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Long-term deep bed filtration in porous media with size exclusion particle capture mechanism is studied. For monodispersed
suspension and transport in porousmedia with distributed pore sizes, the microstochastic model allows for upscaling and the exact
solution is derived for the obtained macroscale equation system. Results show that transient pore size distribution and nonlinear
relation between the filtration coefficient and captured particle concentration during suspension filtration and retention are the
main features of long-term deep bed filtration, which generalises the classical deep bed filtration model and its latter modifications.
Furthermore, the exact solution demonstrates earlier breakthrough and lower breakthrough concentration for larger particles.
Among all the pores with different sizes, the ones with intermediate sizes (between the minimum pore size and the particle size)
vanish first. Total concentration of all the pores smaller than the particles turns to zero asymptotically when time tends to infinity,
which corresponds to complete plugging of smaller pores.

1. Introduction

Transport, filtration, and subsequent retention of suspended
particles and colloids in porous media are common phe-
nomena in nature and in many industrial applications. In
petroleum industry, migration of fine particles in low con-
solidated natural rocks during production of heavy oils leads
to significant productivity decline [1–4]. Invasion of drilling
fluid into oil and gas reservoirs results inwell impairment and
formation damage due to particle straining in thin pores [5–
7]. Flow of suspensions and colloids in porous media with
particle retention by matrix is also important for filtering
of water and industrial liquid or gas fluid streams [8–10],
enhanced bioremediation [11, 12], particle accumulation in
the streambed sediments [13], propagation of biocolloids
(bacteria viruses and protozoan parasites) in aquifers, surface
water and wastewater treatment, and so forth [14–20].

A thorough understanding and reliable prediction of
particle transport and retention by mathematical modelling
are critical to the planning and design of abovementioned
industrial and environmental processes. Up to date, consider-
able research has been devoted to the description of transport

and retention behaviour of suspensions in porous media, as
well as their effects on the alteration of the formation rock
(a number of reviews are available in the literature; see [21–
29]). In spite of all theseworks, themechanisms of suspension
transport and capture in porous media are still incompletely
understood and quantified.

The classical suspension-colloidal deep bed filtration
(DBF) theory is the most commonly used approach for
predicting particle transport behaviour and the consequent
media alterations [3, 8, 9, 14, 15]. The classical DBF model
includes two equations for particle population balance and
capture kinetics, respectively [21, 30]. Several forms of filtra-
tion coefficient as function of retained particle concentration
for different capture mechanisms and the resultant analyt-
ical solutions have been reported in the literature [21, 31].
However, the reported mismatch between the modelled and
measured particle DBF data makes it necessary to examine
the fundamental principles of the classical model for suspen-
sion transport in porous media, including its upscaling from
micro- to macroscale and possible model generalisations
[32–34].
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Figure 1: Geometric model of parallel capillary bundles with mixing chambers: (a) bundles of parallel capillaries alternated by mixing
chambers; (b) cross section of the capillary bungle with size-excluded particles.

Sharma and Yortsos [35–37] derived a new population
balance model, accounting for variation of pore and particle
size distributions due to several particle capturemechanisms.
It is assumed that the particle population moves at the
average flow velocity of the carrier fluid, and the whole
porous space is accessible to particles. The particles smaller
than the pores pass without straining; while the particles
larger than the pores are size-excluded in the medium.
Particularly, these assumptions lead to independent deep bed
filtration of polydispersed particles under the low retention
conditions.

Introduction of accessibility and flux reduction factors
into the population balance equations describes simultaneous
flow of suspension in accessible pores and flow of particle-
free water in inaccessible fraction of porous space; it also
results in the particle speed that differs from the carrier
water velocity [32, 38, 39]. A linearised model describes
deep bed filtration under the short-time injection; the con-
centration decays with time exponentially due to retention
[14, 15, 21, 23]. The analytical model for long-time injection
does not account for accessibility and flux reduction factors
[38, 39].

In the present paper, an exact solution for long-term deep
bed filtration accounting for accessibility and flux reduction
factors is derived. Being downscaled, the solution exhibits
the transient development of the pore size distribution due
to particle size exclusion. The macroscale equations result
in nonlinear retained-particle-concentration dependencies
for filtration coefficient as well as the accessibility and flux
reduction factors, which generalise the classical DBF model.

The structure of this paper is as follows. Section 2 presents
the microscale system of governing equations with varying
pore and particle size distributions. The upscaling of the
micromodel for monodispersed suspension is briefly derived
in Section 3.The analytical solution of the upscaled equations
with expressions for suspended and captured particle concen-
trations during long-term injection is derived in Section 4.
The concentration profiles and histories as obtained from

the exact solution along with constitutive relations of the
upscaled model are presented and discussed in Section 5.
Finally, Section 6 presents the conclusions of the study.

2. Microstochastic Model for Suspension
Transport in Porous Media

The geometric model of porous media for size exclusion
suspension-colloidal transport is a bundle of parallel tubes
intercalated by themixing chambers (Figure 1(a)). Size exclu-
sion flow in any arbitrary 3D domain occurs with particle
motion in “thicker” pore and capture in “thinner” pore
throat. The parallel-tube-mixing-chamber model (PTMC)
separates flow from capture: the capture occurs at the exit
of mixing chambers at entrances of thinner pores, while
the motion occurs in larger parallel capillaries (Figure 1(b)).
The phenomenological parameters and functions used in the
stochastic model are described briefly in this section. For
more details, refer to [32].

The number of pores per unit cross-sectional area of
porous media is defined by the pore concentration function

ℎ (𝑥, 𝑡) = ∫

∞

0

𝐻(𝑟
𝑝
, 𝑥, 𝑡) 𝑑𝑟

𝑝
, (1)

which is the integral of pore concentration distribution func-
tion 𝐻(𝑟

𝑝
, 𝑥, 𝑡) in terms of the pore radius 𝑟

𝑝
. In the similar

manner, the overall concentration of suspended particles in
porous media results from the integration of concentration
of these particles in 𝑟

𝑠
for all particle sizes

𝑐 (𝑥, 𝑡) = ∫

∞

0

𝐶 (𝑟
𝑠
, 𝑥, 𝑡) 𝑑𝑟

𝑠
, (2)

where 𝐶(𝑟
𝑠
, 𝑥, 𝑡) is the concentration distribution function

of suspended particles. The total concentration of retained
particles is also obtained by integration in particle size

𝜎 (𝑥, 𝑡) = ∫

∞

0

Σ (𝑟
𝑠
, 𝑥, 𝑡) 𝑑𝑟

𝑠
, (3)
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where Σ(𝑟
𝑠
, 𝑥, 𝑡) is the concentration distribution function of

retained particles.
The porosity is the total cross-sectional area of all pores

per unit cross-sectional area of porous media

𝜙 [𝐻] = ∫

∞

0

𝑠
1
(𝑟
𝑝
)𝐻 (𝑟

𝑝
, 𝑥, 𝑡) 𝑑𝑟

𝑝
, (4)

where 𝑠
1
(𝑟
𝑝
) = 𝜋𝑟

2

𝑝
is the cross-sectional area of a single pore

with radius 𝑟
𝑝
.The accessible fraction of the total porosity can

be obtained by integrating the cross-sectional area of large
pores only (𝑟

𝑝
> 𝑟
𝑠
),

𝜙
𝑎
[𝐻, 𝑟
𝑠
] = ∫

∞

𝑟
𝑠

𝑠
1
(𝑟
𝑝
)𝐻 (𝑟

𝑝
, 𝑥, 𝑡) 𝑑𝑟

𝑝
, (5)

due to the fact that only the pores with sizes larger than 𝑟
𝑠
are

accessible to these particles.
The conductance in a single pore follows from the steady

state Poiseuille flow in circular capillary [40], expressed as
𝑘
1
(𝑟
𝑝
) = 𝜋𝑟

4

𝑝
/8. Comparison with Darcy’s law leads to the

following formula for permeability:

𝑘 [𝐻] = ∫

∞

0

𝑘
1
(𝑟
𝑝
)𝐻 (𝑟

𝑝
, 𝑥, 𝑡) 𝑑𝑟

𝑝
. (6)

The fractions of accessible and inaccessible fluxes are defined
as the accessible and inaccessible fractional flow functions,
respectively. The total flux of flow is the sum of the flux
via accessible larger pores and that via inaccessible smaller
pores, for any given particle size 𝑟

𝑠
. According to Darcy’s law,

the accessible fractional flow function can be calculated as
fraction of accessible permeability

𝑓
𝑎
[𝐻, 𝑟
𝑠
] =

1

𝑘
∫

∞

𝑟
𝑠

𝑘
1
(𝑟
𝑝
)𝐻 (𝑟

𝑝
, 𝑥, 𝑡) 𝑑𝑟

𝑝
; (7)

thus, the inaccessible fractional flow function is

𝑓
𝑛𝑠

[𝐻, 𝑟
𝑠
] = 1 − 𝑓

𝑎
[𝐻, 𝑟
𝑠
] =

1

𝑘
∫

𝑟
𝑠

0

𝑘
1
(𝑟
𝑝
)𝐻 (𝑟

𝑝
, 𝑥, 𝑡) 𝑑𝑟

𝑝
.

(8)

The system of governing equations for suspension transport
in porous media consists of the mass balance equation for
particles and the kinetic equations for particle retention and
pore plugging.

First, the conservation law for suspended and retained
particles results in the advective-capture equation for sus-
pended and retained concentrations in the following form:

𝜕

𝜕𝑡
{𝜙
𝑎
[𝐻, 𝑟
𝑠
] 𝐶 (𝑟
𝑠
, 𝑥, 𝑡) + Σ (𝑟

𝑠
, 𝑥, 𝑡)}

+ 𝑈
𝜕

𝜕𝑥
{𝐶 (𝑟
𝑠
, 𝑥, 𝑡) 𝑓

𝑎
[𝐻, 𝑟
𝑠
]} = 0.

(9)

Second, particle capture kinetics is obtained from the
assumption that particle accumulation in the poreswith given
sizes is proportional to the particle flux through these pores:

𝜕Σ (𝑟
𝑠
, 𝑥, 𝑡)

𝜕𝑡
=

𝑈𝐶 (𝑟
𝑠
, 𝑥, 𝑡) 𝑓

𝑎
[𝐻, 𝑟
𝑠
]

𝑙𝑘 [𝐻]

× ∫

𝑟
𝑠

0

𝑘
1
(𝑟
𝑝
)𝐻 (𝑟

𝑝
, 𝑥, 𝑡) 𝑑𝑟

𝑝
.

(10)

The proportionality coefficient is equal to the capture prob-
ability per unit length of particle trajectory. The length
parameter 𝑙 is the distance between mixing chambers in the
PTMC model [32, 41].

Third, under the assumption of complete plugging, one
retained particle plugs one pore and vice versa. It allows
deriving the following kinetic equation for pore concentra-
tion decrease due to particle size exclusion:

𝜕𝐻 (𝑟
𝑝
, 𝑥, 𝑡)

𝜕𝑡
= −

𝑘
1
(𝑟
𝑝
)

𝑘
𝑈𝐻(𝑟

𝑝
, 𝑥, 𝑡)

× ∫

𝑟
𝑠

0

𝐶 (𝑟
𝑠
, 𝑥, 𝑡) 𝑓

𝑎
[𝐻, 𝑟
𝑠
] 𝑑𝑟
𝑠
.

(11)

The system of three governing equations (9)–(11) determines
the suspended and retained particle concentration distribu-
tions along with the pore concentration distribution, 𝐶, Σ,
and 𝐻. This completes the stochastic model for suspension
transport in porous media with distributed pore and particle
sizes.

In the next section, the microscale system of governing
equations for suspension transport in porous media will be
applied to the flow of monodispersed suspension, in which
case the upscale equation system is derived and the analytical
solution is obtained in macroscale.

3. Upscaling for Transport of
Monodispersed Suspension

In the case of monodispersed suspension transport in porous
media with arbitrary pore size distribution, the particle
concentration distribution function can be expressed using
theDirac delta function 𝛿:𝐶(𝑟

𝑠
, 𝑥, 𝑡) = 𝑐(𝑥, 𝑡)𝛿(𝑟

𝑠
−𝑟
𝑠0
), where

𝑟
𝑠0
is the particle size. Substitution of 𝐶(𝑟

𝑠
, 𝑥, 𝑡) into system

(9)–(11) and integration in terms of 𝑟
𝑠
in (9) and (10) and 𝑟

𝑝
in

(11) result in the following governing equations inmacroscale:

𝜕

𝜕𝑡
{𝜙
𝑎
[𝐻] 𝑐 (𝑥, 𝑡) + 𝜎 (𝑥, 𝑡)} + 𝑈

𝜕

𝜕𝑥
{𝑐 (𝑥, 𝑡) 𝑓

𝑎
[𝐻]} = 0,

(12)

𝜕𝜎 (𝑥, 𝑡)

𝜕𝑡
=

1

𝑙
𝑓
𝑎
𝑓
𝑛𝑠

[𝐻] 𝑐 (𝑥, 𝑡) 𝑈, (13)

𝜕ℎ (𝑥, 𝑡)

𝜕𝑡
= −𝑈𝑐 (𝑥, 𝑡) 𝑓

𝑎
𝑓
𝑛𝑠

[𝐻] ≡ −𝑙
𝜕𝜎 (𝑥, 𝑡)

𝜕𝑡
. (14)

Equation (14) indicates the conservation of the sum of volu-
metric concentrations of vacant pores and retained particles,
ℎ/𝑙 + 𝜎 = ℎ

0
/𝑙 + 𝜎

0
, which is exactly the mathematical form

for the condition of complete pore plugging.
An implicit analytical solution for pore concentration

distribution function 𝐻(𝑟
𝑝
, 𝑥, 𝑡) is derived with the uniform

initial condition for 𝐻 [32]: 𝑡 = 0 : 𝐻(𝑟
𝑝
, 𝑥, 𝑡) = 𝐻

0
(𝑟
𝑝
). In

this case, the solution𝐻(𝑟
𝑝
, 𝑥, 𝑡) is equivalent to the solution



4 Abstract and Applied Analysis

of an ordinary-differential-integral equation𝐻(𝑟
𝑝
, 𝑦)

𝐻 (𝑟
𝑝
, 𝑦) = 𝐻

0
(𝑟
𝑝
) 𝑒
−𝑘
1
𝑦

; 𝑦 = 0 : 𝐻 = 𝐻
0
(𝑟
𝑝
) , (15)

where the auxiliary function 𝑦(ℎ) is implicitly determined
from the following problem as an inverse function [32]:

ℎ (𝑦) = ∫

∞

0

𝐻
0
(𝑟
𝑝
) 𝑒
−𝑘
1
𝑦

𝑑𝑟
𝑝
; 𝑦 = 0 : ℎ = ℎ

0
. (16)

The final form of governing equations for the transport of
monosize particle suspension is obtained from the system
(12)–(14) and the solution for pore concentration distribution
function (15)-(16). Introduction of the dimensionless param-
eters 𝑋 = 𝑥/𝐿, 𝑇 = 𝑈𝑡/𝐿𝜙

0
, 𝐶 = 𝑐/𝑐

0

, 𝑆 = 𝜎/𝑐
0

𝜙
0
, Λ =

𝐿𝑓
𝑎
𝑓
𝑛𝑠
/𝑙, and 𝑠 = 𝜙

𝑎
/𝜙
0
leads to the following dimensionless

form of governing equations:

𝜕

𝜕𝑇
{𝑠 (𝑆) 𝐶 + 𝑆} +

𝜕

𝜕𝑋
{𝐶𝑓
𝑎
(𝑆)} = 0, (17)

𝜕𝑆

𝜕𝑇
= Λ (𝑆) 𝐶. (18)

The initial and boundary conditions for constant injection of
suspension into clean porous media are 𝑇 = 0 : 𝐶 = 𝑆 = 0;
𝑋 = 0 : 𝐶 = 1.

The system of (17)-(18), a type of the first-order hyper-
bolic system [42], contains functions of saturation, accessible
fractional flow, and filtration, all of which depend on retained
particle concentration in porous media. The analytical solu-
tion to the system (17)-(18) subject to the initial and boundary
conditions will be presented in the next section.

4. Analytical Solution for Long-Term
Monodispersed Suspension Transport

Derivation of the analytical solution starts from expressing
the suspension concentration𝐶 from kinetic equation (18) in
the following form:

𝐶 =
1

Λ (𝑆)

𝜕𝑆

𝜕𝑇
. (19)

An auxiliary function 𝐹(𝑆) is introduced such that 𝐶 =

𝜕𝐹(𝑆)/𝜕𝑇. Substitution into (19) leads to

𝐹 (𝑆) = ∫

𝑆

0

1

Λ (𝑢)
𝑑𝑢. (20)

Mass balance equation (17) is rewritten as

𝜕

𝜕𝑇
(𝑠 (𝑆)

𝜕𝐹 (𝑆)

𝜕𝑇
+ 𝑆) +

𝜕

𝜕𝑋
(
𝜕𝐹 (𝑆)

𝜕𝑇
𝑓
𝑎
(𝑆)) = 0. (21)

Rearranging the second term on the left side of (21)

𝜕

𝜕𝑋
(
𝜕𝐹 (𝑆)

𝜕𝑇
𝑓
𝑎
(𝑆)) =

𝜕

𝜕𝑋
(
𝜕𝐹 (𝑆)

𝜕𝑆

𝜕𝑆

𝜕𝑇
𝑓
𝑎
(𝑆))

=
𝜕

𝜕𝑋

𝜕

𝜕𝑇
(∫

𝑆

0

𝜕𝐹

𝜕𝑆
(𝑢) 𝑓
𝑎
(𝑢) 𝑑𝑢)

=
𝜕

𝜕𝑇
(
𝜕𝐹 (𝑆)

𝜕𝑋
𝑓
𝑎
(𝑆))

(22)

and integrating (21) in terms of 𝑇 result in

𝑠 (𝑆)
𝜕𝐹 (𝑆)

𝜕𝑇
+ 𝑆 +

𝜕𝐹 (𝑆)

𝜕𝑋
𝑓
𝑎
(𝑆) = 𝑔 (𝑋) , (23)

where the function 𝑔(𝑋) = 0 can be determined from the
initial condition.

The first-order hyperbolic equation (23) has the charac-
teristic lines satisfying the following equation:

𝑑𝑇

𝑑𝑋
=

𝑠 (𝑆)

𝑓
𝑎
(𝑆)

. (24)

The first-order PDE (23) is degenerated to the first-order
ODE along the characteristic lines (24)

𝑑𝐹 (𝑆)

𝑑𝑋
= −

𝑆

𝑓
𝑎
(𝑆)

. (25)

From the boundary condition 𝐶(0, 𝑇) = 1 = 𝜕𝐹(𝑆)/𝜕𝑇, we
have 𝑋 = 0 : 𝐹(𝑆) = 𝑇. Therefore, 𝐹(𝑆(0, 𝑇

0
)) = 𝑇

0
at

arbitrarymoment,𝑇
0
.This provides the solution for the initial

retained particle concentration 𝑆(0, 𝑇
0
) at the moment 𝑇

0

∫

𝑆(0,𝑇
0
)

0

1

Λ (𝑆)
𝑑𝑆 = 𝑇

0
. (26)

Subsequently, we obtain the retained particle concentration
profile 𝑆(𝑋, 𝑇) by integration of the ODE (25) as follows:

∫

𝑆(0,𝑇
0
)

𝑆(𝑋,𝑇)

𝑓
𝑎
(𝑆)

𝑆Λ (𝑆)
𝑑𝑆 = 𝑋. (27)

Finally, the suspended particle concentration 𝐶(𝑋, 𝑇) is
calculated from (19) by using the results of retained concen-
tration profile 𝑆(𝑋, 𝑇) from (27)

𝐶 (𝑋, 𝑇) =
1

Λ (𝑆)

𝜕𝑆 (𝑋, 𝑇)

𝜕𝑇
. (28)

So far, the exact solution for long-term transport of monodis-
persed suspension in porous media has been derived. Appli-
cation of the proposed model to a synthetic medium will be
demonstrated in the next section.
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Figure 2: The exact solution for 1D deep bed filtration long-term
injection problem: (a) characteristic lines and the concentration
front in (X,T)-plane; (b) shock front in the suspended concentration
profile; (c) continuous retention concentration profile.

5. Results and Discussions

In this section, the analytical solution derived in Section 4
is applied to a synthetic example of porous medium. The
solution behaviour is analysed in detail.

Let us start from the structure of the flow pattern,
shown in Figure 2. At the beginning of the suspension
injection (black curves in Figure 2), the suspended particle
concentration 𝐶 drops from unity to zero at 𝑋 = 0 and
the retained particle concentration 𝑆 is zero everywhere,
according to the initial and boundary conditions. Both the
saturation 𝑠 and the fractional flow function 𝑓

𝑎
are constant;

therefore, the characteristic curve is straight line at 𝑇 = 0

based on (24). When the time 𝑇 > 0, the concentration
front starts propagating from inlet 𝑋 = 0 along the core. In

0 500 1000 1500 2000
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Figure 3: Suspended particle concentration at the core inlet and
outlet: (a) full time scale history; (b) zoom-in at the early stage.

Figure 2, the blue dashed curves present an early stage and
the red dash-dot curves correspond to a later moment. It is
shown that particle concentrations 𝐶 and 𝑆 decrease along
the distance 𝑋 behind the concentration front while remain
zero ahead of the front.The characteristic curve deviates from
straight line when 𝑇 > 0. The larger the time, the higher the
nonlinearity.

Consider the porous medium with a log-normal pore
size distribution, with the mean pore radius 4 𝜇m and the
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Figure 4: Captured particle concentration at the inlet and outlet: (a) full time scale history; (b) zoom in at the early stage.

standard deviation 2𝜇m. Three monodispersed suspensions
are injected into the medium separately, with particle sizes
2.5, 3.5, and 5.0 𝜇m, respectively. Suspended particle con-
centration profiles 𝐶(𝑋, 𝑇) are calculated from the analytical
solution derived in Section 4. Figure 3(a) shows the inlet
concentration 𝐶(0, 𝑇) and outlet concentrations for different
particle sizes 𝐶(1, 𝑇) in full scale. Figure 3(b) focuses on the
early stage around the breakthroughmoment. It is found that
particle breakthrough occurs at 𝑇 < 1 pvi; the increase of
particle size results in earlier breakthrough but lower break-
through concentration. After breakthrough, there is a plateau
of outlet concentration at small time (Figure 3(b)); then
𝐶(1, 𝑇) increases gradually and approaches unity asymptot-
ically at large time (Figure 3(a)).

The retained particle concentration profile 𝑆 is presented
in Figure 4. The profiles 𝑆(0, 𝑇) at the inlet and 𝑆(1, 𝑇) at the
outlet for three particle sizes are illustrated in Figure 4(a);
while the zoom in at early stage is in Figure 4(b) for
comparison. Particle retention at the inlet starts from 𝑇 = 0,
increasing linearly with time at the early stage (Figure 4(b)).
Compared to the deposition profile 𝑆(0, 𝑇) at the inlet, the
profile 𝑆(1, 𝑇) at the outlet exhibits a delay (Figure 4(b)) due
to the time required for particle travelling from inlet to outlet.
The larger the particle size, the smaller the delay, indicating
the earlier breakthrough for large particles, which agrees
with the results shown in Figure 3. In the long time span
(Figure 4(a)), the retained particle concentration increases
nonlinearly with time and asymptotically approaches the
maximum, which is equal to the overall concentration of
pores smaller than the particle.

Figure 5 compares the evolution of the pore concentra-
tion distribution for different particle sizes. At 𝑇 = 0, 𝐻 =

𝐻
0
(𝑟
𝑝
) for all three particle sizes (black curves in Figures

5(a)–5(c)). When 𝑇 > 0, 𝐻(𝑟
𝑝
, 𝑋, 𝑇) decreases with time for

smaller pores (𝑟
𝑝

< 𝑟
𝑠
) due to particle size exclusion; while

𝐻 keeps intact for 𝑟
𝑝

> 𝑟
𝑠
, which means larger pores are

always accessible to the particles.The pores with intermediate
sizes between the minimum pore size and the particle size
vanish faster with time than the smaller pores. It is because
the accessible suspension flux via intermediate pores is higher
than that via small pores, which leads to the larger capture
rate in intermediate pores. Finally, all the pores smaller than
the particle size will disappear when the time tends to infinity,
which corresponds to the full plugging of small pores by the
particles.

In Figure 6, the nonlinear relationship between the fil-
tration coefficient and the retained particle concentration
is presented for different particle sizes. For the same value
of retained particle concentration, the larger particle size
leads to the larger filtration coefficient. With the particle size
fixed, the higher retention concentration causes the filtration
function to deviate from the linearity, where the low retention
assumption is no longer valid [41].

Fractional flow function curve obtained from PTMC
model is given in Figure 7.The increase of particle size results
in the decrease of both accessible porosity and accessible flow
fraction. The convex shape of the curve implies that the ratio
of 𝑓
𝑎
/𝑠 increases with particle size, which corresponds to

the rise of propagation speed of concentration front. It is in
agreement with the results presented in Figures 3 and 4.



Abstract and Applied Analysis 7

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
H

T = 0

T = 970

T = 1929

rp

(a)

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

H

T = 0

T = 970

T = 1929

rp

(b)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

H

0 5 10 15 20

T = 0

T = 970

T = 1929

rp

(c)

Figure 5: Evolution of the pore size distribution for different sizes of injected particles: (a) r
𝑠
= 2.5 𝜇m; (b) r

𝑠
= 3.5 𝜇m; (c) r

𝑠
= 5.0 𝜇m.

The geometrical model of parallel capillaries intercalated
by mixing chambers adopted in the current work, results in
connective set of pores for any arbitrary particle size 𝑟

𝑠
> 0.

However, this is not the case for the real geometry of porous
space. The pores smaller than the threshold value do not
form an infinite cluster. The threshold effect is described by
the percolation model of porous media [43–45]. Percolation
description of porous space with corresponding calculations
of accessibility and flux reduction factors will significantly
change the form of fractional flow curve [32] and affect the
solution.

The majority of deep bed filtration processes in the
nature and in industry do not long as far as asymptotic
stabilisation without capture. Nevertheless, these processes
last longer than short-term periods of linear deep bed
filtration with constant filtration coefficient [41]. The linear
deep bed filtration corresponds to the case of invariant
pore size distribution. This is an asymptotic case where
the concentration of retained particles is negligibly smaller
than the number of initial vacant pores. More exactly, the
linear solution is the zero term in asymptotic expansion. The
expansion could correspond to small injected concentration,
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Figure 7: Fractional flow function for accessible flow.

or small filtration coefficient, or small times. Asymptotic
solution including first term of the expansion would provide
more detailed description of the intermediate stage of deep
bed filtration. It is expected that the effect of full plugging of
intermediate size pores (Figure 5) would be captured by the
first term of asymptotic expansion.

6. Conclusions

Derivation of the exact solution for long-term deep bed
filtration with accessibility and flux reduction allows drawing
the following conclusions.

The exact solution of the upscaled problem allows for
downscaling, exhibiting the dynamics for pore size distribu-
tions during the continuous particle straining.

The exact solution exhibits preferential plugging of pores
with sizes equal to or below the injected particle size.
The pores with radius equal to the injected particle radius
disappear first. Then the smaller pores start to disappear in
the sequence of their sizes.The radius interval of disappearing
sizes increases with time. The lower bound of the interval
turns to zero asymptotically when time tends to infinity,
which corresponds to complete plugging of pores smaller
than the particle size.

The larger the injected particles, the faster the break-
through and the lower the breakthrough concentration.
However, the breakthrough concentrations of all size particles
tend to one with time tending to infinity, which corresponds
to complete plugging of smaller pores and capture-free
transport via the larger pores.

The above are the consequences of the geometric porous
space model with parallel tubes, which also results in the
convex fractional flow function.
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