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NUMERICAL COMPARISON OF 
PIPE-COLUMN-SEPARATION MODELS 

 
Angus R. Simpson, Member, ASCE, and Anton Bergant 
 
ABSTRACT: Results comparing six column-separation numerical models for simulating localized 
vapor cavities and distributed vaporous cavitation in pipelines are presented. The discrete vapor-
cavity model (DVCM) is shown to be quite sensitive to selected input parameters. For short pipeline 
systems, the maximum pressure rise following column separation can vary markedly for small 
changes in wave speed, friction factor, diameter, initial velocity, length of pipe, or pipe slope. Of the 
six numerical models, three perform consistently over a broad number of reaches. One of them, the 
discrete gas-cavity model, is recommended for general use as it is least sensitive to input parameters 
or to the selected discretization of the pipeline. Three models provide inconsistent estimates of the 
maximum pressure rise as the number of reaches is increased; however, these models do give 
consistent results provided the ratio of maximum cavity size to reach volume is kept below 10%. 
 
INTRODUCTION 
The discrete vapor-cavity model (DVCM) for simulating transient events in pipelines involving water 
column separation is used in most commercial software packages for water-hammer analysis (Safwat 
et al. 1986). Since the introduction of the DVCM by Streeter (1969), the problems associated with 
multicavity collapse and their effect in producing unrealistic pressure spikes have been documented in 
the literature (Kranenburg 1974; Wylie and Streeter 1978a, b, 1993; Wylie 1984; Safwat et al. 1986; 
Simpson 1986; Golia and Greco 1990). In an effort to improve the performance of the DVCM, a 
number of variations of the model have been introduced (Safwat and van der Polder 1973; Kot and 
Youngdahl 1978; Miwa et al. 1990). As an alternative to the discrete vapor-cavity model, Provoost 
and Wylie (1981) introduced the discrete gas-cavity model (DGCM). 
 
The primary objective of this paper is to compare the performance of various column-separation 
models. Detailed results from the discrete vapour-cavity models for two different reservoir-pipeline 
systems are presented. A comparison is made of the consistency of each column-separation model as 
the number of reaches (i.e., ∆x and ∆t) is systematically varied. The reach length ∆x is used to 
discretize the pipeline, and ∆t is the time step. In addition, the sensitivity of predicted peak pressures 
from the DVCM (staggered grid) to changes of input parameters (wave speed, friction factor, initial 
velocity, pipe diameter, length, and pipe slope) is investigated. 
 
A finite difference scheme is convergent if the solution u tends to the exact solution U of the partial 
differential equations as both ∆x and ∆t tend to zero (Chaudhry 1987). Thus the numerical accuracy of 
column-separation models would be expected to improve as more reaches are used for the simulation 
as ∆x and ∆t become smaller and smaller. Previously, Provoost (1976) asserted that oscillations or 
unrealistic pressure spikes may be reduced by increasing the number of grid points in DVCM-type 
models. The results presented in this paper show that this is not necessarily the case, especially for the 
discrete vapor-cavity model. Instead of converging on a solution, the pressure-vs-time results diverge 
markedly as the number of reaches are increased. The cause of the large unrealistic pressures as 
predicted by DVCM-type numerical models has been identified as multi-cavity collapse of vapor 
cavities during column separation. 
 
The partial differential equations for transient liquid flow in pipelines usually assume a constant wave 
speed of a. These equations are not valid for transient vaporous cavitating flow because pressure 
waves do not propagate at the wave speed a in these zones. Additionally, when a vaporous cavitation 
zone is condensed back to a liquid zone, the shock velocity (i.e., the rate at which vaporous mixture is 
converted to liquid) is highly variable but is always less than the liquid wave speed a. The DVCM is 
thus a simplistic approximation of the actual physical situation as a constant wave speed of a is 
assumed for both water-hammer and distributed vaporous-cavitation zones. Thus the DVCM converts 
the actual partial differential equations with a nonconstant wave speed (for the vaporous zones) to 



different partial differential equations (with an assumed constant wave speed), then tries to correct for 
the error at the discrete vapor-cavity boundary(s). 
 
DESCRIPTION OF MODELS 
Water-Hammer Model 
Unsteady flow in pipelines is described by one-dimensional equations of continuity and motion 
(Wylie and Streeter 1993): 
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in which H = instantaneous piezometric head; V = instantaneous velocity of flow; θ = angle of pipe to 
horizontal; a = wave speed; g = gravitational acceleration; f = Darcy-Weisbach friction factor; and D 
= pipe diameter. Eqs. (1) and (2) are usually used in a simplified form by dropping the small slope 
and convective acceleration terms: 
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in which A = pipe area; and discharge Q is used instead of flow velocity V. The method of 
characteristics (Chaudhry 1987; Wylie and Streeter 1993) is a standard method for solving the 
unsteady-flow equations. Water-hammer compatibility equations valid along the positive 
characteristic C+ (dx/dt = a, in which x = distance along the pipe and t = time) and the negative 
characteristic C- (dx/dt = -a) for the liquid flow are: 
 
! = !! − !!!!             (5) 
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in which Qu = upstream discharge; Q = downstream discharge (both at the same computational 
section); and BP, Bm CP, and Cm = constants of water-hammer compatibility equations. The 
unconditionally stable linear implicit approximation of the friction term has been used (Wylie 1983; 
Chaudhry and Holloway 1984; Holloway and Chaudhry 1985). Wylie and Streeter (1993) obtained an 
expression for the friction term along the positive characteristic between points A and P using 
integration by parts as: 
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Qu, and Q at the same section in (5) and (6) are identical for the case of no column separation. At a 
boundary, the boundary equation replaces one of the compatibility equations. 
 
Water-hammer equations for the liquid flow are valid when the pressure is above the liquid vapor 
pressure. If the pressure drops below the vapour pressure, column separation occurs either as a 
discrete cavity or a vaporous-cavitation zone (Simpson 1986; Simpson and Wylie 1991) in the liquid. 
The single-component one-phase flow is transformed into a single-component two-phase flow 
(liquid/liquid-vapor). Thus the standard water-hammer solution is no longer valid. The discrete vapor-
cavity model (Wylie and Streeter 1978a, 1993) is the most widely used method to solve the described 
two-phase flow problem. 
 
 



Streeter Model for Column Separation 
The standard numerical algorithm for the discrete vapor-cavity model was developed by Streeter 
(1969). The model allows vapor cavities to form at computing sections in the method of 
characteristics. In implementing Streeter's model in this paper, the normal rectangular grid of the 
method of specified time intervals is applied to the simplified water-hammer compatibility equations, 
(5) and (6). A constant wave speed for the liquid between computational sections is assumed. When 
the pressure at a computational section drops below the vapor pressure of the liquid, it is set to the 
vapour pressure and a vapor cavity is assumed to occur. The standard water-hammer solution is no 
longer valid at the section. The discrete vapor cavity is fully described by two water-hammer 
compatibility equations; (5) and (6), with H = Hv, where Hv = vapor-pressure head. The discharge 
upstream Qu. and downstream Q from the section can be obtained from (5) and (6). The continuity 
equation for the vapor-cavity volume is: 
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in which ∀! = vapor-cavity volume; ti = initial time; and tf = final time. The solution of the continuity 
equation for the vapor-cavity volume (Wylie 1984) is: 
 
∀! !! = ∀! !! + 1 − ! !!! − !! !! + ! !!! − !! !! !! − !!       (9) 

 
where the subscript g on the ∀ terms has been replaced by v. Eq. (9) integrates the continuity equation 
for the volume of the vapor cavity using a weighting factor ψ in the time direction. The standard form 
of (9) uses a ψ value of 0.5 (Tanahashi and Kasahara 1969, 1970; Streeter 1972; Wylie and Streeter 
1978a; Safwat et al. 1986); however, the weighting factor ψ can take on values between 0 and 1.0 
although a practical range is 0.5-1.0. 
 
The time step in the rectangular grid is based on the Courant condition for the characteristic lines: 
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When the cavity collapses at a section (as a result of a negative cavity volume), the one-phase liquid 
flow is reestablished and (5) and (6) are valid. 
 
Discrete Vapor-Cavity Model 
Two grids have been previously used in applying the method of characteristics: the normal 
rectangular grid and the staggered (or Evangelisti) grid. Fig. 1 shows that the normal rectangular grid 
is actually comprised of two independent staggered grids. The superposition of the waves may open 
two cavities in the two independent grids at the same time (P1 and P2) when the normal rectangular 
grid is used. A single cavity is opened when the staggered grid is used (P1)- 
 

 
Figure 1.Staggered versus Rectangular Grid 



Both the Streeter model and the DVCM (staggered grid) generate unrealistic pressure spikes due to 
pressure waves reflecting off cavities and end boundaries, and due to collapse of multicavities (Wylie 
and Streeter 1978b; Wylie 1984). To attempt to overcome this difficulty, several authors have used 
the discrete vapor-cavity model in a modified form. 
 
All of the column-separation models investigated in this paper are derivatives of the discrete vapor-
cavity model. Some of the corrections employed actually introduce numerical damping (e.g., Kot and 
Youngdahl 1978; Miwa et al. 1990). A correction based on interpolation must be regarded as 
somewhat arbitrary especially when we do not know how "unrealistic" the pressure peaks are and 
because the mechanisms of numerical attenuation are not fully understood. 
 
Safwat and van der Polder Model 
Safwat and van der Polder (1973) allowed discrete cavities to form only at predetermined locations 
(e.g., valve and high point). When pressure at the internal computational section drops below vapor 
pressure, the average discharge at this section ! is calculated from water-hammer compatibility 
equations, (5) and (6), with H set to Hv: 
 
! = !!!!!!!!!!!!!!!!!!!
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Kot and Youngdahl Model 
Kot and Youngdahl (1978) used the complete form of continuity [(1)] and the equation of motion 
[(2)]. Linear space-line interpolation was used within the normal rectangular grid in the method of 
characteristics. The compatibility water-hammer equations for this case are expressed as: 
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in which S = slope term constant. Interpolated discharges and heads are used for calculation of 
constants Bm, BP, Cm, and CP. 
 
Miwa et al. Model 
Miwa et al. (1990) modified Streeter's model by introducing artificial space-line interpolation. The 
interpolation is introduced by the equation: 
 
Δ! = 0.95 !!

!
            (14) 

 
It is known that space-line interpolation causes numerical damping (Goldberg and Wylie 1983). 
 
Discrete Gas-Cavity Model 
As an alternative to the discrete vapor-cavity models, an application of a discrete gas-cavity model for 
analysis of vaporous cavitating flow has been introduced by Provoost and Wylie (1981) and Wylie 
(1984). A low gas void fraction αg ≤ 10-7 (the ratio between free-gas and free-gas-liquid mixture 
volume) should be selected. Discrete gas cavities replace discrete vapour cavities. Between each 
computing section, liquid is assumed to exist without free gas. The growth and diminishment of the 
gas cavity is calculated from the two water-hammer compatibility equations, (5) and (6), the 
continuity equation for the gas cavity [(9)] in which index g replaces v, and the equation of the ideal 
gas (isothermal process): 
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in which ∀! = gas-cavity volume; ∝! = gas void fraction at a reference pressure; ∀ = mixture volume; 
!!∗  = absolute reference gas pressure; and !!∗  = absolute gas pressure. 
 
The staggered grid has been used in this paper instead of the normal rectangular grid in the discrete 
gas-cavity model. For this case the time step is: 
 
!! − !! = 2Δ! = !!!

!
           (16) 

 
METHODS FOR NUMERICAL COMPARISON OF MODELS 
Convergence and Stability 
The numerical solution used in each model in the form of finite difference approximations should 
satisfy both convergence and stability criteria (Smith 1978; Chaudhry and Holloway 1984; Chaudhry 
1987). Convergence relates to behavior of the solution as Ax and At tend to zero while stability is 
concerned with round-off error growth (Chaudhry 1987). There are three approaches for the analysis 
of convergence or stability of finite difference approximations for the solution of the water-hammer 
equations: derivation of convergence or stability criteria for the nonlinear equations; derivation of 
criteria for linearized equations; and numerical solution of the equations for a number of different ~xs 
and Ats and examination of results (Collatz 1960; Maudsley 1984). 
 
Previous studies of stability and accuracy of various solution schemes (interpolation, friction term 
integration) have used the third method (Wylie 1983; Chaudhry and Holloway 1984; Holloway and 
Chaudhry 1985; Chaudhry 1987). In this paper, the third method is also used to assess the 
performance of various column-separation models. The reach length 2~x is systematically increased 
to determine if the results converge. 
 
RESULTS OF MODEL COMPARISONS 
A comparison of column-separation models is made for a horizontal pipeline system with a valve at 
the downstream end (Fig. 2). The models are: DVCM, staggered grid; Streeter (1969) DVCM, 
rectangular grid; Safwat and van der Polder (1973); Kot and Youngdahl (1978); Miwa et al. (1990); 
and Provoost and Wylie (1981) DGCM. 
 

 
Figure 2. Pipeline System 

 
A low head system was chosen because it is more sensitive to the occurrence of column separation 
and vaporous-cavitation zones during transients. Two cases including short and long pipes are 
considered (see Table 1). Short pipelines are often found in experimental laboratory setups, and 
longer pipelines are found in water-supply systems. A linear valve closure over a closure time tc 
(Table 1) is used to initiate the transient in both pipelines. A steady-state velocity of Vo = 1.5 m/s was 
selected for all computer simulation runs. 



Table 1. Data for Pipeline Systems 
Parameter 

(1) 
Short pipe 

(2) 
Long pipe 

(3) 
Length, L (m) 50 5,000 
Diameter, D (m) 0.2 1.2 
Friction factor, f 0.026 0.017 
Velocity VO, (m/s)a 1.50 1.50 
Valve-loss coefficient, K 0.35 0.35 
Valve closure time, tc (s) 0.0125 1.25 
Simulation time, ts (s)  400 

aFor all analyses presented. 
 
Varying Number of Reaches in DVCM 
A discrete vapor-capacity model including application of the staggered grid (SG) and integration of 
the cavity volume by (9) serves as a basic model (DVCM/SG) for numerical analysis. The influence 
of the different number of reaches (N = 4, 8, 16, 32, 64, 128, and 256; or ln N/ln2 = 2, 3, 4, 5, 6, 7, 
and 8, respectively) follows to compare the hydraulic grade lines (HGLs) predicted by the numerical 
model. The minimum HGL along the full length of both pipelines is equal to the liquid-vapor pressure 
head for all runs. The maximum cavity volume occurs at the valve and a distributed vaporous-
cavitation zone is formed along the full length of the pipe for both systems. Results are presented for 
the maximum HGL at the valve, and the following parameters that characterize the transient event are 
investigated: 
 

1. Ratio of maximum pressure head rise ∆Hmax (= Hmax – Ho) to the Joukowsky pressure head 
rise a∆V/g shown in Fig. 3 (Ho = steady-state HGL at the valve). 

2. Ratio of time occurrence of maximum pressure head tHmax to the pipe period L/a (Fig. 4). 
3. Ratio of maximum cavity volume ∀!"#,!"# to reach volume ∀!"#$% (Fig. 5). 

 

 
Figure 3. Ration of Maximum Pressure Rise to Joukowsky Pressure Rise at Valve 

 

 
Figure 4. Ratio of Time of Occurrence of Maximum HGL at Valve to Pipe Period L/a 



 
Figure 5.Ratio of Maximum Cavity Volume at Valve to Reach Volume 

 
One conclusion from these results is that enough reaches should be selected to adequately model the 
valve closure, especially if column separation occurs. Fig. 3 shows a large deviation of the predicted 
maximum pressure for the short pipeline as the number of reaches is varied from four to 256. As the 
number of reaches increases to 32 (ln N/ln2 = 5) and above, there is considerable deviation and 
significant variation for different ψ values. For the long pipeline, the predicted maximum pressure 
rises are consistent for all ψ values up to 32 reaches. There is deviation in the predicted pressure rises 
for 64 reaches and above. 
 
Fig. 4 shows the time of occurrence of the maximum pressure rise. For the short pipeline, it is clear 
that the time of occurrence of the maximum pressure rise varies considerably even for a low number 
of reaches. A detailed study of the formation and collapse of vapor cavities associated with the large 
pressure deviations was carried out. Waves due to cavity collapse were carefully traced on the x-t 
plane. The cause of the large unrealistic pressures is identified to be due to multicavity collapse. 
Depending on the number of reaches for the short pipeline, the maximum pressure in Fig. 4 occurs 
after the first-, second-, third-, or fourth-cavity collapse at the valve. For the long pipeline, friction 
plays a more important role. For N = 4 to N = 32, the time of maximum pressure rise is within 2L/a of 
the beginning of the valve closure. For 64 reaches (ln N/ln2 = 6) and above, the maximum pressure 
occurs well after the closure of the valve. The larger the number of reaches, the more cavities that 
form along the pipeline during column separation and the more chance of random multicavity 
collapse resulting in unrealistic superposition of waves. 
 
Another important feature that should be considered is the size of the cavity at the valve. Fig. 5 shows 
that the maximum size of the cavity is consistent for all ψ values for both pipelines. The ratio of the 
maximum cavity volume at the valve to the reach volume increases as the number of reaches 
increases. The ratio is different for short and long pipelines for the same number of reaches. In 
formulating the discrete vapor-cavity model, an important assumption is the cavity volume is small 
compared with the reach volume. For the larger number of reaches in the two pipe cases considered, 
this assumption is violated. 
 
For the short pipeline for N = 128 (ln N/ln2 = 7) and 256, the cavity volume at the valve exceeds 50% 
of the reach volume. This is unacceptable. A conclusion drawn from the results is that the maximum 
cavity volume should not exceed 10% of the reach volume. The basis for the 10% figure can be 
explained by considering Figs. 3-5. For the short pipeline the results for prediction of the maximum 
head in Figs. 3 and 4 are consistent for four, eight, and 16 reaches. The results deviate considerably 
for 32 reaches and above. In Fig. 5, the cavity volume at the valve for N = 16 (ln N/ln2 = 4) is 8.5% 
of the reach volume. For the long pipeline, the maximum pressure is equal to the Joukowsky pressure. 
For the long pipeline the numerical model results for prediction of the maximum head are consistent 
for N = four, eight, 16, and 32 reaches regardless Of the ψ value used. In Fig. 5 the cavity volume for 
32 reaches is 10% of the reach volume. 
 



Sensitivity of DVCM Results to Input Parameters 
Another important feature of the numerical analysis is the sensitivity of the numerical model results to 
changes of input parameters. Several input parameters have been varied to assess sensitivity. These 
include wave speed a, friction factor f, initial velocity Vo, pipe diameter D, pipe length L, and pipe 
slope (ELd – ELu)/L, in which EL is pipeline elevation. The sensitivity analysis is now discussed for 
the case with N = 8 (lnN/ln2 = 3) and ψ = 1.0. 
 
A variation of the wave speed of ± 10% (Fig. 6) resulted in a large scatter of the expected value of 
Hmax at the valve for the short pipeline and no scatter for the long pipeline. An investigation of a 
friction factor for values in the range of f = 0-0.05 revealed an interesting physical behavior for both 
pipelines (Figs. 7 and 8). It appears that during transient cavitating flow the pipeline may operate in 
two regions depending on the size of the friction factor (or, indirectly on the velocity). Movement 
from one region to another occurs at a transition friction factor. For low friction factors the maximum 
pressure head is the short-duration pressure pulse (Simpson 1986) that follows after the cavity 
collapses (e.g., for f = 0.0324 in Fig. 7 and f = 0.0078 in Fig. 8). The Joukowsky pressure head is the 
maximum head for larger friction factors (e.g., for f = 0.0325 in Fig. 7 and f = 0.0079 in Fig. 8). Fig. 7 
shows Hmax at the valve for the short pipeline with a transition friction factor of f = 0.0324. The 
transition friction factor for the long pipeline is f = 0.0078 (Fig. 8). The variations of Hmax for changes 
in diameter are shown in Fig. 9 (D = 0.1-0.3 m for the short pipeline and 1.0-1.4 m for the long 
pipeline). A transition occurs at a particular diameter. The transition is related to the resulting change 
in friction factor in a similar way as observed in Figs. 7 and 8. As the diameter increases, the friction 
factor decreases. Thus in Fig. 9 the maximum pressure to the left of the transition is governed by the 
Joukowsky pressure rise. To the right of the transition as the friction decreases the maximum pressure 
rise is determined by a short-duration pressure pulse following cavity collapse. Variation of pipe 
length of ± 4% for both pipelines (Fig. 10) leads to two transitions in the case of the short pipeline. 
Results for variation of pipe slope for both pipelines are shown in Fig. 11. For the short pipeline an 
increase in negative slope leads to more severe vaporous cavitation along the pipeline therefore 
decreasing the maximum pressure of the short-duration pulses. 
 

 
Figure 6. Maximum Head at Valve for Variable Wave Speed 

 
Comparison of Column-Separation Models 
A comparison of discrete vapor-cavity models using the normal rectangular grid is now considered for 
four models: Streeter (1990), Safwat and van der Polder (1973), Kot and Youngdahl (1978), and 
Miwa et al. (1990). Fig. 12 shows a large scatter of the maximum pressure head at the valve for the 
short pipeline as the number of reaches becomes large for the Streeter and Kot (unstable for N = 256) 
models. For the Safwat and the Miwa models, the predicted maximum pressure rises are consistent for 
all numbers of reaches. For the long pipeline, all the models give consistent results over the selected 
number of reaches (Fig. 12). The same type of behavior as for the maximum pressure head rise is 
observed for the time of occurrence of the maximum pressure rise at the valve (Fig. 13). The same 
conclusions as for the discrete vapor-cavity model using the staggered grid are drawn for the Streeter 
and Kot models (multicavity collapse). The Safwat model allows a discrete vapor cavity to form only 
at the valve; thus there is no multicavity collapse and subsequent unrealistic pressure spikes are  



 
Figure 7. Maximum Head at Valve for Short Pipeline for Variable Friction Term 

 

 
Figure 8. Maximum Head at Valve for Long Pipeline for Variable Friction Term 

 

 
Figure 9. Maximum Head at Valve for Variable Pipe Diameter 



 
Figure 10. Maximum Head at Valve for Variable Pipe Length 

 

 
Figure 11. Maximum Head at Valve for Variable Pipe Slope 

 
eliminated. Pressure pulses due to multicavity collapse in the Miwa model are significantly attenuated 
at interior computational sections, but this does not affect the maximum pressure head rise and the 
time of its occurrence. The analysis of the maximum size of the cavity at the valve (Fig. 14) shows 
that the increase of the cavity size predicted by the Miwa model is incorrect. With an increasing 
number of reaches, the size of the cavity is decreasing which is physically incorrect. An important 
conclusion for the Safwat model is that the ratio of maximum cavity volume at the valve to the reach 
volume does not affect the overall consistency of results. For the application of the Streeter and Kot 
model, the same conclusions as for the discrete vapor-cavity model using the staggered grid may be 
drawn (maximum cavity size should not exceed 10% of the reach volume). 
 

 
Figure 12. Ratio of Maximum Pressure Rise to Joukowsky Pressure Rise at Valve 

 
 



 
Figure 13. Ratio of Time Occurrence of Maximum HGL at Valve to Pipe Period L/a 

 

 
Figure 14. Ratio of Maximum Cavity Volume at Valve to Reach Volume 

 
DGCM Results 
Finally, the results for the discrete gas cavity model simulating transient vaporous cavitating flow (αo 
= 10-7) are presented. As for DVCM enough reaches must be selected to adequately model the valve 
closure (Figs. 15 and 16). Figs. 15-17 show that predicted maximum pressure head rise at the valve, 
the time of occurrence of maximum pressure rise at the valve, and the maximum cavity volume at the 
valve are consistent for all numbers of reaches for both pipelines. The results from the DGCM are 
consistent even though the cavity volume exceeds the reach volume for the 256-reach case (for the 
short pipeline), as shown in Fig. 17. As for the Safwat and van der Polder model, the ratio of 
maximum cavity volume at the valve to the reach volume does not affect the overall consistency of 
the results (Fig. 17). 
 

 
Figure 15. Ratio of Maximum Pressure Rise to Joukowsky Pressure Rise at Valve 

 



 
Figure 16. Ratio of Time of Occurrence of Maximum HGL at Valve to Pipe Period L/a 

 

 
Figure 17. Ratio of Maximum Cavity Volume at Valve to Reach Volume 

 
CONCLUSIONS 
A comparison of five variations of the discrete vapor-cavity model has been presented. In addition the 
results from the discrete gas-cavity model are presented. Two pipeline systems including short 
pipelines and long pipelines have been studied. The sensitivity of results of maximum pressure head 
predicted by the discrete vapor-cavity model (staggered grid) to changes in parameters have also been 
presented. The recommended limits for application of the DVCM model described here have been 
taken into consideration in the sensitivity analysis. The maximum pressure can vary significantly 
particularly for short pipelines for small changes in wave speed, friction factor, initial steady-state 
pipe velocity, pipe diameter, or pipe slope. As part of a water-hammer study where column separation 
occurs, it is recommended that a sensitivity analysis should be performed to ensure the maximum 
pressure head is not being underestimated. 
 
Multicavity collapse produces unrealistic pressure spikes, when the number of reaches becomes too 
large for the following models: the Streeter model, the Kot and Youngdahl model, and the discrete 
vapor-cavity model with a staggered grid. Care must be exercised when using any of these three 
models. The number of reaches should be chosen such that the ratio of the maximum size of any 
cavity volume to reach volume must be kept below about 10%. Thus the number of reaches must 
actually be restricted to ensure reasonably accurate predictions are obtained of the maximum pressure 
following column separation. 
 
Three models gave consistent results for prediction of the maximum pressure head in both pipeline 
systems regardless of the number of reaches (from four to 256). These models were the Safwat and 
van der Polder model, the Miwa et al. model, and the discrete gas-cavity model. The Safwat and van 
der Polder model has only a single cavity at the valve and thus avoids problems due to multicavity 
collapse. A disadvantage is that the user has to preselect the potential locations where localized vapor 
cavities may form. The Miwa et al. model introduces numerical dampening due to space-line 



interpolation and there may be circumstances where the results are incorrect. The vapor cavity volume 
at the valve is also incorrect for the Miwa et al. model. 
 
The discrete gas-cavity model with a very small void fraction of air at the computational sections (αo 
= 10-7) performs accurately over a broad range of numbers of reaches. The use of DGCM is 
recommended for modeling column separation, rather than the DVCM or one of its variations. 
However, care must be exercised even when using the DGCM. The DGCM seems to behave 
consistently over a broad number of different reaches for the two examples considered in this paper; 
however, this does not mean the model is necessarily correct. Further investigation is required to 
determine whether other examples also provide consistent results. One way of avoiding the problem 
of reach selection in the DVCM-type model is to move to other types of models such as the 
distributed vaporous-cavitation model (Bergant and Simpson 1992), which is based on the separate 
modeling of different flow regions and tracking of interface movements. 
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APPENDIX II. NOTATION 
The following symbols are used in this paper: 
A = pipe area 
a = wave propagation velocity 
Bm, BP = known constants of water-hammer compatibility equations 
Cm, CP = known constants of water-hammer compatibility equations 
D = diameter of pipe 
ELd = downstream pipeline elevation 
ELu = upstream pipe elevation 
f = Darcy-Weisbach friction factor 
g = gravitational acceleration 
H = instantaneous piezometric head 
Hmax = maximum pressure head 
Ho = steady state HGL at valve 
HRd  = downstream reservoir head 
Hv = vapour pressure head 
K = valve-loss coefficient 
L = pipeline length 
N = number of reaches in pipeline 
!!∗  = absolute gas pressure 
!!∗  = absolute reference gas pressure 
Q = instantaneous discharge or downstream discharge at section 
! = average discharge at section 
Qu = upstream discharge at section 
R = resistance coefficient 
S = pipe-slope term constant 
t = time 
tc = closure time 



tf = final time 
tHmax = time at maximum pressure 
ti = initial time 
ts = simulation time 
U = exact solution of the partial differential equations 
u = exact solution of the finite difference scheme 
V = instantaneous velocity of flow 
Vo = steady-state velocity of pipeline 
x = distance 
αo = gas void fraction at reference pressure 
αg = gas void fraction 
∆Hmax  = maximum pressure head rise 
∆t = time step 
∆V = velocity change 
θ = angle of pipe to horizontal 
ψ = weighting factor 
∀ = mixture volume 
∀g = gas-cavity volume 
∀v = vapor-cavity volume 
∀cav,max = maximum cavity volume 
∀reach = reach volume 


