
ACCEPTED VERSION 

 

Simpson A, Murphy L, Dandy G 
Pipe network optimisation using genetic algorithms 
Water management in the '90s : a time for innovation : proceedings of the 20th anniversary 
conference,? sponsored by the Water Resources Planning and Management Division of the 
American Society of Civil Engineers, co-sponsored by the American Consulting Engineers 
Council ... [et al.], hosted by the Tacoma-Olympia Section, ASCE, Seattle, Washington, 
May 1-5, 1993/ Katherine Hon (ed.) 
 
 
American Society of Civil Engineers, c1993 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://hdl.handle.net/2440/80912 

PERMISSIONS 

http://dx.doi.org/10.1061/9780784479018.ch03 

p. 12 – Posting papers on the Internet 

Authors may post the final draft of their work on open, unrestricted Internet sites or 
deposit it in an institutional repository when the draft contains a link to the bibliographic 
record of the published version in the ASCE Civil Engineering Database. “Final draft” 
means the version submitted to ASCE after peer review and prior to copyediting or 
other ASCE production activities; it does not include the copyedited version, the page 
proof, or a PDF of the published version. 

 

 

1 May, 2015 

http://hdl.handle.net/2440/80912
http://dx.doi.org/10.1061/9780784479018.ch03


 

Pipe network optimisation using 
genetic algorithms 

by 

Simpson, A.R., Murphy, L.J. and Dandy, G.C. 

 
 

Proceedings, Specialty Conference of Water Resources 
Planning and Management Division 

Citation:  
Simpson, A.R., Murphy, L.J. and Dandy, G.C. (1993). “Pipe network optimisation using 
genetic algorithms”, Proceedings, Specialty Conference of Water Resources Planning and 
Management Division, American Society of Civil Engineers, Seattle, Washington, USA, May, 
392–395.  

 
For further information about this paper please email Angus Simpson at angus.simpson@adelaide.edu.au 



,, 

Pipe Network Optimisation using Genetic Algorithms 

Angus R Simpson I, Assoc. Mem. ASCE, Laurie J Murphy2, Graeme C Dandy3 

Introduction 

Optimisation of pipe networks is not used extensively in the design of urban water 
supply systems by water supply authorities or consultants. Often there are many 
choices to be made in designs including the size and material of new pipes, whether 
existing pipes should be duplicated or cleaned, and the sizing of pumps. Once the 
number of decision variables exceeds about 8 or 10, the number of possible 
alternative pipe network configurations may easily be in the order of billions. 
Currently, designers have sophisticated hydraulic simulation tools available for 
design. A number of trial networks are tested to find if all projected demands under 
peak loading or fire conditions can be met while maintaining specified minimum 
pressure constraints at all nodes in the network. The experienced designer uses rules 
of thumb such as head loss per unit length to eliminate many unrealistic 
combinations. However, given the many possible combinations, especially for pipe 
network expansions involving many pipes, it is unlikely that even the most 
experienced designer will be able to determine the minimum cost network. A new 
optimisation technique of genetic algorithms has recently been successfully applied 
to pipe network optimisation. In this paper a parametric analysis is carried out of the 
genetic algorithm in order to assess the form of the fitness function. 

Genetic Algorithms for Pipe Optimisation 

The application of the genetic algorithm technique has been developed at the 
University of Adelaide over the last 3 years (Murphy and Simpson 1992, Simpson et 
al. 1992, Dandy et al. 1993). A population of pipe network solutions is considered. 
Each pipe to be sized is represented by a binary sub-string. A linkage is made 
between each binary sub-string combination and a particular available pipe size with 
a corresponding cost. Sub-strings are joined together to form a full-length string 
representing the entire network. There are many variations possible for application 
of the genetic algorithm technique. In this paper the role of the form of the fitness 
function is investigated. The genetic algorithm for pipe optimisation involves the 
following steps: 
(i) Generation of initial population. The initial population of solutions (of say, 

size N=lOO) is generated using a random number genera.tor. 
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(ii) Computation of network cost. Each sub-string of the 100 strings is decoded · 
into the corresponding pipe size. The total material and construction cost of the 
network for each of the solutions in the population is then computed. 

(iii) Hydraulic analysis of network. Each network in the population is analysed 
for heads and discharges under the specified demand pattem(s). The actual 
heads are compared with the minimum allowable pressure head and any 
pressure deficits are noted. 

(iv) Computation of penalty cost. A penalty cost is assigned to the network by 
considering the node with the worst pressure deficit. The pressure deficit is 
multiplied by a penalty factor (e.g. $50,000/metre of head). 

(v) Computation of total cost. The total cost of each network in the population is 
the sum of the network cost (ii) plus the penalty cost (iv). 

(vi) Computation of the fitnesses. For each network in the population, the fitness 
is taken to be a function of its total cost in part (v). For example, 

Fitness= ( 
1 )n 

Total cost 
(1) 

(vii) Generation of a new population using the reproduction operator. New 
members of the next generation are obtained such that the probability of 
selection of a string to be included in the next generation is directly 
proportional to its fitness. 

(viii) The crossover operator. Each pair of strings in the new population are 
considered in tum. H a random number in the range 0.0 to 1.0 exceeds the 
crossover probability Pc the crossover operator is not applied. Alternatively, a 
random crossover point is selected along them-bit string (e.g. position 5). The 
digits from 6 to m of the 1st string are moved to the digit positions 6 to m of the 
2nd string, while the corresponding digits of the 2nd string are moved to 
replace the end of the 1st string. 

(ix) The mutation operator. If a random number exceeds the mutation 
probability, Pm the mutation operator is not applied to the string. Alternatively, 
the mutation operator is applied by randomly selecting a digit position along 
the string and then changing the digit to the opposite value. 

(x) Production of successive generations. The new generation has now been 
produced using steps (vii) to (ix). The process is repeated to produce 
successive generations (e.g. 80 to 100 generations). The least cost strings (e.g. 
the best 20) are stored and updated as cheaper cost alternatives are generated. 

Case Study 

The sensitivity of the effectiveness of the genetic algorithm technique is investigated 
in optimising a network first proposed by Gessler (1985) and shown in Fig. 1. Table 
1 gives the available pipe sizes, costs and costs of cleaning existing pipes. Eight 
choices are provided corresponding to a 3-bit binary string. The network is to be 
designed for 3 loading cases as shown in Fig. 1. The minimum allowable pressures 
at each node Hmfa are also given in Fig. 1. 

(mm) (mm) 
152 356 
203 407 
25 458 
305 509 
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---existing system 

existing pipe to be duplicated, cleaned or left 
new pipes 

Onode 

Tank 
............... .............. --··-·-----

Reservoir 

:-:-:-:-:-:-:-:-:-:-:-:-:-:-:- 1, EL365.76 

~, 

(1),356,75 [pipe oomber), diameter(nvn), Hazen-Williams rouglness C 

Nole. 1. All pipe lengths are 1609m, except plpe{1 }=4828m 

and pipe(4}=6437m. 

2. C=120 for new pipes and deaned pipes. 

2, EL320.04 node number, node elevation(m) 

I _ 2, EL320.04 3, EL326.14 4, EL332.23 

[2),254,80 [3),254,80 

7, El295.66 

[7),203, 100 [8] 
-18, EL292.61 

1[11) 

8 
"1 
0 

[12),203, 100 ~ 
I 

[13) --0- [14) -0 

5, EL371.86 

Demand Pattem 1 
Node Q (Vs) Hrnln (m) 

2 12.62 28.18 
3 12.62 17.61 
4 0 17.61 
6 18.93 35.22 
7 18.93 35.22 
8 18.93 35.22 
9 12.62 35.22 
10 18.93 35.22 
11 18.93 35.22 
12 12.62 35.22 

e att.em2 
2 12.62 14.09 
3 12.62 14.09 
4 0 14.09 
6 18.93 14.09 
7 82.03 10.57 
8 18.93 14.09 
9 12.62 14.09 

10 18.93 14.09 
11 18.93 14.09 
12 12.62 14.09 
Demand Pattern 1 

2 12.62 14.09 
3 12.62 14.09 
4 0 14.09 
6 18.93 14.09 
7 18.93 14.09 
8 18.93 14.09 
9 12.62 14.09 

10 18.93 14.09 
11 18.93 14.09 
12 50.48 10.57 

9, EL289.56 10, El289.56 11, El292.61 12, EL2B9.56 

Figure 1 Layout of Gessler problem 

Two equivalent optima have been previously identified by a complete enumeration 
(Simpson et al. 1992). These solutions are shown in Table 2. 

T bl 2 Th t f I I f a e • e wo op· nna so u ions o f th e pro bl em 
Total Pipe Selections (mm diameter 

No. Cost pipe pipe pipe pipe pipe pipe pipe pipe 
($m) [l] [4] [5] [6] [8] [11] [13] [14] 

1 1.7503 leave 356dup leave 305 203 203 152 254 
2 1.7503 leave 356 dup leave 305 203 254 152 203 

Results 

This study considered 5 different fitness functions for the genetic algorithm. The 
exponent n was allowed to take a constant value for the GA run ·in the range n = 1 to 
n = 5. The 5 fitness function formulations were tested over 8 different combinations 
of the GA parameters as shown in Table 3. The GA runs were allowed a maximum 
of 10,000 function evaluations and the runs utilised approximately 6 minutes cpu 
time on a Sun spare computer. The results of the GA runs are summarised in 
Table4. 
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T bl 4 S a e • ummaryo fth GA e It resu s 
Lowest cost solution in $ million and Evaluanon number achieved 

n A B c D E F G H Avg 
I 1.800 1.848 1.848 1.861 1.868 1.839 1.842 1.800 1.838 

3900 7140 9380 2400 10000 5580 6210 9100 6714 
2 1.750 1.773 1.750 1.829 1.750 1.750 1.750 1.812 1.771 

4200 8540 3080 4160 4080 6210 2970 5700 4868 
3 1.750 1.843 1.750 1.839 1.800 1.839 1.750 1.750 1.790 

4800 3640 2870 8960 4240 4500 1170 2700 4110 
4 1.750 1.750 1.750 1.830 1.819 1.812 1.750 1.750 1.777 

660 2730 490 7680 3200 1620 1620 1400 2425 
5 1.750 1.839 1.750 1.839 1.750 1.819 1.750 1.750 1.781 

480 3920 910 560 2880 1440 1980 800 1621 

The GA using a value of n = 1 did not achieve the optimal solution (= $1.750 
million) for any of the runs within the allowed 10,000 evaluations (compared to a 
search space of > 16 million). A value of n = 2 is superior achieving the optimal 
solution in 5 of the 8 GA runs. Values of n = 4 and n = 5 are equally successful. The 
averages in the last column of Table 4 suggests the quality of the solution for a value 
of n = 2 is marginally superior to that for the larger values of n at the expense of a 
slower convergence rate. 

Conclusions 

Genetic algorithms are an extremely powerful technique which are capable of finding 
the minimum cost network in relatively few hydraulic simulations compared to the 
size of the search space. In addition the genetic algorithm technique provides a 
number of near-optimal solutions which may be considered by the designer. This 
new technique is simple to implement and represents an opportunity for water supply 
authorities to potentially achieve large savings in the capital cost of provision of 
water supply infrastructure. 
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