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Abstract

Explaining spatial patterns of biological organisation remains a central challenge for biogeographic studies. In marine
systems, large-scale ocean currents can modify broad-scale biological patterns by simultaneously connecting
environmental (e.g. temperature, salinity and nutrients) and biological (e.g. amounts and types of dispersed
propagules) properties of adjacent and distant regions. For example, steep environmental gradients and highly
variable, disrupted flow should lead to heterogeneity in regional communities and high species turnover. In this study,
we investigated the possible imprint of the Leeuwin (LC) and East Australia (EAC) Currents on seaweed communities
across ~7,000 km of coastline in temperate Australia. These currents flow poleward along the west and east coasts
of Australia, respectively, but have markedly different characteristics. We tested the hypothesis that, regional
seaweed communities show serial change in the direction of current flow and that, because the LC is characterised
by a weaker temperature gradient and more un-interrupted along-shore flow compared to the EAC, then coasts
influenced by the LC have less variable seaweed communities and lower species turnover across regions than the
EAC. This hypothesis was supported. We suggest that this pattern is likely caused by a combination of seaweed
temperature tolerances and current-driven dispersal. In conclusion, our findings support the idea that the
characteristics of continental-scale currents can influence regional community organisation, and that the coupling of
ocean currents and marine biological structure is a general feature that transcends taxa and spatial scales.
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Introduction

Understanding how regional-scale processes contribute to
geographic structuring of biodiversity is challenging because
many possible environmental drivers often correlate across
broad spatial scales. A starting point is the recognition that
increasing geographical distances between observations
reveals increasing dissimilarities among biological
communities, a phenomenon reflected in distance decay
curves [1]. In addition to documenting biogeographic patterns,
distance decay curves also provide insights into the nature of

the processes which underpin these patterns, through variation
in the rates of distance decay of community similarity – species
turnover - between geographical regions [1,2].

Marine biogeographers have traditionally held that broad-
scale patterns of species distributions result primarily from
species-specific responses (e.g., larval biology, thermal
physiology) to environmental clines such as those associated
with continental-scale current systems [3,4]. Temperature, in
particular, has been invoked to explain biogeographic patterns
for centuries [5,6]. These early accounts are supported by
contemporary quantitative studies which show how
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temperature can be a strong predictor of spatial changes in
species composition and biodiversity [7-10]. Whilst temperature
clearly is a powerful driver of biogeographic patterns in marine
systems, the interpretation of patterns in relation to alternate
drivers that might by superimposed onto the temperature signal
have received comparatively less attention. Recently, however,
marine biogeographers have drawn attention to the role of
physical connectivity mediated by current flow and water
movement, even across large distances [11-14].

Marine systems differ from terrestrial systems in typically
being more ‘open’, with fewer physical barriers to biological
exchange between regions [15]. Community structures are
therefore often strongly influenced by the passive dispersal of
microscopic propagules (spores, gametes, larvae) and
macroscopic drifting or swimming organisms, from adjacent
areas, with delivery mediated by water movement [e.g., 16,17].
Major ocean currents can provide a link between neighbouring
(kilometres) and distant (100’s kilometres) habitats. Model
calculations have shown that, in some places, flow patterns
alone can explain species range-limits [13]. Evidence on how
oceanic flow structures such as up-welling, down-welling,
eddies and along-shore water transport influence the
recruitment and population structure of marine invertebrates
across spatial scales up to 100’s of kilometres have gained
increasing support [16-18]. Recent analyses of genetic
connectivity in sea urchins [19] and seaweeds [12,20] provide
further evidence of significant correlations between water
movement, oceanographic connectivity, species distributions,
and gene-flow. However, such links between oceanographic
connectivity and biological structures should also be evident
across larger spatial scales (i.e. continents) and higher levels
of biological organisation (i.e. communities within entire
seaweed floras).

The coastal waters of temperate Australia are dominated by
two major boundary currents: the Leeuwin Current (LC, [21])
and the East Australia Current (EAC, [22]). Both currents are
relatively old in geological terms, warm and both flow pole-
wards across approximately the same latitudes on either side
of the Australian continent (Figure 1). Whilst temperature
ranges are relatively similar between the LC and the EAC, the
LC covers >3 times the geographical distance of the EAC
(Figure 1), implying that the spatial temperature gradient is
much steeper along the EAC. Such a steep environmental
gradient should be reflected in narrow distribution ranges of
individual species and thereby relatively high turnover of
species between communities [1]. In addition, the two currents
also differ in flow structure. The EAC is a stronger current
which is periodically disrupted by eddy formation where
pockets of water are spinning offshore (see Figure 1). In
contrast, the LC is a weaker but relatively undisrupted and
unidirectional current [12,21,23,24]. Connectivity modeling has
shown that these differences in current characteristics can
have important consequences for local retention, off-shore
advection and cross-shore transport of marine organisms [24].

Here we use an extensive database of seaweed herbarium
records for biogeographic analyses aimed at identifying and
understanding continental-scale patterns in seaweed
community organisation. Given the predominant direction of

dispersal and connectivity we hypothesised that seaweed
communities would change serially across regions, in the
direction of current flow. Moreover, given that the LC has a
weaker temperature gradient and more uniform uninterrupted
along-shore flow, compared to the EAC’s steep temperature
gradient and disrupted flow, we hypothesised that seaweed
communities within the LC would show less spatial structure
and lower species turnover compared to seaweed communities
within the EAC.

Methods

This study encompassed the entire temperate coastline of
Australia, which is swept by the LC and the EAC (Figure 1).
Our spatial units of analysis were 17 ‘bioregions’, 10
associated with the LC and 7 associated with the EAC (Figure
1, Table S1). These mesoscale bioregions were derived from
the National Marine Bioregionalisation of Australia (IMCRA)
[25], designed as marine management units based on
geomorphology, oceanography and biological communities.
We used these IMCRA regions as sampling units because they
represent units of community characterisation independent of
spatial extent of coast. Seaweed communities for each region
were constructed by compiling species presences from records
of seaweeds (marine macroalgae) lodged in the Australian
Virtual Herbarium [26] as of 14 September 2009; experienced
seaweed taxonomists (G. T. Kraft and C. F. D. Gurgel)
inspected all downloaded electronic records [27] and carried
out a detailed taxonomic revision, updating and standardizing
nomenclature according to Algaebase, an online resource for
seaweed taxonomy [28]. While there are many possible
challenges associated with the analysis and interpretation of
herbarium data, they represent a viable and comprehensive
source of information for continental-scale analyses; the very
large size of our units of analysis reduce the limitations
associated with false absences, uneven recording effort and
the dynamic nature of species distributions [29]. For example,
recent changes to the distribution of seaweeds have been
recorded along all coastlines in Australia [30-33], but at
distances substantially smaller than our bioregion-scale of
analysis (Table S1).

We used the Bray-Curtis similarity index based on presence-
absences to compare community structure among bioregions
within current systems. A series of multivariate analyses were
performed in PRIMER 6.1.10 & PERMANOVA+ for PRIMER
[34 for technical details,tests refer to routines in this program,
see 35]. Principal Coordinates Ordination (PCO) was used to
visualise patterns of community similarity among regions, as
this unconstrained metric ordination, show optimal inter-
relationships between data in a non-preconceived way.
Multivariate analysis of variance by permutation
(PERMANOVA) and Permutational analysis of multivariate
dispersion (PERMDISP) tested if seaweed communities were
different, and had different levels of variation, between the LC
and EAC. We also tested the strength of serial rank-correlation
in community structure between successive bioregions for each
of the two current systems (RELATE, using the default model
matrix for serial change). Finally, we plotted community
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similarity as a function of spatial separation distance
(measured as linear coastal distances from the centre of each
region) and calculated species turnover as the slope of log-
linear regression lines. Analysis of covariance (ANCOVA)
tested if turnover differed between the two current systems
(small slope = adjacent communities are similar = low species
turnover).

Results

There were a total of 80,188 records of seaweeds in AVH for
the 17 bioregions, with an average (± SE) of 4,717 ± 1,152
records per region. There was relatively similar sampling effort
(= number of herbarium specimens) between current systems,
with 9.1 ± 1.7 (n = 10 regions) and 4.8 ± 1.1 (n = 7 regions)
specimens km-1 coastline within the LC and the EAC systems,
respectively (t-test for unequal variances, t10,7 = 2.04, P =
0.061, see also Table S1). This effort resulted in a total of
1,499 recorded species with an average of 490 ± 54 species
per region and similar species densities of 0.96 ± 0.19 and 0.88
± 0.12 species per km of coastline within the LC and the EAC,
respectively (t-test for unequal variances, t10,7 = 0.35, P =
0.733).

Ordination of seaweed communities placed the 17 bioregions
into two groups, clearly separating regions influenced by the
LC from those influenced by the EAC (Figure 2). Overall, the
LC and EAC groups were significantly different (F1,15 = 5.2, P =
0.001), with highly distinct assemblages between the northern,
subtropical regions in Western Australia and New South Wales,
converging in the cool-temperate regions of Tasmania (see
also Table S2). Moreover, the ordination show the contrasting
patterns of serial correlation between regions within the two
current systems, with ‘short-narrow’ relations between LC
regions and ‘long-wide’ relations between EAC regions (Figure
2). In both current systems, the serial change from region to
region was significant (ρLC = -0.611, ρEAC = -0.762, P < 0.004),
but the multivariate dispersion between regions was
significantly smaller within the LC (29.0 ± 2.0, ‘narrow’ arrow)
than the EAC (41.0 ± 2.7, ‘wide’ arrow) (F1,13 = 13.2, P =
0.003).

Log-linear regression analyses revealed highly significant
negative relationships between spatial separation distance and
similarity in seaweed community structure within both current
systems (Figure 3, r2LC = 0.36, r2EAC = 0.36, P < 0.001). Species
turnover (slope of the regression lines) was significantly
different between the two current system (F1,69 = 14.87, P =

Figure 1.  Map of temperate Australia indicating the flow of the two main surface currents.  The Leeuwin Current (LC = green
arrow) has a relatively uninterrupted and highly connective flow along the west and south coast whereas the East Australia Current
(EAC = blue arrow) has a more heterogeneous flow, with eddies frequently spinning offshore, along the east coast [after 24].
Numbers 1-17 refer to bioregions based on the National Marine Bioregionalisation of Australia [25, see Table S1]. Red dotted lines
indicate summer (January, °C) isotherms [after 69]. Temperature profiles across the currents are relatively similar, despite the LC
flowing across almost three times the geographic distance as the EAC.
doi: 10.1371/journal.pone.0080168.g001
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0.0002) and > 4 times greater within the EAC than the LC
(Figure 3).

Discussion

Understanding the processes that underpin broad-scale
patterns in species distributions is becoming increasingly
important because of the pressing need to integrate information
across broader spatial scales to resolve issues of human
impacts (e.g., climate change, fishing, trophic cascades,
eutrophication) [36]. The present study shows a strong imprint
of continental-scale ocean currents on the biological

community structure of seaweeds across temperate Australia,
with high community variability and rapid regional species
turnover coinciding with large-scale heterogeneity of current
patterns and a strong temperature gradient. Our study thus
adds to the increasing support for the idea that broad-scale
patterns of species distribution and community structure can be
mediated by a combination of well-known temperature
gradients and less-studied flow patterns [11,13].

It is well-established that high species turnover (rates of
decay in community similarity) is associated with steep
temperature (and other environmental) gradients in terrestrial
and freshwater systems [1,37-39], but fewer marine studies

Figure 2.  Principal Component Ordination (PCO) of seaweed community structure from bioregions swept by the Leeuwin
Current (LC = green triangles) and the East Australia Current (EAC = blue triangles).  See Figure 1 for spatial arrangement of
regions. The green and blue arrows indicate the current systems super-imposed onto the ordination to illustrate the magnitude of
floristic change across the current system (length of arrow) and the variation in community structure among regions within the
system (width of arrow). There was significant sequential change in community structure along both current systems.
doi: 10.1371/journal.pone.0080168.g002
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have quantified change in community structure across large
spatial scales [but see 40 for an example]. In marine systems,
flow structure as a driver of biogeographic patterns has
previously been associated with regional differences in
abundance, recruitment [16-18,41] and genetic structure
[19,42] of invertebrates and a single seaweed species [12]; our
results extend these findings to encompass continental-scale
patterns in entire seaweed communities. Collectively, these
studies demonstrate how the physical structure of ocean
circulation act as footprints that impart structure transcending
taxa and spatial scales.

Influence of temperature
Marine organisms tolerate a limited range of temperatures

for their survival, growth and reproduction. Temperature
variation is therefore a fundamental physiological constraint to

global-scale distribution of seaweeds [8,43]. This well-
established rule is possibly amplified by the present day
distribution of coastlines that generally orientate north to south
(e.g., E/W Atlantic Ocean, E/W Pacific Oceans, E/W) so that
most seaweed communities live within steep spatial
temperature gradients. Hence, most seaweed biogeography
has been interpreted as temperature driven [8,44-48]. Still, the
causal factors underlying marine biogeographic patterns may
not always be so straightforward [49,50], and this difficulty has
been particularly evident in southern Australia where
temperature gradients are weak [e.g., 51]. As oceanographic
currents often drive changes in temperature regimes, marine
biogeographers have often interpreted associated
biogeographic transitions in terms of temperature [50], to the
exclusion of alternative explanations such as those that involve
flow connectivity alone [13]. For example, Schils & Wilson [7]

Figure 3.  Species turnover between bioregions swept by the Leeuwin current (LC = green triangles) and the East
Australian current (EAC = blue triangles).  Dashed lines represent linear regression of community similarity against coastal
distance between regions. Dotted lines are 95% confidence limits around the regression lines. Turnover (slope × 104) within the LC
system is significantly lower than within the EAC system. At the same time, regional seaweed communities within the LC were more
similar (similarity values were higher), and associated with less region-to-region variability (less spread around the regression) than
within the EAC.
doi: 10.1371/journal.pone.0080168.g003

Ocean Currents and Seaweeds

PLOS ONE | www.plosone.org 5 November 2013 | Volume 8 | Issue 11 | e80168



attributed very sharp floristic changes in the Arabian Sea to
temperature, but did not consider the potential contribution
from effects of oceanographic circulation. To date, most
biogeographic seaweed studies have focused on how large
scale latitude-temperature patterns influence species identities
and species richness [43,47,48,52], rather than how
temperature gradients modify species turnover. We
documented patterns in seaweed communities likely to reflect
continental-scale temperature gradients with strong serial
community transitions within both of the major current systems
influencing temperate Australia. Moreover, species turnover
was higher within the EAC (steep temperature gradient) than
within the LC (flat temperature gradient). Nevertheless,
temperature might not account for all region-to-region seaweed
species turnover or the level of variability among regions.
Indeed, a study of species turnover in marine invertebrates
reported no direct relationships with temperature, although they
did not present any alternative explanation for the
biogeographic patterns detected [51]. We propose that
oceanographic transport of microscopic propagules and drifting
reproductive fragments could also be a key contributing
structuring process in Australia’s seaweed biogeography
[12,24,53], and that this model might have broad biological
relevance beyond Australia.

Influence of flow
Oceanographically mediated dispersal has been considered

to shape spatial patterns of community similarity of coastal fish
and invertebrates [11,18]. Ocean circulation may directly link
with patterns of propagule dispersal, particularly around
biogeographic disjunctions [13]. Given that both the LC and
EAC flow southward and that seaweeds are passive dispersers
that rely strongly on transport of drifting adult thalli for long-
range dispersal (microscopic propagules typically settle metres
from the parent plant) [43,54-58], it seems plausible that
different serial correlation in community structure and species
turnover are, at least partly, explained by flow. Moreover, off-
shore currents have previously been shown to be a barrier to
dispersal [24,41,59] and could contribute to differences in
floristic heterogeneity among regions within the LC and EAC,
with drifting propagules more likely to be transported away from
the coastline within the EAC [24].

The co-variation between flow patterns and temperature
gradients prevent an unambiguous separation of their
influences on broad-scale patterns in seaweed community
structure. However, comparative studies, testing the
physiological and ecological performance of species and
populations across latitudinal temperature regimes [60,61,62]
might shed light on the extent to which the patterns are
primarily temperature or flow driven. Such comparisons will be
particularly important in terms of understanding the extent to
which impending ocean warming might cause shifts in species
distribution, relative to other climate stressors in this system
[36,63,64].

Influence of other factors
Temperature gradients and off-shore flow might not be the

only mechanisms that contribute to the extant biogeographic

patterns. Historical factors, such as the relative stability of the
current systems and lack of large-scale disruptions (e.g.,
glaciation) over millions of years, which contrasts most other
temperate regions in the world, are likely to have had a major
influence on the evolution and biogeography of the temperate
seaweed flora of Australia [46,65]. However, while these
factors might explain the mega-richness of the flora and lack of
major disjunctions, they are less likely to be a cause of regional
patterns in species turnover and community structure.
Additional environmental heterogeneity unrelated to ocean
currents (e.g., estuaries), human activities [66,67], or biological
interactions such as overgrazing by sea urchins [60] could also
add to community heterogeneity. However, most of these
features operate at spatial scales smaller than our units of
analyses and over relatively short time-scales. Differences in
niche breadths or dispersal capabilities of seaweeds within the
LC and EAC would also influence conclusions about species
turnover [1]. However, there are no reasons to suspect that
such systematic differences should exist between current
systems. Finally, the EAC is characterized by faster current
speed and transports a greater volume of water compared to
LC [68]. However, these flow characteristics should decrease
species turnover along the east coast (opposite to our findings)
and are therefore unlikely explanatory models independent of
differences in current variability and flow structure. Thus, while
we suggest that temperature gradients and broad-scale flow
structure are key mechanisms that drive species turnover and
community seriation and heterogeneity we cannot exclude the
possible influence of additional factors.

Conclusion

We found strong regional seriation of seaweed communities
along the LC and the EAC in temperate Australia. Communities
within the LC had lower species turnover and less variation
than communities situated within the EAC. These patterns are
likely to be predominantly determined by a combination of
seaweed temperature tolerances and current-driven dispersal.
In conclusion, our findings support the hypothesis that
continental-scale currents impart a strong footprint on regional
community organisation, and that the coupling of ocean
currents and biological structure is a general process that
transcends taxa and spatial scales.
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