficiently.

Direct methods

Direct methods, in contrast to indirect methods, do not try to determine

additional information from the objective function. They simply evaluate

the objective function at a number of points, and then adjust the search

space towards the best solution found. Consequently direct methods can-

not be analytical.

There are many different techniques to determine which solutions to

evaluate. A number of techniques, such as tabu search and hill-climbing,

merely search adjacent solutions and consequently function only as local

search methods. Without using gradient information each iteration must
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exhaustively search the adjacent function space, so these techniques are

less efficient than indirect methods (subject to the difficulty of gradient

computation). The real advantage of direct methods emerges when each

iteration is allowed to search a wider space.

The largest group of direct methods is evolutionary algorithms. In gen-

eral, these techniques evaluate a number of candidate states, make a few

random changes and then re-evaluate the new generation, picking the best

solutions to continue with. For example, genetic algorithms avoid local

minima by performing random mutations and genetic crossovers, emulat-

ing the biological process of evolution. Another example called simulated

annealing was introduced by Kirkpatrick et al. (1983), and emulates a

blacksmithing technique where the metal is cooled slowly to allow the par-

ticles to align into an optimised (crystallised) low energy state.

Evolutionary algorithms are heavily dependent on their implementa-

tion, and the efficiency of their mutations, to steer the evolution of the so-

lution. Furthermore, with delicate problems such as Lunar Mission BW-1,

random mutations frequently lead to invalid solutions (the spacecraft does

not reach the target orbit) and consequently these techniques can strug-

gle to find alternative feasible solutions, as changes may be required to

multiple parameters before another basin of convergence is found.

Another group of direct methods is called dynamic programming. These

techniques are particularly used in financial programming and manage-

ment science, with the aim of finding the path of least cost in a discrete

system by evaluating each step backwards from the goal using the recur-

sive Bellman equations (Bellman 1957). As such dynamic programming

is best suited to heavily discretised states and paths between states, and

consequently a very limited number of controls. Dynamic programming

has been expanded to solve continuous time problems using the Hamilton-

Jacobi-Bellman equations, but this adaptation requires calculation of the

cost function gradient, converting the technique to an indirect method

(Bellman 1957).

In general, direct methods are more robust, and tolerate stiffness and

caverns in the solution space better than indirect methods. They are often
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described as a better global search, which is not neccessarily true. Unlike

indirect methods, they can find alternative basins of convergence, but es-

sentially rely on guided guesses to find these basins. With large, complex

problems, the probability of finding the correct basin diminishes. While

various metaheuristics, many of which are described in Dréo et al. (2006),

have different degrees of success in finding basins of convergence, as the size

and complexity of the problem scales up they all must approach a brute

force search before they can be certain of finding the global optimum.

3.3.4 Survey of commercial optimisation algorithms

There have been many implementations of the optimisation methods de-

scribed above. Examples of direct methods include the collocation method

OTIS (Optimal Trajectories by Implicit Simulation, Hargraves and Paris

1987), and the single shooting control parameterised method POST (Pro-

gram to Optimize Simulated Trajectories, Brauer et al. 1977), both devel-

oped by US industry. These codes are both in widespread use at NASA and

at various US government laboratories and universities, but are not gener-

ally available to other organisations. TOMP (Trajectory Optimization by

Mathematical Programming, Kraft 1994) is very similar to POST. MUS-

COD (Multiple Shooting Code for optimization, Bock and Plitt 1984),

developed at the University of Heidelberg, combines control parameterisa-

tion with multiple shooting.

The sequential gradient restoration algorithm (SGRA, Miele 1975) is

an indirect method as are the codes ASTROP developed by Bartholomew-

Biggs et al. (1988) and BNDSCO by Bulirsch (1971). ASTROP has been

used at the European Space Operations Centre (ESOC) extensively for

exo-atmospheric trajectory optimization.

These methods are mostly superseded by newer methods with addi-

tional features, and so were not selected for inclusion in GESOP. Instead,

TROPIC (Trajectory Optimisation by Direct Collocation) and PROMIS

(Parameterised Trajectory Optimisation by Direct Multiple Shooting) are

two transcription algorithms developed at DLR (Jänsch and Paus 1990).
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CAMTOS (Collocation And Multiple Shooting Trajectory Optimisation

Software) was developed internally by ASTOS Solutions GmbH. Each

of these algorithms transcribes the optimal control problem into smaller

NLPs.

Two SQP methods are then available within GESOP to solve the sub-

problems. SLLSQP is a fairly generic SQP solver, and computes local

optima in order n3 time, where n is the number of optimisable parameters.

Consequently it is useful for scenarios with up to about 100 parameters.

SNOPT (Sparse Nonlinear Optimizer, Gill et al. 1997) was developed at

Stanford University and is a widely used BFGS implementation with a

dense quasi-Newton Hessian approximation. It improves upon SLLSQP

with a few modifications that exploit sparsity within the Jacobian matrix

(by treating non-linear parameters as linear within a constrained region)

thus allowing it to compute local optima in order n2 time. However it

cannot exploit sparsity of the Hessian matrix, and consequently is ill suited

for large sparse optimisations such as low-thrust trajectories (Betts and

Gablonsky 2002). SNOPT is useful for problems of about 1000 parameters

(Fischer et al. 2008).

For larger problems, ASTOS Solutions GmbH has licensed SOCS (Sparse

Optimal Control Software, Betts and Huffman 2002). SOCS is a combined

transcription and SQP algorithm developed by The Boeing Company. Its

direct collocation method further exploits sparsity, resulting in a compu-

tational time that increases with order n. SOCS has documented solu-

tions for problems with over 500,000 parameters. The subroutine within

SOCS that solves the nonlinear problems is another BFGS implementation,

called HDSNLP, using a Schur-complement developed by Gill et al. (1987)

to solve the SQP. The Jacobian and Hessian matrices are computed effi-

ciently using sparse finite differencing as proposed by Curtis et al. (1974)

and Coleman and Moré (1983).

CGA (Constrained Genetic Algorithm, Fischer et al. 2008) is an early

implementation of a genetic algorithm developed by ASTOS Solutions

GmbH, currently limited to integer parameters. It gives a better global

search than the other implemented methods (all gradient based methods)
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but is not very computationally efficient, and has been empirically shown

to be ineffective for more than about 20 parameters in its current form.

3.4 Application of optimisation methods to

low thrust problems

Traditional high-thrust chemical rocket trajectories do not need optimi-

sation for lunar missions, since the duration is sufficiently small that per-

turbing forces are negligible. In the resulting restricted three-body scenario

(the Earth and Moon are defined as static, with a spacecraft of negligible

mass orbiting them) there are simple analytical solutions for the trajectory

(Euler 1911).

As outlined in Chapter 2 the task of optimising a low-thrust trajectory

is somewhat more complex due to the long duration of forces acting on

the spacecraft requiring lengthy integrations. Section 3.3 provided an ex-

planation of optimisation methods, and Section 3.3.4 introduced a number

of implementations of these methods used in industry. This section will

address how effective previous studies have found these methods to be, and

how applicable they are to Lunar Mission BW-1.

Firstly there are a number of existing literature reviews compiled by

other authors. Betts (1998) provides a generalised explanation of the dif-

ferent optimisation algorithms, without addressing any particular scenar-

ios. McKay et al. (2011) provide a survey of non-Keplerian orbits, which

they define as any orbit with forces additional to the primary point-mass

gravitational force. Literature is included in their survey covering a broad

spectrum of trajectory planning and optimisation from optimal control and

sequential quadratic programming to genetic algorithms. Their study was

focussed towards using low thrust propulsion to maintain a stable orbit

in the presence of these secondary forces, and while Lunar Mission BW-1

requires a transfer trajectory rather than a stable orbit their paper does

conclude that there are some serious deficiencies with established research

in the area:
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“It is clear, however, that work still has to be done to trans-

form the steadily growing body of literature on highly-non-

Keplerian orbits from interesting theory into actual, practical

missions”(McKay et al. 2011, p.663).

Their survey did not include analysis of any actual missions, but rather

compared existing theoretical studies. For the purposes of this literature

review, the following, more extensive review of literature will be divided

into indirect optimal control and gradient projection methods, direct non-

linear programming techniques, and other direct numerical techniques, as

defined in Section 3.3.3.

Optimal control and gradient projection methods

Chemical rocket trajectories do not generally need optimisation for lunar

missions. Interplanetary missions are a different matter entirely, because

gravitational assists can lead to a very complex solution space. The tradi-

tional approach is to patch simplified two-body segments together. Conse-

quently, this technique was widely used to apply optimal control theory to

low-thrust trajectory optimisation, such as that performed by Stuhlinger

(1964). However, many technological hurdles emerged restricting the up-

take of electrical propulsion systems on spacecraft, so interest in the topic

waned.

Most of these hurdles had been overcome by the early 1990s. Golan

and Breakwell (1994) returned to trajectory planning by optimal control

for low-thrust spacecraft, starting from an analytical solution developed by

Breakwell and Rauch (1966). Golan and Breakwell expanded on the previ-

ous work by patching two optimally-controlled spirals together in an Earth-

Moon fixed frame, albeit assuming a specific thrust of 9.81 � 10�3 ms�2,

over 200 times more thrust per kilogram than Lunar Mission BW-1 will

have. While their trajectory analysis does allow for a variable thrust

engine, it does not consider practical issues such as coasting phases to

recharge the batteries, or transits through the Earth’s shadow. The larger

thrust allows a much shorter transfer time than anticipated for Lunar Mis-
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sion BW-1, so weaker perturbations such as the Earth’s oblateness and the

gravitational pull of the Sun and Jupiter were neglected.

Guelman (1995) performed a similar optimal control based trajectory

analysis within a three-body plane. An interesting difference to Golan and

Breakwell’s approach is that Guelman centred his coordinate system at

the Earth-Moon barycentre. This smoothes the equations of motion in

the region where the Earth and Moon have comparable influence on the

spacecraft; however, since a lunar transfer generally spends very little time

in this region, it is usually preferable to model with the conceptually easier

Earth- and lunar-centred frames. Guelman still uses a very simplified

gravitational model, with a continuously thrusting spacecraft. Variable

thrust is allowed for by minimising the total thrust required to achieve

a lunar orbit/impact given a constant thrust duration. This approach

achieved lower magnitude thrust profiles than Golan and Breakwell at the

expense of mission duration (given 1000 hours of thrust Guelman found a

maximum of 4.3�10�3 ms�2 was required, whereas Golan and Breakwell’s

spacecraft took approximately 10.8 days to reach lunar orbit, or about

260 hours). However, this technique is inappropriate in the current scenario

because the mission is constrained by impulse (total thrust delivered over

the flight) rather than thrust magnitude. Furthermore, calculating the

gravitational field within a barycentric frame becomes increasingly complex

with the number of bodies in the gravitational model, making it unsuitable

for very low thrust missions which must allow for the weaker perturbations

mentioned above.

Guelman et al. (2000) improved on their earlier gravitational model by

time averaging the effects of gravity and thrust, ignoring the short term

cyclical changes and focussing instead on the slower changes of orbital el-

ements and thrust profile. This scenario was then solved via Pontryagin’s

Maximum Principle using their own SQP procedure. However, even with

this simplification they ran into severe computational problems, requir-

ing “about 100,000 evaluations of trigonometric integrands per integration

node. Thus even a modest number of nodes, say 100 per trajectory, re-

quires significant time expenditure” (Guelman et al. 2000, p. 497).
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In contrast, Pierson and Kluever (1994) simplified the optimal control

problem by breaking it into three two-dimensional stages. These three

stages consisted of a constant thrust Earth-escape, a cis-lunar coast, and

a constant thrust lunar capture. This method was extended to a full

three-dimensional problem by Kluever and Pierson (1995), Kluever and

Chang (1996), Kluever and Pierson (1997). However, they all assume a

continuous thrust profile which is incompatible with both Lunar Mission

BW-1 ’s thrust constraints, and the inherent restrictions placed on thrust-

ing by passing through the Earth’s shadow. Furthermore, the optimisation

method developed in these papers is adapted from Edelbaum (1964), using

curve fitting to develop an approximate solution with much less compu-

tational effort than the analytical methods utilised previously. Sequential

quadratic programming is then used to solve the curve-fitted problem. The

starting conditions used by Pierson and Kluever (1994) of 100,000 kg with

2942 N of electric propulsion pose a confusingly ambitious scenario, given

the magnitude of thrust available from current electric propulsion systems

and the expectation of sending a mass similar to that of the International

Space Station to the Moon. Worthy of note, however, is their utilisation of

backwards propagation to assist with achieving lunar capture. To ensure

strong capture, their optimisation minimised orbital energy with respect to

the Moon over a fixed time. Within their two-dimensional model, they in-

vestigated the difference between targeting posigrade and retrograde about

the Moon, and found a slight advantage in the posigrade orbit (final LLO

mass of 93,092 kg compared with 93,032 kg for retrograde) due to the

residual horizontal velocity in the S-shaped posigrade transfer compared

to the 3-shaped retrograde transfer. Both scenarios improved on their re-

spective initial guesses by less than 10 kg (about 0.1%) suggesting that

either the optimisation method employed was not particularly effective, or

the problem was particularly smooth and very little improvement could

be made. Given the gains achieved in other similar studies, the former

conclusion seems more probable.

The papers of Kluever and Pierson (1995) and Kluever and Chang

(1996) adapt Pierson and Kluever (1994)’s solution technique into a hy-
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brid approach. First a numerical procedure is presented to find an initial

guess. The trajectory under full thrust is simulated, and the phase time

increased until the spacecraft gets near the lunar sphere of influence (SOI,

defined in Section 4.2). The simulation is extended with no thrust to ob-

serve the lunar fly-by, and the initial angle is adjusted (in a 2D moon-fixed

frame) until the coasting trajectory enters the lunar SOI with a negative

radial velocity relative to the Moon. The process is then repeated in re-

verse for the lunar descent, and the problem then reduces to making the

two trajectories meet in the middle. This two dimensional solution tech-

nique assumes that the initial orbit of the spacecraft about the Earth is

coplanar with the Moon’s orbit. Many other simplifications are made, such

as neglecting forces external to the Earth-Moon system. These simplifica-

tions were required so that the inverse costate equations could be found

allowing Pontryagin’s principle to be exploited, giving a very accurate ini-

tial guess for the thrust profiles in ascent and descent phases. SQP was

then used to blend the phases together. All of these papers assume the

(very large) spacecraft can deliver constant thrust due to constant mass

flow as propellant is expelled, without any possibility of variable thrust

control. They do not address initial launch conditions such as inclination,

not to mention the feasibility of launching such a mass in the first place.

Kluever and Pierson (1997) extended the work to three dimensions, and

even targeted a polar lunar orbit. The transfer still starts from very high

earth orbit, and still implements a thrust-to-weight ratio of 1.3�10�4 ms�2,

much higher than Lunar Mission BW-1 will have available. Pontryagin

necessary conditions were used to parameterise the intial guess control

profile, but the problem was then solved entirely using direct optimisation.

Their initial guess was based on the 2D optimisations for a GEO-HLO

transfer, with the plane change occuring during the HLO-LLO descent

phase. During optimisation the plane change was slowly adjusted from

the HLO-LLO phase until it was almost entirely included in GEO-HLO

phase, demonstrating the efficiency of trajectory targeting maneouvres in

cis-lunar space.
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Nonlinear programming and sequential quadratic programming

methods

Enright and Conway (1992) parameterised the state and control variables

with a piecewise polynomial, thus establishing a collocation method. Ex-

tensive work was then dedicated to demonstrating that the resulting non-

linear problems approximate the optimal control problem, and that the

Lagrange (KKT) multipliers are equivalent to the Pontryagin adjoint vari-

ables. A number of scenarios including an Earth-Moon transfer were then

presented to verify their Hermite-Simpson direct transcription technique

and Runge-Kutta parallel shooting technique. Enright and Conway con-

cluded by identifying some shortcomings of their study, and then outlined

how solving these larger problems may be accomplished.

“... it is desirable to solve lunar transfer problems for lower

thrust levels, lower initial and final orbit radii, and for the

noncoplanar case. The main obstacle is the size of the nonlinear

programming problem that results. (Other enhancements, such

as lunar eccentricity and a better Earth gravity potential, do

not affect the problem size.)” (Enright and Conway 1992, p.

1001).

“First, the previous problem was solved using uniform mesh

point distribution within a phase (and also the same number of

mesh points for each phase). The data suggest that this is ex-

tremely inefficient, and an intelligent redistribution should be

performed. Second, the NLP algorithm NPSOL is not designed

to handle large sparse problems efficiently. The authors have

had some success with the MINOS package that is designed for

large-scale systems, and we recommend it for problems with

more than 400 variables. Finally, alternate coordinate sys-

tems could be employed to possibly increase the smoothness

of the solution, reducing the number of mesh points required.

A variation-of-parameters approach or other strategies might

be attempted.” (Enright and Conway 1992, p. 1001).
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Herman and Conway (1998) use what they describe as a “very low”

thrust magnitude of 10�4 times Earth’s gravity, g0. They identify that

lower thrust increases the size of the problem, and consequently the diffi-

culty. However, their entire transfer takes only 32 days, with 9 Earth orbits

and 7 lunar orbits. Nonetheless, the problem is solved using collocation to

transcribe the optimal control problem into non-linear subproblems. It im-

plements constant thrust and then optimises for time, which has the same

effect as optimising for fuel use. The non-linear problems are solved using

a proprietary McDonnell-Douglas optimisation algorithm called NZOPT.

Despite the simpler scenario, this study does establish collocation and

nonlinear programming as a promising approach to solving the low-thrust

trajectory optimisation problem.

Betts and Huffman (1993) investigated computationally efficient nu-

merical techniques to determine near-optimal trajectories, by exploiting

sparsity within the Jacobian and Hessian matrices. In particular, they

utilised direct transcription and collocation to approximate the optimisa-

tion problem, which was then solved numerically using sparse nonlinear

programming.

Betts (1994) introduced a package called Sparse Optimal Control Soft-

ware (SOCS), and concluded that it is a very computationally efficient

method for numerically optimising low-thrust trajectories that include non-

linearities caused by perturbing forces. This appears to be a very promising

approach, but Betts (2000) acknowledges that none of his papers included

tesseral harmonics of the Earth’s gravitational field, third-body gravita-

tional perturbations from the Sun, Moon, or Jupiter, variable thruster

duty cycles, the Earth’s shadow limits, or atmospheric drag at low alti-

tudes. Betts (2000) used a polar orbit-raising transfer with a spacecraft

thrusting at 1.25 � 10�4 ms�2 as a test case (this is still an order of mag-

nitude greater thrust than Lunar Mission BW-1 ). The resulting optimi-

sation problem had 416123 variables and 249674 constraints.

The direct transcription approach of Betts and Huffman (1993) was

extended by Erb (2002) and then Betts and Erb (2003), by optimising

a lunar transfer from GTO employing solar electric propulsion; a mission
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profile very similar to that of SMART-1. These papers verified that the di-

rect transcription method with sparse non-linear programming is a suitable

approach for low-thrust lunar missions, but once again assumed constant

thrust throughout the transfer, as well as neglecting Earth shadowing and

tesseral Earth harmonics. While this method may be useful for optimising

Lunar Mission BW-1, as a numerical approach it is not guaranteed to find

the optimal path. The performance is also heavily reliant on the initial

guess.

“The design of an initial guess for a trajectory with a vast

number of revolutions, significant inclination changes, captur-

ing and orbital corrections is a challenging task on its own”

(Betts and Erb 2003, p. 144).

Letterio (2005) described the optimisation of a low thrust transfer using

an identical thrust regime to Lunar Mission BW-1 (Letterio’s study was

completed as part of the same project with Universität Stuttgart). How-

ever, his study only covers the ascent phase, from geosynchronous transfer

orbit (GTO) to the outer limits of the van Allen belts, using the higher

thrust arcjet. The emphasis was on increasing the radius of the orbit as

quickly as possible to escape the van Allen belts. Furthermore, at these

relatively low altitudes the gravitational perturbations due to the Moon’s

gravity are fairly uniform. This limits the extent to which they can be

exploited to optimise the trajectory of the spacecraft.

An interesting series of articles in Acta Astronautica (Volume 61 Issue

9) describe a competition devised by ESA to develop a benchmark test

for low thrust optimisation. The inaugural competition, held in 2007, was

to optimise a low-thrust interplanetary trajectory requiring an asteroid

rendezvous. As the winners of the inaugural competition, Petropoulos et

al. (2007) summarised their findings:

“...it seems that a rough global search, based on simple

numerical schemes coupled with mission design intuitions, is a

necessary precursor activity to the local optimisation, and one
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which is a rich area for research” (Petropoulos et al. 2007, p.

814).

The 2007 competition was dominated by gravity assists to maximise a

spacecraft’s velocity, and as such is more relevant to inter-planetary tra-

jectories than lunar transfers. Nonetheless, several entries attempted to

optimise direct transfers from Earth to the target orbit, a scenario with

similarities to the planned lunar transfer of Lunar Mission BW-1. In par-

ticular, Dachwald and Ohndorf (2007) developed a program called Intelli-

gent Trajectory Optimization using NeuroController Evolution (InTrance)

that combines evolutionary algorithms and neural networks to search for

an optimal thrust profile. Despite the apparent failure of this method in

the competition, their diagnosis of the resulting trajectory demonstrates

key aspects of exploiting gravitational perturbations.

Subsequent to the competition, work was continued on using evolu-

tionary algorithms and neural networks to optimise parameterised steering

strategies for interplanetary missions (Carnelli et al. 2007, Carnelli et al.

2009). Ohndorf et al. (2009) has investigated the applicability of InTrance

for Earth-Moon trajectories, and concludes that the method shows promise

but is not yet fully developed. Furthermore, the parameterised steering

strategies implemented in InTrance successfully restrict the computational

complexity of the optimisation problem, but at the cost of inherently re-

stricting the flexibility of the optimision process.

Other methods

There are of course many alternatives to gradient based methods of opti-

misation. Techniques such as genetic algorithms and simulated annealing

have attracted an increasing amount of interest in recent decades, as out-

lined by Ren et al. (2007). The primary advantage of these methods is

that they provide a better global search before descending into a basin of

convergence. Unfortunately there is still no way to be certain that the

basin selected will have a better optimum than others, however an implicit

assumption that the gradient is generally fairly uniform across the search
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area (that is, the problem is not very stiff) suggests that the basin with a

better objective function at the top will have a better objective function

at the bottom also. The assumption of a non-stiff search area also implies

that the optimal solution will be located at the bottom of the widest basin

of convergence, which is additionally the most likely to be found by the

search algorithm.

An interesting methodological approach to optimisation is presented

by Jackson and Coverstone (2008). Rather than developing an analytic

equation to optimise, or a numerical algorithm to iteratively determine a

search direction, a coarse mesh of possible trajectories is plotted based on

a few controlled parameters. The largest basin of convergence is then se-

lected based on the assumption that it will be the most robust - even if the

global optimum is found using another technique, the spacecraft will never

be able to follow that trajectory exactly. If the basin of convergence is too

narrow, any number of unexpected events could easily push the spacecraft

onto a severely sub-optimal trajectory, potentially resulting in the space-

craft not completing its mission. Iteratively calculating trajectories over a

mesh of possible launch parameters determines a near-optimal trajectory,

within a very broad basin of convergence. While the test case used by

Jackson and Coverstone (2008) involved continual thrust from Earth or-

bit to the Sun-Earth libration point L1, the methodological nature of this

approach allows easy implementation of discontinuous thrust profiles for

Lunar Mission BW-1.

Lee et al. (2005b) performed a number of interplanetary trajectory

optimisations using the more commonplace direct methods of genetic al-

gorithms and simulated annealing. He points out that evolutionary algo-

rithms often need distributed computing environments due to the number

of computations involved. Computing power is becoming cheaper, but the

parameterised problems are becoming larger.

Reviewed literature such as Dachwald (2005) and Jackson and Cover-

stone (2008) has shown an increasing trend using these direct methods to

perform a global search identifying the most promising basins of conver-

gence. However, depending on the implementation direct methods often



44 Chapter 3. Review of relevant literature

have difficulty determining the local optimum within the basin. Conse-

quently there is a large and promising body of work utilising direct meth-

ods for global search, followed by indirect gradient methods to find the

local optima within those basins (Stryck and Bulirsch 1992, Kluever and

Pierson 1995, Vasile and Locatelli 2009, Yam et al. 2011).

3.5 Summary of gaps in existing knowledge

There is a variety of literature on trajectory optimisation for low-thrust

space vehicles, although surprisingly few reports have been written on the

trajectory optimisation of missions launched over the last decade. Conse-

quently, the majority of literature is highly theoretical, and in most cases

heavily simplified.

Early research in low-thrust trajectory analysis consisted of analytical

solutions to two dimensional, two-body and restricted three-body scenar-

ios. As more complex perturbing forces were included, the non-linearity

of the functions to be optimised increased dramatically. More recent pa-

pers have resorted to numerical optimisation techniques. These numerical

techniques are very computationally intensive, and are not guaranteed to

find an optimal solution.

Even when these studies have included perturbing forces, they have

been viewed as an unfortunate side-effect of space travel. Certainly, they

do complicate the mathematics of spacecraft trajectory planning. As the

spacecraft thrust becomes smaller and the transfer duration increases, the

influence of external perturbing forces becomes larger. With an electric

propulsion system as weak as that onboard Lunar Mission BW-1, the per-

turbing force of the Moon’s gravity can dominate the thrust. Consequently,

it seems appropriate to search for a computationally efficient optimisation

method to exploit these perturbing forces to increase the spacecraft’s or-

bital velocity and radius.

There is a vast amount of literature on low thrust trajectory optimi-

sation methods. Early efforts focussed on indirect optimal control theory,

which was soon discretised and solved with numerical gradient techniques.
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Algorithms have been improving to allow more complex higher order prob-

lems to be solved using these techniques. Meanwhile, much work has been

done recently developing direct optimisation techniques. These allow more

flexibility in modelling, as required by the complexity of orbital dynamics,

and can tolerate stiffer problems with undulating solution spaces.

The most promise for future developments appears to come from evolu-

tionary algorithms, but unfortunately the genetic algorithm implemented

in GESOP is still quite immature. Consequently the Lunar Mission BW-

1 trajectory design proceeded using the sparse optimal control software

most suitable for higher order problems. This optimal control technique

required determination of an intial guess for every optimisation, calling

for a thorough knowledge of orbital dynamics and the forces acting on the

spacecraft throughout the transfer, and the mechanics of lunar capture.
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Chapter 4

Orbital dynamics and the

space environment

4.1 Orbits

A large amount of specialised terminology is used throughout this thesis.

It is assumed that professionals within the space industry are already fa-

miliar with this terminology, but for the purposes of completeness a brief

explanation is provided here.

Firstly, the motion of bodies in space is defined by their position rel-

ative to each other, r, and their velocity relative to each other, v. These

determine their relative orbital energy, ε, given by

ε � εk � εp (4.1a)

�
v2

2
�
µ

r
, (4.1b)

where µ is the gravitational parameter of the other body, and the subscripts

k and p represent kinetic and potential energies, respectively.

In the absence of external forces, orbital energy must be conserved.

Under this constraint, two-body orbits take the form of conic sections,

a mathematical construct studied as early as 200 BC by Apollonius of

Perga. The non-degenerate forms of conic sections are a circle, an ellipse,
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Figure 4.1: Elliptical parameters.

a parabola, and a hyperbola (the degenerate forms are a single point, a

straight line, or two intersecting straight lines). Each of these correspond

to a particular type of orbit.

Only two of these conic sections are important within orbital mechanics.

In a frame centred on one of the bodies, a hyperbola describes the path

of a second body with net positive orbital energy, and an ellipse describes

the path of a second body with net negative orbital energy. A parabola is

a special case where relative orbital energy is exactly zero, and a circular

orbit is a special case of the ellipse.

The primary body is at a point mathematically defined by the conic

section, called a focus. A number of other parameters are defined for all

conic sections, but only shown for an ellipse in Figure 4.1 since ellipses

are conceptually easier and the majority of Lunar Mission BW-1 ’s orbit

is expected to be elliptical.

The semimajor axis, a, is half of the length of the major axis, and the

semilatus rectum, p, is half of the length of the latus rectum. Finally, the

periapsis is the point in the orbit closest to the primary body, whilst the

apoapsis is the point furthest from the primary body.
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4.2 Sphere of influence

The sphere of influence approximates the region of space in which a pri-

mary body dominates the gravitational forces on any small object such as

a spacecraft. This is traditionally used to determine coasting trajectories

of chemically propelled spacecraft, thus ignoring third-body gravitational

forces. Due to the longer transfer times of low-thrust spacecraft it is nec-

essary to include these additional gravitational forces across the entire

trajectory, although the sphere of influence provides a convenient point to

switch reference frames. The sphere of influence is defined as

rSOI � as

(
mp

ms

) 2
5

, (4.2)

where mp and ms are the mass of the primary and secondary bodies respec-

tively, and as is the semimajor axis of the secondary body’s orbit around

the primary (Kemble 2006). The Earth-Moon system spheres of influence

are shown in Figure 4.2. Note that the Moon’s sphere of influence (with

respect to the Earth)1 lies entirely within the Earth’s (with respect to the

Sun)2.

4.3 Epoch

In any dynamic system, time is one of the most important parameters.

Since the Universe is constantly changing, most of it beyond human con-

trol, any timescale needs an arbitrary starting point assigned. The current

best practice is to use the epoch J2000, defined as noon, 1st January 2000,

Terrestrial Time (TT). Terrestrial time is a theoretical time standard allow-

ing for gravitational time dilation at the Earth’s surface (general relativity)

and the Lorentz transformation for moving bodies (special relativity); how-

ever, the Earth’s rotation is also slowing down, so another transformation

1calculated as just over 66,000 km from the Moon’s centre, just under 5/6 of the distance
from the Earth to the Moon.

2calculated as almost 925,000 km from the Earth’s centre.
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Figure 4.2: Earth and Moon spheres of influence.

is needed to convert to Universal Coordinate Time (UTC) as outlined by

the U.S. Naval Observatory (USNO, 2008).

Due to the discontinuous timescales traditionally used for time (sec-

onds, minutes, hours, days and years) there are a number of measures

commonly used to identify time. The Julian date (JD) is the time in days

and fractions of a day (defined as 86,400 seconds) since noon, 1st Jan-

uary 4713BC UTC, giving the J2000 epoch a JD of 2451545.0 TT. For the

optimisation, a fixed offset of 5113.5 was used, bringing the epoch up to

midnight, 1st January 2014 UTC. Adding the optimisable parameter for

departure date gives the start of the trajectory. The time elapsed since this

departure date (mission time) at each integration node is calculated as the

trajectory is propagated forwards. Some applications required conversion

to another continuous time scale called Ephemeris Time (ET). As outlined

by the Navigation and Ancillary Information Facility (2010), Ephemeris

Time is the number of seconds since the J2000 epoch (seconds themselves

being defined by oscillations of caesium atoms).
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4.4 Reference frames

In order to model a dynamic rigid body system, it is important to first

define the appropriate reference frames. The International Earth Rotation

Service (IERS) defined the International Celestial Reference Frame (ICRF)

as a quasi-inertial frame centred on the barycentre of our solarsystem (Ma

et al. 1998). Relativity requires that no truly inertial frames can exist,

but by defining the ICRF relative to extragalactic microwave sources the

angular rotation of the frame is so slow it can be assumed to be negligible

for this project.

The fundamental XY plane of the ICRF coincides with the Earth’s

equatorial plane at Julian epoch J2000. The x-axis is defined as the in-

tersection of the equatorial and ecliptic planes (the ecliptic plane is the

plane within which the Earth orbits the Sun, as shown in Figure 4.3),

with positive being towards the Earth during the March (vernal) equinox

at Julian epoch J2000. Because this direction points roughly towards the

constellation Aries it is often denoted P. This coordinate system is useful

as an absolute reference within the solar system. However, since the ma-

jority of Lunar Mission BW-1 ’s trajectory will be an Earth escape spiral,

an Earth-centred inertial (ECI) reference frame will be used.

ECI frames remain quasi-inertial because of neglected centrifugal and

Coriolis forces due to the solar system’s orbit around the galactic centre.

Additionally there are residual centrifugal forces within the frame as the

origin (the Earth) orbits around the Sun. These forces may be compen-

sated by including the Sun as a gravitational perturbation (as outlined in

Section 4.7.1).

While it is possible to translate the ICRF to be Earth-centred, the

ICRF has not been universally adopted yet. In particular, the NASA

SPICE libraries use an older standard, the J2000.0 frame (not to be con-

fused with the J2000 epoch, upon which it is dependent), based on optical

measurements of galactic stars called the FK5 catalogue. Due to this dis-

crepancy in measurement, the J2000 reference frame is offset from the

ICRF by a small rotation: the J2000 pole offset is about 18 milliarcsec-
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Figure 4.3: Ecliptic and equatorial planes. From an Earth-centred frame,
the Sun appears to orbit the Earth. The plane of its orbit is the ecliptic
plane. The solstices and equinoctia are labelled based on the northern
hemisphere seasons.

onds (mas) and the equinox offset is approximately 78 mas, increasing by

about 3 mas per year (Gontier et al. 2002). For compatibility with the

NASA SPICE libraries the optimisations performed in GESOP were re-

stricted to the J2000.0 frame, so for consistency it was also used in the

STK simulations described in Section 7.2.3.

Surface coverage analysis and higher order gravitational forces (dis-

cussed in Section 4.7.2) require an additional frame that rotates about

the poles (the z-axis) in time with the body’s rotation, so that the sur-

face appears stationary. This is often called a surface-fixed frame, but is

sometimes given a dedicated name (for example, the lunar-centred fixed

frame is often called selenocentric, and the Earth-fixed frame is often called

geodetic). The IERS maintains an Earth-centred fixed (ECF) frame called

the International Terrestrial Reference Frame (ITRF). The NASA SPICE

libraries implement ITRF93, which allows for precession based on the

1976 IAU model by Lieske et al. (1977), nutation based on the 1980 model
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with IERS corrections by Herring et al. (1986), the differences between

terrestrial time and atomic sidereal time, and polar motion due to changes

in the Earth’s moment of inertia (Montenbruck and Gill 2000).

During the later stages of Lunar Mission BW-1 the spacecraft will

be orbiting the Moon. Since most coordinate systems (discussed in Sec-

tion 4.5) are designed to have the primary body at the origin, a lunar-

centred inertial (LCI) frame will be used for these phases. Translation to

lunar centred frames requires accurate determination of the Moon’s po-

sition, addressed in Section 4.7.1. The rotation required to determine a

fixed lunar frame is available in both STK and SPICE and known as the

Mean Earth frame. The z-axis is defined along the primary inertial axis

of the Moon, while the x-axis is defined towards the mean position of the

Earth relative to the Moon (since the Moon is tidally locked to the Earth,

the Earth vector traces a circle on the Moon’s surface) (LRO Project and

LGCWG White Paper 2008).

Finally, to model the forces acting on the spacecraft it is necessary

to define a local frame. Within the ECI frame, r represents the position

vector of the spacecraft from the origin (defined as the centre of the pri-

mary body), as shown in Figure 4.4, while v is the velocity vector of the

spacecraft. Designating the position vector as the local vertical, and the

tangent relative to the central body as the local horizontal, this defines a

local frame known as the Gauss frame, or the Local Vertical-Local Hor-

izontal (LVLH) frame (STK Suite Help Files 2011). It is important to

note that the local horizontal is not necessarily parallel to the velocity, as

highlighted in Figure 4.5.

For compatability with the majority of cited literature, including Kep-

peler (2000)’s comprehensive study of various coordinate systems applica-

ble to orbital dynamics, the following notation shall be used throughout

this thesis. The radial direction (from the centre of the primary body to

the orbiting spacecraft) is a unit vector based on the spacecraft’s position

r, and is defined as

îr �
r

r
. (4.3a)
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Figure 4.4: Earth-Centred Inertial frame. Axes x̂, ŷ, ẑ represent the
J2000.0 frame, where x̂ points towards the vernal equinox P and ẑ points
through the North pole of the Earth.

The normal direction, îh, is perpendicular to the orbital plane. The

subscript h is used because this vector is in the direction of specific angular

momentum, h � r� v. Since r and v are both within the orbital plane,

this vector may be derived using

îh �
r� v

‖r� v‖
. (4.3b)

The tangential direction, îθ, is perpendicular to radial direction, but

still within the orbital plane. It is important to note that this direction is

not necessarily parallel to velocity, and so should be derived using

îθ � îh � îr. (4.3c)
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Figure 4.5: Local Gauss frame. Vector v represents the spacecraft’s veloc-
ity. Vector r represents the spacecraft’s position relative to the primary
body. True anomaly ν represents the angle of this position relative to
the periapsis.

4.5 Orbital elements

Orbital motion essentially stems from Newton (1687)’s universal law of

gravitation,

F � �m
µ

r2
îr, (4.4)

where µ represents the gravitational constant of the primary body, m rep-

resents the mass of the orbiting body and r represents the distance between

the two.

Kaplan (1976) provides a thorough derivation of orbital dynamics demon-

strating that in the absence of external forces this law results in elliptical

motion (when escape velocity is not exceeded).

As described by Letterio (2005), Cartesian positions and velocities are

not suitable elements for modelling elliptical motion because they result

in complex trigonometric equations for even the simple case of circular

motion. Keplerian coordinates (semi-major axis a, eccentricity e, inclina-

tion i, argument of periapsis ω, longitude of the ascending node Ω and

true anomaly ν) shown in Figure 4.6 describe orbits very efficiently. Un-

fortunately, Keplerian coordinates exhibit singularities as inclination or
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Figure 4.6: Keplerian orbital elements. Semimajor axis a and eccentricity
e define the shape of the elliptical orbit. Inclination i represents the angle
between the orbital plane from the equatorial plane, while right ascension
of the ascending node Ω defines the axis along which the orbital plane
is inclined, relative to the vernal equinox. The argument of periapsis
ω defines the orientation of the orbit within this plane, by locating the
periapsis relative to the ascending node. The true anomaly ν was defined
in Figure 4.5.

eccentricity approach zero, causing computational difficulties during opti-

misation3.

The singularities in Keplerian elements severely limit the step size that

can be used during optimisation without accumulating large errors in the

calculations. Therefore the recent trend is to use equinoctial elements for

optimising orbital trajectories. A review of orbital element sets by Hintz

(2008) came to the same conclusion as Letterio and Keppeler: the elements

resulting in the smoothest trajectories are the modified equinoctial element

3Division by a parameter close to zero creates a fast variable, where even small changes
in one parameter can result in large changes to another. This requires very small step
sizes when using numerical integration, hence increasing the number of computations
required. Furthermore, when e is equal to zero, ω is undefined (a circular orbit does
not have a periapsis) and when the i is equal to zero, Ω is undefined (an equatorial
orbit does not have an ascending node).
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set proposed by Walker et al. (1985),

p � ap1 � e2q, (4.5a)

f � e cospω � Ωq, (4.5b)

g � e sinpω � Ωq, (4.5c)

h � tan
i

2
cos Ω, (4.5d)

k � tan
i

2
sin Ω, (4.5e)

L � ω � Ω � ν, (4.5f)

where p represents the semi-latus rectum, as explained in Section 4.1, L

represents the true longitude and f , g, h and k are convenient non-singular

transformations of the Keplerian elements, with no physical meaning.

The lack of physical meaning in equinoctial elements has hindered their

uptake. Many published studies still use Keplerian or even Cartesian coor-

dinates, and many widely used textbooks do not even mention the modified

equinoctial element set. For example Chobotov (2002, p. 194) outlines the

original set of equinoctial elements proposed by Broucke and Cefola (1972),

but neglects the modified set.

4.6 Orbital equations of motion

Differentiating equations (4.5) defining the modified equinoctial elements

and then substituting through by those same equations to remove the

Keplerian terms, gives the Gaussian equations of motion as presented by

Walker et al. (1985), Walker (1986), Keppeler (2000), Erb (2002), Letterio
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(2005), Hintz (2008) 4,

9p �
√

p
µ
2p
w

∆θ, (4.6a)

9f �
√

p
µ

(
∆r sinL� (w�1) cosL�f

w
∆θ �

g(h sinL�k cosL)
w

∆h

)
, (4.6b)

9g �
√

p
µ

(
�∆r cosL� (w�1) sinL�g

w
∆θ �

f(h sinL�k cosL)
w

∆h

)
, (4.6c)

9h �
√

p
µ
s2 cosL

2w
∆h, (4.6d)

9k �
√

p
µ
s2 sinL

2w
∆h, (4.6e)

9L �
√

p
µ

(
h sinL�k cosL

w
∆h

)
�
√
µp
(
w
p

)2
, (4.6f)

which have been simplified (and made more computationally efficient) us-

ing the terms

w � 1 � f cosL� g sinL, (4.6g)

s2 � 1 � h2 � k2, (4.6h)

where µ represents the gravitational constant of the primary body

(398600.4418�109 m3s�2 for the Earth as per National Imagery and Map-

ping Agency 2000 and 4902.7989 � 109 m3s�2 for the Moon as per Zhang

1994). The perturbations ∆r, ∆θ and ∆h represent the total acceleration

due to forces other than the primary body’s classical gravity, split into

vector components using the LVLH frame outlined in Section 4.4. Note

that ∆θ is not necessarily parallel to the velocity vector. Also note that in

the absence of perturbations, the only time-varying element is L, the true

longitude. This is because the other elements specify an orbit, whereas

the true longitude represents the position of the orbiting body within that

orbit. In the absence of perturbing forces the orbit remains constant.

4Note the equation for 9g was corrected in Walker (1986). This correction is sometimes
missed in later publications, such as Hintz (2008).
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4.7 Perturbations

The total perturbing force [∆r ∆θ ∆h] outlined in Section 4.6 is resolved

from the influence of third bodies ∆q, the oblateness of the primary body

∆g, the solar radiation pressure ∆@, and the applied thrust of the space-

craft ∆T. Erb (2002) states that,

“The acceleration ∆q can, depending upon the overall sit-

uation, either be something to take advantage of, or something

that needs to be compensated [for]” (Erb 2002, p. 8).

This sentence summarises one of the key objectives of this study: to plan

the spacecraft’s trajectory such that the gravitational assists ∆q increase

the velocity of the spacecraft relative to the Earth as much as possible,

thereby reducing the thrust requirements on the propulsion system.

4.7.1 Third-body perturbations

Reviewed literature unanimously agrees that the most accurate model

available for relative positions of bodies within the solar system is the

NASA JPL Planetary and Lunar Ephemerides. This data is accessible

from Jet Propulsion Laboratory (2004), in the form of Cartesian coordi-

nates for celestial bodies at any given Julian Date. Many prior studies have

used the JPL DE-405 Ephemeris, but for this project the JPL Ephemeris

DE-421 were implemented through the NASA SPICE libraries. As ex-

plained in their supporting documentation, “While the lunar orbit in DE

421 is close to that in DE 418, it is a major improvement over the widely

distributed DE 405 (Standish 1998). For DE 405 the lunar orbit was not

fit in a way consistent with the other planets” (Folkner et al. 2008, p. 1).

To calculate the distance between the respective bodies, it is necessary

to translate the spacecraft’s position into Cartesian coordinates. Betts

(1994) derives the following set of equations for this purpose, although

more recent literature often makes typographical mistakes when reproduc-

ing them, particularly with regard to the signs of some terms (for example
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Keppeler 2000, Erb 2002, Letterio 2005),

rx �
r
s2

(cospLq � α2 cospLq � 2hk sinpLq) , (4.7a)

ry �
r
s2

(sinpLq � α2 sinpLq � 2hk cospLq) , (4.7b)

rz �
2r
s2

(h sinpLq � k cospLq) , (4.7c)

vx � � 1
s2

√
µ
p

(sinpLq � α2 sinpLq � 2hk cospLq � g

�2fhk � α2g) , (4.7d)

vy � � 1
s2

√
µ
p

(� cospLq � α2 cospLq � 2hk sinpLq � f

�2ghk � α2f) , (4.7e)

vz �
2
s2

√
µ
p

(h cospLq � k sinpLq � fh� gk) , (4.7f)

where rx,y,z and vx,y,z are the position and velocity respectively of the

spacecraft in Cartesian axes, p, f , g, h, k and L are the modified equinoctial

elements of the spacecraft as per equation (4.5), w and s2 are the helper

functions as per equations (4.6g) and (4.6h) respectively, α2 � h2 � k2

and r � p
w

are two additional helper functions, and µ once again is the

gravitational constant of the primary body the spacecraft is orbiting.

Betts (1994) demonstrates that the gravitational acceleration ∆q on a

spacecraft due to n multiple bodies within a frame centred on the primary

body is described by

∆q � �
n∑
j�1

µj

[
dj
d3j

�
sj
s3j

]
, (4.8)

where µj is the gravitational constant of the j-th body, dj is the distance

of the j-th body (from the satellite), and sj is the distance of the j-th body

from the primary body. This is required to remove the bias from the j-th

body attracting the primary body (and thereby, the origin of our reference

frame). As explained by Kaplan (1976, p. 357), “The effective attraction

of the Moon on a unit mass near Earth is just the Moon’s attraction at

the mass minus the Moon’s attraction at the Earth’s center”.

While equation (4.8) can provide the third body perturbing forces di-



4.7. Perturbations 61

rectly, Battin (1999) shows that the equation is prone to truncation error

due to the potentially large difference in distances involved. Therefore an

alternative algorithm is recommended,

F pqkq � qk

[
3 � 3qk � q2k

1 � p
√

1 � qkq3

]
, (4.9a)

where

qk �
rT pr� 2skq

skT sk
. (4.9b)

The acceleration vector is then resolved as

∆q � �
n∑
k�1

µk
d3k
pr� F pqkqskq. (4.10)

These equations were used repeatedly in the calculation of every phase

of this study, to calculate the perturbing forces due to the Moon’s gravity

(while in the Earth’s sphere of influence), the Earth’s gravity (while in

the Moon’s sphere of influence), and the gravity from the Sun, Jupiter,

Mars, and Venus. Saturn is usually excluded even from low-thrust long

duration studies such as this due to its large orbit (9-10 AU, compared

to Jupiter’s 5 AU) and comparatively low mass (95 Earths, compared to

Jupiter’s 317 Earths).

For this study, the gravity due to the Sun, Mars, Venus, and the Moon

was calculated from their respective centres of mass. The total gravity

from the Jupiter system was calculated from its barycentre.

4.7.2 Oblateness of primary body

The Earth is not a perfect sphere. These imperfections are most commonly

approximated with spherical harmonics, which models a uniform density

ellipsoid. Whilst the differences between a sphere and an ellipsoid of iden-

tical mass are only noticable in low altitude orbits, since this is where

the spacecraft trajectory is most susceptible to parameter variations it can

have a substantial effect on the final state. Consequently it is important to
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Figure 4.7: Spherical Harmonics. The degree of the zonal harmonic is
m, and the order of the sectorial harmonic is n.

include these variations in the model. Latitudinal harmonics are known as

zonal harmonics, longitudinal harmonics are known as sectorial harmon-

ics, and any combination of the two is known as a tesseral harmonic. Some

examples of spherical harmonics are shown in Figure 4.7.

The centrifugal force of the Earth spinning causes it to bulge outwards

at the equator. This causes the equatorial radius of the Earth to be over

30 km greater than the polar radius, resulting in a significant first zonal

harmonic coefficient, J2 (m=2, n=0). Since the Earth’s J2 coefficient is

three orders of magnitude greater than its J3 and J4 coefficients these

higher order terms have often been neglected in simulations, such as those

performed by Yang (2007).

However, modelling the central body as an ellipsoid does not allow

for inconsistent density of the body’s crust. The Moon in particular has

very inconsistent density due to the presence of mass concentrations or

mascons, so severe that most low lunar orbits (LLOs) will decay and impact

the surface within 6 months (Zeile et al. 2010). To include variations in
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density, recent satellite missions have developed very accurate models of

the gravitational potential around the Earth (such as the Gravity Recovery

and Climate Experiment mission, GRACE, sponsored by the Deutsches

GeoForschungsZentrum 2009), and the Moon (such as NASA’s Gravity

Recovery and Interior Laboratory, GRAIL).

Potential energy (W ) is defined in the Global Geodetic Survey (Na-

tional Imagery and Mapping Agency 2000)

W � V � Φ, (4.11)

where Φ is the potential due to the body’s angular momentum, when

rotating at angular velocity ω about an axis r metres away, given by

Φ �
1

2
ω2r2. (4.12)

The gravitational potential function (V , units m2s�2) is defined as

V �
µ

r

[
1 �

nmax∑
n�2

n∑
m�0

(a
r

)n
P̄n,mpsinφ

1qpC̄n,m cosmλ� S̄n,m sinmλq

]
,

(4.13)

where µ is the body’s gravitational constant (defined in Section 4.6), a

is the semi-major axis of the ellipsoid body (defined by National Imagery

and Mapping Agency as 6378137.0 m for the Earth). The geographic pa-

rameters of satellite radius r, longitude λ and latitude φ are calculated by

converting the inertial frame to a surface-fixed frame, as outlined by the In-

ternational Earth Rotation Service (Petit and Luzum 2010). P̄n,m (sinφ1)

represents the series of normalised associated Legendre polynomials de-

fined by National Imagery and Mapping Agency (2000) and reproduced in

Appendix A. Parameters n and m represent the degree and order of the

normalised gravitational coefficients Cn,m and Sn,m. It is these normalised

coefficients that are calculated, recorded and published.

For this study, the normalised gravitational coefficients C̄n,m and S̄n,m

for the Earth were taken from the Joint Gravity Model 3 (JGM3, Tapley

et al. 1996) due to availability of data. Several newer models have been
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released such as the GRACE models mentioned earlier, but the JGM3 ac-

curacy was sufficient for this project. For similar reasons the gravitational

model of the Moon was based on data from the Lunar Prospector mission

(LP165, Konopliv et al. 2001).

The perturbing force acting on the spacecraft is then determined using

∆g � ∇W. (4.14)

Unfortunately the factorials and summations make this equation inappro-

priate for repetitive computer evaluation. A recursive algorithm developed

by Montenbruck and Gill (2000) was used to simplify the calculation, while

still retaining the higher order accuracy.

The impact of gravitational harmonics is obviously going to be greater

at lower altitudes. The Earth harmonics, dominated by the J2 bulge, affect

mostly ω and Ω (Montenbruck and Gill 2000, Eshagh and Najafi Alamdari

2007); for example, a sun-synchronous orbit (SSO) precesses around the

Earth by 360� per year, but suffers minimal inclination change. For rough

analysis of results, this behaviour is approximated by

9Ω � �π
3J2
r2periµ

cos i, (4.15a)

9ω � π
3J2

2r2periµ
p5 cos2 i� 1q, (4.15b)

where rperi is the periapsis radius.

4.7.3 Solar effects

Beyond the Sun’s gravity, there are two important kinematic effects caused

by the Sun during the transfer: the solar wind, and the pressure from solar

radiation. The solar wind consists of particles emitted by the Sun, mainly

ionised nuclei and electrons. Because of the charged particles in the solar

wind, it does not penetrate the magnetosphere around the Earth, except

at the magnetic poles. The magnetosphere starts at about 10 Earth radii

from the centre of the Earth. Thus, solar wind may be neglected during the
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ascent phase. However, even during the later lunar-centric phases the solar

wind is extremely variable, and the high-energy particles often penetrate

the spacecraft damaging electronics (see Section 4.9.1) but preventing any

significant momentum transfer (Vaughan et al. 1996). As a result, solar

wind has been neglected over the entire trajectory.

Solar radiation, in contrast, is fairly constant and predictable. Specu-

lar reflection results in up to twice the momentum of each incident photon

being transmitted to the spacecraft; this is the mechanism exploited by

solar sails. The average solar power density is calculated by dividing the

average solar luminosity, L@, by the surface area of a sphere centred on

the Sun, 4πr2
@

, giving approximately 1367.5 W of radiation per square me-

tre of area near the Earth-Moon system. The momentum is subsequently

determined by dividing through the speed of light, c, giving approximately

4.56�10�6 Ns per square metre of cross-sectional area per second, in other

words, a continual force of 4.56 � 10�6 N on every square metre of area

seen from the Sun. This “constant” forms the basis of Chobotov’s equa-

tion to average the acceleration of a body due to solar radiation pressure

(Chobotov 2002, p. 223). Unfortunately Chobotov’s equation is intended

for spacecraft in geostationary orbit. Lunar Mission BW-1 travels much

further from the Earth than GEO, and consequently requires calculation of

the spacecraft’s distance from the Sun to determine average solar pressure,

as given by

∆@ � �
L@

4πr2
@
c

(
Aeff
m

)
p1 � βqr̂@, (4.16)

where ∆@ is the magnitude of the acceleration due to solar radiation, in

ms�2, β is the specular reflection coefficient (+1 for total mirror reflection,

0 for total black body absorption, -1 for total transparent transmission),

Aeff is the effective satellite projected area, and m is the total spacecraft

mass. The speed of light, c, is 299792458.0 ms�1, and the average solar

luminosity, L@, is 3.846 � 1026 W.

For assumed values of 250 kg and 5.4 m2 projected surface area, Lunar

Mission BW-1 will have an acceleration due to solar radiation varying from
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1.906 � 10�7 ms�2 to 2.038 � 10�7 ms�2 over the course of the year. This

force is two orders of magnitude less than the maximum thrust available

to Lunar Mission BW-1.

4.7.4 Applied thrust

The Lunar Mission BW-1 craft has four PPT thrusters at 1.5 mN each,

providing a total thrust of 6 mN. This accelerates the 200 kg craft at 3 �

10�5 ms�2. Since the direction of thrust is a design parameter (adjustable

by rotating the spacecraft to point the thruster in the desired direction) a

unit vector providing this direction is defined as

û �

 ur

uθ

uh

 , (4.17)

such that the thrust vector is given by

∆T �
T

m
û, (4.18)

where T is the instantaneous thrust, and m is the instantaneous craft wet

mass.

In an elliptical orbit, thrust (approximately) tangential to orbital radius

is the most efficient way to increase orbital speed and therefore push the

spacecraft into a higher orbit. This has the unfortunate side effect of

continually increasing the orbital period, and consequently decreasing the

rotation rate required to steer the thrust vector (the spacecraft must rotate

once per orbit to thrust in a constant direction relative to the Earth). This

will need to be compensated for with the attitude control system.

4.7.5 Total perturbing forces

Since these perturbing forces vary over the course of the trajectory, and

are often quite computationally intensive to calculate, a plot of them all



4.8. Rocket performance 67

clearly demonstrates which forces need be included in the optimisation.

Since many of these forces vary with a cyclical nature depending on the

orbits of the satellite, the Moon and other bodies, the plot in Figure 4.8

shows the upper limit of these forces. Jupiter’s gravitational pull is almost

negligible compared with the spacecraft’s thrust, and the acceleration due

to the Earth’s J2 spherical harmonic (representative of the total force due

to Earth oblateness) is only significant for the first 108 metres.
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Figure 4.8: Upper limit on perturbing forces in the region between the
Earth and the Moon.

4.8 Rocket performance

4.8.1 Specific Impulse

A key figure in measuring the performance of a thruster is the specific im-

pulse, Isp. As mentioned in Section 3.2, specific impulse is the momentum

added by the thrusters per unit of propellant expended.
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Impulse is the scalar sum of force applied over a given time,

I �

∫ tf

t0

|F| dt. (4.19a)

By Newton (1687)’s second law F � dp
dt

it is possible to derive the impulse

in terms of momentum,

I �

∫ tf

t0

dp

dt
dt (4.19b)

�

∫ tf

t0

dp, (4.19c)

which has units of kgms�1, and in the special case of collinear forces is

equal to the change in momentum ∆p.

By the conservation of momentum in the spacecraft’s moving frame, its

increase in momentum is equal and opposite to the momentum imparted

to the exhaust,

∆pcraft � ∆pexhaust � 0 (4.20a)

∆pcraft � mexhaustvexhaust (4.20b)

I � mexhaustvexhaust. (4.20c)

Therefore the specific impulse of the spacecraft should be equal to the ex-

haust velocity, and its units should be ms�1. However, the use of imperial

units meant that specific impulse was traditionally reported as momentum

change per unit weight of propellant, so the final value is divided by stan-

dard gravity on Earth, g0. Consequently specific impulse is reported in

seconds,

Isp �
vexhaust
g0

. (4.21)

4.8.2 Delta-v

Since every circular orbit has a unique orbital speed associated with it, a

common measure of rocket capability is the change in velocity the rocket
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can provide. Mathematically, this delta-v is calculated as the integral of

the acceleration the rocket provides, or more intuitively, the total thrust

the rocket provides over time,

∆v �

∫ t1

t0

T ptq

mptq
dt, (4.22)

where T ptq is the instantaneous thrust magnitude, and mptq is the instan-

taneous mass.

Conversely, orbital transfers may be described by the typical change

in velocity required. This is known as a delta-v budget. Launching to

low Earth orbit (LEO) requires a change of 7.8 kms�1, but typically an

additional 1.5 to 2 kms�1 is lost to atmospheric drag and gravity losses.

Ascent from LEO to low lunar orbit (LLO) requires an additional 4.1 kms�1

(this mission profile was used by Apollo). Thrust vectoring adds further

losses depending upon the angle of thrust.

These atmospheric, gravitational, and thrust vectoring losses can be

calculated with similar integrals over the flight, respectively

∆vdrag �

∫ t1

t0

Dptq

mptq
dt, (4.23a)

∆vgravity �

∫ t1

t0

gprq � sin γ dt, (4.23b)

∆vε �

∫ t1

t0

T ptq

mptq
p1 � cospα � εqq dt, (4.23c)

where Dptq is the instantaneous aerodynamic drag magnitude, gprq is the

local gravitational acceleration r metres from the centre of the Earth, γ

is the angle from the velocity vector to the local horizontal (defined in

Section 4.4), α is the body axis line (above the velocity vector) and ε is

the thrust vector (above the body axis line), as shown in Figure 4.9 (Tetlow

2003). Because the thrusters of Lunar Mission BW-1 are fixed relative to

the body, the thrust vector is fixed at ε � 0�.

Little can be done within the scope of this project to reduce atmospheric

drag and gravity losses, since these effects are strongest during launch.
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Figure 4.9: Flight angle γ, body orientation α, and thrust vector angle ε
of the spacecraft relative to LVLH frame. ir and iθ are the local vertical
and horizontal, respectively (see Section 4.4 for definition). The thrust
vector is u and the velocity vector is v. The body axis line represents
the orientation of the vehicle.

However, gravity losses are still present during orbit raising if the thrust

line has any component parallel to the gravitational force; when this occurs,

the thrust is fighting against gravity rather than increasing the velocity of

the spacecraft (and providing orbital energy). Similarly, thrust vectoring

decreases effective delta-v because the thrust is changing the direction of

the spacecraft, rather than increasing its speed.

Delta-v forms a very important performance criterion. It is particularly

important in tracking gravitational assists from the Moon, as velocity may

be gained without expending delta-v in the form of thrust. Initial back-of-

the-envelope calculations at the Institut für Raumfahrtsystem determined

a baseline estimate of 3.5 kms�1 for Lunar Mission BW-1 (Röser et al.

2006). This includes an estimated 1.1 kms�1 in phase 2 to ascend beyond

the van Allen belts, 1.6 kms�1 in phase 3 to cruise to near EML1, 0.5 kms�1

in phase 4 to be captured into a lunar orbit, and 0.4 kms�1 in phase 5 to

descend into the operating orbit.
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4.8.3 Tsiolkovsky’s rocket equation

A well established equation, derived in the 19th century by Konstantin

Tsiolkovsky, describes the delta-v available from expending a given mass

of fuel from the vehicle at a given exhaust velocity,

∆v � ve ln
m0

m1

, (4.24)

where m0 represents the initial wet mass of the rocket (structural mass plus

fuel), m1 represents the final mass, ve is the exhaust velocity (Tsiolkovsky

1903, Chobotov 2002). Tsiolkovsky’s rocket equation is particularly rele-

vant to low thrust missions because it shows that the most efficient way to

achieve a fixed delta-v requirement such as an Earth escape orbit or lunar

transfer orbit, is to increase the propellant exhaust velocity. Missions such

as Lunar Mission BW-1 maximise their delta-v by increasing propellant

exhaust velocity at the expense of other design parameters, such as thrust.

The SIMPLEX pulsed plasma thrusters developed at the Institut für

Raumfahrtsysteme (Nawaz et al. 2008) provide an exhaust velocity of

about 27000 ms�1 as stated in Table 1.1, resulting in a specific impulse of

about 2750 s. Assuming a dry mass of 150 kg, 75 kg of fuel should allow for

a delta-v of 10.9 kms�1, far more than is theoretically required for ascent

from GTO to lunar orbit.

4.9 The space environment

During the transfer from Earth to Moon, there are a number of issues to

consider that may impact the durability of the spacecraft. Two of these

are discussed in the following sections.

4.9.1 The van Allen belts

The greatest hazard to Lunar Mission BW-1 during the transfer is radia-

tion. In particular, the Earth’s magnetosphere traps particle radiation in
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Figure 4.10: Conceptual image of the van Allen belts.

two bands above the magnetic equator, as seen in the conceptual cross-

section in Figure 4.10.

The outer radiation belt extends from an altitude of about three to

ten Earth radii, and is characterised by a relatively high density of ener-

getic (0.1-10 MeV) electrons and some protons. The density varies wildly

based on geomagnetic storms and variations in solar wind, but an averaged

distribution is shown in Figure 4.11.

Much more problematic is the inner belt which extends from an alti-

tude of 100 km (the limit of our atmosphere) to about 10,000 km, and

consists of high concentrations of energetic protons (some over 400 MeV,

which can penetrate 143 mm of lead) thought to be caused by cosmic ray

collisions with nuclei of the upper atmosphere (Hess 1968). The averaged

distribution of higher-energy protons is shown in Figure 4.12.

While the lower energy radiation can and frequently does corrupt com-

puter data on satellites, preventive measures can be taken such as using

radiation hardened hardware, or shielding the processors. The higher en-

ergy radiation however damages the solar panels, reducing the amount of

power they can generate. The only known solution to this problem is to

spend as little time within the van Allen belts as possible. This is the

reason for the higher thrust ascent phase. Similar mission architecture



4.9. The space environment 73

Figure 4.11: NASA’s AP8MIN van Allen Belt proton flux distribution
model (Sawyer and Vette 1976). Contours represent particles per square
centimetre per second.

Figure 4.12: NASA’s AP8MIN van Allen Belt proton flux distribution
model (Sawyer and Vette 1976). Contours represent particles per square
centimetre per second.
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considerations are seen in most low-thrust missions, including SMART-1

(Racca et al. 2002).

4.9.2 Space debris

Another hazard to spaceflight is orbital debris, in the form of defunct satel-

lites and rocket parts, as well as micrometeorites. NASA’s Orbital Debris

Program Office maintains a catalogue of the largest known pieces. Once a

completed trajectory is known for Lunar Mission BW-1, it will be checked

against this catalogue. If the trajectory comes within a predetermined dis-

tance of any known object, it will be recalculated with an adjusted thrust

profile or departure date. However, the orbits of smaller pieces of space

junk and micrometeorites are unknown, and impacts remain a risk to the

mission.

4.10 Summary of orbital dynamics

This chapter started by presenting a number of important phenomena

related to the lunar trajectory. First, terminology related to elliptical

and hyperbolic orbits was introduced for later sections, and the sphere of

influence was defined. The chapter then led into a discussion of orbital

modelling.

Designing and optimising a low-thrust space trajectory requires a care-

fully selected, high fidelity model. To this end, reference times or epochs

were defined, followed by Earth-centred, Moon-centred and spacecraft-

centred reference frames. The infrequently used equinoctial elements were

reproduced from literature as the best available representation of a slowly-

changing orbit. The equations of motion derived from these equinoctial

elements include a term for perturbing forces, such as 3rd body gravita-

tional forces, gravitational oblateness of the Earth and the Moon, the force

acting on the spacecraft due to solar radiation, and the applied thrust. Fi-

nally, key performance measures were outlined, most notably the specific

impulse and delta-v, and several hazards to the mission were presented.
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Chapter 5

Optimisation

5.1 Introduction

This chapter describes how the mathematical process of optimisation, de-

scribed in Section 3.3, applies to Lunar Mission BW-1.

5.2 State vector

Since we are concerned with the state of the spacecraft, in this particular

scenario the state vector x represents the position, velocity and mass of the

spacecraft. The osculating orbit is stored in modified equinoctial elements

p, f , g, h, k and L as outlined in Section 4.5. Mass is appended to the

state vector, and is reduced by thrusting the propellant (reaction mass)

out the back of the spacecraft,

9m � �
T

vexhaust
, (5.1)

where T is the instantaneous thrust magnitude and vexhaust is the exhaust

velocity. “Real time” is added as another (albeit independent) state to

allow ephemeris calculation. Finally the energy stored in the batteries is

also critical to the state of the spacecraft, and similarly to the mass, it is

reduced by using the thrusters (dependent on the power level required by
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the thrusters over the given phase), as defined by

∆E �

∫ tf

t0

P ptq dt, (5.2a)

9E � P ptq, (5.2b)

where P ptq is the instantaneous net power consumption (or generation).

Unlike the mass, the energy level may be increased, as the solar panels

may cause P ptq to become positive. The power system is further detailed

in Section 6.3. At this time there are no known dependencies between

thrust and power, beyond thrust requiring positive power reserves.

Consequently, the differential equation (3.3) becomes the equations of

motion described in Section 4.6, appended with equations (5.1) and (5.2b).

However, these differential equations assume time as the independent pa-

rameter.

5.3 Independent parameter

Traditionally the independent parameter in trajectory optimisation is time.

However, due to the high velocity of the space vehicle near periapsis, time

is not the best independent parameter because very few gridpoints would

occur in this important area - ideally, gridpoints would concentrate near

periapsis. The easiest alternative to equal-time steps is to model is equian-

gular steps, a technique previously used by Betts and Erb (2003).

Equiangular stepping is implemented by using the true longitude (an-

gle of the spacecraft relative to its starting position) as the independent

parameter. However, using the longitude as the independent parameter

causes a large discontinuity at the transition from the Earth-centred to

the lunar-centred frame, so a normalised phase longitude is defined by

Lnptq �
Lptq � Lpt0q

∆L
� Φ, (5.3)

where Lpt0q is the (constant but optimisable) starting position for the
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given phase, ∆L is the (constant but optimisable) phase length, and Φ is

the phase number.

5.3.1 Substitution of parameters

Given the state vector of x � {p, f, g, h, k, L,m, t, E}, the time-domain

differential equations (4.6) must be modified to allow the normalised true

anomaly, Ln, as the independent parameter. Therefore a subsitution of

parameters is required to give derivatives with respect to Ln, d
dLn

. Differ-

entiating equation (5.3) gives

dLn

dt
�

1

∆L

dL

dt
(5.4a)

dLn

dt
�
dt

dL
�

1

∆L
(5.4b)

dLn

dL
�

1

∆L
(5.4c)

dL

dLn
� ∆L. (5.4d)

Using this identity, the state differential equations with respect to nor-

malised longitude may be determined, starting with (4.6a),

dp

dLn
�
dp

dt
�
dt

dLn
(5.5a)

�
dp

dt
�
dt

dL
�
dL

dLn
(5.5b)

�
9p

9L
∆L. (5.5c)

The remaining differential equations (4.6), (5.1) and (5.2b) are modified
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similarly, resulting in the differential equations

dp

dLn
�

9p

9L
∆L, (5.6a)

df

dLn
�

9f

9L
∆L, (5.6b)

dg

dLn
�

9g

9L
∆L, (5.6c)

dh

dLn
�
9h

9L
∆L, (5.6d)

dk

dLn
�

9k

9L
∆L, (5.6e)

dL

dLn
� ∆L, (5.6f)

dm

dLn
�

9m

9L
∆L, (5.6g)

dt

dLn
�

1

9L
∆L, (5.6h)

dE

dLn
�
P

9L
∆L, (5.6i)

where 9p, 9f , 9g, 9h, 9k and 9L are the original time-domain differential equations

(4.6) provided by Walker et al. (1985).

Delta-v calculation

The universal definition for delta-v was provided in Section 4.8.2. Unfortu-

nately this definition also depends on time-domain integration. Therefore

another substitution of parameters is required, using similar arithmetic to

the state vector. Starting with equation (4.22),

∆v �

∫ Lnf

Lni

T

m

dt

dLn
dLn (5.7a)

�

∫ 1

0

T

m

dt

dL
�

dL

dLn
dLn (5.7b)

�

∫ 1

0

T

m

∆L

9L
dLn. (5.7c)
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5.4 Objective function

Fundamentally, any trajectory that safely gets the spacecraft from Earth

orbit to lunar orbit is a candidate solution. The only further considerations

are the amount of fuel it takes to get there, and the amount of time it takes.

Consequently, the simplest objective function for Lunar Mission BW-1 is

the total fuel used,

F � �mptf q. (5.8)

This objective function is commonly used throughout entire low-thrust tra-

jectory analyses in literature (for example, Ichimura and Ichikawa 2008).

Many other studies instead search for Pareto-optimality, based on the eco-

nomic theory by Vilfredo Pareto. Pareto-optimisation is a search for the

best solution that can be found without compromising other objectives,

in this case the best fuel efficiency that can be found without taking an

unreasonable amount of time (Lee et al. 2005b, Coverstone-Carroll et al.

2000).

Since the dry mass of Lunar Mission BW-1 was unknown, a starting

wet mass was assumed; therefore to minimise the fuel used one must simply

maximise the final mass. A time penalty was considered to discourage un-

reasonably long transfer times, but found to be unnecessary. Preliminary,

simplified optimisations for the cruise phase used an additional term to

minimise the orbital energy with respect to the Moon, εLCI , to encourage

a stronger capture. This helped develop the initial guess, but was found

to be very sensitive to the weighting factors, σ1 and σ2, in the modified

cost function

F � σ1εLCI � σ2mptf q. (5.9)
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5.5 Boundary value problem

As mentioned in Section 5.4, candidate states include any trajectory that

safely gets the spacecraft from the given Earth orbit to the desired lunar

orbit. This resolves into a two-point boundary value problem: given an

initial state, parameters must be chosen to get to the final state subject to

some path constraints (usually differential equations).

5.5.1 Boundary constraints

In the case of orbital trajectories, the initial and final states are orbits. For

preliminary simulations, a GTO with periapsis 175 km, apoapsis 35975 km,

and inclination 21.7� was used, as the approximate Lunar Mission BW-1

parking orbit after launch via GSLV (Indian Space Research Organisation

Publications and Public Relations 2007). This corresponds to Keplerian

elements as shown in Table 5.1. The argument of periapsis, ω, and right

ascension of the ascending node, Ω, are dependent on the launch date,

which as previously stated remains unknown. For the purposes of opti-

misation these were initialised at 180� and 0� respectively. Optimisations

were performed with other values, although these proved to have very little

effect on the results. True anomaly, ν, is an arbitrary starting point within

the defined orbit, and so was initialised to 0� (periapsis).

Table 5.1: Keplerian elements for the initial orbit of Lunar Mission BW-
1 trajectory optimisation (start of ascent phase).

Parameter Value

Semimajor axis, a (m) = 2.45 � 107

Eccentricity, e (-) = 0.732
Inclination, i (rad) = 0.379

Since the purpose of the ascent phase is to escape the van Allen Belts,

the final boundary condition is defined as the lowest point in the orbit

(the periapsis) exceeding the outer limits of the van Allen Belts. Letterio

(2005) used an orbital radius of 22,668 km from the centre of the Earth
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as a good estimate for this point. This termination condition forms the

initial condition of the next phase, as shown in Table 5.2. A very important

additional constraint is that all states must be smooth and continuous over

the phase transition.

Table 5.2: Phase 2 to 3 transition constraints.

Parameter Value

Periapsis, rperi (m) ¥ 2.2668 � 107

The original mission proposal (Röser et al. 2006) suggested that the

subsequent cruise phase would terminate on reaching the sphere of influ-

ence of the Moon, as defined in Section 4.2. There are two possibilities

to determine this transition: either a distance from the lunar centre, or

alternately if the forward propagation is required to make no reference to

the Moon the SOI can be assumed to be an equivalent distance from the

Earth, in which case establishing lunar SOI requires an additional con-

straint that the phase difference between the Moon and the spacecraft is

close to zero (lunar phase difference is primarily a function of when the

transfer starts).

There are a number of different parameters that measure the proximity

of the satellite from the lunar SOI. First is the basic distance of the satellite

from the central body, r. However, this value exhibits large oscillations as

the satellite follows an elliptical orbit. There are several orbital parameters

proportional to the characteristic energy of an orbit which rise smoothly

under thrust, such as radius of periapsis rperi, semimajor axis a, semilatus

rectum p and of course the orbital energy itself, ε. These parameters are

usually interchangeable as they have very similar definitions, proportional

to semimajor axis and/or eccentricity,

rperi � ap1 � eq, (5.10)

p � ap1 � e2q, (5.11)

ε � �
µ

2a
. (5.12)
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However, the eccentricity can undergo rapid changes during lunar as-

sists. Consequently, the periapsis and semilatus rectum both reveal sudden

jumps. Furthermore, the semimajor axis exhibits a discontinuity when an

orbit transitions from elliptical to hyperbolic (that is, if the spacecraft

achieves escape velocity). Therefore the orbital energy, ε, was chosen as

the phase constraint, as shown on the bottom of Table 5.3.

Table 5.3: Phase 3 to 4 transition constraints.

Parameter Value

Lunar distance, rLCI (m) ¤ 6.6183 � 107

Distance from Earth, rECI (m) ¥ 31.8216 � 107

Lunar orbital energy, εLCI (m2s�2) ¤ 0.0

Earth orbital energy, εECI (m2s�2) ¤ 0.0

As also defined in the mission architecture by Röser et al. (2006), the

subsequent capture phase would then terminate when the spacecraft is less

than 1400 km above the lunar surface, as per Table 5.4.

Table 5.4: Phase 4 to 5 transition constraints.

Parameter Value

Lunar altitude, rLCI (m) ¤ 1.4 � 106

The final state is lunar orbit at an altitude of 100 km above the surface

of the Moon. A polar or near-polar orbit is desired for maximum surface

coverage. The corresponding orbital elements are shown in Table 5.5.

Table 5.5: Keplerian elements for the final orbit of Lunar Mission BW-1
trajectory optimisation (end of descent phase).

Parameter Value

Semimajor axis, a (m) ¤ 1.8371 � 106

Eccentricity, e (-) ¤ 0.0
Inclination, i (rad) ¤ 1.57
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5.5.2 Path constraints

While the path between initial and final states is defined by the differ-

ential equations of motion outlined in Section 5.2, there are a number of

additional constraints on the trajectory, both physical and operational.

Firstly, the control vector u � {u1, u2, u3} must be a unit vector. This

ensures that the thrust level is realistic throughout the simulation, when

multiplied by the thrust magnitude T which must also be constrained to

the appropriate upper limit for the phase (depending on whether the phase

uses the PPTs or the arcjet), leading to the equation

|u| � 1 (5.13a)√
u21 � u22 � u23 � 1 (5.13b)

To guide the optimiser towards an appropriate solution, some bounds

are placed on the trajectory itself. At no point in the optimisation is the

spacecraft allowed to escape Earth orbit (by ensuring that the eccentricity

does not approach a parabolic escape orbit), nor is the spacecraft allowed

to come within 100km of either the Earth’s surface, or the Moon’s surface,

by enforcing

eECI   1 (5.14)

rECI ¡ RC � 100km (5.15)

rLCI ¡ RK � 100km (5.16)

where RC is the Earth’s mean radius and RK is the Moon’s mean radius.

Equinoctial elements are better for this optimisation than Keplerian

elements, but they are still not perfect. They do exhibit singularities as

the inclination approaches 180�; in other words, they do not model strongly

retrograde orbits well. Constraining the trajectory to keep away from these

orbits is not a severe limitation on this optimisation since the optimiser is

highly unlikely to suggest a retrograde orbit prior to Earth departure due

to the large delta-v required for inclination changes (the spacecraft starts
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at 21� and aims for the lunar plane of 6� from the ecliptic, that is 15-24�

relative to Earth). Even the polar lunar orbit provides a large margin of

safety. Nonetheless, the optimisation should be constrained to avoid these

singularities so that

i   180� (5.17)

where i is the inclination of the orbit (whether geo-centric or lunar-centric).

Upon implementation of the power generation and consumption model,

the constraint that battery charge must be greater than zero had a signif-

icant affect on the ascent trajectory, particularly introducing coast phases

in the ascent phase. A final intuitive but hugely important numerical con-

straint is that the spacecraft mass must remain positive, so the remaining

path constraints are

E ¥ 0 (5.18)

m ¥ 0. (5.19)

5.6 Numerical considerations

For this project, a multiple shooting Runge-Kutta 4/5 integrator was used

to propagate the trajectory from the initial state using the control profile

provided in the initial guess, and then again using the optimised parame-

ters and control profile determined by the optimiser. The SOCS algorithm

used its inbuilt single shooting collocation separated Hermite-Simpson in-

tegrator (Betts 2010) to propagate the trajectory.

5.6.1 Integration error

At the start of this project, in order to verify the flight mechanics described

in Chapter 4, the differential equations presented in equation (4.6) were

integrated in Matlab over sufficient time to allow the spacecraft to reach

the Moon. An absolute error of 10�6 was allowed within each orbital

element (p metres, f , g, h, k and L dimensionless), and a relative error

of 10�9 (10�7%). Since the longitude is continually growing (not bound
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within 0 to 360) yet the useful information within this parameter (the

position of the spacecraft within 0 to 360) is not increasing, relative error

must be severely limited. Continual thrust allows Lunar Mission BW-

1 to achieve lunar insertion in about 100 rotations, corresponding to a

longitude of 36000�. The relative error in the spacecraft’s position at a

radius of 360000 km is therefore 12.96 km, which should be sufficiently

small to allow lunar insertion (for initial simulation, at least). The Matlab

code used for this project uses the larger of the two tolerances, so at small

longitudes (the start of the simulation) absolute tolerance is dominant,

minimising unnecessary computational effort.

Milani and Nobili (1987) provide a simple rule of thumb to limit error

accumulation by limiting the ratio of simulation timespan to stepsize. If

the error at each step is ε and the number of steps is N , then N2ε should

remain less than 1. With a relative error of 10�9 the number of steps

should be limited to 31,500. If more timesteps are needed the relative error

may be reduced further, limited only by machine accuracy (in fact, many

previous simulations including Milani and Nobili appear to have assumed

machine accuracy). According to IEEE standard 754, double precision

floating point variables have a mantissa of 52 bits. This corresponds to a

relative machine accuracy ε � 2�52 � 2.2� 10�16, giving an upper limit of

N � 226 � 67108864 grid points.

5.6.2 Scaling

In any optimisation the parameters should be scaled so that the optimi-

sation algorithm is not biased towards optimising any one variable at the

expense of the others. This is particularly important in low thrust tra-

jectory optimisation using equinoctial elements because variables f , g, h

and k are typically between one and minus one, while L grows contin-

ually throughout the trajectory and p as the orbital semi-latus rectum

can exceed many millions of metres. Consequently, without very specifi-

cally chosen weightings in the objective function, the optimiser may (for

example) adjust the higher absolute value of p rather than make a tiny
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adjustment to f , although the latter change might have a much greater

effect on the result.

Linear scaling is often sufficient, however if changes in a variable are

very small relative to the average value of that variable then the process of

linear scaling on a computer will result in loss of precision due to trunca-

tion. The affine transformation (Fischer et al. 2008) uses expected upper

and lower bounds for each optimisable parameter to scale it to within 1

and -1, based on absolute upper and lower limits provided by the user for

each parameter.

5.7 Summary of the optimisation problem

In this chapter Lunar Mission BW-1 was defined and fitted to the generic

structure of an optimisation problem. Phase boundaries and path con-

straints were defined numerically. Numerical problems inherent in long-

duration optimisation problems were examined, specifically integration er-

ror and scaling. An upper limit was established for the number of grid

points that can be implemented during optimisation, and an affine trans-

formation was implemented for each optimisable parameter, state and con-

trol variable.
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Chapter 6

Vehicle modelling and

parameterisation

6.1 Propulsion

The biggest impact of vehicle design on the trajectory is the thruster selec-

tion. As briefly outlined in Section 1.2, the preliminary design specified a

thermal arcjet and four pulsed plasma thrusters (PPTs), all of which were

developed within the IRS.

A number of laboratory test results for the PPTs are reproduced in

Section B.1. The test apparatus is shown in Figure 6.1. By varying the

power supplied to the PPTs, different levels of thrust were achieved for a

small sacrifice in Isp. As can be seen in Table B.1, increasing the power

supplied to the thruster increases the mass of propellant that is vapourised

and then accelerated. This increases the thrust, but the greater mass is

not accelerated as efficiently resulting in a lower exhaust velocity, and

consequently a lower specific impulse.

The thermal arcjet, shown in Figure 6.2, underwent similar laboratory

testing as the PPT, and the results are reproduced in Section B.2. There

are many more variables affecting the arcjet performance, mostly not listed

in Table B.2, but the biggest difference to the PPTs is that the rate at

which propellant is provided to the arcjet can be varied independently of
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Figure 6.1: SIMPLEX PPT during a laboratory test. The spark plug
(centre left) ignites an arc between the two electrodes (pointing towards
the camera) which vapourises the surface of the block of white PTFE be-
tween them. The electric field between the two electrodes then accelerates
the plasma towards the camera.

the power.

The thruster development at the time of writing this thesis is focussed

on improving power efficiency. The power efficiency, η, is proportional

to the thrust squared, T 2, and inversely proportional to the mass flow, 9m

(Wollenhaupt et al. 2011). Since the thrust is directly proportional to mass

flow, reducing mass flow will not improve power efficiency. Indeed, based

on this criterion some of the arcjet tests found that the power efficiency is

highest when the arc is not operated, and the thruster functions purely as

a cold gas jet!

η �
T 2

2 9mP
(6.1a)

T � ve 9m (6.1b)

Counter-intuitively given the above definition, during testing the power

efficiency often improves at the expense of thrust. This is a cause for con-

cern, as the low thrust of Lunar Mission BW-1 has already required a much
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Figure 6.2: TALOS arcjet during a laboratory test. An arc is gener-
ated between the axial cathode and the nozzle anode, which heats up the
ammonia, accelerating it outwards.

longer transfer than any used in the past, and the longer the mission the

greater the chance of impact with space debris or micrometeorites, dam-

age from radiation, or computer failure due to solar particle events (SPEs)

or galactic cosmic rays (GCRs). Furthermore, during modelling for this

project the length of the cruise phase frequently resulted in computational

problems, so a number of design compromises were investigated to solve

the problem (it is acknowledged by the author that changing hardware

design to make the simulation easier is a poor design philosophy, but the

project management was interested to know the effects of these changes

regardless of any simulation difficulties). For example, a design configura-

tion was being investigated with 6 PPTs rather than 4, thereby increasing

the available thrust without losing Isp. The trade-off with this change is

the additional thrusters would increase the dry mass of the vehicle, de-

creasing available payload space. The same effect could be achieved by

changing the pulse rate of the PPTs. A higher pulse frequency increases

thrust, increases mass flow, and increases power consumption, but impulse

is conserved. However, an additional unknown is introduced: the heat flux

within the electrodes is increased.

Increasing the heat generated by the PPTs causes a corresponding in-

crease in the electrodes operating temperature, until a new equilibrium is
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reached with the heat radiated into space. This higher temperature can

cause damage to the electrodes, structural failure in the surrounding satel-

lite components, or even melt the propellant! There is literature indicat-

ing that some designs can tolerate higher pulse frequencies (Mueller 2000,

Cabrera 2011) but the majority of documented laboratory tests use 1 Hz.

Consequently, thorough lifecycle testing will be required on the thrusters

to determine operational lifetime variability with pulse frequency before a

four year mission such as Lunar Mission BW-1 may be undertaken.

Nonetheless, when modelling the PPTs an additional variable was im-

plemented representing maximum pulse frequency. Operationally, the vari-

able thrust magnitude would be implemented by reducing the pulse fre-

quency from the maximum available. Colleagues at IRS advised that the

SIMPLEX PPT should be able to operate up to at least 3 Hz with minimal

side effects (Nawaz et al. 2008).

6.1.1 Resolution of propulsion systems within mod-

elling

The solid polytetrafluoroethylene (PTFE) propellant used by the PPTs is

vapourised by a spark from a spark plug which is charged by a capacitor,

so the warm-up time before operation is a single cycle. Given that a single

impulse is ejected with each cycle of the PPTs, pulse-width modulation is

not possible. Therefore both in the model and in practise, the PPTs are

frequency modulated.

As introduced in Section 6.4.2, simulations of the cruise phase in-

creased to about 137 grid points per orbit after automatic mesh refinement

(100,000 grid points to complete 730 orbits). The orbital period within the

cruise phase starts at about 14 hours and slows to almost 16 days. Conse-

quently, the minimum resolution between grid points is about 6 minutes,

much coarser than the 1 Hz resolution of the PPTs.

The arcjet allows continuous adjustment of the mass flow rate, and

also continuous adjustment of the power to the electrical arc accelerating

that mass. While the exact side-effects of this adjustment on the exhaust
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velocity are not well known, the modelling assumption of continuously

variable thrust remains valid. More importantly, this assumption is made

irrelevant by the results of the optimisation procedure, which has resulted

in an on-off control scenario (see Chapter 8). Starting from an orbital

period of about 11 hours gives a minimum of 1.1 minutes per grid point

(30,000 grid points to complete 51 orbits), which should not cause any

resolution difficulties given the warm-up time observed in laboratory tests

of approximately one second.

6.2 Eclipse

During the Lunar Mission BW-1 transfer, the spacecraft may be eclipsed

by the Earth or the Moon. When either of these large bodies are blocking

the Sun, the spacecraft does not gain any charge from its solar panels. It

is also occulted from solar radiation pressure.

The occlusion of a luminous sphere by a smaller sphere creates a conical

shadow called the umbra, as shown in Figure 6.3. Within the umbra a total

eclipse is observed. Surrounding the umbra is an inverted cone of partial

shadow called the penumbra. An observer within the penumbra would

experience a partial eclipse. Beyond the umbra is another inverted cone of

partial shadow called the antumbra, within which an annular eclipse would

be observed (Longo and Rickman 1995).

To quantify the impact eclipsing has on the spacecraft, it is important

to define key geometric parameters. First the apices and lengths of the

cones may be determined using the simple geometry shown in Figure 6.4
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Penumbra

Penumbra

AntumbraUmbra

Figure 6.3: Umbra, penumbra and antumbra.

and Figure 6.5 giving the equations

αu � arcsin
R@ �RC

rC
, (6.2a)

αp � arcsin
R@ �RC

rC
, (6.2b)

xu �
RCrC

RC �R@
, (6.2c)

xp �
RCrC

RC �R@
, (6.2d)

where αu is the apex angle of the umbral cone and αp is the apex angle

of the penumbral cone, xu is the length of the umbral cone and xp is the

length of the penumbral cone, R@ is the radius of the Sun and RC is the

radius of the Earth, and rC is the distance between the Earth and the Sun.

The spacecraft’s position r is then projected onto the Earth-Sun vector

rC giving the satellite’s distance from the Earth along the Earth-Sun line

x, and the satellite’s distance from the Earth-Sun line y is calculated using

the geometry shown in Figure 6.6, giving

x �
r � rC
rC

, (6.3a)

y �
√
r2 � x2. (6.3b)
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2R@ 2RC

rC xu

2αu

Figure 6.4: Geometry associated with the umbral cone. R@ and RC are
the radii of the Sun and the Earth respectively. The distance between
the Earth and the Sun is rC, allowing the calculation of the length of
the umbral cone xu and the apex angle αu.

2R@ 2RC

rC

2αp

xp

Figure 6.5: Geometry associated with the penumbral cone. R@ and RC
are the radii of the Sun and the Earth respectively. The distance between
the Earth and the Sun is rC, allowing the calculation of the length of
the penumbral cone xp and the apex angle αp.
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Earth

Figure 6.6: Spacecraft position r broken down into components x and y
relative to Earth-Sun line rC.

Now the radii of the umbral cones at the satellite’s position may be

calculated,

yu � pxu � xq tanαu, (6.4a)

yp � px� xpq tanαp. (6.4b)

Within this frame, if the spacecraft’s position y is less than the radius

of the umbral cone yu, the spacecraft experiences total eclipse. If the

spacecraft’s position is more than the radius of the penumbral cone yp,

the spacecraft is in full sunshine. For simplicity, solar exposure within

the penumbra was taken as a linear interpolation of position y between

the umbral and penumbral cones. During lunar-centric phases the same

equations apply but relative to the Moon rK rather than the Earth rC.

As mentioned in Section 5.5 the argument of periapsis and right as-

cension of the ascending node were thought to be unimportant to the

optimisation, and thus were left unconstrained. The optimiser however

combined this flexibility with the initial launch date, to create a scenario

with a sun-pointing periapsis. Consequently the spacecraft never enters

eclipse during the high-fidelity ascent phase described in Chapter 8.
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6.3 Power

6.3.1 Power generation

At the commencement of this project, it was anticipated that power would

be one of the defining factors in determining an optimal trajectory. Con-

sequently power was implemented as one of the states to be tracked during

optimisation. The power generation, P , was calculated using

P � Q� Aeff � ηa � ηc � ηDC � cos Ψ@ �R, (6.5)

where Q represents the solar energy flux near the Earth-Moon system, Aeff

is the effective area of the solar panels, ηa represents the area efficiency

of the solar cells arranged within the panel, ηc represents the solar cell

efficiency, and ηDC represents the efficiency of the voltage regulator. The

angle subtended by the sun on the solar panels is Ψ@, and the power

degradation is R.

The solar energy flux is calculated by dividing the average solar lumi-

nosity (3.846�1026 W, Montenbruck and Gill 2000) by the surface area of a

sphere with radius equal to the spacecraft’s distance from the Sun (4πr2
@

).

This is important because the Earth’s distance from the Sun varies by 6%

over the year (Montenbruck and Gill 2000) due to the eccentricity of its

orbit. The solar intensity is then multiplied by the effective area of the

solar panels, Aeff . Although the spacecraft has 6 m2 of panels, because

the central two panels are inclined at 45� the effective area is only 5.4 m2.

Based on the latest design work by my colleague Alexander Uryu, the

area efficiency is about 0.8, that is, only 80% of the effective solar panel area

will actually be covered in solar cells, due to the geometric arrangement of

the cells and the additional surface area required for circuitry. The solar

cells will be state-of-the-art TecStar GaAs/InP 34 series solar arrays with

200 µm front cover glass and 500 µm back cover glass. Consequently it is

estimated that the cell efficiency will be about 27% at launch. The exact

power control circuitry is not yet known, but based on modern power

conversion circuits it is expected that the DC voltage regulator will be
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Figure 6.7: Radiation fluence during a 24 hour orbit as a function of
distance from Earth, based on data from Erb (2002). The obvious peak
is due to the higher concentration of radiation in the van Allen belt.

approximately 85% efficient.

It is assumed that while one axis of the solar panels is constrained to

the thrust vector u, the other is free to rotate about the thrust vector to

obtain the best sun angle possible. Consequently the sun angle can be

calculated by

u � r@ � r@ cos Ψ@, (6.6a)

Ψ@ � arccos
u � r@
r@

. (6.6b)

The greatest unknown in the power model is how much the solar cells

will degrade over time. As Erb (2002) points out, the solar panel degra-

dation, R, is directly related to total equivalent fluence, F (that is, the

radiation dose received), which must be integrated over the transfer, where

the derivative with respect to time dF
dt

is approximated as a function of the

distance from Earth, as shown in Figure 6.7.
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Figure 6.8: Power degradation as a consequence of radiation fluence,
based on data from Erb (2002).

At each time step the equivalent radiation dose of a 24 hour orbit

may be taken from the plotted function, and scaled to the appropriate

time interval. This effective radiation dose is added to the accumulated

radiation dose. The total accumulated radiation dose may be translated

to a power degradation factor using Figure 6.8.

Data for the panel degradation model was based on the work done by

Hechler (2002) during planning for the SMART-1 mission, via Erb (2002).

During the SMART-1 mission, it was found that their solar cells degraded

by approximately 0.12% per day, or about 2 W (Racca 2003b). It was

also found that during a solar storm on 20 October 2003, an additional

1% panel degradation occurred (Racca 2003c). However, soon after the

solar storm, the spacecraft reached a periapsis of 11790 km whereupon no

further radiation damage occurred. Thus it can be assumed that the phase

boundary defined in the mission architecture may be quite conservative,

which should be factored into further power degredation modelling if not

simply changing the mission architecture.
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Based on this model, at the start of the mission (with no panel degrada-

tion) with direct sunlight on the full panel surface the panels will generate

1.45 kW. The initial GTO spends less than 20% of its time within the

van Allen belts according to Figure 6.7, resulting in a very conservative

upper limit of 6 � 1014 MeV during the ascent phase, corresponding to

solar panel degradation to 80% of their original efficiency, giving a maxi-

mum power generation during the later phases of at least 1.16 kW. This

is still substantially larger than the anticipated power requirements; while

allowing freedom for unexpected payload requirements, it has affected the

trajectory optimisation as addressed in Section 9.2.

6.3.2 Power consumption

At each timestep of the simulation the power required for communications,

payload and thrust should be subtracted from the power generated. The

power requirements are summarised in Table 6.1.

The payload has not yet been confirmed, but it is expected that most

of the payload will be in standby until the spacecraft is confirmed in the

science orbit, so power requirements during the transfer will be minimal.

During the science phase the payload is expected to require a maximum

of 42 W (Laufer 2010), which should be well within the solar panels’ re-

maining capacity.

Agreements are being negotiated with ground stations in Stuttgart,

Table 6.1: Power requirements for Lunar Mission BW-1

Subsystem Power required

Arcjet 801 W
PPTs 208 W

Payload (standby) Estimated max. 10 W
Payload (active) 42 W
Communications Estimated 80 W
Mission computer Estimated max. 10 W

Solar panels Max. 1454 W
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USA, Japan and Australia to give continual access to the satellite during

Earth orbit. The only downtime will occur in the later stages of the trans-

fer, when the satellite transits through the Moon’s shadow. During the

transfer, telemetry and tracking signals will be periodically transmitted

via the omni-directional S-band antenna. The science phase will require

the satellite to reorient itself to point the Ka-band antenna at the Earth.

Since the frequency and duration required for these transmissions are not

yet known, they were not factored into the trajectory design. During com-

munications intervals a maximum of 60 W will be required for the Ka-band

transmission, and 20 W for the S-band (Laufer 2010).

After thruster power is also subtracted from generated power (see Sec-

tion 6.1), any surplus power generated by the solar panels is added to the

battery levels, or any deficit is subtracted from them. According to the

initial design stated by Falke et al. (2004), the lithium ion batteries were

designed to hold 100 Ah supplying a common bus of 28 V. It is assumed

the batteries will be fully charged at launch. At any stage during the trans-

fer, if the batteries become fully charged the spacecraft will roll around its

thrust vector to point the solar panels away from the Sun, thus preventing

overcharge.

While the capacity and corresponding weight of the batteries have been

defined (Röser et al. 2006), the exact batteries themselves have not yet been

chosen. Consequently issues like degradation over repeated charge/discharge

cycles and trickle charging have not been considered in this work. Trickle

charging could be a useful technique if power were found to be a limiting

factor in the trajectory design, as it could decouple the satellite’s attitude

dependency on the Sun vector thus releasing the thrust vector to be opti-

mised, but fortunately power was not found to be limiting for the current

configuration. Finally, the power circuitry also remains undefined, so for

the purposes of this work it is assumed that the spacecraft can thrust and

recharge at the same time, subject to available sunlight.
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6.4 Parameterisation

6.4.1 Thrust profile parameterisation

Due to the strongly non-linear variations of the transfer relative to de-

parture date (periodic over 27.5 days based on the Moon’s orbit), a good

parameterisation of the departure date would be to use two variables, one

to increment an integer number of lunar months forwards or backwards,

the other a floating point capped at �0.5 to indicate the fraction of a

month either side. This would allow the optimiser to find the optimal time

of month for a launch, and therefore the optimal position of the Moon, to

achieve lunar capture. Then the optimiser can adjust the month forwards

or backwards based on other variations in the search space. While this

parameterisation would assist in developing a truly optimal solution, since

the departure date is not negotiable beyond the time spent in the GTO

parking orbit it was not implemented at this time.

An additional parameterisation considered to decrease the numerical

complexity of the optimisation was to model the thrust duty cycle as a per-

centage of the orbit. Depending on the phase objective, a thrust segment

was centred around either the periapsis or the apoapsis, with a parameter

controlling length of the thrust segment. However, when implemented as a

constant throughout the phase replacing the continuous thrust magnitude,

the optimiser’s flexibility is severely compromised. When implemented as

a constant throughout the phase in addition to the thrust magnitude pa-

rameter, there is no improvement in computational load. An alternative

would be to implement duty cycle as a continuous variable. The computa-

tional load is just as great, but the author suspects that this modification

would significantly smooth the search space. Unfortunately, due to the

complications experienced when optimising the system with a continuous

thrust magnitude parameter this modification was not trialled.
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6.4.2 Discretisation

As mentioned in Section 3.3.3, numerical solution methods require the

continuous state and control profiles to be discretised into a series of grid

points or nodes. GESOP allows these grid points to be distributed arbi-

trarily over the independent parameter. Given the number of grid points

required for low thrust transfers and how the shape of the trajectory can

change during optimisation, anything other than a uniform distribution

makes no sense.

As mentioned in Section 5.3, longitude was selected as the independent

parameter to allow equiangular node distribution. As a rule of thumb,

for the initial coarse mesh at least 10 grid points were implemented per

orbit. As a result, the cruise phase had over 7300 grid points. Later in the

project an automatic mesh generator was implemented in GESOP. Using

this mesh generator based on an error tolerance of 10�4 gave a starting

baseline of 20003 grid points for the cruise phase, equivalent to over 27 per

orbit.

Within each of these shooting intervals, a finer mesh of control nodes

may be specified. Multiple shooting methods allow the state and control

profiles to be approximated over each of these sub-intervals as a piecewise

polynomial function. Thus, with enough control nodes, the state and con-

trol profiles appear almost continuously variable. Single shooting methods

use only the major nodes, and ignore the control refinement mesh. Con-

straint violations are evaluated at each shooting node, although GESOP

once again allows a finer mesh to be specified by the user. However, SOCS

does not support additional constraint evaluations, and as a single shooting

method it ignores the control refinement mesh.

Nonetheless, during optimisation the major control mesh undergoes

repeated refinement until the optimisation and errors are within user-

defined tolerances. At the time when the cruise phase optimisation was

stopped (see Section 7.2.4), the mesh had been refined to 99979 grid points.

The ascent phase also started from 20003 grid points and was refined to

29999 points by the time it found a feasible solution with a targeted opti-
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misation tolerance of 10�4, constraint tolerance of 10�5 and ODE tolerance

of 2�10�5. For comparison, the reduced complexity ascent phase (see Sec-

tion 7.2.2) was started from 1002 grid points, and reached 13990 points by

the time it found an optimal solution.

Betts (1998) provides a simple algorithm to estimate the number of

variables, n, required in a large optimsation problem, as a function of the

number of states nx, the number of control parameters nu, the number of

optimisable phases M and the number of gridpoints per phase N ,

n � pnx � nuqMN. (6.7)

Given the problem formulation outlined for Lunar Mission BW-1 in Chap-

ter 5, the cruise phase alone generates 1.2 � 106 variables, substantially

more than the 500,000 cited by Fischer et al. (2008) as the largest problem

SOCS has solved.

6.5 Orbital behaviour

Previous theoretical analysis and numerical studies have identified a num-

ber of phenomena related to orbital transfers. A description of the theory

behind gravitational assists, the Oberth effect, and weak lunar capture as

they relate to Lunar Mission BW-1 is briefly presented here.

6.5.1 Gravitational assists

Due to the low thrust of spacecraft Lunar Mission BW-1, a substantial

part of the orbit raising can be achieved by exploiting the gravitational

pull of the Moon. This technique has been well studied, although previous

higher-thrust missions did not find it efficient to attempt more than one

or two lunar assists. Kemble (2006) explains that,

“It is possible to utilise lunar gravity to assist in the orbit

raising prior to lunar encounter. This takes the form of a grav-

itational pumping effect if the correct phase with respect to the
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Moon can be established” (Kemble 2006, p.249).

He quantifies the benefit,

“A typical ∆V saving of 800 ms�1 is obtained by use of

lunar gravity assist” (Kemble 2006, p.248).

Both of NASA’s ARTEMIS spacecraft were able to save approximately

40 ms�1 of delta-v on their lunar insertions using gravitational assists

(Sweetser et al. 2011).

Because lunar gravitational assists provide delta-v without fuel expen-

diture, they should be implicitly accounted for during optimisation. Pre-

liminary results did indicate this to be the case, as seen in Figure 6.9.

From an initial orbit of 180,000 km (semi-cis-lunar, representing the later

stages of the cruise phase to highlight the lunar assist) the spacecraft takes

two orbits to align its phase with the Moon, then receives a very appar-

ent boost purely from the Moon’s gravity during the close passes seen in

Figure 6.10.

6.5.2 Oberth effect and optimal thrust profiles

It is well known that thrusting at particular points in the orbit is more

efficient than others (Kemble 2006). Oberth (1923) states that the specific

orbital energy gained per unit delta-v exerted is equal to the instantaneous

speed. Therefore, thrusting is more efficient at high speed, which occurs at

periapsis. This is known as the Oberth effect, and is demonstrated quite

effectively in Figure 6.11 where the effective weight is the weight minus the

centrifugal force due to the horizontal velocity.

Constant thrust (tangential to the orbital radius) leads to circular tra-

jectories because an eccentric starting trajectory spends more time at

apoapsis than periapsis; hence more impulse is imparted to the vehicle

at apoapsis than at periapsis. As evident in a Hohmann transfer, thrust-

ing at apoapsis circularises the orbit. Racca (2003a) found that tangential

thrust is the most efficient way to increase the periapsis of a constant-thrust

vehicle.
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Figure 6.9: Trajectory of preliminary optimisation for Lunar Mission
BW-1 showing a lunar resonance implicitly realised by the optimiser.
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Figure 6.10: Distance of spacecraft from Earth and Moon during prelim-
inary optimisation showing a lunar resonance implicitly realised by the
optimiser.
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Figure 6.11: Thrust to effective weight ratio (darker line) plotted with dis-
tance from Earth (dotted line) during preliminary optimisation demon-
strates the Oberth effect.

In a vehicle with variable thrust however, the majority of the thrusting

should occur near perigee; there is an inverse relationship between optimal

thrust magnitude and orbital radius. However, the ascent phase of Lunar

Mission BW-1 requires raising the periapsis above the van Allen belts

as quickly as possible. This may be achieved by focussing thrust around

the apoapsis; unfortunately this also minimises the orbital energy gained

per unit of propellant expended. Consequently, in the subsequent cruise

phase once the periapsis requirement is removed and the sole aim is to

gain orbital energy as efficiently as possible, it would be expected that

thrust is focussed around the periapsis. Racca (2003a) found that the

most efficient thrust profile for a constant-thrust vehicle to increase orbital

energy (proportional to semimajor axis) is to thrust along the velocity

vector. However, Lunar Mission BW-1 requires additional maneouvres

during each phase to achieve the boundary conditions of the next phase.

In addition to orbital energy and the corresponding semimajor axis,
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there are well established strategies for efficiently changing other orbital

parameters. For example, Edelbaum (1964) demonstrates that the argu-

ment of periapsis (ω) is most efficiently changed during a low eccentricity

orbit and that the inclination (i) is most efficiently changed at high ec-

centricity. These results have often been used to anticipate thrust profiles

within low-thrust trajectory studies such as Dachwald and Ohndorf (2007).

Pollard (2000) and Herbiniere et al. (2000) further describe a number of

steering programs for low thrust orbital manoeuvres. Gao (2008) intro-

duces a convenient mathematical parameterisation scheme that generates

continuous, smooth parameters describing thrust steering, and can easily

be used in an optimisation engine. This modification may be useful to

improve the computational complexity in the future, but has not been im-

plemented in this thesis. Nonetheless, the optimiser must adjust the orbital

elements during the cruise phase using a combination of these semi-optimal

thrust profiles in order to set up a lunar capture.

6.5.3 Lunar capture

A spacecraft orbiting the Moon (in the same direction as the Moon orbits

the Earth) undergoes a period of low velocity relative to the Earth every

time it is on the Earthward side of the Moon. A spacecraft orbiting the

Earth in a highly elliptical orbit undergoes a period of low velocity relative

to the Earth when it reaches apoapsis, which is conveniently also the fur-

thest point from the Earth. Therefore the aim to achieve lunar capture is

to deliver the spacecraft at apoapsis to a “stationary point” in the intended

lunar orbit, such that the Moon’s gravity will then pull it into a steady

lunar orbit, avoiding the need for a high-thrust capture manoeuvre.

To maximise the gravitational effect of the Moon on the spacecraft, it

should be phase-locked with respect to the Moon’s orbit. However, this

would require constantly adjusting the orbital line of apsides, which is a

high delta-v maneuvre. Gravitational resonance is generally exploited by

pointing the apoapsis towards the Moon’s ascending node (to remove any

dependence on inclination) and adjust the orbital period to resonate with
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the Moon (that is, the ratio of the spacecraft orbital period to the lunar

cycle is a rational fraction, for example the spacecraft completes two orbits

to every lunar orbit, or three orbits to every lunar orbit, or five orbits to

every two lunar orbits, etcetera). However, based on the unique thrusting

constraints of Lunar Mission BW-1, an alternative optimal scenario may

be to maintain the fastest part of the orbit (periapsis) within the Earth’s

shadow (eclipse), to minimise the amount of time that the craft is unable

to charge its batteries. In this scenario the spacecraft should also thrust as

it passes through the eclipse since it cannot recharge during this time, and

thrusting will help it to escape the eclipse as quickly as possible. Racca

(2003a) found the SMART-1 trajectory was affected by the need to avoid

eclipse, particularly at apoapsis.

Even with capture phases provided by arcjet, there is very little thrust

available to perform lunar insertion. When simulating the transfer this

problem is compounded by the fact that lunar insertion must be predicted

very accurately, as simulating a lunar orbit in an Earth-centred frame, or

vice-versa, causes the trajectory to periodically appear to move backwards

relative to the central body. In other words, the anomaly decreases, which

causes computational errors.

In cases where the transition from Earth-orbit to lunar-orbit is pre-

dicted correctly, the simulation may be transferred from an Earth-centric

frame to a lunar-centric frame. Unfortunately, this may still run into com-

putational errors, as the spacecraft may be recaptured by the Earth.

Zero-thrust captures, also known as ballistic captures, have been stud-

ied by many authors, most particularly Belbruno and Miller (1993) fol-

lowing the partial failure of the Japanese Hiten probe. Belbruno exploited

a low-energy transfer to recover the probe, prompting further study into

the phenomenon he termed the weak stability boundary. This is a region

around the body where the orbital energy is negative (that is, the space-

craft has technically been captured, and would orbit indefinitely in the

absence of external forces) but the motion of the spacecraft is unstable.

In the case of lunar transfers this is because the spacecraft is usually in a

high energy orbit, and after some amount of time the Earth’s gravity pulls
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it back into geocentric orbit. These weak captures are rigorously defined

by Belbruno (2004).

Unfortunately all of Belbruno’s work, and much of the remaining lit-

erature (such as Koon et al. (2001), Parker and Born (2008)), concerns

impulsive transfers following invariant manifolds while coasting between

burns. Low-thrust transfers follow similar trajectories, but do not possess

impulsive thrusters to provide the required delta-v to ensure the spacecraft

enters the desired manifold. Consequently even developing an initial guess

for the optimisation proved challenging, and required extensive preliminary

simulations as outlined in Section 7.2.

6.6 Summary of vehicle modelling

This chapter presented an assortment of important issues uncovered while

modelling and optimising the trajectory of Lunar Mission BW-1. First,

modifications to the differential equations of motion were required due to

the implementation of equi-angular grid points over the trajectory instead

of equal-time grid points. Different techniques and models to discretise

the thrust profile were discussed, and a number of recommendations were

made for future revision of this work.

A discussion of the propulsion systems included performance modelling

and potential improvements to the vehicle design. The models used for

Earth and Moon shadow, power generation and consumption and degra-

dation of the solar panels were then presented. Finally a number of impor-

tant phenomena related to orbital mechanics that play a large role in the

Earth-Moon transfer were explained, to aid in understanding the results

presented in Chapter 8.
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Chapter 7

Method

7.1 Introduction

This chapter first explains the different software packages used throughout

this project, and then outlines the recommended procedure to determine

a suitable trajectory for Lunar Mission BW-1 once the launch details and

configuration are confirmed.

7.2 Developmental procedure

7.2.1 Matlab modelling

As mentioned in Section 5.6, early in the project the orbital mechanics of

Chapter 4 were modelled in Matlab to verify the flight mechanics and re-

solve numerical issues associated with long-duration integration and frame

conversion. Matlab’s native optimisation procedures were examined, but

found inadequate for the number of variables required.

7.2.2 GESOP modelling

Development was then transferred to GESOP. The model library and

graphical front-end ASTOS was briefly used but found to be far to restrict-

ing for a problem of this complexity. Consequently the vehicle and orbital
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mechanics were coded to the C interface available within GESOP. In ad-

dition to encapsulating several optimisation procedures, GESOP provided

automatic mesh generation as explained in Section 6.4.2, given appropriate

error tolerances as explained in Section 5.6.1.

To get an initial idea of the optimal thrust profile, first a reduced com-

plexity ascent trajectory was modelled. This was implemented simply by

deactivating secondary and tertiary perturbations, and optimising over a

coarse mesh. As a result, this phase was quickly able to reach an optimal

solution, giving an idea of the optimal results that would have resulted in

the other phases given adequate computing power. Many useful observa-

tions were drawn from this preliminary optimised trajectory, so the results

have been included in Chapter 8.

Following the reduced complexity ascent, optimisation was attempted

for a reduced complexity cruise phase. However, due to the long duration of

this phase and the limited computer resources available, the optimisation

did not reach an optimal solution in the time available. This exercise did

highlight other problems with the procedure, in particular determining

a lunar capture. Due to the lunar orbit being very close to the orbital

escape energy relative to the Earth (only 5�105 m2s�2), the vast majority

of simulations resulted in the spacecraft escaping the Earth’s sphere of

influence by gaining a gravitational assist from the Moon. This caused

severe computational errors as the longitude and anomaly are no longer

independent parameters after escape. Another common failure scenario

involved weak capture by the Moon; after one or two orbits around the

Moon the spacecraft would then be recaptured by the Earth. Due to

the way the system was modelled, this once again caused computational

errors: if the spacecraft is in orbit around the Moon in a Earth-centric

frame, the anomaly becomes sinusoidal rather than always increasing; the

same applies for a spacecraft in Earth orbit during a lunar-centric frame.

Determining conditions for strong lunar capture proved difficult and un-

reliable. Consequently it was decided to simulate the transfer backwards,

from lunar orbit to Earth orbit, using an industry standard tool called

Satellite Tool Kit (STK). Backwards propagation has been used by many
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previous authors, such as Kluever and Pierson (1995). The main advantage

to this approach is that any ascent from lunar orbit must necessarily pass

through Earth orbit, whereas the reverse does not apply. Furthermore,

with the Moon in a 19� inclined orbit about the Earth, any ascent from

the Moon will end up in approximately the same plane as the parking or-

bit after launch, thus implicitly accounting for the plane changes required

to achieve the target lunar orbit. Backwards propagation is particularly

well suited to this real-world application, because once the payload mass

is finalised backwards propagation allows exact determination of the wet

mass required.

7.2.3 STK modelling

As outlined above, the Satellite Tool Kit (STK), provided by AGI (Ana-

lytical Graphics, Inc.), was chosen to model the trajectory. STK is widely

used in industry for defence and space simulation, and has developed an

extensive collection of features. Recent developments have even included

an optimiser for interplanetary trajectories. Unfortunately, the native opti-

miser still only supports a very limited number of optimisable parameters,

for example the direction and magnitude of an impulsive burn to perform

a trans-lunar injection. The high number of parameters resulting from

discretisation of a continuous trajectory is, for the moment, beyond the

capabilities of STK, even to the extent of solving the 2-point boundary

value problem (in other words, STK cannot find a feasible solution to the

problem let alone optimise it).

Therefore STK cannot target a specific orbit, such as the correct in-

clination and eccentricity of the GTO (after backwards propagating from

LLO). However, as stated above, the fact that any ascent from the Moon

passes through Earth orbit, with an inclination of approximately 19� means

that it can be a very useful tool to study lunar capture. A number of

backwards propagations were performed, mostly resulting in escape or-

bits. However, by manipulating the start date and anomaly, it was found

that some “ascents” would put the spacecraft into a stable Earth orbit



112 Chapter 7. Method

(provided the thrust stops once lunar escape is achieved). From this point

a geocentric frame of reference could be implemented and the PPTs could

lower the orbital radius of the spacecraft relative to the Earth. Once the

PPT “descent” reaches the van Allen belts for the first time, this is equiv-

alent to the last time the spacecraft would be within the van Allen belts in

the chronologically correct simulation, and consequently defines the phase

boundary perfectly.

Due to the limited number of optimisable parameters, the thrust vector

must be easily defined relative to one of the STK frames. For the purposes

of this simulation, the thrust vector was defined to be negative velocity for

the lunar phases, and positive velocity for the geocentric phases. One of

the resulting trajectories is shown in Figure 7.1. The trajectory smoothly

“ascends” from LLO by thrusting along the negative velocity vector, tran-

sitions cleanly into Earth orbit, and then “descends” by thrusting along

the velocity vector. Because of STK’s inability to target specific orbits,

the “descent” leaves the spacecraft in the same inclination orbit it ended

up in after finally escaping the Moon’s gravity. The limited, predefined

thrust angles mean that orbital eccentricity cannot be controlled either.

Consequently the final arcjet phase was not propagated through to GTO.

Thus the STK simulation solves the problem of lunar capture, but

further work was required to determine a feasible end-to-end orbit even

before any optimisation could take place. In order to manipulate the thrust

profile during the forwards ascent and cruise phases such that the initial

GTO could connect with the lunar capture, it was necessary to reproduce

this trajectory in GESOP.

7.2.4 Further GESOP modelling

The ascent phase was modelled in GESOP subject to the initial boundary

conditions outlined in Table 5.1 and final boundary conditions outlined in

Table 5.2. An initial guess was taken for the thrust profile perpendicular

to the orbital radius at all times throughout ascent, in order to raise the

periapsis as quickly as possible beyond the van Allen belts.
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Figure 7.1: Continuous trajectory modelled in STK.

The initial guesses for starting time and mass were taken from the

STK simulation described in Section 7.2.3. End conditions were imposed

to connect this phase to the starting conditions of the cruise phase. This

implementation of continuity is not ideal as it enforces an arbitrary position

and velocity at the phase transitions, thus reducing the flexibility during

optimisation. A long-term goal remains to optimise all phases simultane-

ously, enforcing continuity between phases but not specifying what those

conditions are. However at this stage this is not possible due to compu-

tational complexity, and remains an improvement for the future, perhaps

exploiting parallel processing and supercomputer hardware.

Given the arbitrary nature of these continuity conditions, they were

used for the initial guess but not enforced during optimisation. As the ac-

tual parameters diverged from their initial values during the optimisation,

discontinuities emerged between phases. This was permitted for a number

of reasons. Firstly, the launch conditions are not known, so the procedure

used in this optimisation is more important than the actual result. Sec-

ondly, at every phase transition the terminating and commencing orbits are

very similar, thus the variation in orbital energy was very small. In other
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words, the main difference between the orbits was simply timing, and at

any of the phase transitions the spacecraft can sit in a parking orbit until

the correct alignment occurs. Finally, due to the computational limitation

of optimising each phase independently, any small change would then re-

quire all other phases to be recalculated. Treating each separately, with

an implicit parking orbit in between, allows these small changes without

any significant effect to the remaining phases.

As mentioned in Section 6.3, throughout the modelling and optimisa-

tion of the cruise phase, multiple different initial guesses were trialled. Ul-

timately it was decided that the initial specification for vehicle performance

provided the best trajectory conditions, and consequently those same pa-

rameters were used in the STK simulation mentioned in Section 7.2.3. The

STK trajectory was then used as an initial guess for the cruise phase, sub-

ject to boundary conditions as outlined in Section 5.5. Once again, the

cruise phase is not continuous with preceeding or succeeding phases, but

the orbital energy at the phase boundaries is very similar allowing some

design flexibility.

The 1.2 � 106 variables required to compute the cruise phase, as out-

lined in Section 6.4.2, resulted in 2 � 108 64-bit doubles for floating point

operations and 8 � 107 32-bit words for integer operations. The desktop

PC kindly provided by the Institute of Space Systems in Stuttgart, an

AMD 2.8GHz X6 with 2GB RAM, was unable to handle a problem of this

order. Despite an upgrade to 4GB, the cruise phase optimisation was still

sluggish, resulting in the program terminating before it could achieve an

optimal solution. The processing was severely restricted by not being dis-

tributed across the multiple cores available. To enable this, both GESOP

and SOCS would have to be modified to support parallel processing. This

would not only improve performance on desktop PCs given the market

trend for multiple cores, but would allow large optimisation problems to

be solved on clustered PCs, or even supercomputers. Unfortunately this

development was beyond the scope of the project, so modelling proceeded

to the remaining phases.

The initial mission architecture did not include a propagate phase, but
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during the STK simulation it was empirically found that the spacecraft

achieves an appropriate orbit for lunar capture well before the Moon is

in position for rendezvous. Consequently a coasting phase was inserted,

when the spacecraft’s trajectory was propagated forward in time without

any thrusting. Given sufficient computational power, this phase could be

shortened or removed entirely, much like the discontinuities between other

phases, once the launch conditions are known. Whether this phase should

be removed remains open to debate: it provides the spacecraft with an

opportunity to recharge its batteries if the electrical system is not perform-

ing nominally, and allows time for critical adjustments if the spacecraft is

drifting off course. The lunar approach is particularly important to ensure

the final science phase orbit can be achieved without requiring too much

propellant.

Throughout the propagate phase the spacecraft transitions from the

Earth’s sphere of influence to the Moon’s. Consequently longitude was

discarded in favour of time as the independent parameter for modelling

this phase, as all the benefits outlined in Section 5.3 are not applicable to

this phase.

The various considerations in each of the phases introduced in Table 1.2

are outlined in Table 7.1.

7.2.5 Data analysis

During development, data was reviewed using the GESOP graphical inter-

face. At the conclusion of work, the data files were imported into Matlab

to produce the plots shown in this thesis. As explained in more detail in

Section 8.9, the control and time vectors were post-processed in Matlab to

fit the STK interface, to verify the orbital mechanics modelling.

7.3 Final trajectory determination

The primary objective of this study was to determine a procedure for

finding a suitable trajectory once the launch details are known. Launch
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Table 7.1: Operational differences between phases when modelling Lunar
Mission BW-1

Phase Requirement

Ascent
Frame ECI
Thruster Arcjet
Independent parameter Longitude
Notes Earth eclipse very important

Radiation dose very important

Cruise
Frame ECI
Thruster PPT
Independent parameter Longitude

Propagate
Frame ECI
Thruster Unpowered
Independent parameter Time

Capture
Frame LCI
Thruster Arcjet
Independent parameter Time

Descent
Frame LCI
Thruster PPT
Independent parameter Longitude
Notes Lunar eclipse very important

Science
Frame LCI
Thruster Unpowered
Independent parameter Longitude
Notes Lunar eclipse very important

Increased payload and communications
power requirements
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Figure 7.2: Flowchart demonstrating the trajectory development process
for Lunar Mission BW-1.

configuration can be finalised before launch, but any launch can be post-

poned or scrubbed due to technical faults or even adverse weather. There-

fore the trajectory can be approximated, but not finalised before launch.

Once the spacecraft is safely in GTO, the orbital elements must be fed

in to the optimisation process, and the resulting thrust profile uploaded

to the spacecraft on-orbit. This procedure is graphically represented in

Figure 7.2.

First of all, the indicative results presented here may be used to es-

timate flight time, to produce a backward propagated trajectory in STK

that departs GTO on a suitable date after launch. The capture and propa-

gate phase durations may be adjusted to determine a lunar capture. Once

a capture scenario is achieved, the state vector at each phase boundary

must be inserted into GESOP as an initial guess prior to the optimisation

process.
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The optimisation process within GESOP then commences. Given the

present computational limitations, each phase must be optimised, then

continuity conditions must be adjusted between phases. This iterative

process is repeated until a smooth, continuous trajectory is achieved. Ob-

viously, this process is not ideal. Assuming SOCS and GESOP have been

adapted to support parallel processing, the phases may be appended into

one large optimisation problem with many million parameters, which may

then be optimised in one run.

Data files containing the control profile are output by GESOP. These

may be post-processed, within GESOP or another application, to a for-

mat appropriate for the satellite ACS, before being uploaded to the satel-

lite. During the transfer the anticipated trajectory should be matched

against the observed trajectory, and recalculated as required (this will be

particularly important early in the trajectory, as thruster performance is

evaluated).

7.4 Summary

This chapter clarified the software packages used throughout this project,

and some of the problems inherent with each. A brief roadmap was then

given to apply this procedure, after launch, to determine the final trajec-

tory.
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Chapter 8

Discussion of results

8.1 Introduction

This chapter presents the results obtained through GESOP simulation and

optimisation of each of the phases as introduced in Table 1.2, as well as

the reduced complexity ascent phase and propagate phase introduced in

Chapter 7.

8.2 Reduced complexity optimisation

As explained in Section 7.2, a reduced complexity ascent phase was mod-

elled to gain an initial idea of the thrust profile and optimisation procedure.

Many useful conclusions can still be drawn from the results of this sim-

ulation. The thrust profile shown in Figure 8.1 demonstrates oscillations

in the thrust direction between radial and tangential thrust components.

This is similar to a result found by Betts and Erb (2003). However, unlike

Betts and Erb (2003), this is accompanied by a varying thrust magnitude,

as shown in Figure 8.2. It is interesting to note that the variations in

thrust magnitude are synchronous with the orbit; during the apoapsis,

when thrusting is most effective in raising the periapsis, the thrust mag-

nitude is very near to 100%. Towards the end of the phase however, near

periapsis the spacecraft often ceases thrusting altogether. The fact that
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Figure 8.1: Direction of thrust vector during reduced complexity ascent
phase. Tr is the radial component, Tθ is the tangential component within
the orbital plane, and Th is the out-of-plane component.

thrust is continuous at the start of the phase is a result of the Oberth effect:

it is most efficient to thrust when close to the central body. However, once

sufficient orbital energy is attained for the periapsis to be raised beyond

the van Allen belts, thrusting near periapsis contributes nothing more to

achieve the objective. Thus a major objective of this study is achieved: to

discover an optimal thrust profile given the thrust constraints.

The resulting trajectory presents some interesting artefacts in the 3D

plot in Figure 8.3. Once thrusting at periapsis ceases, the apoapsis stops

increasing significantly. Thus the orbits are much closer together in the

plot, appearing as though an inclination change has occurred.

The terminal condition of this phase optimisation, raising the periapsis

above the van Allen belts, is shown in Figure 8.4. The cyclical nature of

periapsis growth is due to the orbit: the periapsis height cannot be raised

while the spacecraft is at periapsis, regardless of the amount of thrust

applied. As a result of this effect, the optimised profile reduces thrust
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Figure 8.2: Magnitude of thrust vector shown in Figure 8.1 during reduced
complexity ascent phase.
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Figure 8.3: Reduced complexity ascent trajectory of the satellite in ECI
frame viewed from north pole. Black represents full thrust magnitude,
cyan represents zero thrust magnitude.
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Figure 8.4: Periapsis of spacecraft during reduced complexity ascent
phase.

during apoapsis, thus conserving fuel when it is inefficient to thrust. Each

of the sharp increases in periapsis corresponds to an apoapsis pass. The

spacecraft’s mass, seen in Figure 8.5, shows a steady decrease during the

period of constant thrust. Then the latter half of the phase shows the

results of the variable thrusting magnitude, as fuel mass is conserved at

the expense of time. Consequently, this simulation used a total of 53.63 kg

of ammonia, over 34.17 days. This is very close to the original mission

architecture’s estimation of time spent in the van Allen belts, and thus

corresponds to acceptable levels of radiation damage.

The ∆v expenditure in Figure 8.6 shows a very similar profile to mass

flow, albeit inverted, adding up to a total of about 1.15 kms�1. This is

very close to the expenditure estimated in the original mission architecture

of 1.1 kms�1.

Finally, Figure 8.7 shows the power levels throughout this phase. The

energy used by the thrusters very closely maps the energy generated by

the solar panels, until the later stages whereupon the intermittent thrust-
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Figure 8.5: Mass of spacecraft during reduced complexity ascent phase.
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Figure 8.6: Delta-V generated by spacecraft during reduced complexity
ascent phase.
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Figure 8.7: Power budget of spacecraft during reduced complexity ascent
phase.

ing occurs, lowering the energy requirements. Thus the constraint that

the energy use does not exceed the energy generation by more than the

batteries’ capacity is fulfilled.
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8.3 Ascent phase

Figure 8.8 shows the 3-dimensional trajectory that resulted from the as-

cent phase. This optimisation was able to reach a feasible solution in the

computational time available, but was not allowed to continue on to find

an optimal solution. Consequently the ascending orbit does not show the

Oberth effect to the same degree as in the reduced complexity optimisation.
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Figure 8.8: Ascent trajectory of the satellite in ECI frame viewed from
north pole.

Figure 8.9 shows the distance of the spacecraft from the Earth and

Moon throughout the phase. The oscillations about the Earth are seen to

slowly increase in duration and altitude, as you would expect for a slowly

ascending orbit. For this scenario, the geometry permitted the space-

craft’s initial argument of periapsis relative to the Earth to be opposite

the Moon’s argument of periapsis relative to the Earth, so the spacecraft

is furthest from the Earth in the same region of space that the Moon is

closest to the Earth. This was found to be an optimal scenario, as it leads

to much greater gravitational assistance earlier on in the transfer, but is
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Figure 8.9: Satellite’s distance from Earth and Moon during ascent phase.

unfortunately not a scenario that can be planned for, as the initial argu-

ment of periapsis is defined by the launch. The argument of periapsis may

be adjusted during the transfer by controlling the thrust angle, but this

technique requires a lot of delta-v and therefore can only compensate for

a few degrees.

The thrust profile calculated by the optimisation is shown in Fig-

ure 8.10, along with the corresponding thrust magnitude in Figure 8.11.

While the scale of these results seems trivial, they are indicative of the

direction the optimisation was pushing the solution, and suggest that the

reduced complexity results constitute a good approximation.

Figure 8.12 shows the changing equinoctial elements of the orbit through-

out the transfer, accompanied by the rather more intuitive Keplerian ele-

ments in Figure 8.13. Unsurprisingly, the semimajor axis a and the semi-

latus rectum p grow smoothly throughout the transfer, and their rate of

growth increases as the spacecraft gets further from Earth’s gravity well.

The anomaly ν slows its growth as the orbital radius, and consequently

the orbital period, increases. The spacecraft’s eccentricity e slowly de-
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-140 -135 -130 -125 -120 -115 -110
Mission time t [days]

0.9991

0.9992

0.9993

0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

1.0000

N
or

m
al

is
ed

th
ru

st
m

ag
n
it

u
d
e
T

Figure 8.11: Magnitude of thrust vector during ascent phase.



128 Chapter 8. Discussion of results

1.5
2.0
2.5
3.0

[�
10

7
m

] p

0.0
0.2
0.4
0.6

[-
]

f
g
h
k

-140 -135 -130 -125 -120 -115 -110

100

200

300

[r
ad

]

Mission time t [days]

L

Figure 8.12: Equinoctial elements of satellite within ECI frame during
ascent phase.

creases as the continual tangential thrust raises the perigee faster than

the apogee, but again, this is exactly as required during this phase. The

continual thrust in this phase, when compared with the optimised thrust

of the reduced complexity phase, results in a higher final semimajor axis

accompanied by a higher eccentricity.

The stronger forces acting on the spacecraft during the ascent phase

are shown in Figure 8.14a, and the weaker forces in Figure 8.14b. It is

immediately apparent that only the Earth’s gravitational harmonics play a

significant role in defining the spacecraft trajectory from such a low orbit.

However, as outlined in Section 4.7.2 this only affects the argument of

periapsis and right ascension of the ascending node, and therefore cannot

be exploited to raise the orbit faster. As outlined above, adjusting the

argument of periapsis may assist with lining up gravitational assists from

the Moon later in the transfer, but due to the limitation of modelling

phases separately this assist could not be included. Consequently, the

thrust profile was optimised purely for a fast ascent. Interestingly, the
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Figure 8.13: Keplerian elements of satellite within ECI frame during
ascent phase.

optimiser did adjust the trajectory starting date from the initial guess

derived from STK, which has the effect of adjusting the phase between the

spacecraft and the Moon. This shows that even the relatively weak lunar

gravity present during this phase may still be exploited. The orders of

magnitude between the forces shown in Figure 8.14a and the gravitational

forces due to Jupiter, Venus and Mars in Figure 8.14b highlight the reason

why so many earlier studies neglect these forces.

The spacecraft periapsis is shown again in Figure 8.15. The profile is

very similar to that observed in the reduced complexity ascent, although

by thrusting through the periapsis the growth is smoothed somewhat. As

this is the termination condition for the phase, the final periapsis is the

same between the fully optimised reduced complexity version and this one.

However, the optimised phase traded off semimajor axis (and thus orbital

energy) to reduce the eccentricity faster.

The nearly constant thrust results in fuel consumption being almost

linear with time. This can be seen in Figure 8.16, which plots the wet
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Figure 8.15: Periapsis of spacecraft during ascent phase.

mass of the spacecraft over the phase. From the plot, this simulation

suggested 59.82 kg worth of ammonia would be required for the ascent

phase. Since the reduced complexity ascent, which was allowed to reach an

optimal solution, took 2 days longer but saved 6 kg of ammonia propellant,

a similar solution may be expected from this higher fidelity model given

adequate computational power. Whether this trade off is desired is an

operational decision, requiring a detailed model of solar panel degradation

within the van Allen belts.

Figure 8.17 shows the power generated and consumed during the ascent

phase. The energy required for the thruster demonstrates the same linear

behaviour as the first half of the reduced complexity simulation, continued

for the whole phase as the optimisation was not allowed to proceed to the

intermittent thrust profile as the reduced complexity simulation. How-

ever, the solar panels show a much higher power generation: 1140 kWh

in 32.22 days, compared to 787 kWh in 34.17 days for the reduced com-

plexity model. Given that the inclination, argument of periapsis and right

ascension of the ascending node are identical to the reduced complexity
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Figure 8.16: Mass of spacecraft during ascent phase.

ascent, and the trajectory is also very similar, there are few factors that

could account for this difference. The biggest difference between the two

simulations is the starting date: the reduced complexity phase started at

the mission epoch, 1 January 2014. This simulation, based on the back-

wards propagated STK simulation, starts at epoch minus 140 days. In

other words, due to the dependency on later phases in the STK simulation

this GESOP simulation starts about 4.6 months earlier than the reduced

complexity one, resulting in the sun subtending a very different angle on

the Earth relative to the vernal equinox. Given the constraints on pointing

the solar panels towards the sun (see Section 6.3) this must have an affect

on power generation. Since power generation has been greater than power

consumption in both GEOSP simulations, it does not affect the optimal

trajectory, but is a factor worth investigating if more power is directed to

the thrusters for a quicker ascent, as recommended in Section 9.2.

A total ∆v of 1304 ms�1 was expended over the ascent phase, at an

almost constant rate due to the linear thrust profile. This is rather more

than the reduced complexity phase, and the ∆v estimation in the original
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Figure 8.17: Power budget of spacecraft during ascent phase.

mission architecture. However, as mentioned previously this sub-optimal

trajectory results in a higher orbital energy than the optimised reduced

complexity phase, which would decrease time and propellant needed for

the subsequent cruise phase.
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8.4 Cruise phase

As seen in the 3 dimensional trajectory plotted in Figure 8.18, continual

thrust during the cruise phase leads to a circular orbit, even from the fairly

elliptical starting orbit. Consequently a rendezvous with the Moon cannot

really be scheduled as in previous studies involving short, higher thrust

periods interspersed with coasting. Rather, lunar resonances will happen

inevitably, as the spacecraft passes the Moon in its lower, faster orbit. The

purpose of the optimisation therefore is to schedule the effects of these reso-

nances, by changing the inclination or eccentricity of the spacecraft’s orbit.

Little manipulation is required to achieve this, because all orbital changes

are implicitly included in the optimisation. Of particular interest are the

outermost orbits seen in the figure, whereupon the perigee is lowered (the

eccentricity is increased) by a lunar assist.
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Figure 8.18: Cruise trajectory of the satellite in ECI frame viewed from
north pole.

Figure 8.19 shows the distance of the spacecraft from the Earth and

the Moon over the course of the cruise phase. In comparison to the ascent
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Figure 8.19: Satellite’s distance from Earth and Moon during cruise
phase.

phase, the spacecraft’s greater distance from the Earth is apparent, result-

ing in greater oscillations in its distance from the Moon. The corresponding

plot of orbital energies in Figure 8.20a, however, displays a decreasing os-

cillation in the spacecraft’s orbital energy relative to the Moon, even as the

minimum within the oscillation slowly approaches capture (εK ¤ 0). Mean-

while the orbital energy relative to the Earth approaches escape (εC ¥ 0).

A closer inspection of the orbital energy relative to the Earth towards

the end of the cruise phase, shown in Figure 8.20b, reveals a number of

small gravitational assists, as the spacecraft approaches the lunar anomaly

each orbit. This is then followed by a small gravitational penalty as the

spacecraft continues away from the Moon. A similar, albeit smaller, assist

is demonstrated every time the spacecraft is exactly opposite the Moon.

The thrust profile shown in Figure 8.21 resulted from the incomplete

optimisation attempted on this phase. The noise in the out-of-plane com-

ponent results from truncation error when evaluating the unit thrust vector

constraint. Despite the optimisation not having been allowed to reach an



136 Chapter 8. Discussion of results

600 800 1000 1200 1400 1600
Mission time t [days]

-6

-4

-2

0

2

4

6

8

10

12

14
O

rb
it

al
en

er
gy

ε
[�

10
6

m
2
s�

2
]

From Earth
From Moon

Figure 8.20a: Orbital energy of the satellite relative to Earth and Moon
during cruise phase.
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Figure 8.21: Direction of thrust vector during cruise phase.

optimal solution, it is apparent that the thrust profile is once again dis-

playing the characteristics outlined in Section 8.2, by oscillating the thrust

vector over the orbital period. It is interesting to note that the deviations

from purely tangential thrust seem to be directly proportional to the ec-

centricity, shown in Figure 8.22, suggesting that the thrust profile is trying

to circularise the orbit. Otherwise, the semimajor axis and anomaly are in-

creasing similarly to the ascent phase. Figure 8.23 shows the corresponding

equinoctial elements.

The perturbations shown in Figure 8.24a show the spacecraft thrust

has dropped by two orders of magnitude, since it is now using the PPTs

rather than the arcjet from the ascent phase. At the start of the cruise

phase, the Earth’s harmonics are still the strongest secondary force acting

on the spacecraft, but this rapidly drops off as the spacecraft raises its

orbit. The Moon’s gravity becomes more dominant towards the end of the

phase, with spikes starting to occur indicating gravitational assists caused

by close passes to the Moon in the last few orbits. The sun’s gravity

also has a more significant effect on the spacecraft as its orbit is raised,
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Figure 8.22: Keplerian elements of satellite within ECI frame during
cruise phase.
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Figure 8.23: Equinoctial elements of satellite within ECI frame during
cruise phase.
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Figure 8.24a: Perturbing accelerations acting on spacecraft during cruise
phase.

exhibiting high frequency oscillations due to the spacecraft’s orbit around

the Earth, and lower frequency oscillations closely following the averaged

force due to solar radiation, both due to the Earth’s elliptical orbit around

the sun. Similar cyclical behaviour is visible in Figure 8.24b, showing the

resonances of Earth’s orbit with Jupiter, Venus and Mars’ orbits.

This phase best demonstrates orbital resonances with the other plan-

ets. Mars, with an orbital period of 1.88 years, aligns with Earth’s or-

bit every 2.1 years, according to Equation 8.1. Venus’ orbital period of

0.62 years produces a resonance every 1.6 years, and Jupiter’s orbital pe-

riod of 11.85 years resonates every 1.09 years. All of these resonances are

apparent in Figure 8.24b.

Resonance period �
1

| 1
3rd body orbital period

� 1
Earth orbital period

|
(8.1)

Throughout the cruise phase, 17.55 kg of PTFE was consumed, gen-
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Figure 8.24b: Smaller magnitude perturbing accelerations acting on
spacecraft during cruise phase.

erating 2519 ms�1 of ∆v. While this comprehensively demonstrates the

efficacy of the PPTs compared to the arcjet used in the previous phase, the

∆v requirement was still much higher than that anticipated in the original

mission architecture of 1.6 kms�1. Given the theoretical optimality of tan-

gential thrust, and how closely the other phases lined up with anticipated

delta-v expenditure, such a large discrepancy may be due to a calculation

error or invalid assumption during mission planning.
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8.5 Propagate phase

Figure 8.25 shows the simulated coasting trajectory during the propagate

phase. This consists of 1.5 orbits around the Earth followed by a lunar

rendezvous that pulls the spacecraft into the desired lunar orbit. This orbit

is apparent in Figure 8.26 which plots the same trajectory but from a lunar

centred frame. Since the spacecraft enters a polar orbit about the Moon,

it appears to intersect the Moon given the camera is positioned above

the Moon’s pole. Figure 8.27 shows the trajectory from the selenocentric

frame, fixed relative to the Moon’s surface. Because the Moon is tidally

locked to the Earth, the Earth appears to be in a halo orbit in this frame.
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Figure 8.25: Propagated trajectory of the satellite in ECI frame viewed
from north pole. The Moon’s orbit is shown in blue.

The spacecraft’s distances from the Earth and the Moon are shown in

Figure 8.28. It starts on the opposite side of the Earth from the Moon,

then gets pulled into lunar orbit as it swings around the Earth. Figure 8.29

shows the corresponding orbital energies. The spacecraft has a very high

orbital energy relative to the Moon whilst it is on the far side of the Earth,
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Figure 8.26: Propagated trajectory of the satellite in LCI frame viewed
from north pole. The Earth’s orbit is shown in blue.
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Figure 8.27: Propagated trajectory of the satellite in SEL frame viewed
from north pole. The Earth’s orbit is shown in blue.
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Figure 8.28: Satellite’s distance from Earth and Moon during propagate
phase.

before being captured (dropping below εK � 0) towards the end of the

phase. Throughout the phase the orbital energy relative to the Earth is

very close to that of the Moon.

The Keplerian elements shown in Figure 8.30 show a sudden jump in

semimajor axis and eccentricity as the spacecraft gets pulled towards the

Moon, then another increase in semimajor axis accompanied by a drop in

eccentricity as the spacecraft gets pulled into lunar orbit. The spacecraft

remains at the same inclination as the Moon, but the right ascension of

the ascending node (Ω) is changed as the orbital plane is rotated around

Earth’s pole to match that of the Moon. As the spacecraft is pulled into

lunar orbit, the anomaly becomes cyclical with respect to the Earth, high-

lighting why a lunar-centric frame is necessary for the subsequent phases,

and why this phase was modelled with time as the independent parameter

instead of longitude, as outlined in Section 7.2.4. Figure 8.31 again shows

the corresponding equinoctial elements.

Seen relative to the lunar frame in Figure 8.32, the semimajor axis
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Figure 8.29: Orbital energy of the satellite relative to Earth and Moon
during propagate phase.
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Figure 8.30: Keplerian elements of satellite within ECI frame during
propagate phase.
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Figure 8.31: Equinoctial elements of satellite within ECI frame during
propagate phase.
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Figure 8.32: Keplerian elements of satellite within LCI frame during
propagate phase.
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Figure 8.33: Perturbing accelerations acting on spacecraft during propa-
gate phase.

approaches negative infinity as the spacecraft approaches capture, while

the eccentricity approaches 1. At the point of capture, the spacecraft is in a

parabolic orbit and the semimajor axis is undefined. As the spacecraft then

descends into lunar orbit, the semimajor axis drops down from positive

infinity.

The perturbing forces in Figure 8.33 continue on from the previous

phase (Figure 8.24a), with solar and lunar gravity dominant, although

there is no thrust present during this phase. As the spacecraft descends into

lunar orbit, unsurprisingly the lunar gravity becomes the dominant force.

Another interesting point is the cyclical nature of the force due to Earth’s

harmonics that are highlighted in this plot. The sudden drops are caused

when the spacecraft passes the Earth’s equator, and the J2 harmonic no

longer has any effect on the vehicle. Furthermore, the alternating short-

long-short duration between these drops is caused by the short periapsis

half of the orbit, followed by the lengthy apoapsis.

A factor that becomes important as the spacecraft approaches capture
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Figure 8.34: Longitude of spacecraft and Moon during propagate phase.
The approach angle is the difference between spacecraft longitude and
the Moon’s longitude.

is the angle subtended between the craft and the Moon, relative to the

Earth. This is shown in Figure 8.34. At the start of the phase, the Moon

is close to its ascending node, with the spacecraft leading it by about 2

radians. As the spacecraft is in a lower, faster orbit, this angle widens until

1660 days at which point the spacecraft and the Moon are on opposite sides

of the Earth. The subtended angle then approaches zero as the spacecraft

approaches lunar orbit.
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8.6 Capture phase

Following the weak capture during the coasting phase propagated by the

simulator the arcjet is again used, this time to lower the orbit as quickly

as possible to avoid being recaptured by the Earth. This results in the

spacecraft mapping increasingly small and fast circles around the Moon,

as shown from the Earth’s perspective in Figure 8.35.
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Figure 8.35: Capture trajectory of the satellite in ECI frame viewed from
north pole. The Moon’s orbit is shown in blue.

The descending spiral trajectory is far more apparent from the lunar

centred frame in Figure 8.36. When this frame is rotated in Figure 8.37

the lunar surface coverage can be seen, indicating that the science payload

could be activated during this phase subject to sufficient power.

The satellite’s distance from the respective bodies in Figure 8.38 is

unsurprising: it gets closer to the Moon, while its orbit about the Moon

causes oscillations in the distance to Earth that approach the Earth-Moon

distance as the orbit descends. The orbital energy plot in Figure 8.39

is more interesting, showing the spacecraft’s precariously captured lunar
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Figure 8.36: Capture trajectory of the satellite in LCI frame viewed from
north pole.
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Figure 8.37: Capture trajectory of the satellite in SEL frame viewed from
north pole.
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Figure 8.38: Satellite’s distance from Earth and Moon during capture
phase.

orbit becoming more stable. Meanwhile, the orbital energy with respect to

the Earth starts oscillating wildly. The spacecraft’s gravitational potential

with respect to the Earth is more or less constant, so the oscillations are

caused by the velocity vector oscillating towards and then away from the

Earth. A consequence of this is that when the spacecraft’s velocity is

directed away from the Earth, it exceeds escape velocity, so the orbital

energy is positive. If not for the Moon repeatedly pulling the spacecraft

back again, it would escape the Earth’s gravity field.

During the capture phase, the semimajor axis shown in Figure 8.40

steadily decreases very similar to the ascent phase in reverse. Similarly,

the anomaly increases at an increasing rate, and the lower orbit results

in higher orbital speed. Unlike a reversed descent phase, the eccentricity

continues to decrease until it reaches a very nearly circular orbit, as re-

quired for the science phase. For the first half of the phase, the argument

of periapsis is increasing while the anomaly is almost steady. This has

essentially the same effect as the anomaly increasing, since the orbit is al-
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Figure 8.39: Orbital energy of the satellite relative to Earth and Moon
during capture phase.

most circular. The right ascension of the ascending node precesses steadily

as a result of the Earth’s gravity, a well known phenomenon of polar lunar

orbits (Gupta and Sharma 2011). The corresponding equinoctial elements

are shown in Figure 8.41.

In the plot of perturbations acting on the spacecraft over the capture

phase, shown in Figure 8.42a, the acceleration due to spacecraft thrust is

observed to slowly increase. This is because propellant is expelled as the

spacecraft thrusts, thereby reducing the mass being accelerated. This phe-

nomenon is present in every powered phase, but is most apparent during

the capture phase because the arcjet is in use, resulting in a higher mass

flux than the descent phase, combined with the lighter load than previ-

ous phases because much of the fuel has already been used. The Earth’s

gravity continues to decrease in effect as the spacecraft settles to a steady

distance from the Earth, but the perturbations due to the Moon’s gravi-

tational harmonics rapidly increase in magnitude. For completeness, the

smaller perturbing forces are shown in Figure 8.42b. It should be noted
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Figure 8.40: Keplerian elements of satellite within LCI frame during
capture phase.
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Figure 8.41: Equinoctial elements of satellite within LCI frame during
capture phase.
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Figure 8.42a: Perturbing accelerations acting on spacecraft during cap-
ture phase.

that the residual perturbations from the Earth’s harmonics, continued on

from Figure 8.33 would be of comparable magnitude to the gravitational

forces from Jupiter, Venus and Mars, but were neglected for this phase due

to the increase in computational time.

Figure 8.43 shows the thrust profile resulting from the capture phase

simulation. This profile results from the initial guess, of continual thrust

backwards along the velocity vector. Consequently the thrust initially has

a substantial radial component due to the eccentricity of the orbit, but

rapidly settles into almost purely tangential thrust. The noise in the out-

of-plane component again results from truncation error when evaluating

the unit thrust vector constraint.

Over the course of the capture phase, 33.43 kg of ammonia propellant

was used. This generated almost 968 ms�1 of ∆v, compared to the original

mission architecture guess of 500 ms�1. Once again this is a substantial

difference that is unlikely to be accounted for by allowing the phase opti-

misation to reach an optimal solution. It is more likely that if the entire
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Figure 8.42b: Smaller magnitude perturbing accelerations acting on
spacecraft during capture phase.
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Figure 8.43: Direction of thrust vector during capture phase.
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multiple-phase trajectory were optimised together, a substantial saving in

∆v could be achieved (and correspondingly fuel consumption) particularly

in the troublesome area of lunar capture, as the optimiser would be able

to evaluate different capture scenarios. However, the original mission ar-

chitecture estimates were based on a low-fidelity STK simulation, and did

not investigate complex lunar capture techniques. Consequently it must

be concluded that the initial estimates were optimistic.
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8.7 Descent phase

Figure 8.44 shows the descent phase trajectory in an inertial lunar centred

frame. The terminal conditions of the capture phase are propagated to the

science orbit using the PPTs. This results in the very tight, very nearly

circular spiral seen in the figure. In the rotating surface-fixed frame of

Figure 8.45, the slow decrease in orbital altitude can be seen.
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Figure 8.44: Descent trajectory of the satellite in LCI frame viewed from
north pole. The orbits behind the Moon partly show through due to a
flaw in the vector graphics renderer.

The spacecraft’s distance from the Moon, shown in Figure 8.46, is al-

most trivial during this phase; the distance from the Moon decreases grad-

ually, with a higher frequency oscillation due to the slightly eccentric orbit.

The plot of orbital energy seen in Figure 8.47 shows a similar characteris-

tic: the spacecraft’s orbital energy relative to the Moon slowly decreases

without any oscillation.

Throughout the phase, the semimajor axis in Figure 8.48 steadily drops

as desired, while the eccentricity has already started a small but inexorable

increase due to the asymmetric lunar gravity field that will ultimately cause
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Figure 8.45: Descent trajectory of the satellite in SEL frame viewed from
north pole.
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Figure 8.46: Satellite’s distance from the Moon during descent phase.
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Figure 8.47: Orbital energy of the satellite relative to the Moon during
descent phase.

the spacecraft to crash into the surface. The right ascension continues to

precess. The corresponding equinoctial elements are shown in Figure 8.49.

In the plots of perturbing forces acting on the spacecraft during the

descent phase (Figure 8.50a and Figure 8.50b), the Earth’s orbit about the

Sun is once again apparent in the solar gravity and solar radiation. Forces

due to the Moon’s gravitational harmonics are increasing in strength as

the craft gets closer to the surface, but the dominant secondary force is

still Earth’s gravity.

The thrust throughout the descent phase is directed backwards along

the velocity vector, as seen in Figure 8.51. Since the orbit is very nearly

circular, this thrust is primarily tangential to the circle being described,

with very small radial components. Once again the out-of-plane thrust is

a negligible truncation error.

The simulation of this phase estimated 1.43 kg PTFE was consumed,

providing almost 390 ms�1. This ∆v is almost exactly as estimated in

the original mission architecture. Once again the PPTs are remarkably
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Figure 8.48: Keplerian elements of satellite within LCI frame during
descent phase.
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Figure 8.49: Equinoctial elements of satellite within LCI frame during
descent phase.
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Figure 8.50a: Perturbing accelerations acting on spacecraft during de-
scent phase.
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Figure 8.50b: Smaller magnitude perturbing accelerations acting on
spacecraft during descent phase.
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Figure 8.51: Direction of thrust vector during descent phase.

efficient for a phase that lasted 91.79 days. As with the cruise phase, there

is a surplus of energy available, although the power generation slows late in

the phase as the spacecraft begins transiting through the Moon’s shadow.
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Figure 8.52: Power budget of spacecraft during descent phase.
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8.8 Science phase

As there is no propulsive thrust during the science phase, the orbit was

propagated forwards for 6 months to determine the spacecraft’s behaviour

in the absence of stationkeeping manoeuvres. Figure 8.53 shows the final

orbit in an inertial frame.
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Figure 8.53: Science trajectory of the satellite in LCI frame viewed from
north pole. The orbits behind the Moon partly show through due to a
flaw in the vector graphics renderer.

The Keplerian elements shown in Figure 8.54 shows oscillations in the

semimajor axis caused by the asymmetric lunar gravity field. More wor-

ryingly, the eccentricity shows a steady increase throughout the phase,

indicating an increasingly elliptical orbit that would eventually cause the

spacecraft to impact the Moon’s surface. This trend is more visibly seen

in Figure 8.55, showing the resulting decrease in periapsis radius. On the

other hand, the sudden change in argument of periapsis (ω) towards the

start of the phase merely represents the periapsis switching sides of the per-

fectly circular orbit. The right ascension of the ascending node continues

to precess. These behaviours all resemble the 130 km lunar orbit modelled
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Figure 8.54: Keplerian elements of satellite within LCI frame during
science phase.

by Gupta and Sharma (2011) in their analysis of lunar orbital lifetimes

very closely. Once again the corresponding equinoctial elements are shown

in Figure 8.56. The larger perturbing forces are shown in Figure 8.57.
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Figure 8.55: Periapsis of spacecraft during science phase. The periapsis
switches from one side of the orbit to the other when e � 0.
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Figure 8.56: Equinoctial elements of satellite within ECI frame during
science phase.
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8.9 Validation

For obvious reasons there have been few experimental flights to validate

low-thrust trajectory theory, and no flight testing is possible to verify this

particular proposed trajectory prior to final launch. Fortunately, the me-

chanics outlined in Chapter 4 have been well established for many decades

(Kaplan 1976), and this particular implementation of them was further

verified in Matlab prior to commencing work with GESOP. The optimi-

sation routines within GESOP, and the flight mechanics of ASTOS, have

been numerically verified by ESTEC, Dassault, Astrium, CNES, EADS

and JAXA, among other industrial partners. ASTOS is practically vali-

dated by ongoing use on real missions launched by ESA and DLR, including

Ariane 5 and Vega rocket launches, the ExoMars and Beagle 2 missions,

and X38 re-entry scenarios.

The independently computed phases from GESOP are plotted together

in Figure 8.58. Note that this is merely conceptual; the temporal discon-

tinuities between phases require parking orbits be inserted, or else the

trajectories be revised. Once launch data is known, the complete trajec-

tory may be calculated. Nonetheless, it is worth comparing the trajectory

to Figure 7.1 for a qualitative analysis that orbital energy is conserved.

For the purposes of further validation, the control vector profile devel-

oped in GESOP was converted into quaternions using Matlab, and then

combined with the Ephemeris Time to fit the specifications for STK exter-

nal attitude files. A generic scenario was then produced in STK using the

external attitude files along with thruster specifications and phase lengths

identical to those used in GESOP with a high precision propagator, result-

ing in the trajectories as seen in Figure 8.59, Figure 8.60, Figure 8.61, and

Figure 8.62 for the ascent, cruise, capture and descent phases respectively.

There were minor differences between the GESOP and STK results

due to different orders of accuracy in the Earth’s gravitational harmonics

and the algorithms used to calculate third body perturbations, but these

differences were negligible in most cases. Figure 8.61 does highlight the

importance of updating the trajectory during flight; due to these minor
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Figure 8.59: STK validation of ascent phase.
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Figure 8.60: STK validation of cruise phase.

Figure 8.61: STK validation of capture phase.
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Figure 8.62: STK validation of descent phase.

numerical differences, the thrust profile gets slightly out of synchrony with

the orbit. Consequently, instead of approaching a low, circular lunar orbit

the argument of periapsis starts to precess and the eccentricity increases,

until the trajectory intersects the Moon’s surface. This problem could

be avoided by monitoring the spacecraft’s position from the ground, and

periodically uploading a revised thrust profile to the craft.

While this trajectory simulation cannot verify that the solution is op-

timal, it does confirm that the solution is feasible, and can be used to

compare trajectories on a case-by-case basis. For example, this trajectory

required 93.25 kg of ammonia propellant for the arcjet over the ascent and

capture phases, and 18.98 kg of PTFE propellant for the PPTs over the

cruise and descent phases. In comparison, SMART-1 used 82 kg of xenon

propellant to accelerate 1.5 times the mass over a similar trajectory (Es-

tublier et al. 2007). This discrepancy suggests that despite the efficiency

of the PPT thrusters, the fuel efficiency and average Isp of Lunar Mission

BW-1 are severely compromised by excessive use of the thermal arcjet.

It is assumed that should sufficient computational power allow the entire



8.10. Summary 171

trajectory be optimised as a whole, arcjet phases would be reduced and

PPT phases extended to reduce the total propellant consumption.

The fully optimised but lower complexity ascent phase verifies that this

optimisation process does improve the propellant consumption. When the

computational cycle was allowed to finish, the new trajectory required 6 kg

less propellant at the expense of 2 days longer phase duration. This repre-

sents a 10% improvement over the phase. While the subsequent phases are

too varied to assume a similar improvement, further exploitation of lunar

gravitational assists and the Oberth effect will improve the fuel efficiency.

Failed optimisation runs demonstrate the robustness of the optimisa-

tion process. For example, one optimisation run for the reduced complexity

ascent phase inadvertently neglected to constrain the starting mass. The

optimiser subsequently maximised the final mass by increasing the starting

mass up to the hard limit set by the parameter bounds (see Section 5.6.2).

While this optimisation took 6 days to complete due to the chaotic solu-

tion space, the fact that the optimiser was able to incrementally adjust

the starting mass all the way to the hard limit demonstrates a surprising

tolerance for a stiff, chaotic solution space.

Finally, the trajectory will receive ultimate verification when the satel-

lite is launched. Unfortunately at this stage in the design, there is still no

launch date scheduled.

8.10 Summary

Results have been presented for a reduced complexity ascent phase that

was able to find an optimal solution, followed by a high fidelity ascent phase

that was stopped after finding a feasible solution. The cruise phase was

then presented with its control profile after several thousand optimisation

iterations, followed by the subsequent capture, descent and science phases.

The initial guess was derived from an STK backwards propagation model

which is also described.

These results do not constitute a complete trajectory due to the absence

of important mission data such as launch date and spacecraft payload
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mass. However, a robust trajectory design procedure is demonstrated with

indicative results to aid in refining the mission architecture.
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Chapter 9

Conclusion

In any complex, non-convex optimisation problem the only way to be cer-

tain of an optimal solution is a brute force search. This is of course com-

putationally prohibitive. Luckily, in the context of planetary missions it is

not an operational requirement to find the optimal path, merely to find a

good path. In this thesis a procedure to find good paths has been outlined

for Lunar Mission BW-1, and recommendations are made for improving

the procedure in the future.

9.1 Summary of major findings

A complete trajectory has been presented for each phase in the mission

architecture, with a coasting phase inserted between cruise and capture.

To achieve the phase boundaries defined in the mission architecture, the

transfer from GTO to LLO requires a total of 4.2 kms�1. Chemically

propelled trajectories typically required about 4 kms�1 from LEO to LLO,

but as most of this impulse is applied deep within the Earth’s gravity well

it is magnified by the Oberth effect.

The ascent through the van Allen belts uses the higher-thrust, lower

efficiency thermal arcjet to minimise the time spent in this damaging envi-

ronment. Following a simple tangential thrust scheme to raise periapsis as

quickly as possible resulted in this phase taking 32.22 days. A fuel optimal
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Table 9.1: Summary of numerical results from trajectory simulation

Phase Time Propellant Delta-v Energy
(days) (kg) (kms�1) (MWh)

Ascent 32.22 59.82 1.3 1.14
Cruise 1123.91 17.55 2.5 32.18

Propagate 30.0 0.0 0.0 1.15
Capture 18.0 33.43 1.0 0.475
Descent 91.79 1.43 0.4 2.72
Science 180.0 0.0 0.0 5.50

trajectory required 34.17 days but saved over 6 kg of propellant, which is

10% of the fuel required for the phase. The remaining numerical results

are summarised in Table 9.1.

Based on this simulation the arcjet requires a total of 1205.28 hours of

operation, and the PPTs require 29176.82 hours of operation. For compari-

son, the Hall-effect thrusters used for 4958 hours during the SMART-1 mis-

sion had a total of 9200 hours of ground qualification testing before flight.

Maintaining the same ratio of testing to flight time requires 54140 hours

of PPT ground testing before flight. This is equivalent to over 6 years of

continuous thrusting in a thermal vacuum chamber.

9.2 Additions to Lunar Mission BW-1 pro-

gram

It is important to note that this project does not intend to give a complete,

final trajectory for Lunar Mission BW-1. In fact, this would be impossible

given unknowns such as launch date and payload. Rather, this project

developed a procedure for determining a good trajectory once those pa-

rameters are known as well as identifying issues that need to be considered

when developing the trajectory. Perhaps more importantly for mission

planning, the work described in this thesis provides an estimate for the

transfer duration and fuel requirements, as presented in Table 9.1. This
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data should inform future revision of the mission architecture. In partic-

ular, the radiation modelling suggests that the selected boundary of the

van Allen belts is too conservative; the cruise phase could start at a much

lower altitude, using the much more fuel-efficient PPTs. Additionally, re-

peated simulations suggested the spacecraft is only susceptible to being

recaptured for the first two or three orbits of the Moon during the capture

phase. Consequently the descent phase could also begin much earlier, once

again saving many kilograms of ammonia propellant by using the more ef-

ficient PPTs. Of course, these two strategies would both increase the total

mission time. That is a decision for the project management team.

The power modelling undertaken during this project revealed that Lu-

nar Mission BW-1 experiences a power surplus for most of the lunar trans-

fer. While payload standby and communications power requirements are

unknown, they are not expected to exceed this surplus. Consequently, the

vehicle configuration could be modified based on these results.

The excess power may be exploited by increasing the PPT pulse fre-

quency or installing additional thruster units. Simulation of the higher

thrust resulting from these modifications indicates a higher lunar approach

velocity complicating rendezvous and strong capture. These simulations

did perhaps suffer from implementing orbital energy as the termination

condition, thus sacrificing approach velocity for low altitude. If Lunar

Mission BW-1 is to be modified to exploit the surplus power available,

future trajectory modelling would be well advised to implement velocity

relative to the Moon as a termination constraint. Alternatively, removing

extraneous solar panels would significantly decrease the launch mass of the

vehicle, and also simplify thermal control.

Furthermore, the power surplus suggests that the developmental focus

of thruster research at Stuttgart on power efficiency is perhaps misplaced.

Rather, fuel efficiency could be improved by focussing research on Isp (by

improving exhaust velocity). More practically useful would be improving

the thrust; this would not only simplify complicated maneouvres such as

the lunar capture and course corrections, but it would also decrease total

transfer time, currently about 3.5 years. Of course, power efficiency may be
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important for other mission profiles, but to date the TALOS and SIMPLEX

thrusters are only intended for use on Lunar Mission BW-1.

9.3 Additions to low thrust trajectory opti-

misation

This project has undertaken one of the highest fidelity low-thrust trajec-

tory optimisations present in literature. It has demonstrated the feasibility

of such high fidelity optimisation using SOCS, subject to the advent of

faster processing and greater computer storage. While computer hardware

will eventually cover this gap, in the short term SOCS suffers from its

direct shooting limitation. The field of trajectory optimisation would ben-

efit greatly from modification of the SOCS algorithm to support multiple

shooting that could be distributed over multiple processor cores.

9.4 Conclusions of the research

As repeatedly highlighted in literature, making an initial guess remains

one of the biggest problems to trajectory optimisation. This is in part

because low thrust trajectories are extremely sensitive to small changes,

resulting in narrow basins of convergence surrounded by trajectories that

do not achieve lunar capture. Thus finding lunar capture scenarios is an

important step in optimising the trajectory of Lunar Mission BW-1.

Furthermore, some conclusions can be made about the thrust profile

in these initial guesses. At the start of this project a thrust profile was

implemented tangential to the spacecraft’s position. This circularises the

orbit as it rises. Based on the limited thrust profiles available in STK a new

strategy of thrusting along the velocity vector was modelled. This profile

preserves the orbital elements, in particular eccentricity. While this profile

loses some delta-v due to gravitational drag, maintaining a low periapsis

magnifies the thrust due to the Oberth effect, while raising the apoapsis

allows greater exploitation of lunar gravitational assists. The thrust profile
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would be further improved under the thrust power constraints by focussing

thrust over the periapsis, and coasting over apoapsis.

This strategy was ignored when the reduced complexity ascent phase

was allowed to reach a fully optimised solution. In this scenario, the space-

craft uses an intermittent thrust-coast-thrust profile. While there is a pos-

sibility that this is due to power limitations, further simulations indicated

that the batteries and solar panels are sized well enough to not require

coasting phases, even during higher energy arcjet phases. Rather, this

profile seems to be an artefact of the phase objective: raising the periapsis

while using as little propellant as possible. Thus the optimisation does

achieve its objective of escaping the van Allen belts very effectively. How-

ever, the overall mission objective of getting to the Moon using as little

propellant as possible may benefit from additionally raising the apoapsis

during this phase, by exploiting the Oberth effect to maximise the orbital

energy obtained per unit of propellant expended.

Regarding the power consumption, it was revealed not to be a limiting

factor on the trajectory for the planned satellite configuration. However,

the discrepancy between the optimised ascent phase and the higher fidelity

ascent phase revealed that power generation does increase significantly as

the Earth-Moon system approaches periapsis on its orbit around the Sun.

Furthermore, due to the thrust vector constraint the spacecraft attitude

only has one degree of freedom (roll). Thus the power generation is also

heavily dependent on the right ascension. Unfortunately, both launch date

and right ascension are dependent on the launch, which is not under the

control of the Institute for Space Systems.

9.5 Future work

There are quite a number of improvements that should be made if the

development of Lunar Mission BW-1 is continued.

First are a number of modelling techniques that the author came across

during the project, and would implement if he were starting over. These

include the parameterised departure date and thrust duty cycle described
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in Section 6.4.1. Additionally, the thrust profile could be modelled using

Euler angles instead of the unit vector described in Section 4.7.4. Not only

is this expected to further smooth the solution space, it would supercede

one of the constraint evaluations; specifically, the repeated calculations to

ensure the control vector is a unit vector would no longer be required.

Secondly, subsequent to the mission architecture and vehicle configu-

ration recommendations in Section 9.2 more detail would be required in

the power modelling. Payload and communications power budgets would

be required, and the power degradation model described in Section 6.3.1

should be implemented in software.

Colleagues working on the project have identified a number of lunar

inclinations that reduce station-keeping costs throughout the science phase.

Zeile et al. (2010) recommend a final inclination of 70�, having used an

argument of periapsis of 43.3� and a right ascension of 285�, corresponding

to the orbital elements in Table 9.2. This would be easily achievable using

minor course corrections during the arcjet-powered capture phase, or even

during the lengthy descent phase with the PPTs. The recent study by

Gupta and Sharma (2011, Figure 14a) reinforces this conclusion, showing

that the “transition altitude”, that is, the altitude above which a sudden

increase in orbital life time is observed, is lowest for a 70� inclined orbit

and provides a range of right ascensions that could be trialled.

Table 9.2: Revised Keplerian elements for the final orbit of Lunar Mission
BW-1 trajectory optimisation (end of descent phase)

Parameter Value

Semimajor axis, a (m) 1.8371 � 106

Eccentricity, e (-) 0.0
Inclination, i (rad) 1.222

Argument of periapsis, ω (rad) 0.7382
Lunar Longitude of the Ascending Node, Ω (rad) 4.9742

To derive a truly optimal trajectory it would be necessary to optimise
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all of the phases simultaneously to determine inter-dependencies. This

was attempted early in the project, but abandoned due to hardware and

software limitations. Once a completed trajectory is determined, a Monte

Carlo analysis should be performed to determine the sensitivity of the tra-

jectory to small changes in thruster performance, imperfections in gravi-

tational modelling, and other parameters.

Finally, the author had an abstract accepted for the 62nd International

Astronautical Congress on alternate mission profiles. Unfortunately com-

pletion of this thesis took precedence, but this work remains of interest to

the Lunar Mission BW-1 team. Of particular interest is the possibility

to pass through, or send a parasitic probe to, the Kordylewski clouds hy-

pothesised to exist at the Earth-Moon Lagrange points L4 and L5. The

trajectory model presented herein could easily be adapted to such alterna-

tive mission scenarios.

Furthermore for any practical mission it is important to examine failure

scenarios. For traditional missions with a finite number of impulses, there

are a finite number of possible failures. Continuous thrust leads to an

infinite number of failure scenarios, and although these may be categorised

and evaluated, such extensive work is often worthy of a PhD by itself (Renk

2009).
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Appendix A

Gravitational potential

Section 4.7.2 introduces potential energy models, to accurately calculate

the gravitational field around a central body, and thus the gravitational

forces a nearby spacecraft would experience. The rather complicated equa-

tion (A.1) is reproduced from National Imagery and Mapping Agency

(2000), representing the gravitational component of the potential (com-

pared to the angular momentum component),

V �
µ

r

[
1 �

nmax∑
n�2

n∑
m�0

(a
r

)n
P̄nmpsinφ

1qpC̄nm cosmλ� S̄nm sinmλq

]
.

(A.1)

The parameters n and m are the degree and order of the normalised

gravitational coefficients, r is the distance from the body’s centre of mass,

φ1 is the polar latitude and λ is the polar longitude. The gravitational co-

efficients, C̄nm and C̄nm are published in data tables with the gravitational

constant for the central body, µ, and the semimajor axis of the oblate

body, a. For m � 0, k � 1 and for m � 0, k � 2. The remaining term

within the two summation series, is described as a normalised associated

Legendre polynomial,

P̄nmpsinφ
1q �

[
pn�mq!p2n� 1qk

pn�mq!

] 1
2

Pnmpsinφ
1q, (A.2a)
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where Pnmpsinφ
1q is the associated Legendre polynomial,

Pnmpsinφ
1q � pcosφ1qm

dm

dpsinφ1qm
rPnpsinφ

1qs, (A.2b)

and Pn (sinφ1) is the Legendre polynomial,

Pnpsinφ
1q �

dn

2nn!dpsinφ1qn
psin2 φ1 � 1qn. (A.2c)

According to National Imagery and Mapping Agency (2000) the series

is theoretically valid for r ¥ a, though it can be used with probably negli-

gible error near or on the body’s surface, that is, r ¥ body’s surface. The

series should not be used for r   body’s surface.

Due to minor differences in the definitions of gravitational harmonics,

the zonal harmonic, J2, is equivalent to �C2,0.
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Thruster characteristics

B.1 Pulsed plasma thrusters

Table B.1 shows laboratory performance data from a variety of pulsed

plasma thrusters that were developed at the Institute for Space Systems

at the University of Stuttgart, and was provided to the author by Mr.

Matthias Lau. All tests were performed at a pulse frequency of 1 Hz.

Thrust and energy consumption may be scaled linearly by varying pulse

frequency, subject to wear and tear limiting the total number of pulses

that the PPTs can deliver, and the thermal equilibrium of the materials

attenuating the heat generated by the thruster.

Table B.1: Performance of the instationary magnetoplasmadynamic
(iMPD) thrusters from laboratory tests at IRS, University of Stuttgart

Model Power
(W)

Mass
bit

(µg)

Thrust
(mN)

Exhaust
velocity
(m/s)

Specific
impulse

(s)

Thrust
efficiency

(%)

TEMP 4.3 50 0.120 2400 245 3.3
SIMPLEX 66.0 49 0.890 18347 1870 12.4
ASL-3C 67.6 53 1.373 25721 2622 26.1
ASL-3D 16.7 16 0.421 25844 2634 32.6



184 Appendix B. Thruster characteristics

The first entry is from an early test bench model called TEMP. The sec-

ond entry is the SIMPLEX PPT, operating with a capacitance of 33.59 µF

to trigger the pulse. The third entry is for the modified ADD-SIMPLEX-

3C, operating at 80 µF. The final entry is ASL-3D, at 60 µF.

B.2 Thermal arcjet

The laboratory performance data in Table B.2 for a variety of thermal

arcjets developed at the Institute for Space Systems at the University of

Stuttgart was provided to the author by Mr. Birk Wollenhaupt. Four

separate arcjets are represented in this data: VELARC, ATOS 1, ATOS 2

/ ARTUR and TALOS. All four were tested using ammonia (NH3) as the

reaction mass. The ATOS 1 thruster was flight tested on board AMSAT-

P-3D, launched by DLR in 2000.
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Table B.2: Performance of thermal arcjet models from laboratory tests at
IRS, University of Stuttgart

Power
(W)

Mass
flow rate
(mg/s)

Thrust
(mN)

Exhaust
velocity
(m/s)

Specific
impulse

(s)

Thrust
efficiency

(%)

V
E

L
A

R
C

375 12.5 45 3630 370 22.0
280 9.3 35 3710 378 22.9
680 20.8 98 4688 478 33.6
260 6.7 26 3806 388 18.7
345 10.7 43 3995 407 24.8

A
T

O
S

1 750 24 115 4750 484 36.7
748 24 114 4709 480 36.2
750 22.5 95 4222 430 26.7

A
T

O
S

2
/

A
R

T
U

R 796 22.1 107 4836 493 32.5
1503 22.1 137 6200 632 28.3
892 26.8 128 4758 485 34.0
1512 26.8 161 6004 612 32.0
868 31 144 4630 472 38.3
1463 31 183 5915 603 37.1
983 36 167 4640 473 39.4
1858 36 221 6131 625 36.4

T
A

L
O

S

800 21.5 103 4767 486 30.5
796 21 111 5297 540 37.0
800 21.9 108 4915 501 33.1
800 20.0 103 5140 524 32.9
800 18.0 95 5278 538 31.3
800 15.9 85 5366 547 28.6
800 13.8 74 5356 546 24.8
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Jänsch C and Paus M (1990) “Aircraft trajectory optimization with direct

collocation using movable gridpoints” in American Control Conference,

San Diego, California, pp. 262–267 (cited on page 32).

Japanese Aerospace Exploration Agency (2008) ISAS: Asteroid Explo-

ration Hayabusa (MUSES-C) url: http://www.isas.jaxa.jp/e/

enterp/missions/hayabusa/index.shtml (visited on Aug. 5, 2008)

(cited on pages 16, 19).



References 195

Jet Propulsion Laboratory (2004) JPL HORIZONS ephemeris computa-

tion service url: http://ssd.jpl.nasa.gov/?horizons (visited on

Feb. 26, 2009) (cited on page 59).

Jet Propulsion Laboratory (2008a) Dawn: Mission: Ion Propulsion url:

http://dawn.jpl.nasa.gov/mission/ion_prop.asp (visited on

June 11, 2008) (cited on pages 16, 21, 22).

Jet Propulsion Laboratory (2008b) Deep Space 1 url: http://sse.jpl.

nasa.gov/missions/profile.cfm (visited on May 3, 2008) (cited on

pages 16–18).

Kaplan M (1976) Modern Spacecraft Dynamics and Control, John Wiley

& Sons (cited on pages 55, 60, 167).

Kemble S (2006) Interplanetary Mission Analysis and Design, Springer-

Verlag, Berlin & Heidelberg (cited on pages 11, 49, 102, 103).

Keppeler J (2000) “Calculation of Perturbed Keplerian Orbits with Non-

Singular Orbit Elements”, Masters’ thesis, Institut für Flugmechanik

und Flugregelung, Universität Stuttgart (cited on pages 53, 56, 57, 60).

Kirkpatrick S, Gelatt CD, and Vecchi MP (1983) “Optimization by Sim-

ulated Annealing” in Science 220(4598) pp. 671–680 doi: 10.1126/

science.220.4598.671 (cited on page 31).

Kluever CA and Chang KR (1996) “Near-optimal low-thrust lunar trajec-

tories” in Journal of Guidance, Control, and Dynamics 19(2) pp. 494–

496 doi: 10.2514/3.21645 (cited on page 37).

Kluever CA and Pierson BL (1995) “Optimal low-thrust three-dimensional

Earth-Moon trajectories” in Journal of Guidance, Control, and Dy-

namics 18(4) pp. 830–837 doi: 10.2514/3.21466 (cited on pages 1,

37, 44, 111).

Kluever CA and Pierson BL (1997) “Optimal Earth-Moon trajectories

using nuclear electric propulsion” in Journal of Guidance, Control,

and Dynamics 20(2) pp. 239–245 doi: 10.2514/2.4058 (cited on

pages 37, 38).



196 References

Konopliv AS, Asmar SW, Carranza E, Sjogren WL, and Yuan DN (2001)

“Recent gravity models as a result of the Lunar Prospector mission”

in Icarus 150(1) pp. 1–18 doi: 10.1006/icar.200.6573 (cited on

page 64).

Koon WS, Lo MW, Marsden JE, and Ross SD (2001) “Low Energy Trans-

fer to the Moon” in Celestial Mechanics and Dynamical Astronomy

81(1) pp. 63–73 doi: 10.1023/A:1013359120468 (cited on page 108).

Kraft D (1994) “Algorithm 733: TOMP - Fortran modules for optimal

control calculations” in ACM Transactions on Mathematical Software

20(3) pp. 262–281 doi: 10.1145/192115.192124 (cited on page 32).

Kreyszig E (1979) Advanced Engineering Mathematics 4th Edition, John

Wiley & Sons, Inc., New York, United States (cited on page 25).

Laufer R (2010) “Lunar Mission BW1: Scientific Objectives and Small

Satellite Concept”, PhD thesis, Institute of Space Systems (IRS), Uni-

versität Stuttgart (cited on pages 98, 99).

Lee S, Von Allmen P, Fink W, Petropoulos AE, and Terrile RJ (2005a)

“Design and optimization of low-thrust orbit transfers” in IEEE Aerospace

Conference Proceedings Volume 2005, Big Sky, MT, United States doi:

10.1109/AERO.2005.1559377 (cited on page 22).

Lee S, Fink W, Russell RP, Allmen P von, Petropoulos AE, and Ter-

rile RJ (2005b) “Evolutionary computing for low-thrust navigation”

in Collection of Technical Papers - AIAA Space 2005 Conference and

Exposition Volume 3, Long Beach, CA, United States, pp. 1775–1782

(cited on pages 43, 79).

LePage AJ (1991) “The Mystery of ZOND 2” in The Electronic Journal

of the Astronomical Society of the Atlantic 2(9) (cited on page 15).

Letterio F (2005) “Optimization of a Satellite Transfer Trajectory with

Low Thrust Electric Propulsion From Earth Orbit to an Orbit over the

Van Allen Radiation Belt”, Masters’ thesis, Institut für Raumfahrtsys-

teme, Universität Stuttgart (cited on pages 4, 11, 41, 55–57, 60, 80).



References 197

Lieske JH, Lederle T, Fricke W, and Morando B (1977) “Expression

for the Precession Quantities Based upon the IAU (1976) System of

Astronomical Constants” in Astronomy & Astrophysics 58(1–2) pp. 1–

16 (cited on page 52).

Longo CRO and Rickman SL (1995) Method for the Calculation of Space-

craft Umbra and Penumbra Shadow Terminator Points Technical Pa-

per 3547, NASA, Houston, Texas (cited on page 91).

LRO Project and LGCWG White Paper (2008) A Standardized Lunar

Coordinate System for the Lunar Reconnaissance Orbiter and Lunar

Datasets Technical Report Version 5, Goddard Space Flight Center,

Maryland (cited on page 53).

Ma C, Arias EF, Eubanks TM, Fey AL, Gontier AM, Jacobs CS, Sovers

OJ, Archinal BA, and Charlot P (1998) “The International Celestial

Reference Frame as realized by very long baseline interferometry” in

Astronomical Journal 116(1) pp. 516–46 (cited on page 51).

Manzella D (2008) “Low Cost Electric Propulsion Thruster for Deep Space

Robotic Science Missions” in 2007 NASA Science and Technology Con-

ference, NASA/TM 215067, Glenn Research Center, Cleveland, Ohio,

National Aeronautics and Space Administration, College Park, Mary-

land (cited on page 1).

Masatoshi M, Takashi K, and Jun’Ichiro K (2003) “MUSES-C (Hayabusa)

Trajectory Design” in Uchu Kagaku Gijutsu Rengo Koenkai Koenshu

47(1) pp. 1055–1056 (cited on page 19).

McKay R, Macdonald M, Biggs J, and McInnes C (2011) “Survey of

Highly Non-Keplerian Orbits with Low-Thrust Propulsion” in Journal

of Guidance, Control, and Dynamics 34(3) pp. 645–666 doi: 10.2514/

1.52133 (cited on pages 34, 35).

Miele A (1975) “Recent Advances In Gradient Algorithms For Optimal

Control Problems” in Journal of Optimization Theory and Applications

17(5-6) pp. 361–430 doi: 10.1007/BF00932781 (cited on page 32).



198 References

Milani A and Nobili AM (1987) “Integration error over very long time

spans” in Celestial Mechanics and Dynamical Astronomy 43(1) pp. 1–

34 doi: 10.1007/BF01234550 (cited on page 85).
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