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Summary	

Precise reservoir characterisation is the basis for reliable flow performance predictions and 

unequivocal decision making concerning field development. History matching is an 

indispensable phase of reservoir characterisation in which the flow performance history is 

integrated into the initially constructed reservoir model to reduce uncertainties. It is a 

computationally intensive nonlinear inverse problem and typically suffers from ill-

posedness. Developing an efficient automatic history matching framework is the core goal 

of almost all studies on this subject.  

To overcome some of the existing challenges in history matching, this thesis introduces 

new techniques which are mostly based on evolutionary computation concepts. In order to 

examine the techniques, in the beginning, the foundations of an automatic history matching 

framework are developed in which a reservoir simulator (ECLIPSE) is coupled with a 

programming language (MATLAB). Then, the introduced methods along with a number of 

conventional methods are installed on the framework, and they are compared with each 

other using different case studies.  

Thus far, numerous optimisation algorithms have been studied for history matching 

problems to conduct the calibration step accurately and efficiently. In this thesis, the 

application of a recent-developed algorithm, artificial bee colony (ABC), is assessed, for 

the first time. It is compared with three conventional optimisers, Levenberg-Marquette, 

Genetic Algorithm, and Simulated Annealing, using a synthetic reservoir model. The 

comparison indicates that ABC can deliver better results and is not concerned with the 

landscape shape of problem. The most likely reason of its success is having a suitable 

balance between exploration and exploitation search capability. Of course, similar to all 

stochastic optimisers, its main drawbacks are computational expenses and being inefficient 

in high-dimensional problems.  
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Fitness approximation (proxy-modelling) approaches are common methods for reducing 

computational costs. All of the applied fitness approximation methods in history-matching 

problems use a similar approach called uncontrolled fitness approximation. It has been 

corroborated that the uncontrolled fitness approximation approach may mislead the 

optimisation direction. To prevent this issue, a new fitness approximation is developed in 

that a model management (evolution-control) technique is included. The results of the 

controlled (proposed) approach are compared with the results of conventional one using a 

case study (PUNQ-S3 model). It is shown that the computation can be reduced up to 75% 

by the proposed method. The proxy-modelling methods should be applied when the 

problem is not high-dimensional.  

None of the current formats of the applied stochastic optimisers is capable of dealing with 

high-dimensional problems efficiently, and they should be applied in conjunction with a 

reparameterisation technique which causes modelling errors. On the other hand, gradient-

based optimisers may be trapped into a local minimum, due to the nonlinearity of the 

problem. In this thesis, an inventive stochastic algorithm is developed for high-dimensional 

problems based on wavelet image-fusion and evolutionary algorithm concepts. The 

developed algorithm is compared with six algorithms (genetic algorithm with a pilot point 

reparameterisation, BFGS with a zonation reparameterisation, BFGS with a spectral 

decomposition reparameterisation, artificial bee colony, genetic algorithm and BFGS in 

full-parameterisation) using two different case studies. It is interesting that the best results 

are obtained by the introduced method.  

Besides, it is well-known that achieving high-quality history matched models using any of 

the methods depends on the reliability of objective function formulation. The most 

widespread approach of formulation is Bayesian framework. Because of complexities in 

quantifying measurement, modelling and prior model reliability, the weighting factors in 

the objective function may have uncertainties. The influence of these uncertainties on the 
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outcome of history matching is studied in this thesis, and an approach is developed based 

on Pareto optimisation (multi-objective genetic algorithm) to deal with this issue. The 

approach is compared with a conventional (random selection) one. The results confirm that 

a high amount of computation can be saved by the Pareto approach.  

In last part of this thesis, a new analytical simulator is developed using the transfer 

function approach. The developed method does not need the expensive history matching, 

and it can be used for occasions that a quick forecasting is sought and/or history matching 

of grid-based reservoir simulation is impractical. In the developed method, it is assumed a 

reservoir consists of a combination of TFs, and then the order and arrangement of TFs are 

chosen based on the physical conditions of the reservoir ascertained by examining several 

cases. The results reveal a good agreement with those obtained from the grid-based 

simulators. 

An additional piece of work is done in this thesis in which the optimal infill drilling plane 

is estimated for a coal seam gas reservoir (semi-synthetic model constructed based on the 

Tiffany unit in the San Juan basin) by the use of the developed framework in which the 

objective function and the decision variables are set to be the net present value, and the 

location of infill wells, respectively.  
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Chapter	1	

 

 

 

1. Introduction	

The fate of huge investments in the oil and gas industry rests on decision making. 

Reservoir decision making, for instance field development planning, can be improved by 

having access to accurate forecasts for the future performance of reservoirs. A reservoir 

simulator is usually employed for forecasting and providing foresight in the consequences 

of the decisions. Although, the literature is an indication of the maturity of the reservoir 

simulation subject (Fanchi, 2005, Aziz and Settari, 2002, Farmer, 2005, Sun, 1994), the 

forecasts using the reservoir simulators are not always reliable. The uncertainties in 

forecasting are mostly on account of the low-quality input data of reservoir simulators. 

Among input data, usually the geological model (static model) has a considerable 

uncertainty (Berta et al., 1994). In the process of constructing a geomodel, limited data 

usually are available to be manipulated. Therefore, some of the geomodel parameters are 

estimated based geostatistical (Journel and Huijbregts, 1978, Caers, 2005) and/or 

geophysical interpretations. The uncertainties in the static model may lead to incorrect 

investment decisions (figure 1.1). Therefore, it is crucial to reduce these uncertainties.  

To reduce the uncertainties, supplementary data which are mostly dynamic data (well 

performance history and/or time-lapse seismic) may be used to update the initial model. 

Time-lapse seismic (4D seismic) data are not usually available, thus the normal practice is 

the implementation of well flow performance history. The process of tuning input 
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parameters based on actual data (history) is called history matching (figure 1.2). History 

matching is an inverse problem and performs contrary to reservoir simulators (the forward 

problem), i.e., in history matching problems, the flow performance data (observed) are the 

input and the outputs are the parameters which caused the observed data.  

 

 

 

Figure  1.1 The effect of reservoir model uncertainties on investment decisions 

 
Figure  1.2 History matching schematically 
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1.1.					Statement	of	the	problem		

History matching is a challenging task, due to the following issues:  

i- The nonlinearity of the problem (which may cause nonconvexity) 

ii- The large number of variables (which may cause underdetermination) 

iii- Excessive computation time 

iv- Measurement noise in observed data 

v- Modelling errors 

These issues create a complex inverse problem which usually suffers from ill-posedness.  

1.2.					Brief	background	and	research	gaps	

To solve any nonlinear inverse problem (carry out history matching), the following three 

main steps are usually taken: 1- uncertain parameters (decision variables) are defined, this 

step is known as parameterisation, 2- an objective function is formulated; the objective 

function should indicates the quality of history matched models quantitatively and also 

include all specifications of the desired history matched model, and 3- calibration in which 

the variables are being adjusted until predefined criteria are met (figure 1.3).  

 
Figure  1.3 The steps of history matching 
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Calibrations can be carried out manually or automatically. Manual history matching needs 

expertises, and only a few global parameters, such as average pore volume, aquifer and 

relative permeability parameters, are tuned (Oliver and Chen, 2010). Where the number of 

variables is more than a few, the large degree of freedom restricts the manual history 

matching application; in these problems, an automatic (usually known assisted) history 

matching approach should be utilised. In the automatic approach, the calibration is assisted 

by a computer software framework which typically makes use of a numerical optimisation 

rule. The main scope of this thesis is the automatic history matching.  

The calibration in automatic history matching problems is an arduous task, since it is 

required to find the best history matched model in a system with a large degree of freedom 

while the function is nonlinear and computationally intensive. To carry out the calibration, 

one of the following approaches may be taken. 

i- Direct calibration: the variables are directly tuned according to an optimisation 

rule (figure 1.4).  

ii- Indirect calibration: the variables are indirectly tuned according to an 

optimisation through a reparameterisation operator (figure 1.5).  

In the problems with a reasonable (not large) number of variables, the direct calibration is 

applied. In this approach, the main concern is the performance of the optimisation 

algorithm. In the problems in which the number of variables is large (which is often the 

case), usually the indirect calibration is applied. In the indirect calibration approach, first, 

the number of variables (the dimension of search space) is reduced by a reparameterisation 

method, and then the reparameterised model is calibrated using an optimisation algorithm. 

After completing the calibration, the obtained reparameterised model will be transformed 

back to the main space. Variables which are functions of spatial coordinates, such as 

porosity and permeability distributions are candidates of being reparameterised (Oliver and 
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Chen, 2010). In this approach, there are two major concerns: a- the efficiency of 

reparameterisation method, and b- the performance of optimisation algorithm.  

In the direct or indirect approach, the optimisation algorithm typically deals with a search 

space which is not very high-dimensional (normally second order of magnitude), according 

to the fact that even if the number of variables is large, the number of variables and 

accordingly the dimension of search space is reduced using a reparameterisation technique 

prior to carrying out the optimisation. Although, the dimension of search space is not very 

large, the performance of the optimisation is one of in common concerns in both 

approaches (direct or indirect). The concern is owing to the nonlinearity and high 

computational expenses of the function. Hence, the augmentation of optimisation is one of 

the focuses of majority of the published studies (Romero and Carter, 2001, Mohamed et 

al., 2011, Ouenes et al., 1993, Yang and Watson, 1988, Zhang et al., 2003b).  

 
Figure  1.4 Calibration through an optimisation rule (direct calibration) 

In order to select the suitable optimiser for a problem, the specifications of the related 

objective function are required. These specifications are not usually measurable. Hence, 

the selection of optimiser is controversial. To prevent the examination of several 

optimisation algorithms for each problem, an algorithm is sought which is able to deliver 

tolerable approximation for the best history matched model in every problem with 

reasonable computational costs.  
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Figure  1.5 Calibration through a reparameterisation and an optimisation (indirect calibration) 

Thus far, many different optimisation algorithms, from gradient-based (classical) 

optimisers (Yang and Watson, 1988, Zhang et al., 2005a, Wu et al., 1999) to non-gradient 

(stochastic) optimisers (Romero and Carter, 2001, Ouenes and Bhagavan, 1994), have been 

introduced and studied, but still a unique algorithm is not being taken toward it. In 

computer and mathematical sciences, several new black-box optimisers have been 

developed based on the evolutionary computation concepts. The application of some of 

these algorithms has not been investigated in history matching problems. By assessing 

these algorithms in history matching problems, a suitable optimiser may be found which 

fulfils the requirements.  

Almost all of the recent-developed optimisers make use of a stochastic search. In general, 

stochastic optimisers are not computationally efficient, and this drawback usually limits the 

application of these algorithms in history matching problems (Oliver and Chen, 2010) and 

causes to disregard their advantages in contrast with gradient-based algorithms. The 

computation issue of history matching, which is highlighted particularly when a stochastic 

optimiser is used, caused to launch another research branch in which the goal is 

computational cost reduction. In a number of studies, proxy-modelling (fitness 
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approximation) methods have been proposed and developed. In these methods, the original 

fitness function which is time-consuming to be evaluated is substituted with an 

undemanding function known as the approximation function (proxy). Instead of 

approximating the global optimum point of objective function directly, the global optimum 

point of the approximation function (which is trained by a set of samples from the original 

function) is sought. This substitution reduces the expenses dramatically (Zubarev, 2009). 

As the approximation function is trained by a limited number of samples, there is the 

chance of misdirection of history matching procedure to wrong optimum points by 

applying these methods (Zubarev, 2009). So far, several techniques have been introduced 

to diminish the proxy-modelling errors (Ramgulam et al., 2007, Silva et al., 2008), the 

presented methods have error in estimating the global optimum (Zubarev, 2009). 

Therefore, the improvement of proxy-modelling is an additional research area which may 

be achieved by designing or implementing the new techniques.   

In the indirect approach, despite the importance of the optimisation challenges, the 

reparameterisation operator plays the other important role. An inappropriate 

reparameterisation technique may lead to wrong history matched model(s), even if the 

optimisation algorithm performs perfectly. In the published studies related to the 

improvement of reparameterisation, a method is sought which is capable of describing full-

parameterised models by significantly fewer number of variables with an enough precision 

(reasonable error). So far, many different techniques have been introduced (Jafarpour et al., 

2010, Jafarpour and McLaughlin, 2009, Reynolds et al., 1996, Leo et al., 1986); each 

technique has own advantages and drawbacks and a comprehensive technique has not been 

developed.  

Another way of removing the reparameterisation error entirely is making use of the direct 

approach, instead of an indirect calibration (Oliver and Chen, 2010). By a direct approach, 

although reparameterisation error does not exist, the optimiser needs to deal with very 
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high-dimensional search space. The only optimisation algorithms which have been 

examined as a direct calibrator in large problems are gradient-based ones (Zhang et al., 

2005a). The nonlinearity and having multiple minima (which is likely (Mantica et al., 

2002)) may concern the performance of the gradient-based algorithms. On the other hand, 

stochastic optimisers with their present forms are unlikely to be efficient in high-

dimensional search space. Up to now, none of the stochastic algorithms has been used in 

full-parameterised history matching problems. Thus, developing an optimiser which is able 

to deal with large number of variables can be one more research area in history matching.  

Obtaining high-quality history matched models using any of the history matching 

algorithms is subjected not only to the performance of optimisation and maybe 

reparameterisation algorithm, but also it depends on the reliability of objective function 

formulation. The most widespread approach of objective function formulation in history 

matching problems is Bayesian framework. The modelling error and measurement noise 

are required to be quantified and incorporated into the objective function formulation as 

the weighting factors. These elements are not accurately quantifiable, therefore they may 

have uncertainty. The influence of uncertainty of these elements on the outcomes of history 

matching has not been studied extensively and also a proper approach has not been 

developed for dealing with this issue. The investigation of effects of uncertainties in 

objective function formulation on the performance of calibration is another research area 

which needs further study.  

With all these advances in the history matching subject, still this procedure is time-

consuming. In some occasions, a quick overview about the performance of the reservoir is 

adequate, or history matching is not attainable. In these occasions, it is better to make use 

of a fast simulator. However, some methods like Decline Curve Analysis (DCA) (Arps, 

1944, Baker et al., 2003) and the Capacitance Resistance Model (CRM) (Sayarpour et al., 

2009a, Sayarpour et al., 2010) supply quick forecasts and also require the minimum data to 
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simulate reservoirs, their outputs are not very reliable in many cases, particularly 

secondary recovery and gas-flooding, respectively. On the other hand, grid-based 

simulation (Aziz and Settari, 2002, Fanchi, 2001) and streamline simulation (Rust and 

Caudle, 1972) are accurate methods, but they are time-consuming (especially grid-based 

simulators), and also large quantities of data and expensive history matching are required. 

In these occasions, a fast simulator which has reasonable accuracy is sought. Therefore, 

researchers look for a method which needs minimum amount of data and has reasonable 

accuracy.  

1.3.					Objectives		

In this study, the main goal is introducing new methods to augment the automatic history 

matching process, and accordingly increase the quality of future performance predictions. 

Each of the proposed methods addresses a specific issue in history matching problems and 

belongs to the aforementioned research gaps. The study begins by evaluating the 

application of one of the most recent optimisation algorithms in history matching problems 

(first objective). In the next step (second objective), it is sought to improve proxy-

modelling by including model management techniques to reduce computational costs 

reliably, particularly for stochastic optimisers. The subsequent step (third objective) is to 

remove reparameterisation error by developing a specific stochastic direct calibration 

method which can cope with large number of variables. Another (fourth) objective of this 

thesis is to comprehend the effects of uncertainties in objective function formulation on the 

history matching results, and developing a method to prevail over this issue. The last 

objective of this thesis is to introduce a reliable fast simulator for occasions that quick 

forecasts are looked for.      
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1.4.					Outline	of	the	methods	and	contributions	

Five different methods are introduced in this thesis; each of these methods corresponds to 

the aforementioned objectives. The outlines of these methods are briefly explained in the 

following subsections, and they are described in details, in the chapters. To study the 

proposed methods and provide comparison with conventional methods, an automatic 

history matching framework is required. Thus, a software framework is developed in the 

start. This framework is coded in MATLAB programming language (MathWork, 2011b) to 

make use of the great capabilities of the MATLAB toolboxes. ECLIPSE-E100 

(Schlumberger, 2010) (numerical reservoir simulator) is coupled with MATLAB. Also, in 

order to use geostatistical estimation, SGeMS software (Remy et al., 2009) is used. 

SGeMS was already coupled to MATLAB by Thomas Mejer Hansen 

(http://mgstat.sourceforge.net/), and the codes with some adjustments are utilised in our 

framework. By the developed package, it is possible to call any of the following software, 

ECLIPSE, SGeMS and MATLAB toolboxes (figure 1.6). Furthermore, it is possible to 

read the output files of them, and write or modify their input files. The proposed methods 

and a number of conventional methods of history matching are coded in this framework to 

deliver assessments.  

It should be mentioned that the framework not only can be used in history matching 

problems, but also it may be used in production optimisation and economical analysis 

problems. The developed codes are implemented for a well placement optimisation 

problem in a coal bed methane reservoir (San Juan Basin). Infill drilling optimisation in 

CBM reservoirs is challenging, as several terms, including, permeability, water saturation, 

pressure, water treatment costs and gas price are influential. Thus, it needs an automatic 

framework to enable the evaluation of many different scenarios. The automatic framework 

and a customised genetic algorithm are used for this purpose. The corresponding results of 
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the accomplishment can be found in two published journal papers which are attached to 

the appendix, “Salmachi, Alireza, Mohammad Sayyafzadeh, and Manouchehr Haghighi 

"Infill well placement optimization in coal bed methane reservoirs using genetic 

algorithm" Fuel (2013)”, and II- “Salmachi, Alireza, Mohammad Sayyafzadeh, and 

Manouchehr Haghighi "Optimisation and economical evaluation of infill drilling in CSG 

reservoirs using a multi-objective genetic algorithm" APPEA 2013”.  

 
Figure  1.6 The developed framework between MATLAB and ECLIPSE 

1.4.1.					Artificial	bee	colony	algorithm	

In the first part of this thesis, the major focus is placed on the optimisation (calibration) 

step. The artificial bee colony (ABC) (Karaboga, 2005) is incorporated into the framework, 

and its application in history matching is studied, for the first time. ABC is one of the most 

recent swarm intelligence algorithms and has an evolutionary computation approach. It 

was inspired by studying the swarm behaviour of honey bees. Its applications were 

examined in different fields, such as digital IIR filters (Nurhan, 2009), heat-transfer 

coefficient estimations (Zielonka et al., 2011), and several numerical functions (Karaboga 
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and Akay, 2009). The outcomes of this algorithm verify that ABC can deliver good-results 

in different problems, and it is not very sensitive to the objective function specifications 

(the shape of landscape).  

The advantages and disadvantages of ABC in history matching problems are explored by 

evaluating its performance on a synthetic model, and its outcomes are compared with three 

regular history matching algorithms. In this part, the algorithms are used along with a pilot 

point reparameterisation method, since stochastic algorithms cannot be efficient in very 

high-dimensional search spaces (the inefficiency of stochastic algorithms in very high-

dimensional search spaces is investigated in chapter 6). This method along with its results 

and discussions are presented in chapter 4. In the chapter, also, the effects of 

reparameterisation on the shape of landscape and the performance of the optimisation 

algorithms are cursorily studied. A peer-reviewed paper was published on this topic: 

“SAYYAFZADEH, M., HAGHIGHI, M., BOLOURI, K., & ARJOMAND, E. 2012. 

Reservoir characterization using artificial bee colony, in APPEA Journal, 2012; 52:115-

128”. 

1.4.2.					Proxy‐modelling	with	evolution‐control	

The second part of this thesis addresses the computational challenges (costs). In this part, 

the applications of evolution-control (model management) techniques are introduced to 

enhance the quality of proxy-modelling. The uncontrolled approach (conventional 

approach in Petroleum discipline) has the potential of misleading the optimiser to wrong 

optimum points (Jin, 2005). To reduce the probability of misdirection, the original function 

should be applied along with the approximation function during the optimisation process. 

In order to make use of the original function efficiency, it is required to apply a model 

management (evolution-control) technique. There are three categories of model 

management: individual-based, population-based and adaptive. By employing each of 
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these techniques, a controlled fitness approximation is assembled which benefits from 

online learning. In this study, an adaptive evolution-control technique is customised based 

on heuristic fuzzy rules. These three approaches are compared with the uncontrolled 

(conventional) approach, and also they are compared with each other using PUNQ-S3 

reservoir model. A genetic algorithm with a customised crossover, an artificial neural 

network and a Latin Hypercube Sampling strategy are used as optimiser, proxy model and 

experimental design respectively. The methodology, results and discussions are presented 

in chapter 5. Also, a peer-reviewed paper was published on this topic: “SAYYAFZADEH, 

M. & HAGHIGHI, M. 2013. Assessment of different model management techniques in 

history matching problems for reservoir modelling, in APPEA Journal, 2013; 53” 

	1.4.3.					Image‐fusion	

In this part, an inventive algorithm based on a multi-focus wavelet transform image fusion 

technique is proposed to deal with very high-dimensional search spaces using a stochastic 

search. Image fusion is a concept for combining a number of images into a single image to 

afford a more informative image. By making use of this technique and evolutionary 

computation concepts, an optimisation algorithm is designed in which different models 

intelligently and stochastically are merged based on their corresponding fitness values to 

produce a fitting model. It is a repetitive approach until stopping criteria are met. In order 

to evaluate the proposed algorithm, the outcomes of history matching using this algorithm 

on a synthetic reservoir model and also PUNQ-S3 reservoir model are compared with the 

results of a number of regular approaches (direct and indirect calibration methods). This 

method along with its results and discussion are presented in chapter 6. Also, a SPE 

conference paper was published on this topic: “SAYYAFZADEH, M. & HAGHIGHI, M. 

2013. High-resolution reservoir modelling using image-fusion in history matching 

problems, in SPE EUROPEC conference London, 2013”  
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1.4.4.					Pareto	optimisation		

The main emphasis of this part of the thesis is on the role of objective function formulation 

on the outcomes of history matching. To reduce risks in decision making for problems 

which have uncertain weighting factors, there is a conventional approach (Tarantola, 

2005). This approach has not been used in history matching problems, before. It is based 

on random selection, thus it needs the execution of optimisation many times. Therefore, a 

computationally efficient alternative approach is introduced, in this study.  

A Pareto optimisation is proposed for these problems in which likelihood and prior 

functions are considered as two separated objective functions. In the proposed approach, a 

multi-objective genetic algorithm is implemented to carry out the Pareto optimisation, and 

also specific post-optimisation trade-off rules are designed based on Taylor approximation 

series to enhance the quality of results. By a single execution of optimisation by this 

approach, a set of solutions is achieved that can be used for uncertainty analyses. A linear 

numerical example and PUNQ-S3 model are used to investigate the effect of weighting 

factors. The proposed and the conventional approach are compared with each other using 

these two examples, in terms of the required computation time and the quality of achieved 

solutions. This method along with its results and discussions are presented in chapter 7. 

Also, a SPE conference paper was published on this topic, “SAYYAFZADEH, M., 

HAGHIGHI, M. & CARTER, N. 2012, Regularization in history matching using multi-

objective genetic algorithm and Bayesian framework, in SPE EUROPEC conference 

Copenhagen, 2012”  

1.4.5.					Fast	simulator	based	on	transfer	functions	

In this part, a new simulator is introduced for forecasting the performance of oil reservoirs 

during water and gas (miscible and immiscible) injection based on Transfer Function (TF). 
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In this method, it is assumed a reservoir consists of a combination of TFs. The order and 

arrangement of TFs are chosen based on the physical conditions of the reservoir which are 

ascertained by examining several cases. The method is combined to a fractional flow 

model to predict oil production rates along with total production rates. For water-flooding 

problems, the chosen fractional flow is the model introduced by Gentil, 2005, and for gas-

flooding, a specific fractional flow is developed. Injection and production rates act as input 

and output signals to these TFs, respectively. By analysing input and output signals, the 

matching parameters of TFs are calculated. Subsequently, it is possible to predict reservoir 

performance. The results are compared with those obtained from the common grid-based 

simulator in different reservoir models. 

This method along with its results and discussions are presented in chapter 8. A peer-

reviewed journal and a SPE conference paper were published on this topic: 

“SAYYAFZADEH, M., POURAFSHARY, P., HAGHIGHI, M. & RASHIDI, F. 2011, 

Application of transfer functions to model water injection in hydrocarbon reservoir, 

Journal of Petroleum Science and Engineering, 78, 139-148” and “SAYYAFZADEH, 

M., MAMGHADERI, A., POURAFSHARI, P. & HAGHIGHI, M. 2011. A New Method to 

Forecast Reservoir Performance during Immiscible and Miscible Gas-Flooding via 

Transfer Functions Approach, SPE APOGE Jakarta” (and accepted for being published by 

the Journal of Petroleum Science and Technology).    

This thesis continues by a mathematical preliminaries chapter in which the relevant 

mathematics is explained. The third chapter presents the past to present advances in history 

matching. The explanation of the abovementioned techniques along with their results and 

discussions form the chapters 4 to 8. The conclusive remarks and future works can be 

found in the last chapter. This thesis also has an appendix in which the related MATLAB 

codes and the results of infill drilling optimisation are provided.  

 



16 

 

 

  



17 

Chapter	2	

 

 

 

2. Mathematical	preliminaries	

This chapter presents the relevant theoretical and mathematical preliminaries of history 

matching. It begins with an introduction to the inverse problem theory and history 

matching, and then, the different steps of history matching are described.  

2.1.					Inverse	problem	theory	

Forward problems (simulation) allow us to forecast the state of a performance by solving 

the corresponding mathematical equations, while in inverse problems, parameters that 

characterise a model (system) are estimated by inferring measurements (observations) 

(Tarantola, 2005). The solution of inverse problems delivers an estimation concerning the 

parameters which are not directly measurable, for example, the mass of sun, the mass 

distribution of earth and the subsurface properties of Earth. The inverse problem theory is 

being used in different fields, including seismic interpretations (Bouvier et al., 1989), 

image recovery (Stark, 1987), the estimations of heat transfer coefficients (Zielonka et al., 

2011), machine learning (robotic) (Mjolsness and DeCoste, 2001), reservoir modelling and 

so on. Equation 1 demonstrates a forward problem. 

݀௖௔௟ ൌ ݃ሺ݉ሻ																																																																																																																																																						ሺ1ሻ 

m is the input model, g is the phenomena modelling (forward) operator and d is the state of 

performance of the model (calculation data). m is a column vector in a Nm dimensional 
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Hilbert space denoted by M (equation 2) and d is a column vector in a Nobs dimensional 

Hilbert space denoted by D (equation 3). Nm and Nobs are equal to the number of variables 

which characterise the model and the number of measurement data, respectively.  

݉ ൌ ൥
݉ଵ
⋮

݉ே೘

൩																																																																																																																																																							ሺ2ሻ 

݀ ൌ ቎
݀ଵ
⋮

݀ே೚್ೞ
቏																																																																																																																																																							ሺ3ሻ 

g relates explicitly models from the M space to calculation data from the D space (equation 

4). g can be either linear or nonlinear. If g is a linear operator, it will be denoted by G and 

will be a Nobs×Nm matrix. Usually g cannot perfectly predict the observations, and it almost 

always is accompanied by modelling errors. Modelling errors might be due to numerical 

solutions and/or imperfect phenomena modelling, and usually they are unknown. On the 

other hand, measurement noise is always included in observed data. Thus, in order to relate 

models to observations, equation 1 should be changed to equation 5 in which there are two 

other terms on right hand side, modelling error and measurement noise (error).   

ܯ:݃ →  ሺ4ሻ																																																																																																																																																												ܦ

݀௢௕௦ ൌ ݃ሺ݉ሻ ൅ ߳௠௢ௗ௘௟௟௜௡௚ ൅ ߳௠௘௔௦௨௥௘௠௘௡௧																																																																																															ሺ5ሻ 

In inverse problems, it is sought to estimate m from dobs (equation 6). The forward operator 

is usually nonlinear and noninvertible in real problems. These issues along with unknown 

modelling and measurement errors cause complications in the estimation of m. To solve 

these inverse problems, usually the following three steps are being taken: parameterisation, 

objective function formulation and optimisation (Tarantola, 1987). In the parameterisation, 

variables which describe the model are determined. In the second step, an objective 

function is formulated in which the criteria of distinguishing between models (solutions) 

are delineated and quantified; equation 7 is one of the most famous objective function 
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definitions in inverse problems known as least squares (L2). The last step is optimisation in 

which the global optimum of the defined objective function is sough. It is an iterative 

procedure in which the model is being updated according to a selected optimisation rule 

until predefined stopping criteria are met (Landa, 1997). These steps are described in 

details in the following sections. Figure 2.1 and 2.2 show the forward and inverse problem 

schematically.  

݉ ൌ ݃ିଵሺ݀௢௕௦ െ ߳௠௢ௗ௘௟௟௜௡௚ െ ߳௠௘௔௦௨௥௘௠௘௡௧ሻ																																																																																										ሺ6ሻ 

߮ሺ݉ሻ ൌ ൫݀௢௕௦ െ ݃ሺ݉ሻ൯
்
൫݀௢௕௦ െ ݃ሺ݉ሻ൯																																																																																																			ሺ7ሻ 

 
Figure  2.1 Forward problem 

2.2.					History	matching	in	reservoir	simulation		

History matching is a nonlinear inverse problem (Ballester and Carter, 2007). In this 

inverse problem, the parameters of initially constructed models are updated based on the 

true behaviour of reservoir performance. History matching problems are often 

underdetermined, i.e., the number of variables is more than the number of independent 

observations. Furthermore, the forward operator is very time-consuming. In the forward 

problem, a system of differential equations formed by combining continuity equation, 

Darcy’s equation, an equation of state, capillary pressure and relative permeability 
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relationships is solved (Landa, 1997, Aziz and Settari, 1979). Equation 8 is a sample 

equation which is solved in reservoir simulations for each phase and each gridblock 

(Fanchi, 2005). Bo, μo, kro, Φo, qo and So are formation volume factor, viscosity, relative 

permeability, potential energy, flow rate and saturation of oil phase respectively. The 

aforementioned issues create a nonlinear ill-posed expensive inverse problem. Ill-posed 

problems have more than one solution with equally good fitting to the observations (Sun, 

1994).  

 
Figure  2.2 Inverse problem 

න൤׏.
௥௢݇ܭ
௢ܤ௢ߤ

Ф௢׏ െ
௢ݍ
௢ߩ
	൨ ܸ݀ ൌ න

߲
ݐ߲
൬
߶ܵ௢
௢ܤ

൰ܸ݀																																																																												ሺ8ሻ 

History matching similar to any other inverse problems consists of the three steps which 

are described in the following sections.  

2.3.					Parameterisation	

In the first step, it is required to define the uncertain parameters which can be any of the 

reservoir simulation input data. The reservoir simulation input data include fault 

transmissibility, well skins, fluid properties in each region (capillary pressure curves, 

relative permeability curves and fluid composition), aquifer parameters (size, pressure, 
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connections and permeability), water-oil contacts, gas-oil contacts, initial pressures and 

saturations, and geological model parameters (porosity, permeabilities, net to gross ratio in 

every gridblocks, and fracture’s parameters) (Oliver and Chen, 2010). Therefore, m usually 

consists of only the uncertain parameters. The dimension of M is equal to the number of 

elements of m, and it is denoted by Nm.  

2.3.1.					Reparameterisation		

The first step is not completed only by a parameterisation, due to the fact that usually there 

are a huge number of uncertain parameters which are predominantly the properties’ 

distribution across the reservoir such as porosity and permeabilities in every gridblock. 

Solving a nonlinear inverse problem with a very large degree of freedom (or in other word, 

finding the best model in a very high-dimensional space) is challenging. In order to 

perform the calibration (optimisation) more efficient and quicker, making the search space 

smaller (reducing the number of dimension of M) is advantageous. A reparameterisation 

method may be utilised to reduce the number of variables. Variables which are functions of 

spatial coordinates, such as porosity and permeability are suitable candidates to be 

reparameterised (Oliver and Chen, 2010), since usually there are some correlations 

between these parameters, and hence they may be represented by a lower number of 

variables.  

In order to reparameterise a model, an operator is required which is called 

reparameterisation operator and denoted by f. f maps M to R (equation 9). R is the 

corresponding space of the reparameterised model (r). The dimension of corresponding 

Hilbert space of r denoted by Nr is usually much smaller than Nm. Now, instead of 

calibrating the elements of m directly in a very high-dimensional space, it is possible to 

carry out history matching indirectly in a smaller space by calibrating the elements of r. In 

this approach, modifications in m are made by changes in r through h. f normally is not 
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invertible, therefore r is related to m using another function denoted by h. In equation 9, 

߳	ோ (reparameterisation modelling error) is usually an unknown function. It is very 

important to remove or reduce the reparameterisation error with choosing an appropriate 

operator (h) and the optimal number of variables, otherwise the approximation in equation 

9 will be incorrect, and accordingly the achieved models via it will not be reliable models.  

ܯ:݂ → ܴ	; ݎ			 ൌ ݂ሺ݉ሻ		ܽ݊݀				݄: ܴ → ;	ܯ 						݉ ൌ ݄ሺݎሻ ൅ ߳	ோ 					→ 							݉ ൎ ݄ሺݎሻ																									ሺ9ሻ 

So far, several reparameterisation methods have been introduced; the advantages of 

disadvantages of the methods are reviewed in the literature review chapter. In the 

following subsections, the three of the methods are explained as examples. In order to 

demonstrate the methods, a synthetic porosity distribution (mRef) (figure 2.3) is 

reparameterised by the methods. The full-parameterised model consists of 1225 variables. 

Then, the best reparameterised models are found via an optimisation algorithm based on 

equation 10. In the end, the achieved models are compared with the reference model both 

quantitatively based on equation 10 and also qualitatively by presenting the figures.  

 
Figure  2.3 Porosity distribution of the reference model for the example 

݉ோ௘௣. ൌ ݄ሺݎሻ;				ݐ݂݅ݏ݅ܯோ௘௣.ሺݎሻ ൌ ඩ
1
ܰ௠

෍ቀ݉ோ௘௣௜
െ ݉ோ௘௙௜

ቁ
ଶ

ே೘

௜ୀଵ

																																																				ሺ10ሻ 
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2.3.1.1.					Zonation		

In this method, the reservoir is divided into a number of coarse zones, and it is assumed 

properties are homogenous in each zone. The number of variables can be significantly 

reduced via this method. The procedure is as follows: the number of zones and the 

corresponding sizes are defined, and then the property in each zone will be sought by 

history matching. Figure 2.4 shows the best reparameterised model which can be achieved 

via a zonation method for the model. The figure 2.4 (right) shows the reference model. The 

left figure reveals the same reservoir after the zonation reparameterisation. In this zonation 

method, the reservoir model is divided into 25 same size zones with 7×7 gridblocks. Thus, 

the number of variables is significantly reduced from 1225 to 25. As it can be seen, it 

delivers the main features of the model reasonably (low porosity and high porosity sections 

are described acceptably), but it has a low resolution. The misfit value based on equation 

10 for the reparameterised model using this approach is 1.62.  

 
Figure  2.4 Reparameterisation using the zonation method 

2.3.1.2.					Pilot	point	reparameterisation		

In this method, only a number of gridblocks are tuned by the optimisation, and the rest of 

the gridblocks are estimated by geostatistical interpolations. The gridblocks which are 

calibrated are called pilot points and act as pseudo-wells. The procedure of this method is 
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usually as follows: 1- The number of pilot points is defined and fixed. 2- The location of 

them is defined and fixed. 3- Using an optimisation algorithm, the best values for the 

selected pilot points are estimated. In this process, to evaluate each scenario, the properties 

in other gridblocks should be estimated using a geostatistical correlation. Thus, in the h 

function, m is estimated from r by a geostatistical computation in which usually the well 

data (the properties in gridblocks which wells are located at) are used along with the pilot 

points’ data. In this study, SGeMS software (Remy et al., 2009) is used for generating 

geostatistical correlations.  

In this paragraph, it is briefly explained how estimations in geostatistics are made by 

presenting the mathematical preliminaries for one of the most common geostatistical 

estimators, the Ordinary Kriging. Kriging is a method which estimates the value in 

unsampled locations based on the correlation of the sampled data. In this method, the 

property in each gridblock (x*) is estimated based on the n measured samples with a 

specific weighting factor (ω). The summation of these weighting factors is equal to one 

(equation 11). Each weighting factor is calculated by solving a linear system shown in 

equation 12 in which the variogram (covariance) information is required. The variogram 

(γ) is usually interpreted by analysing the sample data (well logs or core samples) and 

providing a correlation for the variogram; the most famous three variogram models are: 

Spherical, Gaussian and Exponential. After calculating the weighting factors, the property 

in x* can be estimated through equation 13. There are different methods, except ordinary 

kriging, such as simple kriging, co-kriging and several stochastic methods (sequential 

Gaussian simulation, sequential indicator simulation). In the following studies, the 

concepts of geostatistics can be found in more details (Journel and Huijbregts, 1978, 

Deutsch, 2002, Kelkar and Perez, 2002, Caers, 2005).    

෍߱௜

௡

௜ୀଵ

ൌ 1																																																																																																																																																								ሺ11ሻ 
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൦
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⋮
߱௡
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ܼሺݔଵሻ
⋮

ܼሺݔ௡ሻ
൩																																																																																																																													 ሺ13ሻ 

Using the pilot point method, the example is reparameterised by considering 6 points with 

unfixed locations and all the main elements of variogram unknown (nugget, contribution, 

range, anisotropy in x-direction and y-direction) as variables. Thus, the total number of 

variables is 23; each pilot point is represented by three parameters, x-location y-location 

and value and the variogram is represented by 5 parameters. The best reparameterised 

model found by an optimisation algorithm is shown in figure 2.5. As it can be seen, the 

reparameterised model, which is achieved by an almost similar number of variables as the 

zonation, has a high-resolution and also it carries the main characteristic of the model. The 

misfit for this model is 0.79 which is lower than the previous method.  

 
Figure  2.5 Reparameterisation using the pilot point method  

2.3.1.3.					Spectral	decomposition	

The spectral decomposition of prior covariance matrix is another method of 

reparameterisation. In this method, models are reparameterised based on eigenvalues and 

eigenvectors of prior covariance matrix (Cm). The procedure is as follows: 1- A diagonal 
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square matrix denoted by D should be produced in which the diagonal elements are equal 

to square root of diagonal elements of the prior covariance matrix (ඥܿ௜௜ሻ. 2- A correlation 

matrix should be calculated via equation 14. 3- The eigensystem of  ܥሚ௠ should be 

computed; then, the eigenvalues should be ordered from largest to smallest (λm≤...≤ λ1), 

assume uj is the corresponding eigenvector for λj. 4- The number of parameter reduction 

should be defined (p); usually equation 15 is used to defined p in which θ is the fraction (0-

1) of the total spectrum included in the first p eigenvalues. 5- Up matrix should be 

constructed which is Nm×p; the columns of this matrix are the first p eigenvectors, 6- m is 

varied by changes in the elements of a column vector (r) which is p-dimensional through 

equation 16. Thus, h in this reparameterisation technique is as equation 16 in which D and 

Up are calculated based on a prior covariance matrix decomposition.  

ሚ௠ܥ ൌ  ሺ14ሻ																																																																																																																																											ଵିܦ௠ܥଵିܦ

෍ߣ௜

௣

௜ୀଵ

൒ ௜ߣ෍ߠ

ே೘

௜ୀଵ

																																																																																																																																													ሺ15ሻ 

݉ ൌ  ሺ16ሻ																																																																																																																																																								ݎ௣ܷܦ

The example is reparameterised using this method. It is assumed that p is equal to 25. A 

prior covariance matrix is constructed using geostatistical correlations. It should be 

mentioned that the prior covariance matrix is generated numerically based on only nine 

gridblock data and therefore, it has uncertainty. The best model is shown in figure 2.6. As 

it can be seen, it does not properly represent the reference model and the misfit value is 

equal to 5.1. In order to deliver a proper model, it is required to increase the number of 

variables of p and also modify the prior covariance matrix by gathering more information. 

To calculate the eigenvalues and eigenvectors, MATLAB functions are used.   
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Figure  2.6 Reparameterisation using the spectral decomposition method 

2.4.					Objective	function	formulation	

After defining the variables in the first step (parameterisation), it is required to identify 

decisive factors which are sought. These factors should express the quality of history 

matched models and also distinguish between the models. With regards of criteria 

(factors), an objective function (fitness function) is formulated to demonstrate the goodness 

of models quantitatively. In history matching problems, the objective function is typically 

formulated in two different manners: deterministic and probabilistic. In the deterministic 

approach, usually the objective function is similar to the least squares problems (L2), and 

the minimum of squared data misfit is sought. In the probabilistic approach, normally, the 

objective function is formulated using a Bayesian interpretation, and the posterior 

probability function is being sought (Aanonsen et al., 2009, Shah et al., 1978, Oliver, 1994, 

Tarantola, 2005). These two approaches are explained in the following sections.  

2.4.1.					Deterministic	formulation		

The most common deterministic formulation is least squares of data misfits. In this 

method, the objective function is defined as the sum of the squares of misfits between 

observations and calculations provided by model (residuals) in every equation. In the linear 

problems, calculation data (dcal) are related to model by a forward operator which is a 

Nobs×Nm matrix (equation 17, 18). The solution of the least square problems is the 
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minimum of summation of the residuals (equation 19, 20). In order to find the minimum of 

equation 20, its derivative for each element of m should be equal to zero (equation 21).  

ܩ ൌ ቎
ଵܺଵ ⋯ ଵܺே೘
⋮ ⋱ ⋮

ܺே೚್ೞଵ ⋯ ܺே೚್ೞே೘

቏																																																																																																																						ሺ17ሻ 

቎
݀௖௔௟ଵ
⋮

݀௖௔௟ே೚್ೞ

቏ ൌ ቎
ଵܺଵ ⋯ ଵܺே೘
⋮ ⋱ ⋮

ܺே೚್ೞଵ ⋯ ܺே೚್ೞே೘

቏ ൥
݉ଵ
⋮

݉ே೘

൩																																																																																								ሺ18ሻ 

௜ݎ ൌ ݀௢௕௦௜ െ෍൫ ௜ܺ௝ ௝݉൯

ே೘

௝ୀଵ

																																																																																																																														 ሺ19ሻ 

ܵ ൌ ෍൫݀௢௕௦௜ െ ሺ݉ܩሻ௜൯
ଶ

ே೚್ೞ

௜ୀଵ

																																																																																																																										ሺ20ሻ 

∀	ሺ݆ ൌ 1,… ,ܰ௠ሻ,
߲ܵ
߲ ௝݉

ൌ 0																																																																																																																		ሺ21ሻ 

The derivation of equation 20 is as equation 22.  

߲ܵ
߲ ௝݉

ൌ 2 ෍ ௜ݎ
௜ݎ߲
߲ ௝݉

ே೚್ೞ

௜ୀଵ

																																																																																																																																					ሺ22ሻ 

The derivation of the residual is as equation 23.  

௜ݎ߲
߲ ௝݉

ൌ െ ௜ܺ௝																																																																																																																																																					ሺ23ሻ 

If equation 23 and 19 are incorporated into equation 22, equation 22 will be equation 24:  

߲ܵ
߲ ௝݉

ൌ െ2 ෍ ൮ቌ݀௢௕௦௜ െ෍൫ ௜ܺ௝ ௝݉൯

ே೘

௝ୀଵ

ቍ ௜ܺ௝൲

ே೚್ೞ

௜ୀଵ

ൌ 0																																																																															ሺ24ሻ 

The solution (m*) of equation 24 is as equation 25 which can be rewritten as equation 26.  

෍൫݀௢௕௦௜ ௜ܺ௝൯

ே೚್ೞ

௜ୀଵ

ൌ ෍ ቌ෍ ௜ܺ௝

ே೘

௝ୀଵ

௜ܺ௝݉∗
௝ቍ

ே೚್ೞ

௜ୀଵ

																																																																																																		ሺ25ሻ 
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݉∗ ൌ ሺܩ்ܩሻିଵ்݀ܩ௢௕௦																																																																																																																																		ሺ26ሻ 

If a sum of weighted squares of misfit is sought to be minimised, the solution will be as 

equation 27. The weighting factors are usually estimated based on measurement noise in 

observations. Measurement noise is usually assumed Gaussian with a zero mean. The 

weighting factors are assumed as standard deviations (σ) of the measurement noise.  

݉∗ ൌ ሺܩ்ܹܩሻିଵ்ܹ݀ܩ௢௕௦																																																																																																																								ሺ27ሻ 

If there is any measurement noise in observations, the final residual (r(m*)) will not be zero 

and will be a positive value. If the weighting factors in the objective function are equal to 

the standard deviation of the measurement noises, usually the residual at the m* will be 

around Nobs (ݎ௜ሺ݉∗ሻ ൌ
ௗ೚್ೞ೔ି∑ ൫௑೔ೕ௠

∗
ೕ൯	

ಿ೘
ೕసభ

௪೔
	,	∑ ൫ ௜ܺ௝݉∗

௝൯
ே೘
௝ୀଵ ൌ ݀௖௔௟௜, ݀௢௕௦௜ െ ݀௖௔௟௜ ൎ ,௜ߪ ௜ሺ݉∗ሻݎ ൎ

ఙ೔
ఙ೔
	,     

Rሺ݉∗ሻ ൌ ∑ ௜ሺ݉∗ሻே೚್ೞݎ
௜ୀଵ 	 , Rሺ݉∗ሻ	ݏݑ݄ݐ ൎ ௢ܰ௕௦).   

Linear problems are quadratic and also have closed-form solutions, but the nonlinear least 

squares problems do not have closed-form solutions, and they should be found by iterative 

approaches. History matching is a nonlinear least squares problem. In these problems, the 

derivative of g is not only a function of coefficients, but also it is a function of variables 

(m). To solve nonlinear least squares problems, an optimisation algorithm is required to 

find the minimum of equation 28. The optimisation methods are reviewed in a separate 

section later.    

ܵሺ݉ሻ ൌ ෍ ቀ݀௢௕௦௜ െ ൫݃ሺ݉ሻ൯
௜
ቁ
ଶ
	

ே೚್ೞ

௜ୀଵ

																																																																																																												ሺ28ሻ 

In this formulation, a regularisation term will be added, if the problem is underdetermined 

or/and ill-posed (Tikhonov and Arsenin, 1977). Equation 29 shows an objective function 

which has weighting factors and a Tikhonov regularisation term. The regularisation acts as 

a penalty term, and it can convert ill-posed problems to well-posed problems. λ is the 
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regularisation factor and can be any value from zero to infinity. W and W` are weighting 

factors for individual elements of data misfit and the prior model, respectively. More 

details about the least squares methods can be found in the following books (Wonnacott 

and Wonnacott, 1981, Stewart, 1973).  

ܵሺ݉ሻ ൌ ෍ ൭
݀௢௕௦௜ െ ൫݃ሺ݉ሻ൯

௜

௜ܹ
൱

ଶே೚್ೞ

௜ୀଵ

൅ ෍൬ߣ	
݉௜ െ ݉௣௥௜௢௥௜

ܹᇱ
௜

൰
ଶ

ே೘

௜ୀଵ

																																																												ሺ29ሻ 

2.4.2.					Probabilistic	formulation		

In this approach, the objective function is formulated based on probability distribution 

functions, and it is sought to find the probability distribution function of the model while is 

conditioned to (gives) observations (p(m|dobs)). It is widely used for parameters estimations 

(Sivia and Skilling, 2006). Finding a model using this approach by any number of 

experiments is practical. The degree of confident regarding the model is increased, if more 

independent experiments become available. The following example taken from Sivia and 

Skilling book is a good mean to describe this approach. There is a coin which should be 

investigated to answer the following questions a- is the coin bias, and b- if it is bias, what 

is the factor. To answer these questions, the best way is flipping the coins and gathering 

information. The following figure shows the corresponding graphs based on the number of 

experiments (figure 2.7). As it can be seen, via an increase of the number of experiments 

from zero to 64, a better probability distribution is generated, and accordingly a better 

decision can be made.  

The probability distribution of m while is conditioned to observations is usually not 

directly measurable, especially in nonlinear inverse problems. In these problems, based on 

Bayes’ theorem, it will be possible to define the function based on three other probability 

distribution functions as equation 30. It demonstrates how a subjective degree of belief 

logically varies based on observations (evidence). It is used to update the degree of belief 
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regarding a hypothesis (p(m)) in line with additional observations. Bayes’ theorem is the 

basis of Bayesian statistics. In the following section, the Bayesian framework is described.  

ሺ݉|݀௢௕௦ሻ݌ ൌ
ሺ݀௢௕௦|݉ሻ݌ ൈ ሺ݉ሻ݌

ሺ݀௢௕௦ሻ݌
																																																																																																														ሺ30ሻ 

 
Figure  2.7 The degree of biasness of a coin based on observations (Sivia and Skilling, 2006) 

2.4.3.					Bayesian	framework	

Using a Bayesian interpretation, inverse problems can be formulated. In inverse problems, 

it is sought to find the maximum of p(m|dobs) denoted by MAP. MAP is conditioned to the 

observations and also it is the most probable model. If the p(m|dobs) function can be 

estimated, not only it will be possible to pick the MAP, but also a number of other models 

can be selected from the function which are all conditioned to the observations. These 

models have a lower probability of existence than MAP. They can provide a high-quality 

uncertainty analysis and quantification, and accordingly, the risks in decision making can 

be reduced, since other probable models are also available and can be investigated. Thus, 

the goal in this interpretation is finding the posterior probability distribution function.  
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In order to find the posterior probability function, the best way is to relate this function to 

some other terms which are measurable. According to Bayes’ theorem, the posterior 

probability function is a function of three other probability functions. The p(dobs) called 

marginal likelihood (model evidence) is not a function of m and is a fixed value. Therefore, 

this term is not used to estimate posterior probability functions (p(m|dobs)). The other two 

terms change posterior probability functions (equation 31). If a natural logarithm is taken 

from both sides of equation 31, it will be as equation 32. The first term in the right 

handside is called likelihood probability distribution function and the second term is called 

prior probability distribution function. Hence, the posterior degree of belief regarding a 

hypothesis is a function of the inherent degree of belief regarding the hypothesis (the prior) 

and the compatibility of the observations (evidences) with the hypothesis (the likelihood).  

ሺ݉|݀௢௕௦ሻ݌ ∝ ሺ݀௢௕௦|݉ሻ݌ ൈ  ሺ31ሻ																																																																																																															ሺ݉ሻ݌

ln൫݌ሺ݉|݀௢௕௦ሻ൯ ∝ ൫ln൫݌ሺ݀௢௕௦|݉ሻ൯ ൅ ln൫݌ሺ݉ሻ൯൯																																																																																			ሺ32ሻ 

With an assumption of Gaussian distribution of modelling error and measurement noise 

and zero means, the likelihood function can be defined as equation 33. In this equation, CD 

is the covariance matrix of observation data which consists of two covariance matrixes (Cd 

and CT), as equation 34. Cd should include the measurement noise of observation data and 

CT should include the modelling errors. If observations are uncorrelated, the covariance 

matrix will be diagonal and the entries will be equal to the squared standard deviation of 

measurement noise, as equation 35.  

pሺd୭ୠୱ|mሻ ൌ ሺሺ2πሻ୒౥ౘ౩ detሺCୈሻሻ
ି
ଵ
ଶ exp ቆെ

1
2
ሺgሺmሻ െ d୭ୠୱሻ୲Cୈ

ିଵሺgሺmሻ െ d୭ୠୱሻቇ																		ሺ33ሻ 

Cୈ ൌ Cୢ ൅ C୘																																																																																																																																																		ሺ34ሻ 

Cୢ ൌ ቎
ଵߪ
ଶ ⋯ 0
⋮ ⋱ ⋮
0 ⋯ ே೚್ೞߪ

ଶ
቏																																																																																																																																	ሺ35ሻ 
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With an assumption of Gaussian distribution of model, prior probability distribution 

function will be as equation 36. In this equation, mprior is the mean of distribution and 

usually is the initial guess regarding the model and Cm is the corresponding covariance 

matrix for the initial probability distribution function. Cm expresses the initial degree of 

confidence about the model. If m is a single variable, the Cm will be the standard deviation, 

but usually m is a multivariate distribution.   

pሺmሻ ൌ ሺሺ2πሻ୒ౣ detሺC୫ሻሻ
ି
భ
మ exp ൬െ

ଵ

ଶ
൫m െm୮୰୧୭୰൯

୲
C୫

ିଵ൫m െm୮୰୧୭୰൯൰																																		ሺ36ሻ    

By incorporating equation 33 and 36 in 32, equation 37 will be achieved. The coefficients 

of probability distributions are constant and they are not variables of m, thus equation 37 

can be rewritten as equation 38 in which C1 and C2 are two constants.  

ln൫݌ሺ݉|݀௢௕௦ሻ൯ ∝ ቆln ቆ൫ሺ2πሻ୒౥ౘ౩ detሺCୈሻ൯
ି
ଵ
ଶ exp ቆെ

1
2
ሺgሺmሻ െ d୭ୠୱሻ୲Cୈ

ିଵሺgሺmሻ െ d୭ୠୱሻቇቇ

൅ ln ቆሺሺ2πሻ୒ౣ detሺC୫ሻሻ
ି
ଵ
ଶ exp ቆെ

1
2
൫m െm୮୰୧୭୰൯

୲
C୫

ିଵ൫m െm୮୰୧୭୰൯ቇቇቇ		ሺ37ሻ 

ln൫݌ሺ݉|݀௢௕௦ሻ൯ ∝ ൭ܥଵ ൅ ቆെ
1
2
ሺgሺmሻ െ d୭ୠୱሻ୲Cୈ

ିଵሺgሺmሻ െ d୭ୠୱሻቇ ൅ ଶܥ

൅ ቆെ
1
2
൫m െm୮୰୧୭୰൯

୲
C୫

ିଵ൫m െm୮୰୧୭୰൯ቇ൱																																																										ሺ38ሻ 

In order to find the maximum of p(m|dobs), it is required to find the minimum of equation 

39, i.e., the minimum of equation 39 is equal to the maximum of p(m|dobs). This form is 

very similar to equation 29 (least squares with a Tikhonov regularisation term). In this 

equation covariance matrixes acts as weighting factors for the individual elements and the 

ratio of covariance matrixes play the role of a regularisation factor. The likelihood function 

demonstrates the fitting of observed data over calculation data. The prior knowledge 

function (regularisation term) exhibits the distance of calibrated model from an initial 

model. It should be pointed out that sometimes only the likelihood term is used for 

parameter identification. In these cases, it is sought to find the maximum of likelihood 
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which is called ML (maximum likelihood), and it will be similar to least squares method 

without a regularisation term.   

ܵሺ݉ሻ ൌ ቆ
1
2
ሺgሺmሻ െ d୭ୠୱሻ୲Cୈ

ିଵሺgሺmሻ െ d୭ୠୱሻቇ ൅ ቆ
1
2
൫m െm୮୰୧୭୰൯

୲
C୫

ିଵ൫m െm୮୰୧୭୰൯ቇ			ሺ39ሻ 

In linear inverse problem, the posterior probability function will be Gaussian with a mean 

equal to MAP and a covariance matrix denoted by Cm` (any multivariate Gaussian 

distribution is characterised by two terms, mean and covariance matrix), due to the fact that 

the misfit function is quadratic (Tarantola, 2005). The mean of posterior probability 

function (MAP) will be as equation 40 and the covariance matrix will be as equation 41. 

The posterior covariance matrix reveals the current degree of belief regarding the 

variables. 

ܲܣܯ ൌ ݉௣௥௜௢௥ ൅ ௧ܩ௠ܥܩ௧ሺܩ௠ܥ ൅ ஽ሻିଵ൫݀௢௕௦ܥ െ  ሺ40ሻ																																																													௣௥௜௢௥൯݉ܩ

௠ᇲܥ ൌ ௠ܥ െ ௧ܩ௠ܥܩ௧ሺܩ௠ܥ ൅  ሺ41ሻ																																																																																																௠ܥܩ஽ሻିଵܥ

An example is created to demonstrate the application of Bayesian framework in parameters 

identifications. It is sought to find a set of models given the observations. There is prior 

information regarding the model as equation 42. 10000 samples are selected from the 

corresponding probability distribution function and shown in figure 2.8. As it can be 

realised from the histogram of the samples, there is a wide ranges for x and y of m which 

are varied almost between -5 to 3 and -4 to 4 respectively. There are two observations 

which are related to m using a linear operator G (equation 43). The true value which 

generated the observation is given in equation 44. Gaussian noise with zero mean and 

standard deviation of 5 percents of corresponding element are added to observations, thus, 

the diagonal elements of observation covariance matrix is equal to the squared standard 

deviations. Now, we are looking to update the initial probability distribution based on the 

observations.   
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݉௣௥௜௢௥ ൌ ቂെ1
1
ቃ , ௠ܥ ൌ ቂ1 0

0 1
ቃ																																																																																																																				ሺ42ሻ 

ܩ ൌ ቂ0.004 0.769
0.774 0.947

ቃ																																																																																																																																					ሺ43ሻ 

݉௔௖௧௨௔௟ ൌ ቂെ2
1.5

ቃ																																																																																																																																													ሺ44ሻ 

Based on equation 40 and 41, MAP (m∞) and Cm` of posterior probability function will be 

as equation 45.  

 
Figure  2.8 Prior posterior probability function 

݉ஶ ൌ ቂെ1.9
1.4

ቃ , ௠ܥ ൌ ቂ0.010 0.008
0.008 0.007

ቃ																																																																																																						ሺ45ሻ 

These two parameters characterise the posterior probability function, 10000 samples are 

selected from the probability function and are shown in figure 2.9. As it can be seen, using 

only two observations, the degree of confident regarding m dramatically is changed and it 

is getting very close to the actual value. The domain of 10000 samples are varied from -2.4 

to -1.6 and 1.1 to 1.8 for x and y direction. These domains are much narrower than the 

initial domains.  
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Figure  2.9 Posterior probability distribution 

In nonlinear inverse problems, the posterior probability function will deviate from being 

Gaussian. The deviation is a function of the degree of problem nonlinearity, i.e., a higher 

nonlinearity causes more deviation from being Gaussian (Tarantola, 2005). These 

problems similar to nonlinear least squares problems are required to be solved iteratively. 

The objective function is defined as equation 39 and the minimum of S(m) is being sought. 

The MAP can be estimated using any optimisation method. In order to be able to select a 

set of models for uncertainty analysis purposes, the following assumptions can be made: i. 

the posterior probability is close to a Gaussian distribution, and ii. the posterior covariance 

matrix can be estimated using equation 46 in which Gm∞ is the sensitivity matrix at m∞ as 

equation 47 (Tarantola, 1987). One of the main advantages of having the posterior 

covariance matrix is that the square roots of the diagonal elements of Cm` as uncertainty 

bars (Tarantola, 2005).  

௠ᇲܥ ൎ ௠ܥ െ ௧௠ಮܩ௠ܥ
൫ܩ௠ಮ

௧௠ಮܩ௠ܥ
൅ ஽൯ܥ

ିଵ
௠ಮܩ

 ሺ46ሻ																																																																								௠ܥ
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௠ಮܩ
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߲݃ଵ
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൰
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⋯ ቆ
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ۑ
ې

																																																																																												 ሺ47ሻ 

In the following chapter, the advantages and drawbacks of the two famous objective function 

formulation methods are discussed. In the next section, Kalman filter is described. Using 

Kalman filter, having an optimisation step as a separate stage will be unnecessary.  

2.4.4.					Kalman	Filter	

The Bayesian approach (equation 48) can be converted to a sequential update (recursive), 

if the observations are measured at different time step (n). In history matching problems, 

observations are gathered sequentially. Thus, they can be fitted into a sequential Bayesian 

revision. Using equation 49, equation 48 can be switched to a sequential update in which in 

time step n, it is only the current probability distribution of model (n-1) and the new 

likelihood is required. The current distribution itself was updated by a similar combination 

in the previous timestep. Equation 50 to 52 shows the inductive derivation of the sequential 

update.  

ሺ݉|݀௢௕௦ሻ݌ ∝ ሺ݀௢௕௦|݉ሻ݌ ൈ  ሺ48ሻ																																																																																																															ሺ݉ሻ݌

,൫݀௢௕௦ଵ݌  … , ݀௢௕௦௡ห݉൯ ൌ ൫݀௢௕௦ଵห݉൯݌ ൈ  ሺ49ሻ																	൫݀௢௕௦௡ห݀௢௕௦௡ିଵ,݉൯݌…൫݀௢௕௦ଶห݀௢௕௦ଶ,݉൯݌

ଵሺ݉ሻ݌ ൌ ൫݉ห݀௢௕௦ଵ൯݌ ∝ ൫݀௢௕௦ଵห݉൯݌ ൈ  ሺ50ሻ																																																																																								ሺ݉ሻ݌

ଶሺ݉ሻ݌ ൌ ൫݉ห݀௢௕௦ଶ൯݌ ∝ ൫݀௢௕௦ଶห݀௢௕௦ଵ,݉൯݌ ൈ  ሺ51ሻ																																																																										ଵሺ݉ሻ݌
. 
. 
. 
௡ሺ݉ሻ݌ ൌ ൫݉ห݀௢௕௦௡൯݌ ∝ ൫݀௢௕௦௡ห݀௢௕௦௡ିଵ,݉൯݌ ൈ  ሺ52ሻ																																																																௡ିଵሺ݉ሻ݌

The sequential update is the basis of Kalman filter and data assimilation methods (Welch 

and Bishop, 1995, Harvey, 1991).  
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In order to apply Kalman filter, two assumptions are taken into consideration, i- the system 

is linear or linearisable, and ii- modelling and measurement errors and variables have 

a Gaussian distribution. In this method, the posterior probability function in time step i is 

as equation 53 in which the posterior covariance matrix and mean are calculated from 

equation 54 and 55. I is an identity matrix and K is called Kalman gain matrix as equation 

56. Ĥ is observation matrix (Hat matrix).   

௜ሺmሻ݌ ∝ exp ቆെ
1
2
ሺm െ μ୧ሻ୲C୫୧

ିଵሺm െ μ୧ሻቇ																																																																																								ሺ53ሻ 

C୫୧ ൌ ൫I െ KĤ൯C୫୧ିଵ																																																																																																																																			ሺ54ሻ 

μ୧ ൌ μ୧ିଵ ൅ K൫d୭ୠୱ୧ െ Ĥμ୧ିଵ൯																																																																																																																				ሺ55ሻ 

K ൌ C୫୧ିଵĤ
୲൫ĤC୫୧ିଵĤ

୲ ൅ Cୈ൯
ିଵ
																																																																																																													ሺ56ሻ 

When the number of variables is large, the computations of the matrixes will be very time-

consuming. Ensemble Kalman filter (EnKF) is another approach in which the covariance 

matrixes are not required to be calculated, and they are substituted by sample covariance 

matrixes. This approach is more applicable in history matching. Since history matching is 

nonlinear, some modifications have been made. These modifications are explained as 

follows. Instead of representing the probability distributions by mean and covariance 

matrixes, n models called ensemble (EnM) are selected from the distribution (prior in 

initial step, posterior in updating stage), and then they are being updated in each time step 

(i) (equation 57). The ensemble includes the theoretical calculations. In this approach, it is 

required to have a same size ensemble of observations; thus, n observations are generated 

by a normal distribution from the observation (equation 58). ݀௢௕௦௜ is the actual observation 

and it is considered as mean of distribution and based on its covariance matrix, a set of 

observations are generated (equation 59).   
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௜ܯ݊ܧ ൌ
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ێ
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ۍ

݉ଵଵ௜ ⋯ ݉௡ଵ௜
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݉ଵே೘௜
⋯ ݉௡ே೘௜

݀௖௔௟ଵଵ௜ ⋯ ݀௖௔௟௡ଵ௜
⋮ ⋱ ⋮

݀௖௔௟ଵே೚್ೞ௜
⋯ ݀௖௔௟௡ே೚್ೞ௜ے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

																																																																																																					ሺ57ሻ 

௢௕௦௜݀݊ܧ ൌ ቎

݀௢௕௦ଵଵ௜ ⋯ ݀௢௕௦௡ଵ௜
⋮ ⋱ ⋮

݀௢௕௦ଵே೚್ೞ௜
⋯ ݀௢௕௦௡ே೚್ೞ௜

቏																																																																																														ሺ58ሻ 

݀௢௕௦௝௜
ൌ ൦

݀௢௕௦௝ଵ௜
⋮

݀௢௕௦௝ே೚್ೞ௜

൪ ൌ ݀௢௕௦௜ ൅ ܰ൫0,  ሺ59ሻ																																																																																												஽௜൯ܥ

The following five equations are used to update the ensemble denoted by ܯ݊ܧ௜
௨. g is the 

flow simulation operator.  

௜ܯ݊ܧ
௨ ൌ ௜ܯ݊ܧ

௣ ൅ ௢௕௦௜݀݊ܧ௜൫ܭ െ Ĥ௜ܯ݊ܧ௜
௣൯																																																																										ሺ60ሻ  

௜ܯ݊ܧ
௣ ൌ ݃ሺܯ݊ܧ௜ିଵ

௨ሻ																																																																																																																			ሺ61ሻ 

Ĥ௜ ൌ ሾ݋	ܫሿሺே೚್ೞሻൈሺே೚್ೞାே೘ሻ																																																																																																												ሺ62ሻ 

݋ ൌ ൥
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

൩
ሺே೚್ೞሻൈሺே೘ሻ

		 , ܫ ൌ ൥
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

൩
ሺே೚್ೞሻൈሺே೚್ೞሻ

																																																		ሺ63ሻ 

௜ܭ ൌ ா௡ெ௜ܥ
௣Ĥ௜

௧൫Ĥ௜ܥா௡ெ௜
௣Ĥ௜

௧ ൅ ஽,௜൯ܥ
ିଵ
																																																																																							ሺ64ሻ 

In this equation, ܥா௡ெ௜
௣is estimated by analysing the ensemble of models (equation 65). 

ா௡ெ௜ܥ
௣ ൌ

1
݊ െ 1

൫ܯ݊ܧ௜
௣ െ పܯ݊ܧ

௣തതതതതതതതത൯൫ܯ݊ܧ௜
௣ െ పܯ݊ܧ

௣തതതതതതതതത൯
௧
																																																																						ሺ65ሻ 

More details about EnKF can be found in the following review papers (Aanonsen et al., 

2009, Oliver and Chen, 2010). The difficulties of Kalman filter method are discussed in the 

following chapter.  
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2.5.					Optimisation	

In the first step of history matching, uncertain variables (m) are defined. This step may 

include a reparameterisation method in which another set of parameters (r) is used as 

decision variables. In the second step, an objective function is formulated to distinguishing 

between models according to their qualities. The objective function is denoted by S(m). 

After these two steps, the best model which satisfies the predefined conditions should be 

located. This step is called calibration, and finding the best model (global minimum) is a 

trial-error (iterative) procedure. In either of objective function formulations (probabilistic 

or deterministic), it is required to execute a reservoir simulation and an inverse 

reparameterisation calculation in each function evaluation, and hence, the fitness function 

evaluations are time-consuming. In order to approximate the best model properly and also 

expedite the procedure, an optimisation rule is required in which the global minimum of 

S(m) (m∞) is sought (equation 66). In this step, the inverse problems turn into an 

optimisation problem.  

Optimisation methods provide a rule for updating the variable in all iteration. Without an 

optimisation rule, it is required to evaluate whole possible scenarios to find the global 

minimum of the objective function. Evaluating the whole possible scenarios even with a 

reasonably coarse discretisation (figure 2.10) of the variable space (M) is impractical, since 

there are a large number of variables. Thus far, many different optimisation algorithms 

have been developed to find the best model (the global optimum point). In this study, these 

methods are categorised into two groups: gradient-based and nongradient-based. In the 

gradient-based method, the first order and sometimes the second order (Hessian) 

information of S(m) may be used to update m in each iteration. The nongradient-based 

methods are stochastic optimisers.     

ܵሺ݉ஶሻ ൌ min
୫
൫ܵሺ݉ሻ൯																																																																																																																																		ሺ66ሻ 
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Figure  2.10 Discretisation of variable space (Wikipedia) 

2.5.1.					Gradient‐based	optimisation	algorithms	

Gradient-based algorithms have a long history in science and engineering. Hence in this 

study they are called classical methods as well. These methods are categorised into four 

classes: steepest descent methods, conjugate gradient methods, quasi-Newton, and variable 

metric methods (Tarantola, 1987).  

2.5.1.1.					Gradient	descent	method	

Gradient (steepest) descent is a first-order optimisation method in which the variables are 

updated proportional to the negative of the gradient in each step, as equation 67. If the 

function is not derivatable, the gradient (equation 68) should be estimated numerically.  

݉௡ାଵ ൌ ݉௡ െ  ሺ67ሻ																																																																																																																												ሺm୬ሻܵ׏௡ߤ

ሺm୬ሻܵ׏ ൌ
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ێ
ێ
ێ
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ۍ ൬

߲ܵ
߲݉ଵ

൰
୫౤

⋮

ቆ
߲ܵ

߲݉ே೘
ቇ
୫౤ے
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ۑ
ۑ
ۑ
ې

																																																																																																																													ሺ68ሻ 

 .௡ is the step size which should be carefully assigned in a manner S(mn+1)<S(mn)ߤ

Preconditioning can increase the speed of convergence for the problems with oscillations 

A 
NOTE:   

     This figure/table/image has been removed  
         to comply with copyright regulations.  
     It is included in the print copy of the thesis  
     held by the University of Adelaide Library. 
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by providing estimation for the step sizes. The starting points in these methods are usually 

assumed mprior.  

Tarantola suggested a preconditioned steepest descent for the probabilistic objective 

function formulation as follows (equation 69 to 74): 

݉௡ାଵ ൌ ݉௡ െ  ሺ69ሻ																																																																																																																																						௡ϕ୬ߤ

ϕ୬ ൌ S଴෢	ߛ௡																																																																																																																																																							ሺ70ሻ 

௡ߛ	 ൌ ஽ܥ௡௧ܩ௠ܥ
ିଵሺ݃ሺ݉௡ሻ െ ݀௢௕௦ሻ ൅ ൫݉௡ െ ݉௣௥௜௢௥൯																																																																														ሺ71ሻ 

S଴෢ ൌ ሺI ൅ ଴ܩ௠ܥ
௧ܥ஽

ିଵܩ଴
௧ሻିଵ																																																																																																																												ሺ72ሻ 

௡ߤ ൎ
௠ିଵϕ୬ܥ௡ߛ	

ϕ୬
୲ ௠ିଵϕ୬ܥ ൅ b୬

୲ ஽ܥ
ିଵb୬

																																																																																																																								ሺ73ሻ 

b୬ ൌ G୬ϕ୬																																																																																																																																																							ሺ74ሻ 

2.5.1.2.					Conjugate	gradient	descent	optimisation	algorithm	

The conjugate gradient descent methods are also first-order optimisation methods. In these 

algorithms, the direction of changes is a combination of gradient descents of current step 

and previous steps (Fletcher, 1987), thus it is expected to have a quicker convergence. The 

following figure (figure 2.11) shows the convergence behaviour of a conjugate gradient 

descent (red line) versus a gradient descent method (green line) for a quadratic problem. 

As it can be seen, in a lower number of iterations, the conjugate gradient found a similar 

point as the gradient descent method (Wikipedia). In this algorithm also, the step sizes 

should be assigned properly.  

A preconditioned conjugate for the probabilistic objective function formulation can be 

found in the following equations (equation 75 to 83) (Tarantola, 1987).   

݉௡ାଵ ൌ ݉௡ െ  ሺ75ሻ																																																																																																																																						௡ϕ୬ߤ

ϕ୬ ൌ ௡ߣ	 ൅  ሺ76ሻ																																																																																																																																						௡ϕ୬ିଵߙ	
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௡ߣ	 ൌ S଴෢	ߛ௡																																																																																																																																																							ሺ77ሻ 

௡ߛ	 ൌ ஽ܥ௡௧ܩ௠ܥ
ିଵሺ݃ሺ݉௡ሻ െ ݀௢௕௦ሻ ൅ ൫݉௡ െ ݉௣௥௜௢௥൯																																																																														ሺ78ሻ 

S଴෢ ൌ ሺI ൅ ଴ܩ௠ܥ
௧ܥ஽

ିଵܩ଴
௧ሻିଵ																																																																																																																												ሺ79ሻ 

௡ߤ ൎ
௠ିଵϕ୬ܥ௡ߛ	

ϕ୬
୲ ௠ିଵϕ୬ܥ ൅ b୬

୲ ஽ܥ
ିଵb୬

																																																																																																																							ሺ80ሻ 

b୬ ൌ G୬ϕ୬																																																																																																																																																							ሺ81ሻ 

௡ߙ ൌ
߱௡ െ ௡ିଵߛ	

௧ ௡ߣ	௠ିଵܥ
߱௡ିଵ

																																																																																																																														 ሺ82ሻ 

߱௡ ൌ  ሺ83ሻ																																																																																																																																														௡ߣ	௠ିଵܥ௡௧ߛ	

 
Figure  2.11 Conjugate gradient descent versus gradient descent method (Wikipedia) 

These preconditioned formulas (precondition steepest descent and preconditioned 

conjugate gradient) are achieved based on the Newton method. In Newton method, the step 

size is suggested to be as the inverse hessian matrix (equation 84). In high-dimensional 

problems, the inverse hessian matrix calculation is very computationally expensive. In the 

aforementioned methods, to speed up the process and also avoiding the hessian matrix 

computations, the step sizes are estimated by some other elements, such as S0 and 

sensitivity matrix. The S0 is assumed fixed and predefined.  

݉௡ାଵ ൌ ݉௡ െ ቀܪ൫ܵሺ݉௡ሻ൯ቁ
ିଵ
׏ ቀ൫ܵሺ݉௡ሻ൯ቁ																																																																																									ሺ84ሻ 
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NOTE:   
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The calculation of hessian matrix with a number of predefined terms may reduce the 

accuracy of approximation and also it reduces the speed of convergence. Thus, in the 

following methods the hessian matrixes are also estimated in each iteration, while some 

other terms are applied for the approximation and the S is not a predefined term.  

2.5.1.3.					Quasi‐Newton	

In this method the hessian matrix is approximated by equation 85. Thus, mn+1 will be 

updated as equation 86. This method is a specific form of the variable metric methods 

(Tarantola, 1987).  

௡ܪ ൎ ሺܫ ൅ ஽ܥ௡௧ܩ௠ܥ
ିଵܩ௡ሻ																																																																																																																															ሺ85ሻ 

݉௡ାଵ ൌ ݉௣௥௜௢௥ െ ஽ܥ௡௧ܩ௠ܥ௡ߤ
ିଵ ቀሺܫ ൅ ஽ܥ௡௧ܩ௠ܥ௡ܩ

ିଵሻቁ
ିଵ
…						 

…ቀሺ݃ሺ݉௡ሻ െ ݀௢௕௦ሻ െ ௡൫݉௡ܩ െ݉௣௥௜௢௥൯ቁ																																																																																												 ሺ86ሻ 

In which ߤ௡ ൎ 1. The Gauss-Newton method is a simular method to quasi-Newton method 

in which there is no prior information, i.e., ܥ௠ →  It should be .(Tarantola, 1987) ܫ∞

mentioned that Gauss-Newton can also be used while the objective function has a prior 

term (Oliver and Chen, 2010).  

2.5.1.4.					Variable	metric	methods	

In these methods, the S is not being fixed, and it is being updated in each iteration. In the 

beginning of the algorithms, Sn is as equation 87.  

ܵ௡ ൎ ሺܫ ൅ ஽ܥ௡௧ܩ௠ܥ
ିଵܩ௡ሻିଵ																																																																																																																										ሺ87ሻ 

The algorithm is as following equations (88 to 91):   

݉௡ାଵ ൌ ݉௡ െ  ሺ88ሻ																																																																																																																																						௡ϕ୬ߤ

ϕ୬ ൌ ܵ௡ߛ௡																																																																																																																																																								ሺ89ሻ 
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௡ߛ	 ൌ ஽ܥ௡௧ܩ௠ܥ
ିଵሺ݃ሺ݉௡ሻ െ ݀௢௕௦ሻ ൅ ൫݉௡ െ ݉௣௥௜௢௥൯																																																																													ሺ90ሻ 

ܵ௡ାଵ ൌ ܵ௡ ൅  ሺ91ሻ																																																																																																																																										௡ܵߜ

Thus far, many different methods have been introduced for updating Sn, such as “rank one 

formula”, “Davidon–Fletcher–Powell formula (DFP)”, and “Broyden, Fletcher, Goldfarb 

and Shanno (BFGS)”. The formula can be found in table 2.1. 

Table  2.1 Hessian matrix estimation using different methods in the variable metric algorithm 

Method ܵ݊൅1 

Rank one formula 
ܵ௡ ൅

௡௧ݑ௡ݑ ௠ିଵܥ

௡ݑ
௧ ௡ߛߜ௠ିଵܥ

																													 ሺ92ሻ

DFP 
ܵ௡ ൅

௡݉ߜ௡݉ߜ
௧ ௠ିଵܥ

௡݉ߜ
௧ ௡ߛߜ௠ିଵܥ

െ
௠ିଵܥ௡௧ݒ௡ݒ

௡ݒ
௧ܥ௠ିଵߛߜ௡

																													 ሺ93ሻ

BFGS 
ቆܫ െ

௠ିଵܥ௡௧ߛߜ௡݉ߜ

௡ߛߜ
௧ܥ௠ିଵ݉ߜ௡

ቇܵ௡ ቆܫ െ
௠ିଵܥ௡௧ߛߜ௡݉ߜ

௡ߛߜ
௧ܥ௠ିଵ݉ߜ௡

ቇ െ
௡݉ߜ௡݉ߜ

௧ ௠ିଵܥ

௡ߛߜ
௧ܥ௠ିଵ݉ߜ௡

					 ሺ94ሻ 

 

 :are as follows ݊ݑ ,݊ݒ ,௡ߛߜ ,௡݉ߜ

௡݉ߜ ൌ ݉௡ െ݉௡ିଵ																																																																																																																																					ሺ95ሻ 

௡ߛߜ ൌ ௡ߛ െ  ሺ96ሻ																																																																																																																																												௡ିଵߛ

݊ݒ ൌ  ሺ97ሻ																																																																																																																																																							݊ߛߜ݊ܵ

௡ݑ ൌ ௡݉ߜ െ  ሺ98ሻ																																																																																																																																														௡ݒ

Among these three methods, BFGS is being used more than the others, as it approximates 

the Sn with a reasonable accuracy (Tarantola, 1987).  

The Levenberg-Marquette algorithm is a method between gradient descent methods and 

the Gauss-Newton method. In the Gauss-Newton method, the hessian matrix is replaced by 

ሺܩ௡௧ܩ௡ሻିଵ, thus, modifications in m are as equation 99. The Levenberg-Marquette 

algorithm has a term which can provide an interpolation between Gauss-Newton and 

descent method, as equation 100. ζ is damping coefficient, and can speed up the process of 
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optimisation; a small value for it switches the algorithm to a Gauss-Newton and a large 

value switches the algorithm to a descent method.  

݉௡ାଵ ൌ ݉௡ ൅ ሺܩ௡௧ܩ௡ሻିଵܩ௡௧ሺ݃ሺ݉௡ሻ െ ݀௢௕௦ሻ																																																																																										ሺ99ሻ 

݉௡ାଵ ൌ ݉௡ ൅ ሺሺܩ௡௧ܩ௡ሻିଵ ൅ ζ	 ൈ ݀݅ܽ݃ሺܩ௡௧ܩ௡ሻሻܩ௡௧ሺ݃ሺ݉௡ሻ െ ݀௢௕௦ሻ																																															ሺ100ሻ 

When the number of variables is huge, the BFGS algorithm needs a huge amount of 

memory. The limited-memory BFGS is an alternative approach in which to approximate 

the inverse hessian matrix, instead of storing a large matrix, only a few vectors are kept to 

represent the matrix.  

2.5.2.					Non‐gradient	optimisation	algorithms	

Another group of optimisation algorithms is stochastic methods. In these methods, search 

spaces are being visited randomly to escape from local minima. A local minimum is a 

point (m°) in which the gradient of objective function is zero, or in other word, there is an 

ɛ>0 in which for m in |m-m°|<ɛ, S(m°)≤S(m). Figure 2.12 shows the difference of a local 

and a global optimum point. The point around 1 is a local minimum, while the global 

minimum is an m around 0.3.  

 
Figure  2.12 Local minimum versus global minimum 

The nongradient algorithms use a stochastic search, and usually they do not need gradient 

calculations (derivative-free). They are iterative methods, and in each iteration, it is sought 
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to improve the candidate solution. These algorithms are mostly black-box optimisers and 

they do not need information concerning the problems. It should be mentioned that 

however, they have a higher chance to approximate the global optimum, there is no 

guarantee for it. Thus far, different stochastic optimisation algorithms have been developed 

to perform optimisation efficiently in terms of computation and also the accuracy of global 

optimum approximation.  

In random search methods, first, a position (m) is selected randomly in the corresponding 

space, then, it is evaluated based on a fitness function (S(m)), after that, the main loop of 

the algorithm begins, and until the predefined stopping criteria are not met, it will be 

remained in the loop. In this loop, in each iteration, a new sample model is selected 

according to a specific stochastic rule and then, the new sample is evaluated. If the fitness 

value of the new model is lower than the current one (S(mn+1)<S(mn)), the new model will 

be usually stored, otherwise the current model will be kept. Once the loop is terminated, 

the achieved model will be selected as the optimum point. This procedure is the basis of 

many stochastic optimisers such as Simulated Annealing (SA) (van Laarhoven and Aarts, 

1987), Tabu Search (Glover, 1989, Glover, 1990), and Stochastic Gradient Descent 

(Gardner, 1984). In SA algorithms, in each iteration, a neighboured of mn is checked out, 

and probabilistically the algorithm decides between mn and mn+1. The pseudo-code is as 

follows, 

m=m0; 

Fit=S(m); 

i=1; 

While i<StoppingCriteria 

T=tempretureupdating(i) 

mnew=neighbour(m); 

Fitnew=S(mnew) 

if Probabilityrule(m, mnew, T)> rand 

   m=mnew; Fit=Fitnew; 

end 

end 
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In the Tabu search algorithm, jumps are added to the algorithm to search not only the 

neighbours of current position, but also search other locations of space, in order to escape 

from trapping in local minima. The Stochastic Gradient Descent algorithm is similar to 

steepest descent algorithms while the gradients are not calculated entirely and they are 

estimated based on analysing some samples.  

Improving a single solution is not a proper way of finding the global point in a 

nonquadratic search space even with a random search; sometimes worse solutions can 

redirect the algorithm to the global optimum point. Therefore, population-algorithms were 

established.  

In these algorithms, instead of modifying a single solution, a set of solutions known as 

population is being modified in each iteration known as generation. The population not 

only includes the best ever found solution, but also within has some other solutions which 

are used along with the best solution to construct the new populations. They can be 

categorised into two famous groups: Evolutionary Algorithms (EAs) and Swarm 

Intelligence algorithms (SI). In EAs, the next population is constructed by only the 

individuals of the current population, and the individuals of the constructed population do 

not have interactions with each other, while in SI algorithms, the individuals have 

interactions with each other, and some of the individuals of a population are constructed 

based on a number of individual from the same population. The most famous EAs are 

Evolution Strategy (ES) and Genetic Algorithm, and the most famous SI algorithms are 

Ant Colony, Artificial Bee Colony and Particle Swarm Optimisation (PSO).  

In the next sections, the two algorithms used in this study (Genetic Algorithm and 

Artificial Bee Colony) are explained (they are described in more details in the following 

chapters). 
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2.5.2.1.					Genetic	Algorithm	

There are two types of GA: binary and real-coded (Haupt and Haupt, 2004). The real-

coded GAs are more utilised, due to its quicker convergence ability. The GAs consist of a 

number of steps. The algorithm begins with a generation of a set (known as population) of 

candidate solutions (known as chromosomes) using an initialisation procedure. The 

population size and the chromosome size are defined. Then, using one of the two 

initialisation procedures, random and heuristic, an initial population is generated. In the 

random initialisation, the initial population is generated totally random via a uniform 

distribution, while in the heuristic initialisation, background information is used to 

generate the population. After the initialisation, all the chromosomes are evaluated based 

on a fitness function (objective function). After generating the initial chromosomes and 

evaluating them, the main loop of the algorithm starts. In each step (known as generation) 

of the main loop, a sub-set of the current population is selected using a selection operator. 

Usually, the selection procedure is conducted according to the fitness of chromosomes. 

Two operators called crossover and mutation are applied to the selected set of 

chromosomes and a new set of chromosomes is produced. The crossover and mutation 

operators are applied to the chromosomes with probability pc and pm, respectively. The 

new set generated by the selection, crossover and mutation is recombined with the current 

population to provide the new population. To keep the best ever found solution, the 

chromosome (known as elite) is migrated directly to the new population. The main loop is 

repeated until predefined stopping criteria are met.  

There are many types of selection, crossover, and mutation operators, and each of them are 

different based on the type of the search space and functionality (Gwiazda, 2007). These 

operators carry out important roles in GAs. In order to deliver an algorithm which finds the 

global optimum points of different kinds of search space in a reasonable computation cost, 

a balance should exist between exploration and exploitation ability of the algorithm. 
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Explorations provide a low resolution search and exploitations provide a high resolution 

task.  Another term which has a significant effect on the GA performance is the diversity 

of population. If the chromosomes of a population do not have enough diversity, it will be 

likely that the algorithm converges to a false optimum point or an arbitrary point. The 

balance and diversity should be provided by selecting appropriate operators. Thus far, 

many different operators have been designed. Gwiazda in his books (2007) gather different 

operators and describe the effectiveness and drawbacks of each approach. The most 

famous selection operators are 1- tournament, 2- roulette wheel, and 3- stochastic uniform. 

The most famous crossover operators are: 1- scattered, 2- heuristic, 3- interpolation, 4-

single point, and 5- two points. The most famous mutation operators are: 1- uniform, and 

2- Gaussian noise. Evolutionary Strategy algorithms are very similar to the GAs while they 

consist of only mutation and selection.  

2.5.2.2.					Artificial	Bee	Colony	

Using the inspiration of honeybee behaviour, an algorithm for optimisation was developed 

by Karaboga in 2005. The colony of ABC comprises employed bees, onlookers and scouts, 

just like real honeybees. In the first attempt, employed bees search for food randomly and 

then memorise the locations. In the next attempt, an employed bee looks for a food source 

based on her knowledge. This means employed bees always looked for better locations 

around the previous one. They also share their information about food source profitability 

and their locations with onlooker bees. Onlookers collect information from all of the 

employed bees and then make decisions based on the observations. If the nectar amount 

increases, the number of onlookers looking for it will increase (Karaboga, 2005). This 

means that location(s) with the highest profitability is exploited by more onlooker bees. 

Scouts search randomly and usually they look for a new home or food source. An 

employed bee will become a scout bee, whenever they cannot extract more food from its 
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corresponding area (i.e. they cannot find a better location with a higher nectar) after a 

number of attempts. 

2.5.2.3.					Multi‐objective	optimisation	

Another group of optimisation algorithm are multi-objective population-based algorithms. 

In multi-objective optimisation problems, there are a number of objective functions 

fሺxሻ ൌ ሾfଵሺxሻ, fଶሺxሻ, … , f୬ሺxሻሿ which are required to be optimised simultaneously. x is a k 

dimensional variable vector x = [x1, x2,...,xk]. Usually, it is impracticable to find a single 

point which optimises all objectives together (Coello, 2000, Konak et al., 2006). A multi-

objective problem can be switched to a single-objective problem, if proper weighing 

factors between the objectives can be determined. Usually, the point which minimises both 

objective functions together is out of the feasible region. In these problems, a set of 

solutions called noninferior or Pareto optimal solutions is introduced instead of a single 

point. Pareto front is located on the bottom border of feasible solutions (Haupt and Haupt, 

2004) and it consists of nondominated solutions. In Pareto front, all the solutions are 

equally acceptable, unless supplementary information is available. 

Pareto optimal is introduced by Vilferdo Pareto in nineteen century. Pareto optimal,	x∗ ൌ

ሾxଵ
∗, xଶ

∗ , … , x୩
∗ 	ሿ means that for every x, either  

ሥ ሺf୧ሺxሻ ൌ f୧ሺx∗ሻ
୧∈୍

ሻ																																																																																																																																		ሺ101ሻ 

Or at least there is one i which (Coello, 2000) 

f୧ሺxሻ ൐ f୧ሺx∗ሻ																																																																																																																																																	ሺ102ሻ 

Finding the whole optimal set is almost unachievable, since Pareto front usually consists of 

an infinite number of solutions (Coello et al., 2007). Thus, the target, in the multi-objective 

optimisation problems, is finding a set of solutions which is satisfactorily close to the  
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Pareto optimal set (Konak et al., 2006). After locating the set of solutions, it is possible to 

take out a number of solutions from the set based on post-optimisation trade-offs and keep 

the best solutions (Haupt and Haupt, 2004). In order to find the Pareto optimal solutions, a 

multi-objective optimisation is required. Population-based algorithms have a considerable 

robust benefit in comparison with the traditional multi-objective optimisation techniques 

(Coello et al., 2007). The main advantage of population-based algorithms, when they are 

applied to solve multi-objective optimisation problems, is the fact that they typically 

optimise a set of solutions. Thus, they allow the approximation of the entire Pareto front in 

a single algorithm run.  

2.5.2.4.					Comparison	of	the	optimisation	algorithms		

Three optimisation methods are compared in here for a number of benchmarking functions 

shown in table 2.2. The benchmarking functions are a combination of simple, unimodal 

and convex functions to complex and multi-modal functions. This combination of 

benchmarking functions is selected to investigate the performance of a same algorithm on 

different shape of landscapes. An algorithm is successful (according to history matching 

requirement) which is not affected by the shape of landscape of function and also is 

computationally efficient. The 2-dimensional benchmarking functions are shown in the 

following figures. The selected optimisation algorithms are as follows: 1- BFGS as a 

gradient-based optimiser, 2- SA as a random search, and 3- GA as a population-based 

algorithm. Each of these algorithms is carried out by MATLAB (MathWork, 2011b).  

The maximum of the function evaluations is set to 40,000. For the BFGS, it is required to 

identify an initial point; for all of them a point equal to [1 ... 1]1×10 is used. For the GA, the 

default penalty term was set to zero to deliver a fair comparison and also the crossover and 

mutation operator used are heuristic (ratio 1.2) and uniform (rate 0.11).   
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Table  2.2 Mathematical benchmarking functions 

Function Mathematical formula (f(x)) Bounds Global optimum No. D 

Sphere 
݂ሺݔሻ ൌ෍ݔ௜

ଶ

௡

௜ୀଵ

 
-5.12 ≤ xi ≤ 5.12 ݂ሺݔሻ ൌ 0 

௜ݔ	ݎ݋݂ ൌ 0, ݅ ൌ 1…݊ 

n=10 

Rastrigin 
݂ሺݔሻ ൌ 10݊ ൅෍ሺݔ௜

ଶ െ 10cos	ሺ2ݔߨ௜ሻሻ

௡

௜ୀଵ

 
-5.12 ≤ xi ≤ 5.12 ݂ሺݔሻ ൌ 0 

௜ݔ	ݎ݋݂ ൌ 0, ݅ ൌ 1…݊ 

n=10 

Schwefel 
݂ሺݔሻ ൌ෍ሺെݔ௜sin	ሺඥ|ݔ௜|ሻ

௡

௜ୀଵ

 
-500 ≤ xi ≤ 500 ݂ሺݔሻ ൌ െ418.9829݊ 

ݎ݋݂ ௜ݔ ൌ 420.9687, ݅ ൌ 1…݊ 

n=10 

Griewank 
݂ሺݔሻ ൌ

1
4000

෍ݔ௜
ଶ െෑcos	ሺݔ௜/

௡

௜ୀଵ

௡

௜ୀଵ

√݅	ሻ ൅ 1  
-600 ≤ xi ≤ 600 ݂ሺݔሻ ൌ 0 

௜ݔ	ݎ݋݂ ൌ 0, ݅ ൌ 1…݊ 

n=10 

Ackley 

݂ሺݔሻ ൌ െ20 exp൮െ0.2ඩ
1
݊
	෍ݔ௜

ଶ

௡

௜ୀଵ

൲ െ exp	ሺ
1
݊
෍cos ሺ2ݔߨ௜

௡

௜ୀଵ

ሻሻ ൅ 20 ൅ e 

-32.76 ≤ xi ≤ 32.76 ݂ሺݔሻ ൌ 0 

௜ݔ	ݎ݋݂ ൌ 0, ݅ ൌ 1…݊ 

n=10 

 

 
Figure  2.13 2D Schwefel function 

 
Figure  2.14 2D Rastrigin function 
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In order to assess the outcomes of the algorithms, two criteria are used: fitness value at 

achieved optimum point and distance from the real global optimum. Each method which 

can find a lower value for these two elements is called a better algorithm in comparison 

with the other two algorithms. The other element which should be taken into consideration 

for the assessment is the number of function evaluations. All these elements are shown in 

table 2.3.  

 
Figure  2.15 2D Griewank function 

 
Figure  2.16 2D Sphere function 



55 

By comparing the results, a significant difference between the outcomes of the applied 

algorithms are observed. The first observation is that the SA could not deliver good results 

even for the convex function (Sphere) with 40,000 function evaluations. The second 

observation is that the BFGS almost found the global optimum point for Sphere, Griewank 

and Rastrigin, but it trapped into a local minimum for Ackley and Schwefel function. The 

third observation is that the GA approximated the global optimum point properly for all 

these five functions. The only matter of the GA is its computational time. For Sphere, 

Griewank and Rastrigin, the GA could find the global optimum points with 40,020 

evaluations, while the BFGS approximate them with 44, 352, and 154 evaluations. The 

results show a significant difference for the computational time.  

 
Figure  2.17 2D Ackley function 

Table  2.3 Comparison of three optimisation algorithm for the benchmarking functions 

Algorithm BFGS SA GA 

 Fitness Distance No 

Evaluations 

Fitness Distance No 

Evaluations 

Fitness Distance No 

Evaluations 

Sphere 0 0 44 0.31 0.31 40001 0.007 0.007 40020 

Griewank 1.9e-11 1.9e-11 352 10 10 40001 4e-11 4e-11 40020 

Rastrigin 0 0 154 10 10 40001 4e-14 4e-14 40020 

Ackley 9.37 9.37 143 10 10 40001 1e-13 1e-13 40020 

Schwefel -39 1.7e6 88 -1024 2e6 40001 -4187 18 40020 
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In order to investigate whether the BFGS is capable of approximating the global optimum 

points of Ackley function with different initial points or not, several random points are 

selected, and the optimisation is carried out using them. The total evaluations should not be 

more than 40,000. The best optimum point which is achieved using BFGS has a fitness 

value equal to 18 which is far from the actual point. The GA, as a sample of population-

based optimisers, showed that the shape of landscape does not have an impact on its 

performance and it is capable of approximating the function; the only concern is the 

computational costs.  

Another drawback of population-based algorithms is that their performance in high-

dimensional search space. For the 1000-Dimensional Sphere function, the best point found 

by the GA, in 50,000 function calls, has a fitness value equal to 320, while the BFGS 

algorithm found the global (fitness equal to zero) in 4000 evaluation calls.  

The advantageous of disadvantageous along with the applications of optimisation 

algorithms in history matching are reviewed in the following chapter.  

2.5.3.					Fitness	approximation	

Fitness approximation, known as response surface model, meta-model, surrogate-model 

and proxy-modelling, is a method for overcoming the computational cost concern of time-

consuming functions in optimisation problems (Jin, 2005, Cullick et al., 2006). In fitness 

approximation methods, the original function (OF) which is computationally expensive to 

be evaluated is substituted by an approximation function (AF) called proxy. This 

substitution expedites the process of optimisation. It is a challenging task, since a multi 

dimensional fitness landscape should be carefully modelled by the applied AF.  

These approaches consist of the following main steps: 1- a set of samples are selected from 

the search domain (M) using an experimental design method, and the set of samples are 
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evaluated by the OF (S(m)), 2- then, a proxy model is selected and trained by the set of 

samples with their corresponding fitness values, and then it is validated by another set of 

samples, 3- afterward, the global optimum of the proxy model (AF) (the new space) is 

looked for by an optimisation algorithm, 4- the achieved solution, after meeting the 

stopping criterion, is used as the optimum point (history matched model). In this approach, 

the OF is utilised only in the initial stage for evaluating the samples, and it is not being 

used during the procedure of optimisation.  

The proxy model can be different mathematical equations, such as the artificial neural 

network (ANN), kriging, polynomial and support vector machine. Kriging is similar to the 

geostatistical Kriging (see the reparameterisation section), the difference is that the space 

which is interpolated in this technique is usually more than two dimensional, unlike the 

pilot point reparameterisation in which the corresponding space is two dimensional. The 

artificial neural network (ANN) relates the input signals to output signals using a series of 

transfer functions (mathematical formulas). This method is inspired from the biological 

neural networks. In the problems in which the modelling the phenomena is difficult or 

impossible, the ANN will be a superior options. The ANN, by analysing the input and 

output, provides a network which can be used for the estimation. In the analyses procedure, 

the number of hidden layers (the form of network) and the number of neurones in each 

layer are fixed and a set of observations is used to train a neural network (estimate the 

unknown weighting factors) by backpropagation (figure 2.18). One of the most famous 

neural network is the feed-forward in which the output does not have interactions (cycle) 

with the input signals. 
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Figure  2.18 A multilayered network with a hidden layer with a number of neurones and a number of inputs and 

one output (Saemi et al., 2007) 

A multilayer network with one layer input layer, and three hidden layers which has a one 

output neuron (S) has an equation as follows: 

ܵሺ݉ሻ ൌ ෍ݒ௣݂ ቌ෍ݓ௤௣ଷ݂ ቌ෍ݓ௥௤ଶ݂ ቌ෍ݓ௜௥ଵ݉௜	

ே೘

௜ୀଵ

ቍ

ோ

௥ୀଵ

ቍ

ொ

௤ୀଵ

ቍ																																																										ሺ103ሻ

௉

௣ୀଵ

 

In which f (activation function) usually is  

݂ሺݔሻ ൌ
1

1 ൅ ݁ି௔௫
																																																																																																																																									ሺ104ሻ 

P, Q and R are the number of hidden nodes (neurones). The advantages and disadvantages 

of proxy-modelling techniques in history matching are discussed in the next chapter. 
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Chapter	3	

 

 

 

3. Literature	review		

Central to this chapter is the background works in history matching. This episode presents 

the recent progress in different steps of history matching.  

3.1.					History	matching	

History matching is attached to reservoir modelling and simulation from almost five 

decades ago; the following studies are a number of first papers regarding this subject, 

(Jacquard, 1965, Thomas et al., 1972, Sheldon et al., 1960). Thomas et al. in 1972 

developed one of the first generations of automatic history matching framework in which 

the Gauss-Newton and least squares are implemented as the optimisation and objective 

function formulation method. In their problems, there were only few gridblocks and the 

reservoirs were single-phase. Figure 3.1 shows the number of SPE conference and journal 

papers about history matching (the figure is taken from Oliver and Chen (2010)). The 

number of published papers regarding history matching is an evidence for its complexity 

and importance. By advances in computers, especially hardware and also reservoir 

simulation, the research efforts on this subject have been escalated.  

In the following sections, the progress in each section is described individually.  
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Figure  3.1 Published SPE paper concerning history matching subject (Oliver and Chen 2010) 

3.2.					Parameterisation	and	reparameterisation	

The uncertain parameters are normally dissimilar for each case study, for instance, in the 

case study of Romero and Carter 2001, the variables are porosity, shale fraction, well skins 

and fault trasmissibilities, in the case study of Li et al., 2009, the variables are the relative 

permeability curves, in the case studies of Sarma et al., 2007, the variables are the 

permeabilities. The differences between the parameterisation cause to generate dissimilar 

problems. When the spatial properties are uncertain, a reparameterisation method is 

applied (Oliver and Chen, 2010).  

The reparameterisation technique should be able to map a much smaller space (R) to the 

variables space (M) space with the enough accuracy. Thus far, several techniques are 

introduced, such as zonation (Gavalas et al., 1976, Jacquard, 1965, Shah et al., 1978, 

Grimstad et al., 2003), pilot points (Gavalas et al., 1976, De Marsily et al., 1984, Bissell et 

al., 1997, Romero and Carter, 2001, Doherty, 2003), spectral decomposition of prior 

covariance matrix (Reynolds et al., 1996, Sarma et al., 2006, Zhang et al., 2007), bicubic 

spline (Leo et al., 1986) wavelet transform (Lu and Horne, 2000, Sahni and Horne, 2005, 

Grimstad et al., 2001), and discrete cosine transform (Jafarpour and Mclaughlin, 2007, 

Jafarpour and McLaughlin, 2009), also a number of reparameterisation methods which use 
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the eigenvalues and eigenvectors of data sensitivity (Oliver and Chen, 2010); they are 

applied by Shah et al., 1978 and Rodrigues, 2006.  

The zonation technique is the oldest reparameterisation method. In this method, the 

reservoir is divided into a number of coarse zones. It was applied by Jacquard in 1965, for 

the first time, and it has been used by other reservoir engineers several times (CHAVENT 

et al., 1975, Gavalas et al., 1976, Shah et al., 1978, Grimstad et al., 2001). However the 

reduction in the number of variables using this method increases the speed of history 

matching procedure dramatically, usually the final misfit is very large (Oliver and Chen, 

2010). In addition, it is very important to find the optimum number of zones, before 

starting history matching; otherwise a high reparameterisation error will be imposed. The 

number can vary from 1 to Nm. Whole reservoir model can be represented by a single zone, 

if it is totally homogenous. In a very heterogeneous media, coarse zones cause a high 

reparameterisation error. To find the optimum number of zones, prior information about 

heterogeneity of the reservoir is needed which is not usually available. Excluding the 

mentioned disadvantages, this approach also suffers from several other drawbacks which 

are summarised in table 3.1 along with its advantages (Oliver and Chen, 2010).  

Table  3.1 Advantages and disadvantages of zonation reparameterisation 

Advantages  Disadvantages 

Quick reduction in misfit in history matching processes Difficulty in finding the optimal number of zones  

Simple mathematics  In heterogeneous media, it is not efficient.  

Carrying the main features of model Low-resolution models  

Fitting properly in a Bayesian framework It causes discontinuities.  

 
Pilot point reparameterisation was introduced by de Marsily et al. in 1984 for groundwater 

problems, and it was used for the first time in hydrocarbon problems in 1990’s (Ouenes et 

al., 1993, Bissell et al., 1997). In this method, a number of gridblocks only are being tuned 

by history matching and the rest of the gridblocks are estimated by geostatistical 

interpolations. The pilot point method can deliver high-resolution models and also 

geostatistical correlations can be kept by this technique. The main difficulty of this 
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approach is in finding the proper location and number of pilot points. The locations of pilot 

points are usually fixed before carrying out any history matching. de Marsily disturbed 

them uniformly, Bissell et al. (1997) and LaVenue and Pickens (1992) suggested 

sensitivity analysis to find the best locations for pilot points, and Wen et al. 1998  located 

them randomly in which locations were changed in each iteration. To overcome the issue 

of finding the most appropriate locations for pilot point, in some studies, locations are 

considered as variables, and hence in these studies it was sought to find the best history 

matched models by changing both the value and location of pilot points (Wen et al., 2006, 

Romero et al., 2000, Romero and Carter, 2001, Ballester and Carter, 2007). The other 

issues of the pilot point reparameterisation are as follows: i. instability may occur in the 

solutions, and ii. extreme values might be seen in the results. These issues can be prevailed 

over by adding a regularisation term to the objective function (Oliver and Chen, 2010, 

McLaughlin and Townley, 1996).  

In the pilot point technique, the variogram is the basis for estimation of the property across 

the model (Hohn, 1999, Olea, 1999). Therefore, a variogram model is required that 

accordingly needs a prior data (an inappropriate variogram may lead to incorrect history 

matching model) which is not always available, but one of the advantages of this approach 

is that the variogram parameters, including range, nugget and contribution, can be assumed 

unknown and considered as variables (Romero and Carter, 2001). By this consideration, 

having prior data for reparameterisation using this method becomes less important. It 

should be mentioned that the issue of finding the optimal number of variables still exists. It 

was suggested to increase the number of pilot points, when the misfit value could not be 

reduced by the current number of pilot points (LaVenue and Pickens, 1992) which is very 

time-consuming.  

The pilot point technique, up to now, has not been used along with a Bayesian objective 

function formulation with an included prior term, since it is not feasible to provide prior 
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information regarding the best location and value of the pilot points (different combination 

of location and value may result in similar results). Table 3.2 summarises the main 

advantage and disadvantages of the pilot point reparameterisation method. 

Table  3.2 Advantages and disadvantages of pilot point reparameterisation 

Advantages  Disadvantages 

High-resolution models Difficulty in finding the optimal number of pilot points 

It works properly in heterogeneous media Computationally expensive  

Carrying the main features of model Not fitting properly in a Bayesian framework 

Having prior data is not a must -  

Keeps the geostatistical correlations - 

 
The spectral decomposition of prior covariance matrix is another method for the 

reparameterisation, it was introduced by Reynolds et al., 1996. In this method, models are 

reparameterised based on eigenvalues and eigenvectors of prior covariance matrix. The 

main drawback of this method is that it is sensitive to the prior information, and if an 

accurate prior covariance matrix is not available, it may mislead the optimisation to a 

wrong optimum point and accordingly result into an incorrect history matched model. This 

method also is computationally expensive, when the dimension of m is large. Table 3.3 

summarises the main advantages and disadvantages of this method.  

Table  3.3 Advantages and disadvantages of spectral decomposition reparameterisation 

Advantages  Disadvantages 

High-resolution models Difficulty in finding the optimal number of variables of p 

It works properly in heterogeneous media Computationally expensive  

Carrying the main features of model Needs high-quality prior information  

Fitting properly in a Bayesian framework - 

 

The spline-based reparameterisation method was applied in history matching by Lee and 

Seinfeld (1987) and Makhlouf et al. (1993b). In this method, the properties which are a 

function of location are represented by a bicubic spline approximation.  It is a kind of 

interpolation for 2D properties. It is similar to the pilot point technique in which unlike 

geostatistical correlations, a spline interpolation is used to estimate the properties between 
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the gridblocks. In this method, the number of coefficients should be determined before 

carrying out a reparameterisation. The fundamentals of spline can be found in (De Boor, 

1978). This technique usually smooths out the distribution (Oliver and Chen, 2010) and 

also suffers from similar drawbacks to the pilot point approach (determining the proper 

number of gridblocks and their locations).  

Another reparameterisation technique is discrete cosine transform introduced by Jafarpour 

and McLaughlin in (2007) for history matching problems and was used in several other 

studies (Jafarpour and McLaughlin, 2009, Li and Jafarpour, 2010, Jafarpour et al., 2010). 

A discrete cosine transform (DCT) shows a sequence of data in a summation 

of cosine functions. It is similar to Fourier transform while only it has cosine terms. It is 

widely applied in different fields, such as audio and image compression (MP3 and JPEG 

are the most famous example for this compression method). In the compression, the image 

(data) is transformed to this domain, and the corresponding coefficients are calculated and 

ranked. Then, the small high-frequency components are truncated, and the rest of 

coefficients are used for representing the model. Usually, the reparameterised models have 

acceptable accuracy. But, this method is used to represent a same image or signal, and the 

coefficients may not be able to represent another model accurately. Thus, this method also 

needs high-quality prior information or a sensitivity analysis on all the coefficients.  

The wavelet transform as a reparameterisation method was proposed by Lu and Horne 

(2000). In this method, the parameters are transferred to a wavelet domain, and the 

coefficients are computed. Then, based on a sensitivity analysis or prior information, a 

number of coefficients are selected to reparameterise the model. This method also is used 

in several studies (Grimstad et al., 2003, Sahni and Horne, 2005, Sahni and Horne, 2006a, 

Sahni and Horne, 2006b). This approach also needs a high-quality initial model to be used.  
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There are some further reparameterisation methods in which models are reparameterised 

based on the eigenvalues and eigenvectors of data sensitivity (Oliver and Chen, 2010). 

They are applied by Shah et al., 1978 and Rodrigues, 2006. In these methods, singular 

values or eigenvectors of sensitivity matrix are used. These methods need sensitivity 

matrix calculations. Also, this reparameterisation may lead the optimisation to a local 

optimum, as a number of high-sensitive variables chosen based on sensitivity matrix at the 

initial stage are only adjusted.  

Most of the reparameterisation methods were concisely explained in the previous sections. 

As it was seen, in the majority of the techniques, prior information or data sensitivity 

matrix is required. If prior information does not have a good quality, there will be an 

inaccuracy in the reparameterisation, and consequently there will not be any guarantee that 

the selected parameters are able to characterise the models properly. Thus, it is fair to 

expect reparameterisation errors in these techniques. Each of this method can be an 

appropriate technique in a particular problem, and according to the problem, the 

reparameterisation method should be selected, for instance, if there is a channel in the 

geomodel, the zonation cannot be an appropriate method; or, if there is a visible 

geostatistical correlation in the reservoir, a pilot point technique can be a superior choice.   

Another approach which can be taken to solve this inverse problem is to allow whole 

parameters of m directly be changed. This approach is known as full-parameterisation. In 

this approach, there are no reparameterisation errors. In this direct approach, a 

regularisation term is usually added to the objective function to overcome the ill-

posedness. Hunt et al. (2007) compared the results of direct calibration and indirect 

calibration for groundwater problems. They stated that a direct approach in which the 

objective function has a regularisation term can deliver more reliable results in comparison 

with the indirect methods with a reparameterisation method. It should be pointed out that 

the comparison of the reparameterisation methods does not fall into the scope of this study 
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and also it is not our aim. In this study, both reparameterisation and full-parameterisation 

are used according to the requirements.   

3.3.					Objective	function	formulation		

The most common deterministic formulation is least squares of data misfits used in the 

following studies (Schulze-Riegert et al., 2003, Rotondi et al., 2006, Maschio et al., 2008, 

Maschio et al., 2005, Hajizadeh et al., 2011a). The least squares formulation without a 

regularisation term can be used when the number of variables is small. In the 

aforementioned studies, the number of variables was less than 40. If the number of 

variables is large (more than independent observations), a regularisation term should be 

added, otherwise the problem will be ill-posed (Oliver and Chen, 2010). Thus, a 

regularisation term may be added to the formulation (Tikhonov and Arsenin, 1977).  

The λ (regularisation factor) should be carefully assigned otherwise, a wrong domination 

of one of the objectives over the other one may occur, for example, in a problems with 

very noisy observations, a large penalty factor for prior function causes insufficient 

observation fitting and in contrast, small value cause highly oscillatory solutions as a result 

of noise amplification (Tautenhahn and Qi-nian, 2003). The deterministic formulation with 

a penalty term is widely used in ground water problems (Doherty, 2003, Fienen et al., 

2009), and also it is applied in a number of studies in history matching problems 

(Makhlouf et al., 1993a, Leo et al., 1986). The main challenge of this formulation is the 

determination of the proper regularisation factor, which is a time-consuming procedure. 

Having a single solution from an ill-posed problem in which observations contain noise, 

and also there are modelling and optimisation errors is accompanied by risks, hence, the 

history matching procedure is usually culminated by performing uncertainty quantification. 

It will be more reliable, if a set of solutions with their corresponding probabilities can be 

presented for this kind of problems. By the set of solutions, an uncertainty analysis can be 
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carried out. In the probabilistic approach, it is sought to find the posterior probability 

distribution function (p(m|dobs)). Due to the importance of uncertainty analysis, the 

probabilistic approach has found more interests in history matching problems. The 

Bayesian framework for the first time was utilised by (Gavalas et al., 1976, Shah et al., 

1978), then it is extensively used by others (Oliver, 1994, Craig et al., 1996, Hegstad and 

Omre, 1997, Barker et al., 2000, Zhang et al., 2005b, Liu et al., 2001, Li et al., 2001, 

Tavassoli et al., 2004, Gao et al., 2007, Oliver et al., 2008).  

Finding the most probable model in this approach is similar to the deterministic approach. 

An optimisation rule is used to find the best model. An advantage of the Bayesian 

framework over the deterministic approach is that weighting factors (covariance matrixes) 

of individual elements of observed and prior data, and accordingly the regularisation factor 

are estimated using an assessment of measurement, modelling and prior model reliabilities. 

Consequently, in the Bayesian framework, the determination of a regularisation factor by 

numerical calculations is unnecessary. In this approach, the challenges are in the selection 

of the set of solutions, if the problem was linear, the posterior probability function would 

be Gaussian and the covariance matrix would be easily estimated. But, in history matching 

problems, the posterior probability function will not be Gaussian (Oliver and Chen, 2010). 

The deviation from Gaussian is related to the degree of nonlinearity, i.e., a higher 

nonlinearity causes more deviation from being Gaussian (Tarantola, 2005). In order to 

select a set of models, two of the methods are as following: 1- With the assumption of the 

posterior probability is close to a Gaussian distribution, the posterior covariance is 

approximated by equation 1  (Tarantola, 1987). 2- Randomised maximum likelihood 

(RML) which is an improved Markov chain Monte Carlo algorithm for sampling, in this 

approach, different samples from the initial distribution and observed data probability are 

selected as prior model and dobs, then the optimisation is carried out for each arrangement, 

and according to a Metropolis-Hasting test, the results of calibrations are accepted or 
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rejected (Oliver et al., 1996). Thus, by the probabilistic approach, it is possible to estimate 

a set of solutions and also it does not need numerical calculation of the regularisation 

factor. In this study, the Bayesian framework is utilised to define the objective functions, 

due to its benefits in comparison with the deterministic formulation.  
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The covariance matrixes should be carefully assigned in this formulation; otherwise they 

may misdirect the optimisation algorithm to a false optimum point. It should be mentioned 

that modelling errors are difficult to be computed, thus usually it is assumed zero and 

CD=Cd (Carter, 2004). It is a demanding task to accurately determine and quantify the 

covariance matrixes’ elements. The effect of covariance matrixes’ uncertainties on the 

reliability of achieved history matched models has not been studies before.  

3.3.1.					The	shape	of	landscape		

In order to choose a suitable optimisation algorithm for a problem, the shape of the 

objective function can provide valuable information. For example, if the shape of objective 

function is multimodal, gradient-based algorithms may be trapped in a local minimum and 

a stochastic optimiser should be utilised (Haupt and Haupt, 2004). Due to the high-

dimensionality of the problem and also dissimilarities in case studies, the shape of 

landscape cannot be estimated accurately (Oliver and Chen, 2010). One of the beliefs 

about the shape of landscapes is that although measurement noise is assumed Gaussian and 

the regularisation terms are quadratic, the corresponding landscape of S(m)s are not 

quadratic (Oliver and Chen, 2010). Zhang et al. in 2003 and Tavassoli et al. in 2005 

showed that their problems have multiple minima. Being non-quadratic is mostly on the 

account of the nonlinearity of g which may be enhanced by including a reparameterisation 

and switching a g operator to h. The effect of reparameterisation operators on the shape of 

S(m) has not been studied.  
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3.3.2.					Data	assimilation		

Kalman filter is a sequential update method (Welch and Bishop, 1995, Harvey, 1991). Kalman 

filter is utilised widely in robotic problems, navigation and time series, and the Kalman filter 

or the Ensemble Kalman filter (EnKM) were applied in groundwater and hydrocarbon 

reservoir parameters identification from last decades (Geir et al., 2003, Reichle et al., 2002, 

Lodoen and Omre, 2008, Gu and Oliver, 2005, Liu and Oliver, 2005, Skjervheim et al., 2005, 

Lorentzen et al., 2005, Lorentzen et al., 2009, Evensen et al., 2007, NÃ¦vdal et al., 2003, Liang 

et al., 2009, Jung and Choe, 2010, Emerick and Reynolds, 2012). However, this method is 

being used extensively and has several advantages, it suffers from some drawbacks: a- 

underestimation, b- overshooting, c- not coping with discrete variables, d- the linearization 

assumption may not work in all problems, and e- being appropriate only for Gaussian 

distributions (Oliver and Chen, 2010).  

3.4.					Optimisation		

In the calibration step, the history matching problem will become an optimisation problem. 

With the progress in the optimisation science, new algorithms are developed. From 1970 

up to present, along with this progress, the applications of the new algorithms are being 

seen in history matching.  

Steepest descent algorithms are the first methods applied in history matching (Chen et al., 

1974 and Coats et al., 1970). In these methods, only first-order information of the previous 

step is utilised to direct the optimisation, thus they have a low speed of convergence which 

restricts their applications. The conjugate gradient descent algorithms are also first-order 

optimisation methods, but in these algorithms, the direction of changes is a combination of 

gradient descent of current step and previous steps, hence it has a quicker convergence in 

comparison with the steepest descent (Oliver and Chen, 2010). Gavalas et al., in 1976 and 
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Lee and Seinfeld in 1987 used a conjugate gradient method as an optimiser in history 

matching problems. However, several preconditioning formula have been developed to 

optimise the step size in the first-order algorithms, they are not very efficient.  

As mentioned in chapter two, the step size is better to be the inverse of hessian matrix 

based on the Newton equation. With development in computer industry, the second-order 

algorithms (hessian calculation) found a place in history matching problems. But still, the 

hessian matrix computation is very time-consuming, because of high-dimensionality of the 

problems. Therefore, various methods have been applied in history matching to 

approximate the hessian matrix by some other terms.  

Gauss-Newton was used in history matching in several studies (Li et al., 2003, Tan and 

Kalogerakis, 1992, He et al., 1997). In this method, the hessian is approximated by the 

sensitivity matrix. The Gauss-Newton is computationally expensive (Oliver and Chen, 

2010). The Levenberg-Marquette algorithm is a method between gradient descent methods 

and the Gauss-Newton method, and it has a damping coefficient which can speed up the 

process of optimisation; a small value for this coefficient switches the algorithm to Gauss-

Newton and a large value switches the algorithm to a descent method. This algorithm is 

applied in several studies (Zhang et al., 2003a, Vefring et al., 2006).  

Another group of hessian approximation methods are variables metric algorithms, such as 

quasi-Newton, BFGS and DFP. In these methods, an initial guess is used as the hessian 

matrix, and in each iteration, it is tried to be improved. In the following studies, variable 

metric methods are implemented in history matching (Yang and Watson, 1988, Liu and 

Oliver, 2004, Dong and Oliver, 2008). When the number of variables is large, the 

aforementioned algorithms need a huge amount of memory. The limited-memory BFGS is 

an alternative approach in which to approximate the inverse hessian matrix, instead of 

storing a large matrix, only a few vectors are kept to represent the matrix. This method is 

applied in full-parameterisation problems which have a large number of variables (Zhang 
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et al., 2003b, Eydinov et al., 2009). The gradient-based algorithms, conjugate gradient, 

Gauss-Newton, Levenberg-Marquette, BFGS and limited memory BFGS, are compared 

with each other in several case studies (Zhang et al., 2002). The results indicate that limited 

memory BFGS outperform in comparison with the other algorithms.  

In all the gradient-based algorithms, a number of sensitivity matrix (G) calculations are 

required. They cannot be calculated analytically, and usually they are approximated 

numerically. The most common and straightforward technique is the finite difference 

method. Adjoint methods are another means for G calculation. Chavent et al., 1975 and 

Chen et al., 1974 introduced the adjoint method for the first time. In their studies, they 

calculated the gradient of the objective function for each variable. After that, the adjoint 

was used to calculate G matrix instead of the calculation of gradient of S(m) (Li et al., 

2003). The main difficulty of the adjoint methods is that it is challenging to incorporate 

them to various simulators and decision variables (Oliver and Chen, 2010). There are also 

some other methods for the approximation of sensitivity matrixes, such as simultaneous 

perturbation stochastic approximation (SPSA) (Spall, 1992), and making use of streamline 

simulators (Kulkarni and Datta-Gupta, 2000). In the SPSA method, the gradient is 

approximated based on only two evaluations, it has uncertainty (Oliver and Chen, 2010). 

The use of streamline simulation for sensitivity matrix calculations needs a further 

computation (streamline simulation).  

Zhang et al. (2003) showed that the classical methods do not necessity converge to a local 

minimum and Levenberg-Marquette can escape from local minima which are located in 

narrow valleys. But, the gradient-based algorithms cannot always escape from the local 

minima, and they may get stuck in a local minimum, as they direct the optimisation only 

downward (Ouenes et al., 1993). Thus, another group of optimisers, stochastic algorithms, 

came into use from 90s. In these methods, search spaces are visited randomly to escape 

from the local minima. This procedure is the basis for many stochastic optimisers such as 
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Simulated Annealing (SA) (van Laarhoven and Aarts, 1987), Tabu Search (Glover, 1989, 

Glover, 1990), and Stochastic Gradient Descent (Gardner, 1984). The SA is used for 

history matching problems by Ouenes et al., 1993, Ouenes and Bhagavan, 1994 and 

Portelland and Prais, 1999. Mantica et al., 2002 developed a hybrid method in which SA is 

used as a chaotic optimiser to select a set of samples as initial points for gradient-based 

optimiser. The Tabu search was applied by Yang et al. in 2007. Neighbourhood Algorithm 

is another history matching algorithm which was applied by Christie et al. (2006). The 

mentioned algorithms cannot be categorised into global optimisers, since they have the 

chance of getting stuck in a local minimum. More recently, population-based algorithms 

came into history matching.  

One of the first population-based algorithms used in history matching problems several 

times is genetic algorithm (Romero and Carter, 2001, Ballester and Carter, 2007, Maschio 

et al., 2008). Romero and Carter (2001) compared the results of GA with SA, and they 

showed that their designed GA in which the chromosomes are multi-dimensional can 

perform better than SA. In another study, GA was compared with gradient-based 

algorithms, including quasi-Newton and conjugate gradient; it was presented that GA 

delivers more reliable results (dos Santos et al., 2009). Some other population-based 

algorithms are also implemented in history matching problems, such as Particle Swarm 

(PSO) (Mohamed et al., 2010), Ant Colony (Hajizadeh et al., 2011a), Differential 

Evolution (Hajizadeh et al., 2010), Covariance Matrix Adaptive Evolutionary Strategy 

(CMA-ES) (Schulze-Riegert et al., 2009). Rwechungura et al., (2011) reviewed the 

application of several optimisation algorithms; they stated that non-gradient algorithms are 

robust methods. Zhang et al. state that the non-gradient algorithms are not efficient as 

gradient-based methods, due to the high computational costs. Oliver and Chen (2010) 

believe the non-gradient algorithms are appropriate when the number of variables is small. 
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Thus far, none of the stochastic optimisers have been used for large history matching 

problems as a direct calibrator.  

Selecting a suitable optimiser for a history matching problem is a controversial matter 

because of dissimilarities in the case studies and also the unknown shape of landscape. 

Several algorithms have been studied, but still the optimisation step is an ongoing research 

topic. Petroleum engineers always examine latest optimisation algorithms to find the 

desired algorithm. The desired algorithm should have the following properties: 1- Be able 

to approximate the global optimum point without being influenced by the objective 

function specifications (number of variables and/or shape of landscape). 2- Be 

computationally efficient.  

The artificial bee colony algorithm is one of the most-recent optimisation methods. It was 

developed by Karaboga et al. in 2005. This algorithm was compared with several standard 

algorithms including GA, particle swarm, evolutionary strategy and differential evolution 

algorithm, by Karaboga and Akay (2009) on numerical benchmarking functions. The 

results indicate that the ABC outperformed among other algorithms. The ABC has been 

applied for several optimisation problems so far, including, digital IIR filters (Nurhan, 

2009), heat-transfer coefficient estimations (Zielonka et al., 2011), capacitated vehicle 

routing problems (Szeto et al., 2011) and many other problems, but it has not been studied 

in history matching problems.  

3.4.1.					Pareto	optimisation		

In recent years, several multi-objective algorithms have been developed based on similar 

concepts as single-objective population-based algorithms. In the multi-objective 

algorithms, the selection is based on ranking and a single execution delivers a good 

approximation about the Pareto front. So far, different algorithms have been developed to 

deal with multi-objective problems, some of these algorithms have been mentioned in 
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Coello et al., 2007 book: Vector Evaluated GA (VEGA) (Schaffer, 1985), Lexicographic 

Ordering GA (Fourman, 1985), Vector Optimized Evolution Strategy (VOES) (Kursawe, 

1991), Weight-Based GA (WBGA) (Hajela and Lin, 1992), Multiple Objective GA 

(MOGA) (Fonseca and Fleming, 1993), Niched Pareto GA (NPGA, NPGA 2) (Horn et al., 

1994, Erickson et al., 2001), Nondominated Sorting GA (NSGA, NSGA-II) (Deb et al., 

2002, Srinivas and Deb, 1994), Distance-based Pareto GA (DPGA) (Osyczka and Kundu, 

1995), Thermodynamical GA (TDGA) (Kita et al., 1996), Strength Pareto Evolutionary 

Algorithm (SPEA, SPEA2) (Zitzler and Thiele, 1999), Multi-Objective Messy GA 

(MOMGA-I,II,III) (Veldhuizen and Lamont, 1999, Zydallis et al., 2001, Day and Lamont, 

2005), Pareto Archived ES (PAES) (Knowles and Corne, 1999, Knowles and Corne, 

2000), Pareto Envelope-based Selection Algorithm (PESA, PESA II) (Corne et al., 2000), 

Micro GA-MOEA (µGA, µGA2) (Coello and Toscano Pulido, 2001, Toscano Pulido and 

Coello Coello, 2003), Multi-Objective Bayesian Optimization Algorithm (mBOA) 

(Laumanns and Ocenasek, 2002, Pelikan et al., 2005). In NSGA-II (Deb et al., 2002) 

algorithm called controlled elitist genetic algorithm, recombination is based on two terms, 

rank and distance of individual chromosomes. Distance is used to supply diversity in 

Pareto front which can improve convergence to the optimal Pareto front (MathWork, 

2011a). NSGA-II is widely applied especially when the number of variables is limited 

(Coello et al., 2007).  

Multi-objective algorithms have been used in a number of papers for history matching 

problems. Schulze-Riegert et al. defined four objective functions which are misfits of 

water-cuts of three different wells and misfits of bottomhole pressure of one of the wells. 

Hajizadeh et al. 2011b reported a faster convergence using the multi-objective optimisation 

in comparison with the single-objective optimisation. In that study, there were two 

objective functions made by splitting the wells into two groups. Mohamed et al. reported a 

faster convergence using the multi-objective optimisation. In their study, two objective 
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functions were defined: water rates and oil rates. The applied optimisation algorithms are 

as following: a SPEA was applied by Schulze-Riegert et al., 2007, a multi-objective 

particle swarm optimisation was applied by Mohamed et al., 2011,  a differential evolution 

for multi-objective optimisation using Pareto ranking was applied by Hajizadeh et al., 

2011b. 

In the mentioned studies, a regularisation term (a prior knowledge) was not included and 

the objective functions consisted of different parts of the likelihood term. This separation 

of the likelihood term does not improve the quality of history matched models unless when 

the weighting factors for the separated terms are uncertain which was not stated in those 

studies. A single objective optimisation performs more effectual on problems in which 

objective functions can be related to each other with weighting factors than a multi-

objective optimisation, as it minimises proportionally all the terms according to their 

weighting factors.  

3.4.2.					Proxy‐modelling	

Fitness approximation (proxy-modelling) is a method for overcoming the computational 

time in optimisation problems (Jin, 2005, Cullick et al., 2006). So far, different proxy-

modelling techniques have been used in history matching problems. In the applied 

methods, there were two main focus areas to enhance the quality of proxy-modelling: 1- 

selecting a suitable proxy model, and 2- selecting the sufficient number of samples and the 

proper location of samples. Inappropriate proxy models or samples result in inaccurate 

space modelling (figure 3.2) and accordingly lead to wrong history matched models. Thus 

far, different types of sampling strategy and different types of proxy model are checked 

out. Silva et al. in 2006 used an artificial neural network as a proxy model, and they 

applied it for two case studies. Cullick et al. 2006 and Sampaio et al. 2009 also used an 

artificial neural network as a proxy model and articulated good results. Polynomial is 
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another proxy model, but high-quality results were not achieved by this technique (Cullick 

et al., 2006, Osterloh, 2008, Li and Friedmann, 2005). Osterloh (2008) attained good 

results by using kriging (DACE package is used for multi-dimensional interpolations 

(Lophaven et al., 2002)) as a proxy model; however Li and Friedmann (2005) revealed that 

kriging smooth out the response surface.  

In addition to the proxy models, the type of sampling strategy also plays a significant role 

on the quality of trained proxies (Zubarev, 2009). Different experimental design methods 

have been suggested to select the appropriate set of samples, such as space filling designs 

(Latin Hypercube Sampling) and partitioning domain to subdomains for sampling (Li and 

Friedmann, 2005). Latin Hypercube Sampling (LHS) was reported as an effective 

technique for sampling (Zubarev, 2009). LHS is a statistical method which is capable of 

selecting samples from a multivariate distribution. It was developed and introduced by 

Mckay (1979). In this method, the space is discretisation with same sized Latin squares and 

then samples are selected in a manner in which there is only one sample in each row and 

each column (figure 3.3).  

 

Figure  3.2 The solid line and dashed line expresses the original fitness function and the approximate function, 

respectively, and the dots are the available samples (Jin, 2005) 

All the fitness approximation methods which have been applied in history matching use an 

almost similar approach called uncontrolled fitness approximation. In the uncontrolled 

approach, none of the evolution-control (model management) techniques is employed to 

control (manage) the approximation function (model). In the computer science literatures, 
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it has been shown that the uncontrolled fitness approximation approach has the potential of 

misleading of the optimisation to wrong optimum points (Jin, 2005, Yaochu et al., 2001). It 

is because of the limited number of samples, the multi-dimensionality of the search space 

and nonlinearity of the function.  

 

Figure  3.3 Latin hypercube sample for a 2D problem (Wikipedia) 

3.5.					Fast	simulators	

In order to execute the reservoir simulation (grid-based methods), not only it needs the 

solutions of the inverse problem, but also requires many other data, such as fluids 

properties, relative permeability curves and so on. Its requirements restrict its applications 

when a quick forecast is sought. Also, as mentioned before, the reservoir simulation is a 

time-consuming function, if an economical sensitivity analysis is sough, the procedure 

using the grid-based reservoir simulation will be computationally expensive. Thus, 

engineers look for a method in order to provide a quick estimation with the minimum 

information. Thus far, several methods have been developed, such as Capacitance 

Resistance Method (CRM) (Sayarpour et al., 2007, Sayarpour et al., 2009a, Sayarpour et 

al., 2010, Mou et al., 2005, Yousef et al., 2006, Lake et al., 2007, Delshad et al., 2009), 

streamline simulation (Rust and Caudle, 1972, Peddibhotla et al., 1997, Batycky et al., 

1997) and type curve matching methods (Arps, 1944).  

A 
NOTE:   

     This figure/table/image has been removed  
         to comply with copyright regulations.  
     It is included in the print copy of the thesis  
     held by the University of Adelaide Library. 
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3.5.1.					Decline	curve	analysis	

One of the traditional type curve matching methods regarding performance prediction is 

decline curve analysis. There are three main formulas, harmonic, exponential and 

hyperbolic (Guo et al., 2007). These formulas are achieved from the following equation:  

1
ݍ
ݍ݀
ݐ݀

ൌ െܾݍௗ																																																																																																																																																ሺ2ሻ 

Where d is between zero to one. 

When d is equal to zero, the model is exponential; when d is equal to one, the model is 

harmonic; and when d is between zero and one (0<d<1), the model is hyperbolic. The b 

and d are estimated by analysis the historical performance of the well. After finding b and 

d using history matching, there will be an analytical equation which can provide flow 

performance (q) versus time. If the conditions which are affecting the rate are not altered 

by an outside effect, the equation will be useful to be applied. The normal forms of this 

method are not capable of predicting the future performance during secondary or tertiary 

recovery.  

3.5.2.					Streamline	simulation	

Streamline simulation is another method used for predicting the future performance of 

wells and field. In this method, pressure equations are solved implicitly, and the saturation 

(mass) equations are solved explicitly, unlike the grid-based simulation methods in which 

these two are solved together. The main advantage of this simulation method is its speed of 

simulation. It usually is faster than the conventional approach of simulation (Al-Najem et 

al., 2012). The main drawback of this method for quick forecast is that it required large 

amount of input data, including permeability distribution, rock and fluid prosperities, and 
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geomodel. Hence, in order to have a precise streamline simulation, it is required to solve a 

nonlinear inverse problem.  

3.5.3.					Capacitance	resistance	method	

One of the most recent methods concerning field performance prediction is CRM. This 

method is applied in reservoir models which are under water-flooding. It performs similar 

to signal processing in which water injections are input signals and productions are output 

signals. There are two main elements between each pair of injection-production wells, 

resistance (well connectivity) and capacitance (fluid and rock compressibility and its initial 

content). A mathematical equation is developed in which the production rate is a function 

of injection rate of each injector with a specific weighting factor (fij) and also the reservoir 

pressure and productivity index (J) as equation 3. Based on equation 3, the production rate 

of producer j is a function of its production rate at previous time step and injection rates of 

all injectors at the current step.  
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Ct is total compressibility, J is productivity index, Vp is pore volume. Using only 

production and injection history rates, the unknown elements of this equation (f and τ) are 

estimated. Then, it can be applied for future performance forecasts. This model only 

provides prediction regarding liquid rate, in order to estimate the oil production rates, the 

equation should be coupled with a fractional flow. Gentil in 2005 developed a fractional 

flow in which its parameters also are estimated only by analysing the historical 

performance of wells. This method has some restrictions; the equation was derived by the 
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assumption of having only two phases (water and oil). Hence, this model cannot be applied 

for undersaturated reservoirs. Also, this model cannot predict the performance during gas-

flooding.  
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Chapter	4	

 

 

 

4. Reservoir	characterisation	using	artificial	bee	colony	

optimisation		

This chapter analyses the application of one of the most-recent optimisation algorithms, 

artificial bee colony, in history matching, for the first time. The questions, the author 

wishes to answer in this chapter, are:  

a- Is the artificial bee colony algorithm a suitable optimiser for history matching?  

b- Does it deliver better results in comparison with other optimisers?  

c- Does the shape of landscape have significant influence on its performance?  

The chapter begins by describing a synthetic reservoir model constructed for the 

assessment of the algorithm, and followed by explaining the implementation of artificial 

bee colony algorithm in our developed history matching framework. Afterward, the results 

of history matching using the artificial bee colony algorithm and three other optimisation 

algorithms, genetic algorithm, simulated annealing, Levenberg-Marquette, are presented. 

Then, the outcomes are compared with each other. In this chapter, also, the effects of 

reparameterisation on the shape of landscape and the performance of the optimisation 

algorithms are cursorily studied. This chapter is a modified and adjusted version of one of 

our published papers in a peer-reviewed journal, “SAYYAFZADEH, M., HAGHIGHI, M., 
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BOLOURI, K., & ARJOMAND, E. 2012. Reservoir characterization using artificial bee 

colony, in APPEA Journal 2012; 52:115-128”.  

4.1.					Synthetic	reservoir	model		

A synthetic reservoir model is constructed to evaluate the proposed optimisation method 

(artificial bee colony). The reservoir model consists of 35×35×3 gridblocks in x, y and z 

directions respectively. The permeability is a function of porosity based on a simplified 

Kozeny-Carman correlation (equation 1); and the permeability is the same in x and y 

directions. The permeability in the vertical direction is 10% of the horizontal. This case is a 

system with two phases (water and oil), and has a nine-spot waterflooding pattern (five 

injectors and four producers). The injector wells are connected to the first and second 

layers, and the production wells are completed only into the second layer. The map of oil 

saturation after 2210 days is shown in figure 4.1. The reservoir properties are summarised 

in table 4.1.  

݇	ሺ݉ܦሻ ൌ 30,000 ൈ ߶ଷ																																																																																																																																		ሺ1ሻ 

The porosity distribution of the reservoir model (reference) (mref) is generated via a 

geostatistical interpretation. The value for 16 gridblocks (nine gridblocks where the wells 

are located at and seven other gridblocks which are selected randomly) in each layer are 

defined manually. By analysing these 48 gridblocks data, the porosity distributions are 

created. An ordinary kriging performed by SGeMS package (Remy et al., 2009) is utilised 

for interpolating the properties between these 16 gridblocks for each layer. The 

permeabilities are calculated based on equation 1. The permeability distribution for each 

layer of the reservoir model is shown in figure 4.2.  
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1st layer 

 
2nd layer 

 
3rd layer 

Figure  4.1 Oil saturation for the synthetic reservoir model for each layer 

Since synthetic cases do not have any actual flow performance history, they should be 

simulated for a period of time to create a performance history. The history (observed 

vector) is generated, for the case study, by simulating the reference case for 2210 days (6 
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years) in 38 time steps. Its elements are well bottomhole pressures, well oil production 

rates, well liquid production rates, field oil production rate, field pressure and field water 

production rate at each time step. The total number of observed data is 760 (ND=760). 

Gaussian noise with standard deviation of 2% and zero mean is added to the observed 

vector. In this case study, all the information of the reservoir model is assumed exactly 

known, excluding the porosity in every gridblocks. Thus, the porosities should be 

estimated (reproduced) using inverse modelling based on the observed data. The total 

number of variables (Nm) is 3648 (35×35×3-9×3).  

Table  4.1 The synthetic reservoir properties 

Property  Value 
Mean of porosities of the 1st layer 0.167 
Standard deviation of porosities of the 1st layer 0.045 
Mean of porosities of the 2nd layer 0.192 
Standard deviation of porosities of the 2nd layer 0.044 
Mean of porosities of the 3rd layer 0.170 
Standard deviation of porosities of the 3rd layer 0.037 
Dimension of gridblocks in X,Y,Z direction 80, 80, 60 ft respectively  
Rock compressibility  4×10-6 1/psia @ 4500 psi  
Oil viscosity 2 cP @ 6000 psi
Water viscosity 0.8 cP @ 4500 psi
Initial pressure 6900 psi @ 9600 ft 
Reservoir top 9540 ft 
Water oil contact  9660 ft 
 

The objective function for this case study is formulated by a Bayesian framework in which 

the likelihood term is only considered (equation 2). As mentioned in the previous chapters, 

when the number of variables is large, indirect calibration is used, especially when the 

optimiser is a nongradient-based algorithm. Hence, this problem is reparameterised via an 

operator (h) to reduce the number of variables, equation 3, and consequently, the objective 

function is changed to equation 4. The aim is to find the global minimum of the	S′ሺrሻ. 

According to the objective function formulation and the known Gaussian noise, the	S′ሺrሻ	at 

the global minimum should have a value close to ND/2. To approximate the global 

optimum (the most probable model), an optimisation algorithm should be applied.  
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3rd layer 

Figure  4.2 Reference permeability distribution of the synthetic reservoir model 
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A real case is not used in the evaluations, since 1- its corresponding true solution is not 

necessarily known, and so further verification of the solutions acquired by different 

methods is not possible or reliable, and 2- the computational costs associated with the 

evaluations for a real case is much higher than the evaluations for a synthetic reservoir 

model.  

4.2.					Optimisation	step	for	the	case	study	

Thus far, various optimisation methods, including gradient-based and nongradient-based 

algorithms, have been suggested to be applied in history matching; they are reviewed in the 

third chapter of this thesis. Each method has its own capabilities and weaknesses. 

Gradient-based (classical) optimisers converge much faster than nongradient-based 

(stochastic) optimisers, (Zhang et al., 2005a); but they have some restrictions especially in 

systems with multiple local minima and/or discrete decision variables. On the other hand, 

stochastic methods are slow in terms of convergence and cannot perform appropriately in 

systems with a large number of variables (Oliver and Chen, 2010), but, in order to find the 

global minimum in systems with many local minima and nonlinear functions, one of the 

best options is making use of stochastic optimisers.  

The artificial bee colony (ABC) method introduced by Karaboga in 2005 is one of the most 

recent stochastic methods. Its applications have been studied in different fields such as, 

digital IIR filters (Nurhan, 2009), heat transfer coefficient (Zielonka et al., 2011) and 

several numerical functions (Karaboga and Akay, 2009). In this section, the application of 

the artificial bee colony algorithm in assisted history matching and reservoir 

characterisation is investigated, and its advantages and disadvantages are explored by 

evaluating its performance on the constructed synthetic models. The algorithm is tested out 

on two benchmarking functions. Then, it is implemented for the case study and its 

outcomes are compared with the outcomes of three conventional techniques, two stochastic 
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optimisers (genetic algorithm, and simulated annealing) and one classical optimiser 

(Levenberg-Marquette).  

4.2.1.					Artificial	bee	colony	algorithm		

To survive through the winters, bees have to produce adequate honey. Hence, honey bees 

need to explore and exploit the area around them for food as efficiently as possible, and 

store enough food. So as to carry out efficient exploitation and exploration, they not only 

memorise the locations with highest profitability, but also share their information with 

each other (Panigrahi et al., 2011). The profitability of a food source depends on its 

distance from the hive, richness and the ease of extraction (Karaboga, 2005). The main 

stage of efficient exploration and exploitation involves sharing information with each other 

through a dancing language. The bees communicate with each other by a waggle dance. In 

this dance, they explain the profitability of food sources, directions and distances 

(Panigrahi et al., 2011). By this means, they share their knowledge and consequently they 

are able to focus more on areas with highest profitability. Bees’ exploration and 

exploitation of their surrounding area is one of the well-organised in nature. 

The colony of ABC algorithm comprises of employed bees, onlookers and scouts, just like 

real honeybees. Usually half of the initial colony is assumed to be employed bees and the 

rest are onlooker bees. The colony size (NC) should be defined prior to the beginning of the 

algorithm. Each employed bee is an agent for a solution (food source) (r). The 

corresponding initial solutions for the employed bees are generated randomly according to 

the given bounds; this step is known as initialisation. After the initialisation step, employed 

bees start searching for food randomly. In each attempt (cycle), employed bees look for a 

better food source (lower S′ሺrሻ) based on her knowledge, i.e., each employed bee always 

seeks for a better solution around her best-ever found solution. If an employed bee gets a 

better result in the current attempt, she will memorise the new location (solution); 
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otherwise she will keep the previous solution in her mind. After completing their search in 

each cycle, they share their information about the food source profitability (fFitnessi) and 

their locations (ri) with onlooker bees.  

Onlookers collect information from all of the employed bees and then make decisions 

based on the observations collected from all the employed bees to forage around the food 

source locations (solutions). The solutions with the highest profitability (lower S′ሺrሻ) are 

exploited by more onlooker bees according to the calculated probabilities. The 

probabilities are given via equation 5 and 6. ri is an individual (solution) which is found by 

the employed bees. fFitnessi demonstrates the profitability of ri which is reported by an 

employed bee.  

௜ݏݏ݁݊ݐ݅ܨ݂ ൌ
1

ܵ′ሺݎ௜ሻ ൅ 1
																																																																																																																																			ሺ5ሻ 

௜ܾ݋ݎܲ ൌ 0.1 ൅
0.9 ൈ ௜ݏݏ݁݊ݐ݅ܨ݂

ቀ݉ܽݔ ቀሺ݂ݏݏ݁݊ݐ݅ܨሻ௜, ݅ ൌ 1… ஼ܰ
2 ቁቁ

																																																																																		ሺ6ሻ 

Scout bees search randomly and usually they look for a new home or food source. An 

employed bee will become a scout bee, whenever she cannot extract more food from its 

corresponding area (i.e., she cannot find a better solution with a higher nectar) after a 

number of attempts (limit).  

ABC has a repetitive process, and in each attempt (cycle), each employed bee searches for 

a better fitness using their own individual knowledge and each onlooker searches for food 

after collecting the knowledge of the all employed bees. These cycles are repeated until the 

required satisfaction is gained, or one of the stopping criteria is met. The workflow of this 

algorithm is shown in figure 4.3. The two functions used to benchmark the capability of 

optimisation methods are Ackley and Schwefel.  
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Figure  4.3 Workflow of artificial bee colony algorithm 

4.2.2.1.					Searching	behaviour	of	ABC	on	the	Ackley	function	

The Ackley function is a multidimensional model which is extensively used to test out 

optimisation methods; this function has several local minima and one global minimum. In 
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this study, in order to be able to draw the function and also investigate the searching 

behaviour, a 2-D Ackley function is used. The global minimum is (0,0) with a zero fitness 

value (f(0,0)=0). The function is displayed in figure 4.4 for -10<x,y<10. The function is 

written in equation 7, with a=20, b=0.2, c=2π (Molga and Smutnicki, 2005) and the search 

space is -2<x,y<2.  

,ݔሺܨ ሻݕ ൌ െܽ݁
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ଶሺୡ୭ୱሺ௖௫ሻାୡ୭ୱሺ௖௬ሻሻ ൅ ܽ ൅ ݁																																																																		ሺ7ሻ 

The ABC algorithm was run on the Ackley function with 50 iterations (cycles) and a 

colony size of 30, this point was found as a final solution: 3.9×10-10, -3.2×10-10, with a 

fitness of 1.4×10-9, which is so close to the exact solution. The total number of evaluations 

(fitness calls) is 1500. The next figure (figure 4.5) exhibits the exploration and exploitation 

of ABC on this function. Each dot point shows a location (solution) which is evaluated 

either by employed, onlooker or a scout bee. It is noticeable that even though the landscape 

contains many local minima, ABC almost converged to the global minimum.     

 
Figure  4.4 2D Ackley function 

4.2.2.2.					Searching	behaviour	of	ABC	on	the	Schwefel	function	

A similar procedure is used for the Schwefel function written in equation 8. For this study, 

x and y are between -500 and 500, and the global minimum is -837.9658 which is located 
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at (x y)=(420.9687 420.9687). Schwefel is a multidimensional function which is 

problematic even for stochastic optimisation algorithms, due to its highly rugged landscape 

shape (figure 4.6) (Molga and Smutnicki, 2005). ABC was run for the function with 70 

iterations and colony size of 30. The following results were obtained: x,y of the solution 

are equal to 420.9688 and 420.9688 respectively and its fitness is -837.966 which is close 

to the exact solution. Figure 4.7 exhibits the convergence behaviour of ABC on Schwefel 

function.   

 
Figure  4.5 Searching behaviour of ABC on the Ackley function 
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Figure  4.6 2D Schwefel function 
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Figure  4.7 Searching behaviour of ABC on Schwefel function 

4.2.3.					History	matching	using	artificial	bee	colony	algorithm	

In this section, the calibration step of history matching for the reservoir model is conducted 

using the artificial bee colony algorithm. It is coupled to the reservoir simulator (ECLIPSE 

E-100) within MATLAB (refer to appendixes for the framework development). Before 

carrying out the optimisation, a reparameterisation method should be selected to reduce the 

dimension of the search space. The pilot point technique is picked and applied, for the 

reason that this method is likely to be able to regenerate the reference porosity distribution, 

as the reference model was created itself by a geostatistical correlation. Hence, there is at 

least one solution (r) which can approximate the reference porosity distribution, i.e., the 

approximation of equation 3 around the reference model (mref) is valid. As a result, the 

reparameterisation error is assumed equal to zero, and the final misfit is assumed only on 

the account of the optimisation error which allows us to provide a high-quality assessment 

between the optimisation methods. It should be noted that a portion of final misfit value is 

also because of noise in measurements (see chapter two (2.4.1)).  
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Pilot points can alter the property distribution with their parameters, which are their 

locations and their values (in this case, porosity). A limited number of the gridblocks are 

described by the pilot points and the rest are calculated through geostatistical interpolation 

based on the pilot points and well data. In this study, a fixed number of pilot points are 

used to describe the reservoir and their values (porosity) and locations are considered as 

decision variables. Therefore, it is only necessary to find the best locations and the best 

values for pilot points and the rest of gridblocks are calculated through geostatistical 

interpolation. For this case study, it is assumed there are seven pilot points in each layer 

and their locations are defined in a polar coordination system. The pilot point technique 

has not been used in a polar coordination previously. Each pilot point is located on a 

specific fixed radius, but could be located at any angle. By the polar coordination and fixed 

radius, it is easier to distribute pilot point through the whole model and avoid having pilot 

point close to each other. Figure 4.8 demonstrates how pilot points can be distributed in a 

reservoir through a polar coordination. One pilot point should exist on the permitter of 

each circle. This minor alternation in the implementation of pilot point method can speed 

of the optimisation step, as scenarios which have pilot points close to each other will be 

removed.  

 
Figure  4.8 Pilot point distribution in polar coordination  
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In each layer, the values and angles of the seven pilot points are unknown (2×7=14). 

Therefore, there are totally 42 (14×3) decision variables. By history matching, the location 

and value of all the 21 pilot points are obtained, and the rest of the gridblocks are estimated 

using a geostatistical interpolation. In this study, the ordinary kriging is used for the 

interpolation (It should be mentioned that the reference porosity distribution was generated 

by allocating a specific value to 42 variables (rref)). Also, it is assumed the variogram 

parameters are all known for further simplification of the problem which helps us to 

emphasis on the assessment of the quality and reliability of optimisation algorithms. 

The ABC algorithm is coupled with the reservoir simulator (ECLIPSE) and the 

geostatistical software (SGeMS). The decision variables (r) are the aforementioned 42 

elements. The algorithm should approximate the global minimum of the objective function 

(S′ሺrሻ). The mentioned options in table 4.2 are used for the algorithm. The stopping 

criterion is the computational costs in which ABC is not allowed to call the fitness function 

more than 20,000 times. S′ሺrሻ is expected to be highly nonlinear, as in this function, the 

following calculations are being made: 1- geostatistical interpolations and 2-the simulation 

of fluid flow through the medium.    

Table  4.2 ABC algorithm options  

Colony size 20 
The initial number of employed bees (the number of food sources) 10 
The number of onlooker bees 10 
The limit for the employed bees 100 
Initialisation  Random  
Stopping criteria  20,000 fitness calls (1000 cycles) 

  

In order to assess the quality of obtained optimum points, the following criteria are used:  

1- The objective function value at the achieved optimum point (S′ሺrஶሻ); it should be 

close enough to Nobs/2 (≈380), (a lower value for S′ሺrஶሻ expresses a higher chance of 

existence for r∞ according to the Bayesian interpretation).  

2- The ability of future performance prediction; this criterion is measured by estimating 

cumulative produced water and oil for 1000 days subsequent to the last timestep of 
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history matching (2210th) for two different water injection scenarios. The actual 

cumulative produced water and oil for 1000 days for the two scenarios are given and 

shown in table 4.3. The estimated values via the obtained history matched models 

should be close enough to the reference values. 

3- The generated porosity distribution (m∞=h(r∞)); the estimated porosity distribution 

after inverse modelling is compared with the reference distribution, based on 

equation 9. (Q should be close to zero) 
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History matching was carried out by estimating the global optimum of S′ሺrሻ	using the 

artificial bee colony algorithm. The ABC converged to a point which is denoted by r∞ after 

meeting the stopping criteria. The objective function value at the achieved point is 503. It 

is almost close to the reference value (375). Figure 4.9 expresses schematically the 

matching quality for four producers; the left handside figures show the initial misfit (before 

history matching) between the reference (history1) and prior values (the prior were 

calculated via assigning the initial porosity distribution created via a geostatistical 

interpolation based on only the 9 gridblocks data); the right handside figures show the 

misfit between the reference and gained data via the ABC (after history matching).  

The blue line shows the reference oil production rates, the red line shows the oil production 

rates predicted by the initial model and the orange line shows the oil production rates 

predicted by the model gained after history matching. The figures express that good 

matching between the simulation and history can be achieved by the ABC algorithm.  

                                                 
1 The shown graphs are noise-free history, but the matching reference was the history with noise to be similar to real case 
studies.  
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The other results are shown in table 4.3 which demonstrate almost satisfactory results. 

Using the achieved model (r∞), m∞ is calculated, and the future performance for the two 

different scenarios is estimated.  

 

 

 

 
Figure  4.9 Well oil production rate for all producers, before and after history matching 
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The forecasting error is 1.69% and 0.53% for the first and second scenario respectively. It 

is fair to state that the achieved history matched model can predict the future performance 

with an almost 1% ((1.69+0.53)/2) difference. Q expresses that the gained porosity 

distribution using inverse modelling has 17.1% difference from the reference case. These 

deviations (objective function value, forecasting errors and Q value) from the 

corresponding reference case values are because of the nonlinearity of the problem and 

measurement noise which led into the optimisation error. 

Table  4.3 The outcomes of history matching via the artificial bee colony algorithm and the reference values 

 Reference (mref) Gained solution via ABC (m∞) 

Objective function value (S(m∞)) or ܁′ሺܚஶሻ 375 503 
Cumulative produced water for 1st scenario 1.15×106 1.14×106 
Cumulative produced oil for 1st scenario 7.84×105 7.99×105 
Difference in the estimation of upper elements for the 1st scenario - 1.69% 
Cumulative produced water for 2nd scenario 2.14×106 2.13×106 
Cumulative produced oil for 2nd scenario 1.32×106 1.33×106 
Difference in the estimation of upper elements for the 2nd scenario - 0.53% 
Q - 17.1% 
 

It should be mentioned that the procedure was executed three times with three different 

seed numbers, as the algorithm is stochastic and may be affected by the random selections, 

and the best of these three runs in terms of objective function value are presented. The 

results of the other two runs can be found in table 4.4. All the three runs delivered almost 

similar results. 

Table  4.4 The outcomes of history matching via the artificial bee colony algorithm using two other seed numbers 

 Gained solution via 
ABC (m∞) seed No.#2 

Gained solution via 
ABC (m∞) seed No.#3 

Objective function value (S(m∞)) or ܁′ሺܚஶሻ 565 521 
Error in the estimation of water and oil recovery for the 1st scenario 1.29% 0.29% 
Error in the estimation of water and oil recovery for the 2nd scenario 0.73% 1.49% 
Q 20.4% 20.9% 
 

The number of fitness calls to approximate r∞ using artificial bee colony algorithm was 

20,000, and in each fitness function calls, one ECLIPSE and one SGeMS were executed. 

The optimisation process took almost 2 days for each seed number execution on a personal 

computer with the following configurations, CPU Intel i-7-2820QM and 8 GB ram. The 

optimisation error might be reduced by increasing maximum allowed fitness function calls, 
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but due to computational limitations, hardware and software, it was not possible to be 

checked out. 

4.2.4.					Comparison	of	the	artificial	bee	colony	with	three	optimisation	

algorithms		

History matching is carried out for the same reservoir model using three other optimisation 

algorithms to provide a comparison between the artificial bee colony algorithm and 

conventional algorithms, genetic algorithm (GA), simulated annealing (SA), and 

Levenberg-Marquette (LM) (refer to chapter 2 for the details of these three algorithms). 

These algorithms are chosen, because of their diverse capabilities. GA, especially with a 

scattered (uniform) crossover, is a powerful tool for the exploration of search spaces, and it 

is a widespread population-based algorithm (Gwiazda, 2007). SA is a powerful tool for the 

exploitation of search space, especially when the temperature updating is followed by an 

exponential rule (at high temperature (in initial stage of each interval), the search is more 

explorative, while at low temperature (a number of step after each interval) the search is 

more exploitative), and it is a widespread individual-based stochastic algorithm (Rangaiah, 

2001). LM is a widespread gradient-based algorithm and can deliver quick convergence; it 

is useful when the objective function does not have a regularisation term (Tarantola, 2005). 

Artificial bee colony algorithm balances the exploitation and explorations capabilities 

(Akay and Karaboga, 2012). GA, SA and LM are conducted by MATLAB (MathWork, 

2011b) while the stated options in table 4.5 are used.  

The calibration using each of the stochastic optimisers (SA and GA) was executed three 

times with three different seed numbers, and the mean of three runs is used for the 

comparison. None of the algorithms was allowed to call the fitness function more than 

20,000. This computational limit and three times execution help us in delivering fair 
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comparison. The same criteria are used to assess the methods, and the results based on the 

criteria are shown in table 4.6.  

Table  4.5 The options of the applied optimisation algorithms 

Algorithm Property Value 

GA Population size 20 
Crossover operator & its probability Scattered & pc=0.8 
Mutation operator & its probability Uniform with rate 0.11 & pm=0.2 
Selection operator Stochastic uniform 
Number of elite 1 
Migration 0 
Penalty factor 0 
Stopping criteria  Number of generation (1000) 

SA Initial point [1...1]1×42 

Annealing function Fast annealing 
Reannealing interval 50 
Temperature updating function Exponential temperature update  
Initial temperature 20 
Acceptance probability function Simulated annealing acceptance 2 
Stopping criteria  Number of fitness function calls (20000) 

LM Initial point [1...1]1×42 

Gradient calculation  Numerically with minimum perturbation 0.1 
and maximum perturbation 15 

Stopping criteria  Function tolerance: 1×10-10 
Maximum function calls: 20000 

 

Table  4.6 Results of history matching using different optimisation algorithms (GA, SA, ABC and LM) 

Optimisation algorithm  ABC GA SA LM 

Objective function value (S(m∞)) or ܁′ሺܚஶሻ 530 613 1373 6459 
Error in the estimation of water and oil recovery for the 1st scenario 1.09% 0.97% 2.99% 4.03% 
Error in the estimation of water and oil recovery for the 2nd scenario 0.92% 2.01% 2.93% 3.44% 
Q 19.5% 23.9% 19.1% 15.5% 
 

The objective function value was reduced to 530 via ABC, while this value for the other 

two stochastic optimisers, GA and SA, was 602 and 1373 respectively. The classical 

optimiser (Levenberg-Marquette) could not reduce the value to less than 6,459 which 

indicates that it converged to a local minimum. For the pilot point approach, it is not 

feasible to provide a proper initial guess when their locations are assumed variable. This 

can be a reason why the classical method got stuck in a local minimum. It should be 

mentioned that if in the pilot point reparameterisation design, only the value of the pilot 

                                                 
2 This function is used to provide a rule to accept or reject the achieved point in current iteration, the applied function is 
as follows: if the corresponding fitness value at the current point is less than the fitness value at the previous one, the 
current point is memorised, otherwise, the current point is selected at random according to the following equation:  

1

1 ൅ ݁
∆

୫ୟ୶ሺ்ሻ

 

in which, ∆ൌ ܵሺݎ௜ሻ െ ܵሺݎ௜ିଵሻ, ݅:  ,(↑∆) T is the current temperature. Thus, if the difference increases ,ݎܾ݁݉ݑ݊	݊݋݅ݐܽݎ݁ݐ݅
the chance of selection will decrease.   
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point are considered as matching parameters (it means that the location of the pilot points 

are fixed and predefined), it will be possible to provide an initial guess for the classical 

optimiser. But, as mentioned in the literature review chapter, fixing the location of pilot 

point causes overshooting, that is why in the design, the location of pilot points are also 

assumed as decision variables. In these cases where decision variables are dependent, 

stochastic optimisers perform better. The objective function values cannot be the only 

means to assess the gained history matched models. The other three values (the forecasting 

errors and Q) are good measures to distinguish between the three methods. As it can be 

seen, the values gained by ABC are lower than the values achieved by the other three 

methods. The future forecasting errors are 1%, 1.5%, 3% and 3.75% via the obtained 

history matched model using ABC, GA, SA and LM, respectively. The Q values gained by 

all the optimisers are in an acceptable range however, the best value was achieved by LM 

algorithm. According to the stated values, overall, it can be concluded that ABC works 

better than the other three algorithms in this case study while pilot point is used as 

reparameterisation. 

Reparameterisation transforms the M space to an R space. The R space is a function of the 

selected reparameterisation operator. Thus, it is fair to expect that the landscape shape of 

S′ሺrሻ is altered by changing the reparameterisation operator (h), which results in the 

creation of a new objective function and consequently a new optimisation problem. In the 

following section, this effect is investigated. The created new objective functions 

(problems) that have different landscape are useful means to evaluate the performance of 

the ABC algorithm, one more time. As mentioned before, one of the features of a 

successful optimisation algorithm is that its performance is not significantly influenced by 

the objective function specifications and is capable of approximating the global optimum 

point in different problems.  
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4.3.					Effects	of	reparameterisation	operators	on	the	landscape	shape	

In this section, the same reservoir model is reparameterised using different operators: 

zonation, spectral decomposition of prior covariance matrix, bicubic spline and pilot point. 

For each operator, history matching is carried out via the four optimisation algorithms, and 

the outcomes are reviewed. Also, for each reparameterisation operator, rough estimation 

regarding the shape of landscapes is also presented. As stated before, it is impossible to 

draw or study profoundly the landscape shape of the history matching problems, because 

of i- the high-dimensionality of the system, and ii- the very large number of possible 

scenarios (billions), even with a coarse discretisation. In this study, to present rough 

estimation, the dimension of the reparameterised space (R) is reduced to two, and the 

objective function values are calculated over a discretised space for the two variables.  

To draw the 2-D landscape shape of the objective function (S′ሺrሻ) for each of the operators, 

first the global optimum point of the S′ሺrሻ is approximated, then Nr-2 out of Nr elements of 

r are fixed to the corresponding approximated global point and the other two elements are 

assumed variable, after that, the S′ሺrሻ values are calculated for the discretised space of 

these two elements. It should be mentioned that the two-dimensional landscape shapes 

deliver very rough estimation about the full-dimensional (Nr dimensional) landscape, and 

they may not be very reliable. The only conclusion which can be logically reached is that if 

the two-dimensional landscape shape is noisy (have multiple minima), the full-dimensional 

problem is expected to be noisy. But, if the 2-D landscape shape is smooth or even 

quadratic, any conclusion about its full-dimensional problem cannot be made.  

Another way to assess the landscape shape is the outcome of the classical optimiser. If the 

landscape is close to quadratic and unimodal, the classical optimiser should be able to 

converge to the global optimum point, but if it is converged to a point which is not the 

global minimum, it can be stated that the landscape has likely multiple minima. It should 
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be mentioned that in this section, the comparison of the efficiency of the 

reparameterisation operators on the quality of history matching does not fall into the scope 

of this study; the main emphasis is on the influence of reparameterisation operator on the 

shape of landscape.  

4.3.1.					Landscape	shape	for	the	zonation	operator	

The reservoir is divided into 36 homogenous zones (12 zones in each layer), and the 

porosity in each zone forms the variables (r). The number of variables is reduced from 

3648 to 36. The procedure of zonation reparameterisation was explained in the literature 

review chapter. In the calibration step, the global optimum point of S′ሺrሻ should be 

approximated, while this time the reparameterisation operator (h) is the zonation method, 

and r consists of the elements of reparameterised model by the zonation. The same 

optimisation algorithms with the same options are used to find the global minimum. The 

results of the optimisation methods are shown in table 4.7.  

Table  4.7 History matching results using the four optimisation algorithms along with the zonation 
reparameterisation 

Optimisation algorithm  ABC GA SA LM 

Objective function value (S(m∞)) or ܁′ሺܚஶሻ 2549 4240 818 2081 

 
Among the four optimisers, SA delivered the best results. LM converged to a local 

minimum, and the other two stochastic optimisers could not decrease the objective 

function value as much as SA. In terms of the objective function value, ABC performed 

better than GA, and the quality of achieved model via ABC is comparable with the gained 

model via LM.  

The solution of SA is used as the global optimum point to draw the landscape shape. 34 out 

of 36 elements of the approximated global optimum point by SA are fixed and equal to the 

corresponding elements of the point. Then, via a discretisation for the two variables, S′ሺrሻ 

is drawn, figure 4.10. The landscape shape is smooth. Hence, the landscape shape of S′ሺrሻ 
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in the full-dimensional system (Nr) cannot be estimated by the 2-D landscape shape. But, 

as the LM algorithm did not converge to the global optimum point, it can be said that the 

landscape shape of S′ሺrሻ with a zonation reparameterisation likely has at least two 

minimums.    

 
Figure  4.10 The landscape shape for the zonation reparameterisation 

4.3.2.					Landscape	shape	for	the	spline	operator	

The same procedure is used for the spline reparameterisation operator. In this 

reparameterisation method, the porosity in a number of gridblocks (14) are assumed as 

variables in each layer and the reset of gridblocks are interpolated using the cubic spline 

technique3 based on the 42 variables and the 27 gridblocks where the wells are located at. 

The property in each layer is interpolated separately. The number of variables is reduced 

from 3648 to 42. In the calibration step, the global optimum point of S′ሺrሻ should be 

approximated, while this time the reparameterisation operator (h) is the spline method, and 

r consists of the elements of reparameterised model by spline. The same optimisation 

algorithms with the same options are used to find the global minimum. The results of the 

optimisation methods are shown in table 4.8.  

                                                 
3 For the spline interpolation, the “griddata” function of MATLAB is used.  
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Table  4.8 History matching results using the four optimisation algorithms along with the spline 
reparameterisation 

Optimisation algorithm  ABC GA SA LM 

Objective function value (S(m∞)) or ܁′ሺܚஶሻ 13,447 14,238 10,753 17,421
 

Among the four optimisers, SA delivered the best results in terms of objective function 

value. LM converged to a local minimum, and the other two stochastic optimisers could 

not reduce the objective function value as much as SA. In terms of the objective function 

value, it is fair to rank ABC as the second successful optimiser in this problem after SA.  

The solution of SA is used as the global optimum point to draw the landscape shape. 40 out 

of 42 elements of the approximated global optimum point by SA are fixed and equal to the 

corresponding elements of the point. Then, via a discretisation for the other two variables, 

S′ሺrሻ is drawn, figure 4.11. The landscape shape is smooth. Hence, the landscape shape of 

S′ሺrሻ in the full-dimensional system (Nr) cannot be estimated by the 2-D landscape shape. 

But, as the LM algorithm did not converge to the global optimum point, it can be said that 

the landscape shape of S′ሺrሻ with a bicubic spline reparameterisation likely has at least two 

minimums.    

 
Figure  4.11 The landscape shape for the spline reparameterisation 
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4.3.3.					Landscape	shape	for	the	spectral	decomposition	operator	

The same procedure is used for the spectral decomposition reparameterisation operator. In 

this reparameterisation method, the eigenvalues and eigenvectors prior covariance matrix 

are calculated and ranked, then first 42 variables are selected. The prior covariance matrix 

was calculated by analysing a number of generated realisations for the unknown properties 

using a geostatistical interpolation. The procedure of the spectral decomposition was 

explained in the literature review chapter. Using this method, the number of variables is 

reduced from 3648 to 42. In the calibration step the global optimum point of S′ሺrሻ should 

be approximated, while this time the reparameterisation operator (h) is the spectral 

decomposition method, and r consists of the elements of reparameterised model by spectral 

decomposition. The same optimisation algorithms with the same options are used to find 

the global minimum. The results of the optimisation methods are shown in table 4.9.  

Table  4.9 History matching results using the four optimisation algorithms along with the spectral decomposition 
reparameterisation 

Optimisation algorithm  ABC GA SA LM 

Objective function value (S(m∞)) or ܁′ሺܚஶሻ 7024 8523 357,970 435,790
 

Among the four optimisers, ABC delivered the best results in terms of the objective 

function value. LM converged to a local minimum which has a very high objective 

function value, and the other two stochastic optimisers could not reduce the objective 

function value as much as ABC; the outcome of GA is much closer to ABC’s outcome, but 

SA’s outcome is not in an acceptable range (two orders of magnitude larger than the 

ABC’s result). It is fair to rank ABC as the successful optimiser in this problem.  

The solution of ABC is used as the global optimum point to draw the landscape shape. 40 

out of 42 elements of the approximated global optimum point by ABC are fixed and equal 

to the corresponding elements of the point. Then, via a discretisation for the other two 

variables, S′ሺrሻ  is drawn, figure 4.12.  
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As it can be seen, the 2-D landscape shape is noisy and has several minima. Hence, it is 

fair to expect that the landscape shape of the full-dimensional problem of S′ሺrሻ is also 

rugged. That is why the classical optimiser could not reduce the objective function value 

extensively, as it trapped into a local minimum.  

 
Figure  4.12 The landscape shape for the spectral decomposition reparameterisation 

4.3.4.					Landscape	shape	for	the	pilot	point	operator	

The results of optimisation with a pilot point reparameterisation were shown in the 

previous section. Among the four optimisers, ABC delivered the best results in terms of 

objective function value. LM converged to a local minimum, and the other two stochastic 

optimisers could not reduce the objective function value as much as ABC; the outcome of 

GA is much closer to ABC’s outcome. In terms of the objective function value, it is fair to 

rank ABC as the successful optimiser in this problem.  

The solution of ABC is used as the global optimum point to draw the landscape shape. 40 

out of 42 elements of the approximated global optimum point by ABC are fixed and equal 

to the corresponding elements of the point. Then, via a discretisation for the other two 

variables, S′ሺrሻ is drawn, figure 4.13.  
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As it can be seen, the 2-D landscape shape is noisy and has several minima. Hence, it is 

fair to expect that the landscape shape of the full-dimensional problem of S′ሺrሻ is also 

rugged. That is why the classical optimiser could not reduce the objective function value 

extensively, as it trapped into a local minimum.  

 
Figure  4.13 The landscape shape for the pilot point reparameterisation 
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was not feasible to compare the ABC with more than a few algorithms, due to the 

computational limitations. The applied algorithms are the standard versions, and the 

applied options for these four algorithms are almost default options. A sensitivity analysis 

was carried out to modify the options, especially for GA and SA, but it cannot be stated 

that these are the most efficient ones, as the comprehensive sensitivity analysis is 

computationally expensive and almost unfeasible.  

In this chapter, also, the effect of reparameterisation on the landscape shape of objective 

function was studied. Four widespread reparameterisation operators were studied, 

zonation, spline, spectral decomposition and pilot point method. 2-D landscape shape of 

them and the outcomes of the optimisation methods gave us rough estimations regarding 

the shape of landscape: 1- all the four problems likely had more than one minimum point, 

as the gradient-based algorithm converged to a local minimum, 2- the corresponding 

landscape shape of the pilot point and spectral decomposition method were rugged, as the 

2-D landscape shapes were rugged, and 3- the landscape shape of spectral was highly noisy 

and rugged, as the simulated annealing converged to a false optimum point. According to 

these observations, as it was expected, it can be concluded that changing the 

reparameterisation operator alters the landscape shape and forms dissimilar objective 

functions. It should be mentioned that not only the reparameterisation operator has 

influence on the shape of landscape, but also the way of its implementation has effects on 

the shape of landscape; for instance, if in the spline method, the location of the gridblocks 

along with their values are assumed variable, a different landscape would be created. The 

locations of gridblocks in spline method cannot be assumed as variables, like pilot point 

approach, as this method is weak in extrapolation, and the gridblocks should be distributed 

in a manner in which mostly interpolations are required.  

In order to endorse the effectiveness of the artificial bee colony algorithm, history 

matching was executed using it for the new created problems (different reparameterised 
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models) and compared with the outcomes of the other three optimisers for the new 

problems. The Levenberg-Marquette algorithm was trapped into local minima in all the 

problems, that is due to its gradient-based search. The genetic algorithm delivered good 

results in all, but in none of the problems, it was the best; it is due to its week exploitation 

ability. The simulated annealing was the best where the zonation and spline were used for 

reparameterisation, but it could not obtain good results for the other two problems, 

especially in the spectral decomposition problems; its poor results is due to its week 

exploration abilities. The artificial bee colony algorithm was the best method where pilot 

point and spectral decomposition were used for the reparameterisation, and in the other two 

problems, it delivered satisfactory results. The reason of its success may lay in its 

capability in balancing its searching abilities, exploration and exploitation.   

To sum up, if the number of variables is low or the reparameterisation can be implemented 

accurately (like, pilot point in this study), stochastic optimisers which have a balance 

between exploration and exploitation are likely capable of approximating the best history 

matched model. The major drawback of ABC is the high CPU time which is a result of the 

slow convergence speed. Gradient-based algorithms needs less computation in comparison 

with stochastic algorithms, and they can be an appropriate choice when a proper initial 

guess is available. LM was not successful in our four problems, but it cannot be concluded 

that it always traps into a local minimum. Its performance significantly depends on the 

objective function specifications.   

In the objective function formulation, a prior knowledge was not used, since the location of 

pilot points were assumed variable and in the other problems it was assumed there is no 

further information about the variables. As mentioned in the literature review, without a 

regularisation term in the objective function when a pilot point technique is used for 

reparameterisation, overshooting occurs, but in our problem, this issue did not happen, 
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since the location of pilot points were assumed variables and a bounded artificial bee 

colony was used. 

The conclusive remarks of this chapter are as following:   

 The artificial bee colony algorithm can deliver suitable results in history matching 

problems.  

 The artificial bee colony algorithm performs better than the three conventional 

algorithms, and its performance is not significantly influenced by the shape of 

landscape. The success presumptively relies on having a balance between 

exploration and exploitation search.  
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Chapter	5	

 

 

 

5. Assessment	of	different	model	management	

techniques	in	history	matching	problems		

This chapter addresses the computational challenges of history matching problems. In the 

previous chapter, it was shown that stochastic optimisers that have a balance between 

exploration and exploitation have a high-chance of being able to approximate the high-

quality history matched model. One of the major drawbacks of stochastic optimisation 

algorithms, generally, is their high computational time. Fitness approximation (proxy-

modelling) approaches can be used to reduce computational expense. To prevent 

misleading of the calibration by the conventional proxy-modelling methods (uncontrolled), 

a model management (evolution-control) technique is proposed to be included. In this 

chapter, the practicality of the controlled fitness approximation approaches is studied. 

Also, a specific adaptive model management technique is designed. The questions, the 

author wishes to answer in this chapter, are: 

a- Is the conventional approach of fitness approximation in history matching effectual?  

b- Do the model management techniques help to increase the quality of fitness 

approximation? 

c- Which model management technique is more efficient? Is the designed model 

management technique superior to the others?  
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This chapter begins with an introduction to the fitness approximation, and it is followed by 

an explanation to the uncontrolled and controlled (proposed) approaches. In the 

methodology section, the designed adaptive technique is described. For this study, a 

genetic algorithm is developed; the algorithm and its corresponding results for different 

benchmarking functions are presented in the GA section. In the results section, history 

matching using different fitness approximation approaches on PUNQ-S3 model is shown. 

Finally, the advantages and drawbacks of different approaches are discussed. This chapter 

is a modified and adjusted version of one of our published papers in a peer-reviewed 

journal, “SAYYAFZADEH, M. & HAGHIGHI, M. 2013. Assessment of different model 

management techniques in history matching problems for reservoir modelling, in APPEA 

Journal, 2013; 53”. 

5.1.					Fitness	approximation		

Recently, an escalation in the interests of the applications of fitness approximation 

techniques has been observed. In fitness approximation methods, the original function 

(OF) which is computationally costly to be evaluated is substituted by a low-cost function 

known as approximation function (AF) or proxy. The proxy should be able to represent the 

specifications of the original function, especially having the same global optimum point. 

The latest advances in fitness approximation for history matching problem were presented 

in the literature review section. The dissimilarities of applied proxy-modelling methods in 

history matching methods are in the type of sampling strategy or the type of proxy model, 

for example artificial neural network (Cullick et al., 2006), polynomial (Li and Friedmann, 

2005) and kriging (Osterloh, 2008) as proxy model, and space filling designs (Latin 

Hypercube Sampling) and partitioning domain (Li and Friedmann, 2005) as an 

experimental design (sampling strategy) .  
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In the following figures, 5.1 to 5.4, the results of fitness approximation on Ackley function 

are shown. In the first two figures, the one-dimensional function is tried to be 

approximated via a neural network using 20 and 200 samples. The samples are selected 

from the domain of the original function using a Latin Hypercube Sampling (LHS) 

strategy. The dot points show the samples taken from the original function. As it can be 

seen, the first approximation function has a low quality which is mainly due to the small 

number of samples, but the second approximation function can model the Ackley function 

appropriately. The difference between the qualities of the functions demonstrates the 

importance of the number of samples. If the function trained by only 20 samples is chosen 

for an optimisation process, a wrong optimum point (in this case, x=0.25 while the true 

solution is x=0) is obtained; while it can be approximated properly in the second trained 

function.  

Figure 5.3 reveals the approximation for a two-dimensional Ackley function. The 

approximation function cannot model the two-dimensional Ackley function accurately via 

200 samples. The global optimum using of the approximation function is [-0.32,0.13] 

which is not very close to the global optimum of the original function. The number of 

samples is increased to 20,000, and the approximation function is drawn (figure 5.4); this 

time, the global optimum point of the approximation function ([-0.04,0.02]) is closer to the 

actual optimum point. It is not adequately close to the actual global point, however a large 

number of samples are used. The required number of samples is expected to be 

significantly increased by the increase of the dimension of optimisation problem.  

The procedure of the uncontrolled approach is similar to the aforementioned numerical 

examples. The uncontrolled fitness approximation approach has the potential of misleading 

of the optimisation to wrong optimum points (Jin, 2005, Yaochu et al., 2001). It is because 

of the limited number of samples and the multi-dimensionality of the search space.  
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Figure  5.1 Approximation of the one-dimensional Ackley function via a neural network with 20 samples 

 
Figure  5.2 Approximation of the one-dimensional Ackley function via a neural network with 200 samples 
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approximation is assembled which benefits from online learning. In the controlled fitness 

approximation methods, the main target is the approximation of the global optimum point 

which can be gained by emphasising on the accuracy of the approximation of the global 

point rather than focusing on modelling the entire model (as it can be see, in the figure 5.4, 

the conventional approach models the Ackley function properly, but in terms of global 

estimation, it is not very reliable).  

 
Figure  5.3 Approximation of the two-dimensional Ackley function via a neural network with 200 samples 

 
Figure  5.4 Approximation of the two-dimensional Ackley function via a neural network with 20000 samples 
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The importance of reduction of computation in history matching problems encouraged us 

to investigate the latest progress of fitness approximation in petroleum engineering 

discipline and also endeavour to design specific methods. In this study, the main emphasis 

is on the applications of three controlled approaches, and for the first time, these three 

approaches are applied and assessed in history matching. Also, a specific adaptive 

evolution-control technique based on heuristic fuzzy rules is designed.  

In this study, a Genetic Algorithm (GA) with a specific crossover is designed and used as 

an optimiser (see section 5.3). Seeing as good results were articulated using the Artificial 

Neural Network (ANN) in several studies (Ramgulam et al., 2007, Sampaio et al., 2009, 

Silva et al., 2006), a feed-forward artificial neural network with a sigmoid hidden neurones 

is applied as a proxy model (ܵሺ݉ሻ ൌ ∑ ௣݂ݒ ቀ൫∑ 	௜௥ଵ݉௜ݓ
ே೘
௜ୀଵ ൯ቁ௉

௣ୀଵ , ݂ሺݔሻ ൌ
ଵ

ଵା௘షೌೣ
	) (see chapter 

two for an introduction to the neural network). In the backpropagation, to estimate the 

variables of the network, the misfit is minimised by a Levenberg-Marquette algorithm. 

Latin Hypercube Sampling (LHS) is implemented for sampling, since LHS is known as an 

effectual technique (Zubarev, 2009, Osterloh, 2008). This sampling strategy was 

introduced by McKay et al. 1979. Using this technique, with a lower number of 

realisations, the space will be sampled. Assume there are Nm variables and n samples are 

needed. Two matrixes (P and R) are required to generate an n×Nm matrix of the samples. R 

is an n×Nm matrix in which each element is random number between [0-1]. P is an n×Nm 

matrix in which each column is a random permutation of 1 to n. The elements of the 

sampling matrix (V) are generated according to the following formula (Olsson and 

Sandberg, 2002):  

௜ܸ௝ ൌ ଵିܨ ൬ ௜ܲ௝ െ ܴ௜௝
݊

൰																																																																																																																							ሺ1ሻ 

Where, F is the inverse of the cumulative distribution function. In this study, the 

probability is uniform, as we seek to select samples from all the space.  
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Based on the mentioned methods, the fundamentals of a framework are provided in 

MATLAB.  

5.2.					Methodology	

In this section, the four different approaches of fitness approximation, a- uncontrolled 

fitness approximation approach (UFA) (the conventional approach in petroleum 

discipline), b-fitness approximation with an individual-based evolution-control approach 

(FAIBEC) (a random-strategy), c-fitness approximation with a population-based evolution-

control approach (FAPBEC) (a random strategy), d-fitness approximation with an adaptive 

evolution-control approach (FAAEC), in general. Then, the designed adaptive evolution-

control approach is described.  

5.2.1.					Uncontrolled	fitness	approximation	approach	(UFA)	

The uncontrolled fitness approximation approach consists of the following steps: 1- a set of 

samples are selected using the LHS method (lhsdesign function carries out this task), and 

the set of samples are evaluated by the OF; 2- then, a neural network is trained by the set of 

samples with their corresponding fitness values, and then validated, (this step is carried out 

by the fitnet function (MathWork, 2011c)), 3- afterward, the global optimum is sought by 

the GA, in this process the AF (proxy) is only used to evaluate all the chromosomes 

(individuals) in each generation; 4- the achieved solution, after meeting the stopping 

criterion, is used as the optimum point (history matched model). The procedure (pseudo-

code) is shown below. In this approach, the OF is utilised only in the initial stage for 

evaluating the samples, and it is not being used during the procedure of optimisation. 

Stopping criterion is the number of generations (Gen_No.Limit). One of the advantages of 

this approach is that computational costs are considerably reduced in comparison with the 

regular approach of history matching (without proxy-modelling) in which the OF is only 
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being used. Another benefit of using this approach over the other three fitness 

approximation approaches and also over the regular approach of history matching is that a 

lose coupling between the reservoir simulator and optimisation algorithm would be 

enough, as the reservoir simulator is not needed during the optimisation.  

% Select a set of samples using LHS 
S = LB+(UB-LB)×lhsdesign(NoSamples,NoVariables)  
for i=1:NoSamples 
     fitness (i) = OF(S(i,:)); 
end 
% Train ANN including validation of ANN by 15% samples 
Network = ANN(S,fitness); 
% initial population generation 
Pop = LB+(UB-LB)×rand([PopSize NoVar]); 
% Evaluate the Pop using the original function 
for i=1:PopSize 
     Fit(i)=Network(Pop(i,:)); 
end 
% optimization starts 
Gen_No=0; 
while Gen_No<Gen_No.Limit 
     Gen_No=Gen_No+1; 
     NewPop = GAoperators(Pop, Fit); 
     Pop = NewPop; 
     for i=1:PopSize 
          Fit(i) = Network(Pop(i,:)); 
     end 
     [MinFit Index] = min(Fit); 
     Global = Pop(Index,:); 
     FitnessGlobal = MinFit; 
end 

5.2.2.					Fitness	approximation	with	an	individual‐based	evolution‐control	

approach	(FAIBEC)	

The steps of this approach are similar to the UFA approach and the change is in the third 

step which is as follows: the global optimum is searched by the GA, in this process the OF 

and AF are both used to evaluate the new chromosomes. In this approach, the OF is 

utilised in the initial stage for evaluating the initial samples, and also it is being used in the 

process of optimisation by evaluating some of the chromosomes of each population in 

every generations. The rests of chromosomes are evaluated by the AF. A probability is 

used to specify the number of chromosomes needed to be evaluated by OF. This 

probability is signed by pIBEC and recommended to be 50% (Yaochu et al., 2001). The 

chromosomes required to be evaluated by the OF are selected randomly in each population. 

In each specific frequent (SF) of generation number (evolution-control cycle), the ANN is 
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retrained by the old and new samples, and this process supplies an online learning which 

can increase the quality of trained proxy. The new samples are the chromosomes which are 

evaluated by the OF during the optimisation. The procedure (pseudo-code) is shown 

below. In this approach, there are two stopping criteria: 1- the number of generations and 

2- the number of the OF evaluations (OFEL). Despite the computational cost reduction, the 

main advantage of this approach over the first one is that by this approach it is promising 

to be capable of redirecting the optimisation direction to the right direction, and 

consequently it can deliver high-quality optimum points. The main difficulty of this 

approach is in assigning a proper predefined pIBEC. Assigning an inappropriate probability 

causes inefficiency of the approach. The other drawback is that parallel processing cannot 

be applied proficiently in this approach.  

% Select a set of samples using LHS 
S = LB+(UB-LB)×lhsdesign(NoSamples,NoVariables)  
for i=1:NoSamples 
     fitness (i) = OF(S (i,:)); 
end 
% Train ANN including validation of ANN by 15% of the samples 
Network=ANN(S,fitness); 
% initial population generation 
Pop=LB+(UB-LB)×rand([PopSize NoVar]); 
% Evaluate the Pop using the original function 
for i=1:PopSize 
     Fit(i)=Network(Pop(i,:)); 
end 
% optimization starts 
Gen_No=0; 
j=NoSamples; 
pIBEC  = 0.5; 
while (Gen_No<Gen_No.Limit) or  (j <=OFEL) 
     Gen_No= Gen_No+1; 
     NewPop=GAoperators (Pop, Fit); 
     Pop=NewPop; 
     for i=1:PopSize 
          R=rand; % random number between 0,1 
               if R<= pIBEC          
                    Fit(i)= OF(Pop(i,:)); 
                    j=j+1; 
                    S(end+1,:)=Pop(i,:); 
                    fitness(end+1)=Fit(i); 
               else 
                    Fit(i)=Network(Pop(i,:)); 
               end 
     end 
     if Gen_No==SF 
          Network=ANN(S,fitness); 
     end 
     [MinFit Index]=min(Fit); 
     Global=Pop(Index,:); 
     FitnessGlobal=MinFit; 
end 
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5.2.3.					Fitness	approximation	with	a	population‐based	evolution‐control	

approach	(FAPBEC)	

The steps of this approach are similar to UFA approach and the only change is in the third 

step which is as follows: the global optimum is looked for by the GA, in this process the 

OF and AF are both used to evaluate all the new chromosomes. In this approach, the OF is 

utilised in the initial stage for evaluating the initial samples and also it is being used in the 

process of optimisation by evaluating the whole population (all the individuals of the 

population) in some of the generations. The populations in the rests of generations are 

evaluated by the AF. A probability is used to specify the number of populations needed to 

be evaluated by OF in each evolution-control cycle. This probability is signed by pPBEC and 

recommended to be 50% (Yaochu et al., 2001). The populations required to be evaluated 

by the OF are selected randomly. In each specific frequent (SF) of generation numbers 

(evolution-control cycle), the neural network is retrained by the old and new samples, and 

this process supplies online learning as well. The procedure (pseudo-code) is shown below. 

In this approach, the stopping criteria are similar to the second approach. Despite the 

computational cost reduction, the main advantage of this approach over the UFA is that it 

is promising to be capable of redirecting the optimisation direction to the right direction, 

and consequently it can deliver high-quality optimum points. An advantage of this 

approach over the previous approach is that paralleling process can be carried out 

efficiently. The main difficulty is that a proper predefined pPBEC cannot be determined, and 

it may cause inefficiency of the approach and oscillations in the optimisation process. 

% Select a set of samples using LHS 
S = LB+(UB-LB)×lhsdesign(NoSamples,NoVariables)  
for i=1:NoSamples 
     fitness (i) = OF(S (i,:)); 
end 
% Train ANN including validation of ANN by 15% of the samples 
Network=ANN(S,fitness); 
% initial population generation 
Pop=LB+(UB-LB)×rand([PopSize NoVar]); 
% Evaluate the Pop using the original function 
for i=1:PopSize 
     Fit(i)=Network(Pop(i,:)); 
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end 
% optimization starts 
Gen_No=0; 
j=NoSamples; 
pPBEC=0.5; 
while (Gen_No<Gen_No.Limit) or  (j <=OFEL) 
     Gen_No= Gen_No+1; 
     NewPop=GAoperators (Pop, Fit); 
     Pop=NewPop; 
     R=rand; % random number between 0,1 
     if R<= pPBEC     
          for i=1:PopSize 
               Fit(i)= OF(Pop(i,:)); 
               j=j+1; 
               S(end+1,:)=Pop(i,:); 
               fitness(end+1)=Fit(i); 
          end 
     else 
          for i=1:PopSize 
               Fit(i)=Network(Pop(i,:)); 
          end 
     end 
     if Gen_No==SF 
          Network=ANN(S,fitness); 
     end 
     [MinFit Index]=min(Fit); 
     Global=Pop(Index,:); 
     FitnessGlobal=MinFit; 
end 

5.2.4.					Fitness	approximation	with	an	adaptive	evolution‐control	approach	

(FAAEC)	

In second and third approach, the probabilities are predefined and assumed fixed in whole 

process. Specifying predefined probabilities may cause inefficiency, since a lower 

probability, in some cases, can deliver similar results, or, in some cases, a higher 

probability is required to control the optimisation direction, due to low-quality trained 

proxies. To assign a proper probability, a sensitivity analysis is needed which is time-

consuming. In adaptive approaches, it is sought to update the probabilities in each 

evolution-control cycle, based on the fidelity of proxies, i.e., when an AF provides high-

quality results, the probabilities should be reduced, and in contrast, when the AF cannot 

provide high-quality results, the probabilities should be increased.  

In this study, a random-strategy population-based and a best-strategy individual-based 

technique are merged, while an adaptive probability for the number of populations 

evaluated by OF is used. The corresponding probability for the number of individuals 

needed to be evaluated by the OF in each generation is set to 0.25 or 1. It is equal to 1 in 
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those generations which are under a population-control, and it is equal to 0.25 in the rests 

of generations. The 25% chromosomes are not selected randomly; 25% of the best 

chromosomes are selected and reevaluated by the OF, i.e., firstly all of the chromosomes 

are evaluated by the AF, ranked, and the first 25% are reevaluated. The probability of the 

number of populations (pAEF) which are needed to be entirely evaluated by the OF varies 

from 0.3 to 1 adaptively based on fidelity of the AF. The initial pAEF is assumed 100%. 

Hence, an initial training is not required, and all the chromosomes in first evolution-control 

cycle are evaluated by the OF. The pAEF will be updated based on the error of AF in each 

evolution-control cycle. The error of the AF is measured by equation 2 which shows the 

fidelity of the AF. N is the number of the OF evaluations in each evolution-control cycle. 

The error is updated in each evolution-control cycle. It was suggested to update the 

probability based on heuristic fuzzy rules (Yaochu et al., 2001), thus, the following 

formula is used to update the probability (equation 3). Emax is maximum allowed error of 

the AF and assumed 2.5 (this value (2.5) is picked by carrying out a sensitivity analysis). 

In each evolution-control cycle, the samples are used to retrain the proxy which provides 

an online-learning sample. After passing 90% of allowed original function evaluations, the 

pAEC is changed to 1 to provide accurate exploitation of search space, for the reason that the 

AF cannot be a good tool for exploitations of search space4. Thus, by switching the 

probability to 1, the OF evaluates all the new chromosomes in last generations. The 

stopping criteria are similar to the second and third approach. The procedure (pseudo-code) 

is shown below. 

% Select a set of samples using LHS 
S = LB+(UB-LB)×lhsdesign(NoSamples,NoVariables)  
 
for i=1:NoSamples 
     fitness (i) = OF(S (i,:)); 
end 
 
% initial population generation 
Pop=LB+(UB-LB)×rand([PopSize NoVar]); 
 
% Evaluate the Pop using the original function 
for i=1:PopSize 

                                                 
4 It is assumed after passing 90% of OF evaluations, the global optimum point is estimated roughly, and in the other 10% 
evaluations, it is sought to increase the accuracy of the approximation.  
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     Fit(i)=OF(Pop(i,:)); 
end 
S=Pop; 
fitness=Fit; 
% optimization starts 
Gen_No=0; 
j= PopSize; 
k=0; 
p=0.25; 
pAEC =1 
 
while (Gen_No< Gen_No.Limit) or  (j <=OFEL) 
     Gen_No= Gen_No+1; 
     NewPop=GAoperators (Pop, Fit); 
     Pop=NewPop; 
     R=rand; % random number between 0,1 
     if R<= pAEC     
          for i=1:PopSize 
               Fit(i)= OF(Pop(i,:)); 
               j=j+1; 
               S(end+1,:)=Pop(i,:); 
               fitness(end+1)=Fit(i); 
               k=k+1; 
               E(k)=(Fit(i)-Network(Pop(i,:)))^2;  
          end 
     else 
          for i=1:PopSize 
               Fit(i)=Network(Pop(i,:)); 
          end 
          [temp Index]=rank(Fit); 
          for i=1:ceil(p×PopSize)     
               Fit(Index(i))=OF(Pop(Index(i),:)); 
               j=j+1; 
               S(end+1,:)=Pop(i,:); 
               fitness(end+1)=Fit(i); 
               k=k+1; 
          end 
     end 
     if mod(Gen_No,SF)==0 
          Network=ANN(S,fitness); 
          Ec=1/k*(sum(E)); 
          pAEC= pAECmin+Ec/Emax*(pAECmax- pAECmin); 
          k=0; 
     end 
     if j>9000 
         pAEC=1; 
     end 
     [MinFit Index]=min(Fit); 
     Global=Pop(Index,:); 
     FitnessGlobal=MinFit; 
end 
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By this adaptive evolution-control, there is always an evolution-control: in some 

generations there is an individual-based, and in the rests of the generations there is a 

population-based. This approach is expected to be more efficient than the other three 

approaches, since the probability is changed based on the fidelity of the AF and also the 

risk of misdirection can be reduced. Figure 5.5 shows the procedure of the adaptive 
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evolution control technique in one evolution control cylce. As it can been seen, the 

individuals of each population will be evaluated all by the original function or 

approximation function, randomly. After each evolution control cycle, the proxy will be 

retrained and the probability of evolution-control will be updated.  

 
Figure  5.5 Procedure of the adaptive evolution control in each evolution cycle 

The global optimum of the two-dimensional Ackley function is approximated using this 

approach, in order to have an initial validation of the approach. The uncontrolled approach 

trained by 20,000 samples reached to the following point [-0.04,0.02] ,while the designed 

adaptive approach, with 10,000 original function evaluation points, reached to the 

following point, ([-4×10-10,-6×10-11]). It delivered significantly superior result in 

comparison with the conventional approach. The algorithm is also applied for the 

benchmarking functions (table 2.2). The following results (fitness values) are achieved 

with 10,000 original function evaluations, 0.0117, 0.2408, 0.0009, -4071, 0.99 respectively 

for Ackley, Griewank, Sphere, Schwefel and Rastrigin.  
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5.3.					Genetic	algorithm	

In the nature, stronger (most adaptive) individuals tend to survive more than their peers 

and consequently, they can generate a more successful offspring. When selection is 

persistent, these individuals become universal. Based on Darwin’s theory (natural 

evolutions), the Genetic Algorithm (GA) was inspired (Holland, 1975). It has been 

extensively used for optimisation problems during last decades.  

The designed genetic algorithm is real-coded and consists of a number of steps: initial 

population generation, selection, crossover, mutation and recombination. A specific 

crossover is developed to keep a balance between the main capabilities, exploration and 

exploitation. The procedure is as follows:  

1- At the start, the number of variables (Nvar), their corresponding domains (lower 

bound [LB] and upper bound [UP]) and objective (fitness) function (f(x)) are 

defined.  

2- An initial population with a specified size (Npop) is generated randomly over the 

given domain.  

3- Every chromosome of the population is evaluated based on f(x).  

4- Four chromosomes are selected as parents for mating via a tournament selection 

with a specified tournament size (Ntour).  

5- Five children are produced with the selected parents using a designed crossover.  

6- The selection and crossover are repeated until pc×Npop chromosomes are generated; 

pc is the probability of crossover operator.  

7- The pc×Npop chromosomes are moved to the current population (in first generations, 

the current population is the initial population), and pc×Npop chromosomes of the 

current population are removed, these chromosomes are selected randomly. This 

step is called recombination.  
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8- pm×Npop chromosomes of the recombined population are randomly selected and 

mutated; the uniform mutation operator is used, i.e., a randomly chosen genome of 

the selected chromosomes is replaced by a random number in the corresponding 

variable domain. By completing this step, the new population is created. 

9- The best chromosome of the current population (elite) in terms of fitness value 

survives by substituting it by the worst chromosomes of the new population.  

10- Each chromosome of the new population is evaluated by f(x), after this step, the 

new population is become the current population.  

11- The steps 4 to 10 are repeated till stopping criteria are met. 

The custom crossover is constructed by combining different operators. The scattered 

(uniform) crossover is a powerful operator for exploration of solution space and its major 

drawback is its week exploitation capabilities (Gwiazda, 2007). The weighted interpolation 

is an appropriate operator for smooth landscapes and brings quick convergences to 

optimum in smooth landscapes (Gwiazda, 2007). Heuristic crossover has a great ability in 

exploitation of search space (Gwiazda, 2007). Normally in crossover operators, a child is 

generated by the selected parents, but in this study’s crossover, each set of parents (which 

are four chromosomes) is used for the generation of five new chromosomes (children). 

Three of the children are constructed by the mentioned operators above, i.e. one 

chromosome (child) is generated via the scattered crossover with the probability of 50% 

between two of the selected chromosomes (parents), one chromosome is generated via the 

heuristic operator (with a ratio of 1.2) using the other two selected chromosomes, and one 

chromosome is generated via the weighted interpolation between the four selected 

chromosomes. The weighing factors for interpolations are calculated based on the fitness 

values of the selected chromosomes. Higher weights are allocated for the chromosomes 

with lower fitness values. In order to provide high-resolution exploitations, uniformly 

random noise with zero means and variable ranges are added to the produced 
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chromosomes. Noise is added to the chromosome produced by the interpolation crossover, 

and another noise is added to the chromosome produced by the scattered crossover. It 

should be mentioned that the ranges of the noise are varied by the generation number 

exponentially, i.e. by increase of the generation number, the ranges are reduced which 

accordingly causes higher-resolution exploitations.  

In order to evaluate the custom crossover, five famous benchmarking functions (Sphere, 

Griewank, Schwefel, Ackley and Rastrigin) are utilised (Karaboga and Basturk, 2008, 

Molga and Smutnicki, 2005). These functions are a combination of simple, convex and 

unimodal, and noisy and complicated landscapes. The number of variables, the 

corresponding global optimum points and mathematical formulas are shown in table 5.1.  

The results of the custom crossover are compared with two famous operators, scattered and 

heuristic on each of the benchmarking functions. The criterion of assessing is fitness value 

at the achieved point. Any operator which reaches to a lower value of fitness can be called 

a successful operator. To make a fair comparison between the operators, each optimisation 

is executed 7 times with different seed numbers, best, mean and worst results are reported. 

A same initial population and same GA options, given in table 5.2, are used by all. The 

outcomes are shown in table 5.3.  

Table  5.1 Benchmarking functions 

Function Mathematical formula 
f(x) 

Bounds Global optimum 
x∞ 

No. of 
variables 

Sphere 
݂ሺݔሻ ൌ෍ݔ௜

ଶ

௡

௜ୀଵ

 
-5.12 ≤ xi ≤ 5.12 ݂ሺݔሻ ൌ 0 

௜ݔ	ݎ݋݂ ൌ 0, ݅ ൌ 1…݊ 
n=10 

Rastrigin 
݂ሺݔሻ ൌ 10݊ ൅෍ሺݔ௜

ଶ െ 10cos ሺ2ݔߨ௜ሻሻ

௡

௜ୀଵ

 
-5.12 ≤ xi ≤ 5.12 ݂ሺݔሻ ൌ 0 

௜ݔ	ݎ݋݂ ൌ 0, ݅ ൌ 1…݊ 

n=10 

Schwefel 
݂ሺݔሻ ൌ෍ሺെݔ௜sin ሺඥ|ݔ௜|ሻ

௡

௜ୀଵ

 
-500 ≤ xi ≤ 500 ݂ሺݔሻ ൌ െ418.9829݊ 

௜ݔ	ݎ݋݂ ൌ 420.9687, ݅ ൌ 1…݊ 

n=10 

Griewank 
݂ሺݔሻ ൌ

1
4000

෍ݔ௜
ଶ െෑcos ሺݔ௜/

௡

௜ୀଵ

௡

௜ୀଵ

√݅ ሻ ൅ 1  
-600 ≤ xi ≤ 600 ݂ሺݔሻ ൌ 0 

௜ݔ	ݎ݋݂ ൌ 0, ݅ ൌ 1…݊ 

n=10 

Ackley 

݂ሺݔሻ ൌ െ20 exp൮െ0.2ඩ
1
݊
	෍ݔ௜

ଶ

௡

௜ୀଵ

൲ െ exp ሺ
1
݊
෍cos ሺ2ݔߨ௜

௡

௜ୀଵ

ሻሻ ൅ 20

൅ exp	ሺ1ሻ 

-32.76 ≤ xi ≤ 32.76 ݂ሺݔሻ ൌ 0 
௜ݔ	ݎ݋݂ ൌ 0, ݅ ൌ 1…݊ 

n=10 

 

Table  5.2 GA options 

Population       
size (Npop) 

Stopping    
criteria 

Initial 
population 

Mutation & its 
probability 

Crossover 
probability 

Number of  
elites 

Tournament   
size (Ntour) 

40 Nogen = 1500 Uniform Uniform & p=0.1 p=0.9 1 4 
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By comparing the outcomes of different crossover operators, it can be concluded that the 

custom crossover provides better results, 1 to 16 orders of magnitudes improvement. The 

custom crossover delivers acceptable optimum points in all the functions. Figures 5.6 to 

5.10 reveal the average fitness value of all 7 runs versus the generation number during 

optimisation via the three different crossover operators for the five benchmarking 

functions. The custom crossover, not only provides better final results in comparison with 

the other two crossovers, but also it delivers a quicker convergence.  

Table  5.3 Achieved fitness values after optimisation using three crossover operators for different functions 

Crossover  Fitness Value Ackley Sphere Rastrigin Griewank Schwefel 

Scattered Worst 3.76E-01 3.03E-03 4.22E-01 1.01E+00 -4187.60 

Mean 5.64E-01 1.47E-03 2.37E-01 4.95E-01 -4188.48 

Best 7.54E-01 8.16E-04 6.01E-02 2.04E-01 -4189.27 

Heuristic Worst 3.14E-01 2.14E-03 6.55E-02 4.13E-01 -4189.01 

Mean 1.55E-01 8.61E-04 2.74E-02 1.99E-01 -4189.31 

Best 4.11E-02 1.07E-04 2.51E-03 2.35E-02 -4189.79 

Custom Worst 1.86E-08 6.15E-17 1.13E-07 3.61E-01 -4189.83 

Mean 1.04E-08 1.20E-17 1.62E-08 1.49E-01 -4189.83 

Best 1.44E-09 3.87E-19 1.55E-12 7.62E-02 -4189.83 

 

From the figure 5.6 to 5.10, it can be found out that the slope of fitness reduction over 

generation number using the custom crossover is higher than the other two operators which 

demonstrates its strength in quick reduction of fitness. The slopes of the reduction over the 

first 500 generations are reported in table 5.4. The outcomes demonstrate that the custom 

crossover can deliver almost significant faster reduction in fitness value for different 

functions in comparison with the other two operators. It should be pointed out that fast 

reduction of misfit is not vital as the ability of approximating the global optimum, i.e., if an 

algorithm has the ability of approximating the global optimum properly, then it can be 

evaluated based on other terms such as speed of convergence.  

 Table  5.4 Comparison of the achieved slopes of fitness reduction in first 500 generations using different 
crossover operators 

Functions Scattered Heuristic Custom 

Ackley -0.0019 -0.0022 -0.00912 

Sphere -0.0063 -0.0072 -0.018 

Rastrigin -0.0039 -0.0031 -0.0034 

Schwefel -5.54 -5.59 -5.68 

Griewank -0.0040 -0.0045 -0.0055 
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Figure  5.6 Comparison of the crossover operators on Ackley function 

 
Figure  5.7 Comparison of the crossover operators on Sphere function 

 
Figure  5.8 Comparison of the crossover operators on Rastrigin function 
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Figure  5.9 Comparison of the crossover operators on Griewank function 

 
Figure  5.10 Comparison of the crossover operators on Schwefel function 

The custom crossover has a great ability of exploitation conducted by the uniform noise; 

also, the scattered and heuristic crossover bring a thorough search of landscape by their 

exploration and exploitation abilities, and the weighted interpolation provided significant 

acceleration in converging to the optimum point. It should be stated that the improvement 

of optimisation is not the emphasis of this study. Any population-based optimisation 

algorithm can be used in these methods, but the controlled fitness approximation methods 

are better fit into evolutionary algorithms rather than into swarm intelligence algorithms. 

That is why a genetic algorithm is used. In the previous chapter, it was shown that a 

stochastic optimiser that has a balance between exploitation and exploration has more 
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chance of successfulness. Thus, the genetic algorithm is designed in a way to have a 

balance between the abilities. It may not be the most powerful GA.   

5.4.					Results	

In this section, the application of the different fitness approximation approaches in a 

history matching problem, PUNQ-S3 reservoir model, is reviewed.  

5.4.1.					Case	Study	

PUNQ-S3 is a reservoir model widely used for benchmarking different history matching 

algorithms. This case was provided by Imperial Collage London University. It is a part of a 

real field performed by Elf Exploration Production. The reservoir model consists of 

19×28×5 gridblocks and has 1761 active blocks. The reservoir is connected to a fairly 

strong aquifer and also, it has a gas cap. There are 6 production wells and can be seen in 

figure 5.11. More detail about this model can be found in the following studies (Romero et 

al., 2000, Hajizadeh et al., 2011a). The corresponding history for this case study consists of 

1107 elements which are field cumulative gas production, cumulative field water 

production, cumulative field oil production, well water-cuts, well gas oil ratios, well oil 

rates and well bottomhole pressures for 2936 days at 42 time steps. Gaussian noise with 

zero mean and 2% standard deviation were added to the observed data (history). The 

observed data are assumed uncorrelated.  

The uncertain parameters (decision variables) and their corresponding domains are shown 

in table 5.5. The variables are skin factors, porosities and permeabilities multipliers, 

aquifer parameters and connate water saturations. As it can be seen in table 5.5, there are 

36 decision variables which are all continuous, the domain of all decision variables are 

altered to be in a same rang ([0.8-1.2]). As the variables are not the spatial property of the 
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reservoir (they are designed in this way, based on Zubarev et.al (2009) parameterisation), 

reparameterisation is not required which results in more emphasis on the fitness 

approximation application. The last column of the table shows the actual values (mR) (the 

true solution) for each decision variable in the altered domains.  

 
Figure  5.11 PUNQ-S3 reservoir model 

The objective function is defined as equation 4, using a Bayesian inversion context by an 

assumption of Gaussian measurement errors. m is a column vector which its elements are 

the uncertain parameters. g is the forward operator in which it is required to execute 

ECLIPSE E100. dobs is a column vector which consists of the observed data (the reference 

of calibration). In history matching it is required to find an m which minimises S(m). Thus, 

it is required to apply an optimisation algorithm to find the global optimum point, the 

maximum of posterior distribution (MAP), of this 36-dimensional continuous search space. 

The corresponding fitness value for mR (S(mR)) is 425.73. To shrink the nonlinearity of the 

OF, it is transformed from equation 4’s form to equation 5’s form (Zubarev, 2009).  
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ଶଵଵ଴଻
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																																																																																																																				ሺ4ሻ 
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Table  5.5 Decision variables and their corresponding domains 

Element No. of 
variables 

Domains Altered domains Actual 
solution 

Actual solutions in 
modified domain 

Porosities’ multipliers in each 
layer 

5 [0.8…1.2] ×1                   
[0.8…1.2] 

1 for each 
layer 

1 for each layer 

Permeabilities’ multipliers in x 
direction in each layer 

5 [0.8…1.2] ×1                   
[0.8…1.2] 

1 for each 
layer 

1 for each layer 

Permeabilities’ multipliers in y 
direction in each layer 

5 [0.8…1.2] ×1                   
[0.8…1.2] 

1 for each 
layer 

1 for each layer 

Permeabilities’ multipliers in z 
direction in each layer 

5 [0.8…1.2] ×1                   
[0.8…1.2] 

1 for each 
layer 

1 for each layer 

Pressure of first aquifer 1 [234bars…351bars] /292.5             
[0.8…1.2] 

234 bars 0.8 

Pressure of second aquifer 1 [234bars…351bars] /292.5             
[0.8…1.2] 

234 bars 0.8 

Permeability of first aquifer  1 [110md…165md] /137.5             
[0.8…1.2] 

137.5 md 1 

Permeability of second aquifer 1 [110md…165md] /137.5             
[0.8…1.2] 

137.5 md 1 

Connate water saturation 1 [0.149… 0.225] ×5.35              
[0.8…1.2] 

0.2 1.07 

Skin factors 11 [-5…50] /137.5+0.836  
[0.8…1.2] 

5 for all 11 
variables 

0.8727 for all 11 
variables 

 

In order to provide a fair comparison between all four approaches, a limit is set for 

computation time, i.e., once any of the approaches reaches to the limit, the optimisation 

will be terminated. The fitness value at the achieved optimum point S(m∞) will be used for 

comparison. The computation time for training the proxy and the evaluation of each point 

using the proxy is assumed negligible in contrast with the computational cost of the 

original function evaluations. The computational cost limit is that the approach is not 

allowed to evaluate the original function more than a threshold (OFEL) which is set to 

10,000. The required CPU time to evaluate the original fitness function is about 8 second 

on a personal computer with the following configurations: CPU Intel i-7-2820QM and 8 

GB ram. The required CPU time on the same computer for evaluating the approximation 

function is about 0.02 second; that is why the corresponding computation of approximation 

function evaluation is assumed negligible. As mentioned before, in each run (seed number) 

for each method, the computation limit is 10,000 original fitness function calls; therefore 

each result takes almost 1 day to be calculated using the aforementioned machine.  

UFA uses the all 10,000 OF evaluations in the initial stage to train the proxy; hence, the 

stopping criterion in this approach will be the number of generations (2000). FAIBEC and 

FAPBEC approaches use 1,000 OF evaluations in the initial stage to train an initial proxy 
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and make use of the rests (9,000) during the optimisation process, i.e., once the number of 

OF evaluations reaches to 10,000, the optimisation will be stopped. In the adaptive 

approach, an initial training is not required, thus the all 10,000 evaluations are made 

through the optimisation process. In FAIBEC and FAPBEC approach, the number of OF 

evaluations in each evolution-control cycle is fixed, but in FAAEC the number of OF 

evaluations is varied based on the fidelity of AF. Since the computation time is same for 

approaches, any approach which reaches to a lower fitness value can be called a better 

approach.  

To provide high-quality comparison: 1- history matching using each approach is executed 

5 times with different seed numbers and the average fitness values are used for the 

comparison, 2- same GA options given in table 5.6 are used by all, and 3- a same number 

of hidden neurones (16) for the ANN is used by all. To select this value for the number of 

hidden neurones, a sensitivity analysis has been done by evaluating 50 new samples via the 

proxy trained by the 10,000 samples. In figure 5.12, fitting errors calculated by equation 2 

are drawn versus the number of hidden neurons. Using 12 to 25 hidden neurones almost 

similar performance is achieved; among them, the ANN with 16 hidden neurones has the 

lowest error and thus is picked5. It should be mentioned that the quality of fitting may be 

enhanced by increasing the number of hidden neurones (more than 30), by the increase of 

neurones, the computation of fitting will be more expensive. As in this study, the emphasis 

is on the effect of model management on the quality of final model, an insignificant misfit 

is favoured to be able to distinguish between the approaches.  

Table  5.6 GA options for carry out history matching 

Population       
size (Npop) 

Stopping    criteria Initial 
population 

Mutation & its 
probability 

Crossover 
probability 

Number of  
elites 

Tournament   
size (Ntour) 

40 Nogen = 2,000 or 
OFEL=10,000 

Uniform Uniform & 
p=0.1 

p=0.9 1 4 

                                                 
5 The number of hidden neurons also could be determined by the R2 value of validation set, but as the samples are 
selected randomly in each run, and also similar R2 was obtained by each set. We decided to distinguish between them 
according to the calculated misfit based on the same 50 new samples.  
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5.4.1.1.					History	matching	using	UFA	

The results of this approach are shown in table 5.7 and figure 5.13 to 5.17. The average, 

best and worst result in terms of fitness values are bolded in the table. In the figures, two 

graphs are shown: the red solid line shows the fitness value in each generation number 

which is calculated based on the approach calculations, and the blue dashed line shows the 

fitness value in each generation based on OF (S(mi)). As it can be seen, the graphs in all 

five seed numbers are not matched on each other; it shows that the approach misdirected 

the optimisation. The other mean for assessment is the average fitness value based on OF 

(
ଵ

ହ
∑ ቀܵ൫݉∞೔൯ቁ
ହ
௜ୀଵ ), it should be close enough to 425.73. This criterion is not seen for this 

approach. The average of the five runs is 86,697 which is too far from the fitness value at 

the global optimum point (425.73). The difference between each seed number is due to the 

random selection of the samples via ANN for training and validation which results in 

different approximation function and accordingly different optimum points.  

 

 
Figure  5.12 Neural network performance versus the number of hidden neurones 

Table  5.7 Fitness values for the uncontrolled fitness approximation approach 

Seed No. 1 2 3 4 5 Average Best Worst 

Fitness Value at Achieved  
optimum point (S(m)) 

182,170 
 

191,606 
 

59,006 
 

93,153 25,529 86,697 25,529 191,606 

 
 

Number	of	Hidden	 Neurones
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Figure  5.13 History matching using the uncontrolled fitness approximation, seed No.#1 

 
Figure  5.14 History matching using the uncontrolled fitness approximation, seed No.#2 

 
Figure  5.15 History matching using the uncontrolled fitness approximation, seed No.#3 

 
Figure  5.16 History matching using the uncontrolled fitness approximation, seed No.#4 
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Figure  5.17 History matching using the uncontrolled fitness approximation, seed No.#5 

5.4.1.2.					History	matching	using	FAIBEC		

The results are shown in table 5.8 and figure 5.18 to 5.22. As it can be seen, the average 

fitness value (1,746) is significantly lower than the previous approach. The two graphs are 

acceptably matched on each other, however, a number of deviations can be seen.  

 
Figure  5.18 History matching using the FAIBEC seed No.1 

 
Figure  5.19 History matching using the FAIBEC seed No.2 
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Figure  5.20 History matching using the FAIBEC seed No.3 

 
Figure  5.21 History matching using the FAIBEC seed No.4 

 
Figure  5.22 History matching using the FAIBEC seed No.5 

Table  5.8 Fitness values for fitness approximation with the individual-based evolution-control approach 

Seed No. 1 2 3 4 5 Average Best Worst 

Fitness Value at Achieved  
optimum point (S(m)) 

667 1,978 2,155 1,651 3,458 1,746 667 3,458 

5.4.1.3.					History	matching	using	FAPBEC		

The results are shown in table 5.9 and figure 5.23 to 5.27. As it can be seen, the average 

fitness value (951) is significantly lower than the first approach, and considerably lower 
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than the second approach. The two graphs are acceptably matched on each other, however, 

a number of oscillations can be seen.  

 
Figure  5.23 History matching using the FAPBEC seed No.1 

 
Figure  5.24 History matching using the FAPBEC seed No.2 

 
Figure  5.25 History matching using the FAPBEC seed No.3 

 Table  5.9 Fitness values for fitness approximation with the population-based evolution-control approach 

Seed No. 1 2 3 4 5 Average Best Worst 

Fitness Value at Achieved  
optimum point (S(m)) 

1,236 
 

562 918 1,083 1,125 951 562 1,236 
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Figure  5.26 History matching using the FAPBEC seed No.4 

 
Figure  5.27 History matching using the FAPBEC seed No.5 

5.4.1.4.					History	matching	using	FAAEC		

The results are shown in table 5.10 and figure 5.28 to 5.32. As it can be seen, the average 

fitness value (841) is less than the other three approaches. Also, the two graphs are 

perfectly matched on each other which shows that the controlled approach could redirect 

the optimisation direction into a right path.  

 
Figure  5.28 History matching using the FAAEC seed No.1 
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Figure  5.29 History matching using the FAAEC seed No.2 

 
Figure  5.30 History matching using the FAAEC seed No.3 

 
Figure  5.31 History matching using the FAAEC seed No.4 

 
Figure  5.32 History matching using the FAAEC seed No.5 
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Table  5.10 Fitness values for fitness approximation with the adaptive evolution-control approach 

Seed No. 1 2 3 4 5 Average Best Worst 

Fitness Value at Achieved  
optimum point (S(m)) 

1181 553 1602 513 
 

785 841 513 1602 

 

The outcomes of the four approaches indicate that i- the controlled approach delivers 

significantly better results, and ii- between the controlled approaches, the customised 

adaptive approach delivers better results. Figure 5.33 shows the misfit after history 

matching for bottomhole pressure of producer 15, as an example for comparison of the 

methods. The black curve is history (true behaviour), the dashed blue curve is the 

simulation result achieved by the uncontrolled approach and the red curve is the simulation 

result achieved by the adaptive approach. As it can be seen, the obtained result by the 

adaptive approach are much more consistent with the history data than the outcome of the 

uncontrolled approach.  

 
Figure  5.33 Comparison of achieved mismatch after history matching by the uncontrolled and the adaptive 

approach for well bottomhole pressure of producer#15  
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5.5.					Discussion		

The uncontrolled fitness approximation approach could not deliver acceptable results 

(average fitness value was much larger than the global fitness value), however, a large 

number of samples (10,000) were used to train the network. The unsuccessfulness can be 

either because of having offline training, an inadequate number of samples or inaccurate 

fitting. Increasing the number of initial samples may augment the quality of the trained 

proxy (Zubarev, 2009), but it makes this approach expensive and uneconomical. This 

approach is very sensitive to the quality of trained proxy. If the best number of hidden 

neurones and layers and the sufficient number of samples are not selected, the chance of 

trapping into a false optimum is significant. It is fair to state that this approach may 

misdirect the optimisation algorithm to false optimum points.  

The three controlled approaches, with the same amount of computation time, articulated 

significantly superior results in comparison with the UFA approach. The average fitness 

values for these three approaches were acceptably close to the global fitness value. The 

success of these approaches is because of their emphasis on the approximation of the 

global optimum point rather than the approximation of the entire landscape, unlike UFA. 

In the controlled approach, the inaccuracy of the proxy model (even inaccurate fitted 

model) will not significantly misdirect the calibration, as the original function evaluation 

redirect the calibration through the way of optimisation.  

Among these three approaches, the adaptive approach performed better than the others. 

Thus, it is fair to claim that the evolution-control was carried out more efficiently in the 

designed adaptive approach. It is due to its ability in exploitation of search space and 

having an updatable probability. Figure 5.34 shows the average fitness value for all four 

approaches.  
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One of the restrictions of fitness approximation approaches with an evolution-control is 

that these approaches can be employed only when a population-based algorithm is being 

used for optimisation.  

In order to show that the effect of fitness approximation in speeding up the procedure of 

history matching, history matching was carried out for the same problem using the regular 

approach (without proxy-modelling). The regular approach of history matching, in which 

OF is used in whole optimisation process, reached to the same result (fitness value) as the 

adaptive approach with the same optimisation options, but it needed evaluating the original 

function 40,000 times. Thus, using the adaptive approach for history matching, 75% 

computational costs can be reduced.    

 
Figure  5.34 Average fitness values for the four fitness approximation approach 

A genetic algorithm was implemented in this study for the optimisation, since GAs can be 

suitably integrated into the framework. GA can be replaced by any other population-based 

optimisation algorithm, preferably Evolutionary Algorithms, as they are better fit into the 

framework than the swarm intelligence methods. In the swarm intelligence methods, some 

of the individuals in every population are generated from the other individuals of the same 
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population; thus deciding between the individuals who should be evaluated via the 

approximation function is tricky and may result in inefficiency of model management. In 

the ABC algorithm, the employed bees are needed to be evaluated first and according to 

these evaluations, the onlooker bees are created. Evaluations with error (evaluations with 

the proxy model) for the employed bees may result in wrong decision by the onlooker 

bees, and evaluations with error for onlooker bees may result in inappropriate exploitation. 

Besides, the scout bees are not always available in every population. It should be noted that 

any other type of proxy or sampling strategy can be replaced by ANN. It is worth 

mentioning that the proxy-modelling methods should be employed, when we have 

computation limitations.  

The conclusive remarks of this chapter are as following:   

 The uncontrolled fitness approximation methods are not reliable in speeding up the 

history matching, and they may misdirect the optimisation algorithm to false optimum 

points.  

 The controlled fitness approximation methods perform significantly better than the 

uncontrolled fitness approximation methods. It shows the constructive effects of having 

an evolution-control technique and online learning sampling.  

 Computational costs can be reduced up to 75%, if the adaptive fitness approximation 

approach is used with reasonable accuracy. 

 Predefined probabilities for FAPBEC and FAIBEC make the model management not as 

efficient as the designed adaptive method.  

 

 

 



146 

 

 

 

 

 

 

 

 

  



147 

Chapter	6	

 

 

 

6. Reservoir	modelling	using	image	fusion	technique		

This chapter addresses the challenges in high-dimensional history matching problems. In 

the fourth chapter, it was shown that stochastic methods are powerful algorithms in 

approximating the most probable models, but they suffer from high-computational costs. In 

the previous chapter, a fitness approximation method was introduced to prevail over the 

computational expenses associated with population-based algorithms. In those case studies, 

the number of variables was not large or the reparameterisation could be implemented in 

an error-free manner. But, the reparameterisation cannot always be implemented reliably. 

One way to remove the reparameterisation error is using a direct calibration approach, 

instead of indirect calibrations. In the direct calibration of large history matching problems, 

the optimiser should be capable of coping with a very high-dimensional search space. A 

number of optimisation algorithms were introduced; all the applied algorithms are 

gradient-based methods, (Wu et al., 1999, Li et al., 2001, Zhang et al., 2005a). Due to the 

nonlinearity of the inverse problem, gradient-based algorithms have the chance of getting 

trapped into a local minimum. On the other hand, the regular forms of the stochastic 

optimisers are expected to be inefficient in high-dimensional search space.  

In this chapter, an inventive stochastic algorithm is introduced which can be used as a 

direct calibrator. To develop this history matching (optimisation) algorithm, the image 
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fusion and evolutionary computation concepts are blended. The questions, the author 

wishes to answer in this chapter, are: 

a- Does the developed optimisation (history matching) algorithm deliver high-quality 

results?     

b- Is the algorithm better than the conventional history matching algorithms either the 

direct or indirect approach? 

c- Do the regular stochastic optimisers perform acceptably in full-parameterised history 

matching models?  

d- Do the reparameterisation methods misdirect history matching?  

In order to assess the proposed algorithm and answer the aforementioned questions, history 

matching is carried out for a synthetic model and also PUNQ-S3 reservoir model using the 

proposed algorithm and six history matching algorithms (direct and indirect). This chapter 

begins by an introduction to the image fusion technique. The methodology and results are 

described in subsequent sections. The benefits and drawbacks of the method are discussed, 

and followed by some conclusive remarks in the summary and discussion section. This 

chapter is a modified and adjusted version of one of our published papers in a SPE 

conference, “SAYYAFZADEH, M. & HAGHIGHI, M. 2013. High-resolution reservoir 

modelling using image-fusion in history matching problems, in SPE EUROPEC 

conference London,” 

6.1.					Image	fusion	technique	

Image fusion (data fusion) is a process in which two or more images (data) are combined 

together to provide a single new image (data) which carries more information in 

comparison with the input images (data). The data fusion is being used from 1950’s while 

the main goal was merging the images of different sensors to form a more informative 
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image for object identification (Wald, 1999). It is also known as synergy (Wald, 1999). 

The applications of image fusion can be found in various problems, such as multi-focus 

image fusion, satellite and medical imaging (Stathaki, 2008). The data fusion can be 

performed on different levels, signal, pixel, feature, and symbolic (Petrosian and Meyer, 

2001). In this study, the main emphasis is on pixel level. Different mathematical 

techniques have been developed to form high-quality fused images (Petrosian and Meyer, 

2001). These techniques can be categorised into two groups, fusion in the spatial domain 

and fusion in transform domains. A number of these techniques are image averaging, 

Laplacian pyramid based image fusion and discrete wavelet transform (Petrosian and 

Meyer, 2001).  

The wavelet transform has found more interests in comparison with the other techniques, 

as a result of its advantages, including, affording directional information, not having 

blocking effects on pixels with a huge contrast, and having better signal to noise ratios 

(Nikolov et al., 2001). In this technique, input images (I1 and I2) are transformed into a 

wavelet domain, then, based on a specific rule (ߛ) the images are merged, and finally fused 

image (IF) is transformed back to the spatial domain using an inverse wavelet (equation 1) 

(Nikolov et al., 2001). Merging in the wavelet domain is carried out with a rule based on 

the coefficients (Pajares and Manuel de la Cruz, 2004). A high-quality fusion rule typically 

transfers the following elements, 1- the maximum information from input images, 2- the 

minimum noises from them. The general concepts are explained in the following 

paragraphs.  

,ݔிሺܫ ሻݕ ൌ ,ݔଵሺܫሺݐ݈݁݁ݒሺܹܽߛଵ൫ିݐ݈݁݁ݒܹܽ ,ݔଶሺܫሺݐ݈݁݁ݒܹܽ,ሻሻݕ  ሺ1ሻ																																																		ሻሻሻ൯ݕ

First, 1D wavelet transform is described, and then it is extended to 2D transform. Wavelets 

are created by a function (ψ) which has dilations and translations, generally, as follows: 

߰௔,௕ሺݐሻ ൌ |ܽ|ି
ଵ
ଶ߰ ൬

ݐ െ ܾ
ܽ

൰																																																																																																																												ሺ2ሻ 
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It is sought to represent (decompose) signals (f), based on wavelets, and recreate it. There 

are two types of wavelet transform, continuous and discrete. The discrete wavelet 

transform (DWT) is used and favoured in image analysing. By the considering piecewise 

interval by a factor of 2,  

ܽ ൌ 2௠																																																																																																																																																																ሺ3ሻ 

ܾ ൌ ݊2௠																																																																																																																																																														ሺ4ሻ 

Signal based on the wavelet is as follows, 

݂ሺݔሻ ൌ෍ܿ௠,௡߰௠,௡ሺݔሻ
௠,௡

																																																																																																																																ሺ5ሻ 

߰௠,௡ሺݔሻ ൌ 2ି
௠
ଶ߰ሺ2ି௠ݔ െ ݊ሻ																																																																																																																							ሺ6ሻ 

In order to be able to calculate the ܿ௠,௡ (coefficients), the mother wavelet (prototype) ψ 

should be carefully chosen.   

ܿ௠,௡ ൌ൏ ݂, ߰݉,݊ ൐ൌ න߰݉,݊
ሺݔሻ݂ሺݔሻ݀ݔ																																																																																																							ሺ7ሻ 

This concept is used for multi-resolution analysis. A signal can be represented by a series 

of coarser approximations (subsapces Vj) (Gao and Yan, 2011). Ф is wavelet scale function 

which is diagonal on the wavelet function ߰, and its inner product with the f provides 

accurate approximation at fixed scales. Hence, f(x) can be represented by the detailed 

information in W1 and the approximation in V1 which itself can be represented by a W2 

and V2 and so on.  

݂ሺݔሻ ൌ ෍ ෍ ܿ௠,௡݆߰,݊ሺݔሻ
ஶ

௡ୀିஶ

ெ

௠ୀିஶ

൅ ෍ ܽெ,௞Ф݉,݊ሺݔሻ
ஶ

௞ୀିஶ

																																																																															ሺ8ሻ 

Approximation coefficient is as inner products of 

ܽ௠,௡ ൌ൏ ݂ሺݔሻ, Ф݉,݊ሺݔሻ ൐ 																																																																																																																															 ሺ9ሻ 

Detail coefficient is as inner products of 
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ܿ௠,௡ ൌ൏ ݂ሺݔሻ, ߰݉,݊ሺݔሻ ൐ 																																																																																																																													 ሺ10ሻ 

Ф௠,௡ሺݔሻ ൌ 2ି
௠
ଶФሺ2ି௠ݔ െ ݊ሻ																																																																																																																				ሺ11ሻ 

ܽ௠,௡describes the approximations of f and it is calculated,   

ܽ௠,௡ ൌ෍݄ଶ௡ି௞ܽ௠ିଵ,௞	
௞

																																																																																																																															ሺ9ሻ 

In which the low pass filter is 

݄௡ ൌ 2
ଵ
ଶ නФሺݔ െ ݊ሻФሺ2ݔሻ݀ݔ																																																																																																																			ሺ10ሻ 

and 

ܿ௠,௡ ൌ෍݃ଶ௡ି௞ܽ௠ିଵ,௞	
௞

																																																																																																																													ሺ11ሻ 

In which the high pass filter is 

݃௟ ൌ ሺെ1ሻ௟݄ଵି௟																																																																																																																																															ሺ12ሻ 

There are different algorithms for scale and wavelet base functions, such as Haar, Symlet, 

Daubechies and Mallat. The images are 2 dimensional. The 1D wavelet can be extended to 

2D transform in which the 2 filters (h and g) are conducted in horizontal direction and 

followed by down-sampling in each row. Then, the outcomes are revisited in vertical 

direction followed by down-sampling in each column.  By this procedure, in one stage 

process, a single image results in four images (called low-low, high-low, high-high and 

low-high) with a level coarser resolution (Li et al., 1995) (three detail coefficients and one 

scale coefficient). The images are same size matrix as the initial image. After finding the 

coefficients with desired level for the images which are sought to be fused, a rule should be 

applied to combine these coefficients efficiently. It should be mentioned that in order to 

fuse the images, they should be in a same level of approximation.  
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The coefficients (with assumption of one level coarser) of each image in each pixel should 

be combined together. One way is calculate the average or a weighted average for two 

corresponding coefficients of the two images in each pixel. By this way, the directional and 

contrast may be lost. The alternative way is the selection between the coefficients of the 

two images. The selection can be maximum, minimum, or random. In the maximum 

selection, the maximum of absolute coefficients are selected. This selection keeps the high 

contrast in each image. It delivers good results in multi-focus problems from a same object. 

It recovers the unclear sections by the assist of the other image. The pixel by pixel 

evaluation may be result in losing information, thus a courser windows can be used which 

may consists of 25 pixels or more. After fusing (selecting) the coefficients in wavelet 

domain, by an inverse wavelet, (summation), the fused image is transformed to the spatial 

domain.  

Figure 6.1 taken from Nikolov et al. paper (2001) is an example of image fusion in multi-

focus problems. The two images on top are two different images from a same subject with 

different camera focus centres. To form an image in which two alarm clocks are clear (not-

blurred), a wavelet image fusion is used. Both images are transformed into the wavelet 

domain, then in the wavelet domain, the transformed images are combined, then using an 

inverse wavelet the new image is approximated. As it can be seen, in the fused image, the 

both alarm clocks are clear.  

6.2.					Methodology		

A history matching algorithm based on the image fusion concept is developed. An example 

is used to demonstrate the application of image fusion in merging different porosity 

realisations. Similar to multifocus problems, each realisation of variables (image) may 

represent a section of reality (subject). To have a realisation which has more information 

concerning the reality, a combination of the realisations is a good candidate to be checked 
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out. The merged image should keep the main features which are in common in the input 

realisations, recover the blurred or missing section of either of input images with the 

support of other images, and also carry the minimum noise of the input images.  

 
Figure  6.1 Image fusion example (Nikolov et al., 2001)  

Assume figure 6.2-a and figure 6.2-b show two porosity distribution realisations. Figure 

6.2-a is more informative on the section of x<80 while figure 6.2-b is more informative on 

the section of x>80. If these two realisations provide an average match of simulation data 

with the history data (for instance, the right hand side provides a good match for the wells 

located on x<80 and a poor match for the wells located on x>80, and the left hand side 

provides a poor match for the wells located on x<80 and a good match for the wells located 

on x>80), it is likely that the third realisation (figure 6.2-c) become a more reliable 
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distribution. The third image can be intelligently obtained by fusing the two images using 

the discrete wavelet image fusion.  

Based on this concept and using stochastic modelling, the algorithm is developed. The 

designed algorithm is similar to the general form of GA (Haupt and Haupt, 2004). 

Therefore, similar terminologies are used to explain the algorithm. The algorithm begins 

with a generation of a set (known as population) of candidate solutions (known as 

chromosomes) using an initialisation procedure. The population size and the chromosome 

size are defined. Then, using one of the two initialisation procedures, random and heuristic, 

an initial population is generated. After initialisation, all the chromosomes are evaluated 

based on a fitness function (objective function). The task of the fitness function is to 

distinguish between the chromosomes based on their goodness. After generating the initial 

chromosomes and evaluating them, the main loop of the algorithm starts. In each step 

(known as generation) of the main loop, a sub-set of the current population is selected 

using a selection operator. Usually, the selection procedure is conduced according to the 

fitness of chromosomes. Two operators called crossover and mutation are applied to the 

selected set of chromosomes and a new set of chromosomes is produced. The crossover 

and mutation operators are applied to the chromosomes with probability pc and pm, 

respectively. The new set generated by the selection, crossover and mutation is recombined 

with the current population to provide the new population. To keep the best ever found 

solution, the chromosome (known as elite) is migrated directly to the new population. The 

main loop is repeated until predefined stopping criteria are met.  

There are many types of selection, crossover, and mutation operators in the regular types of 

GA, and each of them are different based on the type of the search space and functionality 

(Gwiazda, 2007). The crossover operator performs an important role in GAs. Most of the 

crossover operators select the features (genomes) randomly from the parents, therefore the 

produced chromosome (kid) may not carry the best features of each parent in each mating 
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process (due to the randomness), and consequently the produced chromosomes are not 

always better than parents (the chance of having a kid better than the corresponding parents 

depends on the crossover operator). Although, this random selection of genomes using the 

crossover provides a thoroughly search of landscapes, it causes the low speed of 

convergence in GAs, especially in very high-dimensional search spaces. In this study, it is 

sought to reduce this randomness and provide a more intelligent mating operator which 

increases the probability of producing a fitting kid from parents. The diversity of 

population in each generation is another element which should be taken into account. To 

provide the diversity and also to prevent getting stuck in local minimum, a specific 

mutation operator is designed and also randomness is added to the crossover operator.  

 
a 

 
b 

 
c 

Figure  6.2 Porosity realisations merging by wavelet image-fusion 

The designed algorithm has some key differences with the conventional GAs. As 

mentioned before, one of the main advantages of wavelet image fusion is the capability of 

keeping the directional information, thus, instead of considering the chromosomes one 
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dimensional with a length equal to the number of variables, they are considered 

multidimensional in the proposed algorithm. They are 2D, if the reservoir is single layer 

and a single property is required to be matched; otherwise they are 3D in which the size of 

third dimension is equal to number of properties multiply by the number of layers. Figure 

6.3 shows a 2D chromosome, it is porosity distribution for a single layer reservoir, and 

each cell is the corresponding porosity for the reservoir simulator. As the chromosomes are 

n-dimensional, the population is (n+1)-dimensional. 

For the initialisation step, if there is no prior information about the variables which is not 

normally the case, the initial population will be generated randomly over the given bounds 

(random initialization). Usually, a prior information is available which are geostatistical 

estimations (Journel and Huijbregts, 1978). Using this information, a heuristic initialisation 

can be done which speeds up the optimisation process. The crossover operator is the 

discrete wavelet image fusion with specified options; the image fusion carries out with 

“wfusimg” function (MathWork, 2011d). By selecting parents using tournament selection, 

the kid is created by combining the parents using the mentioned crossover.  

The mutation is performed with this procedure: a 2-D rectangular section (with size X,Y) 

is randomly selected over one of the properties in one of the layer, and then it is substituted 

with a same size rectangular which has a homogenous value, and the value is selected 

randomly over the bounds (LB and UB). The mutation is similar to the zonation 

reparameterisation. Figure 6.4 shows the same chromosome (figure 6.3) which has been 

mutated. The workflow of the developed algorithm is shown in figure 6.5. The pseudo-

code of the algorithm is as following. 

%--------------- initial population generation 
InPop=PopGeneration(NoPop,NoVar); 
pop=InPop; 
S=size(Pop); 
for i=1:NoPop 
      fitness(i)=evaluation(pop(i,:,:,:)); 
end  
%------------- start of the main loop 
while i<NoGen 
     for i=1:pc×NoPop 
          parents = tournament(pop,TourSize); 



157 

          kids(i,:,:,:) = ImageFusion(parents(1,:,:,:),parents(2,:,:,:),options); 
     end 
     NewPop = recombine(kids,pop); 
     for i=1:NoPop 
          R=rand; 
          if R<pm 

               j=ceil(S(2)×rand); 
               IX=ceil(rand×(LX-X)); 
               IY=ceil(rand×(LY-Y)); 
               NewPop (i,j,IX:IX+X-1,IY:IY+Y-1) = ones([X Y])×(LB+rand×(UB-LB); 
          end 
     end  
     index=sort(fitness); 
     elite = pop(index(1),:,:,:); 
     pop=NewPop; 
     for i=1:NoPop 
         fitness(i)=evaluation (pop(i,:,:,:)); 
     end 
     index=sort(fitness); 
     pop(index(end),:,:,:)=elite; 
end 
Global=pop(index(1),:,:,:);   
 

 
Figure  6.3 A 2-dimensional chromosome 

 
Figure  6.4 The 2-dimensional chromosome after mutation 

6.3.					Results	

History matching is carried out using the designed algorithm for two different reservoir 

models, a synthetic and PUNQ-S3, and its outcomes are compared with the results of six 

methods shown in table 6.1. In these two case studies, the variables are the spatial property 

of the reservoir, therefore a large number of variables are sought to be adjusted. The last 

two methods (5 and 6) are not regular methods for history matching particularly with a 
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full-parameterised model, and thus far, the author has not found any stochastic algorithms 

to be examined for history matching problems without reparameterisation. The two 

stochastic optimisers (GA and ABC) are employed to investigate their applications in 

history matching problems with full-parameterised models. The outcomes of these two 

optimisers are compared with the gradient-based algorithm’s result.  

In order to execute history matching automatically, flow simulator (ECLIPSE-E100) 

(Schlumberger, 2010) is coupled to the coded proposed algorithm within MATLAB 

(MathWork, 2011b). The interface between MATLAB and SGeMS is also used. 

Table  6.1 Applied approaches for comparison 

Method Reparameterisation method Optimisation method 

1 Zonation LBFGS 
2 Spectral decomposition of prior covariance LBFGS 
3 Pilot point GA 
4 Full-parameterisation LBFGS 
5 Full-parameterisation GA 
6 Full-parameterisation ABC 

6.3.1.					Synthetic	Reservoir	Model	

A synthetic model was constructed with 35×35×1 gridblocks in x, y and z directions 

respectively. The sizes of gridblock in x, y and z directions are 80, 80 and 100 ft. The 

porosities in gridblocks are assumed unknown while the permeability is a function of 

porosity as equation 2. The permeability is isotropy in the horizontal directions, while there 

is a vertical anisotropy (the permeability in the vertical direction is 10 percent of the 

horizontal direction). This reservoir is two-phase (oil and water) system. The well pattern 

is 9-spot with 5 injectors and 4 producers. The drive mechanism is mostly water injection. 

The location of wells and the horizontal permeability distribution of the reference case are 

shown in figure 6.6.  
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Figure  6.5 Workflow of the developed history match algorithm 

The reference case was simulated for 1860 days in 313 time steps to generate observed 

data, and its elements are well bottomhole pressures, well oil production rates, well liquid 
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production rates, field oil production rates and field water production rates. The total 

number of non-zero observed data is 5149 (the number of independent observed data are 

less than 5149, since the field data are correlated with the well data). Gaussian noise with 

zero mean and standard deviation of one percent was added to the simulated data. There 

are 9 wells in the system and the porosities in the corresponding gridblocks are considered 

known. Therefore, the number of variables is 1216.  

 
Figure  6.6 The permeability distribution of the reference case and the well locations 

The goal of history matching is the estimation of the 1216 variables using the observed 

data. The objective function is defined as equation 3 (multiply by a negative one (-1)), or 

as equation 4 (multiply by a negative one (-1)), if the full-parameterised model is being 

calibrated, or a reparameterised model is being calibrated, respectively. In either of 

definitions, only the likelihood term is taken into account to investigate overshooting. The 

fitness function value is equal to approximately (ND/2) (2642) at the actual solution (the 

reference model (mR)). As the observed data was generated via the simulation, the flow 

modelling error is zero. 
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ିଵሺfሺrሻ െ d୭ୠୱሻቇ																									ሺ15ሻ 

All the six methods and the proposed algorithm are utilised to solve this inverse problem. 

To distinguish between the methods four criteria are used:  

1- The fitness value at the obtained point after history matching (S(m∞)) (it 

should be close enough to 2642),  

2- The Q(m∞) value which shows the quality of the obtained history 

matched model quantitatively (equation 5),  

3- The accuracy of forecasting for two different scenarios based on 

equation 6 (P1(m∞) and P2(m∞)), and  

4- The computational costs (the number of fitness function calls).  

The two scenarios are i- the performance prediction for five years with a same injection 

rates scenario as the last timestep, ii- the performance prediction for five years with a 

dissimilar injection rates scenario. In order to show the quality of prediction quantitatively, 

equation 6 is used. In this equation, VR is a vector which consists of the corresponding 

performance of mR, and VC is a vector which consists of the corresponding performance of 

m∞. Any method which delivers the minimum of S, Q and Ps with a reasonable 

computational cost can be called a successful method. It should be mentioned that due to 

computational cost restrictions, a limit is set for the number of fitness function calls 

(20,000 times), i.e., none of the methods is allowed to evaluate the fitness function more 

than 20,000 times even for the sensitivity vector calculation.  
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6.3.1.1.					Zonation	reparameterisation	with	LBFGS	

In this method, the reservoir first is divided into 25 zones (7×7 gridblocks), and it is 

assumed the properties are homogenous in each zone. Using this reparameterisation, the 

number of variables is significantly reduced (from 1216 to 25). Then, a LBFGS algorithm 

(D. Kroon 2010) is utilised to find the (r∞). The sensitivity vector is computed numerically 

in each iteration. The initial point is assumed uniform and equal to the mean of the 9 

gridblocks value. r∞ is found with 1117 function calls in 35 iterations, and the 

corresponding fitness function (S(h(r∞))) is 7478. m∞ along with mR are drawn in figure 

6.7. The optimisation in this method needs the minimum computational costs. The 

computation still can be reduced, if a proper initial guess and optimal options for LBFGS 

are set.  

The achieved model only illustrates the main features of the reservoir with a low 

resolution. The fitness value along with P(m∞) and Q(m∞) are reliable proofs for the 

reparameterisation error. The difference of m∞ and mR based on equation 5 is 4.2, and the 

P(m∞) is equal to 4.43 and 2.36 for first and second scenario respectively. According to the 

fact that the optimisation error is negligible for this approach6, it is fair to relate the 

inaccuracy of the achieved history matching model to the reparameterisation error. To 

reduce the history matching error in this method, it is required to increase the number of 

zones which at the extreme case will be the full-parameterisation. Also, the error may be 

slightly reduced by making use of a stochastic optimiser, if the computation costs are not 

the concern.  

                                                 
6 This case with zonation reparameterisation was also executed by a Simulated Annealing algorithm; the achieved result 
was slightly better than the obtained result via LBFGS; the obtained fitness value was 6207. The result of LBFGS is 
reported, as it needs less computation.   
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Figure  6.7 The result of zonation reparameterisation with the LBFGS and the reference porosity distribution 

6.3.1.2.					Spectral	decomposition	of	prior	covariance	matrix	reparameterisation	

with	LBFGS	

In this method, a prior covariance and a prior model (mprior) are required; therefore, 

SGeMS by the available 9 point data generates a set of prior models. The best realisation in 

terms of fitness value is saved as the prior model and shown in figure 6.8 

(S(mprior)=8.2×105). The first 100 eigen values are used for reparameterisation. The number 

of variables is reduced from 1216 to 100. LBFGS algorithm is utilised to find the (r∞). The 

initial point (rprior) is calculated by reparameterising mprior. r∞ is found with 3002 function 

calls in 28 iterations, the corresponding fitness function (S(h(r∞))) is 4857. m∞ along with 

mR are drawn in figure 6.8. In terms of computational cost, this method is slightly more 

expensive than the previous method (the fitness function has been evaluated 3002 times).  

This method has a better performance, in terms of fitness value, P(m∞) and resolution, in 

comparison with the previous method. The P(m∞) is equal to 2.67 and 2.12 for first and 

second scenario respectively. But, in this method, numerous extreme values are seen in the 

m∞, which cause a high value for Q(m∞) (6.06). It is fair to expect that the 

reparameterisation error is dominant compared to the optimisation error7. In order to 

                                                 
7 This case was also executed via a stochastic optimiser, and the achieved optimum point was slightly better than the 
obtained result via LBFGS (the obtained fitness value was 4177). The output of the LBFGS was presented, as it needs 
less computation.  
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reduce the history matching error in this method, it is required to increase the number of 

eigenvalues which at the extreme case will be again the full-parameterisation. Another 

restriction of this method is that an accurate prior covariance matrix is required which is 

not always available. Also, the error may be slightly reduced by making use of a stochastic 

optimiser, if the computation costs are not the concern.  

 
Figure  6.8 The result of the spectral decomposition of prior covariance matrix reparameterisation with the 

LBFGS, the reference porosity distribution and prior model 

6.3.1.3.					Pilot	point	reparameterisation	with	a	genetic	algorithm	

In this method, the pilot point reparameterisation is used (De Marsily et al., 1984). A 

limited number of the 1225 gridblocks are described by pilot points, and the rests are 

calculated through ordinary kriging based on the pilot points and well data. In this study, a 

fixed number of pilot points (11 points) are used to describe the reservoir. Their values 

(porosity) and locations (x,y) are considered as decision variables. Also, it is assumed that 

variogram parameters, nugget, range, contribution and anisotropy angels (Kelkar and 

Perez, 2002) are unknown as well. The total number of variables is reduced to 38 (11×3+5) 

via this reparameterisation. The locations of pilot points are not fixed to prevent sensitivity 

analysis for locating the points. When the location and value of pilot points are both 

considered as variables, a discrete and multimodal search space will be formed which 

makes the optimisation process challenging. A GA carried out with the mentioned options 

in table 6.2, is used to find the r∞. r∞ is found with 10,000 function calls in 500 generations. 

Scattered crossover is used, as the locations of pilot point are discrete variables, and also in 

Prior

 

 

5 10 15 20 25 30 35

5

10

15

20

25

30

35

MAP

 

 

5 10 15 20 25 30 35

5

10

15

20

25

30

35

Reference

 

 

5 10 15 20 25 30 35

5

10

15

20

25

30

35

5

10

15

20

25

30

5

10

15

20

25

30

35

40

45

50

5

10

15

20

25

30



165 

this function, exploration is more important rather than exploitation (refer to the fourth 

chapter).  

The corresponding fitness function (S(h(r∞))) which is higher than the previous methods is 

14,536. m∞ along with mR are drawn in figure 6.9, and Q is equal to 3.17. In terms of 

computation, this method is more expensive than the previous methods. It has the enough 

resolution and also has a lower Q, but, in terms of fitness value, computational cost and 

P(m∞)s, this method is not as good as the pervious methods (P(m∞) is equal to 7.58 and 

3.32 for the first and second scenario respectively). In this method, it is difficult to state 

that the optimisation error is negligible compared to the reparameterisation error, thus the 

reason of misfit (history matching error) is considered as a combination of the 

reparameterisation and optimisation error. In order to reduce these errors, it is required to 

have an optimal number of pilot points and a larger number of GA generations.  

Table  6.2 GA options 

Options Population 
size 

Crossover 
operator 

Selection 
operator 

Mutation Stopping criteria Crossover 
probability 

Number of 
Elites 

 

 20 Scattered Stochastic 
Uniform 

Uniform with 
Rate=0.11 

Generation 
number (500) 

0.8 1  

 
Figure  6.9 The result of the pilot point reparameterisation with the GA and the reference porosity distribution 

6.3.1.4.					Full‐parameterisation	with	LBFGS	

In this method, all the variables are directly calibrated using a LBFSG algorithm which a 

gradient-based algorithm. The sensitivity vector is computed numerically in each iteration. 
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mprior is used as the initial point. m∞ is found with 19880 function calls in 16 iterations, and 

the corresponding fitness function (S(m∞)) is 90334. m∞ along with mR are drawn in figure 

6.10. Extreme values are seen in the gridblocks where wells are located. The optimisation 

in this method reached to the computational cost limit, while the fitness value is not close 

enough to the actual value. The low speed of convergence is due to the nonlinearity of the 

problem. This model has a high resolution and a zero reparameterisation error, but the 

optimisation error became the main concern. The fitness value along with P(m∞) and 

Q(m∞) are reliable proofs for the optimisation error. Q(m∞) and P(m∞) are equal to 4.18, 

7.39 and 12.89 for first and second scenario respectively. To reduce the history matching 

error in this method, it is required to increase the number of iterations which will be time-

consuming; there is no guarantee that by increasing the iteration, a better result can be 

achieved, since the algorithm may converge to a false or local optimum point.  

 
Figure  6.10 The result of the full-parameterisation with the LBFGS and the reference porosity distribution 

6.3.1.5.					Full‐parameterisation	with	GA	

In this method, all the variables are directly calibrated using a conventional GA algorithm. 

The GA options are similar to table 6.2, but the population size is 40, and a heuristic 

initialisation (instead of a random initialisation) is used to reduce the computational costs. 

40 of the generated distributions for the second method are used as the initial population. 

m∞ is found with 20000 (maximum allowable) function calls in 500 generations, and the 
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corresponding fitness function (S(m∞)) is 19512. m∞ along with mR are drawn in figure 

6.11. Extreme values are seen. The optimisation in this approach reached to the limit, while 

the fitness value is not close enough to the actual value. The fitness value is lower than the 

previous method, but it is not as good as the methods with a reparameterisation. The low 

speed of convergence is due to the random search and high-dimensionality of search space. 

The achieved model has a high resolution and a zero reparameterisation error, but the 

optimisation error caused the low-quality model. The fitness value along with P(m∞) and 

Q(m∞) are reliable proofs for the optimisation error. Q(m∞) and P(m∞) are equal to 8.80, 

6.19 and 6.49 for first and second scenario respectively. To reduce the history matching 

error in this method, it is required to increase dramatically the number of generations 

which will be very time-consuming.  

 
Figure  6.11 The result of the full-parameterisation with the GA and the reference porosity distribution 

6.3.1.6.					Full‐parameterisation	with	ABC	

In this method, all the variables are directly calibrated using an ABC algorithm. The 

colony size is 40, and a heuristic initialisation (instead of random initialisation) is used to 

reduce the computational costs. 20 of the generated distributions for the second method are 

used as the initial colony for employed bees. m∞ is found with 20000 function calls in 500 

iterations, and the corresponding fitness function (S(m∞)) is 639,394. m∞ along with mR are 

drawn in figure 6.12. m∞ is similar to the mprior, it shows that this algorithm performs very 
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inefficient in high-dimensional search. The optimisation in this method reached to the 

computation cost limit, while the fitness value has not been close enough to the actual 

value. The fitness value is higher than the previous methods. The low speed of 

convergence is due to random and mostly one-dimensional search (employed and onlooker 

bees altered the individuals through a random change in only one-dimension). The 

achieved model is high-resolution and has a zero reparameterisation error, but the 

optimisation error is very high, even more that the pervious method. The fitness value 

along with P(m∞) and Q(m∞) are reliable proofs for the optimisation error. Q(m∞) and 

P(m∞) are equal to 4.31, 20.78 and 28.83 for first and second scenario respectively. To 

reduce the history matching error in this method, it is required to increase dramatically the 

number of iterations which will be very time-consuming (even more expensive than the 

previous method, as the ABC preference is a balance of exploration and exploitation rather 

than exploration, in contrast to GA (refer to chapter 4).  

 
Figure  6.12 The result of the full-parameterisation with the ABC and the reference porosity distribution 

6.3.1.7.					Full‐parameterisation	with	the	proposed	method	

In this method, all the variables are directly calibrated using the proposed algorithm. The 

applied options can be found in table 6.3 and 6.4. For the mutation, rectangular with three 

different sizes are used: 5×5, 4×8 and 8×4; in each mutation, one of them is randomly 

selected. A heuristic initialisation is used to reduce the computational costs. 15 of the 
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generated distributions for the second approach are used as the initial population. m∞ is 

found with 15000 function calls in 1000 generations, and the corresponding fitness 

function (S(m∞)) is 3000 which is significantly lower than all the six methods. m∞ along 

with mR are drawn in figure 6.13. The achieved model has a high resolution and a zero 

reparameterisation error, and also the optimisation error is plausibly low. All the values of 

m∞ are in the actual bound and overshooting has not occurred. The fitness value along with 

P(m∞) and Q(m∞) are reliable proofs for the low optimisation error. Q(m∞) and P(m∞) are 

equal to 2.29, 0.96 and 0.91 respectively. Figure 6.14 shows the fitness value in each 

generation. In the first 200 generations, a very fast reduction in the fitness value can be 

seen which shows the ability of this algorithm.  

Table  6.3 The proposed approach options 

GA 
Options 

Population 
size 

Stopping criteria Crossover Mutation Selection Initialization Chromosomes 

 15 Number of 
generations 1000 

Image-Fusion, 
Prob.: 0.9 

Customised  
Prob.: 0.4 

Tournament 
size 4 

Heuristic 2 dimensional  

 

 
Figure  6.13 The result of the full-parameterisation with the proposed method and the reference porosity 

distribution 

Table  6.4 The image fusion operator options 

Wavelet 
Options 

Wavelet 
Family 

Level Approximation Details 

 Symlet 4 5 Random Random 
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Figure  6.14 Fitness value at each generation for the 1st case study using the proposed method 

6.3.1.8.					Comparison	

The outcomes are summarised in figure 6.15 to 6.17 which show the fitness value, the 

difference of the achieved model with the reference model (Q), and the accuracy of future 

predictions (P) for each method, respectively. In the first three methods, it is seen that they 

cannot provide very high-quality history matched models, which is mostly due to the 

reparameterisation errors. The main difficulty of these three methods is the determination 

of the optimal number of the elements and the reparameterisation designs. Among these 

three methods, the spectral decomposition slightly performed better8.  

 
Figure  6.15 Fitness value at achieved models using each of the approaches for the 1st case study 

                                                 
8 It should be pointed out that there will be a reparameterisation error in any method, and it is as a result of the fact that a 
lower number of variables (reparameterised model) cannot carry the same amount of information as full-
parameterisation.  
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None of the 4th to 6th approach delivered good results (even the results are worse than the 

first three methods), although, the reparameterisation error was zero for these three 

methods. The low quality of the models is on account of optimisation errors. The 

optimisation errors may be reduced, if the fitness function is called much more times. Due 

to computation limitation (hardware and software), it was not possible to find the global 

point using the 4th-6th approach. A same limit was set for the seven methods to provide a 

fair assessment. The proposed approach delivered a superior model in comparison with all 

the six methods which can be on account of its low optimisation error.  

The execution of each fitness function calls took around 8 seconds on a personal computer 

with the following configurations: CPU Intel i-7-2820QM and 8 GB ram, it mean that in 

the methods that the fitness was called 20,000, history matching was finished around 2 

days. The computation for each fitness function call was slightly higher for the methods 

with a reparameterisation, as an inverse reparameterisation calculation in each fitness 

function call is required.  

 
Figure  6.16 Q value at achieved models using each of the approaches for the 1st case study 
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Figure  6.17 P values at achieved models using each of the approaches for the 1st case study 

6.3.2.					PUNQ‐S3	Reservoir	Model	

For the second case study, PUNQ-S3 reservoir model is used. PUNQ-S3 is a reservoir 

model widely used for benchmarking different history matching methods. This case was 

provided by Imperial Collage London University. It is a part of a real field performed by 

Elf Exploration Production. The reservoir model consists of 19×28×5 gridblocks and has 

1761 active blocks. The reservoir is connected to a fairly strong aquifer and also, it has a 

gas cap. There are 6 production wells and can be seen in figure 6.18. More details about 

this model can be found in Romero et al. 2000 paper. There are some modifications in 

parts of the problem. The modifications are as following, 1- the horizontal permeabilities 

are assumed isotropic and a function of porosity, as equation 2; 2- the vertical permeability 

is assumed 25 percent of the horizontal permeability; and 3- the number of timesteps are 

increased to 165 which include 10 years performance history. The reference model (figure 

6.17) is simulated to generate a history according to the timesteps. The total number of 

observed data elements is 4455 elements which are cumulative field gas production, 

cumulative field water production, cumulative field oil production, well water-cuts, well 

gas oil ratios, well oil rates and well bottomhole pressures. Gaussian noise with a zero 
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mean and one percent standard deviation were added to the observed data (history). The 

goal of history matching is the estimation of the 1761 variables using the observed data. 

The objective function is defined as equation 3 (multiply by a negative one (-1)) and only 

the likelihood term is taken into account. The fitness function value is equal to 

approximately (ND/2) (1923) at the actual solution (the reference model (mR)).  

To solve this inverse problem, only two methods are used: 1-the proposed algorithm, and 

2- a full-parameterisation with a LBFGS algorithm. To distinguish between the two 

applied methods the following two criteria are used: 1- the fitness values at the achieved 

models (MAPs), 2- the cumulative produced oil for the 5 years via the existing wells, 3- 

the cumulative produced oil for the 5 years via the existing and three infill wells. The 

reference values for the second and third criterion are 1,181,886 and 1,340,497 standard 

cubic meter. It should be mentioned that due to computational cost restrictions, a limit is 

set for the number of fitness function calls (20,000 times). To generate a prior model for 

the LBFGS algorithm and also to generate a set of prior models for the heuristic 

initialisation of the proposed approach, 20 realisations are generated via a sequential 

Gaussian simulation in which the 6 well data are used. mprior is the best model among the 

all 20 realisations in terms of fitness function (S(mprior)=1.92×107) 

 
Figure  6.18 The porosity distribution of the reference case and the well locations (2nd case study) 
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Figure  6.19 Achieved porosity distribution for each layer of PUNQ-S3 using the LBFGS approach along with the 

reference porosity distribution 

6.3.2.1.					Full‐parameterisation	with	LBFGS	

In this method, all the variables are directly calibrated using a LBFSG algorithm. The 

sensitivity vector is computed numerically in each iteration. mprior is used as the initial 

point. m∞ is found with 17920 function calls in 8 iterations, and the corresponding fitness 

function (S(m∞)) is 8.6×106. m∞ along with mR are drawn in figure 6.19. Using the history 

matched model, the cumulative produced oil for five years via the existing wells is 

1,786,109 standard cubic meter, and the cumulative produced oil for five years via the 

existing and the infill wells is 1,935,520 standard cubic meter. 

6.3.2.2.					Full	parameterisation	with	the	proposed	approach	

In this method, all the variables are directly calibrated using the proposed algorithm. The 

applied options is similar to table 6.3 and 6.4, the only difference is in the dimensional of 

the chromosomes, as in this case study the porosities of 5 layers are needed to be calibrated 

the chromosomes and population are 3D and 4D respectively. Also, the number of 

generations is increased to 1300. For the mutation, rectangular with three different sizes 
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are used: 4×4, 2×5 and 5×2; in each mutation, one of them is randomly selected. A 

heuristic initialisation is used to reduce the computational costs. 15 of the generated 

distributions are used as the initial population. m∞ is found with 19500 function calls in 

1300 generations, and the corresponding fitness function (S(m∞)) is 2.3×104 which is lower 

than the previous method. m∞ along with mR are drawn in figure 6.20. The achieved model 

has a high resolution and a zero reparameterisation error, and also the closeness of the 

predicted values for both scenarios to the reference values are proofs for the plausibly low 

optimisation error. Using the history matched model, the cumulative produced oil for five 

years via the existing wells is 1,160,252 standard cubic meter, and the cumulative 

produced oil for five years via the existing and the infill wells is 1,288,752 standard cubic 

meter. All the values of m∞ are in the actual bound and overshooting has not occurred.  

6.3.2.3.					Comparison	

Not only the achieved fitness value of the image fusion method is lower than the LBFGS, 

but also the predicted cumulative produced oil values using the image fusion method are 

much closer to the reference values. Thus, it is fair to mention that the proposed method is 

working properly for PUNQ-S3 as well. The CPU-time for each method was around 2 days 

on the same personal computer. Figure 6.21 shows the field oil production total which are 

obtained by simulation of the reference model (black curve), the model achieved by image-

fusion (green curve) and the model achieved by LBFGS (red curve). The difference in 

forecasting the future demonstrates the success of the image-fusion in comparison with 

LBFGS algorithm.    
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Figure  6.20 Achieved porosity distribution for each layer of PUNQ-S3 using the proposed approach along with the 

reference porosity distribution 

 
Figure  6.21 Field oil production total for 9000 days 

6.4.					Discussion	

It was shown that the optimisation algorithm constructed from the blend of wavelet image 

fusion and evolutionary algorithms is able to deal with high-dimensional nonlinear 

problems. The results of the developed algorithm were superior in comparison with the 

outcomes of the six algorithms (indirect and direct). It did not converge to a false or a local 

minimum and also any premature convergence did not happen which can be put on the 

account of its intelligence mating and mutation operator.  
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The three indirect methods converged to high-quality reparameterised models in a 

reasonable computation time, but when the models were transformed back to the main 

domain, a difference was seen between them and the reference model. The differences are 

mainly in consequence of reparameterisation error. Among these three methods, the 

LBFGS with spectral decomposition was performed better. In chapter four, the pilot point 

technique performed better, as the required number of pilot point was already known and 

also the variogram parameters were assumed known. Here, the spectral decomposition 

algorithm was better than the spectral of chapter four, as a larger number of elements were 

taken into consideration and the prior covariance was more certain.  

The three direct methods did not deliver high-quality model that is on account of 

optimisation errors. Due to the nonlinearity of the inverse problem, and the high-

dimensionality of the system, the optimisation algorithms were not very efficient. Among 

these three algorithms, LBFGS was performed slightly better which expresses the 

drawbacks of the regular stochastic algorithms in high-dimensional history matching 

problems. Heuristic initialisation was used for ABC and GA. They would converge to 

worse solutions, if random initialisation was used. Among these six methods, the indirect 

methods could deliver better results.  

For the assessment, only a number of methods were utilised to validate the algorithm. In 

these methods, specified options were used. For example, in the GA approach, a specific 

crossover and mutation operator were used, in the LBFGS approach, the sensitivity vectors 

were calculated numerically, and in the reparameterisation approaches, a specified number 

for the elements was used to describe the model. It cannot be stated that all the applied 

options are the most efficient ones. For the image fusion, a Symlet discrete wavelet 

transform with level 5 is used, a sensitivity analysis on the effect of image fusion rules on 

the quality of the algorithm assured us to use this option. 

The conclusive remarks of this chapter are as following:  
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 The developed method has a higher chance to approximate the best history matched 

model.  

 It has an acceptable speed of convergence, even in comparison with classical 

optimisers.   

 Discrete variables can be taken into consideration (discrete variables need their 

own crossover and mutation operator, and also the shape of chromosomes should 

be changed to multibranched chromosomes). 

 It can cope with a large number of variables, thus, it provides high-resolution 

reservoir models. 

 The image fusion technique can keep the directional information, thus this 

algorithm is expected to deliver high-quality results for reservoir modelling. 

 The algorithm can be executed on a parallel manner on supercomputers. 

 Due to its fast reduction in the initial stage, it can be run only for the first 

generations and after a sharp reduction of fitness value, the algorithm can be 

substituted with another evolutionary algorithm which has stronger exploitation 

ability or with a classical optimiser for further reduction of fitness value. 

 Among the conventional history matching algorithms, the indirect calibration 

methods are more efficient than the conventional direct methods, in high-

dimensional history matching problems. 

 The regular stochastic optimisers are inefficient in high-dimensional search spaces 
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Chapter	7	

 

 

 

7. Regularisation	in	history	matching	problems	using	

Pareto	front	and	Bayesian	framework	

The main emphasis of this chapter is on the role of objective function formulation on the 

outcomes of history matching. In the previous chapters, several history matching methods 

were reviewed with the focus on the optimisation and reparameterisation step. Obtaining 

high-quality history matched models using any of the history matching algorithms is 

subjected not only to the performance of optimisation and reparameterisation algorithm but 

also it depends on the reliability of objective function formulation.  

In history matching problems, to overcome the ill-posedness and also to stabilise the 

inverse problem, supplementary information is usually added to the objective function as a 

penalty term. The procedure of altering the objective function to accomplish a proper 

compromise between two conflicting terms, (penalty and fitting) is called regularisation 

(Stark, 1987). Regularisation plays a crucial role in the reliability of the formulation, and it 

should be carefully implemented into the formulation, especially for highly noisy 

observation data or underdetermined problems.  

Tikhonov method is a widespread deterministic objective function formulation approach. 

In this formulation, the objective function comprises of two terms (functions), fitting and 

penalty term which are related to each other using a regularisation factor. The major 
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challenge of Tikhonov method is the determination of a proper regularisation factor (Li 

and Jafarpour, 2010) which can be varied from zero to infinity. An inappropriate 

regularisation factor can lead to an incorrect domination of one of the functions over the 

other one and accordingly results into a false optimum point. A large weighting factor for 

penalty term causes inaccurate observation fitting and in contrast, small value can cause 

highly oscillatory solutions as a result of noise amplification (Tautenhahn and Qi-nian, 

2003). So far, several numerical calculation approaches have been developed to determine 

the proper regularisation factor, including L-curve (Hansen, 2001), generalised cross 

validation (GCV) (Golub et al., 1979), and by iterative methods (Doherty, 2003). These 

approaches are time-consuming for computationally expensive problems (Li and Jafarpour, 

2010), such as history matching problems.  

The most widespread approach of objective function formulation in history matching 

problems is Bayesian framework which within includes a regularisation. In the Bayesian 

framework, To find the maximum of posterior probability function (MAP), usually a 

decision variable is sought which minimises the summation of likelihood and prior 

functions (S(m)). These two functions are related to each other using two covariance 

matrixes (CD and Cm). These covariance matrixes are the weighting factors for the 

individual elements, and also their ratio plays the task of a regularisation factor.  

The quantification of the aforementioned factors is a complicated task. Therefore, the 

weighting factors may have uncertainties in some case studies. In this chapter, the 

influence of covariance matrixes’ uncertainties on the reliability of models is investigated, 

and also an approach for reducing the risks in decision making in these particular problems 

is reviewed. The approach was recommended in a general form for probabilistic inverse 

problems (Tarantola, 2005) (the author has not found the approach in history matching 

problems, before). This approach is based on random selection, thus it is expected to be 
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computationally expensive. Therefore, an alternative approach is also developed and 

studied in this chapter.  

A Pareto optimisation is proposed, for the first time, in which likelihood and prior 

functions are considered as two separated objective functions. Specific post-optimisation 

trade-off rules are designed to select the proper results among the Pareto solutions. The 

questions, the author wishes to answer in this chapter, are: 

a- Do the uncertainties in covariance matrixes significantly mislead the optimisation 

direction to improper models?  

b- Can the Pareto optimisation fulfil the requirements in delivering high-quality 

results for the problems with uncertain covariance matrixes? 

c- Can the post-optimisation trade-off role take out the suitable solutions among the 

Pareto? 

d- Does the proposed approach perform better than the conventional approach in 

terms of computation and the quality of results?     

This chapter begins by an introduction to the Pareto optimisation and followed by the 

explanation of the methodologies (conventional and proposed). In the results section, a 

linear numerical example is designed and used to investigate the effect of covariance 

matrixes. In the numerical example, the proposed and the conventional approach are 

compared with each other. Afterward, the effects of uncertainty of covariance matrixes on 

the quality of history matching are investigated using PUNQ-S3 model. To evaluate the 

effectiveness of the proposed approach, its outcomes are compared with the outcomes of 

the random selection (Monte Carlo) approach in terms of the required computation time 

and the quality of achieved solutions. The benefits and drawbacks of the methods are 

discussed, and followed by some conclusive remarks in the summary and discussion 

section. This chapter is a modified and adjusted version of one of our published papers in a 
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SPE conference, “SAYYAFZADEH, M., HAGHIGHI, M. & CARTER, N. 2012, 

Regularization in history matching using multi-objective genetic algorithm and Bayesian 

framework.”  

7.1.					Pareto	optimisation		

In multi-objective optimisation problems, there are a number of objective functions 

fሺmሻ ൌ ሾfଵሺmሻ, fଶሺmሻ,… , f୬ሺmሻሿ′, ܯ:݂ → ܴ௡ which are required to be optimised 

simultaneously. m is a Nm dimensional column vector m = [m1, m2,...,mNm]t whose 

elements are the variables. Usually, it is impossible to find a single point which meet the 

conditions of (minimises) all objective functions together (Coello, 2000, Konak et al., 

2006), i.e., a single point cannot be the absolute minimum of all the objective functions. 

Figure 7.1 reveals a system with two objectives (f1 and f2) and its feasible region. Usually, 

the point which minimises both objective functions together is out of the feasible region. In 

these problems, a set of solutions called noninferior or Pareto optimal solutions is 

approximated instead of a single point. Pareto front is located on the bottom border of 

feasible solutions (Haupt and Haupt, 2004) and it consists of non-dominated solutions. In 

the Pareto front, all the solutions are equally acceptable, unless supplementary information 

is available.  

 
Figure  7.1 Feasible solution and Pareto front for a two-objective problem (Haupt and Haupt, 2004) 
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Pareto optimal is introduced by Vilferdo Pareto in nineteen century. Pareto optimal,	m∗ ൌ

ሾmଵ
∗,mଶ

∗ , … ,m୒୫
∗ 	ሿ` means that for every m, either  

ሥ ሺf୧ሺmሻ ൌ f୧ሺm∗ሻ
୧∈୍

ሻ																																																																																																																																				ሺ1ሻ 

Or at least there is one i which (Coello, 2000) 

f୧ሺmሻ ൐ f୧ሺm∗ሻ																																																																																																																																																			ሺ2ሻ 

Pareto optimal solutions are a set of non-dominated solutions, and their corresponding 

evaluations are named optimal front. Finding the whole optimal set is almost unachievable, 

since 1- Pareto front usually consists of an infinite number of solutions, and 2- 

optimisation error always exists (Coello et al., 2007). Thus, the target, in the multi-

objective optimisation problems, is finding a set of solutions which is satisfactorily close to 

the  Pareto optimal set (Konak et al., 2006). After locating the set of solution, usually a 

number of solutions are taken out from the set based on post-optimisation trade-offs for 

decision making (Haupt and Haupt, 2004). This step should be carefully designed. It 

should be mentioned that if the proper weighing factors between the objectives can be 

assigned, it is more efficient to make use of a single-objective optimisation.  

In order to find the Pareto optimal solutions, a multi-objective optimisation is required. 

Different methods can be applied to solve multi-objective optimisation problems, among 

these methods, population-based algorithms have considerable robust benefits in 

comparison with the traditional multi-objective optimisation techniques (Coello et al., 

2007). The main advantage of these algorithms is the fact that they optimise a set of 

solutions (called population), which allows the computation of Pareto front in a single 

algorithm run. In addition, due to their stochastic search abilities, they are likely to be able 

to approximate Pareto fronts even in nonlinear functions. To implement the population-

based algorithms, a Pareto ranking scheme is used, instead of the regular selection 
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operators in single-objective algorithms. So far, different ranking algorithms have been 

developed; these algorithms are reviewed in the literature review chapter.  

In several studies, multi-objective optimisation algorithms were used in history matching 

problems; these studies are reviewed in the third chapter. In all these studies, the likelihood 

term is split up into several objective functions. In those studies, the objective function did 

not have a regularisation term. Separating the likelihood term (or any single-objective) into 

several objective functions needs considerations. If the weighting factors for the individual 

elements of the likelihood are uncertain, splitting the objective function can be useful, 

otherwise a single-objective optimisation can be more effectual, since a single point will be 

obtained which minimises proportionally all the objective functions according to the 

predefined weighting factors, and additionally, it does not need any post-optimisation 

trade-off. In addition, in those studies, a specific trade-off rule was not designed and it was 

not stated that the weighting factors are uncertain.   

In this study, a different approach is taken to the application of multi-objective 

optimisation into history matching problems. It is used for regularisation purposes, since 

the ratio of the covariance matrixes play a crucial role on the reliability of results. To 

perform the multi-objective optimisation, a multi-objective genetic algorithm which makes 

use of a modified NSGA-II (Deb et al., 2002) (called controlled elitist genetic algorithm) is 

used9. In this algorithm, recombination is based on two terms, rank and distance of 

individual chromosomes. The distance is used to supply diversity in Pareto front which can 

improve convergence to the optimal Pareto front (MathWork, 2011a). NSGA-II is widely 

applied especially when the number of variables is limited (Coello et al., 2007). It is fair to 

state that any type of Pareto optimisation method can be implemented for this study. The 

comparison of the multi-objective optimisation algorithms does not fall within the scope of 

this study.  

                                                 
9 gamultiobj function is used MATHWORK, T. 2011a. gamultiobj. 
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7.2.					Methodology	

In the Bayesian formulation, the objective function is the posterior probability function 

which is a function of two conflicting terms: prior and likelihood (equation 3). The prior 

function (second term) expresses the deviation from the initial gauss (usually provided by 

geologists). This function is quadratic and its minimum is the initial (prior) model (mprior). 

The likelihood function (first term) indicates the quality of fitting of the simulation over 

history data. It is a nonlinear and non-quadratic function. Its minimum is the maximum 

likelihood and denoted by mlikelihood. mlikelihood is different from MAP when there is a prior 

knowledge term into the objective function formulation. To approximate mlikelihood, a 

nonlinear inverse problem should be solved. To approximate MAPs (the maximum of 

posterior), a summation of these two functions which are related to each other via the 

weighting factors are minimised using a single-objective optimisation (refer to chapter 2 

for derivation). MAP has a closer distance from the initial guess than mlikelihood, when the 

prior knowledge has a larger weighting factor than the likelihood, and it is closer to the 

maximum likelihood, if the prior knowledge has a smaller weighting factor. 

ܵሺ݉ሻ ൌ
1
2
ሺ݀௢௕௦ െ ݃ሺ݉ሻሻ௧ܥ஽

ିଵሺ݀௢௕௦ െ ݃ሺ݉ሻሻ 	൅
1
2
൫݉ െ݉௣௥௜௢௥൯

௧
ெܥ
ିଵ൫݉ െ݉௣௥௜௢௥൯																			ሺ3ሻ 

Therefore, achieving appropriate history matched model(s) is subjected to the reliability of 

the covariance matrixes (weighting factors). To define the covariance matrixes properly, it 

is required to estimate and quantify several elements, including measurement error of 

observed data, simulation error (flow modelling error, PVT analysis error, 

reparameterisation error, and upscaling error), and the uncertainty of prior model. It is not 

an effortless task. Hence, sometimes the elements of covariance matrixes may have 

considerable uncertainties. In these conditions, the Monte Carlo approach can be taken 
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which as following. This approach is called conventional, although this approach has not 

been studied previously in history matching problems.  

7.2.1.					The	conventional	method	

A set of covariance matrixes are randomly selected from the estimated ranges according to 

their probability functions, and the MAP is approximated for each of the selected 

covariance matrixes by solving the corresponding inverse problem (equation 3). Then, an 

uncertainty analysis is carried out using the obtained MAPs (Tarantola, 2005). In order to 

deliver a high-quality uncertainly analysis, it is required to carry out the procedure with a 

large number of different arrangements. But, due to having a computationally expensive 

function in history matching problems; it is impossible to evaluate a large number of 

scenarios, especially when the optimiser is a stochastic method. It is also possible to make 

use of the mentioned methods for regularisation factor determination, such as L-curve and 

GCV, as an alternative of the conventional approach. But, they also suffer from being 

computationally expensive. 

7.2.2.					The	Pareto	method	

The computation issue of the Monte Carlo approach conducted us to develop an alternative 

approach. Where the weighting factors between two or more objective functions are 

unknown or uncertain, it is better to locate the non-dominated solutions (Pareto) via a 

multi-objective optimisation for the individual objective functions, then using some 

criteria, pick a number of solutions among the Pareto front.  

In this approach, in order to maximise the posterior probability function, prior and 

likelihood probability functions are considered as two independent objective functions and 

their corresponding Pareto front is being approximated. A single point (utopia) is rarely 

available which minimises two independent functions together, unless the prior model 
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(mprior) is equal to mlikelihood. By making use of a Pareto (multi-objective) optimisation in 

history matching problems while the two terms of Bayesian formulation are the two 

objective functions, a set of solutions named the Pareto front is provided regardless the 

weighting factors between prior and likelihood. With any covariance matrix, same Pareto 

solutions will be achieved and inaccuracies in the covariance matrixes cannot allow one 

objective function to be dominated over the other one. In this approach, it is not required to 

run several single-objective optimisations to generate a set of solutions for uncertainty 

analysis, and a single multi-objective execution is enough to find a set of solutions for 

uncertainty analysis. Hence, it is expected to be computationally efficient.  

In figure 7.2, a rough estimation for the feasible region and Pareto front (shown by red 

line) of history matching objective functions which generally is expected to be achieved is 

shown. The Pareto shows that in those solutions in which the prior knowledge is minimum, 

a high-quality matching between history data and observed data will not be obtained; and 

in those solutions in which the likelihood is minimum, there will be a significant deviation 

from the initial model. However, these solutions are all non-dominated solutions, they are 

not all acceptable results and should not be utilised for uncertainty analysis. Thus, it is vital 

to select a number of solutions among the entire Pareto front via a specific rule called post-

optimisation trade-off, in order to enhance the quality of uncertainty analysis.  

If there is no further information about the covariance matrixes (the covariance matrixes 

are completely unknown), the whole solutions on the Pareto front should be used for 

uncertainty analysis, otherwise a number of solutions can be taken out from the set based 

on post-optimisation trade-off criteria. 

If the prior model has high accuracy and observed or simulation data has considerable 

errors, it is better to carry out an uncertainty analysis using the solutions on the left 

handside of the Pareto. If the prior model has low accuracy and observed and simulation 
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data has high accuracy, it is better to carry out an uncertainty analysis using the solutions 

on the right hand side of the Pareto. If the prior model and observed and simulation data, 

all have enough accuracy, or if all these information have low accuracy, it is better to carry 

out an uncertainty analysis using the solutions on the middle of the Pareto.  

 

 

 

 

 

 

 
 
 

Figure  7.2 Feasible region and Pareto front of history matching problems considering prior and likelihood 

function as two separate objectives 

The selection (post-optimisation trade-off) is a tricky task, and instead of doing it 

qualitatively and schematically, it needs a quantitative criterion. For this reason, the 

following rules are designed. In this study, it is assumed CD is uncertain, since the 

modelling errors (Carter, 2004) and measurement noise cannot be estimated accurately. CM 

is considered acceptably known with the assumption of accurate parameterisation. If CM is 

also uncertain, the procedure will be similar and only the first rule should not be 

implemented for filtering the Pareto solutions.  

i- Known Cm along with mprior provides estimation regarding the distance of the 

location of the true solution in NM dimensional space. The diagonal elements (standard 

deviations) of Cm indicate the maximum distance of each corresponding element of MAP 

from the elements of mprior. Hence, the first trade-off can be made according to the prior 
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Feasible Solution 

Region 

Likelihood 
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knowledge function. The probability that the maximum distance of each element of MAP 

from its corresponding element of mprior is equal to the corresponding diagonal element of 

CM (standard deviation) is 68%. This probability is equal to 90%, if the maximum distance 

increases to 1.644854 times of its corresponding diagonal element of CM. Therefore, the 

probability that the MAP has a prior knowledge function value less than Nm/2 is 68% 

(equation 4 to 6), and this probability increases to 90% if the MAP are traded-off according 

to the following formula, ܲݎ݋݅ݎሺ݉ሻ ൏ ே೘
ଶ
ൈ ሺ1.644854ሻଶ (equation 7). These probabilities 

are calculated according to the normal distribution concepts. 

ሺ݉ሻݎ݋݅ݎܲ ൌ
1
2
൫݉ െ݉௣௥௜௢௥൯

௧
ெܥ
ିଵ൫݉ െ݉௣௥௜௢௥൯																																																																																					ሺ4ሻ 

ሺ݉ሻݎ݋݅ݎܲ ൌ
1
2
෍൬

݉௜ െ݉௣௥௜௢௥௜

௜௜ߪ
൰
ଶ

	

ேಾ

௜ୀଵ

																																																																																																											 ሺ5ሻ 

ݔܽ݉	݂݅ ቚܣܯ ௜ܲ െ ݉௣௥௜௢௥௜
ቚ ൎ ௜௜ߪ → ሻܲܣܯሺݎ݋݅ݎܲ	 ൌ

1
2
෍ቆ

ܣܯ ௜ܲ െ ݉௣௥௜௢௥௜

௜௜ߪ
ቇ
ଶ

	

ேಾ

௜ୀଵ

൑
ܰ௠
2
																	ሺ6ሻ 

ݔܽ݉	݂݅ ቚܣܯ ௜ܲ െ ݉௣௥௜௢௥௜
ቚ ൎ ௜௜ߪ1.644854 → ሻܲܣܯሺݎ݋݅ݎܲ	 ൑

ܰ௠
2
ൈ ሺ1.644854ሻଶ																								ሺ7ሻ 

Thus, according to one of the aforementioned criteria (equation 6 or 7), the first trade-off 

can be applied. Solutions which have a prior knowledge value less than 
ே೘
ଶ
ൈ ሺ1.644854ሻଶ 

or 
ே೘
ଶ

 will be taken out from the entire Pareto. It is better to use equation 7, since if the 

solutions are trade-off according to equation 6, there will be a chance of 32% that the true 

solution to be omitted; while this probably decreases to 10%, if the distance is increased to 

1.644854 standard deviations.  

ii- The second trade-off rule is based to the range of the diagonal elements of CD, 

these elements (standard deviations) are varied from the square of a%×dobs to the square of 

b%×dobs. In this trade-off, it is required to approximate the maximum likelihood (mlikelihood) 
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first, and then estimate the maximum and minimum distance of the MAPs for different CDs 

from the mprior or mlikelihood in NM dimensional space. In order to find the distances, the 

MAPs should be estimated which is required to solve the inverse problem for different 

scenario of CD. It is time-consuming and not advantageous. If we wanted to carry out 

history matching several times with different CDs, we would utilise the Monte Carlo 

approach. Hence, to solve this issue, the Taylor series approximation is used. Using the 

following formulas, it is possible to approximate the MAP for each set of covariance 

matrixes without solving the inverse problem for different CDs (and CMs, if CM is also 

uncertain). Using equation 13, the MAPs are approximated. The derivation is as following:  

Around the mlikelihood, it is assumed a first order Taylor series is enough to approximate the 

forward function.  

݃ሺ݉ሻ ൎ ݃ሺ݉௟௜௞௘௟௜௛௢௢ௗሻ ൅ ሺ݉௟௜௞௘௟௜௛௢௢ௗሻሺ݉݃׏ െ݉௟௜௞௘௟௜௛௢௢ௗሻ																																																														ሺ8ሻ 

If equation 8 is incorporated into equation 3: 

ܵሺ݉ሻ ൌ
1
2
൫݀௢௕௦ െ ݃ሺ݈݈݄݉݅݇݁݅݀݋݋ሻ ൅ ሻ൯݀݋݋ሻሺ݉െ݈݈݄݉݅݇݁݅݀݋݋ሺ݈݈݄݉݅݇݁݅݃׏

௧
஽ܥ
ିଵ … 

…൫݀௢௕௦ െ ݃ሺ݉௟௜௞௘௟௜௛௢௢ௗሻ ൅ ሺ݉௟௜௞௘௟௜௛௢௢ௗሻሺ݉݃׏ െ݉௟௜௞௘௟௜௛௢௢ௗሻ൯… 

…൅
1
2
൫݉ െ݉௣௥௜௢௥൯

௧
ெܥ
ିଵ൫݉ െ݉௣௥௜௢௥൯																																																																																																					ሺ9ሻ 

At mlikelihood,: 
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Therefore, equation 9 will be as equation 11.  
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The solution (MAP) of equation 11 is as equation 13 which is a function of CD, CM, 

mlikelihood and mprior, it is achieved by equalling the derivation of S(m) to zero and solving 

the corresponding equation (equation 12). 

߲ܵሺ݉ሻ

߲݉
ൌ 0,  ሺ12ሻ																																																																																																																																		݁ݒ݈݋ݏ	݀݊ܽ

ܲܣܯ ൎ ݉௣௥௜௢௥ ൅ ሺ݉ሻ൯݃׏ெ൫ܥ
௧
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 ሺ݉ሻ is the gradient of forward operator which is Ndobv×NM dimensional matrix, as݃׏

equation 14 and 15. 

ሺ݉ሻ݃׏ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
߲݃ଵ
߲݉ଵ

⋯
߲݃ଵ
߲݉ே೘

⋮ ⋱ ⋮
߲݃ே೏೚್ೞ
߲݉ଵ

⋯
߲݃ே೏೚್ೞ
߲݉ே೘ ے

ۑ
ۑ
ۑ
ۑ
ې

																																																																																																											ሺ14ሻ 

߲݃௟
߲݉௞

ൎ
݃௟൫݉ଵ,… ,݉௞ ൅ ∆݉௞, … ,݉ே೘൯ െ ݃௟൫݉ଵ,… ,݉௞,… ,݉ே೘൯

∆݉௞
																																																	ሺ15ሻ 

Using equation 13, it is possible to approximate the solution for each set of CD and CM 

analytically without solving its inverse problem. Thus, to carry out the second trade-off 

rule, many different scenarios (CDs and CMs if it is uncertain) are selected randomly from 

the given ranges and their MAPs are approximated using this equation. Then, the distance 

of the calculated MAPs from the mprior is estimated, and afterward according to the 

estimated distances (minimum and maximum), the Pareto solutions are filtered. If the CM is 

also uncertain, different scenario of CM and CD will be picked randomly and their 

corresponding MAPs will be approximated using equation 13; then the maximum and 

minimum distance from mprior will be estimated.  

In the non-quadratic problems, the equation 13 is not very reliable. That is why the 

distance is calculated. If it could deliver accurate results, the calculated MAPs would be 
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used directly for uncertainty analysis, instead of estimating the Pareto and trading-off 

according to this rule. Equation 13 can deliver an acceptable estimation regarding the 

distance of the MAP from mprior, as the problem is close to quadratic around the mlikelihood 

and hence the approximation can be reasonable for distance estimation. Equation 13 in the 

linear problem works precisely, since the error of numerical calculation of the gradient, 

and the deviation from being non-quadratic is zero (the Taylor approximation is exact).  

7.3.					Results	

In this section, two examples are used to investigate the influence of the uncertainties of 

covariance matrixes on the quality of the results. Then, for each problem, an uncertainty 

analysis is performed using the two approaches (the conventional and the proposed). The 

Pareto approach is compared with the Monte Carlo (random selection) approach in these 

two examples. The first example is a numerical model which is a linear inverse problem 

and the second example is a history matching problem.  

7.3.1.					Numerical	example	

In this example, a column vector (m = [a b c d e f]`) should be estimated from an observed 

data. The column vector consists of the coefficients of equation 16. The forward problem is 

linear (equation 17) in which x is as equation 18. In order to generate an observed data, a 

set of values is specified for the unknown vector (m) as equation 19, and called reference 

(mref). The observed data is generated by putting the reference value into equation 20 and 

adding Gaussian noise with zero mean and standard deviation of 10 percents as 

measurement error. The observed data is assumed uncorrelated. Figure 7.3 shows two 

graphs, the black graph is the observed data with 10% Gaussian noise while the blue graph 

is the data without noise. The fitting criterion is the black graph, since no one knows the 

exact data in real problems. A prior model (mprior) is created by adding Gaussian noise with 
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a zero mean and 25 percent standard deviation to mref. mprior is as equation 21, and its 

distance from the reference is 3.78 according to equation 22. The prior knowledge 

covariance matrix is diagonal and the elements on the diagonal are (0.25×mprior)
2.  

The goal is finding the most probable model (m) from the given prior model (mprior) and 

the observed data (black graph). The objective function is formulated as equation 3. In this 

study, to investigate the effect of covariance matrixes, it is assumed that observed 

covariance matrix is uncertain and its diagonal element can be any value from 5% to 40% 

of the observed data denoted by R; the correct value is 10% (the modelling error is zero, as 

the reference observed data is constructed by the forward problem). The covariance matrix 

of observed data will be as equation 23. In the first part of this example, the effect of the 

uncertain covariance matrix on the outcome of the problem is shown. The second part 

explains how the problem can be dealt with and the problem is solved by the proposed 

approach, and the conventional approach; the outcomes are compared with each other.  
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Figure  7.3 The observed data with and without noise for the numerical example 

Table 7.1 shows the solutions of the problem by assuming different Rs. The first column 

from left hand side shows the different values which are given to R from the range. The 

middle column is the corresponding difference of achieved solution (m∞), with a 

regularisation term consideration from the reference based on equation 24. The last column 

is the corresponding difference of achieved solution (m∞), without a regularisation term 

consideration from the reference based on equation 24.  

The first observation is that the solutions achieved by considering a regularisation term are 

significantly superior in comparison with the achieved solutions without any regularisation 

term; it shows the importance of having a regularisation term in noisy observed data. The 
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second observation is that by closing to the true R (10%), the solutions are improved. The 

difference proves the influence of covariance matrixes.  

The solutions are equally acceptable, since there is no further information to discriminate 

between the solutions. All these solutions are the most probable model for the 

corresponding selected R. Thus, in these problems, a single R should not be selected, since 

it may lead to an incorrect model and an uncertainty analysis is required.  

Table  7.1 The solution of the numerical example for different covariance matrixes 

R Difference of solutions achieved with 

regularisation from the reference 

Difference of solutions achieved without 

regularisation from the reference 

5% 13.69% 77.7% 

10% 11.44% 77.7% 

20% 14.48% 77.7% 

30% 17.08% 77.7% 

40% 18.26% 77.7% 

 

ሺ݉ሻ݁ܿ݊݁ݎ݂݂݁݅ܦ ൌ
1
ܰெ

෍ቤ
݉௜ െ ݉௥௘௙௜

݉௥௘௙௜

ቤ

ேಾ

௜ୀଵ

ൈ 100																																																																																				ሺ24ሻ 

According to the procedure of a Monte Carlo approach, i.500 different Rs are selected 

randomly from the given range [5% - 40%], ii. the corresponding solution for each R is 

estimated (solve the inverse problem, equation 3), iii. an uncertainty analysis is carried out 

via the achieved solutions. The cumulative probability distribution of differences is drawn 

in figure 7.4. It demonstrates that the achieved solutions have difference from the reference 

model from 10.5% to 18.5%. A decision with 90% confident should expect maximum 

17.9% error. This problem is linear and has analytical solution, therefore the step 2 in 

which the inverse problem is solved 500 times is not time-consuming, but in the nonlinear 

inverse problem, it is required to carry out the optimisation step 500 times.  

This problem is also solved by the Pareto approach. In order to define the Pareto front, a 

multi-objective optimisation id carried out with the mentioned options in table 7.2. The 

Pareto front is approximated using the algorithm which consists of 500 solutions. It is 
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shown in figure 7.5. It expresses the front acceptably, however some deviations can be 

seen.  

 
Figure  7.4 The cumulative probability distribution achieved by the conventional approach 

In the next step, the post-optimisation trade-off rules should be applied. The first rule is the 

prior knowledge function should not have a value higher than (1.644854)2×Nm/2 =8.1166. 

The solutions picked by this rule are shown by blue dot points in figure 7.6 on the front.  

Table  7.2 Multi-objective genetic algorithm options 

Options Objectives Population 

size 

Crossover 

operator 

Selection 

operator 

Mutation Stopping 

criteria 

Crossover 

probability 

Pareto front 

population fraction 

 Second term of eq. 3 

First term of eq. 3 

1000 Heuristic 

Ratio=1.2 

Tournament 

size=4 

Uniform 

Rate=0.11 

Generation 

number (2000) 

0.8 0.35 

 

Now, the second trade-off rule should be applied on the selected solutions. In order to 

apply the second rule, the MAPs are approximated using equation 13 for 1000 different 

CDs which are chosen randomly within the domain. The distance of the 1000 approximated 

MAPs from mprior are calculated via prior knowledge function. The minimum and 

maximum distances according to the prior knowledge function are 0.34 and 6.39. As in the 

linear problems the equation 13 works accurately, this domain [0.34-6.39] without any 

modification is used to filter some other solutions from the Pareto. Figure 7.7 shows the 

solutions picked by the second rule. The block spheres are the final solutions.   

Using the remained solutions, the cumulative probability of differences is calculated 

(figure 7.8). The blue graph expresses the outcome of the solutions of Pareto approach, and 
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the green graph shows the outcome of the solutions of the Monte Carlo approach. As it can 

be seen, the difference is obtained by the proposed approach on most of the probabilities is 

lower, for instance, if a decision with 90% confidence is sought by the Pareto approach, the 

maximum difference will be 17.25%, while this value is 17.9% with the conventional 

approach. Hence, it is fair to state that the proposed approach is able to deliver high-quality 

results.  

 
Figure  7.5 Pareto front of the numerical example 

 
Figure  7.6 Pareto front of the numerical example with first trade-off rule 

The main advantage of this approach in comparison with the conventional approach is that 

in order to achieve the set of solutions using the proposed approach, only a single run of 

multi-objective optimisation is enough while, the set of solutions using the conventional 

approach needs 500 runs of single-objective optimisation10. Therefore, it can be said that 

                                                 
10 As mentioned before, in this example, as it is linear, the execution of optimisation is not required to find the MAPs in 
the conventional approach. Thus, the computation advantage is not valid in the linear problems.   
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not only acceptable uncertainty analysis can be achieved (even slightly better than the 

conventional) but also the computation is reduced dramatically.   

 
Figure  7.7 Pareto front of the numerical example with first and second trade-off rule 

 
Figure  7.8 The cumulative probability distribution achieved by the conventional and the proposed approach 

In the following section, the methods are compared with each other on a history matching 

problem.  

7.3.2.					History	matching	on	PUNQ‐S3	model	

For the second example, PUNQ-S3 reservoir model is used. The reservoir model consists 

of 19×28×5 gridblocks and has 1761 active blocks. There are some modifications in some 

parts of the problem to switch the emphasis on the uncertainty of covariance matrixes. The 

modifications are as following, 1- the horizontal permeabilities are assumed isotropic and a 

function of porosity as equation 25 in which the coefficient (c1) and the power (γ) are 
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uncertain (matching parameters); 2- the vertical permeability is assumed a function of the 

horizontal permeability as equation 26 in which the coefficient (c2) is uncertain (matching 

parameter); and 3- the reference porosity distribution in each layer is generated using 

bicubic spline. The porosities in gridblocks in which wells are located at are assumed 

known and the porosity in five gridblocks in each layer are used as matching parameters. 

Using these 11 gridblocks data, the reference porosity distribution in each layer is created 

(figure 7.9) by an interpolation via the bicubic spline. The locations of the five gridblocks 

are fixed and they are shown by black dot points in figure 7.9. The white dot points show 

the gridblocks in which wells are located at. 

݇஺௥௜௔௟ሺ݉ܦሻ ൌ 1000ܿଵ߶
ఊ
ଵ଴																																																																																																																											ሺ25ሻ 

݇஺௥௜௔௟ሺ݉ܦሻ ൌ
݇௏௘௥௧௜௖௔௟ሺ݉ܦሻ

ܿଶ
																																																																																																										ሺ26ሻ 

The reference model is simulated to generate history data. The total number of observed 

data (history) is 1107 elements for 42 time steps (include 2936 days performance history). 

These data are cumulative field gas production, cumulative field water production, 

cumulative field oil production, well water-cuts, well gas oil ratios, well oil rates and well 

bottomhole pressures. Gaussian noise with a zero mean and standard deviation equal to 20 

percent of observed vector were added to the observed data (history).  

The matching parameters are the 25 porosities (5 gridblocks in each layer) and 3 

coefficients of equation 26 and 27. As the reference model was created using allocating a 

specific value to these matching parameters, the parameterisation and reparameterisation 

error is zero, and therefore, there is no concern about the validity of reparameterisation. 

The true solution (reference which was used to generate the history), and the prior model 

generated by adding Gaussian noise with zero mean and 20% to the solution can be found 

in table 7.3.  



200 

 
Figure  7.9 Reference porosity distribution of PUNQ-S3 generated by bicubic spline 

The goal is to estimate the most probable model using the observed data and the prior 

model. The objective function is defined as equation 3. To investigate the effect of 

covariance matrixes on the reliability of the obtained history matched models, CD which is 

a diagonal matrix is assumed uncertain and the domain of its elements (standard 

deviations) is uniform and from the square of 5%×dobsi to the square of 40%×dobsi.  CD 

should include the measurement and modelling errors, in this case study, as the history was 

generated by simulating the case study, the modelling errors are zero, but in the real 

problems, they are not zero and also they are not quantifiable. That is the reason why CD is 

assumed unknown in this study and the effect of its uncertainty is investigated.  
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In order to assess the obtained history matched models the following two criteria are used, 

1- ultimate oil recovery via the existing producers over 16.5 years is estimated using the 

obtained history matched model and the value is compared with the reference value 

(2,841,904 standard cubic meters); 2- the ultimate oil recovery via the existing wells and 

six infill wells over 16.5 years is estimated using the obtained history matched model and 

the value is compared with the reference value (3,611,786 standard cubic meters). Any 

history matched model which can deliver the closest values to the aforementioned 

reference ultimate oil recoveries for both scenarios is the better model.  

Table  7.3 Reference and prior model 

Variable Reference Prior 

Porosity in gridblock (x=1, y=1) 1st layer 19.7829 26.22665 
Porosity in gridblock (x=19, y=1) 1st layer 1.338925 1.466267 
Porosity in gridblock (x=1, y=28) 1st layer 18.78797 19.94273 
Porosity in gridblock (x=19, y=28) 1st layer 0.363551 0.380664 
Porosity in gridblock (x=6 y=19) 1st layer 13.67677 16.50523 
Porosity in gridblock (x=1, y=1) 2nd layer 15.67473 14.63738 
Porosity in gridblock (x=19, y=1) 2nd layer 10.68275 9.588425 
Porosity in gridblock (x=1, y=28) 2nd layer 17.70719 19.59075 
Porosity in gridblock (x=19,y=28) 2nd layer 17.9801 16.87799 
Porosity in gridblock (x=6 y=19) 2nd layer 12.51875 14.75166 
Porosity in gridblock (x=1, y=1) 3rd layer 2.75738 1.950091 
Porosity in gridblock (x=19, y=1) 3rd layer 4.356032 5.51157 
Porosity in gridblock (x=1, y=28) 3rd layer 3.642822 3.110519 
Porosity in gridblock (x=19,y=28) 3rd layer 0.836397 0.876302 
Porosity in gridblock (x=6 y=19) 3rd layer 2.138833 1.93869 
Porosity in gridblock (x=1, y=1) 4th layer 12.32887 14.08837 
Porosity in gridblock (x=19, y=1) 4th layer 18.79322 13.46536 
Porosity in gridblock (x=1, y=28) 4th layer 7.089115 5.575881 
Porosity in gridblock (x=19,y=28) 4th layer 8.212582 10.89379 
Porosity in gridblock (x=6 y=19) 4th layer 19.68699 15.84649 
Porosity in gridblock (x=1, y=1) 5th layer 18.91158 16.27016 
Porosity in gridblock (x=19, y=1) 5th layer 13.53289 13.70156 
Porosity in gridblock (x=1, y=28) 5th layer 19.76605 16.6086 
Porosity in gridblock (x=19,y=28) 5th layer 15.33663 15.78662 
Porosity in gridblock (x=6 y=19) 5th layer 6.733985 8.317719 
C1 30 30.4121 
γ 30 40.35712 
C2 10 7.10052 

 

Eight different CDs are selected from the given domain and history matching is carried out 

for each of them. The matching parameters are the stated 28 variables, and the objective 

function is as equation 3. The optimisation is carried out using the designed GA (refer to 

chapter 5) with the mentioned options in table 7.4. The optimisation for each problem (CD) 

is executed twice with two different seed number and the average of the two runs is 

reported, in order to deliver fair comparison.  
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Table  7.4 Single-objective GA options 

Population       
size (Npop) 

Stopping    
criteria 

Initial 
population 

Mutation & its 
probability 

Crossover 
probability 

Number of  
elites 

Tournament   
size (Ntour) 

32 Nogen = 350 Uniform Uniform & 
p=0.1 

p=0.9 1 4 

 

The ultimate oil recoveries for the two scenarios are estimated using the achieved history 

matched models and their differences from the reference value can be found in table 7.5.   

Table  7.5 The results of the conventional approach for the PUNQ-S3 model 

R Difference of estimated UOR 
using obtained model from the 

reference for 1st scenario 

Difference of estimated UOR 
using obtained model from 

the reference for 2nd scenario 

Average Difference of the two scenario 

5% 4.58% 4.95% 4.76% 
10% 5.97% 8.42% 7.19% 
15% 5.47% 7.12% 6.29% 
20% 4.49% 7.86% 6.17% 
25% 7.04% 9.15% 8.09% 
30% 6.24% 6.18% 6.20% 
35% 2.99% 6.15% 4.57% 
40% 4.54% 9.52% 7.02% 

 

As it can be seen, the difference is varied from 4.57% to 8.09% according to the selected 

CD which indicates the influence of the covariance matrix (regularisation factor) in the 

quality of obtained models. Therefore, an uncertainty analysis is required.   

To provide an uncertainty analysis, this problem is solved with the two different 

approaches (Monte Carlo and Pareto). For the Monte Carlo approach, due to computation 

limitation, only the eight different CDs are applied for uncertainty analysis. To carry out the 

Monte Carlo approach for only the eight different CDs and obtain models, the fitness 

function should be called 179,200 (8×2×32×350) times which needed 16.5 days CPU-time 

on a personal computer with the following configurations, CPU Intel i-7-2820QM and 8 

GB ram. The cumulative probability of average differences using these eight solutions can 

be seen in figure 7.12.  

Also, the problem is solved by the Pareto approach. To execute the Pareto optimisation, 

two multi-objective genetic algorithms with the two different options (table 7.6 and table 

7.7) are used. The first multi-objective GA had a random initialisation while the second 

one had a heuristic initialisation. For the heuristic initialisation, the chromosomes of the 
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initial population were generated by adding Gaussian noise with zero mean and covariance 

equal to CM to mprior. The heuristic initialisation helps in delivering quicker convergence; 

however, it may result in premature convergence. Thus, its solutions are combined with the 

solutions of another multi-objective genetic algorithm which uses a random initialisation. 

The achieved Pareto solutions of these two runs which had different seed numbers are put 

together. The achieved solutions are shown in figure 7.10. They consist of 120 solutions.   

Table  7.6 1st multi-objective genetic algorithm options 

Options Objectives Population 

size 

Crossover 

operator 

Selection 

operator 

Mutation Stopping 

criteria 

Crossover 

probability 

Pareto front 

population fraction 

 Second term of eq. 3 

First term of eq. 3 

170 Intermediate 

ratio:1.0 

Tournament 

size=4 

Uniform 

Rate=0.11 

Generation 

number (250) 

0.8 0.45 

 

Table  7.7 2nd multi-objective genetic algorithm options 

Options Objectives Population 

size 

Crossover 

operator 

Selection 

operator 

Mutation Stopping 

criteria 

Crossover 

probability 

Pareto front 

population fraction 

 Second term of eq. 3 

First term of eq. 3 

120 Heuristic 

ratio:1.2 

Tournament 

size=4 

Uniform 

Rate=0.11 

Generation 

number (150) 

0.8 0.35 

 

 
Figure  7.10 Pareto front for PUNQ-S3 reservoir 

The two post-optimisation trade-off rules are applied to pick a set of solutions among the 

Pareto front. The first rule is as equation 27.  

ሺ݉ሻݎ݋݅ݎܲ ൑ ൬
ܰ௠
2
ൈ ሺ1.644854ሻଶ൰ ; ܰ௠ ൌ 28	 → ሺ݉ሻݎ݋݅ݎܲ		 ൑ 37.87																																										ሺ27ሻ 

The second rule is similar to the numerical example; 500 different CDs are picked and the 

solution is approximated using equation 13. Then, their distances from mprior according to 

prior knowledge function are calculated. The minimum distance is 34 and the maximum 
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distance is 108. As this example is nonlinear, it is expected that the equation 13 and also 

gradient calculation have error, therefore the range ([34-108]) is enhanced by 50%. Hence, 

the second rule is as equation 28.  

34 ൈ 0.5 ൏ ሺ݉ሻݎ݋݅ݎܲ ൏ 108 ൈ 1.5																																																																																																								ሺ28ሻ 

According to these two rules, 26 solutions will remain. They are shown by blue points in 

figure 7.11.  

 
Figure  7.11 Pareto front for PUNQ-S3 and the solutions after trade-off 

Using the remained solutions, the ultimate oil recoveries for the two scenarios are 

estimated, and the cumulative probability of average differences of the estimations from 

the reference values is drawn in figure 7.12. The green graph shows the solutions of Pareto 

approach while the blue graph expresses the solutions of Monte Carlo approach. As it can 

be seen, the forecasting can be made with more certainty by the solutions of Pareto 

approach. Solutions with less than 2% difference are seen among its remained solutions 

while the minimum difference is 4.5% with the conventional approach. 

The computation of the Pareto approach required 5.5 days CPU-time on the same personal 

computer, while the conventional approach needed 16.5 days CPU-time. Hence, it is fair to 

state that the proposed approach not only needs less computation, but also it can deliver 
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better results in comparison with the conventional approach. It should be mentioned that 

the conventional approach perhaps will be able to deliver better results, if a large number 

of scenarios are investigated. If the trade-off rules were not applied, there would be 

solutions with 52% difference. That indicates the importance of trade-off rules.  

 
Figure  7.12 Cumulative probability of average difference of forecasting of two approaches (Monte Carlo and 

Pareto) 

7.4.					Discussion		

In this chapter, it was shown that covariance matrixes play a significant role on the 

reliability of history matching. Also, it was demonstrated that in those problems where the 

covariance matrixes are uncertain, like the examples of this chapter, a set of solutions 

should be provided for delivering an uncertainty analysis. To achieve a set of solutions by 

the conventional approach, it was required to solve the inverse problem with many 

different arrangements of covariance matrixes. This approach was time-consuming, and it 

was shown that if a large number of arrangements are not picked, there will be high risks in 

decision making. In the proposed method, the Pareto front for likelihood versus prior 

function was approximated using a single run of a multi-objective genetic algorithm. Using 

the designed post optimisation trade-off rules, a number of solutions were taken out from 

the Pareto front. The outcomes of these approaches expressed that the proposed approach 

is more efficient in terms of the quality of solutions and also computation.  
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The proposed approach has also a drawback; the multi-objective genetic algorithm should 

be utilised in conjunction with a reparameterisation operator, as the regular crossover 

operators do not work properly in high-dimensional search spaces. The applied multi-

objective algorithm is extensively used for Pareto optimisation. The algorithm can be 

replaced by any other multi-objective optimisation algorithms, and this replacement does 

not influence the approach. It is worth mentioning that where the covariance matrixes are 

certainly known, these approaches are not efficient, and it is better to use the regular 

methods, like the previous chapters.  

The conclusive remarks of this chapter are as following:   

 Covariance matrixes should be carefully assigned, and inaccuracy in covariance 

matrixes may result into wrong history matched models. 

 If the covariance matrixes are uncertain, a set of solutions should be estimated to be 

able to carry out an uncertainty analysis. 

 Pareto approach (proposed) delivers better than the random selection approach 

(conventional), in terms of estimating the set of solutions and also the required 

CPU-time. 

 The designed post-optimisation trade-off rules perform properly in filtering the 

solutions.   
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Chapter	8	

 

 

 

8. 				Application	of	transfer	functions	in	providing	quick	

estimation	of	future	performance		

The main focus of this chapter is on developing a new fast simulator that does not require 

the expensive history matching procedures and provides quick forecasts. Thus far, various 

simulators from simple (fast) to complex ones have been developed and utilised to deliver 

predictions regarding reservoir performance. The choice of each of these methods depends 

on the available data and the level of desirable accuracy (Ertekin et al., 2001a). However, 

grid-based simulation (Aziz and Settari, 2002, Fanchi, 2001) and streamline simulation 

(Rust and Caudle, 1972) are accurate methods, they are time-consuming (especially grid-

based simulators) and large quantities of data are required. All the data, especially spatial 

distributions are not always accessible; hence expensive history matching is required (the 

new advances and several robust algorithms for history matching were investigated in the 

previous chapters).  

Sometimes, a quick overview with reasonable accuracy is adequate, or sometimes, all the 

essential data for a grid-based simulation are not accessible or computable with history 

matching. In these occasions, a fast simulator which has reasonable accuracy is sought. 

Methods like Decline Curve Analysis (DCA) (Arps, 1944, Baker et al., 2003) and the 

Capacitance Resistance Model (CRM) (Sayarpour et al., 2009a, Sayarpour et al., 2010) 
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supply quick forecasts and also require the minimum data to simulate reservoirs, but their 

outputs are not very reliable in many cases, particularly secondary recovery and gas-

flooding respectively. Therefore, researchers look for a method which needs minimum data 

and has reasonable accuracy.  

In this chapter, a new fast simulator is presented to forecast quickly the performance of oil 

reservoirs during water and gas (miscible and immiscible) injection based on Transfer 

Function (TF). In this method, it is assumed a reservoir consists of a combination of TFs. 

The suitable order and arrangement of TFs are sought by examining several cases. The 

method is combined to a fractional flow model to predict oil production rates. For water-

flooding problems, the chosen fractional flow is Gentil model, and for gas-flooding, a 

specific fractional flow is developed. The questions, the author wishes to answer in this 

chapter, are: 

a- Can the proposed method provide reliable forecasts for the future performance of 

oil reservoirs?  

b- Can the fractional flow models estimate oil performance reliably?  

c- What are the restrictions of this method?  

This chapter begins by a brief introduction to the transfer functions and followed by the 

explanation of the methodologies. In the methodology section, water-flooding modelling 

and gas-flooding modelling are described separately. In the results section, different cases 

are employed to validate the derived equations. The benefits and drawbacks of the methods 

are discussed, and followed by some conclusive remarks in the summary and discussion 

section. This chapter is a modified and adjusted version of two of our published papers in a 

peer-reviewed journal and a SPE conference: “SAYYAFZADEH, M., POURAFSHARY, 

P., HAGHIGHI, M. & RASHIDI, F. 2011, Application of transfer functions to model 

water injection in hydrocarbon reservoir, Journal of Petroleum Science and Engineering, 

78, 139-148” and “SAYYAFZADEH, M., MAMGHADERI, A., POURAFSHARI, P. & 
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HAGHIGHI, M. 2011. A New Method to Forecast Reservoir Performance during 

Immiscible and Miscible Gas-Flooding via Transfer Functions Approach, SPE Asia Pacific 

Oil and Gas Conference and Exhibition, Jakarta, Indonesia: Society of Petroleum 

Engineers” (and also submitted to Journal of Petroleum Science and Technology).    

8.1.					Transfer	functions	

Any system can be assumed as a black box which has some input and some response 

signals. Transfer Function (TF) demonstrates the relation between input and output signals 

usually in Laplace domain (Buckley, 1964, Coughanowr et al., 1965, Towill, 1970) for the 

black box, figure 8.1. The most common TFs are the first and second-order and also the lag 

function. The majority of engineering systems can be modelled via a combination of these 

TFs. If the TF and input signal are signed by G(s) and X(s) respectively, the output signals, 

Y(s), are represented by equation 1 (Mikles and Fikar, 2007). s demonstrates Laplace 

domain and t reveals time domain. 

ܻሺݏሻ ൌ .ሻݏሺܩ ܺሺݏሻ																																																																																																																																												ሺ1ሻ 

 

 

Figure  8.1 Transfer function 

Table 8.1 shows the main input functions and their Laplace transforms which are used in 

this method. 

Table  8.1 Input functions 

Function type Original function Laplace Transform 

Unit function ܨሺݐሻ ൌ ݐሺݑ െ ܽሻ ൌ ቄ0 ݐ ൏ ܽ
1 ݐ ൐ ܽ

 1
S
 

Impulse Function 
ሻݐሺܨ  ൌ ሻݐሺߜ ൌ ൝

1
ߝ

0 ൏ ݐ ൏ ߝ

0 ݐ ൐ ߝ
, ߝ → 0 

 
1 

Input Signal 

Transfer Function 

Output Signal 
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8.1.1.					First‐order	transfer	function	

Many engineering systems are modelled by a first-order TF, for example, RC circuits, tank 

modelling in process control, etc. In these systems, the transfer function is as equation 2:  

ை௨௧௣௨௧	ௌ௜௚௡௔௟

ூ௡௣௨௧	ௌ௜௚௡௔௟
ൌ

௄೛
ఛ௦ାଵ

																																																																																																																																									ሺ2ሻ            

Kp demonstrates a fraction of the input signal which has influence on the output signal 

and/or the unit conversion and τ is the time constant. The output signals of first-order for 

different input signals are as follows:  

Unit function 

ܺሺݐሻ ൌ ሻݐሺݑܣ → ܺሺݏሻ ൌ
ܣ
ݏ
→ ܻሺݏሻ ൌ

ܣ
ݏሺ߬ݏ ൅ 1ሻ

→ ܻሺݐሻ ൌ ܣ ൬1 െ ݁ି
௧
ఛ൰																																									ሺ3ሻ 

Impulse function 

ܺሺݐሻ ൌ ሻݐሺߜ → ܺሺݏሻ ൌ 1 → ܻሺݏሻ ൌ
1

ݏ߬ ൅ 1
→ ܻሺݐሻ ൌ

1
߬
݁ି

௧
ఛ																																																																ሺ4ሻ 

8.1.2.					Second‐order	transfer	function	

If the mechanical sections or the fluid flow in the system are accelerated, the transfer 

function is expressed by a second-order as: 

ܻሺݏሻ
Xሺsሻ

ൌ
Kp

τଶsଶ ൅ 2τξs ൅ 1
																																																																																																																																	ሺ5ሻ 

where τ and ξ reveal the time constant and the damping coefficient, respectively. The 

output signals of second-order TF for step and impulse function input signals are as 

follows: 
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Step function 

ܺሺݐሻ ൌ ሻݐሺݑܣ → ܺሺݏሻ ൌ
ܣ
ݏ
→ ܻሺݏሻ ൌ

Kp

ሺτଶsଶݏ ൅ 2τξs ൅ 1ሻ
→ ⋯ 

if	ξ ൏ 1,→ Yሺtሻ ൌ Kp
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ێ
ێ
ۍ
1 െ

1

ට1 െ ξ
ଶ
eି

ξ୲
τ sin

ۉ

ට1ۇ െ ξ
ଶ t
τ
൅ tanିଵ

ට1 െ ξ
ଶ

ξ
ی

ۊ

ے
ۑ
ۑ
ې
																																		 ሺ6ሻ 

if	ξ ൌ 1,→ 	Yሺtሻ ൌ Kp ൤1 െ ൬1 ൅
t
τ
൰ eെ

t
τ൨																																																																																								ሺ7ሻ 

if	ξ ൐ 1,→ Yሺtሻ ൌ Kp

ۏ
ێ
ێ
ۍ
1 െ

1

ටξ
2
െ 1

eെ
ξt
τ cosh

ۉ

ටξۇ
2
െ 1

t
τ
൅

ξ

ටξ
2
െ 1

sinhටξ
2
െ 1

t
τ
ی

ۊ

ے
ۑ
ۑ
ې
						ሺ8ሻ 

Impulse function  

ܺሺݐሻ ൌ ሻݐሺߜ → ܺሺݏሻ ൌ 1 → ܻሺݏሻ ൌ
Kp

ሺτଶsଶ ൅ 2τξs ൅ 1ሻ
→ ⋯ 

if		ξ ൏ 1,→ Yሺtሻ ൌ Kp

ۏ
ێ
ێ
ۍ 1

τට1 െ ξ
ଶ
eି

ξ୲
τ sinሺට1 െ ξ

ଶ t
τ
ሻ

ے
ۑ
ۑ
ې
																																																																												ሺ9ሻ 

if		ξ ൌ 1,→ Yሺtሻ ൌ Kp ൤൬
t
τଶ
൰ eି

୲
τ൨																																																																																																															ሺ10ሻ 

if	ξ ൐ 1,→ Yሺtሻ ൌ Kp

ۏ
ێ
ێ
ۍ 1

τටξ
ଶ
െ 1

eି
ξ୲
τ sinhሺටξ

ଶ
െ 1

t
τ
ሻ

ے
ۑ
ۑ
ې
																																																																								ሺ11ሻ 

8.1.3.					Lag	transfer	function	

Another function used in the control systems is the lag function which indicates the time 

lag. The following equation shows the lag transfer function. td denotes the time lag in 

equation 12. 

ܻሺݏሻ
Xሺsሻ

ൌ eି୲ౚୱ																																																																																																																																																				ሺ12ሻ 
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The output of systems can be a combination of responses of different transfer functions to 

different input signals as shown in figure 8.2 in which Y(s)=G1X1+G2X2+...+GnXn. As all 

the calculations are in Laplace domain, inverse Laplace method is operated to calculate the 

output in the time domain.  

 

 

 

Figure  8.2 Combination of transfer functions 

8.2.					Methodology	

In this section, it is described how transfer functions can be applied to model water-

flooding and gas-flooding. These two are explained in individual subsections.  

8.2.1.					Water‐flooding	simulation	by	transfer	function	method	

During water-flooding, production from each well is assumed due to two main 

mechanisms: the primary pressure of the reservoir and the injection drive. Hence, these 

mechanisms formulate the input signals, while the production rate represents the output 

signal. Once the appropriate transfer function is selected, the estimation of the future 

production for any injection rates (input signals) is feasible. The well production behaviour 

for input and output signals is modelled by a set of transfer functions to explain the 

injection influences and the reservoir pressure drive individually. Since the influence of the 

water drive on primary recovery is negligible and they act independently on production, 

the outputs of each transfer functions are added up. Different groups of transfer functions 

were checked to develop a combination which has physical meaning and also acceptable 

mathematical results.  

G1(s) 

G2(s) 

X1(s)

X2(s) 

Y(s) 
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The behaviour throughout water injection demonstrates that a combination of the first-

order transfer functions simulates the water-flooding with tolerable error. First-order 

transfer functions usually are applied for those systems which are not accelerated such as 

flow in tank and Resistance Capacitance (RC) circuits. Therefore, a set of first-order TF is 

applied to model water-flooding due to the assumption of the reservoir as a tank. Also due 

to the depletion behaviour of reservoir during primary recovery, again a first-order TF is 

used to model primary production with plausible certainty.  

For the output signals, it is assumed that the production of each well does not have much 

influence on the neighbouring wells. Hence, it is possible to simulate each production well 

separately with the same set of transfer functions. As discussed above, production is due to 

two main mechanisms: primary and secondary recovery. The primary recovery input signal 

is an ideal impulse, because when a well is completed in a reservoir (opened), the 

bottomhole pressure of the well acts like an initial impulse to the pressure profile of the 

reservoir. For the secondary recovery, step functions are applied to model the changes in 

water injection rates. It should be noted that there are a number of injection wells in almost 

all oil fields. Hence, the system consists of a series of first-order transfer functions with 

different input signals which are an ideal impulse signal and different step function signals 

for each injection well, for instance, if there are n injectors in the reservoir, the system for 

each production well consists of n+1 transfer functions, one for primary recovery 

modelling and n for the modelling of each injector well. By these functions, the effect of 

each injector on the total production of each well can be modelled. A lag function is also 

added to each section to illustrate the lag between the injection and its effect on the 

production profile. The system is shown in figure 8.3.  

The output signal which is the liquid production rate of well j versus time is as 

ሻݏሺݐݑ݌ݐݑ݋ ൌ ෍ .ሻݏ௜ሺܩ ሻݏ௜ሺݐݑ݌݊ܫ

ଵାே௢ூ௡௝௘௖௧௢௥௦

௜ୀଵ

ൌ ෍
݅݌ܭ

ݏ݅߬ ൅ 1
. ሻݏ௜ሺݐݑ݌݊ܫ

ଵାே௢ூ௡௝௘௖௧௢௥௦

௜ୀଵ

																								ሺ13ሻ 
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௝ܲሺݐሻ ൌ ሻݐሺݐݑ݌ݐݑ݋ ൌ ࣦିଵ൫ݐݑ݌ݐݑ݋ሺݏሻ൯																																																																																																				ሺ14ሻ 
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Figure  8.3 Water-flooding transfer function model 

In equation 15, the first term on the right hand side shows the effect of reservoir pressure 

on the production rate of well number j. For this term, the input is X1(t)=δ(t) and the 

transfer function is written as ܩଵሺݏሻ ൌ
௄௣భ
ఛభ௦ାଵ

. The second term shows the effect of injection 

rates on two transfer functions which are a first-order and a lag function. In this case, the 

input function for injector i is Xi(t)=Aiu(t−ai), if it is assumed that just a change happened 

in injection rate, and the transfer function is	ܩ௜ሺݏሻ ൌ
௄௣೔శభ௘

ష೟೏೔ೞ

ఛ೔శభ௦ାଵ
. If the injection rates are 

changed a couple of times, the final solution will be different from equation 15, but it will 

be easily estimated through equation 13 and 14. In the results section, it is shown. 

In the above equation, τ1 is a time constant which is a function of depletion time of 

reservoir. The bigger τ1 means that a longer time is needed for the depletion of primary 

stage, which demonstrates that there is higher pore volume or lower permeability around 

the producer j. Kp1 is a function of initial production rate. Kpi+1 shows the connectivity of 

injection well i to the production well j. It is a function of the permeability of the section 

between the injector and producer and also the well locations and distances. τi+1 reveals the 
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required time for the effect of the injection of well i to be seen by the producer. Time 

constants are proportional to the pore volume, total compressibility (Ct) and flow resistivity 

(1/k). It is obvious that if there is not any compressibility, the influence of injection on 

production can be seen instantly. On the other hand, if the pore volume is low, the 

producer needs less time to receive the influence of the injector. Also, if there is a higher 

transmissibility, less time is needed to receive the influence of the injector on the producer. 

tdi shows the lag time.  

Equation 15 should be constructed for each producer well separately. As it is seen in the 

equation, there are still some unknown parameters like Kp1,.. Kpn+1, τ1,.. τn+1, td1..tdn which 

should be identified. These are the matching parameters, and they are different from case 

study to case study. To estimate these parameters, a history of production and injection 

rates is used. As the number of variable is reasonable, the Generalized Reduced Gradient 

(GRG2) nonlinear optimisation method is employed to minimise the error in history 

matching and estimate the model parameters. Firstly, an initial guess is used then using the 

initial guess, the production is calculated after that the result should be compared with 

history. In this way, the difference of estimation and history is defined as an error. After 

history matching, the unknown parameters are estimated and using those parameters, it will 

be simple to predict the reservoir performance for any input other signals. These 

parameters are different for each case, but equation 15 is extendable for any cases (for 

forecasting the performance of any oil well under water-flooding recovery). History 

matching of this method is not expensive, as it has an analytical solution.  

The current method forecasts the production of total fluids (water and oil). Hence a 

fractional flow model is needed to estimate the oil flow rate. 
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8.2.1.1.					Fractional	flow	for	water‐flooding	

There are different methods to predict water-cut profile such as the Buckley–Leveret 

model. In most fractional flow methods, water-cut usually is a function of saturation. The 

TF approach does not provide saturation distribution; hence the empirical methods such as 

Gentil model (equation 16) should be used to estimate oil performance. Gentil in 2005 

introduced the power law relation of cumulative injected water and oil fraction. The model 

was developed by Lake in 2007. In the Gentil model, the water-cut is not a direct function 

of saturation. Fraction of oil, fo is calculated as  

௢݂ሺݐሻ ൌ
1

1 ൅ ௪௢ܨ
ൌ

1

1 ൅ ߙ ௜ܹ
ఉ 																																																																																																																					ሺ16ሻ 

Where α and β are Gentil constants which are calculated by history matching of production 

and injection data; Wi is the cumulative water injection. There are two unknown 

parameters, α and β, which are calculated by history matching. These parameters are 

matching parameters which are different for any case. Due to the difficulty of estimation of 

parameter in a power low relation, their logarithms are used. Similar to the TF method, the 

same approach is utilised. Production and injection history is used to calculate α and β. 

However, α and β are referred as dimensionless (Lake et al., 2007, Sayarpour et al., 

2009b), at least α should have dimension because of dimension of Wi which is L3. Figure 

8.4 shows the algorithm and summarises the calculation for this study. 

Using this combination (TF method and Gentil model), it is possible to estimate the future 

performance of oil wells under water-injection condition. However, the equations are 

derived based on some assumptions, they can be extended to any other oil wells with 

reasonable accuracy.  
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Figure  8.4 Transfer function approach algorithm for water-flooding 

8.2.2.					Gas‐flooding	simulation	using	transfer	function	method	

In this section, it is explained how this approach can be used to forecast oil well 

performance during gas-flooding. The production rate constructs the output signal of 

system. As mentioned before, output signals can be the summation of outcomes of 

different input signals to different transfer functions. During the gas-flooding, production 

from well is governed by two main mechanisms: the initial pressure of reservoir and the 

gas injection drive, thus, these formulate the input signals. The primary recovery input 

signal is an ideal impulse, because when a well is completed in a reservoir, the bottomhole 

pressure of the well acts like an impulse to the pressure profile of the reservoir. For 

secondary recovery, step functions are applied to model changes in gas injection rates. It is 

desirable to seek the appropriate transfer functions to relate the output and input signals. It 

is taken for granted that the influence of the gas injection drive on natural drive is 

insignificant and they act independently on production. In addition, it is assumed the 
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production of each well does not have much influence on the neighbouring wells. Hence, it 

is possible to simulate each production well individually. In gas-flooding modelling, mass 

rates are used as signals instead of volume rate, because the volume of gas is much more 

than oil volume; and the changes in oil rate cannot be observed.   

In order to achieve the appropriate transfer function set, different groups of transfer 

functions were checked to develop a combination which has physical meaning and also 

accurate mathematical results. The behaviour of the reservoir throughout the gas injection 

demonstrates that a combination of the first and second-order transfer functions simulates 

the gas-flooding with tolerable error. Second-order transfer functions usually are applied 

for those systems which are accelerated such as RCL circuit and accelerometer. In 

immiscible gas-flooding, due to the high compressibility of gas, the gas is compressed 

behind oil front until reaching the producer and then decompressed. Hence, it can be 

assumed the system is accelerated and a second-order transfer function is the best choice to 

model the change in gas injection rate. Due to the depletion behaviour of reservoir during 

primary recovery, a first-order TF is used to model primary production with plausible 

certainty. 

It should be considered that there are a number of injection wells in almost all oil fields. 

Hence, the input signal consists of an ideal impulse signal and a set of step signals for 

different injectors. The transfer function also consists of a first-order function which shows 

the effect of the reservoir primary depletion and a set of second-order step functions to 

show the effects of different gas injectors. It means that if there are n injectors in the 

reservoir, the system consists of n+1 transfer functions. By these functions, the effect of 

each injector on the total production of a well can be modelled. A lag function is also 

added to each section to illustrate the lag between the injection and its effect on the 

production profile. The system is shown in figure 8.5.  
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Figure  8.5 Gas-flooding transfer function model 

Based on the figure 8.5, the output signal for producer j in a reservoir under gas-flooding 

condition is expressed as  

ሻݏሺݐݑ݌ݐݑܱ ൌ ∑ .ሻݏ௜ሺܩ ሻݏ௜ሺݐݑ݌݊ܫ
ଵାே௢ூ௡௝௘௖௧௢௥௦
௜ୀଵ ൌ... 

…		
ଵ݌ܭ

߬ଵݏ ൅ 1
. ሻݏଵሺݐݑ݌݊ܫ ൅	 ෍

K୮୧݁
ି௧೏೔௦

τ୧ଶsଶ ൅ 2τ୧ξ୧s ൅ 1
. ሻݏ௜ሺݐݑ݌݊ܫ

ଵାே௢ூ௡௝௘௖௧௢௥௦

௜ୀଶ

																																												ሺ17ሻ 

௝ܲሺݐሻ ൌ ሻݐሺݐݑ݌ݐݑܱ ൌ ࣦିଵ൫ܱݐݑ݌ݐݑሺݏሻ൯																																																																																																		ሺ18ሻ 

௝ܲሺtሻ ൌ
௣ଵܭ
τଵ

݁
ି
௧
τభ ൅ ⋯ 

…෍ܣ௜K୮୧ାଵ

ۏ
ێ
ێ
ۍ
1 െ

1

ට1 െ ξ୧ାଵ
ଶ
e
ି
ξ౟శభ൫୲ି௧೏೔൯

ఛ೔శభ Sin

ۉ

ට1ۇ െ ξ୧ାଵ
ଶ t െ ௗ௜ݐ
߬௜ାଵ

൅ tanିଵ
ට1 െ ξ୧ାଵ

ଶ

ξ୧ାଵ
ی

ۊ

ے
ۑ
ۑ
୬ې

୧ୀଵ

… 

ݐ൫ݑ… െ ܽ௜ െ  	ሺ19ሻ																																																																																																																																										ௗ௜൯ݐ

In equation 19, the first term in the right hand side shows the effect of reservoir pressure on 

the production rate. For this term, the input is ଵܺሺݐሻ ൌ  ሻ and the transfer function isݐሺߜ

written as ܩଵሺݏሻ ൌ
௄௣భ
ఛభ௦ାଵ

  . The second term shows the effect of the injection rate on the 

production profile which can be shown by a second-order and a lag transfer function. In 

this case, the input function for injector i is ௜ܺሺݐሻ ൌ ݐሺݑ௜ܣ െ ܽ௜ሻ and the transfer function 

is	ܩ௜ሺݏሻ ൌ
୏౦౟శభ௘

ష೟೏೔ೞ

τ౟శభమୱమାଶτ౟శభξ౟శభୱାଵ
. The changes in injection rates can be in any types. 

Output signal 
Step1 

Lag function 2 Second order TF2 

+

Step2 
Lag function 3 Second order TF3 

Step n 
Lag function n+1 Second order TF n+1 

Impulse 
First order TF1 
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In the above equation, ߬ଵ	 is a time constant which demonstrates the reservoir depletion 

time. It is a function of pore volume, well productivity index and total compressibility 

(Lake et al., 2007). ݌ܭଵ is a function of initial pressure. ݌ܭ௜ାଵ explains the connectivity of 

injector well i to the producer well j, therefore it is function of well locations and the 

permeability between the wells. ߬௜ାଵ shows the needed time for the producer to observe the 

effect of injection of well i. ݐௗ௜ shows the lag time for each producer. ܽ௜ shows the time of 

change in the rate of injector i. ξ୧ାଵis damping coefficient, once ξ ൐ 1, the system is called 

overdamped, and once ξ ൌ 1, it is called critical damping. In these two situations, 

oscillating is not seen. Bigger ξ demonstrates later equilibrium. If	ξ ൏ 1, it is called 

underdamped, in this condition, system oscillates. Lower ξ leads to more fluctuation until 

equilibrium. Equation 19 should be constructed for each producer well separately. There 

are some unknown parameters such as ݌ܭଵ. . .ௗଵݐ,߬௡ାଵ	௡ାଵ,߬ଵ,..݌ܭ . ௗ௡, ξଶݐ … ξ୬ାଵ which 

must be identified to be able predict future performance.  

In order to identify these parameters, the history of production and injection rates is used. 

Injection and production mass rates are only requirements for developing the model which 

shows the simplicity of approach. As the number of variable is reasonable, the Generalized 

Reduced Gradient (GRG2) nonlinear optimisation method is employed to minimise the 

error in history matching and estimate the model parameters. After history matching, the 

unknown parameters would be estimated and using those parameters, the prediction of 

reservoir performance for any input signals would be feasible. These parameters are 

different for each case, but the equation 19 is extendable for any cases. History matching 

for this method is also simple, as it has analytical solution.  
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8.2.2.1.					Fraction	flow	for	gas‐flooding	

The output signal is the mass production flow rate for each well. Hence, to estimate oil 

production rate, a fractional flow model should be coupled with the approach. There are 

some conventional methods to calculate phase fractions in reservoir simulations which 

need flash calculations in compositional models. The flash calculations determine phase 

properties and the amount of phases for a given temperature, pressure, and overall 

composition. There are two basic formulations for the flash calculations, minimisation of 

the Gibbs free energy and the solution of fugacity equations. These formulations leads to a 

general equation for a two/three phase systems (multiphase Rachford-Rice equation, 1952). 

In the grid-based simulation methods to find the fractional flow, it is adequate to solve 

material balance equations to find phase rates separately and calculate fractional flow 

values (Ertekin et al., 2001b).  

The aforementioned methods are not appropriate in the fast simulators, because of lack of 

sufficient information to solve the relative equations. Hence, it is necessary to find an 

appropriate approach for the fractional flow calculation. Gentil (2005) did a similar work 

for water-flooding process and derived an approach to the find fractional flow as a function 

of cumulative fluid produced in water-flooding . 

In this section, a new method to find an appropriate fractional flow model in gas-flooding 

process is introduced. The oil production regression model is based on the assumption of 

linear relationship between the logarithms of oil fraction [log (fo)] and the cumulative 

injected gas [Gi]. When injection and production are in balance: 

௜ܩ ൎ ௣ܰ ൅ ௣ܩ ൌ ܳ௣																																																																																																																																							ሺ20ሻ 

Where, 

Gi: Cumulative gas injected is approximated by the total fluids produced 
Np: cumulative oil produced  
Gp: cumulative gas produced  
Qp: cumulative total fluids produced  
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Once the injection-production balance is achieved on a pattern-by-pattern basis, then 

expression (equation 20) can be applied for each producer. Using above assumption; 

ሺ݃݋ܮ ௢݂ሻ ൌ ܣ ൅  ሺ21ሻ																																																																																																																																		൫ܳ௣൯ܤ

Using this approach in this format: 

௢݂ ൌ ܾܽொ೛																																																																																																																																																									ሺ22ሻ 

“Data fit version 9.0.x by Oakdale Engineering” is utilised to find the model (equation 22). 

Since this approach is obtained in a steady-state condition, hence it should be applied only 

for after breakthrough time.  

Using this combination (TF method and developed fractional flow model), it is possible to 

estimate the future performance of oil wells under gas injection conditions. However, the 

equations are derived based on some assumptions, they can be extended to any other oil 

wells with a reasonable accuracy.  

8.3.					Results	

In this section, different synthetic reservoirs are used to verify the developed method. The 

results section is divided into two subsections in which the developed method for water-

flooding modelling and gas-flooding modelling are separately studied. Water-flooding in 

the synthetic reservoirs are modelled with the method and the results for the fluid 

production rates are compared to the grid-based simulations results (ECLIPSE-E100). Gas- 

flooding processes in different synthetic cases are modelled with the proposed method and 

the results are compared with grid-based simulation results (CMG). 

8.3.1.					Water‐flooding	model	verification	

Four difference reservoir models, from homogenous to complex and heterogeneous models 

are used to investigate the validity of the proposed method in modelling water-injection.  
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8.3.1.1.					Case	study#1:	single	injector/single	producer		

The simplest case is a reservoir with only one injector and one producer as shown in figure 

8.6. Table 8.2 shows the main rock and fluid properties. The first case is totally 

homogenous. In this example, production in the first 300 days is due to natural depletion of 

the reservoir. In the next 300 days, there is an injection rate equal to 795 cu.m/day (5000 

bbl/day) and the injection is stopped after that. The input signals can be written as  

ܺଶሺݐሻ ൌ ݐሺݑ795 െ 300ሻ െ ݐሺݑ795 െ 600ሻ →  ݊݋݅ݐܿ݊ݑܨ	݊݋݅ݐ݆ܿ݁݊ܫ

ଵܺሺݐሻ ൌ ሻݐሺߜ →  ݊݋݅ݐܿ݊ݑܨ	ݕݎ݁ݒ݋ܴܿ݁	ݕݎܽ݉݅ݎܲ

The total production rate of prod #1 is modelled using equation 15. The first term on the 

right hand side in the following equation shows the production due to primary recovery 

and the other terms show the effect of injection on the production profile. 

ଵܲሺݐሻ ൌ
ଵ݌ܭ
߬ଵ

݁
ି
௧
ఛభ ൅ ଶ݌ܭ795 ቆ1 െ ݁

ି
௧ିଷ଴଴ି௧೏

ఛమ ቇ ݐሺݑ െ 300 െ ௗଶሻݐ െ ଶ݌ܭ795 ቆ1 െ ݁
ି
௧ି଺଴଴ି௧೏

ఛమ ቇ… 

ݐሺݑ… െ 600 െ    ሺ23ሻ																													ௗଶሻݐ

 
Figure  8.6 Oil saturation for case#1 

The total production rate as a function of time (P(t)) is known, while the unknown 

parameters are Kp2, Kp1, τ1, τ2, td. The production and injection histories are used to 

calculate the unknown parameters. It should be noted that in the real cases, the input data 

for the model can be obtained from the history of field injection and production rates. 

Prod#1 

Inje#1 
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Here, numerical simulation results are assumed as histories. Microsoft Excel Solver is 

employed to calculate the unknown parameters by matching the obtained production rate 

from the model and the real production rate. It should be mentioned that there are some 

constraints for these parameters: Kp2 (well connectivities) is less than one as it shows the 

fraction of the injection which reaches to the producer. Also, none of the parameters 

(neither connectivity nor time constants) can have negative values. 

Table  8.2 The property of fluid and rock for case#1 

૞. ૢ૛ ൈ ૚૙ି૚૝  ૛(60 md) Permeability in X-Direction࢓

૞. ૢ૛ ൈ ૚૙ି૚૝  ૛ሺ60 md) Permeability in Y-Direction࢓

૚. ૝ૡ ൈ ૚૙ି૚૝  ૛(15 md) Permeability in Z-Direction࢓

0.15 Porosity 
31,31,10 No. of Grids in X,Y,Z Direction 

30.48, 30.48, 3.48 m Dimension of Grids in X,Y,Z Direction 
0.000058 1/bar Rock Compressibility 

1828.8 m Reservoir Depth 
Oil and Water Phases 
2 cp @ 413 bar Oil Viscosity 

376.5 bar @ 1851 m Initial Pressure 

 

Figure 8.7 and table 8.3 show the results for this case and also the comparison to the grid-

based simulator results. The results demonstrate a good agreement with each other. td 

shows that there is 10 days lag for the results and Kp2 demonstrates there is almost 84% 

connectivity between the injector and the producer as it is expected.  

 
Figure  8.7 Comparison of transfer function simulator and grid-based simulator for case#1 

Table  8.3 The parameters of model for case#1 

Kp1/ ࣎૚ ࣎૚ Kp2 ࣎૛ td2 

6559.9 168.45 0.839 158.731 -10 
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As already mentioned, the model predicts the liquid performance. The Gentil model is used 

to determine oil production rate as well. The Gentil model has two unknown parameters, α 

and β, which are calculated using history matching. Fractional flow matching is done just 

for this example; more details for the fractional model matching can be found in the 

literature. Table 8.4 reveals the Gentil parameters for the case 1. Figure 8.8 illustrates a 

good match between the grid-based simulation data and Gentil model. 

Table  8.4 The parameters of Gentil model for case#1 

α β 

െ૛. ૟ ൈ ૚૙ି૚૙ 1.99 
 

 
Figure  8.8 Oil prediction using Gentil model and TF and its difference from the grid-based simulator for case#1 

Now, it is possible to use the confirmed model to study the performance of different 

scenarios of injection to choose the best plan for injection rates.  

8.3.1.2.					Case	study#2:	2	injectors/2	producers	with	anisotropy	

In this case, two injectors and two producers are used to define the influences of two 

injectors on the producers and the connectivity between wells. Figure 8.9 shows the 

location of wells and also the oil saturation profile after the injection. Table 8.5 reveals the 

rock and fluid properties. The permeability in y-direction is five times more in comparison 

with x-direction (Ky=5Kx). The output signal for each producer well can be written as the 

0

200

400

600

800

1000

0 200 400 600 800 1000 1200

O
il 
R
at
e
 (
cu
.m

/d
ay
)

Time (Days)

Grid‐Based Simulation

Gentil & TF Model



226 

following equation which includes the primary recovery effect and effects of two injectors: 

ܻሺݏሻ ൌ ܺ1ሺݏሻ1ܩሺݏሻ ൅ ܺ2ሺݏሻ2ܩሺݏሻ ൅ ܺ3ሺݏሻ3ܩሺݏሻ			 

The injector #1 was shut for the first 300 days, and then its rate was changed to 1113 

cu.m/day (7000 bbl/day). After that, it shut again for 200 days and finally it opened with 

the injection rate 1431 cu.m/day (9000 bbl/day). The injector well 2 was shut for the first 

600 days then its rate was changed to 1113 cu.m/day (7000 bbl/day) for 200 days and at 

the end the injection rate was 158 cu.m/day (1000 bbl/day). The injection models are as 

follows: 

ଵܺሺݐሻ ൌ  ሻ݊݋݅ݐܿ݊ݑܨ	ݕݎ݁ݒ݋ܴܿ݁	ݕݎܽ݉݅ݎሺܲ							ሻݐሺߜ

ܺଶሺݐሻ ൌ ݐሺݑ1113 െ 300ሻ െ ݐሺݑ1113 െ 600ሻ ൅ ݐሺݑ1431 െ 800ሻ 

ܺଷሺݐሻ ൌ ݐሺݑ1113 െ 600ሻ െ ݐሺݑ954 െ 800ሻ 

Hence, 

 ଵܲሺݐሻ ൌ
௄௣భ
ఛభ
݁
ି

೟
ഓభ ൅ ଶ݌ܭ1113 ൬1 െ ݁

ି
೟షయబబష೟೏మ

ഓమ ൰ ݐሺݑ െ 300 െ ௗଶሻݐ െ ⋯ 

ଶ݌ܭ1113 ቆ1 െ ݁
ି
௧ି଺଴଴ି௧೏మ

ఛమ ቇ ݐሺݑ െ 600 െ ௗଶሻݐ ൅ ⋯ 

ଶ݌ܭ1431 ቆ1 െ ݁
ି
௧ି଼଴଴ି௧೏మ

ఛమ ቇ ݐሺݑ െ 800 െ ௗଶሻݐ ൅ ⋯ 

ଷ݌ܭ1113 ቆ1 െ ݁
ି
௧ି଺଴଴ି௧೏య

ఛయ ቇ ݐሺݑ െ 600 െ ௗଷሻݐ െ ⋯ 

ଷ݌ܭ954 ቆ1 െ ݁
ି
௧ି଼଴଴ି௧೏య

ఛయ ቇ ݐሺݑ െ 800 െ  	ௗଷሻݐ

A similar approach is used to determine the unknown parameters. The results are shown in 

figures 8.10 and 8.11 and table 8.6. As expected there is more connectivity between 

injector 2 and producer 1 because of permeability anisotropy and the distance between the 

wells. Well connectivity is a key parameter which provides the influence of injected water 
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on each producer. Also time constant shows that how long it takes for a producer to sense 

the effect of each injector during water-flooding. 

 
Figure  8.9 The well locations and oil saturation for case#2 

Table  8.5 Fluid and rock properties for case#2 

૛. ૢ૟ ൈ ૚૙ି૚૝  ૛(30 md) Permeability in X-Direction࢓

૚૝. ૡ૚ ൈ ૚૙ି૚૝  ૛(150࢓
md) 

Permeability in Y-Direction 

૚. ૝ૡ૚ ൈ ૚૙ି૚૝  ૛(15 md) Permeability in Z-Direction࢓

0.15 Porosity 
31,31,10 No. of Grids in X,Y,Z Direction 

30.48, 30.48, 3.48 m Dimension of Grids in X,Y,Z  
0.000058 1/bar Rock Compressibility 

1828.8 m Reservoir Depth 
Oil and Water Phases 
2 cp @ 413 bar Oil Viscosity 

376.5 bar @ 1851 m Initial Pressure 
 

Table  8.6 Model parameters for case#2 

Prod#1      

Kp1/ ࣎૚ ߬ଵ Kp2 ߬ଶ ݐௗଶ  

9999.105 63.03 0.36 84.66 -8.5 INJ#1 

  Kp3 ߬ଷ ݐௗଷ  

  0.514 61.76 0 INJ#2 

Prod#2      

Kp1/ ࣎૚ ߬ଵ Kp2 ߬ଶ ݐௗଶ  

7999.988 67.38 0.509 47.671 0 INJ#1 

  Kp3 ߬ଷ ݐௗଷ  

  0.360 65.707 -10 INJ#2 

 

Inje#1 Inje#2 

Prod#1 

Prod#2 
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Figure  8.10 Comparison of transfer function simulator and grid-based simulation for Prod#2 of case#2 

 
Figure  8.11 Comparison of transfer function simulator and grid-based simulation for Prod#1 of case#2 

8.3.1.3.					Case	study#3:	9‐spot	heterogeneous	

In this case, rock and fluid properties are same to case 2 which are shown in Table 8.5. The 

only difference is permeability distribution. One quarter of the reservoir has different 

permeability (180md in x and y direction) from the other parts (20md in x and y direction) 

as shown in Figure 8.12. In this case, there are 5 injectors and 4 producers which 4 wells 

are located in the high permeable zone and the rest are located in the low-permeable zone. 

Equation 15 is also used for this case to model production rate for each well. Injection 

profile for injector wells are shown in figure 8.13.  

Figure 8.14 shows the comparison of the model and a grid-based simulation result for the 

Producer 4 as an example. It shows a good consistency with the numerical simulation for a 

complicated case with heterogeneity. Table 8.7 demonstrates the TF parameters for the 

case 3. As expected, connectivities between the Injector 1 to Producer 2 and 4 (0.40) are 

larger than the connectivities between the Injector 1 to Producer 1 and 3 (0.05), due to the 
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shape of permeability distribution. As mentioned before, time constant is a function of pore 

volume, permeability distribution between each injector/ producer pair and total 

compressibility. In this case, porosity and compressibility are equal in each section of the 

reservoir. Hence, the value of time constant is less for high permeable zone as the 

influence of the injection reaches to the producer more quickly. 

 
Figure  8.12 Well locations and permeability distribution for case#3 

 
Figure  8.13 Injection profile for case#3 

 
Figure  8.14 Comparison of TF simulator and grid-based simulation for Prod#4 in case#3 
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Table  8.7 Parameters for case#3 

 Inj#1  Inj#2  Inj#3  Inj#4  Inj#5  

Well No. Kp2 τ2 Kp3 τ3 Kp4 τ4 Kp5 τ5 Kp6 τ6 

Prod#1 0.054 28.57 0.160 25.97 0.030 15.90 0.054 50.61 0.195 33.69 

Prod#2 0.395 22.64 0.392 22.22 0.369 9.234 0.258 49.46 0.258 53.52 

Prod#3 0.047 26.00 0.061 68.62 0.03 29.88 0.163 26.49 0.196 30.97 

Prod#4 0.377 18.11 0.308 39.30 0.377 11.45 0.359 25.29 0.280 60.47 

  Sum    Sum    Sum    Sum   Sum 

 0.874  0.923  0.809  0.835  0.929  

8.3.1.4.					Case	study#4:	heterogeneous	with	faults	

The last case is a synthetic reservoir which is more complicated and similar to the reality in 

comparison to previous cases. It has three faults, five water injectors and eight oil 

producers. The permeability in x and y direction are equal and shown in Figure 8.15. The 

reservoir is divided to 35, 35 and 5 grids in x, y and z direction respectively. Oil and water 

flow in the reservoir. The average porosity is around 20% and the porosity for each grid is 

between 10% and 31%. The average permeability in x and y direction is around 100 md 

and it deviates between 1.5 and 500 md. Initial pressure is 356 bar at 778 m depth. Rock 

compressibility is 0.0000058 1/bar at 310 bar. Water viscosity is equal to 0.8 cp at 310 bar. 

The injection profiles for all injectors can be seen in figure 8.16. In this case, there are 

more fluctuations in injection rates compare to previous cases.  

 
Figure  8.15 Permeability distribution and well locations for case#4 
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The same procedure is used to estimate the TF unknown parameters. In this case, fault 

trasmissibilities and permeability distribution are the main parameters which have the most 

influence on TF parameters especially the well connectivities. Some of the well 

connectivities are close to zero due to discontinuities in the reservoir and well distances. 

The estimated parameters are shown in Table 8.8 and 8.9. There is a good agreement 

between the estimated parameters and the physical condition of reservoir. 

 
Figure  8.16 Injection profile for injector for case#4 

However the case 4 is complicated and has fault and distributions of permeability and 

porosity, a good match can be seen for production wells in figures 8.17 to 8.24.  

 
Figure  8.17 Comparison of TF simulator and grid-based simulator for Prod#1 case#4 
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Figure  8.18 Comparison of TF simulator and grid-based simulator for Prod#2 case#4 

 
Figure  8.19 Comparison of TF simulator and grid-based simulator for Prod#3 case#4 

 
Figure  8.20 Comparison of TF simulator and grid-based simulator for Prod#4 case#4 

 
Figure  8.21 Comparison of TF simulator and grid-based simulator for Prod#5 case#4 
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Figure  8.22 Comparison of TF simulator and grid-based simulator for Prod#6 case#4 

 
Figure  8.23 Comparison of TF simulator and grid-based simulator for Prod#7 case#4 

 
Figure  8.24 Comparison of TF simulator and grid-based simulator for Prod#8 case#4 

To sum up, it was demonstrated in the four examples that the derived method is capable of 

delivering high-quality results (forecasts) during water-injection. By estimating the 

matching parameters which are different case to case according to the properties of each 

reservoir, the developed model can predict the future performance of liquid and oil 
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suitable to be employed to find the most economical injection rates. It should be mentioned 

that, the production and injection histories are needed to build the model.  

8.3.2.					Gas‐flooding	model	verification	

Six difference reservoir models, from homogenous to complex and heterogeneous models 

are used to investigate the validity of the proposed method in modelling gas injection. 

These cases include immiscible and miscible flooding. In the last two cases, the proposed 

fractional flow model is applied to match oil production as well. 

8.3.2.1.					Case	study#1:	immiscible	gas‐flooding	in	a	homogenous	reservoir	with	

one	injector	and	twp	producers		

The first case is a simple one with one injector and two producers as it is shown in the 

figure 8.25. Table 8.8 states the main rock and fluid properties. The injected gas is 

Nitrogen and it is an immiscible flooding. In this example, production in the first 1100 

days is due to natural depletion of the reservoir. In the next 1100 days, there is an injection 

rate equal to 47000Kg/day. The input function can be written as follows: 

ଵܺሺݐሻ ൌ ሻݐሺߜ →  ݊݋݅ݐܿ݊ݑܨ	ݕݎ݁ݒ݋ܴܿ݁	ݕݎܽ݉݅ݎܲ

ܺଶሺݐሻ ൌ ݐሺݑ47000 െ 1100ሻ →  ݊݋݅ݐܿ݊ݑܨ	݊݋݅ݐ݆ܿ݁݊ܫ

Therefore, the total production rate of Prod 1 is written using equation 19:   
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A history for production and injection rates is generated by a grid-based simulator (CMG). 

This history is used as the input and output signals to calculate the unknown parameters of 

the model. These parameters are Kp2, Kp1, τଵ, τଶ, td1, ξଶ, ξଷ. 

 

Table  8.8 Fluid and rock properties for case#1 
Value Property 

30 md Permeability in X-Direction 
30 md Permeability in Y-Direction 
30 md Permeability in Z-Direction 
0.20 Porosity 
8,8,1 No. of Grids in X,Y,Z Direction 
100,100,10 m Dimension of Grids in X,Y,Z Direction 
0.000004 1/psi Rock Compressibility 
6000 ft Reservoir Depth 
oil, water and gas Phases 
17000 KPa Initial Pressure 

 

 
Figure  8.25 Well locations and Inter Facial Tension (IFT) for case#1 

Microsoft Excel Solver is employed to estimate the unknown parameters using history 

matching. It should be noted that there are some constrains for parameters: Kpi+1 should be 

less than one as it shows the fraction of the injection which reaches to the producer. Also, 

all of the parameters such as connectivity values and time constants should have positive 

value. Table 8.9 shows the calculated parameters for this case. Finally, after the calculation 

of unknown parameters, the estimation of the production rate by the model will be possible 

for any injection rates. The results for this case are compared with the grid-based simulator 

Prod#1

Prod#2 

Inj#1 
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results which are shown in figure 8.26. The results demonstrate a good agreement. Since 

this case is symmetric and homogeneous, the results for both producers are the same and 

only producer 1 is shown in the figure.  

 
Figure  8.26 Comparison between TF and grid-based simulator results for Case#1 for Prod#1 and the injection 

profile 

Table  8.9 The parameter of Case#1 

Well Kp1/ૌ૚ ૌ૚ Kp2 ξ ૌ૛ 

Prod#1 59284.8 1153.5 0.52 0.985 226.0 

Prod#2 59281.7 1145.7 0.52 0.99 225.1 

 

As it is shown in the Table 8.9, the summation of well connectivities is exceed one 

slightly, it may be because of optimisation error. 

8.3.2.2.					Case#2:	immiscible	gas‐flooding	in	an	anisotropy	reservoir	with	one	

injector	and	two	producers	

The second case is similar to the previous one, the injection profile has more fluctuations 

and there is anisotropy in the reservoir. The permeability in x-direction is 10md and in y-

direction is 40md. The anisotropy is created; in order to investigate well connectivities. 

Figure 8.27 shows the injection profile, and the input signal is:  

ܺ2ሺݐሻ ൌ ݐሺݑ17750 െ 1116ሻ ൅ ݐሺݑ17750 െ 2942ሻ െ ݐሺݑ11830 െ 4768ሻ

െ ݐሺݑ23660 െ 6594ሻ ൅ ݐሺݑ23660 െ 6960ሻ 

Similar approach is used to calculate the unknown parameters. The results are shown in 

figure 8.27 and table 8.10. However, it is more complicated, still a good match can be seen. 
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As it is expected, the connectivity between injector 1 with producer 2 is higher than 

connectivity between injector 1 and producer 1 which is due to anisotropy in permeability 

distribution.  

Table  8.10 Parameters of Equations for Case#2 

Well Kp1/τଵ τଵ Kp2 ξ τଶ 

Prod#1 42994.5 1387.6 0.42 0.99 352.2 

Prod#2 42995.8 1347.3 0.63 0.99 274.3 

 

 
Figure  8.27 Comparison between TF and grid-based simulator results for Case#2 and the injection profile 

8.3.2.3.					Case	study#3:	miscible	gas‐flooding	in	a	homogenous	reservoir	with	one	

injector	and	two	producers	

In this case, the performance of miscible carbon dioxide gas-flooding in a reservoir using 

TF has been investigated. The properties are same to the previous cases. Figure 8.28 shows 

well location and IFT of the field. Miscibility can be shown by IFT profile while gas-

flooding occurred. 

Similar to the previous cases, the connectivity factors between injector and producers were 

calculated. The unknown parameters are shown in table 8.11. Figure 8.29 shows the 

comparison of TF model and the grid-based simulation result. Due to homogeneity the 

result of one well is only shown because both are similar.  
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Table  8.11 Parameters of model for Case#3 

Well Kp1/ૌ૚ ૌ૚ Kp2 ξ ૌ૛ 

Prod#1 59280.0 1029.6 0.52 0.96 518.2 

Prod#2 59283.1 1045.1 0.52 0.97 517.1 

 

 
Figure  8.28 Well locations and IFT distribution for case#3 

 
Figure  8.29 Comparison of TF simulation and grid-based simulation in Case 3 for Prod#1 

As this case is a miscible flooding, there is higher value for the time constant which 

demonstrates later observation of influence of injector on the producer compare to the first 

case which is immiscible flooding. As it can be seen, the jump which was seen in case 

study 1 (the immiscible flooding) does not happen in miscible flooding, because the gas is 

solved into the liquid and will not remain in gas phase and compressed behind the front.  
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8.3.2.4.					Case	study#4:	miscible	gas‐flooding	in	a	heterogeneous	reservoir	with	

one	injector	and	four	producers	

The properties of this reservoir are shown in table 8.12. Permeability in y-direction and z-

direction is equal to 10md and there is heterogeneity in x-dir. Well locations and the 

permeability distribution in x-direction are shown in figure 8.30. Carbon dioxide is injected 

via the following input signal: 

ܺଶሺݐሻ ൌ ݐሺݑ47000 െ 1100ሻ 

Table  8.12 Fluid and rock properties for case 4 

Value Property 

10 md Permeability in x-direction 
10 md Permeability in y-direction 
25 md Permeability in z-direction 
0.20 Porosity 
11,11,1 No. of Grids in X,Y,Z Direction 
100,100,10 m Dimension of Grids in X,Y,Z Direction 
0.000004 1/psi Rock Compressibility 
6000 ft Reservoir Depth 
oil, water and gas Phases 
17000 KPa Initial Pressure 

 

 
Figure  8.30 Well locations and x-dir permeability for case 4 

The connectivity factors between injector and all producers were calculated in this case. 

The unknown parameters are shown in table 8.13. The results for two wells 3 and 4 are 
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compared with the grid-based simulation results in figure 8.31. As expected, there is more 

connectivity between injector with producer 4 because of permeability distribution.  

Table  8.13 Parameters of model for case 4 

Well Kp1/ૌ૚ ૌ૚ Kp2 ξ ૌ૛ 

Prod#1 148452.3 4501.2 0.24 0.77 1502.0 

Prod#2 148436.1 4503.9 0.23 0.78 1500.7 

Prod#3 129939.9 4522.1 0.2058 0.7868 1477.966 

Prod#4 299977.3 4428.35 0.4154 0.7217 1822.021 

 

 
Figure  8.31 Comparison of TF simulator and Grid-based simulation for case#4 

8.3.2.5.					Case	study#5:	immiscible	gas‐flooding	in	a	heterogeneous	reservoir	

with	five	injectors	and	four	producers	

In this case, the performance of fractional flow model is investigated for a 9-spot reservoir. 

The locations of the wells are shown in figure 8.32. N2 is flooded into the reservoir. Its rate 

is similar to case 1. Reservoir properties are similar to case 4. Since the producer wells are 

symmetrical and the reservoir is homogeneous, thus TF models are the same for all four 

wells. The unknown parameters are calculated and the results for producer 1 are shown in 

table 8.14. The results of TF model along with the outcomes of a grid-based simulation is 

shown in figure 8.33. 
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Figure  8.32 well locations for case 5 

Table  8.14 Parameters of model for case 5 

Well Kp1/ૌ૚ ૌ૚ Kp2 ξ ૌ૛ 

Prod#1 79000.330 1400.0708 0.3339 0.99 200.1246 

 

 
Figure  8.33 Comparison of transfer function simulation and grid-based simulation for case 5 

By estimating the unknown parameters of the developed model, it is possible to predict the 

performance of flow production rate. To forecast the performance of oil production, the 

fractional flow model is applied for this case and the results after the breakthrough time for 

producer 1 are shown in Table 8.15. A comparison between oil production results from a 
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grid-based simulation and the introduced fractional flow model combined with TF model is 

shown in figure 8.34. 

Table  8.15 Fractional flow parameters for case 5 

Well          a          b           

Prod#1 1.40941033 0.99999972 

 

 
Figure  8.34 Comparison of fractional flow model combined with TF and grid-based simulation for Case 5 

It should be mentioned that in the fractional flow (FF) model, it is assumed the 

breakthrough time is known and this model is useful when the system is in a balance 

situation of its life. When gas mobility is too large, the oil fraction trend will be interrupted 

and a two part curve will be created. Each part should be modelled by a separate fractional 

flow model (FF). Figure 8.35 shows such oil fraction model for a reservoir with a large 

thickness, while N2 is flooded in a high rate. N2 high mobility in comparison with low 

mobility oil in reservoir leads in a first reduction in oil fraction (first part of the curve) and 

after that, when oil rates in producer well increase with time, the curve will be interrupted 

and then second decline occurred. It means that oil fraction (in logarithmic scale) is not a 

linear function of cumulative fluid produced and its profile has two lines with different 

slopes. Therefore, using a unique fractional flow model for all after breakthrough time life 

of reservoir may causes inaccuracy in oil production calculations. This inaccuracy level is 

investigated in following case. 
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Figure  8.35 Interruption in oil fraction curve in high thickness reservoir 

8.3.2.6.					Case	study#6:	immiscible	gas	flooding	in	a	homogeneous	reservoir	with	

two	injectors	and	three	producers	

In this case study with above situation, only one fractional flow model is applied. The 

properties of the reservoir are shown in table 8.16. There are two injectors with a total 

injection rate of N2 equals to 40000 Kg/Day. Three producer wells produce in a constant 

production rate equal to 133.33݉ଷ/ݕܽܦ. The location of the wells is shown in figure 8.36. 

TF simulation was applied for this case and the results for producer 1 are shown in table 

8.17. Total production prediction by the TF model in comparison with grid-based 

simulation results for producer 1 is shown in figure 8.37. Then, the FF model is applied 

and results are shown in table 8.18. A comparison between this model and a grid-based 

model for producer is shown in figure 8.38. It is obvious that there is an interruption in oil 

production curve. Before oil decline starts, the breakthrough occurred and FF model in a 

little time after the breakthrough has not enough accuracy. It shows that it is better to apply 

two separate FF model for each section of oil fraction curve. 

Table  8.16 Parameters of model for case 6 

Well Kp1/ૌ૚ ૌ૚ Kp2 ξ ૌ૛ 

Prod#1 79000.330 1400.0708 .3339 0.99 200.1246 
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Table  8.17 Fluid and rock properties for case 6 

15 md Permeability in X-Direction 

15 md Permeability in Y-Direction 

15 md Permeability in Z-Direction 

0.20 Porosity 

7,7,1 No. of Grids in X,Y,Z Direction 

100,100,100 m Dimension of Grids in X,Y,Z Direction 

0.000004 Rock Compressibility 

6000 ft Reservoir Depth 

Oil, Water and Gas Phases 

17000 KPa  Initial Pressure 

 

 
Figure  8.36 Well locations for case 6 

 
Figure  8.37 Comparison of transfer function simulation and grid-based simulation for case 6 

Table  8.18 FF model parameters for case 6 

Well          a          b            

Prod#1 1.240231043 0.999999868 
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Figure  8.38 Comparison of fractional flow model combined with TF and grid-based simulation for FF case study 

To sum up, in the six case studies, it was shown that the proposed method (TF and the FF) 

is capable of delivering acceptable results in forecasting the performance of oil wells 

during gas-flooding (immiscible and miscible). Due to the analytical solutions of this 

method, this approach can be utilised to provide a sensitivity analysis on the effect of gas-

rate on ultimate oil recovery and consequently, it can supply a rough estimation about the 

optimal gas-injection rate quickly. Also, the obtained parameters for each case study give 

us some information about the reservoir specifications, for instance, the well connectivities 

allow us to know about the transmissibility.   

8.4.					Discussion		

In this chapter, the development of a method based on Transfer Functions (TF) was 

presented to predict the performance of water-flooding and gas-flooding in the oil fields. 

The developed combination of TF can be extended to any reservoirs with the mentioned 

conditions. The only required data for this method are production and injection rates. By 

interpreting the history data, it is possible to estimate the matching parameters of the 

developed combination. After estimating these parameters, the forecasting can be made for 

various scenarios. This method can be categorised in the fast simulator group, as result of 

its analytical solution. The developed method should be applied in conjunction with a 

fractional flow method. For water-flooding problems, Gentil model was applied, as it does 

0

5000

10000

15000

20000

25000

30000

0 5000 10000 15000

R
at
e
(K
g/
D
ay
)

Time(Days)

Oil Production(CMG)

Oil Production(FF)

R^2=0.9804
Standard Error of the 
Estimate=3.5222E‐02



246 

not need much data, and for gas-flooding problems, a method which was developed by 

regression and the investigation of several case studies was used.  

Different cases were employed to validate the derived equations. The results demonstrated 

a good agreement with those obtained from the common grid-based simulators. In addition, 

it is figured out that the TF parameters depend on the characteristics and the pattern of 

different sections of the reservoir and give us useful information, such as well connectivity 

and pore volume.  

It is probably fair to state that the method has some limitations as well. This method should 

be utilised when enough data are not accessible or a quick overview of injection 

performance is required. When there is sufficient data or accurate estimation is sought, 

grid-based simulations would be more appropriate. In order to derive the equations, a 

series of assumptions were taken for granted, 1- bottomhole pressures are fixed, 2- the 

production drive is due to primary pressure and injection drive, there is not any aquifer or 

gas cap drive, and 3- in fractional flow development, the breakthrough time of gas flooding 

is assumed predictable prior to the implementation of the method. Therefore, reservoir with 

aquifer or gas cap, fractured reservoirs, or problems with variable bottomhole pressures 

might be modelled with another arrangement and orders of transfer functions. This method 

provides rough estimations and also it is in the primary phase of development and it needs 

further study.  

The conclusive remarks of this chapter are as following: 

 Transfer function approach is capable of delivering reliable and quick estimation 

about the future performance of oil wells, and the derived equations is extendable 

for other oil reservoirs.  

 As result of analytical solution of the method and reliability of the outcomes, they 

can be used for sensitivity analysis on the effect of injection rate on ultimate oil 
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recovery, therefore, they can provide a rough estimation about the optimal injection 

rates quickly 

 They also provide some key parameters which give us some information about the 

reservoirs specifications, including, transmissibility and well connectivities, pore 

volume, and fluid and rock compressibility.   

 The only required data are the history of production and injection rates. By carrying 

out an inexpensive history matching, the unknown parameters are estimated.  
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Chapter	9	

 

 

 

9. Conclusions	and	recommendations		

Obtaining high-quality history matched models (reducing uncertainties in initially 

constructed reservoir model by inverse modelling of dynamic data) was the core goal of 

this thesis. Different new methods were introduced to overcome some of the challenges in 

history matching. This chapter summarises the key achievements of this dissertation and 

presents some recommendations for the future works.  

9.1.					Conclusive	remarks		

1- A software framework was developed in MATLAB which allowed us to carry out 

history matching automatically.  

2- The application of artificial bee colony algorithm was investigated in history 

matching using a synthetic case which was reparameterised by a pilot point 

technique. In comparison with three different optimisation algorithms (genetic 

algorithm, simulated annealing and Levenberg-Marquette), the artificial bee colony 

algorithm outperformed. Forecasting using the obtained model had only one 

percent error. The case study was also reparameterised with three other techniques, 

zonation, spectral decomposition and bicubic spline to create new problems with 

different landscape shapes. The analyses indicated that the shape of landscape was 

changed by altering the reparameterisation operator. The four optimisation 
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algorithms were compared with each other in these problems. The Levenberg-

Marquette algorithm was trapped into a local minimum in all, due to its gradient-

based search. The genetic algorithm delivered good results, but in none of them, it 

was the best. The simulated annealing delivered poor results where spectral and 

pilot point technique were used. The artificial bee colony algorithm was the best 

method where pilot point and spectral decomposition were used, and in the other 

two, it delivered satisfactory results. Therefore, it is fair to state that the 

performance of artificial bee colony algorithm is not significantly influenced by the 

shape of landscape. The reason of ABC’s success may lay on having a balance 

between search abilities, exploration and exploitation, in contrast to SA (which is 

more exploitative) and GA (which is more explorative). The artificial bee colony, 

similar to almost all stochastic optimisers, has two major drawbacks: a- it is 

computationally intensive, and b- it should be applied in conjunction with a 

reparameterisation. Thus, it is better to be applied in the problems in which the 

computational cost is not an issue and the number of variables is not large (or the 

reparameterisation can be implemented accurately).    

3- To reduce the computational costs consistently in stochastic history matching 

algorithms, in general, it was proposed to including an evolution-control technique 

to the conventional (uncontrolled) approach of proxy-modelling. Three types of 

model management, population-based, individual-based and adaptive were 

implemented and assessed. The adaptive method was customised for the problem. 

History matching was executed using each of them in an oil reservoir (PUNQ-S3 

model), and their outcomes were compared with an uncontrolled approach. The 

uncontrolled approach could not deliver acceptable results, which could be because 

of having offline training, an inadequate number of samples or inappropriate proxy 

fitting. The other three methods which made use of a model management technique 
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and online learning with the same amount of computation time articulated 

significantly superior results. The success of these approaches in comparison with 

the uncontrolled method was because of their emphasis on the approximation of the 

global optimum point rather than the approximation of the entire landscape shape. 

Among these three approaches, the adaptive approach performed better, due to 

having an updatable probability. In order to show the computational cost reduction, 

history matching was also performed by a regular approach (without proxy-

modelling) for the same problem. The same result as the adaptive approach was 

achieved by the regular approach, but it was needed to call the original fitness 

function four times more than the adaptive approach. Hence, it is fair to state that 

the computational cost can be reduced by the controlled fitness approximation 

reliably. It is worth mentioning that the fitness approximation methods should be 

used when there are computational limitations and the number of variables is not 

large (or the reparameterisation can be implemented accurately).  

4- A history matching algorithm was developed by combing two different concepts, 

wavelet image-fusion and evolutionary computation. By applying this algorithm, 

reparameterisation was unnecessary and history matching could be carried out 

directly. The outcomes of history matching using this algorithm were compared 

with the results of six methods, indirect and direct, in a synthetic and also PUNQ-

S3. The developed algorithm outperformed. It had an acceptable speed of 

convergence. The final history matched models were realistic, and overshooting did 

not occur. Its success is because of its stochastic search and intelligent mating 

operator which prevent getting stuck in a local minimum and also keep the 

directional information of high-quality individuals. This algorithm can also enable 

1- consideration of discrete variables by multibranched chromosomes, 2- execution 

on supercomputers, because of the ability of parallel processing in this algorithm 
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(the individuals in each generation does not have interactions with each other), and 

3- construction of a robust hybrid method by combining it with a classical 

optimiser. The three indirect methods (GA-pilot point, LBFGS-spectral 

decomposition, LBFGS-zonation) converged to high-quality reparameterised 

models, but when the models were transformed back to the main domain, a 

considerable difference was seen between them and the reference model. The 

differences were mainly in consequence of reparameterisation errors. Overall, the 

methods of the indirect approach suffer from a number of disadvantages: 1- a high-

quality prior model or a set of high-quality prior models is usually required to 

reparameterise the model properly, 2- overshooting may occur, and 3- unrealistic 

results may be achieved, due to converting an underdetermined to an 

overdetermined problem. On the other hand, the three algorithms (GA, ABC and 

LBFGS) used as a direct calibrator also did not deliver high-quality models, 

because of optimisation errors. Due to the nonlinearity of the inverse problem, and 

the high-dimensionality of the system, the optimisation algorithms were not very 

efficient. Among these three algorithms, LBFGS was performed slightly better, 

which expressed the drawbacks of the regular stochastic algorithms in high-

dimensional history matching problems. None of the six algorithms was as good as 

the proposed algorithm. Therefore, it is fair to mention that the proposed method is 

capable of dealing with large history matching problems. 

5- It was demonstrated that in those problems where the ratio of covariance matrixes 

(weighting factors) in the objective function is uncertain, a set of solutions should 

be provided to deliver an uncertainty analysis. To achieve a set of solutions, the 

random selection (conventional) and proposed (Pareto) approach were taken and 

compared with each other using a numerical example and a reservoir model. By the 

conventional approach, it was required to solve the inverse problem with many 
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different arrangements of weighting factors (covariance matrixes) at random. This 

approach was time-consuming, and it was shown that if a large number of 

arrangements are not picked, there will be high risks in decision making. In the 

proposed method, the likelihood and prior function were assumed as two different 

objective functions, and the corresponding Pareto front was approximated using a 

single run of a multi-objective genetic algorithm. By the designed post optimisation 

trade-off rules, a number of solutions were taken out from the Pareto front. The 

outcomes of these approaches expressed that the proposed approach was more 

efficient in terms of the quality of solutions and also computation. Thus, it is fair to 

state that when the weighting matrixes are uncertain, it is better to make use of the 

Pareto approach. 

6- A method based on Transfer Functions (TF) was introduced to predict quickly the 

performance of oil reservoirs during water-flooding and gas-flooding with the 

minimum data. The developed method was combined to a fractional flow method. 

By investigating several case studies, a combination of TFs was found which is 

physically justifiable and also mathematically fitted to the results of grid-based 

simulator. Different cases were employed to validate the derived equations. The 

results demonstrated a good agreement with those obtained from the common grid-

based simulators. The only required data for this method were production and 

injection rates. The TF parameters depend on the characteristics and the pattern of 

different sections of the reservoir and give us useful information, such as well 

connectivity, pore volume and fluid and rock compressibility. When there is 

sufficient data or accurate estimation is sought, grid-based simulations would be 

more appropriate, otherwise, the TF approach can be a suitable candidate.   

7- An additional piece of work was done in this thesis in which the optimal infill 

drilling plane was estimated for a coal seam gas reservoir (semi-synthetic model 
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constructed based on the Tiffany unit coal bed data in the San Juan basin) by the 

developed framework in which the objective function was the net present value and 

the variables was the coordination of infill wells. It was sought to maximise the net 

present value for a period of ten years by locating the optimal number of wells in 

the best locations. To find the optimal number of infill wells, the optimisation was 

carried out several times by increasing sequentially the number of infill wells in 

each stage. The best scenarios were found for different water treatment expenses. 

When cost of water treatment was low, infill wells were mostly located in virgin 

section of the reservoir where reservoir pressure was high. When cost of water 

treatment was high, infill wells were mostly located on the transition section 

between virgin and depleted sections of the reservoir to minimise water production. 

It can be stated that the ratio of the cost of water treatment and disposal to gas price 

is a key economical parameter (with the assumption of insignificant spatial 

difference in the initial permeability distribution). Another study was also made by 

using a multi-objective optimisation in which the objectives were minimising the 

water treatment costs and maximising the gas production income by finding the 

optimal scenario for 20 infill wells into the same reservoir. Almost similar 

observations were seen. Thus, it is fair to state that the developed framework can be 

utilised suitably for infill drilling optimisation problems as well. 

9.2.					Future	works	

Research in the following directions can be extended.  

1- In the image-fusion algorithm, the mutation is carried out by changing the value of 

a random zone of the reservoir (in which the number of gridblocks is predefined) 

with a random number. However, this operator provides good exploration and 

avoids premature convergence, in the late generations in which exploitation is more 
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important, it is not very efficient. An adaptive rule or an unfixed value for the 

number of the gridblocks may expedite the process.  

2- A fixed homogenous value is allocated in the mutation operator of the image-fusion 

algorithm. Instead of using a homogenous zone, it is possible to use random 

realisations generated by geostatistics or fractal.  

3- The image-fusion is capable of keeping directional information, thus, the author is 

seeking to apply this algorithm for channel modelling which can be a further step in 

the use of this algorithm.   

4- In the investigation of image-fusion algorithm, only geomodel parameters were 

adjusted. It is possible to add any other variables to the algorithm by assuming 

multibranched chromosomes.  

5- Comparing the image-fusion algorithm with a number of indirect methods on 

reservoir models in which the reparameterisation can be implemented accurately 

can be a further study.  

6- The multi-objective algorithm can be combined by the image-fusion algorithm to 

study regularisation in those problems in which the reparameterisation has 

considerable error. In order to blend these algorithms, the selection of the image-

fusion should be replaced by a rank scheme algorithm. 

7- The multi-objective algorithm can be combined with the controlled fitness 

approximation method to reduce the computational costs.  

8- In the approximation of the Pareto front, a multi-objective genetic algorithm with a 

NSGA-II ranking algorithm was used. This optimiser can be replaced by any other 

multi-objective optimiser. Thus, the improvement of the optimisation step in this 

part can be considered as a promising future work.  

9- In the applied ABC, the individuals are altered one-dimensionally either by 

onlookers or employed bees. This one-dimensional search, however brings a 
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comprehensive search, it causes the low speed of convergence. The search can be 

multi-dimensional. The best way is to develop an adaptive change for the 

dimension in which the optimum can be approximated quicker.  

10- In this thesis, the main objective in each of the problems was to estimate the most 

probable model (MAP). In order to have a risk analysis, a set of solutions with their 

reliability is required. It is suggested to perform one of the uncertainty analysis 

methods for risk analysis. 

11- In the proxy-modelling approaches, artificial neural network was used as the proxy 

model. The proxy model can be replaced by any other mathematical functions, such 

as kriging, support vector machine, polynomial and even multi-layered neural 

network. This substitution may increase the quality of the controlled fitness 

approximation. 

12- A genetic algorithm with a customised crossover was implemented in the proxy-

modelling chapter. The optimiser can be replaced by any other methods. 

Implementation of another optimiser may increase the quality of the controlled 

fitness approximation.   

13- In the transfer function approach, a number of assumptions were made to develop 

the mathematical formula. In order to remove the restrictions, it is possible to 

change the set of transfer function.  

14- The parameters calculated from the transfer function approach can be used for 

various studies such as fracture detection. 

15-  The automatic history matching framework can be utilised for further studies in 

different directions, for instance, it can be used for simulation of reservoirs that 

have stress-dependent permeability; a geomechanical simulator should be included 

into the framework.  
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Appendix		

 

 

 

a.1.					MATLAB	Coding	

In order to execute history matching automatically, a software framework is required. This 

framework should be capable of running the reservoir simulator (ECLIPSE), reading the 

outputs of the executed simulation, analysing the output data based on an objective 

function, and modifying the input data according to a specific rule based on the analyses. 

This framework is developed into MATLAB programming language, and has two phases. 

In the first phase, the code developments of an interface between MATLAB and ECLIPSE, 

the objective function and reparameterisation coding are presented. In the second phase, of 

this chapter, the codes related to the optimisation methods are presented. In order to 

explain the process, history matching for PUNQ-S3 is coded is explained.  

The developed framework not only can be used for automatic history matching problems, 

but also it can be utilised for economical analyses and production optimisation problems. 

In the third section of this appendix, the framework is changed in a way to be utilised for a 

production optimisation problem (well placement optimisation). 

Infill drilling (well placement) in coalbed methane reservoirs has not been studied broadly 

previously. The developed framework was a good excuse to propose an infill drilling 

project. The main goal of the project was finding the best locations for the infill wells in 

order to maximise the net present value. The net present value (NPV) of a well placement 

scenario in coal bed methane (CBM) reservoirs is sensitive to several terms, such as water 

treatment price, gas price, reservoir heterogeneities, water saturation map, pressure etc. 
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Thus, the manual optimisation of well placement in these reservoirs becomes challenging. 

The author altered the framework to fit in the project’s requirements, and also designed a 

specific optimisation method for the problem. The MATLAB codes and results for a field 

case study (San Juan basin) are presented in the third of this chapter. Interesting outcomes 

were seen by analysing the optimal well locations. The results were published into two 

peer-reviewed journal papers which are attached to the appendix.  

a.1.1.					Interface	development	

The development of the interface consists of three different parts: 

1- Coupling of MATLAB with ECLIPSE,  

2- Objective function coding, and  

3- Reparameterisation coding. 

Each part is explained individually.  

a.1.1.1.					Coupling	of	MATLAB	with	ECLIPSE	

The programming of this section is divided itself into three steps: 

i- Providing (modifying) an input data for ECLIPSE by MATLAB,  

ii- Executing ECLIPSE from MATLAB, and 

iii- Extracting output of ECLIPSE output file into MATLAB.  

Each steps of this procedure is described in the following sections.  

a.1.1.1.1.					ECLIPSE	input	data	generation	

The first step is the construction of an input file for ECLIPSE. This input file gets the 

decision variables (for example, porosity and permeabilities in history matching problems, 

or well locations in infill drill optimisation), and the rest of input files which are known 
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like PVT, well location and geomodel should be provided manually and copied into an 

address (C:\ECLIPSERUNS\Model#1\) before running any jobs from MATLAB11. The 

MATLAB function takes the decision variables as a vector and generates a data file into 

the given address.  

In the case study (PUNQ-S3), there are 7980 variables which are porosity and 

permeabilities in each gridblock. The other ECLIPSE files for the case study which are 

fixed can be downloaded from the following URL 

http://www3.imperial.ac.uk/earthscienceandengineering/research/perm/punq-

s3model/onlinedataset. These files (31445697.data and 31443696.geo) should be renamed 

as PUNQS3.data and PUNQS3.geo and copied into the mentioned address prior to history 

matching. Also, into the downloaded data file (PUNQS3.data), a keyword (“EXCEL”) 

should be included into the file before the “SCHEDULE” keyword. The MATLAB code 

for generating the porosity and permeability input file (PUNQS3.prp) is as follows: 

function PoroPerm(m) 
%  All rights reserved. 2010-2013, Mohammad Sayyafzadeh 
% 
%  Redistribution and use in source and binary forms, with or without 
%  modification, are permitted provided that the following conditions are 
%  met: 
% 
%     * Citing the thesis or one of my history matching papers.  
%     * For only academic purposes 
%---------------------------- 
Poro=m(1:2660);poro1=Poro(1:532);poro2=Poro(533:1064); 
poro3=Poro(1065:1596);poro4=Poro(1597:2128);poro5=Poro(2129:2660); 
Permx=m(2661:5320);permx1=Permx(1:532);permx2=Permx(533:1064); 
permx3=Permx(1065:1596);permx4=Permx(1597:2128);permx5=Permx(2129:2660); 
Permz=m(5321:7980);permz1=Permz(1:532);permz2=Permz(533:1064); 
permz3=Permz(1065:1596);permz4=Permz(1597:2128);permz5=Permz(2129:2660); 
%---------------------------- 
Folder=strcat('c:\ECLIPSERUNS\MODEL#1');Folder1=strcat(Folder,'\PUNQS3'); 
Folder2=strcat(Folder1,'.PRP');fid=fopen(Folder2,'wt'); 
%--------------------------------------------- 
%PermX 
k={ 
'PERMX'}; 
[rows,~]=size(k); 
for i=1:rows 
    fprintf(fid,'%s\n',k{i,1}); 
end 
  
% First Layer 
for i=1:(length(permx1))/4 
    for j=1:4 
    fprintf(fid,'%5.3f ',permx1(j+(4*(i-1)))); 
    end 

                                                 
11 The rest of files do not need the modifications, since they do not include any decision variables. Hence, it does not 
affect the process of automatic history matching. For instance, PVT data, SCAL data, well data are known in PUNQ-S3 
model, therefore, these files are copied into the address. In one of the studies in this thesis, SCAL data was assumed 
uncertain as well, hence, its corresponding data file was generated by the MATLAB.  
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    fprintf(fid,'\n'); 
end 
  
% Second Layer 
for i=1:(length(permx2))/4 
    for j=1:4 
    fprintf(fid,'%5.3f ',permx2(j+(4*(i-1)))); 
    end 
    fprintf(fid,'\n'); 
end 
  
% Third Layer 
for i=1:(length(permx3))/4 
    for j=1:4 
    fprintf(fid,'%5.3f ',permx3(j+(4*(i-1)))); 
    end 
    fprintf(fid,'\n'); 
end 
  
% Forth Layer 
for i=1:(length(permx4))/4 
    for j=1:4 
    fprintf(fid,'%5.3f ',permx4(j+(4*(i-1)))); 
    end 
    fprintf(fid,'\n'); 
end 
  
% Fifth Layer 
  
for i=1:(length(permx5))/4 
    for j=1:4 
    fprintf(fid,'%5.3f ',permx5(j+(4*(i-1)))); 
    end 
    fprintf(fid,'\n'); 
end 
 %--------------------------------- 
 %PermZ 
k3={ 
'/' 
  
'PERMZ'}; 
[rows,~]=size(k3); 
  
for i=1:rows 
fprintf(fid,'%s\n',k3{i,1}); 
end 
  
% First Layer 
for i=1:(length(permz1))/4 
    for j=1:4 
    fprintf(fid,'%5.3f ',permz1(j+(4*(i-1)))); 
    end 
    fprintf(fid,'\n'); 
end 
  
% Second Layer 
for i=1:(length(permz2))/4 
    for j=1:4 
    fprintf(fid,'%5.3f ',permz2(j+(4*(i-1)))); 
    end 
    fprintf(fid,'\n'); 
end 
  
% Third Layer 
for i=1:(length(permz3))/4 
    for j=1:4 
    fprintf(fid,'%5.3f ',permz3(j+(4*(i-1)))); 
    end 
    fprintf(fid,'\n'); 
end 
  
% Forth Layer 
for i=1:(length(permz4))/4 
    for j=1:4 
    fprintf(fid,'%5.3f ',permz4(j+(4*(i-1)))); 
    end 
    fprintf(fid,'\n'); 
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end 
  
% Fifth Layer 
for i=1:(length(permz5))/4 
    for j=1:4 
    fprintf(fid,'%5.3f ',permz5(j+(4*(i-1)))); 
    end 
    fprintf(fid,'\n'); 
end 
  
 %-------------------------- 
% Porosity 
 k4={ 
'/' 
'PORO'}; 
[rows,~]=size(k4); 
for i=1:rows 
    fprintf(fid,'%s\n',k4{i,1}); 
end 
  
% First Layer 
for i=1:(length(poro1))/4 
    for j=1:4 
    fprintf(fid,'%5.3f ',poro1(j+(4*(i-1)))); 
    end 
    fprintf(fid,'\n'); 
end 
  
% Second Layer 
for i=1:(length(poro2))/4 
    for j=1:4 
    fprintf(fid,'%5.3f ',poro2(j+(4*(i-1)))); 
    end 
    fprintf(fid,'\n'); 
end 
  
% Third Layer 
for i=1:(length(poro3))/4 
    for j=1:4 
    fprintf(fid,'%5.3f ',poro3(j+(4*(i-1)))); 
    end 
    fprintf(fid,'\n'); 
end 
  
% Forth Layer 
for i=1:(length(poro4))/4 
    for j=1:4 
    fprintf(fid,'%5.3f ',poro4(j+(4*(i-1)))); 
    end 
    fprintf(fid,'\n'); 
end 
% Fifth Layer 
for i=1:(length(poro5))/4 
    for j=1:4 
    fprintf(fid,'%5.3f ',poro5(j+(4*(i-1)))); 
    end 
    fprintf(fid,'\n'); 
end  
k5={ 
'/' 
}; 
[rows,~]=size(k5); 
for i=1:rows 
    fprintf(fid,'%s\n',k5{i,1}); 
end 
fclose(fid); 
end 

a.1.1.1.2.					ECLIPSE	execution		

In order to run ECLIPSE, the following comments can execute ECLIPSE from MATLAB. 

These comments are included into a function. This function does not need any input, and 
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the output is the execution of the ECLIPSE. In this part, the main file of ECLIPSE (*.data) 

should be addressed.  

function ECLIPSE 
%  All rights reserved. 2010-2013, Mohammad Sayyafzadeh 
% 
%  Redistribution and use in source and binary forms, with or without 
%  modification, are permitted provided that the following conditions are 
%  met: 
% 
%     * Citing the thesis or one of my history matching papers.  
%     * For only academic purposes 
    Folder=strcat('eclrun eclipse c:\ECLIPSERUNS\MODEL#1\PUNQS3.data');  
    system(Folder); 
end 

 
If the ECLIPSE license is on a server, you may need to make sure that the ECLIPSE is 

executed without any license failure. To check the license failures, it is recommended to 

read the PRT file of ECLIPSE, and if there is a relevant string about license failure, the 

ECLIPSE should be executed one more time. This procedure needs a “while” keyword in 

which the condition is “if license failure exists, repeat the execution”. The required code 

for this checking can be provided upon the request by the author.  

a.1.1.1.3.					Output	file	extraction		

The third step is the extraction of the data from generated RMS file. We need to read the 

digits from the generated RMS file which is a text file (consists of characters), and import 

them into MATLAB. This part is coded with the following function (RMSReader). In this 

function, it is essential to provide the address of file which is required the data file to be 

extracted. This function automatically extracts all the numbers, such as WOPR (well oil 

production rates), WGPR (Well gas production rate) in each time steps. Then, it puts the 

extracted data into a Matrix (Data). The code for extracting the digits from the output file 

for PUNQ-S3 model is as follows: 

function Data = RSMReader 
%  All rights reserved. 2010-2013, Mohammad Sayyafzadeh 
% 
%  Redistribution and use in source and binary forms, with or without 
%  modification, are permitted provided that the following conditions are 
%  met: 
% 
%     * Citing the thesis or one of my history matching papers.  
%     * For only academic purposes 
Folder=strcat('c:\ECLIPSERUNS\Model#1\PUNQS3.rsm'); 
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fid = fopen(Folder, 'r'); 
a=textscan(fid,'%10s'); 
a=a{1,1}';i=1;aa(1,1)=100;u=1; 
for j=1:length(a) 
    b=str2num(a{1,j});  
    if ~length(b)==0 
        aa(1,i)=b; 
        i=i+1; 
        u=1; 
    else 
        if u==1 
            u=2; 
            aa(1,i)=(1/0); 
            i=i+1; 
        end 
    end 
end 
[~, b]=find(aa==inf); 
NoRows=(b(2)-b(1)-1)/10; 
kk=1; 
bsize=size(b); 
for j=1:bsize(2)-1 
    for i=(j-1)*NoRows+1:j*NoRows 
        dd1(kk,10*j-9:10*j)=aa(1,10*i-9+j:10*i+j); 
        kk=kk+1; 
    end 
    kk=1; 
end 
for i=1:NoRows 
    dd2(i,1:2)=aa(1,2*i-1+b(end):2*i+b(end)); 
end 
Data=[dd1 dd2]; 
fclose('all'); 
end 
 
Using these three functions, it is possible to write, run and read ECLIPSE by MATLAB in 

each fitness function call. Now, an objective function should be coded to analysis each 

scenario based on a specific objective function formulation. 

a.1.1.2.					Objective	function	coding		

This section is coded in MATLAB as a function (Evaluation) which takes decision 

variables and provides a fitness value for the given variables. All the three functions are 

used in the code. In this function, the history, covariance matrixes and the corresponding 

times steps should be provided. In the following code, a Bayesian framework (it has only 

likelihood term)12 is used for objective function computations. The code is as follows: 

function [S] = Evaluation(r) 
%  All rights reserved. 2010-2013, Mohammad Sayyafzadeh 
% 
%  Redistribution and use in source and binary forms, with or without 
%  modification, are permitted provided that the following conditions are 
%  met: 
% 
%     * Citing the thesis or one of my history matching papers.  
%     * For only academic purposes 

                                                 
12 If the objective function has a prior knowledge term (regularisation term), a prior model must be provided into the 
MATLAB function, and the corresponding value for the prior knowledge should be calculated.    
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Timesteps=[..]; 
Times=size(Timesteps); 
% History 
VectorOBS=[..]; 
% Covariance Matrix 
OBSCOVD=[..]; 
m=r; 
PoroPerm(m); 
Eclipse; 
Results=ExcelReader; 
ND=size(Results); 
for i=1:ND(1) 
    for j=1:Times(1) 
        if Results(i,1)==Timesteps(j) 
            Results(i,1)=0; 
        end 
         
    end 
end 
Results(1,:)=[]; 
ND(1)=ND(1)-1; 
i=0; 
while i<(ND(1)); 
    i=i+1; 
    if Results(i,1)~=0 
        Results(i,:)=[]; 
        ND(1)=ND(1)-1; 
        i=i-1; 
    end 
end 
Results(:,1)=[];Results(:,1)=[];Results(:,9)=[];Results(:,18)=[];Results(:,27)=[]; 
Data=Results; 
Dim=size(Data); 
VectorCal=reshape(Data,[Dim(1)*Dim(2),1]); 
%--------------------- 
    Li=(VectorCal(i)-VectorOBS(i))*OBSCOV^-1*(VectorCal(i)-VectorOBS(i))’; 
S=Li/2; 
end 
 

a.1.1.3.					Reparameterisation	coding		

The history matching procedure may have a reparameterisation. If it has a 

reparameterisation method, the programming in the objective function code needs an 

additional step before generating the input file. This function should take the individual 

vector (decision variables) (r) and provide the m. Depend on the reparameterisation 

technique, the procedure will be different. Four reparameterisation techniques are coded in 

here, 1- Zonation, 2- Pilot point, 3- Spectral decomposition and 4-Bicubic spline. It should 

be mentioned that if a reparameterisation is used, the input variable of the objective 

function in MATLAB will be the corresponding elements of the reparameterised model, 

and these elements will be transformed into m using one of the following functions13; as 

follows: 

                                                 
13 When full-parameterisation is used, r is equal to m. 
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a.1.1.3.1.					Zonation	

The MATLAB code is as follows (it is used for PUNQ-S3 and each layer of the reservoir 

model for each property is divided into 4 zones14) 

function m=Zonation(r) 
%  All rights reserved. 2010-2013, Mohammad Sayyafzadeh 
% 
%  Redistribution and use in source and binary forms, with or without 
%  modification, are permitted provided that the following conditions are 
%  met: 
% 
%     * Citing the thesis or one of my history matching papers. 
%     * For only academic purposes 
  
var=r; 
%----------------------- 1st Layer 
m1(1:10,1:14)=var(1);m1(11:19,1:14)=var(2);m1(1:10,15:28)=var(3);m1(11:19,15:28)=var(4); 
VectorPoro(1,1:19*28)=reshape(m1,[1 19*28]); 
% ----------------------- 2nd Layer 
m1(1:10,1:14)=var(5);m1(11:19,1:14)=var(6);m1(1:10,15:28)=var(7);m1(11:19,15:28)=var(8); 
VectorPoro(1,1+19*28:2*19*28)=reshape(m1,[1 19*28]); 
%-------------- 3rd Layer 
m1(1:10,1:14)=var(9);m1(11:19,1:14)=var(10);m1(1:10,15:28)=var(11);m1(11:19,15:28)=var(12); 
VectorPoro(1,1+2*19*28:3*19*28)=reshape(m1,[1 19*28]); 
%----------- 4th Layer 
m1(1:10,1:14)=var(13);m1(11:19,1:14)=var(14);m1(1:10,15:28)=var(15);m1(11:19,15:28)=var(16)
;VectorPoro(1,1+3*19*28:4*19*28)=reshape(m1,[1 19*28]); 
%---------- 5th Lyaer 
m1(1:10,1:14)=var(17);m1(11:19,1:14)=var(18);m1(1:10,15:28)=var(19);m1(11:19,15:28)=var(20)
;VectorPoro(1,1+4*19*28:5*19*28)=reshape(m1,[1 19*28]); 
%-------------------------- PermX 
%----------------------- 1st Layer 
m1(1:10,1:14)=var(21);m1(11:19,1:14)=var(22);m1(1:10,15:28)=var(23);m1(11:19,15:28)=var(24)
;VectorPoro(1,1+5*19*28:6*19*28)=reshape(m1*30*100,[1 19*28]); 
% ----------------------- 2nd Layer 
m1(1:10,1:14)=var(25);m1(11:19,1:14)=var(26);m1(1:10,15:28)=var(27);m1(11:19,15:28)=var(28)
;VectorPoro(1,1+6*19*28:7*19*28)=reshape(m1*30*100,[1 19*28]); 
%-------------- 3rd Layer 
m1(1:10,1:14)=var(29);m1(11:19,1:14)=var(30);m1(1:10,15:28)=var(31);m1(11:19,15:28)=var(32)
;VectorPoro(1,1+7*19*28:8*19*28)=reshape(m1*30*100,[1 19*28]); 
%----------- 4th Layer 
m1(1:10,1:14)=var(33);m1(11:19,1:14)=var(34);m1(1:10,15:28)=var(35);m1(11:19,15:28)=var(36)
;VectorPoro(1,1+8*19*28:9*19*28)=reshape(m1*30*100,[1 19*28]); 
%---------- 5th Layer 
m1(1:10,1:14)=var(37);m1(11:19,1:14)=var(38);m1(1:10,15:28)=var(39);m1(11:19,15:28)=var(40)
;VectorPoro(1,1+9*19*28:10*19*28)=reshape(m1*30*100,[1 19*28]); 
%----------------PermZ 
%----------------------- 1st Layer 
m1(1:10,1:14)=var(41);m1(11:19,1:14)=var(42);m1(1:10,15:28)=var(43);m1(11:19,15:28)=var(44)
;VectorPoro(1,1+10*19*28:11*19*28)=reshape(m1*30*100,[1 19*28]); 
% ----------------------- 2nd Layer 
m1(1:10,1:14)=var(45);m1(11:19,1:14)=var(46);m1(1:10,15:28)=var(47);m1(11:19,15:28)=var(48)
;VectorPoro(1,1+11*19*28:12*19*28)=reshape(m1*30*100,[1 19*28]); 
%-------------- 3rd Layer 
m1(1:10,1:14)=var(49);m1(11:19,1:14)=var(50);m1(1:10,15:28)=var(51);m1(11:19,15:28)=var(52)
;VectorPoro(1,1+12*19*28:13*19*28)=reshape(m1*30*100,[1 19*28]); 
%----------- 4th Layer 
m1(1:10,1:14)=var(53);m1(11:19,1:14)=var(54);m1(1:10,15:28)=var(55);m1(11:19,15:28)=var(56)
;VectorPoro(1,1+13*19*28:14*19*28)=reshape(m1*30*100,[1 19*28]); 
%---------- 5th Lyaer 
m1(1:10,1:14)=var(57);m1(11:19,1:14)=var(58);m1(1:10,15:28)=var(59);m1(11:19,15:28)=var(60)
;VectorPoro(1,1+14*19*28:15*19*28)=reshape(m1*30*100,[1 19*28]); 
%------------------- 
VectorPoro=abs(VectorPoro); 
m=VectorPoro; 
end 
 

                                                 
14 If the number of zones is different, the codes will be required to be modified manually. It is not a general form for it.   
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a.1.1.3.2.					Pilot	point	

In this approach, we need to make use of geostatistical software to interpolate properties 

between the gridblocks. SGeMS was coupled with MATLAB before, thus the provided 

interface by Thomas Mejer Hansen (http://mgstat.sourceforge.net/) is used. In this 

approach, the well data may be added to the code. For each layer and each property, a 

SGeMS should be executed. In follows, only coding for a single layer and single property 

is shown in which the variogram parameters are unknown and it is assumed there are 10 

pilot points with variable locations.  

function [ m ] = PilotPoint(r) 
%  All rights reserved. 2010-2013, Mohammad Sayyafzadeh 
% 
%  Redistribution and use in source and binary forms, with or without 
%  modification, are permitted provided that the following conditions are 
%  met: 
% 
%     * Citing the thesis or one of my history matching papers. 
%     * For only academic purposes 
Var=abs(r); 
NoPP=[10]; 
MODE='Gaussian' 
NoX=19; 
NoY=28; 
%---------- Well Data 
X=[..]; 
Y=[..]; 
V1=[..]; 
%------------- 
X(size(X)+1:size(X)+NoPP)=Var(6:6+NoPP); 
Y(size(Y)+1:size(Y)+NoPP)=Var(6+NoPP+1:6+2*NoPP+1); 
V1(size(V1)+1:size(V1)+NoPP)=Var(6+2*NoPP+2:6+3*NoPP+2); 
V1=V1'; 
Z=ones(NoPP+size(X),1); 
S=sgems_get_par('sgems3'); 
S.d_obs=[X Y Z V1]; 
S.dim.nx=NoX; 
S.dim.ny=NoY; 
S.dim.nz=1; 
S.dim.x0=1; 
S.dim.y0=1; 
S.dim.z0=1; 
MediumVar=Var(3); 
Angelx=Var(4); 
Angely=Var(5); 
Contrib=Var(2); 
S.XML.parameters.Nb_Realizations.value=40; 
S.XML.parameters.Seed.value=3412; 
S.XML.parameters.Max_Conditioning_Data.value=20; 
S.XML.parameters.Search_Ellipsoid.value=[10 10 10 0 0 0]; 
S.XML.parameters.Variogram.nugget=Var(1); 
S.XML.parameters.Variogram.structure_1.contribution=Contrib; 
S.XML.parameters.Variogram.structure_1.type=MODE; 
S.XML.parameters.Variogram.structure_1.ranges.max=1.5*MediumVar; 
S.XML.parameters.Variogram.structure_1.ranges.medium=MediumVar; 
S.XML.parameters.Variogram.structure_1.ranges.min=0.25*MediumVar; 
S.XML.parameters.Variogram.structure_1.angles.x=Angelx; 
S.XML.parameters.Variogram.structure_1.angles.y=Angely; 
S.XML.parameters.Variogram.structure_1.angles.z=0; 
S=sgems_grid(S); 
[m1,v1]=etype(S.D); 
VectorPoro(1,:)=reshape(m1,[1 532]); 
m=VectorPoro; 
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end 

a.1.1.3.3.					Spectral	decomposition		

In this approach, a series of computations should be done prior to a reparameterisation. The 

WP and D matrix should be calculated before a reparameterisation. In order to compute 

these two matrixes, a prior covariance matrix is required (CB). After calculating these two 

terms, the matrixes are required to be saved or copied into Spectral Decomposition 

function. Then, the computed elements are utilised for the reparameterisation.  

CB=[..]; 
NoElements=[..]; 
DL=diag(diag(CB)).^0.5; 
[UP,GamaP]=eigs(CB,NoElements); 
[UP,GamaP] = cdf2rdf(UP,GamaP); 
D=DL; 
WP=UP; 

These elements can be used for reparameterisation.  

function [ m ] = SpectralD(r) 
%  All rights reserved. 2010-2013, Mohammad Sayyafzadeh 
% 
%  Redistribution and use in source and binary forms, with or without 
%  modification, are permitted provided that the following conditions are 
%  met: 
% 
%     * Citing the thesis or one of my history matching papers. 
%     * For only academic purposes 
D=[..]; 
WP=[..]; 
m=D*WP*r; 
end 

a.1.1.3.4.					Bicubic	spline	

This reparameterisation is similar to pilot point technique, but spline interpolation is used. 

In the example, it is assumed the locations of matching gridblocks are known. For this 

method, it is required to provide the well data into the function. This function gets the 

decision variables and provides the spatial properties (m). The coding for only one layer 

and one property of PUNQS3 is shown.  

function [ m ] = Spline( r ) 
%  All rights reserved. 2010-2013, Mohammad Sayyafzadeh 
% 
%  Redistribution and use in source and binary forms, with or without 
%  modification, are permitted provided that the following conditions are 
%  met: 
% 
%     * Citing the thesis or one of my history matching papers.  
%     * For only academic purposes 
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var=r; 
%-------------Well data  
x=[..]; 
y=[..]; 
z=[..]; 
%----------------------- 
%----location of gridblocks 
x(7:11)=[..]; 
y(7:11)=[..]; 
ti1 = 1:1:19; 
ti2 = 1:1:28; 
[xi,yi] = meshgrid(ti1,ti2); 
%----------------------- 1st Layer Porosity 
z(7:11)=var(1:5)/100; 
m1 = griddata(x,y,z,xi,yi,'cubic'); 
VectorPoro(1,1:19*28)=reshape(m1',[1 19*28]); 
m=VectorPoro 
end 
  
 
Up to this point, a MATLAB function (Evaluation) is formulated which gets the decision 

variables (m or r) and provides the fitness value based on a formulated objective function, 

and it may have a reparameterisation operator. Now, a code is required to carry a rule for 

updating the decision variables, according to the calculated fitness values to find the best 

history matched model.  

a.1.2.					Optimisation	development		

The updates can be conducted by a GA, Steepest Descent, Simulated Annealing, BFGS, 

ABC or any other optimisation method. In this study, a number of these algorithms are 

utilised, hence, the corresponding codes are developed or used. ABC was coded in 

MATLAB by Karaboga and can be found in the following URL: 

http://mf.erciyes.edu.tr/abc/. For Simulated Annealing, GA, multi-objective GA and 

BGFS, MATLAB toolboxes typically are used. In this study, we have developed some 

optimisation codes which are explained in the following sections.   

a.1.2.1.					GA	with	a	customised	crossover		

The coding consists of four main parts, 1- GA body, 2- initial population generator, 3- 

crossover and mutation function, and 4- tournament function.  
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a.1.2.1.1.					GA	body	

In this part, the variables, objective function, recombination and evaluations are being 

done. The coding is as follows: 

% Required Information 
%  All rights reserved. 2010-2013, Mohammad Sayyafzadeh 
% 
%  Redistribution and use in source and binary forms, with or without 
%  modification, are permitted provided that the following conditions are 
%  met: 
% 
%     * Citing the thesis or one of my history matching papers.  
%     * For only academic purposes 
NoVar=[..]; 
NoPop=[..]; 
pCross=[..]; 
pTour=[..]; 
pMut=[..]; 
NoElit=[..]; 
NoGen=[..]; 
UB=[..]; 
LB=[..]; 
Range=UB-LB; 
objfun='[..]'; %cost function to be optimized (@Evaluation) 
objective=str2func(objfun); 
%--------------- 
rand('seed',1); 
% Generating intial population 
Pop=popgen(NoPop,NoVar,LB,Range);inpop=Pop; 
%--------------- 
ItterationNo=0; 
%------------ 
for i=1:NoPop 
    Fitness(i)= objective(Pop(i,:)); 
end 
%------------------- 
% %---------------- 
mine=min(Fitness) 
while (ItterationNo<NoGen) 
    % Mutation and Crossover 
    ItterationNo=ItterationNo+1; 
    popmut=OurCross(Pop,Fitness,pTour,pCross,pMut,LB,Range,ItterationNo,NoGen); 
    %----------------------- 
        for i=1:NoPop 
            Fitness2(i)= objective(popmut(i,:)); 
        end 
        % %------------------- 
    [ke2 ki2]= sort(Fitness2); 
    %Elite 
        newpop((1:NoPop),:)=popmut((ki2(1:NoPop)),:); 
        [ke1 ki1]=sort(Fitness); 
        popelit=Pop(ki1(1:NoElit),:); 
        FitnessElit=Fitness(ki1(1:NoElit)); 
        Pop=newpop((1:(NoPop-NoElit)),:); 
        Pop((NoPop-NoElit+1):NoPop,:)=popelit; 
        Fitness(1:NoPop-NoElit)=Fitness2(ki2(1:(NoPop-NoElit))); 
        Fitness((NoPop-NoElit+1):NoPop)=FitnessElit; 
        %--------------------- 
    SetAns(ItterationNo)=min(Fitness); 
    FitnessGlobal=min(Fitness); 
    [r Ind]=min(Fitness); 
    Global=Pop(Ind,:); 
    GlobalSet(ItterationNo,:)=Global; 
    semilogy(SetAns); 
end 
  
This code needs a number of functions: 
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a.1.2.1.2.					Initial	population	generator	

popgen is the function which creates the initial population randomly over the given 

bounds; 

function [ Pop ] = popgen( NoPop,NoVar,LB,Range ) 
%POPGEN Summary of this function goes here 
%   Detailed explanation goes here 
Pop=LB+Range*rand([NoPop NoVar]); 
end 

a.1.2.1.3.					Crossover	and	mutation	function	

In this section, the customised crossover and mutation function is coded. In this function, 

the current population and the corresponding fitness values are given. Its output is a new 

population. In this function, we need to provide the mutation and crossover probabilities.  

function popmut=OurCross(Pop,Fitness,pTour,pCross,pMut,LB,Range,ItterationNo,NoGen) 
%  All rights reserved. 2010-2013, Mohammad Sayyafzadeh 
% 
%  Redistribution and use in source and binary forms, with or without 
%  modification, are permitted provided that the following conditions are 
%  met: 
% 
%     * Citing the thesis or one of my history matching papers.  
%     * For only academic purposes 
aa=size(Pop); 
CM=randperm(aa(1)); 
for j=1:ceil(pCross*aa(1)/5) 
    % Tournoment 
    NoSelectedPair=2; 
    [ SelectedPop FitnessSelected ] = Tournoment( Fitness,Pop,pTour,NoSelectedPair ); 
    %----------------- 
    fFitness=zeros([1 (NoSelectedPair*2)]); 
    for i=1:(NoSelectedPair*2) 
        if (FitnessSelected(i)>=0) 
            fFitness(i)=1./(FitnessSelected(i)+1); 
        else 
            fFitness(i)=1+abs(FitnessSelected(i)); 
        end 
    end 
    SumFitnessSelected=sum(fFitness); 
    for k=1:NoSelectedPair*2 
        w(k)=fFitness(k)/SumFitnessSelected; 
    end 
     
    popcross(5*j-4,:)=zeros([1 aa(2)]); 
    for k=1:NoSelectedPair*2 
        popcross(5*j-4,:)=popcross(5*j-4,:)+w(k)*SelectedPop(k,:); 
    end 
     
    noise=(LB+(Range*5*exp(-(ItterationNo+1)/300)))*rand([4 aa(2)]); 
     
    for k=1:1 
        UUU=randperm(aa(2)); 
        popcross(5*j-4+k,:)=popcross(5*j-4,:); 
        popcross(5*j-4+k,UUU)=noise(k,UUU)+popcross(5*j-4,UUU); 
    end 
    %----------------- 
    M=SelectedPop(3,:); 
    F=SelectedPop(4,:); 
    pCrossChor=0.5; 
    popcross(5*j-2,:)=F; 
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    pp2=ceil(rand([1 ceil(pCrossChor*aa(2))])*aa(2)); 
    popcross(5*j-2,pp2)=M(pp2); 
     
    noise=(LB+(Range*5*exp(-(ItterationNo+1)/300)))*rand([4 aa(2)]); 
     
    for k=1:1 
        UUU=randperm(aa(2)); 
        popcross(5*j-2+k,:)=popcross(5*j-2,:); 
        popcross(5*j-2+k,UUU)=noise(k,UUU)+popcross(5*j-2,UUU); 
    end 
     
     
    M=SelectedPop(1,:); 
    F=SelectedPop(3,:); 
    score1=FitnessSelected(1); 
    score2=FitnessSelected(3); 
    ratio=1.2; 
    if(score1 < score2) % parent1 is the better of the pair 
        popcross(5*j,:) = F + ratio .* (M - F); 
    else % parent2 is the better one 
        popcross(5*j,:) = M + ratio .* (F - M); 
    end 
end 
%---------------- 
%Mutation 
popmut=Pop; 
VV=randperm(aa(1)); 
OO=size(popcross); 
popmut(VV(1:OO(1)),:)=popcross; 
UU=randperm(aa(1)); 
for i=1:ceil(aa(1)) 
    RandMu=rand; 
    if RandMu<pMut 
        muGen=ceil(aa(2)*rand([1 1])); 
        popmut(UU(i),muGen)=LB+Range*rand([1 1]); 
    end 
end 
%----------------- 
UB=LB+Range; 
for i=1:aa(1) 
    for j=1:aa(2) 
        if popmut(i,j)<LB 
            popmut(i,j)=LB; 
        end 
        if popmut(i,j)>UB 
            popmut(i,j)=UB; 
        end 
    end 
end 
end 

a.1.2.1.4.					Tournament	function		

A tournament operator is used for the selection. In this function, a tournament size is 

selected and in the tournament size, a pair of chromosomes is selected. The corresponding 

coding is as follows: 

function [ SelectedPop FitnessSelected ] = Tournoment( Fitness,Pop,pTour,NoSelectedPair ) 
%TOURNOMENT Summary of this function goes here 
%   Detailed explanation goes here 
aa=size(Pop); 
for i=1:NoSelectedPair 
    a=ceil(aa(1)*(rand(pTour,1))); 
    b=ceil(aa(1)*(rand(pTour,1))); 
    [~, e1]=min(Fitness(a)); 
    [~, e2]=min(Fitness(b)); 
    while a(e1)==b(e2) 
        a=ceil(aa(1)*(rand(pTour,1))); 
        b=ceil(aa(1)*(rand(pTour,1))); 
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        [~, e1]=min(Fitness(a)); 
        [~, e2]=min(Fitness(b)); 
    end 
    SelectedPop(2*i-1,:)=Pop(a(e1),:); 
    SelectedPop(2*i,:)=Pop(b(e2),:); 
    FitnessSelected(2*i-1)=Fitness(a(e1)); 
    FitnessSelected(2*i)=Fitness(b(e2)); 
     
end 
end 

In order to carry out history matching or optimisation using this algorithm, it is required to 

create the aforementioned MATLAB codes and copy them into a same directory.  

a.1.2.2.					EA	with	the	image‐fusion	technique		

Another optimisation algorithm developed in this study is an evolutionary algorithm in 

which crossover operator is the image-fusion technique and has a specific mutation. The 

body is similar to GA and the only difference is that the population is a 4D matrix, and the 

chromosomes are 3D. The body code is as follows: 

% Required Information 
%  All rights reserved. 2010-2013, Mohammad Sayyafzadeh 
% 
%  Redistribution and use in source and binary forms, with or without 
%  modification, are permitted provided that the following conditions are 
%  met: 
% 
%     * Citing the thesis or one of my history matching papers.  
%     * For only academic purposes 
clear 
clc 
NoProperties=3; 
NoLayers=5; 
NoX=19; 
NoY=28; 
Dim=NoProperties*NoLayers; 
% based on Gibbs formula 
NoPop=15;pCross=0.9;pTour=4;pMut=0.25;NoElit=1;NoGen=1400; 
UB1=0.45;LB1=0.001;LB2=0.001; 
UB2=1200;LB3=0.001;UB3=1200; 
objfun='LikePOverDet'; %cost function to be optimized 
objective=str2func(objfun); 
%--------------- 
rand('seed',2312) 
% Generating intial population 
Pop=popgen(NoPop); 
%--------------- 
ItterationNo=0; 
%------------ 
for i=1:NoPop 
    Individual(:,:,:)=Pop(i,:,:,:); 
    Fitness(i)=objective(Individual); 
end 
FitnessGlobal=min(Fitness); 
%------------------- 
% %---------------- 
mine=min(Fitness) 
while (ItterationNo<NoGen) 
    % Mutation and Crossover 
    ItterationNo=ItterationNo+1; 
    popmut=IMFUCrossOver(Pop,Fitness,pTour,pCross,pMut,FitnessGlobal); 
    %----------------------- 
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    for i=1:NoPop 
        Individual(:,:,:)=popmut(i,:,:,:); 
        Fitness2(i)=objective(Individual); 
    end 
    % %------------------- 
    [ke2 ki2]= sort(Fitness2); 
    %Elite 
    newpop((1:NoPop),:,:,:)=popmut((ki2(1:NoPop)),:,:,:); 
    [ke1 ki1]=sort(Fitness); 
    popelit=Pop(ki1(1:NoElit),:,:,:); 
    FitnessElit=Fitness(ki1(1:NoElit)); 
    Pop=newpop((1:(NoPop-NoElit)),:,:,:); 
    Pop((NoPop-NoElit+1):NoPop,:,:,:)=popelit; 
    %---------- 
    Fitness(1:NoPop-NoElit)=Fitness2(ki2(1:(NoPop-NoElit))); 
    Fitness((NoPop-NoElit+1):NoPop)=FitnessElit; 
    %--------------------- 
    SetAns(ItterationNo)=min(Fitness); 
    SetAns(end) 
    FitnessGlobal=min(Fitness); 
    [r Ind]=min(Fitness); 
    Global=Pop(Ind,:,:,:); 
    pause(0.00001) 
    subplot(4,3,6) 
    semilogy(SetAns);title(sprintf('Fitness')); 
    x=[1:1:19]; 
    y=[1:1:28]; 
    subplot(4,3,1);m1(:,:)=Global(1,1,:,:);imagesc(x,y,m1',[0 0.3]); 
    subplot(4,3,2);m2(:,:)=Global(1,2,:,:);imagesc(x,y,m2',[0 0.3]); 
    subplot(4,3,3);m3(:,:)=Global(1,3,:,:);imagesc(x,y,m3',[0 0.30]); 
    subplot(4,3,4);m4(:,:)=Global(1,4,:,:);imagesc(x,y,m4',[0 0.3]); 
    subplot(4,3,5);m5(:,:)=Global(1,5,:,:);imagesc(x,y,m5',[0 0.3]);     
         
   %------------------------ 
    [ Dis ] = DistanceC( Pop ); 
    Distance(ItterationNo)=Dis; 
    subplot(4,3,12); 
    plot(Distance); 
    pause(1) 
end 

The following three functions are used in the above algorithm. 

a.1.2.2.1.					Initial	population	generator	

The initialisation is heuristic and to generate the initial population, geostatistical 

correlation is used. The code is as follows: 

function [ Pop ] = popgen( NoPop ) 
%  All rights reserved. 2010-2013, Mohammad Sayyafzadeh 
% 
%  Redistribution and use in source and binary forms, with or without 
%  modification, are permitted provided that the following conditions are 
%  met: 
% 
%     * Citing the thesis or one of my history matching papers.  
%     * For only academic purposes 
 
%Perm X 
P1L=[..];P2L=[..];P3L=[..];P4L=[..];P5L=[..]; 
Poro1L=P1L;Poro2L=P2L;Poro3L=P3L;Poro4L=P4L;Poro5L=P5L; 
for i=1:6 
    Poro1L(i,4)=P1L(i,4)/0.278; 
end 
for i=1:6 
    Poro2L(i,4)=P2L(i,4)/0.109; 
end 
  
for i=1:6 
    Poro3L(i,4)=P3L(i,4)/0.243; 
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end 
  
for i=1:6 
    Poro4L(i,4)=P4L(i,4)/0.2; 
end 
  
for i=1:6 
    Poro5L(i,4)=P5L(i,4)/0.275; 
end 
for i=1:NoPop 
    % 1st Layer Poro 
    NoX=19; 
    NoY=28; 
    X=Poro1L(:,1); 
    Y=Poro1L(:,2); 
    Z=ones(6,1); 
    V1=Poro1L(:,4); 
    S=sgems_get_par('sgems1'); 
    S.d_obs=[X Y Z V1]; 
    S.dim.nx=NoX; 
    S.dim.ny=NoY; 
    S.dim.nz=1; 
    S.dim.x0=1; 
    S.dim.y0=1; 
    S.dim.z0=1; 
    R=200+rand*300; 
    S.XML.parameters.Nb_Realizations.value=50; 
    S.XML.parameters.Seed.value=1; 
    S.XML.parameters.Max_Conditioning_Data.value=3; 
    S.XML.parameters.Search_Ellipsoid.value=[10 10 10 0 0 0]; 
    S.XML.parameters.Variogram.nugget=0.5*rand; 
    S.XML.parameters.Variogram.structure_1.contribution=rand*500; 
    S.XML.parameters.Variogram.structure_1.type='Gaussian'; 
    S.XML.parameters.Variogram.structure_1.ranges.max=1.5*R; 
    S.XML.parameters.Variogram.structure_1.ranges.medium=R; 
    S.XML.parameters.Variogram.structure_1.ranges.min=0.25*R; 
    S.XML.parameters.Variogram.structure_1.angles.x=180*rand; 
    S.XML.parameters.Variogram.structure_1.angles.y=180*rand; 
    S.XML.parameters.Variogram.structure_1.angles.z=0; 
    S=sgems_grid(S); 
    [m1,v1]=etype(S.D); 
    m1=m1*0.278; 
    % ----------------------- 2nd Layer 
    NoX=19; 
    NoY=28; 
    X=Poro2L(:,1); 
    Y=Poro2L(:,2); 
    Z=ones(6,1); 
    V1=Poro2L(:,4); 
    S=sgems_get_par('sgems1'); 
    S.d_obs=[X Y Z V1]; 
    S.dim.nx=NoX; 
    S.dim.ny=NoY; 
    S.dim.nz=1; 
    S.dim.x0=1; 
    S.dim.y0=1; 
    S.dim.z0=1; 
    R=200+rand*300; 
    S.XML.parameters.Nb_Realizations.value=50; 
    S.XML.parameters.Seed.value=1; 
    S.XML.parameters.Max_Conditioning_Data.value=3; 
    S.XML.parameters.Search_Ellipsoid.value=[10 10 10 0 0 0]; 
    S.XML.parameters.Variogram.nugget=0.5*rand; 
    S.XML.parameters.Variogram.structure_1.contribution=rand*500; 
    S.XML.parameters.Variogram.structure_1.type='Gaussian'; 
    S.XML.parameters.Variogram.structure_1.ranges.max=1.5*R; 
    S.XML.parameters.Variogram.structure_1.ranges.medium=R; 
    S.XML.parameters.Variogram.structure_1.ranges.min=0.25*R; 
    S.XML.parameters.Variogram.structure_1.angles.x=180*rand; 
    S.XML.parameters.Variogram.structure_1.angles.y=180*rand; 
    S.XML.parameters.Variogram.structure_1.angles.z=0; 
    S=sgems_grid(S); 
    [m2,v1]=etype(S.D); 
    m2=m2*0.109; 
    %----------------3rd Layer Poro 
    NoX=19; 
    NoY=28; 
    X=Poro3L(:,1); 
    Y=Poro3L(:,2); 
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    Z=ones(6,1); 
    V1=Poro3L(:,4); 
    S=sgems_get_par('sgems1'); 
    S.d_obs=[X Y Z V1]; 
    S.dim.nx=NoX; 
    S.dim.ny=NoY; 
    S.dim.nz=1; 
    S.dim.x0=1; 
    S.dim.y0=1; 
    S.dim.z0=1; 
    R=200+rand*300; 
    S.XML.parameters.Nb_Realizations.value=50; 
    S.XML.parameters.Seed.value=1; 
    S.XML.parameters.Max_Conditioning_Data.value=3; 
    S.XML.parameters.Search_Ellipsoid.value=[10 10 10 0 0 0]; 
    S.XML.parameters.Variogram.nugget=0.5*rand; 
    S.XML.parameters.Variogram.structure_1.contribution=rand*500; 
    S.XML.parameters.Variogram.structure_1.type='Gaussian'; 
    S.XML.parameters.Variogram.structure_1.ranges.max=1.5*R; 
    S.XML.parameters.Variogram.structure_1.ranges.medium=R; 
    S.XML.parameters.Variogram.structure_1.ranges.min=0.25*R; 
    S.XML.parameters.Variogram.structure_1.angles.x=180*rand; 
    S.XML.parameters.Variogram.structure_1.angles.y=180*rand; 
    S.XML.parameters.Variogram.structure_1.angles.z=0; 
    S=sgems_grid(S); 
    [m3,v1]=etype(S.D); 
    m3=m3*0.242; 
    %--------- 4th Layer 
    NoX=19; 
    NoY=28; 
    X=Poro4L(:,1); 
    Y=Poro4L(:,2); 
    Z=ones(6,1); 
    V1=Poro4L(:,4); 
    S=sgems_get_par('sgems1'); 
    S.d_obs=[X Y Z V1]; 
    S.dim.nx=NoX; 
    S.dim.ny=NoY; 
    S.dim.nz=1; 
    S.dim.x0=1; 
    S.dim.y0=1; 
    S.dim.z0=1; 
    R=200+rand*300; 
    S.XML.parameters.Nb_Realizations.value=50; 
    S.XML.parameters.Seed.value=1; 
    S.XML.parameters.Max_Conditioning_Data.value=3; 
    S.XML.parameters.Search_Ellipsoid.value=[10 10 10 0 0 0]; 
    S.XML.parameters.Variogram.nugget=0.5*rand; 
    S.XML.parameters.Variogram.structure_1.contribution=rand*500; 
    S.XML.parameters.Variogram.structure_1.type='Gaussian'; 
    S.XML.parameters.Variogram.structure_1.ranges.max=1.5*R; 
    S.XML.parameters.Variogram.structure_1.ranges.medium=R; 
    S.XML.parameters.Variogram.structure_1.ranges.min=0.25*R; 
    S.XML.parameters.Variogram.structure_1.angles.x=180*rand; 
    S.XML.parameters.Variogram.structure_1.angles.y=180*rand; 
    S.XML.parameters.Variogram.structure_1.angles.z=0; 
    S=sgems_grid(S); 
    [m4,v1]=etype(S.D); 
    m4=m4*0.2; 
    %------------------- 5th Layer Poro 
    NoX=19; 
    NoY=28; 
    X=Poro5L(:,1); 
    Y=Poro5L(:,2); 
    Z=ones(6,1); 
    V1=Poro5L(:,4); 
    S=sgems_get_par('sgems1'); 
    S.d_obs=[X Y Z V1]; 
    S.dim.nx=NoX; 
    S.dim.ny=NoY; 
    S.dim.nz=1; 
    S.dim.x0=1; 
    S.dim.y0=1; 
    S.dim.z0=1; 
    R=200+rand*300; 
    S.XML.parameters.Nb_Realizations.value=50; 
    S.XML.parameters.Seed.value=1; 
    S.XML.parameters.Max_Conditioning_Data.value=3; 
    S.XML.parameters.Search_Ellipsoid.value=[10 10 10 0 0 0]; 
    S.XML.parameters.Variogram.nugget=0.5*rand; 
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    S.XML.parameters.Variogram.structure_1.contribution=rand*500; 
    S.XML.parameters.Variogram.structure_1.type='Gaussian'; 
    S.XML.parameters.Variogram.structure_1.ranges.max=1.5*R; 
    S.XML.parameters.Variogram.structure_1.ranges.medium=R; 
    S.XML.parameters.Variogram.structure_1.ranges.min=0.25*R; 
    S.XML.parameters.Variogram.structure_1.angles.x=180*rand; 
    S.XML.parameters.Variogram.structure_1.angles.y=180*rand; 
    S.XML.parameters.Variogram.structure_1.angles.z=0; 
    S=sgems_grid(S); 
    [m5,v1]=etype(S.D); 
    m5=m5*0.275; 
    Pop(i,1,:,:)=m1; 
    Pop(i,2,:,:)=m2; 
    Pop(i,3,:,:)=m3; 
    Pop(i,4,:,:)=m4; 
    Pop(i,5,:,:)=m5; 
 end 

a.1.2.2.2.					Crossover	and	mutation	function	

As mentioned above, the crossover operator is the wavelet transform image-fusion 

technique. The image-fusion is performed by Wavelet Toolbox of MATLAB. The 

mutation was explained in the chapter 5; this function gets the current population and 

provides the new population, the code for the mutation is as follows:  

function popmut=IMFUCrossOver(Pop,Fitness,pTour,pCross,pMut,FitGlobal) 
aa=size(Pop); 
CM=randperm(aa(1)); 
for j=1:ceil(pCross*aa(1)) 
    % Tournoment 
    NoSelectedPair=1; 
    [ SelectedPop FitnessSelected ] = Tournoment( Fitness,Pop,pTour,NoSelectedPair ); 
    %----------------- 
    F(:,:,:)=SelectedPop(1,:,:,:); 
    M(:,:,:)=SelectedPop(2,:,:,:); 
    Child(j,:,:,:)=M; 
    for i=1:aa(2) 
        R=rand; 
        if R<0.1 
            A='min'; 
        else 
            A='rand'; 
        end 
        FP(:,:)=F(i,:,:); 
        MP(:,:)=M(i,:,:); 
        Child(j,i,:,:) = IFU( FP,MP,'sym4',5,'rand',A ); 
    end 
end 
%---------------------- 
%Mutation 
popmut=Pop; 
VV=randperm(aa(1)); 
OO=size(Child); 
popmut(VV(1:OO(1)),:,:,:)=Child; 
for i=1:ceil(aa(1)) 
    RandMu=rand; 
    if RandMu<pMut 
        A1=3; 
        IA=ceil(rand*(19-A1)); 
        B1=3; 
        IB=ceil(rand*(28-B1)); 
        j=ceil(rand*5); 
        if j==1 
            Mean=0.1589; 
            STD=0.0935; 
            temp1=ones([A1 B1])*(random('normal',Mean,STD,[1 1])); 
        end 
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        if j==2 
            Mean=0.0736; 
            STD=0.0367; 
            temp1=ones([A1 B1])*(random('normal',Mean,STD,[1 1])); 
        end 
        if j==3 
            Mean=0.1814; 
            STD=0.0789; 
            temp1=ones([A1 B1])*(random('normal',Mean,STD,[1 1])); 
        end 
        if j==4 
            Mean=0.1080; 
            STD=0.0531; 
            temp1=ones([A1 B1])*(random('normal',Mean,STD,[1 1])); 
        end 
        if j==5 
            Mean=0.1902; 
            STD=0.0865; 
            temp1=ones([A1 B1])*(random('normal',Mean,STD,[1 1])); 
        end 
        popmut(i,j,IA:IA+A1-1,IB:IB+B1-1)=temp1; 
    end 
end 
for i=1:ceil(aa(1)) 
    RandMu=rand; 
    if RandMu<pMut 
        A1=2; 
        IA=ceil(rand*(19-A1)); 
        B1=5; 
        IB=ceil(rand*(28-B1)); 
        j=ceil(rand*5); 
        if j==1 
            Mean=0.1589; 
            STD=0.0935; 
            temp1=ones([A1 B1])*(random('normal',Mean,STD,[1 1])); 
        end 
        if j==2 
            Mean=0.0736; 
            STD=0.0367; 
            temp1=ones([A1 B1])*(random('normal',Mean,STD,[1 1])); 
        end 
        if j==3 
            Mean=0.1814; 
            STD=0.0789; 
            temp1=ones([A1 B1])*(random('normal',Mean,STD,[1 1])); 
        end 
        if j==4 
            Mean=0.1080; 
            STD=0.0531; 
            temp1=ones([A1 B1])*(random('normal',Mean,STD,[1 1])); 
        end 
        if j==5 
            Mean=0.1902; 
            STD=0.0865; 
            temp1=ones([A1 B1])*(random('normal',Mean,STD,[1 1])); 
        end 
        popmut(i,j,IA:IA+A1-1,IB:IB+B1-1)=temp1; 
    end 
     
end 
for i=1:ceil(aa(1)) 
    RandMu=rand; 
    if RandMu<pMut 
        A1=5; 
        IA=ceil(rand*(19-A1)); 
        B1=2; 
        IB=ceil(rand*(28-B1)); 
        j=ceil(rand*5); 
        if j==1 
            Mean=0.1589; 
            STD=0.0935; 
            temp1=ones([A1 B1])*(random('normal',Mean,STD,[1 1])); 
        end 
        if j==2 
            Mean=0.0736; 
            STD=0.0367; 
            temp1=ones([A1 B1])*(random('normal',Mean,STD,[1 1])); 
        end 
        if j==3 
            Mean=0.1814; 
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            STD=0.0789; 
            temp1=ones([A1 B1])*(random('normal',Mean,STD,[1 1])); 
        end 
        if j==4 
            Mean=0.1080; 
            STD=0.0531; 
            temp1=ones([A1 B1])*(random('normal',Mean,STD,[1 1])); 
        end 
        if j==5 
            Mean=0.1902; 
            STD=0.0865; 
            temp1=ones([A1 B1])*(random('normal',Mean,STD,[1 1])); 
        end 
        popmut(i,j,IA:IA+A1-1,IB:IB+B1-1)=temp1; 
    end 
end 
popmut=ActiveCellChange(popmut); 
end 

a.1.2.2.3.					Tournament	function	

The other function is tournament which is as follows: 

function [SelectedPop FitnessSelected ] = Tournoment(Fitness,Pop,pTour,NoSelectedPair) 
%TOURNOMENT Summary of this function goes here 
%   Detailed explanation goes here 
aa=size(Pop); 
for i=1:NoSelectedPair 
    a=ceil(aa(1)*(rand(pTour,1))); 
    b=ceil(aa(1)*(rand(pTour,1))); 
    [~, e1]=min(Fitness(a)); 
    [~, e2]=min(Fitness(b)); 
    while a(e1)==b(e2) 
        a=ceil(aa(1)*(rand(pTour,1))); 
        b=ceil(aa(1)*(rand(pTour,1))); 
        [~, e1]=min(Fitness(a)); 
        [~, e2]=min(Fitness(b)); 
    end 
    SelectedPop(2*i-1,:,:,:)=Pop(a(e1),:,:,:); 
    SelectedPop(2*i,:,:,:)=Pop(b(e2),:,:,:); 
    FitnessSelected(2*i-1)=Fitness(a(e1)); 
    FitnessSelected(2*i)=Fitness(b(e2)); 
     
end 
end 

a.1.3.					Infill	drilling	optimisation	

As mentioned before, the developed interface can also be used for production and field 

development optimisation. In order to employ it for these purposes, the following changes 

are required: i- the objective function, instead of being a misfit error, is a net present value 

(generally speaking, an economical objective function), ii- the decision variables, instead 

of being the uncertain parameters of the problems, are the parameters which are going to 

be optimised, for instance the coordinates for a new infill well. We applied the interface for 

a field development optimisation in a coalbed methane reservoir. In this problem, the 
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decision variables are well locations; hence they are discrete variables. The objective 

function is the net present value with 10 percent net cash flow. In this problem, the water 

treatment price and gas price are required.  

In this problem, the interface should generate an input file for the ECLIPSE which should 

have the addresses of the infill wells and the properties of them, such as well skins, control 

term and completion. Afterward, ECLIPSE should be executed, and then the cumulative 

gas production and water production for the period of understudy (10 years) should be 

extracted from the output file of ECLIPSE.  

a.1.3.1.					Coding	

a.1.3.1.1.					Interface	

The codes for these three steps are as follows:  

a.1.3.1.2.					Objective	function	(NPV)	

The objective function code is as follows (for 60 infill wells):  

function [ NPV ] = Evaluation( WL ) 
%EVALUATION Summary of this function goes here 
%   Detailed explanation goes here 
 
infill(WL); 
ECLIPSE; 
Results=ExcelReader; 
  
Timesteps=[0,120,240,360,480,600,720,840,960,1080,1200,1320,1440,1560,1680,1800,1920,2040,2
160,2280,2400,2520,2640,2760,2880,3000,3120,3240,3360,3480,3600,3720,3840,3960,4080,4200,43
20,4440,4560,4680,4800,4920,5040,5160,5280,5400,5520,5640,5760,5880,6000,6120,6240,6360,648
0,6600,6720,6840,6960,7080,7200;]'; 
Times=size(Timesteps); 
ND=size(Results); 
    j=1; 
    for i=1:ND(1) 
        for j=1:Times(1) 
            if Results(i,1)==Timesteps(j) 
                Results(i,1)=0; 
            end 
             
        end 
    end 
    Results(1,:)=[]; 
    ND(1)=ND(1)-1; 
    i=0; 
    while i<(ND(1)); 
        i=i+1; 
        if Results(i,1)~=0 
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            Results(i,:)=[]; 
            ND(1)=ND(1)-1; 
            i=i-1; 
        end 
    end 
GT10year=Results(30,6); 
WT10year=Results(30,5); 
iii=1; 
jjj=33; 
while iii<=10 
    WT(iii)=Results(jjj,5); 
    GT(iii)=Results(jjj,6); 
    iii=iii+1; 
    jjj=jjj+3; 
end 
GTeachyear(1)=GT(1)-GT10year; 
WTeachyear(1)=WT(1)-WT10year; 
for i=2:10 
    GTeachyear(i)=GT(i)-GT(i-1); 
    WTeachyear(i)=WT(i)-WT(i-1); 
end 
for i=1:10 
    Net(i)=(2.5*GTeachyear(i)*10^3-1.2*WTeachyear(i)*10^3-500*125*12)*0.92/(1.1)^i; 
end 
NPV=sum(Net)-80*1000000; 
NPV=-NPV 
end 

a.1.3.1.3.				GA	for	well	placement	

The well placement optimisation is better to have a specific optimisation algorithm, since 

the variables are discrete. GA with following form is used as the optimiser. 

% Required Information 
clear 
clc 
NoVar=160; 
NoPop=40; 
pCross=0.9; 
pTour=4; 
pMut=0.2; 
NoElit=1; 
NoGen=1000; 
UBX=73; 
LBX=1; 
UBY=37; 
LBY=1; 
objfun='Evaluation'; %cost function to be optimized 
objective=str2func(objfun); 
%--------------- 
rand('seed',7) 
% Generating intial population 
Pop=popgen(NoPop,NoVar,UBX,UBY); 
inpop=Pop; 
%--------------- 
ItterationNo=0; 
%------------ 
for i=1:NoPop 
    Fitness(i)=objective(Pop(i,:)); 
end 
%------------------- 
% %---------------- 
mine=min(Fitness) 
while (ItterationNo<NoGen) 
    % Mutation and Crossover 
    ItterationNo=ItterationNo+1; 
    popmut=Scattred(Pop,Fitness,pTour,pCross,pMut,UBX,UBY); 
    %----------------------- 
    for i=1:NoPop 
        Fitness2(i)=objective(popmut(i,:)); 
    end 
    % %------------------- 
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    [ke2 ki2]= sort(Fitness2); 
    %Elite 
    newpop((1:NoPop),:)=popmut((ki2(1:NoPop)),:); 
    [ke1 ki1]=sort(Fitness); 
    popelit=Pop(ki1(1:NoElit),:); 
    FitnessElit=Fitness(ki1(1:NoElit)); 
    Pop=newpop((1:(NoPop-NoElit)),:); 
    Pop((NoPop-NoElit+1):NoPop,:)=popelit; 
    Fitness(1:NoPop-NoElit)=Fitness2(ki2(1:(NoPop-NoElit))); 
    Fitness((NoPop-NoElit+1):NoPop)=FitnessElit; 
    %---------- 
    %--------------------- 
    SetAns(ItterationNo)=min(Fitness); 
    %     SetAns(end) 
    FitnessGlobal=min(Fitness); 
    [r Ind]=min(Fitness); 
    Global=Pop(Ind,:); 
    GlobalSet(ItterationNo,:)=Global; 
    %%%%%SetAns(end) 
    pause(0.00001) 
    subplot(1,2,1) 
    semilogy(SetAns); 
    subplot(1,2,2) 
    bar(Global) 
end 
 
function popmut=Scattred(Pop,Fitness,pTour,pCross,pMut,UBX,UBY) 
aa=size(Pop); 
CM=randperm(aa(1)); 
for j=1:ceil(pCross*aa(1)) 
    % Tournoment 
    NoSelectedPair=1; 
    [ SelectedPop FitnessSelected ] = Tournoment( Fitness,Pop,pTour,NoSelectedPair ); 
    %----------------- 
    M=SelectedPop(1,:); 
    F=SelectedPop(2,:); 
    pCrossChor=0.5; 
    popcross(j,:)=F; 
    pp2=randperm(aa(2)); 
    popcross(j,pp2(1:pCrossChor*aa(2)))=M(pp2(1:pCrossChor*aa(2))); 
end 
%---------------- 
%Mutation 
popmut=Pop; 
VV=randperm(aa(1)); 
OO=size(popcross); 
popmut(VV(1:OO(1)),:)=popcross; 
UU=randperm(aa(1)); 
for i=1:aa(1) 
    RandMu=rand; 
    if RandMu<pMut 
        muGen=randi(aa(2),[1 1]); 
        if mod(muGen,2)==0 
            popmut(i,muGen)=randi(UBY,[1 1]); 
        else 
            popmut(i,muGen)=randi(UBX,[1 1]); 
        end 
    end 
end 
     function [ Pop ] = popgen(NoPop,NoVar,UBX,UBY) 
        for i=1:NoVar 
            if mod(i,2)==0 
                Pop(:,i)=randi(UBY,[NoPop 1]); 
            else 
                Pop(:,i)=randi(UBX,[NoPop 1]); 
            end 
        end 
     
   function [ SelectedPop FitnessSelected ] = Tournoment(Fitness,Pop,pTour,NoSelectedPair) 
            %TOURNOMENT Summary of this function goes here 
            %   Detailed explanation goes here 
            aa=size(Pop); 
            for i=1:NoSelectedPair 
                a=ceil(aa(1)*(rand(pTour,1))); 
                b=ceil(aa(1)*(rand(pTour,1))); 
                [~, e1]=min(Fitness(a)); 
                [~, e2]=min(Fitness(b)); 
                while a(e1)==b(e2) 
                    a=ceil(aa(1)*(rand(pTour,1))); 
                    b=ceil(aa(1)*(rand(pTour,1))); 
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                    [~, e1]=min(Fitness(a)); 
                    [~, e2]=min(Fitness(b)); 
                end 
                SelectedPop(2*i-1,:)=Pop(a(e1),:); 
                SelectedPop(2*i,:)=Pop(b(e2),:); 
                FitnessSelected(2*i-1)=Fitness(a(e1)); 
                FitnessSelected(2*i)=Fitness(b(e2)); 
                 
            end 
   end        

a.1.3.2.					Results	of	Infill	drilling		

The results of the well placement optimisation can be found in the following two peer-

reviewed journal papers. “Salmachi, Alireza, Mohammad Sayyafzadeh, and Manouchehr 

Haghighi "Infill well placement optimization in coal bed methane reservoirs using genetic 

algorithm" Fuel (2013)” and “Salmachi, Alireza, Mohammad Sayyafzadeh, and 

Manouchehr Haghighi "Optimisation and economical evaluation of infill drilling in CSG 

reservoirs using a multi-objective genetic algorithm" APPEA 2013.  

In the first paper, the optimal number and the optimal locations of infill wells for San Juan 

basin is sought. In this paper, a sensitivity analysis is also made for the water treatment 

price. In the second paper, the multi-objective approach is used in which there are two 

objectives: 1- maximising the corresponding net present value for the gas production, and 

2- minimising the corresponding net present value for water treatment costs.  
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