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Nomenclature

Notation

Bold text represents a vector. A hat (for example r̂) represents a unit

vector. A quantity that is normally a vector that is not in bold (for example

r) represents the magnitude of that vector. Parameters are relative to the

central body of that phase, except where identified with an astronomical

symbol.

@ Astronomical symbol for the Sun

C Astronomical symbol for the Earth

K Astronomical symbol for the Moon

B Astronomical symbol for Venus

D Astronomical symbol for Mars

E Astronomical symbol for Jupiter

Chapter 3

t0 Start of the phase (symbolic)

tf End of the phase (symbolic)

p Set of optimisable parameters

x Set of state parameters

u Set of control variables

F Cost function

σ Cost function weighting factor (-)

L Lagrangian (see Section 3.3.3) (symbolic)

λi Equality Lagrangian/KKT multipliers (-)
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µi Inequality Lagrangian/KKT multipliers (-)

α Optimisation step size (-)

Chapter 4

ε Specific orbital energy (m2s�2)

εk Specific orbital kinetic energy (m2s�2)

εp Specific orbital potential energy (m2s�2)

v Velocity of spacecraft (ms�1)

µ Gravitational constant of central body (m3s�2)

r Distance of spacecraft from central body (m)

I Impulse (ms�1)

p Momentum (kgms�1)

Isp Specific impulse (s, see Section 4.8.1)

g0 Standard Earth gravity (9.80665 ms�2, Bureau Interna-

tional des Poids et Mesures 1901)

gprq Classic gravity relative to the primary body at r metres

from its centre (ms�2)

mexhaust Mass of exhaust (kg)

vexhaust Exhaust velocity (ms�1)

∆v Delta-v (ms�1, see Section 4.8.2)

m Mass of spacecraft (kg)

T Applied thrust (N)

D Aerodynamic drag (N)

γ Velocity vector angle (�, see Figure 4.9)

α Body axis angle (�, see Figure 4.9)

ε Thrust angle (�, see Figure 4.9)

rSOI Radius of sphere of influence (m)

as Semimajor axis of the secondary body’s orbit about the

primary body (m)

ms Mass of the secondary body (kg)

mp Mass of the primary body (kg)

r Position of spacecraft relative to primary body (m)



vii

v Velocity of spacecraft relative to primary body (ms�1)

a Keplerian element semimajor axis (m)

e Keplerian element eccentricity (-)

i Keplerian element inclination (�)

ω Keplerian element argument of periapsis (�)

Ω Keplerian element longitude of the ascending node (�)

ν Keplerian element true anomaly (�)

p Modified equinoctial element semilatus rectum (m)

f Modified equinoctial element f (-)

g Modified equinoctial element g (-)

h Modified equinoctial element h (-)

k Modified equinoctial element k (-)

L Modified equinoctial element true longitude (�)

îr Unit vector in radial direction

îθ Unit vector tangential to primary body

îh Unit vector in direction of orbital momentum

∆r Total force acting on spacecraft in the îr direction (N)

∆θ Total force acting on spacecraft in the îθ direction (N)

∆h Total force acting on spacecraft in the îh direction (N)

∆q Total force on spacecraft due to third bodies (N)

dj Position of third body j relative to spacecraft (m)

sj Position of third body j relative to primary body (m)

∆g Total force on spacecraft due to primary body oblateness

(N)

J2 Second zonal harmonic coefficient of Earth

J3 Third zonal harmonic coefficient of Earth

J4 Fourth zonal harmonic coefficient of Earth
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W Orbital energy (J)

Φ Energy due to angular momentum of orbit (J)

V Gravitational potential energy of orbit (J)

P̄nm (sinφ1) Normalised associated Legendre polynomials

Cn,m Normalised gravitational coefficient

Sn,m Normalised gravitational coefficient

rperi Periapsis of the orbit (m)

∆@ Total force on spacecraft due to solar radiation (N)

β Optical reflection constant (-)

Aeff Effective cross-sectional area of spacecraft (m2)

r@ Distance of satellite from centre of Sun (m)

∆T Total force on spacecraft due to thrust (N)

û Unit control vector governing thrust direction

Chapter 5

E Energy level in the batteries (J)

P Net power generation or consumption (W)

Ln Normalised longitude (-)

Chapter 6

η Power efficiency

αu Half-angle of umbral cone (�)

αp Half-angle of penumbral cone (�)

R@ Radius of the Sun (m)

RC Radius of the Earth (m)

rC Position of the Earth from the Sun (m)

rK Position of the Moon from the Sun (m)

Q Solar energy flux (Wm�2)

ηa Area efficiency of solar cells (-)

ηc Power efficiency of solar cells (-)

ηDC Power efficiency of voltage regulator (-)
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Ψ@ Angle of Sun on solar panels (�)

R Power degradation of solar cells (-)

F Equivalent fluence of solar cells (-)

Acronyms

AOCS Attitude & Orbit Control System

ASTOS Aerospace Trajectory Optimisation Software

BFGS Broyden-Fletcher-Goldfarb-Shanno

CAD Computer Aided Design

CAMTOS Collocation and Multiple Shooting Trajectory Optimisation

Software

CGA Constrained Genetic Algorithm

COTS Commercial Off-The-Shelf

CNES Centre National d’Études Spatiales

DLR Deutsches Zentrum für Luft- und Raumfahrt

DSN Deep Space Network

EADS European Aeronautic Defence and Space Company

ECI Earth Centred Inertial

ECR Electron Cyclotron Resonance

EML Earth-Moon Lagrange point

ESA European Space Agency

ESOC European Space Operations Centre

ESTEC European Space Research and Technology Centre

ET Ephemeris Time

GCR Galactic Cosmic Ray

GESOP Graphical Environment for Simulation and Optimisation

GEO Geostationary (Earth) Orbit

GSLV Geosynchronous Satellite Launch Vehicle

GTO Geosynchronous Transfer Orbit

HEO High Earth Orbit

HLO High Lunar Orbit
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IAU International Astronomical Union

ICRF International Celestial Reference Frame

IEEE Institute of Electrical & Electronic Engineers

IERS International Earth Rotation Service

IFR Institut für Flugmekanik und Flugregelung

IRS Institut für Raumfahrtsysteme

ISRO Indian Space Research Organisation

ITRF International Terrestrial Reference Frame

JAXA Japanese Aerospace Exploration Agency

JD Julian Date

JGM3 Joint Gravity Model 3

JPL Jet Propulsion Laboratory

KKT Karush-Kuhn-Tucker

LEO Low Earth Orbit

LLO Low Lunar Orbit

LP165 Lunar Prospector Gravity Model, degree and order 165

NASA National Aeronautics & Space Administration

NIMA National Imagery & Mapping Agency

NLP Non-Linear Programming

ODE Ordinary Differential Equation

PPT Pulsed Plasma Thruster

PROMIS Parameterised tRajectory Optimisation by direct MultIple

Shooting

PTFE Polytetrafluoroethylene (TeflonTM)

SEL Sun-Earth Lagrange point

SEPTOP Solar Electric Propulsion Trajectory Optimization Program

SIMPLEX Stuttgart Impulsing MagnetoPlasmadynamic thruster for

Lunar EXploration

SNOPT Sparse Nonlinear OPTimiser

SOCS Sparse Optimal Control Software

SOI Sphere of Influence

SPE Solar Particle Event

SQP Sequential Quadratic Programming
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SSO Sun Synchronous Orbit

STK Satellite Tool Kit

TALOS Thermal Arcjet for Lunar Orbiting Satellite

TLI Trans-lunar Injection

TROPIC Trajectory OPtimisation by dIrect Collocation

TT Terrestrial Time

UTC Universal Coordinate Time
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Abstract

The University of Stuttgart is conducting a research program to build a

succession of small satellites. The ultimate goal of this program is to build

and launch a craft named Lunar Mission BW-1 (after the federal state

that Stuttgart is situated in, Baden-Württemberg) into lunar orbit, for

eventual impact with the Moon. As with the majority of space missions,

launch cost is a severely limiting factor so it is necessary to carefully plan

the trajectory before launch, to ensure lunar capture and minimise the

amount of fuel needed by the spacecraft.

This thesis outlines work conducted to find a robust fuel-optimal trajec-

tory for Lunar Mission BW-1 to reach the Moon. Several unique aspects

of this craft require a novel approach to that optimisation. Firstly, the

spacecraft uses a new low-cost propulsion system, severely limiting ma-

neouvrability and accessibility of transfer trajectories. Secondly, to reduce

the mass and complexity of moving parts, the solar panels are fixed to the

body; consequently, the craft must rotate itself to point its solar panels

towards the Sun to recharge. No thrusting can occur during this time.

This magnifies the effect of the third design decision, which is to restrict

the dry mass of the craft by giving it very little on-board power storage.

After approximately an hour of accelerating it is expected to need to coast

for several hours to recharge its batteries, resulting in a relatively high

frequency stop-go-stop thrust profile.

Due to these constraints, the trajectory optimisation is one of the most

complex ever attempted. Since the craft will be built and launched, many

simplifications made in purely theoretical studies could not be utilised, such

as neglecting the weaker forces acting on the spacecraft in cis-lunar space.
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The very low thrust results in very long transfer times, during which even

small magnitude forces acting on the spacecraft can significantly perturb its

trajectory. However, including these forces creates non-linearities in the

equations of motion associated with spacecraft trajectories, limiting the

optimisation methods that could be used, and increasing computational

complexity.

Optimisation methods for low-thrust spacecraft trajectories have been

the subject of much research, but most studies conclude that knowledge is

still lacking in this area. Furthermore, many optimisation methods inves-

tigated in existing literature are incompatible with the intermittent thrust

profile required by the Lunar Mission BW-1 thrusters. For this reason it

was necessary to thoroughly review available optimisation methods and de-

termine which may be adapted to this scenario. The resulting optimisation

method was applied to the Lunar Mission BW-1 scenario to determine an

efficient thrusting profile that will get the craft to the Moon.

It was found that very few established optimisation algorithms can sup-

port the number of variables required for such a complex, long duration

trajectory. The Sparse Optimal Control Software (SOCS) marketed by

The Boeing Corporation was used via an interface developed at the Uni-

versity of Stuttgart called the the Graphical Environment for Simulation

and Optimisation (GESOP). Due to unknown constraints such as launch

date, the phases defined by the mission architecture were modelled and

optimised independently. This approach allows mission planning flexibil-

ity while still providing reliable estimates for optimal fuel use, mission

duration and power limitations.

A trajectory is presented for each of the phases, ascending from the

intial geosynchronous transfer orbit (GTO) to the eventual low lunar or-

bit (LLO). The resulting science phase is propagated forward in time to

ensure orbital lifetime meets the mission requirements. Recommendations

are subsequently made for the continuing development of the mission ar-

chitecture.

The primary outcome of this study is a procedure for developing an

operational trajectory for Lunar Mission BW-1 after launch details are
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known. Given the current mission architecture and assumed launch de-

tails, the thermal arcjet requires 1205 hours (50.2 days) of operation while

consuming 93 kg of ammonia propellant, and the pulsed plasma thrusters

require 29177 hours (3.3 years) of operation while consuming 19 kg pro-

pellant. Power constraints were not found to be mission limiting for the

current spacecraft configuration. Consequently, although the laboratory

testing burden on the PPTs is already quite heavy, it is recommended that

the mission architecture be adjusted to shorten arcjet phases and lengthen

PPT phases. Furthermore, this project found that the optimisation pack-

age SOCS was the best commercially available option for low-thrust tra-

jectory optimisation, but that it would benefit greatly by adaptation to

a parallel shooting algorithm that may be distributed amongst multiple

computer processors.
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Hans-Peter Röser for formalising my stay in Stuttgart and providing me

with such an incredible international experience, and the opportunity to

work on such an ambitious project with such great people. Heartfelt thanks

to the recently appellated Dr-Ing. Oliver Zeile for being my main mentor

and sounding board in Germany, but moreso for his unflagging enthusiasm

and friendship over the past years. I also owe a debt of gratitude to Dr-Ing.
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