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Abstract

Self-sustaining pressure oscillations in the combustion chamber, or combustion instability, is
a commonly encountered and potentially damaging phenomenon in liquid propellant rocket
engines (LPREs). In the high-frequency variety of combustion instability, the pressure
oscillations in the combustion chamber take on the form and frequency of an acoustic
resonance mode of the combustion chamber volume. The most common mode in naturally
occurring instability, and also the most destructive, is the first tangential mode, with acoustic
gas oscillations oriented transversally to the direction of propellant injection. The instability is
driven by the coupling between acoustic oscillations and unsteady energy release from
combustion. The mechanisms through which injection and combustion firstly respond to the
acoustic field, and secondly feed energy back into the acoustic field have not yet been fully
characterised.

Shear coaxial-type injectors are common in LPRESs. Past experimental and numerical research
efforts have investigated the interaction between this type of injector and transverse acoustic
fields. Some experimental efforts have successfully forced transverse acoustic modes and
studied their influence on shear coaxial injection under LPRE-like conditions. Acoustic
forcing of coaxially injected LOx/H; has previously been conducted only at low pressures and
injection performance levels. This work addresses the lack of experimental data available for
the interaction of shear coaxial injection of LOx/H, with acoustics under conditions
representative of industrial engines.

A new experimental rocket combustor, designated ‘BKH’, was developed for investigating
the response of a reacting spray of coaxially injected LOx/H, to an acoustic field. For
characterising the response, simultaneous high-speed recordings of both backlit shadowgraph
and hydroxyl radical (OH*) chemiluminescence imaging have been captured through optical
access windows. The operating conditions of BKH extend to conditions more representative
of actual LPREs than has previously been achieved with LOx/H, in studies of flame-acoustic
interaction. BKH was run at pressures of 40 or 60 bar, which correspond to subcritical and
supercritical thermo-physical regimes for oxygen. Hydrogen injection temperature was
ambient, around 290 K, or cryogenic, around 50 K. An array of multiple injectors was used to
better represent real engines. A system for modulating the nozzle exhaust flow was used to
induce acoustic perturbations inside the combustion chamber. Two types of perturbation were
applied to the near-injection region; oscillating acoustic pressure, and oscillating transverse
acoustic velocity.

BKH was used to investigate how subcritical or supercritical pressure level and ambient or
cryogenic hydrogen injection temperature influence the interaction of acoustic pressure or
velocity with injection and combustion processes. Shadowgraph imaging reveals up to 70%
reduction in the length of the oxygen jet when subjected to acoustic velocity of amplitude
approaching that of the hydrogen injection velocity. Furthermore, the mode of jet breakup
changes from its natural growth-and-detachment behaviour to a ‘transverse stripping’
mechanism. OH* imaging reveals a corresponding decrease in the extent of the flame, and
increase in emission intensity. When subjected to acoustic pressure, OH* emission from the
flame was observed to fluctuate in phase with pressure. Thus, responses to both acoustic
pressure and velocity have been observed in BKH, which together may form the basis of a
coupling mechanism for driving natural combustion instability in LPREs.
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