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Abstract

During the past few decades, nonparametric models have been extensively ap-

plied to empirical studies in various fields of economics due to its flexibility for

depicting any type of relationship among key economic variables. However, one

of the most well-known shortfalls of the model is the curse of dimensionality. It

can be conveniently overcome with semiparametric modelling such as partially

linear (PL) models and/or single-index (SI) models. Nonetheless, the practical-

ity of these models in the empirical studies has been hampered by the lack of

appropriate estimation procedures and a method to address endogeneity. Hence

the ultimate goal of this thesis is to establish a novel econometric method for

estimating semiparametrics, specifically a PL model and an extended generalised

partially linear single-index (EGPLSI) model, with the presence of endogeneity.

Furthermore, semiparametric analysis is an important tool for analysing empiri-

cal Engel curves, which often involve endogeneity in total expenditure. We show

that, our newly developed estimation procedures and methods are able to address

the endogeneity problem in the semiparametric analysis of empirical Engel curves.

These goals can be broken down into a few research objectives.

(1) Firstly, this thesis aims to construct a comprehensive and systematic treat-

ment of endogeneity in semiparametrics, given the complexity of the models

containing both parametric and nonparametric components.

(2) Secondly, it aims to develop novel estimation procedures and methods to

address endogeneity in a PL model and an EGPLSI model.

(3) Lastly, it aims to analyse the empirical demand function semiparametrically

by applying the estimation procedures and methods in this thesis.
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Chapter 1

Background and Motivation

The analysis of data with endogenous regressors - that is, observable
explanatory variables that are correlated with unobservable error terms
- is arguably the main contribution of econometrics to statistical sci-
ence. . . . extensions to nonparametric and semiparametric models have
only recently considered.

Richard Blundell and James L. Powell (2003)

1.1 Introduction

During the past two decades, nonparametric models have been extensively

applied to a large number of empirical studies in various areas of economics, since it

provides great flexibility in depicting any type of relationship among key economic

variables. However, nonparametric techniques suffer from the well-known shortfall

called the “curse of dimensionality” when the number of regressors is greater

than 3; see Saart & Gao (2013) for details. The curse of dimensionality can be

conveniently overcome with semiparametric modelling, such as partially linear

(PL) models and single-index (SI) models.

After the study of Engle et al. (1986), a PL model became the most popular

semiparametric techniques for the economic applications. The apparent advantage

of employing the model in an empirical study is its capability to incorporate

benefits of parametric and nonparametric analysis. It is flexible enough to depict

any type of nonlinear relationship among key economic variables without pre-
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Chapter 1. Background and Motivation

specifying an appropriate functional form. Since it also contains a parametric

component in the specification, it minimises the curse of dimensionality, allowing

efficient use of the data-set at hand. Furthermore, we can easily interpret the effect

of each variable and impose an economic hypothesis in the parametric component;

see Blundell & Powell (2003) and Härdle et al. (2000) for examples. The PL

type of semiparametric models, specifically the PL model of Robinson (1988), the

generalised partially linear single-index (GPLSI) model of Carroll et al. (1997),

and an extended generalised partially linear single-index (EGPLSI) model of Xia

et al. (1999) have been theoretically established in recent years.

Although the SI model is well-known in the statistical literature for minimising

the dimensionality of the regressors, the study of Ichimura (1993) motivates the

use of the model in economic applications. Since the model does not require

the pre-specification of the functional form, it provides more flexibility than the

conventional nonlinear parametric analysis. Furthermore, it also allows for the

choice modelling with great flexibility of no need to specify the distribution of

disturbance term with some minor identification conditions; see Ichimura (1993),

Blundell & Powell (2004) and chapter 2 of Horowitz (2009) for details. As it is

mentioned above, the SI type of semiparametric models, specifically the SI model

of Härdle et al. (1993), the GPLSI model of Carroll et al. (1997) and the EGPLSI

model of Xia et al. (1999), have been theoretically established.

Nonetheless, the practicality of these above models in empirical studies has

been hampered by the lack of appropriate estimation procedures and methods to

address endogeneity. Endogeneity issues have only recently been considered in the

nonparametric and semiparametric models; see Blundell & Powell (2003) for an

excellent review of the issue. The so-called “endogeneity problem” is a technical

name given by econometricians to a problem that is well-known in developmental

studies and empirical economics; see Deaton & Muellbauer (1980a) and Nakamura

& Nakamura (1998) for some excellent surveys. For example, the endogeneity of

total expenditure is a well-known issue in the empirical demand literature (see

Blundell et al. (1998) and Blundell et al. (2007) for details). Hence we aim to

2



Review of Nonparametrics and Semiparametrics in the Presence of Endogeneity
– Section 1.2

provide a comprehensive treatment and a systematic way to address endogeneity

in semiparametric models, specifically the PL model and the EGPLSI model.

Furthermore, semiparametric modelling is an important tool to analyse empir-

ical Engel curves since severe nonlinear relationships between particular budget

shares and total expenditure are apparent (see Blundell et al. (1998) and Blundell

et al. (2007) for example) and also the semiparametric models allow for the analysis

of the effects of demographic variables on demand. More importantly, the EG-

PLSI model allows the shape-invariant specification of an empirical model which

is coherent with the consumer optimisation theory (see Blundell et al. (1998),

Blundell et al. (2003) and Blundell et al. (2007) for details). However, the endo-

geneity of total expenditure is a well-known problem in the literature. A number

of studies, such as Blundell et al. (1998), and Blundell et al. (2007), address the

problem with two common alternatives: the Control Function (CF) approach and

nonparametric instrumental variables (NpIV) estimation, respectively. We con-

duct an empirical demand study in Australia with the methodologies proposed

in this thesis. This empirical study shows the usefulness and practicality of our

methodologies.

1.2 Review of Nonparametrics and Semipara-

metrics in the Presence of Endogeneity

Endogeneity was originally recognised and studied in the setting of a simulta-

neous system of equations, where explanatory variables were determined inside the

system simultaneously with dependent variables. Hence the correlations between

error terms and explanatory variables cause the inconsistency of the conventional

estimators. A good review of the nature of endogeneity is presented in Nakamura

& Nakamura (1998). Recently, endogeneity has been often observed in other set-

tings. Measurement error, and mis-specifications in a model, such as an omitted

variable or/and an omitted interaction term, are common causes of endogeneity

3



Chapter 1. Background and Motivation

in a cross-sectional case; the correlated random effect is main cause in the case of

panel data. In this thesis, we focus on the formal setting.

As the partially linear semiparametric models possess complex features con-

taining both parametric and nonparametric components, there are two sources of

endogeneity. Those are parametric endogeneity and nonparametric endogeneity ;

the details of these are discussed in Chapter 2. Although the former causes the

inconsistency of both unknowns estimators of a parametric coefficient and an un-

known structural function the latter does not have an effect on the consistency of

the parametric estimator when we conduct the two-step estimation procedure of

Robinson (1988) and Speckman (1988) due to the partialling out process. We par-

tial the nonparametric component out from the structural relation to obtain the

linear reduced form and thus to estimate the parametric coefficient. During the

partialling out process, we partial the nonparametric endogeneity out along with

the nonparametric component from the structural relation. Although paramet-

ric endogeneity can conveniently be addressed with the conventional parametric

approaches such as parametric instrumental variables (PIV) estimation (see chap-

ter 16 of Li & Racine (2011) for details) and parametric two-stage least squares

(P2SLS) estimation, it is not a trivial issue to construct a consistent parametric

estimator due to the dominance of the parametric part in the models. Hence we

systematically discuss endogeneity issues in a PL model in Chapter 2.

In the single-index semiparametrics, the presence of endogeneity causes more

severe consequences. These are the inconsistency of the estimator of the index

coefficient and a failure to identify the unknown structural function. The incon-

sistency of the index coefficient’s estimator is caused by similar reasoning to that

in the classical linear regression model. The minimising objective function with

respect to the index coefficient does not produce the function which provides a

consistent estimator of the index coefficient in the presence of endogeneity; see

chapter 8 of Amemiya (1985) for details. We comprehensively discuss the endo-

geneity issues in SI semiparametrics in Chapter 3.

Let us consider a simple SI model which contains a nonparametric model as

a special case to conveniently illustrate the effects of the presence of endogeneity

4



Review of Nonparametrics and Semiparametrics in the Presence of Endogeneity
– Section 1.2

as follows:

Yi = g(Vi) + εi, (1.2.1)

where Vi = X ′iα, (X, Y ) is a Rq × R-valued vector and E(ε|x) 6= 0 implies that

E(ε|v) 6= 0. Then it is the case that α̂
p9 α and ĝ(v)

p9 g(v), where
p9 denotes

no convergence in probability, since E(y|v) = g(v) + E(ε|v).

Two commonly used alternatives to address endogeneity are a CF approach

and NpIV estimation. The NpIV approach is based on a series approximation

by Newey & Powell (2003) and a local constant kernel estimation by Härdle &

Horowitz (2005) in a pure nonparametric model, with a series approximation by Ai

& Chen (2003) in a semiparametric model containing a PL model, a GPLSI model

and an EGPLSI model as special cases. However, the difficulty of conducting NpIV

estimation is to overcome the ill-posed inverse problem (see O’Sullivan (1986) for

details) in order to identify the structural relation from the reduced one obtained

from the NpIV estimation. Härdle & Horowitz (2005) overcome the problem by a

ridge-type regulation on the linear operator when estimating the reduced relation;

meanwhile, Ai & Chen (2003) and Newey & Powell (2003) address it by regulating

the inversion matrix and a constraining the space of the reduced relation to be

compact. On the other hand, Newey et al. (1999), Pinkse (2000) and Su & Ullah

(2008) consider the CF approach in a pure nonparametric model, while Blundell

& Powell (2004) do so for a special case of a single-index model, i.e. only a case

of discrete dependent variable is considered. With regard to the nonparametric

estimation employed, Newey et al. (1999) and Pinkse (2000) rely on the series

approximation, while Su & Ullah (2008) use the local polynomial estimation of

Fan & Gijbels (1996). Blundell & Powell (2004), on the other hand, rely on local

constant kernel estimation.

The CF approach is based on the widely-used nonparametric simultaneous

equation framework, specifically a nonparametric triangular structure. Although

full details are presented in Chapters 2 and 3, let us provide a brief discussion

here. Consider the model in (1.2.1) again. In addition, there is a nonparametric

5



Chapter 1. Background and Motivation

reduced form equation as shown below:

Xi = mx(Zi) + ηi, (1.2.2)

where Z is a Rqz -valued IV vector for X with qz ≥ q, E(η|z) = 0 and E(ε|z, η) =

E(ε|η) 6= 0. In order to address endogeneity, we take the standard CF approach

of Newey et al. (1999). That is, E(y|v, η) = g(v) + E(ε|η) = g(v) + ι(η), where

the endogeneity is controlled by introducing an additional unknown function ι(η).

As this is a simple nonparametric additive structure, we can apply the marginal

integration technique of Linton & Nielsen (1995) and Tjøstheim & Austad (1996)

to identify each individual function. In addition, a consistent estimator of the

index coefficient is also obtained. However, the difficulty of conducting the CF

approach lies on the generated regressor issue, which arises because the endogene-

ity control variable is not observable but is instead generated from the reduced

form (1.2.2) for the flexibility of the functional form (as in Newey et al. (1999)) in

this thesis. Note that Li & Woodridge (2002) study the case of a parametrically

generated regressor in a PL model, and they show that the parametric estimator

is still
√
n-consistent and asymptotically normal.

More importantly, because of the importance of this topic, even though an

effective tool is lacking for testing endogeneity in semiparametrics, an additional

advantage of the CF approach is that it enables a rather simple procedure to be

established for the purpose. This is brought about mainly by its ability to identify

and disentangle the effect of endogeneity in the model. This simple tool relies on

the variability bands being constructed over the estimates of the endogeneity

measures (to be defined in Chapter 4) as the means of testing their statistical

significance.

1.3 Review of the Empirical Engel Curves Lit-

erature

The study of Ernst Engel (1895) showed how the expenditure of a household

on food varies with income level, which became known as an empirical Engel
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Review of the Empirical Engel Curves Literature – Section 1.3

curve. It depicts an expansion path of a commodity demand as a household’s

expenditure increases. Hence it allows us to predict demand for the commodity

and also to analyse the effects of an economic policy on consumption behaviour,

such as welfare comparisons such as cost-of-living indices and equivalence scales,

or effects of implementing a tax on consumption (see Banks et al. (1997), and

Deaton & Muellbauer (1980b) for details). Hence, it is of great interest to all

economic subjects to attain accurate empirical Engel functions.

Now let us begin the review of the literature of an empirical demand study with

the most well-accepted and widely-used parametric specification, the Working-

Leser specification as follows:

wl = αl + yβl = εl, (1.3.1)

where wl is the budget share of good l and y is log of total expenditure. The

Working-Leser specification, (1.3.1), is also the baseline model for the popular

“Almost Ideal Demand System” and “Trans Log” models of consumer behaviour

developed by Deaton & Muellbauer (1980a) and Jorgenson & Slesnick (1987),

respectively. However, the study of Banks et al. (1997) suggests that empirical

Engel curves at the micro-level rather than aggregate ones provide plausible results

for the applications mentioned above. Banks et al. (1997) also provide the evidence

of the severe nonlinear relationships of alcohol and adult clothing budget shares

with total expenditure using the nonparametric approach, and this nonlinearity

leads to a nonparametric approach that has been frequently employed in the more

recent studies; see Blundell et al. (1998) and Blundell et al. (2007) for example.

The nonparametric model of the empirical demand function of good l is:

wli = gl(yi) + εli, (1.3.2)

where wli is the budget share of good l for an individual household i, yi is the log

of household i’s total expenditure, and gl(·) is an unknown function. As has been

observed from (1.3.2), the shape of an empirical Engel function is flexible enough

to take any type of nonlinear relationship, unlike the parametric counterpart,

(1.3.1).

7



Chapter 1. Background and Motivation

Furthermore, demographic variables, for example, family size and regional

differences, theoretically play a major role in the analysis of demand function.

Empirical support for this can be found in Blundell et al. (1998) and Blundell

et al. (2007), use the number of children in a household to differentiate house-

hold sizes in order to study the effect of family size on demand, and Gong et al.

(2005), who studied regional effects on demand. Traditionally, the consumption

behaviour of a household with a different demographic profile is specified by in-

troducing demographic translating into the demand system; see Pollack & Wales

(1995) for details. Following the traditional approach, the specification including

demographic components is:

wli = X ′iβl + gl(yi) + εli, (1.3.3)

where Xi is a vector of the demographic components of household i. However,

Blundell et al. (1998) show empirically that (1.3.3) restricts all budget shares

to have a similar functional form. More recently, Blundell et al. (2003), theo-

retically demonstrated that the PL model is not coherent with economic theory,

specifically the consumption optimisation theory. Demographic components can-

not enter additively into each Engel curve equation while remaining consistency

with consumer optimisation theory; they must also enter so as to scale the to-

tal expenditure variable inside nonparametric Engel curves for each commodity.

Hence the shape-invariant type of specification (shown below as in (1.3.4)) pro-

vides the flexibility for individual functional forms not to be restricted within a

similar functional form and is coherent with the economics theory.

wli = X ′iβl + gl(yi − φ(X ′iγ)) + εli, (1.3.4)

where γ represents the equivalence scale coefficient.

However, it is well-known in the literature that the total expenditure is en-

dogenous (E(εl|y) 6= 0; e.g. Blundell et al. (1998), and Blundell et al. (2007)). The

theoretical reason behind this is two-stage budgeting. The separability theorem

of Gorman (1959) ultimately implies that budget decisions can be divided into

two stages. In the first stage, total expenditure is divided into broader groups of

8



Research Objectives and Thesis Structure – Section 1.4

spending such as saving vs expenditure and durable vs nondurable. Then in the

second stage, individual budget shares are determined. This implies that error

terms systematically contain the first budgeting decision stage. In other words,

endogeneity in the empirical demand literature is caused by omitting information

about the first budgeting stage. In Chapter 4, we present the details of how the

methodologies developed in Chapters 2 and 3 are applied to a semiparametric anal-

ysis of Engel curves taking the effects of the endogeneity of the total expenditure

into account in particular. Furthermore, we demonstrate how the EGPLSI model

allows for the shape-invariant specification of (1.3.4) with minor modifications.

1.4 Research Objectives and Thesis Structure

In this thesis, we intend to provide two main contributions to the econometric

literature. Firstly, we aim to introduce methods to address endogeneity in the

estimation of the semiparametrics, particularly the PL model and the EGPLSI

model. In particular, we aim to do this by establishing a CF approach based

on (i) the Robinson (1988) and Speckman (1988) type of two-stage estimation

procedure and (ii) the widely-used triangular structure of Newey et al. (1999),

Pinkse (2000), Blundell & Powell (2004) and Su & Ullah (2008); see Chapters 2

and 3 for details. Secondly, we also intend to provide a further contribution to

the economic literature, particularly on the cross-sectional relationships between

expenditure on specific goods and the level of total expenditure. To achieve this

objective, we employ our newly established methods to conduct a semiparametric

analysis of Engel curves in Australia.

In Chapter 2, we comprehensively discuss endogeneity issues in a PL model.

In particular, we discuss a systematic approach for addressing endogeneity in the

PL model, given the complexity of the model containing both parametric and non-

parametric components. We also address nonparametric endogeneity in the model

using the CF approach and show that the estimator of the parametric coefficient

is still
√
n-consistent and asymptotically normal. We also show that the unknown

structural function can conveniently be recovered by using the marginal integra-

9
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tion technique, and the estimator of the function is consistent and asymptotically

normal. We further provide the results of Monte Carlo simulation exercises to

provide the finite sample properties of those estimators.

In Chapter 3, we address endogeneity in an EGPLSI model containing the

parametric coefficient and also the index coefficient based on the two-stage esti-

mation procedure and the CF approach. We show that the estimators of both the

parametric and the index coefficients are still
√
n-consistent and asymptotically

normal. We also show that the unknown structural function is recovered by the

marginal integration technique, and it is consistent and asymptotically normal.

The finite sample properties of the estimators of all unknowns are also presented

using Monte Carlo simulation exercises.

In Chapter 4, we conduct an empirical demand analysis in Australia with

the methods developed in this thesis in order to overcome the endogeneity of total

expenditure. Although both the PL and the EGPLSI models allow us to undertake

micro-level analysis with demographic components (we use the number of children

in a household to see the effects of household size on demand), our empirical

results show that the PL model restricts the overall shapes of budgets shares to

be a quadratic type of function, unlike the EGPLSI counterpart. This empirical

study demonstrates the usefulness and practicality of the methods developed in

this thesis and provides an accurate empirical demand analysis which is coherent

with the economic theory.

We conclude this thesis with a discussion of the results as well as outlining

future research directions in Chapter 5.

10



Chapter 2

Endogeneity in a PL Model

Statistical inference on a multidimensional random variable commonly
focuses on functionals of its distribution that are either purely paramet-
ric or purely nonparametric. A reasonable parametric model affords
precise inferences, a badly misspecified one, possibly seriously mis-
leading ones, while nonparametric modeling is associated both greater
robustness and lesser precision. An intermediate strategy employs a
semiparametric form . . .

Peter M. Robinson (1998)

2.1 Introduction

As is known in the literature, a partially linear semiparametric (PL) model is:

Yi = X ′iβ + g(Vi) + εi for i = 1, . . . , n

E(ε|x, v) = 0, (2.1.1)

where (V,X, Y ) is a Rq × Rp × R-valued observable random vector, β is a Rp-

valued unknown parameter vector and g(·) is an unknown real function such that

g : Rq → R. To estimate the model in (2.1.1), Robinson (1988) proposed a two-

step estimation procedure, which is to first obtain consistent estimators of the

unknown parameters and then use them in order to identify an unknown structural

function; see also a discussion in Speckman (1988). Based on an independently

and identically distributed (i.i.d.) random sample (Yi, X
′
i, V

′
i ), it has been shown

11
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that the parameter vector β in various versions of (2.1.1) can be consistently

estimated at a rate of
√
n (see Robinson (1988), Fan et al. (1995), Härdle et al.

(2000), Gao (2007), and Li & Racine (2011), for examples).

It should be noted that the exogeneity condition of the regressors in the model

(as stated mathematically in the second line in (2.1.1)) is crucial for obtaining

consistent estimators and identifying an unknown structural function. However,

it is not difficult to find circumstances by which such a fragile condition may

breakdown in practice.

For instance, consider cases of modelling mis-specifications, e.g. omitted vari-

ables or/and interaction terms. For the sake of illustration, let us assume that

V = (V1, V2), where (V1, V2) is a Rq∗×Rq−q∗-valued vector with 1 ≤ q∗ ≤ q−1, and

that the first line of the model in (2.1.1) is mistakenly replaced by the following:

Yi = X ′iβ + g(V1,i) + εi. (2.1.2)

Assuming for the time being that E(ε|x) = 0, in this case the exogeneity as-

sumption is satisfied only if E(y|v1) = E(y|v) and E(x|v1) = E(x|v); see also a

model specification test discussed in Li (1999). Hereafter, let us refer to the cases

where E(ε|v) 6= 0 as “nonparametric endogeneity”. Furthermore, let us assume

the following:

Xi = mx(Vi) + Ui, (2.1.3)

where E(u|v) = 0. The corresponding “parametric endogeneity” may occur if the

equation below is employed instead of (2.1.3):

Xi = mx(V1,i) + Ui, (2.1.4)

where E(u|v1) = 0. Given that the PL model in (2.1.1) is correctly specified, then

the use of (2.1.2) and (2.1.4) leads to the violation of the exogeneity condition,

i.e. E(ε|x, v) 6= 0.

Regarding the latter, let us illustrate such a problem with an empirical ex-

ample of the relationship between the logarithm of wages, and the covariates of

education (in years) and working experience (in years). While the individual ef-

fects of covariates should be examined, their interaction effects should also be

12
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considered. For instance:

log(wagei) = ageiβ + g(edui) +H(agedui) + ei, (2.1.5)

where agedui = agei× edui and E(e|age, edu) = 0. Although the identification of

each function in (2.1.5) can be dealt with as shown by Linton & Nielsen (1995)

and Tjøstheim & Austad (1996), the endogeneity problem could be present if

the interaction term H(·) was mistakenly omitted from the model. We present a

detailed review of the effects of the various types of endogeneity on the estimation

of the PL model in Section 2.2.2.

The goal of the current chapter is to develop a systematic approach for ad-

dressing the endogeneity issues in the PL model. Although the PL model has

been extensively studied in the literature as reviewed earlier (see also Fan & Li

(1999), and Härdle et al. (2000) among others), the endogeneity issues have only

recently been considered in pure nonparametric and semiparametric models (see

Blundell & Powell (2003) for details). A systematic estimation procedure and

method that are capable of satisfactorily addressing endogeneity problems in the

PL model have yet to be developed owing to its relative complexity in the sense

that it contains both parametric and nonparametric components. In this chapter,

we intend to comprehensively discuss the issues that are essential in dealing with

endogeneity problems in the PL model, such as identifying whether they orig-

inated from the parametric component, the nonparametric component or both,

and appropriate estimation procedures to deal with different types of the prob-

lems. While we will summarise the key contributions of the current chapter at the

end of this introduction, in the next few paragraphs we will give a brief overview

of the methods to be discussed in this chapter.

In principle, the methods considered in this chapter closely follow the logic of

the Robinson’s (1988) two-step estimation procedure mentioned previously, i.e.

first to obtaining consistent estimators of the unknown parameters and then us-

ing them in order to identify an unknown structural function. If the parametric

regressors are exogenous, the LS estimation is consistent as also reviewed previ-

ously. Otherwise, if the parametric endogeneity is present, then the parametric

13
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instrumental variables (PIV) estimation can be used. Although the PIV estima-

tion has been considered in the literature (see chapter 16 of Li & Racine (2011),

for example) we feel that there are still some outstanding issues which are worth

discussing within the context of our study. After all, special attention should be

given to constructing consistent estimators of the unknown parameters especially

given the dominance of the parametric component of the model. The consistency

of parametric estimators is important not only in its own right but also for iden-

tifying an unknown structural function (more details can be found in Sections 2.2

and 2.3).

In addition, the presence of nonparametric endogeneity induces further com-

plicates the identification of the unknown structural function (see Section 2.4 for

details). There are two alternative methods in the literature which may be helpful

in identifying the unknown structural function in such a case, namely the non-

parametric instrumental variable (NpIV) estimation and the control function (CF)

approach. Ai & Chen (2003) developed the NpIV estimation for semi-parametric

models, which included the PL model as a special case. An important difficulty

with using NpIV estimation resides in the well-known “ill-posed inverse” prob-

lem; see O’Sullivan (1986) for example. To overcome such an obstacle, Ai & Chen

(2003) based their estimation on a complex sieve estimation under some regularity

conditions on the inversion matrix and a constraint on the space of the reduced

relation to keep it compact.

This chapter addresses nonparametric endogeneity in the estimation and in-

ference of the PL model in a simple but widely-used framework of nonparametric

simultaneous equations specifically, a nonparametric triangular model. Although

the full details will be presented later, let us discuss this briefly here. We con-

sider a model y = x′β + g(v) + ε such that x might be either exogenous or

endogenous, and v is endogenous. In addition, a nonparametric reduced-form

equation v = mv(z) + η, where z is a vector of the instrumental variables such

that E(η|z) = 0 and E(ε|z, η) = E(ε|η) 6= 0. In order to identify and to estimate

the structural function g(·), we take the standard control function approach, as

in Newey et al. (1999), namely E(y|v, η) = E(x|v, η)′β + g(v) + ι(η), where the
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endogeneity (i.e. E(ε|η) = ι(η) 6= 0) is controlled by introducing an additional

unknown function. Such a structure enables us to write the model as a simple

nonparametric additive structure and therefore to employ the local constant ker-

nel estimation and the marginal integration technique of Linton & Nielsen (1995),

and Tjøstheim & Austad (1996) to identify the unknown structural function.

To summarise, in this chapter we comprehensively study the estimation pro-

cedures and methods which provide and identify consistent estimators of the un-

knowns in the PL model, namely the parametric parameters and the nonpara-

metric structural function, when parametric endogeneity or/and nonparametric

endogeneity is/are present. Firstly, we extend the CF approach suggested in

Newey et al. (1999) to the PL model with nonparametric endogeneity. We also

provide the asymptotic properties of the estimator of the nonparametric function.

Furthermore, we show the
√
n-consistency and asymptotic normality results for

the estimators of the unknown parameters under parametric endogeneity. Here,

an important difficulty resides in a generated regressor issue, which arises due to

the fact that the control regressor, η, (or the so-called control variable as referred

to in Blundell & Powell (2004)) is not observable. The generated regressor issue

must be taken into account when studying the properties and inference of the

estimation procedure.

The remaining of the chapter is organised as follows. In Section 2.2, we first

review the PL model without endogeneity, introduce parametric endogeneity and

nonparametric endogeneity into the model, then discuss the various issues in-

cluding identification of endogeneity in the model, and appropriate estimation

methods and procedures. In Section 2.3, we conduct an experimental study to

investigate the finite sample properties of the estimators introduced in the current

chapter. Finally, Section 2.4 concludes the chapter, while mathematical proofs of

the main results are presented in Appendix 2.5.
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2.2 Endogeneity in a PL Model

In this section, we first introduce the PL model and Robinson’s two-step estima-

tion procedure as usually seen in the literature. We then introduce endogeneity

into the model and discuss the various issues caused by endogeneity in details.

Finally, we discuss and propose appropriate estimation methods for addressing

endogeneity in Sections 2.2.3 and 2.2.4.

2.2.1 The PL Model

To estimate the model in (2.1.1), Robinson (1988) proposed a two-step estimation

procedure, which is first obtains consistent estimators of the unknown parameters

and then uses them to identify an unknown structural function. In particular, the

first step of Robinson’s estimation procedure is a simple LS estimation, which is

tenable after the unknown g(·)-function is partialled out. That is, we obtain the

conditional expectation relation by applying the conditional expectation operator

to (2.1.1), since it satisfies the exogeneity condition:

g(v) = E(y|v)− E(x|v)′β. (2.2.1)

Subtracting the conditional expectation relation (2.2.1) from the structural one

(2.1.1) produces a simple linear reduced form:

W ∗
i = U∗′i β + εi, (2.2.2)

where E(εu∗) = 0. We then have, by defining m∗y(v) = E(y|v) and m∗x(v) =

E(x|v), Yi = m∗y(Vi)+W ∗
i and Xi = m∗x(Vi)+U∗i with E(w∗|v) = 0 and E(u∗|v) =

0. Equation (2.2.2) immediately suggests an infeasible estimator for β by a LS

estimation of W ∗
i on U∗i :

β
∗
LS =

(
S̄U∗
)−1

S̄U∗W ∗ , (2.2.3)

where the notation for scalar and column vector sequences Ai and Bi are S̄AB =

1
n

∑n
i=1 AiB

′
i and S̄A = S̄AA. The second step of Robinson’s (1988) estimation
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procedure is to identify the structural g(·)-function based on the conditional ex-

pectation relation in (2.2.1):

g∗LS(v) = m∗y(v)−m∗x(v)′β
∗
LS. (2.2.4)

Nonetheless, the estimators in (2.2.3) and therefore in (2.2.4) are infeasible due

to the unknown functions of m∗y(v) and m∗x(v). Robinson (1988) suggests that

m∗y(·) and m∗x(·) should be estimated first by a local constant kernel estimation

and these can be used in order to obtain feasible estimators. Let us introduce the

even functions k : R→ R and K : Rq → R related by:

Ks(s) =

q∏
j=1

k(sj),

where sj is the jth element in s and k is a univariate kernel function. Now, the

above-mentioned feasible estimators are:

β̂∗LS = (SÛ∗)
−1 SÛ∗Ŵ ∗ and ĝ∗LS(v) = m̂∗y(v)− m̂∗x(v)′β̂∗LS

by which SAB = 1
n

∑n
i=1AiB

′
iIi and SA = SAA for the scalar and column vector

sequences Ai and Bi, and a constant b > 0, Ii = I(|f̂(Vi)| > b), where f̂(v) is the

estimate of the probability density function of v with a random argument Vi, I is

the usual indicator function, and Û∗i = Xi − m̂∗x(Vi) and Ŵ ∗
i = Yi − m̂∗y(Vi) with:

m̂∗x ≡ Ê(x|v) =

∑n
i=1XiKv

(
v−Vi
hv

)
∑n

j=1Kv

(
v−Vj
hv

) and m̂∗y ≡ Ê(y|v) =

∑n
i=1 YiKv

(
v−Vi
hv

)
∑n

j=1Kv

(
v−Vj
hv

) .

Note that I is introduced in order to trim out small values of f̂(v) that is in

order to overcome the random denominator problem (see Fan et al. (1995) and

Li & Woodridge (2002), for alternative methods). Based on i.i.d. random sample

(Yi, X
′
i, V

′
i ), it has been shown that the parameter vector β in various versions of

(2.1.1) can be consistently estimated at
√
n-rate; see Robinson (1988) and Fan

et al. (1995), for example.

Remark 2.2.1. Robinson (1988) introduced two factors which are essential in the

establishment of
√
n-consistency for β̂∗. These are the higher-order kernel function
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and the local Lipschitz type of condition for smoothness on the functions. The

higher-order kernel function reduces bias when the sufficient smoothness condition

imposed on the functions and hence they ensure
√
n-consistency. We restate these

definitions in Section 2.2.4 in the context of the estimation method introduced in

this chapter. �

2.2.2 Endogeneity in the PL Model

Prior to presenting a more detailed discussion of the method studied in this chap-

ter, let us present a review of the effects that various types of endogeneity have

on the model and some suggested remedies. Let us begin with the linear reduced

form of the model in (3.2.18):

W ∗
i = U∗′i β + e∗i , (2.2.5)

where e∗ = ε − E(ε|v) ≡ ε − ι(v). If nonparametric regressors are endogenous,

then ι(v) 6= 0. Hence, it is apparent that nonparametric endogeneity induces the

problem of identifying a structural g(·)-function as follows:

[1.A ] E(y|v)− E(x|v)′β = g(v), when nonparametric regressors are exogenous;

[1.B ] E(y|v) − E(x|v)′β = g(v) + ι(v), when nonparametric regressors are en-

dogenous.

The exogeneity moment condition of (2.2.5), i.e. E(e∗u∗) = 0, is satisfied, unless

parametric-endogeneity is present. This moment condition implies two possible

cases, namely:

[2.A ] E(εu∗) = 0 and E[ι(v)u∗] = 0, i.e. when ι(v) = 0;

[2.B ] E(εu∗) 6= 0 and E(εu∗) = E[ι(v)u∗], i.e. when ι(v) 6= 0.

While the conditions in [2.A] suggest that the model is endogeneity-free, those

in [2.B] suggest that only nonparametric endogeneity is present since the linear

reduced form satisfies the moment condition. The fact that the nonparametric

endogeneity is partialled-out in the Robinson’s transformation suggests that the
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LS estimation of the unknown parameters is applicable for both cases, i.e. in [2.A]

and [2.B]. However, [2.B] is similar to [1.B] in the sense that we must address the

nonparametric endogeneity in order to identify an unknown structural function.

The final remaining case is the presence of parametric endogeneity such that:

[3.A ] E(ε|x) 6= 0 so that E(e∗u∗) 6= 0 when ι(v) 6= 0 and E(εu∗) 6= 0 otherwise.

In the other words, if parametric regressors are endogenous, then the moment

condition of the linear reduced form is not satisfied, i.e. E(e∗u∗) 6= 0. In this case,

the LS estimation results in inconsistent estimators for both of the unknowns.

This stresses the dominance of the parametric part of the model. Although the

consistency of a nonparametric estimator is unnecessary for obtaining consistent

estimators of the parametric ones (due to Robinson’s partialling-out process), the

opposite is not true. Let us define m0(v) = g(v) and m1(v) = g(v) + ι(v) with

ι(v) 6= 0 in order to illustrate the argument more conveniently. We have:

β
∗
LS = β +

(
S̄U∗
)−1

S̄U∗e∗
p9 β

and:

m∗LS,s(v) = E(y|v)− E(x|v)′
{
β +

(
S̄U∗
)−1

S̄U∗e∗
}

p9 ms(v),

where
p9 denotes no convergence in probability, and m∗LS,s(v) = m∗LS,0(v) or

m∗LS,1(v), since S̄U∗e∗
p9 0. Hence, various issues regarding the identification of

endogeneity in parametric regressors and obtaining tenable and consistent para-

metric estimators are nontrivial, and we discuss these in details in the next section.

Remark 2.2.2. In this section, we consider only the moment condition, E(e∗u∗),

rather than the conditional moment condition, E(e∗|u∗), of the linear reduced form

(2.2.5), since we discuss the endogeneity issues in terms of infeasible estimators

such as (2.2.3) and (2.2.4). Note that the cost of having the former rather than

the latter is a more restrictive moment bound on the dependant regressor than that

of Robinson (1988) is imposed to establish the
√
n–consistency. If we consider the

former then E(y)4 <∞ is required rather than E(y)2 <∞ due to the remainder

terms, Sû∗e∗ and Su∗ê∗; see Propositions 10 and 11 in appendix of Robinson (1988),

for example. Hereafter, we consider the conditional moment condition. �
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Table 2.1: The effects of endogeneity on the PL model and the appropriate
estimation methods

Types of Endogeneity Estimators Effects on estimators Remedies

Parametric LSoPP∗ Inconsistent PIV or 2SLS

NSF∗∗ Unidentifiable (automatically resolved)

Nonparametric LSoPP Consistent

NSF Unidentifiable NpIV or CF

Both LSoPP Inconsistent PIV or 2SLS

NSF Unidentifiable NpIV or CF

∗ LS of Parametric Parameters (LSoPP); ∗∗ Nonparametric Structural Function (NSF)

Table 2.1 summarises the effects and remedies of various sources of endogeneity

as discussed above.

2.2.3 Parametric Endogeneity

Let us first consider the case [3.A] above, i.e. the presence of parametric endo-

geneity, which may be associated with the linear reduced form model below:

W ∗
i = U∗′i β + e∗i , (2.2.6)

where E(e∗|u∗) 6= 0 when ι(v) 6= 0, and E(ε|u∗) 6= 0 otherwise. Let us consider

the Robinson (1988) type of an IV estimation as follows. Suppose that %∗ is an

IV vector for U∗ such that:

Zi = m∗Z(Vi) + %∗i , (2.2.7)

where Z is a Rp-valued IV vector for X, m∗Z(v) = E(Z|v) and E(%∗|v) = 0.

Furthermore, we assume that E(xZ) 6= 0 suggests E(%∗u∗) 6= 0 and E(%∗|ε) = 0

implies E(%∗|e∗) = 0, where nonparametric regressors are exogenous; otherwise,

they are endogenous. Unlike the NpIV estimation, which requires the conditional

moment condition, the PIV estimation also allows for the moment condition as
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stated in Remark 2.2.2; E(%∗ε) = 0 implies that E(%∗e∗) = 0. In this case, we

replace E(y)2 < ∞ with E(y)4 < ∞ in Assumption 2.0.4 due to the remainder

terms S%̂∗e∗ and S%∗ê∗ .

The Robinson (1988) type of IV estimators have the form:

β̂∗IV = (S%̂∗Û∗)
−1S%̂∗Ŵ ∗ and m̂∗IV,s(v) = Ê(y|v)− Ê(x|v)′β̂∗IV ,

where %̂∗i = Zi − Ê(Zi|Vi), Ê(Z|v) =
∑n
j=1 ZjKv

(
v−Vj
hv

)
∑n
l=1Kv

(
v−Vl
hv

) , and m̂∗IV,s(v) = m̂∗IV,0(v) or

m̂∗IV,1(v); see chapter 16 of Li & Racine (2011), for its asymptotic normality and
√
n-consistency.

Furthermore, note that the PIV estimation above requires a similar rank con-

dition to that of a conventional parametric case. If the rank condition is not

satisfied, i.e. if rank(Z) > p, then it can be shown that two-stage least squares

(2SLS) estimation is the most optimal, as in a conventional parametric case; see

chapter 5 of Sargan & Desai (1988), for example. The most optimal candidate for

an IV vector is a projection matrix of a parametric regressor vector in the space

of an IV vector:

%̃∗ = %∗(%∗′%∗)−1%∗′U∗.

Then, the 2SLS estimators are:

β̂∗2SLS = (S ˆ̃%∗Û∗)
−1S ˆ̃%∗Ŵ ∗ and m̂∗2SLS,s(v) = Ê(y|v)− Ê(x|v)′β̂∗2SLS,

where S ˆ̃%∗Û∗ = SÛ∗%̂∗ (S%̂∗)
−1 S%̂∗Û∗ , S ˆ̃%∗Ŵ ∗ = SÛ∗%̂∗ (S%̂∗)

−1 S%̂∗Ŵ ∗ , and m̂∗2SLS,s(v) =

m̂∗2SLS,0(v) or m̂∗2SLS,1(v). The asymptotic normality and
√
n-consistency of the

2SLS estimator can be established similarly to those of the PIV ones.

Remark 2.2.3. The proofs of
√
n-consistency and the asymptotic normality of

β̂∗IV and β̂∗2SLS are similar to those of β̂∗LS. For instance, in the case of the PIV

estimation, we need to establish that SZ−Ẑ,X−X̂
p→ Φ%∗U∗ with Φ%∗U∗ ≡ E[(Z −

E(Z|V ))′(X − E(X|V ))], that SZ−Ẑ
p→ Φ%∗ with Φ%∗ ≡ E[(Z − E(Z|V ))′(Z −

E(Z|V ))], and particularly that
√
nSZ−Ẑ,ms−m̂∗s

p→ 0 and
√
nSZ−Ẑ,e−ê∗

D→ N(0, σ2Φ%∗)

with σ2 = E(e∗)2; for the definitions of SZ−Ẑ,X−X̂ , SZ−Ẑ , SZ−Ẑ,m−m̂∗ and SZ−Ẑ,e−ê∗ ,
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see the Appendix 2.5. The set of additional conditions required for this estab-

lishment comprise the moment condition on Z, the smoothness condition on the

function m∗Z(v) and the corresponding regularity condition for the bandwidth. We

present these conditions in Appendix 2.5.1 for the sake of convenience. A similar

argument is also true for the 2SLS estimation case. �

Furthermore, the above-mentioned asymptotic normality of the LS and the

PIV estimators make it possible to establish a Hausman (1978) type of mis-

specification testing. Given the results of Lemma 2.1 and Corollary 2.6 of Haus-

man (1978), this can be done as follows. Let us define d̂∗ = β̂∗IV − β̂∗LS, V (β̂∗LS)

and V (β̂∗IV ) as the asymptotic variances of β̂∗LS and β̂∗IV , respectively. Then a

mis-specification testing in the PL model can be implemented as

H0 : d̂∗
p→ 0 i.e. parametric exogeneity ; H1 : d̂∗

p9 0 i.e. parametric endogeneity .

(2.2.8)

Under the null hypothesis in (2.2.8), we have:

β̂∗LS = β + op(n
1/2) and β̂∗IV = β + op(n

−1/2),

which imply that d̂∗ = op(1). However, under the alternative hypothesis in (2.2.8),

we have:

β̂∗LS = β +Op(1) and β̂∗IV = β + op
(
n−1/2

)
,

which suggest that d̂∗ = Op(1). Under the null hypothesis, the asymptotic distri-

bution of the difference of two estimators is:

√
n(d̂∗ − d)

D→ N [0, V (d̂∗)],

where V (d̂∗) = V (β̂∗IV )− V (β̂∗LS). As n→∞, the test statistic is:

t = d̂∗′
(
V̂ (d̂∗)

)−1

d̂∗
D→ χ2

p,

where V̂ (d̂∗) is the estimate of V (d̂∗) and p is the number of unknown parameters

in the model.
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2.2.4 Nonparametric Endogeneity

In Section 2.2.2, we have briefly discussed the effects of nonparametric endogeneity

such that ι(v) ≡ E(ε|v) 6= 0 in the model; see cases [1.B] and [2.B], for example. It

is apparent in the conditional expectation relation, m∗y(v)−m∗x(v)′βτ = m∗τ,1(v) =

g∗τ (v) + ι(v), that, in these cases, the structural g(·)-function is unidentifiable,

where τ is found by using LS, IV and 2SLS. The procedure considered in this

section rests on a semiparametric simultaneous equation model, for which the

corresponding nonparametric version has previously been considered by Newey

et al. (1999).

Suppose that nonparametric endogeneity is present in the model and that Z is

an instrumental variable vector for V , and let us consider a simultaneous equation

model:

Yi = X ′iβ + g(Vi) + εi (2.2.9)

Vi = mv(Zi) + ηi, (2.2.10)

E(ε|z, η) = E(ε|η) a.s. (2.2.11)

E(η|z) = 0 a.s. (2.2.12)

where a.s. denotes for almost surely, (2.2.9) is as defined in (2.1.1), mv(z) ≡ E(v|z)

is a q× 1 vector of the functions of the instruments, Z is a Rqz -valued vector with

qz ≥ q and η is a q × 1 vector of disturbances. It should be noted here that while

the stochastic conditions stated in (2.2.11) and (2.2.12), which are often referred

to as the “control function” assumptions, are more general than assuming full

independence between (ε, η) and Z, they are neither stronger nor weaker than

E(ε|z) = 0, which is usually required in the NpIV estimation.

Based on (2.2.9) to (2.2.12), we have:

E(y|v, η) = E(x|v, η)′β + E(g(v)|v, η) + E(ε|v, η) = E(x|v, η)′β + g(v) + E(ε|η).

This ultimately leads to:

g(v) + ι(η) = E(y|v, η)− E(x|v, η)′β, (2.2.13)
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where E(ε|η) ≡ ι(η) is referred to in the literature as the endogeneity control

function.

The first key step in the CF approach in this chapter is to estimate the en-

dogeneity control regressors from a structural relation between the endogenous

regressors and their instrumental variables, (i.e. expression (2.2.10) above). Such

a structural relation is referred to as “a reduced form” in Blundell & Powell (2004).

The next step is to control the endogeneity in the structural relation (2.2.9) by

introducing an endogeneity control function, ι(η). Finally, the nonparametric ad-

ditive structure derived in (2.2.13) suggests that the unknown structural function

can be identified by using the marginal integration technique of Linton & Nielsen

(1995) and Tjøstheim & Austad (1996).

The procedure described above can be implemented in a few estimation steps.

Hereafter, let us collectively refer to such estimation steps as the “two-step control

function (2SCF) procedure”, which can be described as follows:

The 2SCF Procedure

Step 2.2.1: Estimate the endogeneity control regressor, ηi, from (2.2.10).

Step 2.2.2: Obtain consistent estimators β̂τ of the unknown parameters as in

Section 2.2.3.

Step 2.2.3: Given the consistent parametric estimators in Step 2.2.2, estimate

the conditional expectation relation.

Step 2.2.4: Perform the marginal integration technique on the resulting estimated

conditional expectation relation in Step 2.2.3 to estimate the structural g(·)-

function.

In the remainder of this section, let us discuss each of these steps in more detail.

Step 2.2.1 estimates the endogeneity control regressors, η, from the reduced form

in (2.2.10) since they are not observable in practice, where mv(z) is a vector of

unknown real functions such that mv ≡ (mv)(Zi, . . . , Zi)
′, i = 1, . . . , n, mv,l :
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Rqz → R and l = 1, . . . , q. The kernel estimation of mv,l(Zi) is:

m̂v,l(Zi) =

∑n
j=1 VjKz

(
Zi−Zj
hz

)
∑n

l=1Kz

(
Zi−Zl
hz

) , (2.2.14)

where hz = (hz1, hz2, . . . , hzq)
′, which leads to:

η̂i = Vi − m̂v,l(Zi). (2.2.15)

For a constant b1 > 0, let I1,i = I(|f̂(Zi)| > b1), where f̂(z) is the estimate of the

probability density function f(z) with a random argument Zi.

The next estimation step is to transform the structural model into a linear

reduced form to obtain consistent parametric estimators. This can be done by

first decomposing the dependent and independent regressors into two components.

By defining my(v, η) = E(y|v, η) and mx(v, η) = E(x|v, η), the above-mentioned

decompositions are:

Yi = my(Vi, ηi) +Wi and Xi = mx(Vi, ηi) + Ui,

where E(w|v, η) = 0 and E(u|v, η) = 0. Now we can obtain the conditional

expectation relation of the structural model on the nonparametric and endogeneity

control regressors:

my(v, η) = mx(v, η)′β + g(v) + ι(η) (2.2.16)

such that ι(η) 6= 0 controls the endogeneity. Finally, if we subtract the conditional

expectation relation (3.2.10) from the structural one, the transformed simple linear

reduced form is then:

Wi = U ′iβ + ei, (2.2.17)

where Wi = Yi − E(Yi|Vi, ηi), Ui = Xi − E(Xi|Vi, ηi) and ei = εi − ι(ηi).
In order to obtain consistent estimators of the unknown parameters, it must

be ensured that an appropriate estimation method (i.e. among LS, IV or 2SLS

as discussed in Section 2.2.3) is applied to (2.2.17). If parametric regressors are

exogenous, then it is appropriate to simply apply the LS estimation; otherwise,
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we must apply the PIV estimation with the following vector of parametric instru-

ments:

Zi = mZ(Vi, ηi) + %i,

where mZ(v, η) = E(Z|v, η) and E(%|v, η) = 0, E(xZ) 6= 0 implies that E(u%) 6= 0

and E(ε|%) = 0 suggests that E(e|%) = 0. Furthermore, if the rank of the vector

Z is greater than p, then the 2SLS estimation is applied. Hence, the potential

consistent parametric estimators can be summarised as:

β̂LS = (SÛ2
)−1SÛ2Ŵ2

, β̂IV = (S%̂2Û2
)−1S%̂2Ŵ2

and β̂2SLS = (S ˆ̃%2Û2
)−1S ˆ̃%2Ŵ2

,

(2.2.18)

where:

Û2,i = Xi − Ê(Xi|Vi, η̂i), Ŵ2,i = Yi − Ê(Yi|Vi, η̂i), %̂2,i = Zi − Ê(Zi|Vi, η̂i),

S ˆ̃%2Û2
= SÛ2%̂2

(S%̂2)
−1 S%̂2Û2

, S ˆ̃%2Ŵ2
= SÛ2%̂2

(S%̂2)
−1 S%̂2Ŵ2

,

by which Ê(x|v, η̂), Ê(y|v, η̂) and Ê(Z|v, η̂) are kernel estimators with η̂i, i.e.:

Ê(x|v, η̂) =

∑n
i=1 XiKv

(
v−Vi
hv

)
Kη

(
η̂−η̂i
hη

)
∑n

j=1Kv

(
v−Vj
hv

)
Kη

(
η̂−η̂j
hη

) , (2.2.19)

Ê(y|v, η̂) =

∑n
i=1 YiKv

(
v−Vi
hv

)
Kη

(
η̂−η̂i
hη

)
∑n

j=1Kv

(
v−Vj
hv

)
Kη

(
η̂−η̂j
hη

) (2.2.20)

and:

Ê(Z|v, η̂) =

∑n
i=1ZiKv

(
v−Vi
hv

)
Kη

(
η̂−η̂i
hη

)
∑n

j=1Kv

(
v−Vj
hv

)
Kη

(
η̂−η̂j
hη

) . (2.2.21)

Similar to the first stage, a trimming parameter is employed along the way to

minimize the impact of a random denominator problem. For a constant b2 > 0,

let I2,i = I(|f̂(Vi, ηi)| > b2), where f̂(v, η) is the estimate of the probability density

function f(v, η) with a random argument (Vi, ηi).

The essential factors which helps ensuring the asymptotic consistency as dis-

cussed in Remark 2.2.1 are defined below.
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Definition 2.1: Let the even functions kz : R→ R, kv : R→ R, kη : R→ R
and k

(r)
η : R → R, which is the rth derivative of kη. Let Kz : Rm → R, Kv :

Rq → R, K
(r)
η : Rq → R and L(r) : R2q → R, be related by Kz =

∏qz
j=1 kz(sj),

Kv =
∏q

j=1 kv(sj), K
(r)
η =

∏q
j=1 k

(r)
η (sj), and L(r)(s) = Kv(s)K

(r)
η (s), where r =

0, 1, . . . , ω2 − 1 for some ω2 > 0.

Definition 2.2: Gαµ , where α > 0 and µ > 0, is the class of functions g : Rq →
R that satisfy the following conditions: g is (l−1) times partially differentiable for

l− 1 ≤ µ ≤ l; for some ρ > 0, sup
y∈φzρ
|g(y)− g(z)−Qg(y, z)|/||y − z||µ ≤ Gg(z) for

all z, where φzρ = {y : ||y − z|| < ρ}; Qg = 0 when l = 1; Qg is a (l − 1)th degree

homogeneous polynomial in y − z with the coefficients the partial derivatives of g

at z of orders 1 through l − 1; and g(z) are its partial derivatives of order l − 1

and less, and Gg(z) has finite αth moments. G∞µ contains the bounded and (l− 1)

times boundedly differentiable functions whose (l − 1)th partial derivatives are in

Lip(µ− l + 1), i.e. the Lipschitz class of degree µ− l + 1.

The main theoretical results for this particular step is the
√
n-consistency and

the asymptotic normality of the Robinson-type of LS, PIV and 2SLS estimators

as stated below.

Theorem 2.2.1. Under Assumptions 2.1.1-2.1.6, the condition that ΦU is positive

and definite is necessary and sufficient for:

√
n(β̂LS − β)

D→ N [0,Φ−1
U σ2]

S−1

Û2
σ̂2 p→ Φ−1

U σ2, (2.2.22)

where E(e2) = σ2 <∞, ΦU = E[{X − E(X|V, η)}′{X − E(X|V, η)}]. �

Corollary 2.2.1. Under Assumptions 2.1.1, 2.1.3 - 2.1.7, 2.1.8 and 2.1.9, the

conditions that Φ%U ,Φ% and ΦU% are positive and definite are necessary and suffi-

cient for:

√
n(β̂IV − β)

D→ N [0, (Φ%U)−1σ2Φ%(ΦU%)
−1]

(S%̂2Û2
)−1σ̂2S%̂2(SÛ2%̂2

)−1 p→ (Φ%U)−1σ2Φ%(ΦU%)
−1. (2.2.23)
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When rank(Z) > p we have:

√
n(β̂2SLS − β)

D→ N
[
0, σ2

(
ΦU% (Φ%)

−1 Φ%U

)−1
]

σ̂2
(
SÛ2%̂2

(S%̂2)
−1 S%̂2Û2

)−1 p→ σ2
(
ΦU% (Φ%)

−1 Φ%U

)−1
,

where Φ%U = E[{Z−E(Z|V, η)}′{X−E(X|V, η)}], Φ% = E[{Z−E(Z|V, η)}′{Z−
E(Z|V, η)}] and ΦU% = E[{X − E(X|V, η)}′{Z − E(Z|V, η)}]. �

Remark 2.2.4. The proofs of
√
n-consistency and the asymptotic normality of

β̂IV and β̂2SLS are similar to those of β̂LS. For instance, in the case of the PIV

estimation, we need to establish SZ−Ẑ,X−X̂
p→ Φ%U and SZ−Ẑ

p→ Φ%, particularly

for
√
nSZ−Ẑ,ms−m̂s

p→ 0 and
√
nSZ−Ẑ,e−ê

D→ N(0, σ2Φ%); see the Appendix 2.5 for

the definitions of the notations for SZ−Ẑ,X−X̂ , SZ−Ẑ , SZ−Ẑ,m−m̂, and SZ−Ẑ,e−ê. �

The implications of these results on the above-mentioned Hausman (1978) type

of mis-specification testing as follows. Under the null hypothesis of no parametric

endogeneity, we have, β̂LS = β+op(n
−1/2) and β̂IV = β+op(n

−1/2), which suggest

that d̂ = op(1), where d̂ = β̂IV − β̂LS. However, under the alternative hypothesis

of the presence of parametric endogeneity, we have, β̂LS = β +Op(1) and β̂IV =

β+op(n
−1/2), which lead to d̂ = Op(1). Under the null hypothesis, the asymptotic

distribution of the difference between two estimators is:

√
n(d̂− d)

D→ N [0, V (d̂)], (2.2.24)

where V (d̂) = V (β̂IV ) − V (β̂LS). These asymptotic variances are given above as

(2.2.22) and (2.2.23), respectively. As n→∞, the test statistic is:

t = d̂′
(
V̂ (d̂)

)−1

d̂→D χ2
p, (2.2.25)

where V̂ (d̂) is the estimate of V (d̂).

The objective of the final two steps in this estimation procedure, i.e. Steps

2.2.3 and 2.2.4, is to identify the structural g(·)-function, given the consistent

parametric estimators obtained in the earlier step. Let us first recall the condi-

tional expectation of (3.2.10):

m(v, η) = my(v, η)−mx(v, η)′β = g(v) + ι(η). (2.2.26)
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Clearly the right-hand side can be treated as a general nonparametric additive

model for which a standard identification condition is E(g(v)) = E(ι(η)) = 0;

see Hastie & Tibishirani (1991), and Gao (2007) for example. Since (2.2.26) is

a simple nonparametric additive specification, an implementation of the so-called

marginal integration technique identifies the g(·)-function up to some constant

value, i.e.:

m(v) =

∫
m(v, η)dQ(η) = g(v) + c1 and m(η) =

∫
m(v, η)dQ(v) = ι(η) + c2,

(2.2.27)

where c1 =
∫
ι(η)dQ(η), c2 =

∫
g(v)dQ(v) and Q is a deterministic weighting

function with
∫
dQ(η) =

∫
dQ(v) = 1. Linton & Nielsen (1995) allow for both

discrete and continuous values of Q, while the integrals should be interpreted in

the Stieltjes sense. To this end, the functions m(v) and g(v) can be estimated by

the sample versions of (2.2.27):

m̂τ (v) =
1

n

n∑
i=1

m̂τ (v, η̂i) (2.2.28)

and:

ĝτ (v) = m̂τ (v)− ĉτ,1,

where m̂τ (v, η̂i) = Ê(y|v, η̂i) − Ê(x|v, η̂i)′β̂τ and ĉτ,1 = 1
n

∑n
i=1 m̂τ (Vi), such that

(2.2.28) is estimated by keeping Vi at v and taking an average over the remaining

regressor, η̂i. We state the asymptotic properties of the nonparametric estimator

below.

Theorem 2.2.2. Under Assumptions 2.1.1 - 2.1.6 when the parametric regressors

are exogenous, or else, under Assumptions 2.1.1, 2.1.3 - 2.1.7, 2.1.8 and 2.1.9,

we have: √
nhqv(ĝτ (v)− g(v)− bias)→D N(0, var),

where bias = hp2v Bv(v, η)+hp2η Bη(v, η) with Bv(v, η) =
Kv,p2
f(v,η)

∑p2
r=1 f

(r)
v (v, η)m(p2−r)(v),

Bη(v, η) =
Kη,p2
f(v,η)

∑p2
r=1 f

(r)
η (v, η)m(p2−r)(η), Kv,p2 =

∫
vp2Kv(v)dv, Kη,p2 =

∫
ηp2Kη(η)dη,

f
(r)
v (v, η) and f

(r)
η (v, η) are the rth derivatives of the joint probability density func-

tions of (v, η) with respect to v and η respectively, and var = σ2(v, η)Kvf(v) f(η)2

f(v,η)2

with Kv =
∫
K(v)2dv. �
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The proofs of Theorems 2.2.1 and 2.2.2 are given in the Appendix 2.5.

2.3 Simulations

In this section, we discuss Monte Carlo simulation exercises to investigate the

finite sample performance of our newly developed approach in dealing with non-

parametric endogeneity and/or parametric endogeneity in the estimation of the

PL model, as discussed above. Generally, our learning strategy involves establish-

ing an exogenous PL model then systematically introducing (parametric and/or

nonparametric) endogeneity into the model; applying the existing estimation pro-

cedure (e.g. Robinson’s (1988) procedure as discussed in Section 2.2.1) in order

to investigate its effectiveness in the presence of endogeneity; and finally applying

our newly developed approach to the same endogenous models in order to investi-

gate its effectiveness as an alternative method in the presence of endogeneity. All

simulations are conducted in R with the number of replications set at 1000. The

normal kernel function defined as K(u) = 1√
2π

exp
(
−1

2
u2
)

is used throughout this

section.

For convenience, let us summarise some important notations and abbreviations

in this paragraph, which will be used throughout the remaining of this section.

Hereafter, 2SR and 2SR–PIV refer to Robinson’s (1988) procedure as discussed

in Section 2.2.3 with the LS and IV estimators of the unknown parameter, respec-

tively. Furthermore, 2SCF refers to the control function approach as explained in

Section 2.2.4. In the tables that follow, β̂, “Bias”, “Var” and |β̂ − β| refer to the

estimate of the unknown parameter, bias, variance and the absolute error, respec-

tively. Moreover, aeĝ denotes the average absolute error for the estimation of the

nonparametric structural function. The averages of these over the above-stated

number of replications are tabulated in Tables 2.2 to 2.10.

Let us focus first on the introduction and modelling of nonparametric endo-

geneity.
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Table 2.2: Exogenous model with 2SR

n β̂ Bias Var |β̂ − β| aeĝ ĥv

100 1.2007 0.0007 0.0001 0.0103 0.0231 0.2058

300 1.2012 0.0012 0.0000 0.0063 0.0145 0.1817

500 1.1998 -0.0001 0.0000 0.0054 0.0112 0.1637

700 1.2005 0.0005 0.0000 0.0043 0.0102 0.1525

900 1.2002 0.0001 0.0000 0.0037 0.0099 0.1458

1,100 1.2002 0.0002 0.0000 0.0034 0.0090 0.1387

Nonparametric endogeneity

For the sake of comparisons, we will employ the PL model in (2.3.1) as a baseline

model:

Yi = 1.2Xi + 0.5

(
Vi

1 + V 2
i

)
+ εi, where (2.3.1)

Vi = Zi + ηi, Xi = sin(Vi − ηi) + Ui,

εi = ι(ηi) + ei,

Zi ∼ U(0, 3), ηi ∼ U(−1, 1), ei, Ui ∼ N(0, 1).

Defining the PL model as in (2.3.1) gives rise to three related types of model,

namely the “exogenous model”, “linear endogenous model” and the “nonlinear

endogenous model”, simply by specifying, for example:

ι(η) = 0× η, ι(η) = 1× η and ι(η) =
η

1 + η2
, (2.3.2)

respectively. While Tables 2.2, 2.3 and 2.4 present the estimation results of the

exogenous model, the linear endogeneity model and the nonlinear endogeneity

model, respectively, based on the 2SR procedure, Tables 2.5 and 2.6 summarise

those obtained based on the 2SCF procedure.
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Table 2.3: Linear Endogeneity model with 2SR

n β̂ Bias Var |β̂ − β| aeĝ ĥv

100 1.1908 -0.0092 0.0045 0.0536 0.2465 0.2755

300 1.1955 -0.0044 0.0013 0.0293 0.2311 0.2129

500 1.1958 -0.0042 0.0009 0.0259 0.2321 0.1938

700 1.1967 -0.0032 0.0006 0.0198 0.2280 0.1795

900 1.1960 -0.0040 0.0004 0.0172 0.2310 0.1678

1,100 1.1969 -0.0031 0.0003 0.0166 0.2289 0.1646

Table 2.4: Nonlinear Endogeneity model with 2SR

n β̂ Bias Var |β̂ − β| aeĝ ĥv

100 1.1964 -0.0036 0.0006 0.0205 0.0848 0.2304

300 1.1990 -0.0010 0.0002 0.0114 0.0762 0.1905

500 1.1970 -0.0030 0.0001 0.0105 0.0765 0.1708

700 1.1973 -0.0027 0.0000 0.0076 0.0748 0.1614

800 1.1983 -0.0017 0.0000 0.0066 0.0750 0.1542

1,100 1.1976 -0.0024 0.0000 0.0063 0.0748 0.1484

Let us now discuss some important findings as follows. While the 2SR pro-

cedure performs well for the exogenous model, the presence of nonparametric

endogeneity (either linear endogeneity or nonlinear endogeneity) can cause a sig-

nificant problem in the estimation of the nonparametric structural function; see

the sixth column of Tables 2.3 and 2.4 in particular. Judging from the tendency

of the average of |β̂ − β| to converge to zero as n→∞, the presence of nonpara-

metric endogeneity in the model does not seem to cause a significant problem in

the LS estimation of the unknown parametric parameter. For a given instrument

with a specific explanatory power, represented by Z, it is interesting to see that

the linear endogeneity seems to have a greater impact on the 2SR estimation than

its nonlinear endogeneity counterpart. Compared to the results shown in Tables
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Table 2.5: Linear Endogeneity model with 2SCF

n β̂ Bias Var |β̂ − β| aeĝ ĥv

100 1.1988 -0.0011 0.0003 0.0153 0.0841 0.3433

300 1.2008 0.0008 0.0000 0.0074 0.0557 0.2445

500 1.1998 -0.0001 0.0000 0.0056 0.0470 0.2100

700 1.2007 0.0007 0.0000 0.0044 0.0424 0.1970

900 1.2000 0.0000 0.0000 0.0040 0.0396 0.1835

1,100 1.2004 0.0004 0.0000 0.0036 0.0307 0.1759

Table 2.6: Nonlinear Endogeneity model with 2SCF

n β̂ Bias Var |β̂ − β| aeĝ ĥv

100 1.2019 0.0019 0.0004 0.0114 0.0403 0.4703

300 1.2013 0.0013 0.0001 0.0066 0.0273 0.1965

500 1.2005 0.0005 0.0001 0.0055 0.0213 0.2130

700 1.2002 0.0002 0.0000 0.0043 0.0183 0.1793

800 1.1994 -0.0006 0.0000 0.0037 0.0165 0.1625

1,100 1.2001 0.0001 0.0000 0.0035 0.0104 0.1536
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Table 2.7: Linear parametric endogeneity model with 2SR

n β̂ Bias Var |β̂ − β| aeĝ ĥv

100 1.4496 0.2496 0.0016 0.2496 0.1740 0.8056

300 1.4511 0.2511 0.0005 0.2511 0.1724 0.5561

500 1.4502 0.2502 0.0003 0.2502 0.1724 0.5343

700 1.4490 0.2490 0.0002 0.2490 0.1696 0.4432

800 1.4481 0.2481 0.0001 0.2481 0.1682 0.3982

1,100 1.4493 0.2493 0.0001 0.2493 0.1683 0.3849

2.3 and 2.4, those in Tables 2.5 and 2.6 suggest that the 2SCF procedure is able

to provide a much better estimation of the nonparametric structural function in

the presence of nonparametric endogeneity. Furthermore, the results are robust

across the various types of endogeneity considered.

Parametric endogeneity

In this section, let us shift our focus to the introduction and modelling of para-

metric endogeneity. Let us consider a PL model such that:

Yi = 1.2Xi + 0.5

(
Vi

1 + V 2
i

)
+ εi, where (2.3.3)

Xi = Zi + ηi, Zi = sin(Vi) + %i, εi = ι(η)i + ei,

ηi ∼ U(−1, 1, ), Vi ∼ U(0, 3) and ei ∼ N(0, 1).

Clearly, the model in (2.3.3) implies that E(ε|x) 6= 0, E(ε|v) = 0, E(Zx) 6= 0

and E(%ε) = 0. Tables 2.7 and 2.8 present the estimation results of the linear

parametric endogeneity model and the nonlinear parametric endogeneity model

respectively, based on the 2SR procedure; Tables 2.9 and 2.10 provide those based

on the 2SR-PIV procedure.

Let us now discuss some important findings as follows. When compared to the

estimation results of an exogenous model in Table 2.2, those in Tables 2.7 and 2.8

suggest that parametric endogeneity, whether it belongs to the linear or nonlinear

endogenous model, can cause a severe problem in the estimation of both the
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Table 2.8: Nonlinear parametric endogeneity model with 2SR

n β̂ Bias Var |β̂ − β| aeĝ ĥv

100 1.2832 0.0832 0.0002 0.0832 0.0661 0.2650

300 1.2822 0.0822 0.0000 0.0822 0.0613 0.3305

500 1.2812 0.0812 0.0000 0.0812 0.0588 0.2356

700 1.2808 0.0808 0.0000 0.0808 0.0571 0.1916

800 1.2800 0.0800 0.0000 0.0800 0.0560 0.1680

1,100 1.2808 0.0808 0.0000 0.0808 0.0561 0.1645

Table 2.9: Linear parametric endogeneity model with 2SR-PIV

n β̂ Bias Var |β̂ − β| aeĝ ĥv

100 1.2038 0.0038 0.0041 0.0515 0.0851 0.8049

300 1.2036 0.0036 0.0010 0.0261 0.0546 0.5459

500 1.2013 0.0013 0.0007 0.0202 0.0469 0.5107

700 1.1991 -0.0009 0.0004 0.0179 0.0367 0.4227

900 1.1995 -0.0005 0.0003 0.0112 0.0316 0.3746

1,100 1.1996 -0.0004 0.0003 0.0101 0.0301 0.3293

Table 2.10: Nonlinear parametric endogeneity model with 2SR-PIV

n β̂ Bias Var |β̂ − β| aeĝ ĥv

100 1.2023 0.0023 0.0004 0.0176 0.0403 0.4703

300 1.2019 0.0019 0.0001 0.0098 0.0273 0.1965

500 1.2005 0.0005 0.0001 0.0081 0.0213 0.2130

700 1.2002 0.0002 0.0000 0.0066 0.0180 0.1793

900 1.1998 -0.0002 0.0000 0.0052 0.0161 0.1625

1,100 1.2001 0.0001 0.0000 0.0050 0.0102 0.1536
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parametric unknown parameter and the nonparametric structural function using

the 2SR procedure. Compared to the results shown in Tables 2.7 and 2.8, those

in Tables 2.5 and 2.6 suggest that the 2SR-PIV procedure is able to provide a

much better estimation of the nonparametric structural function in the presence

of parametric endogeneity.

2.4 Conclusions

In this chapter, we introduce new procedures that comprehensively address endo-

geneity issues, i.e. parametric endogeneity and/or nonparametric endogeneity, in

a partially linear semiparametric model. On the one hand, the dominance of the

parametric part of the model highlights the importance of consistent estimation

(and hence the estimators) of the unknown parameters. Therefore, identification

of the parametric endogeneity and construction of consistent parametric estima-

tors under such an endogeneity are essential. We thoroughly discuss these issues

in Sections 2.2.2 and 2.2.3. On the other hand, nonparametric endogeneity may

cause a serious problem in identifying the structural function in question. In

the current paper, we established the 2SCF estimation procedure to address non-

parametric endogeneity based on the two-step estimation procedure of Robinson

(1988) and the CF approach by imposing the well-known triangular structure on

the model. The imposition of such a structure enables us to use the marginal inte-

gration technique to identify the unknown structural function in a similar fashion

to the case of a nonparametric additive model. Nonetheless, the computation of

the control regressor in practice leads to a generated regressor problem which we

successfully address in the current chapter. Furthermore, we derive the asymp-

totic properties of both the parametric and nonparametric estimators involved.

Among these various properties, a particular interest in the literature is the
√
n

consistency of the parametric estimators. Finally, we conduct the Monte Carlo

simulation exercises. We find strong evidence in support for the dominance of

the parametric component in the model. Moreover, we find substantial evidence

which indicates that our newly proposed 2SCF estimation procedure performs
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well and is able to overcome the endogeneity problem in the estimation of the PL

model.

2.5 Appendix

In this Appendix, we present detailed discussion of the theoretical analysis of

the main results of the current chapter. We firstly list two sets of conditions

which are required for the case without and with the presence of nonparametric

endogeneity, respectively. The rest of this Appendix presents the mathematical

proofs of Theorems 2.2.1 and 2.2.2.

2.5.1 Conditions for the PIV estimator

We state a set of conditions for the PIV and P2SLS estimators when the nonpara-

metric regressors are exogenous. In particular, the conditions on the parametric

instrumental variables are the moment condition on Z, the smoothness condition

on the function mZ(v) and the regularity conditions of the bandwidth parameter.

It is useful to compare this set of conditions with those in the next section, where

we address nonparametric endogeneity.

Assumption 2.0.1. (Vi, Xi, Yi,Zi), i = 1, 2, . . . , n are i.i.d. observations.

Assumption 2.0.2. E(ε|x, v) 6= 0 and E(ε|Z, v) = 0.

Assumption 2.0.3. E(ε2|v,Z) = σ2(v,Z) is continuous in (v,Z).

Assumption 2.0.4. All Yi have a finite second moment, and all Xi and Zi have

finite fourth moments.

Assumption 2.0.5. Vi admits a density function f ∈ G∞λ for some λ > 0.

Assumption 2.0.6.

(1) mx(v) ∈ G4
µ0

for some µ0 > 0;

(2) mZ(v) ∈ G4
υ0

for some υ0 > 0;
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(3) g(·) ∈ G4
ν0

for some ν0 > 0.

Assumption 2.0.7. As n→∞,

(1) nh2q
v b

4 →∞;

(2) nh
2 min(λ,µ0)+2 min(λ,υ0)
v b−4 → 0;

(3) nh
min(λ,υ0)
v b−4 → 0;

(4) h
min(λ,2λ,υ0,ν0)
v b−2 → 0;

(5) b→ 0.

Assumption 2.0.8. sup
v∈Rq
|K(v)| +

∫
|vpK(v)|dv < ∞ and

∫
vp−iK(v)dv = 0 for

i = 1, . . . , p− 1, where p = max(λ+ µ0, λ+ υ0, λ+ ν0).

Assumption 2.0.9. E(ε|v, x) = 0 and E(ε2|v, x) is continuous in (v, x).

Assumption 2.0.10. As n→∞,

(1) nh2q
v b

4 →∞;

(2) nh
2 min(λ,µ0)+2 min(λ,ν0)
v b−4 → 0;

(3) h
min(λ,2λ,µ0,ν0)
v b−2 → 0;

(4) b→ 0.

Assumption 2.0.2 indicates that the model suffers from parametric endogeneity.

If this is not the case then we consider Assumption 2.0.9 instead. Furthermore, if

endogeneity is present, then we impose the condition in Assumption 2.0.7 on the

bandwidth parameter; otherwise, Assumption 2.0.10 is used. Assumption 2.0.4

provides the moment conditions on the regressors. Assumptions 2.0.5 and 2.0.6

collectively provide the moment bounds and the smoothness of the density and

regression functions. By Assumption 2.0.8, the kernel function is bounded, inte-

grable and high-order. Assumptions 2.0.7 and 2.0.8 should be satisfied simultane-

ously (see Robinson (1988), for example) in the case of parametric endogeneity,

while Assumptions 2.0.8 and 2.0.10 are used instead for the case where there is

no parametric endogeneity.
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2.5.2 Conditions for Theorems 2.2.1 and 2.2.2

Assumption 2.1.1.

(Vi, Xi, Yi, Zi,Zi) where i = 1, . . . , n are i.i.d. observations.

Assumption 2.1.2.

E(ε|x, v) 6= 0, E(ε|x, η) 6= 0, E(ε|x, z) = 0 and E(e2) = σ2(x, v, η) <∞.

Assumption 2.1.3.

All Xi, Yi and Zi have finite eight moments.

Assumption 2.1.4.

(1) f(v, η) ∈ G∞λ2 for some λ2 = r + p2 ≥ 0;

(2) f(z) ∈ G∞λ1 for some λ1 = r + p1 ≥ 0.

Assumption 2.1.5.

(1) mx(v, η) ∈ G8
µ for some µ > 0;

(2) mv(z) ∈ G8
ν1

for some ν1 > 0;

(3) m(v, η) ∈ G8
ν2

for some ν2 > 0.

Assumption 2.1.6. As n→∞,

(1) n5h6q
v h

6q+4
η hqzz b

4
1b

8
2 →∞;

(2) n3h2q
v h

2q+4
η h3qz

z b4
1b

4
2 →∞;

(3) n1/2h−2
η h

2 min(λ1,ν1)
z b−2

1 b−2
2 → 0;

(4) n−1h−3q
v h−3q−2

η h
2 min(λ1,ν1)
z b−2

1 b−4
2 → 0;

(5) n−3h
4 min(λ2,µ,ν2)
v h

4 min(λ2,µ,ν2)−4
η h−3qz

z b−4
1 b−8

2 → 0;

(6) h
min(λ2,µ,ν2)
v h

min(λ2,µ,ν2)
η h

min(λ1,ν1)
z b−1

1 b−2
2 → 0;

(7) b1 → 0 and b2 → 0.
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Assumption 2.1.7.

(1.1) sup
v,η
|L(r)(v, η)|+

∫
|vp2ηp2L(r)(v, η)|dvdη <∞ and

∫
vp2−iηp2−iL(r)(v, η)dvdη =

0;

(1.2) sup
z
|Kz(z)|+

∫
|zp1Kz(z)|dz <∞ and

∫
zp1−iK(z)dz = 0,

where i = 1, 2, . . . , pl − 1, l is 1 or 2, p2 = max(λ2 + µ, λ2 + ν2) and p1 =

(λ1 + ν1).

Assumption 2.1.8.

(1) E(ε|x, v) 6= 0, E(ε|x, η) 6= 0, E(ε|x, z) 6= 0, and E(ε|Z, z) = 0 and E(e2) =

σ2(Z, v, η) <∞;

(2) mZ(v, η) ∈ G8
υ for some υ > 0.

Assumption 2.1.9. As n→∞,

(1) n5h6q
v h

6q+4
η hqzz b

4
1b

8
2 →∞;

(2) n3h2q
v h

2q+4
η h3qz

z b4
1b

4
2 →∞;

(3) n1/2h−2
η h

2 min(λ1,ν1)
z b−2

1 b−2
2 → 0;

(4) n−1h−3q
v h−3q−2

η h
2 min(λ1,ν1)
z b−2

1 b−4
2 → 0;

(5) n−3h
4 min(λ2,υ,ν2)
v h

4 min(λ2,υ,ν2)−4
η h−3qz

z b−4
1 b−8

2 → 0;

(6) n−3h
4 min(λ2,υ,µ)
v h

4 min(λ2,υ,µ)−4
η h−3qz

z b−4
1 b−8

2 → 0;

(7) h
min(λ2,µ,ν2,υ)
v h

min(λ2,µ,ν2,υ)
η h

min(λ1,ν1)
z b−1

1 b−2
2 → 0;

(8) b1 → 0 and b2 → 0.

Assumption 2.1.2 indicates the presence of nonparametric endogeneity in the

model. Furthermore, note that the moment conditions on Y and X are more

restrictive than those in Robinson (1988) since the estimation procedure involves

a two-step nonparametric estimation procedure in order to address nonparametric
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endogeneity, i.e. compare Assumption 2.1.3 with Assumption 2.0.4 in Section

2.5.1. Assumptions 2.1.4 and 2.1.5 state the smoothness and moment properties

of the density and regression functions, and these are also more restrictive than

Robinson (1988) ones, i.e. compare these with Assumptions 2.0.5 and 2.0.6 in

Section 2.5.1. Given the higher-order kernel function in Assumption 2.1.7, the

bias is sufficiently decreased with Assumptions 2.1.4 and 2.1.5. Assumption 2.1.7

states that the kernel functions used in this paper are bounded, integrable and

high-order.

Note that Assumptions 2.1.6 and 2.1.7 should be satisfied simultaneously. For

example, if the order of L(r) and Kz is greater than 3 (i.e., pl ≥ 3 where l = 1 or

2) then the lower bounds on the rates of decay of hv, hη and hz are no better than

nh12
z → 0, nh6

vh
6
η → 0, and h12

z h
12−3q
v h12−3q

η b−4
1 b−8

2 → 0, no matter which degree

of smoothness prevails. A necessary condition for reconciling the components of

Assumption 2.1.6 is the following:

2/16qz < λ1, 2/16 < ν1, 6/16q < λ2, 6/8q < (λ2+ν2), 6/8q < (λ2+µ) and 6/8q < (ν2+µ).

Assumptions 2.1.8 and 2.1.9 are for the case of the presence of both parametric

endogeneity and nonparametric endogeneity in the model. In particular, Assump-

tion 2.1.8 (1) states that the model suffers from parametric endogeneity as well.

Assumption 2.1.8 (2) states the smoothness of the function mZ(v, η) that suffi-

ciently reduces the bias with Assumption 2.1.7.

2.5.3 Proof of Theorem 2.2.1

By using the notation in Robinson (1988), we rewrite the linear reduced form

including the bias term, as follows:

Yi − Ŷ2,i = (Xi − X̂2,i)
′β + (mi − m̂2,i) + (ei − ê2,i), (2.A.1)
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where mi = g(Vi) + ι(ηi) and ei = εi − ι(ηi). By incorporating the fact that the

endogeneity control regressor is generated, (2.A.1) is rewritten below:

Yi − Ŷ1,i − (Ŷ2,i − Ŷ1,i) = {Xi − X̂1,i − (X̂2,i − X̂1,i)}′β

+ {mi − m̂1,i − (m̂2,i − m̂1,i)}+ {ei − ê1,i − (ê2,i − ê1,i)}

Yi − Ŷ1,i − δy,i = (Xi − X̂1,i − δx,i)′β + (mi − m̂1,i − δm,i)

+ (ei − ê1,i − δe,i), (2.A.2)

where δ̂i = δ̂2,i−δ̂1,i, δ̂1,i =

∑n
j=1 δjKv

(
Vi−Vj
hv

)
Kη
(
ηi−ηj
hη

)
∑n
l=1Kv

(
Vi−Vl
hv

)
Kη
(
ηi−ηl
hη

) and δ̂2,i =

∑n
j=1 δjKv

(
Vi−Vj
hv

)
Kη
(
η̂i−η̂j
hη

)
∑n
l=1Kv

(
Vi−Vl
hv

)
Kη
(
η̂i−η̂l
hη

) ,

and δ̂i is used to denote for δy,i, δx,i, δm,i and δe,i, here. Using (2.A.1) and (2.A.2),

we have:

β̂ − β = S−1

X−X̂2

(
SX−X̂2,m−m̂2

+ SX−X̂2,e−ê2

)
σ̂2 − σ2 =

(
Se−ê2 − σ2

)
+ Sm−m̂2 +

(
β̂ − β

)′
SX−X̂2

(
β̂ − β

)
+ 2Sm−m̂2,e−ê2 − 2

(
β̂ − β

)
SX−X̂2,e−ê2 − 2

(
β̂ − β

)
SX−X̂2,m−m̂2

,

where

SX−X̂2
= Smx−m̂x + Smx−m̂x,U − Smx−m̂x,Û − Smx−m̂x,δx + SU,mx−m̂x + SU − SUÛ
− SUδx − SÛ ,mx−m̂x − SÛU + SÛ + SÛδx − Sδx,mx−m̂x − SδxU + SδxÛ + Sδx

SX−X̂2,m−m̂2
= Smx−m̂x,m−m̂ − Smx−m̂x,δm + SU,m−m̂ − SUδm − SÛ ,m−m̂ + SÛδm − Sδx,m−m̂

+ Sδxδm

SX−X̂2,e−ê2 = Smx−m̂x,e − Smx−m̂x,ê − Smx−m̂x,δe + SUe − SUê − SUδe − SÛe + SÛ ê + SÛδe

− Sδxe + Sδxê + Sδxδe

Sm−m̂2,e−ê2 = Sm−m̂,e − Sm−m̂,ê − Sm−m̂,δe − Sδme + Sδmê + Sδmδe

Se−ê2 = Se − Seê − Seδe − Sêe + Sê + Sêδe − Sδee + Sδeê + Sδe

Sm−m̂2 = Sm−m̂ − Sm−m̂,δm − Sδm,m−m̂ + Sδm .

These decompositions enable us to see the bias from the first step of the estimation

procedure to generate the endogeneity control regressors. We show that β̂ is still
√
n-consistent with these additional bias terms especially in Propositions A.2.2
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to A.2.6. The proof is completed by applying Propositions A.2.1 to A.2.6 below,

which imply, via the Cauchy inequality, that Smx−m̂x,U , Smx−m̂x,Û , SUÛ , Smx−m̂x,δx ,

SUδx , SÛδx , Sm−m̂,e, Sm−m̂,ê, Sδme, Sδmê, Sδmδe , Seê, Seδe , Sêδe , and Sm−m̂,δm all
p→ 0.

We use the notation in Robinson (1988), where Ei(·) = E(·|Vi, Zi), ς = (λ2, µ),

ξ1 = min(λ1, ν1), ξ2 = min(λ2, ν2) and C denotes a generic constant.

Proposition A.2.1.

(1) E|Smx−m̂x| = O(n−1h−qv h−qη b−2
2 + h2ς

v h
2ς
η b
−2
2 );

(2) E|Sm−m̂| = O(n−1h−qv h−qη b−2
2 + h2ξ2

v h2ξ2
η b−2

2 );

(3)
√
nSmx−m̂x,m−m̂ = Op(n

−1/2h−qv h−qη b−2
2 + n1/2hς+ξ2v hς+ξ2η b−2

2 );

(4) SU = ΦU +Op(n
−1/2h

−q/2
v h

−q/2
η b−1

2 + hλ2v h
λ2
η b
−1
2 ) + op(1);

(5) SÛ = Op(n
−1h−qv h−qη b−2

2 );

(6)
√
nSU,m−m̂ = Op(n

−1/2h
−q/2
v h

−q/2
η b−1

2 + hξ2v h
ξ2
η b
−1
2 );

(7)
√
nSÛ ,m−m̂ = Op(n

−1/2h
−q/2
v h

−q/2
η b−2

2 + hξ2v h
ξ2
η b
−2
2 );

(8)
√
nSmx−m̂x,e = Op(n

−1/2h
−q/2
v h

−q/2
η b−1

2 + hςvh
ς
ηb
−1
2 );

(9)
√
nSmx−m̂x,ê = Op(n

−1/2h
−q/2
v h

−q/2
η b−2

2 + hςvh
ς
ηb
−2
2 );

(10)
√
nSÛe = Op(n

−1/2h
−q/2
v h

−q/2
η b−1

2 );

(11)
√
nSUê = Op(n

−1/2h
−q/2
v h

−q/2
η b−1

2 );

(12)
√
nSÛ ê = Op(n

−1/2h
−q/2
v h

−q/2
η b−2

2 );

(13) Sê = Op(n
−1h−qv h−qη b−2

2 );

(14) Se = σ2 + op(1);

(15) SeU →D N(0, σ2ΦU).

Proof: The proofs of Proposition A.2.1 (1) - (15) can be easily obtained by a

simple extension of Robinson (1988). �
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Proposition A.2.2.

(1) E|Sδx | = O
(
n−2h−qv h−q−2

η h
−3qz/2
z b−2

1 b−2
2 + h−2

η h2ξ1
z b−2

1 b−2
2

)
;

(2) E|Sδm| = O
(
n−2h−qv h−q−2

η h
−3qz/2
z b−2

1 b−2
2 + h−2

η h2ξ1
z b−2

1 b−2
2

)
;

(3) E|Sδe| = O
(
n−2h−qv h−q−2

η h
−3qz/2
z b−2

1 b−2
2 + h−2

η h2ξ1
z b−2

1 b−2
2

)
.

Proof: Let us denote δ̂ as δx, δm and δe in the rest of the paper. Now, we

have:

δ̂i = δ̂2,i − δ̂1,i =
1

nhqvh
q
η

n∑
j=1

δj(ŵij − wij), (2.A.3)

where wij =
Kv
(
Vi−Vj
hv

)
Kη
(
ηi−ηj
hη

)
1

nh
q
vh
q
η

∑n
l=1Kv

(
Vi−Vl
hv

)
Kη
(
ηi−ηl
hη

) and ŵij =
Kv
(
Vi−Vj
hv

)
Kη
(
η̂i−η̂j
hη

)
1

nh
q
vh
q
η

∑n
l=1Kv

(
Vi−Vl
hv

)
Kη
(
η̂i−η̂l
hη

) .

By the Taylor series expansion of the kernel function,

Kη

(
η̂i − η̂j
hη

)
= Kη

(
ηi − ηj
hη

)
+

ω2−1∑
r=1

1

r!
K(r)
η

(
ηi − ηj
hη

)(
4ij

hη

)ω2

+Rij,

where4ij = {mv(Zi)−m̂v(Zi)}−{mv(Zj)−m̂v(Zj)}, Rij = 1
ω2!
K

(ω2)
η

(
η̃i−η̃j
hη

)(
4ij
hη

)ω2

which is a remainder term, and η̃i − η̃j is between the segment line of ηi − ηj and

η̂i − η̂j. Hence, ŵij is:

1

nhqvh
q
η

n∑
l=1

Kv

(
Vi − Vl
hv

)
Kη

(
η̂i − η̂l
hη

)
= A0,i +

ω2−1∑
r=1

1

r!
Ar,i4r

il +Ril, (2.A.4)

where:

A0,i =
1

nhqvh
q
η

n∑
l=1

Kv

(
Vi − Vl
hv

)
Kη

(
ηi − ηl
hη

)
= f̂(Vi, ηi)

Ar,i =
1

nhqvh
q+r
η

n∑
l=1

Kv

(
Vi − Vl
hv

)
K(r)
η

(
ηi − ηl
hη

)
= f̂ (r)

η (Vi, ηi),

where f̂
(r)
η (v, η) is the rth partial derivative of the joint density function of (v, η)

with respect to η. The main dominating terms in (2.A.4) are:

A1,1,i = {mv(Zi)− m̂v(Zi)} f̂ (1)
η (Vi, ηi) (2.A.5)

A1,2,i =
1

nhqvh
q+1
η

n∑
l=1

Kv

(
Vi − Vl
hv

)
K(1)
η

(
ηi − ηl
hη

)
× {mv(Zl)− m̂v(Zl)} . (2.A.6)
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We firstly consider (2.A.5) by the boundedness condition on the kernel function

and the smoothness on the function mv(z):

E ({mv(Zi)− m̂v(Zi)})2 ≤ (nhqzz b1)−2E(Tz)
2 = O(n−1h−qzz b−2

1 +h2ξ1
z b−2

1 ), (2.A.7)

where Tz =
∑

i ti with ti = (mv,1 −mv,i)Kz,1i and

E(Tz)
2 ≤ C

(
E (
∑

i=1 ti − t)
2 + n2E(t2)

)
= O(nhqzz + n2h2ξ1

z ) with t = E1(ti) and

ti− t are independent with a mean of 0, and by the boundedness condition on the

kernel function:

E
(
f̂ (1)
η (Vi, ηi)

)2

= (nhqvh
q+1
η )−2E

(∑
i

L
(1)
1i

)2

= O(n−1h−qv h−q−2
η ).

By the Cauchy inequality:

A1,1,i = Op

(
n−1h−q/2v h−q/2−1

η h−qz/2z b−1
1 + n−1/2h−q/2v h−q/2−1

η hξ1z b
−1
1

)
. (2.A.8)

By the i.i.d. assumption, we have the second moment bound of (2.A.6) as follows:

E(A1,2,i)
2 ≤

(
n2hqvh

q+1
η hqzz b

1
1

)−2

[
E

{
n∑
l=1

(
L

(1)
1l

)2

T 2
z

}
+ E

∣∣∣∣∣
n∑
l=1

n∑
j 6=l

(
L

(1)
1l

)(
L

(1)
1j

)
T 2
z

∣∣∣∣∣
]
.

(2.A.9)

The first term in (2.A.9) is:

E

{
n∑
l=1

(
L

(1)
1l

)2

T 2
z

}
≤ CE

{(
L(1)(0)

)2
+ n

(
L

(1)
1l

)2

t
(2)
z,2 + n

(
L

(1)
1l

)2

T 2
z,2

}
,

where Tz,2 = Tz − tz,2 and tz,2 = (mv,1 −mv,2)Kz,12, and by bound condition on

the kernel function and the bounded moment condition on the mv(z) function:

E

{(
L

(1)
1l

)2

t2z,2

}
≤

[
E

{
El

(
L

(1)
1l

)4
}
E(t4z,2)

]1/2

= O(hqvh
q
ηh

qz
z )1/2 (2.A.10)

E

{(
L

(1)
1l

)2

T 2
z,2

}
≤

[
E

{
El

(
L

(1)
1l

)2
}
E

{
El

(
L

(1)
1l

)2

T 4
z,2

}]1/2

= O
(
n1/2hqvh

q
ηh

qz/2
z + n2hqvh

q
ηh

2(qz+ξ1)
z

)
, (2.A.11)

where E(Tz)
4 = O

(
nhqzz + n4h

4(qz+ξ1)
z

)
by the similar argument as in (2.A.7).

Hence the first term on the right-hand side in (2.A.9) is
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O(n−5/2h−qv h−q−2
η h

−3qz/2
z b−2

1 +n−1h−qv h−q−2
η h2ξ1

z b−2
1 ). The second term on the right-

hand side in (2.A.9) is bounded by:

≤ C(n−3h−2q
v h−2(q+1)

η h−2qz
z b−2

1 )E

{(
L

(1)
1l

)2

T 2
z,2 + n

(
L

(1)
1l L

(1)
1j

) (
t2z,2 + t2z,3 + T 2

z,3

)}
,

where Tz,3 = Tz,2 − tz,3, and

E

((
L

(1)
1l

)2

T 2
z,2

)
= O

(
nhqvh

q
ηh

qz
z + n2hqvh

q
ηh

2(qz+ξ1)
z

)
E
(∣∣∣L(1)

1l L
(1)
1j

∣∣∣ t2z,ı) ≤ [
E

{
El

(
L

(1)
1l

)2
}
E

{
Ej

(
L

(1)
1j

)2

t4z,ı

}]1/2

= O(hqvh
q
ηh

qz/2
z ) (2.A.12)

E
(∣∣∣L(1)

1l L
(1)
1j

∣∣∣T 2
z,2

)
≤

[
E
{
El

(
L

(1)
1l

)
Ej

(
L

(1)
1j

)}
E
{
El

(
L

(1)
1l

)
Ej

(
L

(1)
1j

)
T 4
z,2

}]1/2

= O
(
n1/2h2q

v h
2q
η h

qz/2
z + n2h2q

v h
2q
η h

2(qz+ξ1)
z

)
, (2.A.13)

where ı = 2 or 3. The second term in (2.A.9) isO
(
n−2h−qv h−q−2

η h
−3qz/2
z b−2

1 + h−2
η h2ξ1

z b−2
1

)
.

Hence, we have:

A1,2,i = Op

(
n−1h−q/2v h−q/2−1

η h−qz/4z b−1
1 + h−1

η hξ1z b
−1
1

)
. (2.A.14)

We obtain the following results:

ŵij − wij =
(
f̂(v, η) + op(1)

)−1

Kv

(
Vi − Vj
hv

){
Kη

(
η̂i − η̂j
hη

)
−Kη

(
ηi − ηj
hη

)}
=

(
f̂(v, η) + op(1)

)−1

Kv

(
Vi − Vj
hv

)
×

{
1

hη
K(1)
η

(
ηi − ηj
hη

)
4ij

ω2−1∑
r′=2

1

r′!
K(r′)
η

(
ηi − ηj
hη

)(
4ij

hη

)r′
+Rij

}
and:

δ̂i =

{
B1,i4ij +

∑ω2−1
r′=2

1
r′!
Br′,i4r′

ij +Rij

}
f̂(Vi, ηi)

, (2.A.15)

where

B1,i =
1

nhqvh
q+1
η

n∑
j=1

δjKv

(
Vi − Vj
hv

)
K(1)
η

(
ηi − ηj
hη

)
and

Br′,i =
1

nhqvh
q+r′
η

n∑
j=1

δjKv

(
Vi − Vj
hv

)
K(r′)
η

(
ηi − ηj
hη

)
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by (2.A.8) and (2.A.14), and the Taylor series expansion of the kernel function.

Hence we have:

δ̂i =

1

nhqvh
q+1
η

∑n
j=1 δjKv

(
Vi−Vj
hv

)
K

(1)
η

(
ηi−ηj
hη

)
{mv(Zj)− m̂v(Zj)}

f̂(Vi, ηi)

+ Op

(
n−1h−q/2v h−q/2−1

η h−qz/2z b−1
1 + n−1/2h−q/2v h−q/2−1

η hξ1z b
−1
1

)
+ op(1), (2.A.16)

since E (mv(z)− m̂v(z))2 = O(n−1h−qzz b−2
1 +h2ξ1

z b−2
1 ) andE (B1,i)

2 = O(n−1h−qv h−q−2
η )

by the boundedness condition on the kernel function.

Using (2.A.16),

E|Sδ̂| ≤ (nhqzz )−2E

{
1

n

n∑
i=1

|δ̆i|2I2,iT
2
z I1

}
(2.A.17)

+ (nhqzz )−2

∣∣∣∣∣E
{

1

n

n∑
i=1

n∑
j 6=i

δ̆iδ̆
′
jI2,iI

′
2,jT

2
z I1

}∣∣∣∣∣ , (2.A.18)

where δ̆i = f̂(Vi, ηi)
−1 1

nhqvh
q+1
η

∑n
j=1 δjL

(1)
ij . Because

E(|δ̆1|2I2,1|Ln) ≤ (nhqvh
q+1
η b2)−2E

(∑n
i=1 |δi|2

(
L

(1)
1i

)2

|Ln
)

, a.s., the right hand

side of (2.A.17) is bounded by (n2hqvh
q+1
η hqzz b1b2)−2 multiplies by:

E

(
n∑
i=1

|δi|2
(
L

(1)
1i

)2

T 2
z

)
≤ CE

(
|δ1|2T 2

z + n|δ2|2
(
L

(1)
12

)2

t2z,2 + n|δ2|2
(
L

(1)
12

)2

T 2
z,1

)
,

(2.A.19)

where Ln = (V1× η1, . . . , Vn× ηn). Consider the first term on the right-hand side

of (2.A.19). By the Cauchy inequality and the similar argument as in (2.A.7):

E(|δ1|2T 2
z ) ≤ {E|δ1|4E(T 4

z )}1/2 = O
(
n1/2hqz/2z + n2h2(qz+ξ1)

z

)
.

Similarly, as in (2.A.10) and (2.A.11) with the moment restrictions on δi , the

other two terms in (2.A.19) are:

E

(
|δ2|2

(
L

(1)
12

)2

t2z,2

)
≤
[
E

{
|δ2|4E2

(
L

(1)
12

)4
}
E(t4z,2)

]1/2

= O(hqvh
q
ηh

qz
z )1/2,

and:

E

(
|δ2|2

(
L

(1)
12

)2

T 2
z,1

)
≤

[
E

{
|δ2|4E2

(
L

(1)
12

)2
}
E

{
E1

(
L

(1)
12

)2

T 4
z,1

}]1/2

= O
(
n1/2hqvh

q
ηh

qz/2
z + n2hqvh

q
ηh

2(qz+ξ1)
z

)
.
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Thus (2.A.17) equals O(n−3h
−3q/2
v h

−3q/2−2
η h

−3qz/2
z b−2

1 b−2
2 +n−1h−qv h−q−2

η h2ξ1
z b−2

1 b−2
2 ).

Next, we consider (2.A.18):

E
(
δ̆1δ̆
′
2I2,1I

′
2,2|L

)
= (nhqvh

q+1
η )−2f̂(V1, η1)−1f̂(V2, η2)−1E

(
n∑
i=1

|δi|2L(1)
1i L

(1)
2i |L

)
.

Therefore, (2.A.18) is bounded by:(
n−3h−2q

v h−2q−2
η h−2qz

z b−2
1 b−2

2

)
×CE

{(
|δ1|2 + |δ2|2

)(
t2z,2 +

∣∣∣L(1)
12

∣∣∣2 T 2
z,1

)
+ n|δ3|2

∣∣∣L(1)
13 L

(1)
23

∣∣∣ (t2z,2 + t2z,3 + T 2
z,2)

}
,

where Tz,2 = Tz,1 − tz,3. Similar to the procedure in (2.A.10) and (2.A.11), for

ı = 1 or 2, we have:

E(|δl|2t2z,2) = O(hqz/2z ),

and:

E

(
|δı|2

∣∣∣L(1)
12

∣∣∣2 T 2
z,1

)
= O

(
nhqvh

q
ηh

qz
z + n2hqvh

q
ηh

2(qz+ξ1)
z

)
.

As in (2.A.12) and (2.A.13) with the bounded moment restriction on δi, for ı = 2

or 3, we have:

E
(
|δ3|2

∣∣∣L(1)
13 L

(1)
23

∣∣∣ t2z,ı) ≤ [E {|δ3|4E3

(
L

(1)
13

)2
}
E

{
E3

(
L

(1)
23

)2

t4z,ı

}]1/2

= O(hqvh
q
ηh

qz/2
z ),

and:

E
(
|δ3|2

∣∣∣L(1)
13 L

(1)
23

∣∣∣T 2
z,2

)
≤

[
E
{
|δ3|4E1

∣∣∣L(1)
13

∣∣∣E3

∣∣∣L(1)
23

∣∣∣}E {E1

∣∣∣L(1)
13

∣∣∣E3

∣∣∣L(1)
23

∣∣∣T 4
z,2

}]1/2

,

= O
(
n1/2h2q

v h
2q
η h

qz/2
z + n2h2q

v h
2q
η h

2(qz+ξ1)
z

)
.

Thus (2.A.18) = O
(
n−2h−qv h−q−2

η h
−3qz/2
z b−2

1 b−2
2 + h−2

η h2ξ1
z b−2

1 b−2
2

)
. �

Proposition A.2.3.

(1)
√
nSδxδe = Op

(
n−3/2h−qv h−q−2

η h
−3qz/2
z b−2

1 b−2
2 + n1/2h−2

η h2ξ1
z b−2

1 b−2
2

)
;

(2)
√
nSδxδm = Op

(
n−3/2h−qv h−q−2

η h
−3qz/2
z b−2

1 b−2
2 + n1/2h−2

η h2ξ1
z b−2

1 b−2
2

)
.
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Proof: The Cauchy inequality and Proposition A.2.2 (1) to (3) provide the

proof. �

Proposition A.2.4.

(1)
√
nSUδm = Op

(
n−1h

−q/2
v h

−q/2−1
η h

−7qz/8
z b−1

1 b−1
2 + h−1

η hξ1z b
−1
1 b−1

2

)
;

(2)
√
nSUδe = Op

(
n−1h

−q/2
v h

−q/2−1
η h

−7qz/8
z b−1

1 b−1
2 + h−1

η hξ1z b
−1
1 b−1

2

)
;

(3)
√
nSeδx = Op

(
n−1h

−q/2
v h

−q/2−1
η h

−7qz/8
z b−1

1 b−1
2 + h−1

η hξ1z b
−1
1 b−1

2

)
.

Proof: Let us denote εi as Ui and ei in the rest of the paper. Then, by identity

distribution:

E(
√
nSεδ̂)

2 ≤ E

{
1

n

n∑
i=1

δ̆2
i I2,iI1|ε1|2

}
(2.A.20)

+

∣∣∣∣∣E
{

1

n

n∑
i=1

n∑
j 6=i

δ̆iδ̆jI2,iI2,jI1|ε1|2
}∣∣∣∣∣ . (2.A.21)

Because E(|δ̆1|2I2,1|Ln) ≤ (nhqvh
q+1
η b2)−2E

(∑n
i=1 |δi|2

(
L

(1)
1i

)2

|L
)
a.s., the right-

hand side of (2.A.20) is bounded by (n2hqvh
q+1
η hqzz b1b2)−2 multiplies by:

E(δ2
i |ε|2) ≤

[
E|ε|4E{δi}4

]1/2 ≤
E|ε|4E{E( n∑

i=1

|δi|8
(
L

(1)
1i

)8
)
E(T 8

z )

}1/2
1/2

,

by the Cauchy inequality. By the bound condition on the kernel function, the

sum in the above bracket is:(
L

(1)
11

)8

E|δ|8 + (n− 1)E

(
|δ2|8

∣∣∣L(1)
12

∣∣∣8)
≤ CE|δ|8 + nE

{
|δ|8E2

(
L

(1)
12

)8
}
≤ C(1 + nhqvh

q
η)E|δ|8.

By the similar argument as in (2.A.7), we have:

E(T 8
z ) = O

(
nhqzz + n8h8(qz+ξ1)

z

)
.

Hence (2.A.20) equals

O(n−7/2h
−7q/4
v h

−7q/4−2
η h

−7qz/4
z b−2

1 b−2
2 + n−7/4h

−7q/4
v h

−7q/4−2
η h2ξ1

z b−2
1 b−2

2 ).
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Next, we consider (2.A.21):

E
(
δ̆1δ̆2I2,1I2,2|Ln

)
= (nhqvh

q+1
η )−2f̂−1(V1, η1)f̂−1(V2, η2)E

(
n∑
i=1

|δi|2L(1)
1i L

(1)
2i |Ln

)
.

(2.A.21) is therefore bounded by:(
n−3h−2q

v h−2q−2
η h−2qz

z b−2
1 b−2

2

)
C

×E
{

(|δ1|2 + |δ2|2)

(
t2z,2 +

∣∣∣L(1)
12

∣∣∣2 T 2
z,1

)
+ n|ε|2|δ3|2

∣∣∣L(1)
13 L

(1)
23

∣∣∣ (t2z,2 + t2z,3 + T 2
z,2)

}
.

Similar to (2.A.10) and (2.A.11), and with the bounded moment conditions on δi,

we have:

E

(
|δı|2

∣∣∣L(1)
12

∣∣∣2 T 2
z,1

)
= O

(
nhqvh

q
ηh

qz
z + n2hqvh

q
ηh

2(qz+ξ1)
z

)
,

and, for ı = 1 or 2, we have:

E(|δı|2t2z,2) ≤
{
E|δ4

l |E(t4z,2)
}1/2

= O(hqz/2z ).

By the Cauchy inequality, and the bound condition on the kernel function and

the bounded moment condition on the function mv(z), for ı = 2 or 3, we have:

E
(
|ε|2|δ3|2

∣∣∣L(1)
13 L

(1)
23

∣∣∣ t2z,ı)
≤
[
E|ε|4E

{
|δ3|4

(
L

(1)
13 L
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23
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}]1/2

≤

[
E|ε|4

(
E
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|δ3|8E3

(
L
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E3

(
L
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(
L
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23
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]1/2

= O
(
hqvh

q
ηh

qz/4
z

)
.

By the Cauchy inequality, the bound condition on the kernel function and the

similar argument as in (2.A.7):

E
(
|ε|2|δ3|2
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23
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)
E3

(
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×
[
E
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E
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(
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2q
η h

qz/4
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z

)
.
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Thus (2.A.21) equals

O
(
n−2h−qv h−q−2

η h
−7qz/4
z b−2

1 b−2
2 + h−2

η h2ξ1
z b−2

1 b−2
2

)
. �

Proposition A.2.5.

(1)
√
nSÛδm = Op

(
n−5/4h

−3q/2
v h

−3q/2−1
η h

−3qz/4
z b−1

1 b−2
2 + n−1/2h

−3q/2
v h

−3q/2−1
η hξ1z b

−1
1 b−2

2

)
;

(2)
√
nSÛδe = Op

(
n−5/4h

−3q/2
v h

−3q/2−1
η h

−3qz/4
z b−1

1 b−2
2 + n−1/2h

−3q/2
v h

−3q/2−1
η hξ1z b

−1
1 b−2

2

)
;

(3)
√
nSêδx = Op

(
n−5/4h

−3q/2
v h

−3q/2−1
η h

−3qz/4
z b−1

1 b−2
2 + n−1/2h

−3q/2
v h

−3q/2−1
η hξ1z b

−1
1 b−2

2

)
.

Proof: Let us denote ε̂i as Ûi and êi in the rest of the paper.

E(
√
nSε̂δ̂)

2 ≤ E

{
1

n

n∑
i=1

|ε̂i|2I2,iδ̆
2
i I2,iI1,i

}
(2.A.22)

+

∣∣∣∣∣E
{

1

n

n∑
i=1

n∑
j 6=i

ε̂iε̂
′
j δ̆iδ̆jI1,iI1,jI2,iI

′
2,jI

′
2,jI2,i

}∣∣∣∣∣ , (2.A.23)

where ε̂i = f̂−1(Vi, ηi)
1

nhqvh
q
η

∑n
j=1 εjKv

(
Vi−Vj
hv

)
Kη

(
ηi−ηj
hη

)
. Because we have:

E(|ε̂1|2I2,1|Ln) ≤ (nhqvh
q
ηb2)−2E

(
n∑
i=1

|ε|2L2
1i|Ln

)
a.s.,

the right-hand side of (2.A.22) is bounded by (n3h2q
v h

2q+1
η hqzz b1b

2
2)−2 multiplies by

E

(
n∑
i=1

|εi|2L2
1i

n∑
j=1

|δj|2
(
L

(1)
1j

)2

T 2
z

)
≤

{
E

(
n∑
i=1

|εi|4L4
1i

n∑
j=1

|δj|4
(
L

(1)
1j

)4
)
E(T 4

z )

}1/2

,

(2.A.24)

where L1i = Kv

(
V1−Vi
hv

)
Kη

(
η1−ηi
hη

)
. By the bound condition on the kernel func-

tion:

E

(
n∑
i=1

|εi|4L4
1i

n∑
j=1

|δj|4
(
L

(1)
1j

)4
)
≤ C

[
E|ε|4 + n

{
|δ1|4E1(L4

12)
}]

+ C
[
n2E

{
|ε3|4E1(L4

13)|δ2|4E1

(
L

(1)
12

)4
}]

= O(n2h2q
v h

2q
η ).

51



Chapter 2. Endogeneity in a PL Model

Hence (2.A.24) is O
(
n3/2hqvh

q
ηh

qz/2
z + n3hqvh

q
ηh

2(qz+ξ1)
z

)
. The right-hand side of

(2.A.22) therefore equalsO
(
n−9/2h−3q

v h−3q−2
η h

−3qz/2
z b−2

1 b−4
2 + n−3h−3q

v h−3q−2
η h2ξ1

z b−2
1 b−4

2

)
.

Next, consider (2.A.23).

E(ε̂1ε̂
′
2I2,1I

′
2,2|Ln) = (nhqvh

q
η)
−2f̂−1(V1, η1)f̂−1(V2, η2)E (

∑n
i=1 |εi|2L1iL2i|Ln), so (2.A.23)

is bounded by:

(n5h4q
v h

4q+2
η h2qz

z b2
1b

4
2)−1

E{( n∑
i=1

|εi|2L1iL2i

)(
n∑
j=1

|δj|2L(1)
1j L

(1)
2j

)}2

E(T 4
z )

1/2

,

and the sum in the bracket above is, by the bound condition on the kernel function:

E

{(
n∑
i=1

|εi|2L1iL2i

)(
n∑
j=1

|δj|2L(1)
1j L

(1)
2j

)}2

≤ E
{(
|ε1|4|L12|+ n2|ε3|4E3|L2

13L
2
23|
)

×
(
|δ1|4

∣∣∣L(1)
12

∣∣∣+ |δ3|4
∣∣∣L(1)

13 L
(1)
23

∣∣∣2 + n2|δ4|4E4

∣∣∣L(1)
14 L

(1)
24

∣∣∣2)}
= O(n4h2q

v h
2q
η ).

Hence (2.A.23) equalsO
(
n−5/2h−3q

v h−3q−2
η h

−3qz/2
z b−2

1 b−4
2 + n−1h−3q

v h−3q−2
η h2ξ1

z b−2
1 b−4

2

)
.

�

Proposition A.2.6.

(1)

√
nSmx−m̂x,δm = Op

(
n−3/2h−3q/4

v h−3q/4−1
η h−qz/4z b−1

1 b−2
2 + n−3/4h−3q/4

v h−3q/4−1
η hξ1z b

−1
1 b−2

2

)
+ Op

(
n−3/4hςvh

ς−1
η h−3qz/4

z b−1
1 b−2

2 + hςvh
ς−1
η hξ1z b

−1
1 b−2

2

)
;

(2)

√
nSmx−m̂x,δe = Op

(
n−3/2h−3q/4

v h−3q/4−1
η h−qz/4z b−1

1 b−2
2 + n−3/4h−3q/4

v h−3q/4−1
η hξ1z b

−1
1 b−2

2

)
+ Op

(
n−3/4hςvh

ς−1
η h−3qz/4

z b−1
1 b−2

2 + hςvh
ς−1
η hξ1z b

−1
1 b−2

2

)
;

(3)

√
nSm−m̂,δx = Op

(
n−3/2h−3q/4

v h−3q/4−1
η h−qz/4z b−1

1 b−2
2 + n−3/4h−3q/4

v h−3q/4−1
η hξ1z b

−1
1 b−2

2

)
+ Op

(
n−3/4hξ2v h

ξ2−1
η h−3qz/4

z b−1
1 b−2

2 + hξ2v h
ξ2−1
η hξ1z b

−1
1 b−2

2

)
.

52



Appendix – Section 2.5

Proof: Let us denote ϕi as mx,i and mi, and ϕ̂i as m̂x,i and m̂i.

E
(√

nSϕ−ϕ̂,δ̂

)2

≤ E

{
1

n

n∑
i=1

(ϕi − ϕ̂i)2δ̆2
i I2,iI

′
2,iI1,i

}
(2.A.25)

+

∣∣∣∣∣E
{

1

n

n∑
i=1

n∑
j 6=i

(ϕi − ϕ̂i)(ϕj − ϕ̂j)′I2,iI
′
2,jI

′
2,jI2,iδ̆iδ̆jI1,iI1,j

}∣∣∣∣∣ .(2.A.26)

The right-hand side of (2.A.25) is bounded by (n3h2q
v h

2q+1
η hqzz b1b

2
2)−2 multiplies by

E

{
n∑
i=1

(ϕ1 − ϕi)2L2
1i

n∑
j=1

(mv,1 −mv,j)
2K2

z,1j

n∑
l=1

|δl|2
(
L

(1)
1l

)2
}

≤

E{ n∑
i=1

(ϕ1 − ϕi)2L2
1i

n∑
j=1

(mv,1 −mv,j)
2K2

z,1j

}2

E

{
n∑
l=1

|δl|2
(
L

(1)
1l

)2
}2
1/2

≤

{(E(T 8
z )E(T 8

ϕ))
}1/2

E

{
n∑
l=1

|δl|2
(
L

(1)
1l

)2
}2
1/2

, (2.A.27)

by the Cauchy inequality. By the similar argument as in (2.A.7), we have:

E(T 8
ϕ) = O

(
nhqvh

q
η + n8h8(q+ξ)

v h8(q+ξ)
η

)
,

where ξ = ξ2 when ϕi = mx,i and ξ = ς when ϕi = mi. By the bound condition

on the kernel function, the last term in (2.A.27) is:

E

{
n∑
l=1

|δl|2
(
L

(1)
1l

)2
}2

≤
(
L

(1)
11

)4

E|δ|4 + (n− 1)E

(
|δ2|4

(
L

(1)
12

)4
)

+(n2 − 1)E

{
|δ2|2|δ3|2

(
L

(1)
12 L

(1)
13

)2
}

≤ CE|δ|4 + nE

{
|δ2|4E2

(
L

(1)
12

)4
}

+ n2E

{
|δ2|2|δ3|2E1

(
L

(1)
12

)2

E3

(
L

(1)
13

)2
}

≤ C
(
1 + nhqvh

q
η + n2h2q

v h
2q
η

)
E|δ|4.

Hence (2.A.27) is:

O
(
n3/2h5q/4

v h5q/4
η hqz/4z + n13/4h3q+2ξ

v h3q+2ξ
η hqz/4z + n13/4h5q/4

v h5q/4
η h2(qz+ξ1)

z

+n5h3q+2ξ
v h3q+2ξ

η h2(qz+ξ1)
z

)
.

53



Chapter 2. Endogeneity in a PL Model

The right-hand side of (2.A.25) equals:

O
(
n−9/2h−11q/4

v h−11q/4−2
η h−7qz/4

z b−2
1 b−4

2 + n−11/4h−q+2ξ
v h−q−2+2ξ

η h−7qz/4
z b−2

1 b−4
2

+ n−11/4h−11q/4
v h−11q/4−2

η h2ξ1
z b−2

1 b−4
2 + n−1h−q+2ξ

v h−q−2+2ξ
η h2ξ1

z b−2
1 b−4

2

)
.

Next, we consider (2.A.26). Since we already know that:

E(δ̆1δ̆2I2,1I2,2|L) ≤ C(nhqvhq+1
η b2)−2E

(
n∑
i=1

|δi|2  L
(1)
1i L

(1)
2i |L

)
a.s.,

(2.A.26) is bounded by
(
n−5h−4q

v h−4q−2
η h−2qz

z b−2
1 b−4

2

)
multiplies by

E
{

(|δ1|2 + |δ2|2)
(
t2z,2t

2
ϕ,2 +

∣∣∣L(1)
12

∣∣∣T 2
z,1T

2
ϕ,1

)
+ n|δ3|2

∣∣∣L(1)
12 L

(1)
23

∣∣∣ (t2z,2t2ϕ,2 + t2z,3t
2
ϕ,3 + T 2

z,2T
2
ϕ,2)
}
,

where Tϕ,2 = Tϕ,1 − tϕ,3. By the bound condition on the kernel function and the

bound moment condition on the functions mv(z), m(v, η) and mx(v, η):

E(|δl|2t2z,2t2ϕ,2) = O(hqvh
q
ηh

qz
z )

and, by the bound condition on the kernel function and the similar argument as

in (2.A.7), for ı = 2 or 3:

E
(
|δı|2

∣∣∣L(1)
12

∣∣∣T 2
z,1T

2
ϕ,1

)
=

O
(
n2h2q

v h
2q
η h

qz
z + n3h3q+2ξ

v h3q+2ξ
η hqzz + n3h2q

v h
2q
η h

2(qz+ξ1)
z + n4h(3q+2ξ)

v h(3q+2ξ)
η h2(qz+ξ1)

z

)
.

By the bound condition on the kernel function and the bound moment condition

on the functions mv(z), m(v, η) and mx(v, η), for ı = 2 or 3:

E
(
|δ3|2

∣∣∣L(1)
12 L

(1)
23

∣∣∣ t2z,ıt2ϕ,ı) ≤ [
E

{
|δ3|4E3

(
L

(1)
13

)2

E3

(
L

(1)
23

)2
}
E
{
t4z,ıt

4
ϕ,ı

}]1/2

= O
(
h2q
v h

2q
η h

qz
z

)1/2
.

By the bound condition on the kernel function and the similar argument as in

(2.A.7),

E
(
|δ3|2

∣∣∣L(1)
13 L

(1)
23

∣∣∣T 2
z,2T

2
ϕ,2

)
≤ E

[{
|δ3|4E1

∣∣∣L(1)
13

∣∣∣E3

∣∣∣L(1)
23

∣∣∣}E {T 4
z,2T

4
ϕ,2E1

(∣∣∣L(1)
13

∣∣∣E3

∣∣∣L(1)
23

∣∣∣)}]1/2
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which is O
(
nh

5q/2
v h

5q/2
η h

qz/2
z + n5/2h

5q/2
v h

5q/2
η h

2(qz+ξ1)
z + n5/2h4q+2ξ

v h4q+2ξ
η h

qz/2
z

)
+O

(
n4h

(4q+2ξ)
v h

(4q+2ξ)
η h

2(qz+ξ1)
z

)
. Hence (2.A.26) is:

O
(
n−3h−3q/2

v h−3q/2−2
η h−3qz/2

z b−2
1 b−4

2 + n−3/2h−3q/2
v h−3q/2−2

η h2ξ1
z b−2

1 b−4
2

+n−3/2h2ξ
v h

2ξ−2
η h−3qz/2

z b−2
1 b−4

2 + h2ξ
v h
−2+2ξ
η h2ξ1

z b−2
1 b−4

2

)
.

�

2.5.4 Proof of Theorem 2.2.2

Let us define m̌(v) = 1
n

∑n
i=1m(v, ηi). We omit τ in m̂τ (v) and β̂τ throughout the

proof, since it is a trivial indicator for the proof of the consistency of the unknown

structural function. The condition of boundness on the function m(v, η) and the

i.i.d. assumption on ηi allow us to apply the Chebyshev’s law of large numbers as

carried out by Gao et al. (2006):

m̂(v)−m(v) = m̂(v)− m̌(v) + m̌(v)−m(v)

= m̂(v)− m̌(v) +Op(n
−1/2),

where:

m̂(v)− m̌(v) =
1

n

n∑
i=1

{m̂(v, η̂i)−m(v, ηi)} . (2.A.28)

Given β̂ and by using the definition of m(v, ηi), we can rewrite the term in the

bracket of (2.A.28) as:

m̂(v, η̂i)−m(v, ηi) = {m̂y(v, ηi)−my(v, ηi) + δmy ,i}

− {m̂x(v, ηi)−mx(v, ηi) + δmx,i}′β

− {m̂x(v, ηi)−mx(v, ηi) + δmx,i}′{β̂ − β}

= {m̂y∗∗(v, ηi)−my∗∗(v, ηi) + δy∗∗,i}

− {m̂x(v, ηi)−mx(v, ηi) + δmx,i}′{β̂ − β}, (2.A.29)

where δmy ,i = m̂y(v, η̂i)− m̂y(v, ηi), δmx,i = m̂x(v, η̂i)− m̂x(v, ηi), Y
∗∗
i = Yi−X ′iβ,

and δy∗∗,i = δy,i − δ′x,iβ = m̂(y∗∗|v, η̂i) − m̂(y∗∗|v, ηi). We use a similar set of
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arguments as in Propositions A.2.1 (1) - (2) and A.2.2 (1) - (3), and uniform

boundness in Härdle et al. (1993). Let ψi be a possibly quantity for which we

show that, for all integers l ≥ 1:

sup
i
|ψi| = op(n

a) since sup
i
E
(
ψi/n

a∗
)2l

= O(1),

where a∗ < a (see step (ii) in section 4 of Härdle et al. (1993), for details about

this). Hence we have, uniformly in i:

m̂x(v, ηi)−mx(v, ηi) = Op

(
(nhqvh

q
ηb

2
2)−1/2 + hςvh

ς
ηb
−1
2

)
,

and:

δx,i = Op

(
n−1h−q/2v h−q/2−1

η h−qz/4z b−1
1 b−1

2 + h−1
η hξ1z b

−1
1 b−1

2

)
.

Hence (2.A.29) is:

m̂(v, η̂i)−m(v, ηi) = {m̂y∗∗(v, ηi)−my∗∗(v, ηi) + δy∗∗,i}+ op(1), (2.A.30)

where δy∗∗ = Op

(
n−1h

−q/2
v h−1

η h
−qz/4
z b−1

1 b−1
2 + h−1

η hξ1z b
−1
1 b−1

2

)
uniformly in i.

Take the sample mean version of the marginal integration of equation (2.A.30),

1

n

n∑
i=1

{m̂(v, η̂i)−m(v, ηi)} =
1

n

n∑
i=1

{m̂y∗∗(v, ηi)−my∗∗(v, ηi)}+ op(1)

≡ 1

n

n∑
i=1

{m̂(v, ηi)−m(v, ηi)}+ op(1). (2.A.31)

Define m̃(v, ηi) = m̂(v, ηi)f̂(v, ηi). We then rewrite the last term in the bracket of

(2.A.31) as:

m̂(v, ηi)−m(v, ηi) =
m̃(v, ηi)−m(v, ηi)f̂(v, ηi)

f̂(v, ηi)

=
m̃(v, ηi)−m(v, ηi)f̂(v, ηi)

f(v, ηi)

×

[
1− f̂(v, ηi)− f(v, ηi)

f̂(v, ηi)

]
. (2.A.32)

Note that the term
(
f̂(v, ηi)− f(v, ηi)

)
/f̂(v, ηi) isOp

(
hp2v h

p2
η b
−1
2 + (nhqvh

q
ηb

2
2)−1/2

)
uniformly in i and hence it can be dropped. We now consider the bias term:

E(m̂(v, ηi)−m(v, ηi)) = f−1(v, ηi)
(
Em̃(v, ηi)−m(v, ηi)E(f̂(v, ηi))

)
,
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where:

Em̃(v, ηi) = E

[
1

nhqvh
q
η

n∑
j=1

Kv

(
Vj − v
hv

)
Kη

(
ηj − ηi
hη

)
Y ∗∗j

]

= E

[
Ev,ηi

{
1

nhqvh
q
η

n∑
j=1

Kv

(
Vj − v
hv

)
Kη

(
ηj − ηi
hη

)
Y ∗∗j

}]

= E

[
1

nhqvh
q
η

n∑
j=1

Kv

(
Vj − v
hv

)
Kη

(
ηj − ηi
hη

)
m(Vj, ηj)

]

= f(v, ηi)m(v, ηi) +Kv,p2hp2v
p2∑
r=1

f (r)
v (v, ηi)m

(p2−r)(v)

+ Kη,p2hp2η
p2∑
r=1

f (r)
η (v, ηi)m

(p2−r)(ηi) +O(hp2+1
v ) +O(hp2+1

η ).

Ev,ηi denotes as the expectation conditional on v and ηi, and Kv,p2 =
∫
vp2Kv(v)dv

and Kη,p2 =
∫
ηp2Kη(η)dη. Hence we have:

E(m̂(v, ηi)−m(v, ηi)) = {hp2v Bv(v, ηi) + hp2η Bη(v, ηi)}+ o(1). (2.A.33)

The single sum of (2.A.33) converges to its population mean by Chebyshev’s law

of large numbers; see Linton & Härdle (1996), for example. Now we consider the

variance term. Note that f(v, ηi) = f(v, η) + Op(n
1/2) and m(v, ηi) = m(v, η) +

Op(n
−1/2) by the law of large numbers since both functions satisfy the bounded

moment conditions. Therefore, we have:

V

(
1

n

n∑
i=1

m̂(v, ηi)

)
= f(v, η)−2V

(
1

n

n∑
i=1

{
m̃(v, ηi)−m(v, ηi)f̂(v, ηi)

})

= f(v, η)−2V

(
1

n

n∑
i=1

m̃(v, ηi)

)

+ f(v, η)−2m(v, η)2V

(
1

n

n∑
i=1

f̂(v, ηi)

)

− f(v, η)−22m(v, η)Cov

(
1

n

n∑
i=1

m̃(v, ηi),
1

n

n∑
i=1

f̂(v, η)

)
,
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where V (·) and Cov(·) denote variance and covariance, respectively, and:

V

(
1

n

n∑
i=1

m̃(v, ηi)

)
= E

(
Vv,ηi

{
1

n

n∑
i=1

m̃(v, ηi)

})
+ V

(
Ev,ηi

{
1

n

n∑
i=1

m̃(v, ηi)

})

= σ2f(η)2E

[
1

nhqv

n∑
j=1

Kv

(
Vj − v
hv

)]2

+ f(η)2V

[
1

nhqv

n∑
j=1

Kv

(
Vj − v
hv

)
m(Vj, ηj)

]

=
σ2f(η)2

nhqv
Kv +

m(v, η)2f(η)2f(v)

nhqv
Kv +O(n−1)

V

(
1

n

n∑
i=1

f̂(v, ηi)

)
=
f(η)2f(v)Kv

nhqv
+O(n−1)

Cov

(
1

n

n∑
i=1

m̃(v, ηi),
1

n

n∑
i=1

f̂(v, ηi)

)
= E

{
1

n

n∑
i=1

m̃(v, ηi)
1

n

n∑
i=1

f̂(v, ηi)

}

−E

{
1

n

n∑
i=1

m̃(v, ηi)

}
E

{
1

n

n∑
i=1

f̂(v, ηi)

}

=
m(v, η)f(η)2f(v)Kv

nhqv
+O(n−1).

Vv,ηi denotes the variance conditional on v and ηi. Hence we have:√
nhqv(m̂(v)−m(v)− bias)→D N(0, var).

The consistency of ĝτ (v) and its asymptotic normality is argued in the same way

as above, since m(v) = g(v) + C. �
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Chapter 3

Extended Generalised Partially

Linear Single-Index Model with

Control Function Approach

An important case of regression analysis is the comparison of regres-
sion curves from related samples. . . . The problem of comparison of the
two curves could be modeled parametrically because, to a large extent,
the difference between them seems to be quantified by two parameters,
horizontal shift and vertical scale.

Wolfgang Härdle and J. Steve Marron (1990)

3.1 Introduction

Since its introduction in the study by Carroll et al. (1997), the Generalised Par-

tially Linear Single-Index (GPLSI) model has received constant attention and

been studied by many researchers; see Yatchew (2003) and Gao (2007), for ex-

ample. Furthermore, Xia et al. (1999) provide a useful extension to the model;

in this chapter, let us refer to it as the extended GPLSI (EGPLSI) model. The

EGPLSI model allows for the well-known advantages of a Single-Index (SI) model

and a Partially Linear (PL) model (see the discussion in Chapter 2 of Horowitz

(2009) for details) and also enables the analysis of the so-called shape-invariant
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specification as will be illustrated in Chapter 4. Unlike its GPLSI counterpart, the

EGPLSI model concedes instead a more extensible specification, which includes

the shape-invariant one as a special case.

Recently, considerable effort has been made in studies of the shape-invariant

specification in the literature. While some interesting theoretical studies can be

found in Härdle & Marron (1990) and Pinkse & Robinson (1995), the best known

application is in the empirical demand study literature such as Blundell et al.

(1998), Blundell et al. (2003) and Blundell et al. (2007). In the context of empirical

demand studies, this specification enables the analysis of both a scale coefficient

and a shift coefficient of a household characteristic in the modelling specification,

which is coherent with the consumer theory; see Blundell et al. (1998), Pendakur

(1999), Blundell et al. (2003) and Blundell et al. (2007) for details.

With regard to nonparametric estimation techniques employed, the study by

Carroll et al. (1997) propose the local constant kernel estimation method, while

Xia & Härdle (2006) consider the local polynomial estimation method of Fan

& Gijbels (1996) to estimate the GPLSI model. On the other hand, Xia et al.

(1999) employ the local constant kernel estimation method to estimate the EG-

PLSI model and to examine its identification condition. However, these methods

are not directly applicable to empirical studies in various economic areas, since

they do not take endogeneity into account. For example, the endogeneity of total

expenditure is a well-known issue in the empirical demand study literature; see

Blundell et al. (1998) and Blundell et al. (2007) for detail. If present, it might

cause an inconsistent estimation of the model’s scale coefficient and lead to non-

identification of structural Engel curves. Recently, various methods of addressing

endogeneity in nonparametric and semiparametric models have been discussed

in the literature. Among these, a couple of the most popular methods are the

nonparametric instrumental variables (NpIV) estimation and the control function

(CF) approaches; see Blundell & Powell (2003) for an excellent review of these

methods.

In the current chapter, we intend to introduce a method to address endogene-

ity in the estimation of the above-mentioned EGPLSI model. In particular, we
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aim to do so by establishing a CF approach based on (i) the Robinson (1988) and

Speckman (1988) type of the two-stage estimation procedure and (ii) the widely-

used triangular structure of Newey et al. (1999), Pinkse (2000), Blundell & Powell

(2004) and Su & Ullah (2008). The two-stage estimation procedure allows us to

conveniently identify the source(s) of endogeneity and hence systematically ad-

dress it in a partially linear type of semiparametric models via the partialling-out

process; see Chapter 2 for details. Furthermore, we present in detail below how

imposition of the triangular structure enables us to identify the unknown struc-

tural relationship (e.g. the structural Engel curves) in a simple nonparametric

additive structure which can be conveniently estimated using the marginal inte-

gration technique of Linton & Nielsen (1995), and Tjøstheim & Austad (1996).

In spite of the involvement of an endogeneity control variable which is not observ-

able in practice and hence is nonparametrically estimated for the flexibility (as in

Newey et al. (1999)), we derive the asymptotic normality and the
√
n-consistency

of parameter estimators of both the parametric coefficients and the index coeffi-

cients. More importantly, we show that the practicality of the study in Xia et al.

(1999), which allows the same smoothing parameter in the estimation of the index

coefficients and the unknown structural function, is still applicable to the EGPLSI

model with the endogeneity control variable generated.

The structure of the rest of the chapter is as follows. In Section 3.2, we discuss

an alternative method for addressing endogeneity in the estimation of the EGPLSI

model in details. In Section 3.3, we presents the finite sample properties of the

proposed estimators from Monte Carlo simulation exercises. Finally, Section 3.4

concludes the chapter, while mathematical proofs of the main results are presented

in Appendix 3.5.

3.2 EGPLSI Model with/without Endogeneity

Let us begin the current section with a brief review of the EGPLSI model and

its estimation procedure as often discussed in the literature (see Xia et al. (1999)

and Gao (2007), for example). We introduce endogeneity into the model and
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then discuss our alternative CF based estimation procedure in Section 3.2.2. We

present the main theoretical results of this chapter, which focus on the asymptotic

properties of estimators of the model in Section 3.2.3. All mathematical proofs

are discussed in the Appendix 3.5.

3.2.1 EGPLSI Model without Endogeneity

Generally, without the presence of endogeneity, the EGPLSI model can be defined

as:

Yi = X ′iβ0 + g(X ′iα0) + εi, (3.2.1)

where (X, Y ) is a Rq×R-valued observable random vector, β0 and α0 are unknown

vector parameters, and g(·) is an unknown link function such that g : R →
R. The exogeneity assumption suggests that E(ε|x) = 0, which implies that

E(ε|v0) = 0 for v0 = x′α0. Throughout the rest of the paper, let us assume

that the random sample {(X ′i, Yi); i = 1, . . . , n} is independently and identically

distributed (i.i.d.). Furthermore, let f(x) and f(v0) denote the density functions

of x and v0, respectively, with the random argument of Xi. We also assume that

Ax ⊆ Rq is the union of a finite number of open convex sets such that f(x) > Mx

on Ax for some constant Mx > 0. Finally, note the identification condition of

the EGPLSI model investigated in Xia et al. (1999), the orthogonality of the two

coefficients so that β0 ⊥ α0 with ||α0|| = 1.

Given α and β, we smooth the nonparametric index component out from the

structural relation (3.2.1) to obtain the minimising objective function for both

unknown coefficients as shown below:

min
α,β

J∗(α, β) = min
α,β

E (W ∗
i − U∗′i β)

2
, (3.2.2)

where W ∗
i = Yi − E∗(Yi|Vi) and U∗i = Xi − E∗(Xi|Vi) with Vi = X ′iα. In order

to estimate those unknown parameters and functions involved in (3.2.1), we need

to obtain a feasible version of (3.2.2). Firstly, consider the nonparametric kernel

estimators of E∗(Yi|Vi) and E∗(Xi|Vi) of the form:

Ê∗(y|v) =

∑
Xi∈Ax kh(Vi − v)Yi∑
Xi∈Ax kh(Vi − v)

and Ê∗(x|v) =

∑
Xi∈Ax kh(Vi − v)Xi∑
Xi∈Ax kh(Vi − v)

, (3.2.3)
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where kh(·) = k(·/h), k(·) is a kernel function satisfying Assumption 3.2.4 below

and h is a bandwidth parameter. Next, we turn to the corresponding estimators

based on the usual cross-validation criterion. Let the estimators in (3.2.3) be the

leave-one-out estimators by omitting (Xi, Yi, Vi):

Ê∗i (y|v) =

∑
j 6=i kh(Vj − v)Yj∑
j 6=i kh(Vj − v)

and Ê∗i (x|v) =

∑
j 6=i kh(Vj − v)Xj∑
j 6=i kh(Vj − v)

. (3.2.4)

Let An denote the set of all unit q-vectors. Given C > 0 and 0 < C1 < C2 < ∞,

An = {α ∈ An : ||α − α0|| ≤ Cn−1/2} and Hn =
{
h : C1n

−1/5 ≤ h ≤ C2n
−1/5

}
.

These definitions are motivated by the fact that, since we anticipate that α̂∗ is
√
n-consistent and we expect ĥ to be close to h0 ∼ const n1/5, we should look

for a minimum of the feasible objective function of (3.2.2), i.e. Ĵ(α, h), defined

in Step 3.2.1.3 of Procedure 3.2.1 below. The feasible objective function involves

α to be distant from α0 by the order of n−1/2 and h to be approximately equal

to a constant multiple of n−1/5; see Härdle et al. (1993) and Xia et al. (1999),

for example. The estimation procedure of (3.2.1) can be summarised as follows.

Hereafter, let us collectively refer to these estimation steps as ”Procedure 3.2.1”.

Procedure 3.2.1

Step 3.2.1.1: Given α, obtain the feasible objective function of (3.2.2) by esti-

mating E∗(y|v) and E∗(x|v) by Ê∗i (y|v) and Ê∗i (x|v) in (3.2.4).

Step 3.2.1.2: Define the feasible objective function of (3.2.2) as:

Ĵ∗(β) =
1

n

n∑
i=1

(
Ŵ ∗
i − Û∗′i β

)2

, (3.2.5)

where Ŵ ∗
i = Yi − Ê∗i (Yi|Vi) and Û∗i = Xi − Ê∗i (Xi|Vi). Perform the least squares

(LS) estimation on (3.2.5) to obtain β̂∗ = (SÛ∗)
− SÛ∗Ŵ ∗ , where SAB = 1

n

∑n
i=1AiB

′
i,

SA = SAA, and (SÛ∗)
− is a generalised inverse of (SÛ∗).

Step 3.2.1.3: Given β̂∗ from the previous step, obtain α̂∗ and ĥ by minimising

the feasible objective function:

min
α∈An,h∈Hn

Ĵ∗(α, h) = min
α∈An,h∈Hn

1

n

n∑
i=1

(Ŵ ∗
i − Û∗′i β̂∗)2.
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Step 3.2.1.4: Re-estimate β0 using α̂∗ and ĥ from Step 3.2.1.3 as in 3.2.1.2:

β̂∗α̂ =
(
SÛ∗α̂

)−
SÛ∗α̂Ŵ ∗α̂

,

where Ŵα̂∗,i = Yi− Ê∗i (Yi|V̂i) and Ûα̂∗,i = Xi− Ê∗i (Xi|V̂i) with V̂i = X ′iα̂, Ê∗i (Yi|V̂i)
and Ê∗i (Xi|V̂i) obtained by replacing α in (3.2.4) with α̂∗.

Step 3.2.1.5: Given α̂∗ and β̂∗α̂, estimate the unknown structural function g(·)
by ĝ∗(v̂) = Ê∗(y|v̂)− Ê∗(x|v̂)′β̂∗α̂. �

The benefits of Procedure 3.2.1 of Xia et al. (1999) relies on the Robinson

(1988) and Speckman (1988) type of the two-stage estimation procedure and the

direct extension of the study in Härdle et al. (1993) to the EGPLSI model. On

the one hand, the former conveniently allows for the identification of the source(s)

of endogeneity and hence a systematic way of addressing endogeneity in partially

linear semiparametrics due to the partialling out process as discussed above. On

the other hand, the latter provides an empirical and practical way of estimating

single-index semiparametrics. The study of Härdle et al. (1993) allows for the

same bandwidth for the optimal estimation of α̂∗ and ĝ∗(·), and the simultaneous

estimation of index coefficients and a smoothing parameter. Procedure 3.2.1 ac-

commodates this practicality of Härdle et al. (1993) in the EGPLSI model. In the

next section, we show that these benefits of Xia et al. (1999) can be extended to

the proposed estimation procedure in the current paper to address endogeneity in

the EGPLSI model.

3.2.2 EGPLSI Model with Endogeneity

Let us now introduce endogeneity into the EGPLSI model, (3.2.1). There are

two potential sources of endogeneity, namely endogeneity in the parametric and

the nonparametric components. Hereafter, let us refer to these as parametric en-

dogeneity and nonparametric endogeneity, respectively. Clearly, these two types

of endogeneity may also occur simultaneously. To simplify the argument, we as-

sume that the parametric regressors belong to a subset of X, i.e. X1 ⊆ Rq1 for

q1 < q, such that the regressors are exogenous with E(ε|x1) = 0. Nonparametric
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endogeneity exists for the case where E(ε|x) 6= 0, which implies that E(ε|v0) 6= 0.

Unless the parametric regressors are endogenous, the LS estimation results in the

consistent estimation of the parametric coefficients even with nonparametric endo-

geneity in the model due to the partialling out process in the two-stage estimation

procedure of Robinson (1988) and Speckman (1988). Note also that, if present,

parametric endogeneity can be conveniently dealt with using the parametric IV

estimation; see the discussion in Chapter 2 for details. Nonetheless, Procedure

3.2.1 does not take the above mentioned nonparametric endogeneity into account

and may therefore result in inconsistent estimators for the index coefficients and

in a failure to identify the unknown structural function. The formal result is due

to similar reasoning to that in the classical linear regression model; see also the

discussion in chapter 8 of Amemiya (1985) for details. Given β0, reconsider the

objective function of (3.2.2), particularly the following:

J(α) = E(W ∗
i − U∗′i β0)2

= E [{g(V0i)− g(Vi)}+ εi − E(εi|Vi)]2

= E {g(V0i)− g(Vi)}2 + E {εi − E(εi|Vi)}2 + 2E [{g(V0i)− g(Vi)} {εi − E(εi|Vi)}]

≡ A1,1,i + A1,2,i + A1,3,i.

The feasible objective function in Step 3.2.1.3 of Procedure 3.2.1 does not converge

to the function which provides consistent estimators of the index coefficients, since

A1,3,i may not converge to 0 in probability, due to endogeneity, i.e. E(ε|x) 6= 0;

see Amemiya (1974), for example. When there is no endogeneity, the estimator of

A1,3,i converges to 0 and the estimator of A1,1,i converges to the unique function

providing the minimum value of the objective function with respect to the index

coefficients in probability. Note that A1,2,i is not relevant to the index coefficients.

Here more importantly, the unknown structural function is not identified. This is

mainly because E(ε|x) 6= 0, the conditional expectation of ε on any function of x

is not 0. This leads to the conditional expectation relation E∗(y|v)−E∗(x|v)′β0 =

g(v) + E(ε|v), and E(ε|v) 6= 0. Hence it is the case that Ê∗(y|v̂) − Ê∗(x|v̂)′β̂∗ =

ĝ∗(v̂) + Ê(ε|v̂)
p9 g(v0), where

p9 denotes no convergence in probability.
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In order to obtain consistent estimators of the index coefficients and to recover

the unknown structural function when nonparametric endogeneity is present, we

propose in the current section an alternative estimation method which is based

on the CF approach; see the discussions in Newey et al. (1999), Blundell & Pow-

ell (2004) and Su & Ullah (2008) for its application to the nonparametric and

semiparametric models. Let Zi denote a vector of valid instruments for Xi such

that:

Xi = mx(Zi) + ηi, (3.2.6)

where:

E(η|z) = 0 and E(ε|x, η) = E(ε|z, η) = E(ε|η) = ι(η), (3.2.7)

and Z is an Rqz -valued vector, qz ≥ q2 with q2 ≡ q − q1, mx(z) is a vector

of unknown real functions, mx ≡ (mx,l(Zi))
′, {(Z ′i); i = 1, . . . , n} is i.i.d. and

mx,l : Rqz → R for l = 1, . . . , q2. Also, let f(z) denote the density function of

z with the random argument of Zi. Assume that Az ⊆ Rqz is the union of a

finite number of open convex sets such that f(z) > Mz on Az for some constant

Mz > 0. The conditional expectation of the disturbance term in the reduced

relation of (3.2.6), i.e. (3.2.7), is the distributional exclusion restriction; see the

discussion on page 658 of Blundell & Powell (2004), which leads to the following

argument. Hereafter, let us define the following:

my(v0, η) = E(y|v0, η) and mx(v0, η) = E(x|v0, η), (3.2.8)

by which:

Yi = my(V0i, ηi) +W0i and Xi = mx(V0i, ηi) + U0i, (3.2.9)

where E(w0|x, η) = 0 and E(u0|x, η) = 0. We are now able to derive the condi-

tional expectation relation which controls endogeneity by using (3.2.6) to (3.2.9):

m(v0, η) ≡ my(v0, η)−mx(v0, η)′β0 = g(v0) + ι(η), (3.2.10)

where ι(η) 6= 0 is the endogeneity control function which controls the endogeneity

in the structural relation.
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By imposing the above mentioned distributional exclusion restriction (3.2.7),

we have gained control over the endogeneity in the nonparametric regressors. As

the results show, it provides the consistent estimators of the index coefficients

and also a way to identify the unknown structural function. Given β0, reconsider

(3.2.2) so that we have:

J(α) = E (Wi − U ′iβ0)
2

= E [{g(V0i)− g(Vi)}+ εi − ι(ηi)]2

≡ E {g(V0i)− g(Vi)}2 + E(ei)
2 − 2E [{g(V0i)− g(Vi)} ei]

≡ A2,1,i + A2,2,i + A2,3,i,

where ei ≡ εi− ι(ηi), Wi = Yi−E(Yi|Vi, ηi) and Ui = Xi−E(Xi|Vi, ηi). Note that

the estimator of A2,3,i converges to 0 in probability, since E(e|x, η) = 0. Hence, the

feasible objective function (3.2.17) defined in Step 3.2.2.3 of Procedure 3.2.2 below

converges to the function which provides the local minimum value with respect

to the index coefficients in probability; see chapters 4 and 8 of Amemiya (1985)

for details. Furthermore, we may now identify the unknown structural function

using the marginal integration technique, since (3.2.10) is a simple nonparametric

additive structure. The details for implementing technique are given in Step

3.2.2.5. of Procedure 3.2.2 below.

Given β and α, the minimising objective function is:

min
α,β

J(β, α) = min
α,β

E (Wi − U ′iβ)
2
. (3.2.11)

Furthermore, let:

Ê(y|v, η) =

∑
Xi∈Ax,Zi∈Az Lhv ,hη(Vi − v, ηi − η)Yi∑
Xi∈Ax,Zi∈Az Lhv ,hη(Vi − v, ηi − η)

, (3.2.12)

and:

Ê(x|v, η) =

∑
Xi∈Ax,Zi∈Az Lhv ,hη(Vi − v, ηi − η)Xi∑
Xi∈Ax,Zi∈Az Lhv ,hη(Vi − v, ηi − η)

, (3.2.13)

where Lhv ,hη(·) is the product kernel function constructed from the product of

the univariate kernel functions of khη1 (·)× · · · × khηq2 (·)× khv(·), and hv and hηj
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with j = 1, . . . , q2 are the relevant bandwidth parameters and are nonparamet-

ric kernel estimators of E(y|v, η) and E(x|v, η), respectively. Next, we turn to

the corresponding leave-one-out estimators of (3.2.12) and (3.2.13) by omitting

(Xi, Yi, Vi, ηi):

Êi(y|v, η) =

∑
j 6=i Lhv ,hη(Vj − v, ηj − η)Yj∑
j 6=i Lhv ,hη(Vj − v, ηj − η)

(3.2.14)

and:

Êi(x|v, η) =

∑
j 6=i Lhv ,hη(Vj − v, ηj − η)Xj∑
j 6=i Lhv ,hη(Vj − v, ηj − η)

. (3.2.15)

We redefine Hn in the previous section as

Hn =
{
hv, hη, hz : C1n

−1/5 ≤ hv, hη, hz ≤ C2n
−1/5

}
. We propose the following es-

timation procedure. Hereafter, let us collectively refer to these estimation steps

as “Procedure 3.2.2”.

Procedure 3.2.2

Step 3.2.2.0: Estimate the endogeneity control regressors from (3.2.6) as:

η̂i = Xi − m̂x(Zi), (3.2.16)

where m̂x(z) =
∑
Zi∈Az

Khz (Zi−z)Xi∑
Zi∈Az

Khz (Zi−z) , in which Khz(·) is the product kernel function

constructed from the product of the univariate kernel functions of khz1 (·)× · · · ×
khzqz (·) and hzj with j = 1, . . . , qz is the relevant bandwidth parameter. By

omitting the pair (Xi, Zi), the corresponding leave-one-out estimator is m̂x,i(z) =∑
j 6=iKhz (Zj−z)Xj∑
j 6=iKhz (Zj−z) .

Step 3.2.2.1: Given α and the nonparametrically generated endogeneity control

regressors η̂i, obtain the feasible objective function of (3.2.11) by the estimates

of Êi(y|v, η̂) and Êi(x|v, η̂), which are the corresponding estimates of those in

(3.2.14) and (3.2.15) obtained by replacing ηi with η̂i.

Step 3.2.2.2: Define the feasible objective function of (3.2.11) as given below:

Ĵ(β) =
1

n

n∑
i=1

(
Ŵ2i − Û ′2iβ

)2

,

where Ŵ2i = Yi− Êi(Yi|Vi, η̂i) and Û2i = Xi− Êi(Xi|Vi, η̂i). We may compute the

LS estimate of the unknown parametric coefficients as:

β̂α =
(
SÛ2

)−
SÛ2Ŵ2

.
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Step 3.2.2.3: Given β̂ from the previous step, compute α̂, ĥv and ĥη̂ by min-

imising the feasible objective function as follows:

min
α∈An,hv ,hη̂∈Hn

Ĵ(α, hv, hη̂) = min
α∈An,hv ,hη̂∈Hn

1

n

n∑
i=1

(Ŵ2i − Û ′2iβ̂)2. (3.2.17)

Step 3.2.2.4: Re-estimate β0 using α̂, ĥv and ĥη̂ from the previous step as follows:

β̂ =
(
SÛ3

)−
SÛ3Ŵ3

,

where Ŵ3i = Yi − Êi(Yi|V̂i, η̂i) and Û3i = Xi − Êi(Xi|V̂i, η̂i) with V̂i = X ′iα̂.

Step 3.2.2.5 below is mainly due to the involvement of the marginal integration

technique in an attempt to identify the unknown structural relation in question.

Step 3.2.2.5: Perform the marginal integration technique of Linton & Nielsen

(1995) or Tjøstheim & Austad (1996) to identify the unknown structural function.

�

In the following paragraphs, we discuss an application of the marginal inte-

gration technique in Step 3.2.2.5 of Procedure 3.2.2 in greater detail. Let us first

recall from (3.2.10) that m(v0, η) = g(v0) + ι(η), which is clearly a nonparamet-

ric additive specification. Hence a standard identification condition as discussed

extensively in the literature (see Hastie & Tibishirani (1991), Gao et al. (2006)

and Gao (2007), for example) assumes that E(g(v0)) = E(ι(η)) = 0. The imple-

mentation of the marginal integration technique identifies g(·) and ι(·) up to some

constant values as follows:

m(v0) =

∫
m(v0, η)dQ(η) = g(v0) + c1,

and:

m(η) =

∫
m(v0, η)dQ(v0) = ι(η) + c2,

where c1 =
∫
ι(η)dQ(η), c2 =

∫
g(v0)dQ(v0) and Q is a probability measure

with
∫
dQ(η) =

∫
dQ(v0) = 1. Here, the estimate of the structural relation can

therefore be obtained by the following sample version of the integration:

m̂(v) =
1

n

n∑
i=1

m̂(v, η̂i), (3.2.18)
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and:

ĝ(v) = m̂(v)− ĉ1, (3.2.19)

where m̂(v, η̂i) = Ê(y|v, η̂i) − Ê(x|v, η̂i)′β̂α̂, and ĉ1 = 1
n

∑n
i=1 m̂(V̂i). Note that

(3.2.18) is estimated by keeping V̂i at v, while taking an average over the remaining

regressors, η̂i. In (3.2.19), in order to ensure that the identification condition of a

nonparametric additive model is satisfied, the constant value is estimated as ĉ1.

An attractive feature of Procedure 3.2.2 is that the practicality of Xia et al.

(1999), which provides a way of selecting the same smooth parameter(s) for op-

timal estimation of both α0 and g(·) is still applicable, despite the regressors

generated in order to control endogeneity in the model. The feasible objective

function (3.2.17) can be expanded in the form of Ĵ(α, hv, hη̂) = J̃(α)+T (hv, hη)+

R1(α, hv, hη, hz), where J̃(α) is an accurate approximation to E(Wi − U ′iβ0)2

and does not depend on the smoothing parameters, T (hv, hη) is the usual cross-

validation criterion for choosing optimal bandwidths to estimate m(x′α0, η) for

known values of α0 and true values of η, and R1 is shown to be op(n
−1/2) in The-

orem 3.2.1 below. Hence, minimising Ĵ(α, hv, hη̂) simultaneously with respect to

α, hv and hη̂ is very much like separately minimising J̃(α) with respect to α and

T (hv, hη) with respect to hv and hη.

3.2.3 Asymptotic Properties

In this section, we present the main theoretical results of the current chapter.

First, we present the necessary conditions and then the main theoretical results

in Theorems 3.2.1 and 3.2.2. Within the results of Theorem 3.2.1, the asymptotic

properties of both estimators of parametric and index coefficients are presented in

Corollary 3.2.2, particularly the fact that they are
√
n-consistent. The asymptotic

properties of the estimator of the unknown structural function are presented in

Theorem 3.2.2. The formal proofs of these results are presented in the Appendix

3.5.

We impose the following regularity conditions. Assume that A = Ax ×Aη ⊆
R2q2 and Az ⊆ Rqz are the unions of a finite number of open convex sets, respec-
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tively. Given εx, εη and εz, let Aεxx , Aεηη and Aεzz denote the sets of all points

in Rq2 and Rqz that are no more distant than εx, εη and εz, respectively. Put

U =
{

(v0 = x′α0, η) : x ∈ Aεx and η ∈ Aεη
}

, where ε is the smaller value of εx and

εη, and Uz = {z : z ∈ Aεzz }. Let f(v0, η) denote the joint density function of

(x′α0, η) with random arguments of Xi and ηi. Assume that for some ε and εz,

we have the assumptions below.

Assumption 3.2.1. f(x, η) and f(z) are bounded away from 0 on U and Uz,
respectively.

Assumption 3.2.2. f(z) and mx(z) have bounded and continuous second deriva-

tives on Uz.

Assumption 3.2.3. m(v, η), my(v, η), mx(v, η) and f(v, η) have bounded and

continuous second derivatives on U for all values of α ∈ An.

Assumption 3.2.4. A univariate kernel function k(·) and its first derivative

k(1)(·) are supported on the interval (−1, 1) and k(·) is a symmetric probability

density with k(1)(·) being bounded.

Assumption 3.2.5. E(e|x, η) = 0 and E(e2|x, η) = σ2(x, η), E(u|x, η) = 0 and

E(u2|x, η) = u2(x, η) almost surely, and sup
i
E|Yi|l <∞ and sup

i
E||Xi||l <∞ for

some l > 2. �

Assumption 3.2.1 is imposed to permit estimation of the functions in the re-

gions of Aε and Aεzz in order to avoid the random denominator problem. A similar

set of conditions is imposed in Härdle et al. (1993) and Xia et al. (1999). Assump-

tions 3.2.2 and 3.2.3 are needed to ensure that the symmetric kernel function in

Assumption 3.2.4 leads to a second-order bias in kernel smoothing. A higher-order

bias can be achieved by imposing more restrictive conditions on the smoothness

of functions. For instance, Robinson (1988) reduces the bias sufficiently by em-

ploying a higher-order kernel function with strong smoothness conditions on the

functions. The condition of the first derivative of the kernel function in Assump-

tion 3.2.4 is required because we employ the Taylor argument to address the
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generated regressors, η̂. A similar condition on the rth derivative of the kernel

function can be found in Hansen (2008). Assumption 3.2.5 is imposed so that

the Chebyshev inequality can be applied as in Härdle et al. (1993) and Xia et al.

(1999).

Let us define the following:

Bv(v0, η) =
Kv,2

f(v0, η)

{
f (1)
v (v0, η)m

(1)
0 (v0) + f(v0, η)m

(2)
0 (v0)

}
Bη,j(v0, η) =

Kη,2

f(v0, η)

{
f

(1)
η,j (v0, η)m

(1)
j (η) + f(v0, η)m

(2)
j (η)

}
,

where Kv,2 =
∫
v2

0khv(v0)dv0, Kη,2 =
∫
η2Khη(η)dη with Khη = khη1 (·) × · · · ×

khηq2 (·), f (r)
v and f

(r)
η are rth derivatives of the joint density function of f(v0, η)

with respect to v0 and η, respectively, and m
(r)
0 (v0) and m

(r)
j (η) are the rth

partial derivatives of the function m(v0, η) with respect to v0 and ηj, respec-

tively, where j = 1, . . . , q2. Also, let K = KvKq2η , where Kv =
∫
khv(v0)2dv0

and Kη =
∫
kη,j(η)2dη. In these notations, the “integrated mean squared error

(IMSE)” is:

IMSE(hv, hη)

�
∫ 

[
Bv(v0, η)h2

v +

q2∑
j=1

Bη(v0, η)h2
η,j

]2

+
K

nhvhη,1 . . . hη,q2

σ2(v0, η)

f(v0, η)

 f(x, η)dxdη,

where � means that the quotient of the two sides tends to 1 and n → ∞. Now

let us define the following:

J̃(α) =
1

n

n∑
i=1

{
Wi − U ′i β̂

}2

and T (hv, hη) =
1

n

n∑
i=1

{m̂i(V0i, ηi)−m(V0i, ηi)}2 ,

where m̂i()̇ is the leave-one-out kernel estimator of m(·). Hence, we have the result

shown in Theorem 3.2.1.

Theorem 3.2.1. Under Assumptions 3.2.1 to 3.2.5, we can write:

Ĵ(α, hv, hη̂) = J̃(α) + T (hv, hη) +R1(α, hv, hη, hz) +R2(α, hv, hη), (3.2.20)

T (hv, hη) = IMSE(hv, hη) +R3(hv, hη), (3.2.21)
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where R3(hv, hη) does not depend on α, and:

sup
α∈An,hv ,hη ,hz∈Hn

|R1(α, hv, hη, hz)| = op(1), sup
α∈An,hv ,hη∈Hn

|R2(α, hv, hη)| = op(1),

and:

sup
hv ,hη∈Hn

|R3(hv, hη)| = op(1).

�

The above theorem is a direct extension of the work of Xia et al. (1999) to

a more complicated model associated with endogeneity. Now, let us define the

following:

ΦU0 = Xi − E(Xi|V0i, ηi) and m
(1)
0 = ∂m(v0, η)/∂v0.

As the results of Theorem 3.2.1 show, we have the asymptotic results for the

estimators of α0 and β0 shown in Corollary 3.2.2 below.

Corollary 3.2.2. Under the assumptions of Theorem 3.2.1, we obtain the follow-

ing:
√
n(β̂ − β0)→D (0, var1),

where var1 = σ2

[
Φ−U0
−
(
m

(1)
0 ΦU0

)−
ΦU0

{
m

(1)
0

}2 (
m

(1)
0 ΦU0

)−]
and:

√
n(α̂− α0)→D (0, var2),

where var2 = σ2

[{
(m

(1)
0 )2ΦU0

}−
−
{
m

(1)
0 ΦU0

}−
ΦU0

{
m

(1)
0 ΦU0

}−]
. �

As for the estimator of the unknown structural function, i.e. g(·), we have the

asymptotic properties shown in Theorem 3.2.2.

Theorem 3.2.2. Under Assumptions 3.2.1 to 3.2.5, we show that:√
nhv (ĝ(v̂)− g(v0)− bias)→D N(0, var),

where bias = h2
vBv(v0, η)+

∑q2
s=1 h

2
η,sBη,s(v0, η) and var = f(v0)Kv

∫ σ2(v0,η)f2(η)
f2(v0,η)

dQ(η).

�

The proofs of Theorems 3.2.1 and 3.2.2 as well as Corollary 3.2.2 are given in

the Appendix 3.5.
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3.3 Simulation Studies

The purposes of the simulation exercises conducted in this section are threefold.

Firstly, we aim to investigate whether experimental evidence can be found to sup-

port the various points made in the theoretical discussion presented in the previous

sections. Secondly, we aim to provide finite sample evidence for the usefulness of

the newly introduced method for addressing endogeneity in the estimation of semi-

parametric SI models. Finally, we aims to examine the empirical importance of

the magnitude of endogeneity and nature of the instrumental variable on the use

of our Procedure 3.2.2.

3.3.1 Initial Investigation

In this section, we consider two illustrative models, namely the GPLSI-type and

the EGPLSI-type, as defined in Examples 3.3.1 and 3.3.2 below. In practice,

endogeneity is introduced to the models first and then Procedure 3.2.2 is applied.

The finite sample performance of Procedure 3.2.2 is subsequently compared to

that of Procedure 3.2.1.

Example 3.3.1: GPLSI-type The baseline model without endogeneity is:

Yi = 1.2X1i + g(V0i) + εi with V0i = α0X2i =
1√
2

(X2i), (3.3.1)

such that:

g(V0i) =
1

2


1√
2
(X2i)

1 +
[

1√
2
(X2i)

]2

 ,

where X1 and X2 are independently and uniformly distributed on [−1, 1] and

εi ∼ N(0, 1). Clearly, (3.3.1) is a GPLSI type of model such that the perpendicu-

larity of the parameter vectors (see Xia et al. (1999), for instance) is not required.

Furthermore, since X2 can be written as X21 + X22, where X21 and X22 are in-

dependently and uniformly distributed on [−1, 1], we obtain ||α0|| = 1. In this

example, we introduce endogeneity into the nonparametric regressor by letting

X2i = Zi + ηi, where Z and η are independently and uniformly distributed on

[−0.5, 0.5] and [−1, 1], respectively, and εi = ηi + ei and ei ∼ N(0, 1). �
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Example 3.3.2: EGPLSI-type Due to the complexity of the model and con-

ditions involved, first let us express our example model of the EGPLSI-type in

general as:

Yi = β01X1i + β02X2i + β03X3i + g(V0i) + 0.1εi, (3.3.2)

where V0i = α01X1i+α02X2i+α03X3i, g(V0i) = exp {−2(α01X1i + α02X2i + α03X3i)
2} ,

Xj is independently and uniformly distributed on [−1, 1] for j = 1, 2, 3 and

εi ∼ N(0, 1). It is required that (i) β0 and α0 are perpendicular to each other with

(ii) ‖ α0 ‖= 1. In order for these conditions to be satisfied, we define β02 = 0.4,

β03 = 0, α01 = 0.7, α02 = −0.6, then write:

α03 =
√

1− α2
01 − α2

02 and β01 = −β02α02

α01

.

In this example, we introduce endogeneity into the nonparametric regressor by

letting X3i = Zi + ηi, where Z and η are independently and uniformly distributed

on [−0.5, 0.5] and [−1, 1], respectively, and εi = ηi + ei and ei ∼ N(0, 1). �

Throughout this section, optimisation is implemented using a limited memory

Broyden–Fletcher–Goldfarb–Shanno algorithm for the bound constrained optimi-

sation of Byrd et al. (1995). All simulation exercises are conducted in R with the

Gaussian kernel function and the number of replications Q = 200. To compare

and evaluate the finite sample performances of the estimation procedures intro-

duced above, we compute the mean and mean absolute errors of the estimates of

both coefficients across Q replications as tabulated in Tables 3.1 to 3.4. We also

compare the averaged absolute error (ae) of the estimates the unknown structural

function which is computed for Procedure 3.2.1 and for Procedure 3.2.2 using the

following:

aeĝ =
1

n

n∑
i=1

∣∣∣ĝ(V̂i)− g(V0i)
∣∣∣ ,

where n is the number of samples.

75



Chapter 3. Extended Generalised Partially Linear Single-Index Model with Con-
trol Function Approach

Table 3.1: GPLSI-type model with nonparametric endogeneity: Procedure 3.2.1

n β̂ α̂ |β̂ − 1.2| |α̂− 1/
√

2| aeĝ

50 1.1997 0.8980 0.0060 0.1980 0.0438

150 1.1994 0.8592 0.0031 0.1592 0.0443

300 1.1999 0.7306 0.0024 0.0402 0.0443

500 1.2001 0.6523 0.0016 0.0708 0.0446

Table 3.2: GPLSI-type model with nonparametric endogeneity: Procedure 3.2.2

n β̂ α̂ |β̂ − 1.2| |α̂− 1/
√

2| aeĝ

50 1.2000 0.8272 0.0033 0.1436 0.0266

150 1.1999 0.7784 0.0015 0.0796 0.0176

300 1.2000 0.7527 0.0082 0.0578 0.0148

500 1.9999 0.7502 0.0006 0.0580 0.0118

n |β̂1 − 0.3| |β̂2 − 0.4| |α̂1 − 0.8| |α̂2 − (−0.6)| |α̂3 − 0.5| aeĝ

50 0.0656 0.0714 0.1905 0.1772 0.1727 0.0905

150 0.0428 0.04572 0.1999 0.1671 0.1406 0.0891

300 0.0331 0.03377 0.1988 0.1674 0.1352 0.0895

500 0.0306 0.0319 0.1960 0.1653 0.1306 0.0906
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Table 3.3: EGPLSI-type model with nonparametric endogeneity: Procedure
3.2.1.

n β̂1 β̂2 α̂1 α̂2 α̂3

50 0.3130 0.4332 0.8884 -0.7748 0.5597

150 0.3088 0.4340 0.8993 -0.7671 0.5279

300 0.3142 0.4264 0.8988 -0.7674 0.5225

500 0.3135 0.4288 0.8960 -0.7653 0.5179

Table 3.4: EGPLSI-type model with nonparametric endogeneity: Procedure
3.2.2.

n β̂1 β̂2 α̂1 α̂2 α̂3

50 0.2645 0.4652 0.9638 -0.8249 0.5483

150 0.3260 0.4135 0.8975 -0.7852 0.4756

300 0.3486 0.3945 0.8090 -0.6997 0.4382

500 0.3555 0.3891 0.7353 -0.6295 0.3992

n |β̂1 − 0.3| |β̂2 − 0.4| |α̂1 − 0.8| |α̂2 − (−0.6)| |α̂3 − 0.5| aeĝ

50 0.0816 0.0684 0.2640 0.2329 0.1782 0.0632

150 0.0307 0.0264 0.2143 0.1854 0.1267 0.0265

300 0.0213 0.0183 0.1203 0.1005 0.0702 0.0160

500 0.0189 0.0159 0.0377 0.0319 0.0251 0.0124

Let us now present some important findings based on the results in Tables 3.1

to 3.4. Since endogeneity is introduced to the nonparametric regressor only, we

expect the LS estimators of the unknown parameters in the parametric component

to be consistent in all cases. Strong experimental evidence of such consistency can

be clearly seen in all of the tables; see the fourth column of Tables 3.1 and 3.2, and

the eighth to tenth columns of Tables 3.3 and 3.4 in particular. The simulation

results in Tables 3.1 and 3.3 show strong evidence against the use of Procedure

3.2.1 of Xia et al. (1999) to estimate the EGPLSI model when endogeneity is
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a possibility. Most importantly, such evidence is clearly seen when the averaged

absolute errors in the sixth column of Table 3.1 and the thirteenth column of Table

3.3 are considered. Basically, the results suggest that the procedure is unable to

provide a consistent estimate of the unknown structural function. On the other

hands, the simulation results in Table 3.2 and Table 3.4 suggest that Procedure

3.2.2 is able to provide consistent estimates of the index parameters and is also able

to identify the unknown structural function when endogeneity is present. In our

view, such a conclusion should provide sufficient motivation for use of our newly

established procedure in practice. However, in the next section, let us conduct

a further investigation into the important of the magnitude of endogeneity and

nature of the instrumental variable on the use of Procedure 3.2.2.

3.3.2 More Detailed Analysis

For the sake of clarity in illustrating the importance of some particular characteris-

tics of endogeneity, the model used in the analysis that follows will be structurally

similar to that of Example 3.3.1. However, some modifications will be made to

ensure that the experimental design is suitable to the objectives of the exercise. In

this section, we will conduct two types of analysis, which are referred to hereafter

as Type A and Type B, respectively.

Type A: The objective of the experimental analysis that follows is to study the

importance of the conditional expectation of ε given η, i.e. denoted previously as

ι(·), for the performance of Procedure 3.2.1, which was originally introduced in Xia

et al. (1999), in the presence of endogeneity. In such an experiment, the magnitude

of endogeneity is clearly an important parameter that must be carefully controlled.

In this current analysis, in order to best illustrate the impact of endogeneity, let

us consider an extreme case, i.e. by defining:

X2i = ηi, (3.3.3)

where ηi is independently and uniformly distributed on [−1, 1]. Defining X2i as in

(3.3.3) enables specification of three related types of models, namely “exogeneity”,
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Table 3.5: Nonparametric exogeneity, i.e. ι1.

n β̂ Bias Var |β̂ − β| α̂ Bias Var |α̂− α| aeĝ

100 1.1997 0.0002 0.0003 0.0143 0.9660 0.2660 0.0008 0.2660 0.0150

300 1.1996 0.0004 0.0001 0.0079 0.7989 0.0989 0.0012 0.0989 0.0108

500 1.2001 0.0001 0.0000 0.0055 0.7740 0.0740 0.0056 0.0740 0.0084

700 1.2005 0.0005 0.0000 0.0055 0.7330 0.0330 0.0045 0.0332 0.0073

“linear endogeneity” and “nonlinear endogeneity”. In the current sections, these

models can be respectively obtained by introducing the following:

ι1(η) = 0× η, (3.3.4)

ι2(η) = 0.5× η, (3.3.5)

ι3(η) =
η

1
2

(4 + η2)
. (3.3.6)

For example, (3.3.4) suggests that the conditional expectation of ε given η is zero

and the model is exogenous. An example of g(·), ι1(·), ι2(·) and ι3(·) with n = 500

is presented in Figure 3.1. The simulation results in this section are presented in

Tables 3.5 to 3.7.
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Table 3.8: CorrX2i,Zi

n 100 300 500 700

CorrX2i,Zi 0.8278 0.8302 0.8326 0.8330

Below, let us discuss some important findings. Note firstly that E[ε] = 0, which

implies that E[ε|η] = E[ε] = 0 when η and ε are independent. Therefore, in this

case, we are able to measure the magnitude of endogeneity by simply considering

the dependency between ε and η. The second columns of Tables 3.6 and 3.7,

present averages over Q = 200 replications of the empirical correlation coefficients,

which is a measure the linear dependence between ε and η. It is clear that even in

such a controlled case, the functional forms of ι(·) give rise to different magnitudes

of endogeneity, which are measured by CorrL and CorrNL. Since endogeneity is

introduced to the nonparametric regressor only, the LS estimators of the unknown

parameters in the parametric component seem to be consistent in all cases, as

expected. Compared to the simulation results in Table 3.5, those in Tables 3.6

and 3.7 show clearly that Procedure 3.2.1 does not work well in the presence of

endogeneity. Under linear endogeneity, the procedure seems to work quite well

in estimating the index coefficient up to about 700 observations. By extending

the number of observations to 900, 1,100 and 1,300, it becomes clear that |α̂− α|
shows no sign of converging to zero. Furthermore, the evidence suggests that

the procedure is incapable of identifying the unknown structural function when

(either linear or nonlinear) endogeneity is present. Overall, nonlinear endogeneity

seems to have somewhat more severe consequences when compared to its linear

counterpart.

Type B: The objective of the analysis that follows is to investigate the finite-

sample performance of our newly introduced Procedure 3.2.2 in the presence of

endogeneity. In practice, whether Zi is a weak or a strong instrument may signif-

icantly affect the estimation outcomes. In order to control for such an effect, let
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Figure 3.1: g(·), ι1(·), ι2(·) and ι3(·).
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us define the following:

X2i = Zi + ηi, (3.3.7)

where Z and η are independently and uniformly distributed on [0, 3] and [−1, 1],

respectively. Furthermore, we consider two cases of ι(·), namely linear endogeneity

and nonlinear endogeneity defined respectively as:

ι2(η) = 1× η and ι3(η) =
η

1 + η2
. (3.3.8)

While Table 3.8 presents the averaged correlation coefficient of X2i and Zi at

Q = 200 replications for n = 100, 300, 500 and 700, Tables 3.9 and 3.10 provide

simulation results.

Below, let us discuss some important findings. Once again, the functional

forms of ι(·) seem to be important factors which determines the nature of endo-

geneity. With an instrument of a particular explanatory power in (3.3.7), linear-

endogeneity tends to give a higher CorrL than CorrNL obtained from its nonlin-

ear counterpart. An important observation which can be brought forward is that

even for cases in which we are able to identify a strong instrument (with strong

explanatory power), the impact of endogeneity is still determined by the relation-

ship between ε and η, i.e. the conditional expectation of the former with respect

to the latter. Furthermore, compared the results in Tables 3.9 and 3.10 to those

presented in Tables 3.6 and 3.7, it is clear that our newly developed Procedure

3.2.2 performs much better than its Procedure 3.2.1 counterpart in the presence

of endogeneity. Procedure 3.2.2 seems to be capable of obtaining consistent esti-

mators of all the unknowns, including the parametric and index coefficients, and

the unknown structural function.
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ĝ

10
0

0.
98

52
1.

19
72

0.
00

27
0.

00
08

0.
02

26
0.

78
03

0.
08

03
0.

00
76

0.
09

99
0.

08
27

30
0

0.
98

52
1.

20
09

0.
00

09
0.

00
01

0.
00

99
0.

73
72

0.
03

72
0.

00
09

0.
04

06
0.

05
11

50
0

0.
98

54
1.

20
03

0.
00

03
0.

00
01

0.
00

85
0.

71
37

0.
01

37
0.

00
05

0.
02

12
0.

04
39

70
0

0.
98

53
1.

20
08

0.
00

08
0.

00
00

0.
00

54
0.

69
48

0.
00

51
0.

00
02

0.
01

35
0.

03
85

85



Chapter 3. Extended Generalised Partially Linear Single-Index Model with Con-
trol Function Approach

T
a
b

le
3
.1

0
:

N
on

lin
ear

en
d
ogen

eity,
i.e.

ι3.

n
C
orr

N
L

β̂
B

ias
V

ar
|β̂
−
β|

α̂
B

ias
V

ar
|α̂
−
α|

ae
ĝ
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3.4 Conclusions

Although the GPLSI model by Carroll et al. (1997), and Xia & Härdle (2006) has

great flexibility and advantages from both a PL model and a SI model perspective,

it is not appropriate for modelling the shape-invariant empirical Engel curve, since

it does not allow the coefficient of the household equivalence scale to be included.

Hence we consider the EGPLSI model of Xia et al. (1999) and Gao (2007) in order

to take the shape-invariant specification into account. However, the estimation

method and procedure of the existing EGPLSI model are not able to address en-

dogeneity. Hence we establish the CF approach in the EGPLSI model to address

endogeneity instead of the nonparametric IV estimation of Ai & Chen (2003); see

Blundell et al. (2007) for its application to an semiparametric analysis of empirical

Engel curves. The attractive feature of the proposed estimation procedure in the

current chapter is that the practicality of Xia et al. (1999) approach is still appli-

cable, despite the endogeneity control variable generated. The same bandwidth

parameters are used for the estimation of α and g(·)-function.

We also provide Monte Carlo simulation studies. The simulation studies illus-

trate the performance of CF approach which indicates that the proposed estima-

tion procedure performs well and is able to address endogeneity in the estimation

of the EGPLSI model.

3.5 Appendix

In this section, we provide the necessary mathematical proofs of the main theoret-

ical results of the current paper. In Section 3.5.1, we show the proofs of Theorem

3.2.1 and Corollary 3.2.2 in two main steps. In Section 3.5.2, we present the proofs

of Theorem 3.2.2.
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3.5.1 Proofs of Theorem 3.2.1 and Corollary 3.2.2

Step 1. Proofs of Theorem 3.2.1: Given α, η̂ and β̂, the feasible objective

function (3.2.17) is expanded as follows:

Ĵ(α, hv, hη̂) =
1

n

n∑
i=1

[
Yi − Ŷi + Ŷi − Ŷ2i −

{
Xi − X̂i + X̂i − X̂2i

}′
β̂

]2

≡ 1

n

n∑
i=1

[
Yi − Ŷi − δ̂Y,i −

{
Xi − X̂i − δ̂X,i

}′
β̂

]2

= Ĵ∗(α, hv, hη) +R1(α, hv, hη, hz), (5.A.1)

where Ŷ2i = m̂y(Vi, η̂i) + Ŵ2i and X̂2i = m̂x(Vi, η̂i) + Û2i with Ŵ2i =
∑
j 6=iWjL2,ij∑
j 6=iWjL2,ij

,

Û2i =
∑
j 6=i UjL2,ij∑
j 6=iWjL2,ij

and L2,ij = Lhv ,hη(Vi − Vj, η̂i − η̂j), and δ̂Y,i = Ŷ2i − Ŷi, δ̂X,i =

X̂2i − X̂i with Ŷi = m̂y(Vi, ηi) + Ŵi, X̂i = m̂x(Vi, ηi) + Ûi with Ŵi =
∑
j 6=iWjLij∑
j 6=i Lil

,

Ûi =
∑n
j 6=i UjLij∑n
j 6=i Lil

and Lij = Lhv ,hη(Vi − Vj, ηi − ηj). Let us note that m = m(v0, η)

and m̃ = E(m|α). Note that the term in the last equation of (5.A.1), Ĵ∗(α, hv, hη),

is further expanded, as shown below:

Ĵ∗(α, hv, hη) =
1

n

n∑
i=1

[
Yi − Ŷi −

{
Xi − X̂i

}′
β̂

]2

= J̃(α)+T (hv, hη)+R2(α, hv, hη),

where:

R2(α, hv, hη) = (β̂ − β0)′Sm̃x−m̂x(β0 − β̂) + (β̂ − β0)′SÛ(β0 − β̂)

−2(β̂ − β0)′Smx−m̃x,m̃x−m̂x(β0 − β̂)− 2(β̂ − β0)′Smx−m̃x,Û(β0 − β̂)

+2(β̂ − β0)′Sm̃x−m̂x,U(β0 − β̂)− 2(β̂ − β0)′Sm̃x−m̂x,Û(β0 − β̂)

− 2(β̂ − β0)′SUÛ(β0 − β̂) + Sm̃−m̂ + 2Sm−m̃,m̃−m̂ − 2Seê + Sê − 2(β̂ − β0)′Sm̃x−m̂x,m−m̃

+ 2(β̂ − β0)′SÛ ,m−m̃ − 2(β̂ − β0)′Smx−m̃x,m̃−m̂ − 2(β̂ − β0)Sm̃x−m̂x,m̃−m̂ − 2(β̂ − β0)′SU,m̃−m̂

+ 2(β̂ − β0)′SÛ ,m̃−m̂ − 2(β̂ − β0)′Sm̃x−m̂x,e + 2(β̂ − β0)′SÛe + 2(β̂ − β0)′SUê

+2(β̂ − β0)′Smx−m̃x,ê + 2(β̂ − β0)′Sm̃x−m̂x,ê + 2(β̂ − β0)′SUê − 2(β̂ − β0)SÛ ê + 2Sm̃−m̂,e

−2Sm−m̃,ê − 2Sm̃−m̂,ê − Sm−m̂0

with Ỹi = m̃y,i and X̃i = m̃x,i since E(w|x, η) = 0 and E(u|x, η) = 0, and m̂0 =∑
j 6=imjL0,ij∑
j 6=i L0,ij

, with L0,ij = Lhv ,hη(V0i−V0j, ηi−ηj). The results of sup
α∈An,hv ,hη∈Hn

|R2(α, hv, hη)| =
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op(n
−1/2) are easily shown using the fact that β0 − β̂ = op(n

−1/2) shown below,

and Propositions 5.A.7, 5.A.8, 5.A.9, 5.A.12, 5.A.13, 5.A.15, 5.A.18, 5.A.19, and

5.A.20. The last term in R2 is Sm−m̂0 = Op(n
−1h−1

v h−q2η ) + Op((h
2
v + h2

η)
2) by a

simple nonparametric analysis. This is a simple extension of the results in Xia

et al. (1999). Hence the objective function (5.A.1) is rewritten as:

Ĵ(α, hv, hη̂) = J̃(α) + T (hv, hη) +R1(α, hv, hη, hz) + op(n
−1/2),

where:

R1(α, hz, hv, hη) = (β̂ − β0)′Sδ̂X (β̂ − β0) + Sδ̂m + Sδ̂e + 2(β̂ − β0)′Sδ̂X δ̂m

+2(β̂ − β0)′Sδ̂X δ̂e − 2Sδ̂mδ̂e − 2(β̂ − β0)′Sδ̂X ,mx−m̃x(β̂ − β̂0)

−2(β̂ − β0)′Sδ̂X ,m̃x−m̂x(β̂ − β0)− 2(β̂ − β0)′Sδ̂XU(β̂ − β0)

+ 2(β̂ − β0)′Sδ̂X Û(β̂ − β) + 2(β̂ − β0)′Sδ̂X ,m−m̃ + 2(β̂ − β0)′Sδ̂X ,m̃−m̂

+2(β̂ − β0)′Sδ̂Xe − 2(β̂ − β0)′Sδ̂X ê + 2(β̂ − β0)′Sδ̂m,mx−m̃x

+2(β̂ − β0)Sδ̂m,m̃x−m̂x + 2(β̂ − β0)′Sδ̂mU − 2(β̂ − β0)′Sδ̂mÛ − 2Sδ̂m,m−m̃

−2Sδ̂m,m̃−m̂ − 2Sδ̂me + 2Sδ̂mê + 2(β̂ − β0)Sδ̂e,mx−m̃x + 2(β̂ − β0)′Sδ̂e,m̃x−m̂x

+2(β̂ − β0)Sδ̂eU − 2(β̂ − β0)′Sδ̂eÛ − 2Sδ̂e,m−m̃ − 2Sδ̂e,m̃−m̂ − 2Sδ̂ee + 2Sδ̂eê.

In particular, we show that sup
α∈An,hv ,hη ,hz∈Hn

|R1(α, hz, hv, hη)| = op(n
−1/2) by using

the fact that β̂ = β0 + op(n
−1/2) and Propositions 5.A.10, 5.A.11, 5.A.14, 5.A.16,

5.A.17 and 5.A.21 below. Hence we have:

Ĵ(α, hv, hη̂) = J̃(α) + T (hv, hη) + op(n
−1/2).

�

Step 2. Proofs of Corollary 3.2.2: We can now present the proofs of

asymptotic properties of α̂ and β̂. In view of the representation of ||α − α0|| ≤
Cn−1/2, we may write, for bounded values of x:

m(v0, η) = m(v, η)− x′(α− α0)m
(1)
0 +O(n−1), (5.A.2)

m(v0, η|v, η) = m(v, η)−mx(x|v, η)′(α− α0)m
(1)
0 +O(n−1), (5.A.3)
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where mx(x|v, η) = E(XAx|v, η). Firstly, let us consider the asymptotic properties

of α̂. Using (5.A.2) and (5.A.3), we have the expansion of J̃(α) below:

J̃(α) =
1

n

n∑
i=1

[
mi − m̃i + U ′i(β0 − β̂) + ei

]2

=
1

n

n∑
i=1

{mi − m̃i}2 +
2

n

n∑
i=1

{mi − m̃i} ei +
2

n

n∑
i=1

{mi − m̃i}U ′i(β0 − β̂)

+ terms independent of α + op(n
−1/2)

= (α0 − α)′

[
1

n

n∑
i=1

{
m

(1)
0

}2

UiU
′
i

]
(α0 − α) + 2

1

n

n∑
i=1

eim
(1)
0 U ′i(α0 − α)

+ 2(β0 − β̂)′

[
1

n

n∑
i=1

m
(1)
0 UiU

′
i

]
(α0 − α) + op(n

−1/2)

= (α0 − α)′

[
1

n

n∑
i=1

{
m

(1)
0

}2

U0iU
′
0i

]
(α0 − α) + 2

1

n

n∑
i=1

eim
(1)
0 U ′0i(α0 − α)

+ 2(β0 − β̂)′

[
1

n

n∑
i=1

m
(1)
0 U0iU

′
0i

]
(α0 − α) + op(1) +Op(n

−1/2), (5.A.4)

where U0i = {Xi − E(Xi|V0i, ηi)}.
Given α0, (β0− β̂) = −

(
1
n

∑n
i=1 U0iU

′
0i

)− 1
n

∑n
i=1 U0iei (see the last equation of

(5.A.8) below). Hence we have:

J̃(α) = (α0 − α)′

[
1

n

∑
i=1

{
m

(1)
0

}2

U0iU
′
0i

]
(α0 − α) + 2

1

n

n∑
i=1

eim
(1)
0 U ′0i(α0 − α)

− 2

[(
1

n

n∑
i=1

U0iU
′
0i

)−
1

n

n∑
i=1

eiU
′
0i

][
1

n

n∑
i=1

m
(1)
0 U0iU

′
0i

]
(α0 − α) + op(1) +Op(n

−1/2)

= (α0 − α)′
{
m

(1)
0

}2

SU0(α0 − α)

+ 2m
(1)
0 SeU0(α0 − α)− 2

{
(SU0)

− SeU0

}{
m

(1)
0 SU0(α0 − α)

}
+ op(1).

Given η̂ and α, we write the linear reduced form from Robinson (1988) as

follows:

Yi − Ŷ3i = (Xi − X̂3i)
′β0 + (mi − m̂3i) + (ei − ê3i), (5.A.5)

where Ŷ3i = m̂y(V̂i, η̂i) + Ŵ3i, X̂3i = m̂x(V̂i, η̂i) + Û3i, m̂3i =
∑n
j=1 m̃jL3,ij∑n
l=1 L3,il

, ê3i =∑n
j=1 ejL3,ij∑n
l=1 L3,il

with Ŵ3i =
∑n
j=1WjL3,ij∑n
l=1 L3,il

and Û3i =
∑n
j=1 UjL3,ij∑n
l=1 L3,il

with L3,ij = Lhv ,hη(V̂i −
V̂j, η̂i − η̂j).
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Hence from (5.A.5), we obtain:

β̂ − β0 = S−1

X−X̂3

(
SX−X̂3,m−m̂3

+ SX−X̂3,e−ê3

)
. (5.A.6)

We further decompose (5.A.5), as shown below:

Yi − Ŷ1i + Ŷ1i − Ŷ3i =
{
Xi − X̂1i + X̂1i − X̂3i

}′
β0 +mi − m̂1i + m̂1i − m̂3i

+ ei − ê1i + ê1i − ê3i

Yi − Ŷ1i − δ̆y,i ≡ (Xi − X̂1i − δ̆x,i)′β0 + (mi − m̂1i − δ̆m,i) + (ei − ê1i − δ̆e,i)

Yi − Ỹi + Ỹi − Ŷ1i − δ̆y,i ≡ (Xi − X̃i + X̃i − X̂1i − δ̆x,i)′β0

+ (mi − m̃i + m̃i − m̂1i − δ̆mi) + (ei − ê1i − δ̆e,i). (5.A.7)

The last term of the right-hand side in (5.A.7) is from E(e|x, η) = 0, where

δ̆y,i = Ŷ3i − Ŷ1i, δ̆x,i = X̂3i − X̂1i, δ̆m,i = m̂3i − m̂1i, δ̆e,i = ê3i − ê1i, Ŷ1i =

m̂y(V̂i, ηi) + Ŵ1i, X̂1i = m̂x(V̂i, ηi) + Û1i, m̂1i =
∑n
j=1 m̃jL1,ij∑n
l=1 L1,il

, ê1i =
∑n
j=1 ejL1,ij∑n
l=1 Lil

,

Ŵ1i =
∑n
j=1WjL1,ij∑n
l=1 L1,il

and Û1i =
∑n
j=1 UjL1,ij∑n
l=1 L1,il

with L1,ij = Lhv ,hη(V̂i − V̂j, ηi − ηj). By

utilising the decomposition in (5.A.7), we have:

SX−X̂3
= SX−X̃ + SX̃−X̂1

+ Sδ̆X + 2SX−X̃,X̃−X̂1
− 2SX−X̃,δ̆X − 2SX̃−X̂1,δ̆X

= Smx−m̃x + Sm̃x−m̂x1 + SU + SÛ1
+ Sδ̆X + 2Smx−m̃x,m̃x−m̂x1 + 2Smx−m̃x,U

−2Smx−m̃x,Û1
− Smx−m̃x,δ̆X − 2Sm̃x−m̂x1 ,U − 2Sm̃x−m̂x1 ,Û1

− 2Smx−m̃x,δ̆X

−2SUÛ1
− 2SUδ̆X + 2SÛ1δ̆X

;

Sm−m̂3 = Sm−m̃ + Sm̃−m̂1 + Sδ̆m + 2Sm−m̃,m̃−m̂1 − 2Sm−m̃,δ̆m − 2Sm̃−m̂1,δ̆m
;

Se−ê3 = Se + Sê1 + Sδ̆e − 2Seê1 − 2Seδ̆e + 2Sê1δ̆e;

SX−X̂3,m−m̂3
= Smx−m̃x,m−m̃ + Smx−m̃x,m̃−m̂1 − Smx−m̃x,δ̆m + Sm̃x−m̂x1 ,m−m̃

+Sm̃x−m̂x1 ,m̃−m̂1 − Sm̃x−m̂x1 ,δ̆m + Sm−m̃,U + Sm̃−m̂1,U − SUδ̆m − Sm−m̃,Û1

−Sm̃−m̂1,Û1
+ SÛ1δ̆m

− Sm−m̃,δ̆X − Sm̃−m̂1,δ̆X
+ Sδ̆X δ̆m ;

SX−X̂3,e−ê3 = Smx−m̃x,e − Smx−m̃x,ê1 − Smx−m̃x,δ̆e + Sm̃x−m̂x1 ,e − Sm̃x−m̂x1 ,ê1
−Sm̃x−m̂x1 ,δ̆e + SUe − SUê1 − SUδ̆e − SÛ1e

+ SÛ1ê1
+ SÛ1δ̆e

− Sδ̆Xe + Sδ̆X ê1 + Sδ̆Xδ̆e;

Sm−m̂3,e−ê3 = Sm−m̃,e − Sm−m̃,ê1 − Sm−m̃,δ̆e + Sm̃−m̂1,e − Sm̃−m̂1,ê1 − Sm̃−m̂1,δ̆e

−Sδ̆me + Sδ̆mê1 + Sδ̆eδ̆m .
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Note that we approximate two kernel functions to be L3,ij = L2,ij+Op(n
−1/2h−1

v )

and L1,ij = Lij + Op(n
−1/2h−1

v ) uniformly in i. Hence, we employ L2,ij and Lij

instead of L3,ij and L1,ij, respectively, for the case of β̂ in Propositions 5.A.7 to

5.A.21.

By Propositions 5.A.7 to 5.A.21, and (5.A.2) and (5.A.3), we obtain that

(5.A.6) is:

(β̂ − β0) =

(
1

n

n∑
i=1

UiU
′
i

)−{
1

n

n∑
i=1

Uiei −
1

n

n∑
i=1

Ui(mi − m̃i)

}
+ op(n

−1/2)

=

(
1

n

n∑
i=1

UiU
′
i

)−{
1

n

n∑
i=1

Uiei −
1

n

n∑
i=1

m
(1)
0 UiU

′
i(α0 − α)

}
+ op(n

−1/2)

=

(
1

n

n∑
i=1

U0iU
′
0i

)−{
1

n

n∑
i=1

U0iei −
1

n

n∑
i=1

m
(1)
0 U0iU

′
0i(α0 − α)

}
+op(1) +Op(n

−1/2). (5.A.8)

Given β0, α0 − α =

(
1
n

∑n
i=1

{
m

(1)
0

}2

U0iU
′
0i

)−
1
n

∑n
i=1m

(1)
0 eiU

′
0i (see the last

equation in (5.A.4)). Hence we have:

(β̂ − β0)

=

(
1

n

n∑
i=1

U0iU
′
0i

)−{
1

n

n∑
i=1

U0iei −
1

n

n∑
i=1

m
(1)
0 U0iU

′
0i

(
1

n

n∑
i=1

{
m

(1)
0

}2

U0iU
′
0i

)−
1

n

n∑
i=1

m
(1)
0 eiU

′
0i

}
+op(1)

= (SU0)
−

{
SU0e −m

(1)
0 SU0

({
m

(1)
0

}2

SU0

)−
m

(1)
0 SeU0

}
+ op(1).

Given both β̂ and α̂, the variance of e is:

σ̂2 = Se−ê3 + Sm−m̂3 + (β̂ − β0)′S(X−X̂3)(β̂ − β0)− 2(β̂ − β0)′S(X−X̂3)′,e−ê3

− 2(β̂ − β0)′S(X−X̂3),m−m̂3
+ 2Sm−m̂3,e−ê3 (5.A.9)

= Se + op(1)
p→ σ2,

by Propositions 5.A.7 to 5.A.21 below, the law of large numbers, and the i.i.d.

assumption of ei . The other nine terms are (β̂ − β0)′Smx−m̃x(β̂ − β0);
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(β̂ − β0)′Smx−m̃x,U(β̂ − β0); (β̂ − β0)′SU(β̂ − β0); Sm−m̃; Smx−m̃x,m−m̃; Sm−m̃,U ;

Smx−m̃x,e; SUe and Sm−m̃,e equal to op(n
−1/2).

By the central limit theorem and the law of large numbers, the asymptotic

normalities of α̂ and β̂ are:

√
n(β̂ − β0) =

√
n (SU0)

−

{
SU0e −m

(1)
0 SU0

({
m

(1)
0

}2

SU0

)−
m

(1)
0 SeU0

}
+ op(1)

→D N

(
0, σ2

[
Φ−U0
−
(
m

(1)
0 ΦU0

)−
ΦU0

{
m

(1)
0

}2 (
m

(1)
0 ΦU0

)−])
√
n(α̂− α0) =

√
n

({
m

(1)
0

}2

SU0

)− {
m

(1)
0 SeU0 −m

(1)
0 SU0 (SU0)

− SeU0

}
+ op(1)

→D N

(
0, σ2

[({
m

(1)
0

}2

ΦU0

)−
−
{
m

(1)
0 ΦU0

}−
ΦU0

{
m

(1)
0 ΦU0

}−])
.

�

Note that the stated orders of the remainder term R1(α, hv, hη, hz) are available

uniformly in α ∈ An and hv, hη, hz ∈ Hn, using the uniform bounds in Härdle et al.

(1993). Let ϕn(α, hv, hη, hz) be a possible quantity for which we show that:

sup
α∈An,hv ,hη ,hz∈Hn

|ϕn(α, hv, hη, hz)| = op(n
a), (5.A.10)

since we have:

sup
α∈An,hv ,hη ,hz∈Hn

E
(
ϕn(α, hv, hη, hz)/n

b
)2l

= O(1), (5.A.11)

for all integers l ≥ 1 and where b < a. For details of the equations (5.A.10) and

(5.A.11), see step (ii) of the proof section 4 in Härdle et al. (1993). For proofs

of Propositions 5.A.7 to 5.A.21, we assume that hη,1 = · · · = hη,q2 = hη and

hz,1 = · · · = hz,q2 = hz for expositional simplicity.

Proposition 5.A.7.

(i)
√
nSm̃x−m̂x = Op(n

−1/2h−1
v h−q2η ) +Op(n

1/2(h2
v + h2

η)
2);

(ii)
√
nSm̃−m̂ = Op(n

−1/2h−1
v h−q2η ) +Op(n

1/2(h2
v + h2

η)
2).

93



Chapter 3. Extended Generalised Partially Linear Single-Index Model with Con-
trol Function Approach

Proof: Let ϕ(·) denote m(·) and mx(·), and ϕ̃(·) denote m̃(·) and m̃x(·). We

deduce from (5.A.2) and (5.A.3) that, uniformly in i, we have:

ϕ̃i − ϕ̂i =

∑
j 6=i
{
ϕ(X ′iα0, ηi|v, η)− ϕ(X ′jα0, ηj)

}
Lij∑

j 6=i Lij

=

∑
j 6=i

{
ϕ̃i − ϕ̃j + U ′j(α− α0)ϕ

(1)
0

}
Lij∑

j 6=i Lij
+O(n−1)

=
(nhvh

q2
η )−1

∑
j 6=i

{
ϕ̃i − ϕ̃j + U ′j(α− α0)ϕ

(1)
0

}
Lij

f(v, η)

[
1− f̂(v, η)− f(v, η)

f̂(v, η)

]
+ o(1),

where ϕ
(1)
0 = ∂ϕ(v0, η)/∂v0. Note that since

(
f̂(v, η)− f(v, η)

)
is Op(nhvh

q2
η )−1/2+

Op(h
2
v + h2

η) so
[
1− f̂(v,η)−f(v,η)

f̂(v,η)

]
can be dropped, hence we consider only the nu-

merator terms in the rest of the section.

By identical distribution, E(Sϕ̃−ϕ̂) = E {(ϕ̃i − ϕ̂i)2}. We can easily obtain

those E(ϕ̃i − ϕ̂i) = O(h2
v + h2

η) and V ar(ϕ̃i − ϕ̂i) = O(nhvh
q2
η )−1, where:

V ar(ϕ̃i − ϕ̂i) = V ar

(
1

nhvh
q2
η

∑
j 6=i

(ϕ̃i − ϕ̃j)Lij

)
+ V ar

(
1

nhvh
q2
η

∑
j 6=i

U ′j(α− α0)ϕ
(1)
0 Lij

)

+2Cov

(
1

nhvh
q2
η

∑
j 6=i

(ϕ̃i − ϕ̃j)Lij,
1

nhvh
q2
η

∑
j 6=i

U ′j(α− α0)ϕ
(1)
0 Lij

)
,

V ar

(
1

nhvh
q2
η

∑
j 6=i

(ϕ̃i − ϕ̃j)Lij

)
= O(nhvh

q2
η )−1,

V ar

(
1

nhvh
q2
η

∑
j 6=i

U ′j(α− α0)ϕ
(1)
0

)
= O(n2hvh

q2
η )−1,

Cov

(
1

nhvh
q2
η

∑
j 6=i

(ϕ̃i − ϕ̃j)Lij,
1

nhvh
q2
η

∑
j 6=i

U ′j(α− α0)ϕ
(1)
0 Lij

)
= O(n−3/2h−1

v h−q2η ).

Hence E(Sϕ̃−ϕ̂) = O(nhvh
q2
η )−1 +O((h2

v + h2
η)

2). �

Proposition 5.A.8.
√
nSm̃x−m̂x,m̃−m̂ = Op(n

−1/2h−1
v h−q2η ) +Op(n

1/2(h2
v + h2

η)
2).

Proof: Proposition 5.A.7 (i) and (ii), and the Cauchy inequality provide the

proof. �
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Proposition 5.A.9.

(i)
√
nSÛ = Op(n

−1/2h−1
v h−q2η );

(ii)
√
nSê = Op(n

−1/2h−1
v h−q2η ).

Proof: Let %i denote Ui and ei, and E(%i|L) = 0 almost surely, where L =

(X, η), hence E(S%̂) = E(%̂2
i ). Then we have:

E(%̂i)
2 =

1

n2h2
vh

q2
η
E

(∑
j 6=i

%2
jL

2
ij

)
= O(nhvh

q2
η )−1.

�

Proposition 5.A.10.

(i)
√
nSδ̂X = Op(n

−1h
−qz/2
z h

−1/2
v h

−(q2+2)/2
η ) +Op(n

1/2h2
z(h

2
v + h2

η));

(ii)
√
nSδ̂m = Op(n

−1h
−qz/2
z h

−1/2
v h

−(q2+2)/2
η ) +Op(n

1/2h2
z(h

2
v + h2

η));

(iii)
√
nSδ̂e = Op(n

−1h
−qz/2
z h

−1/2
v h

−(q2+2)/2
η ) +Op(n

1/2h2
z(h

2
v + h2

η)).

Proof: Let δ denote δX , δm and δe.Then we have:

δ̂i = δ2,i − δ1,i =

∑
j 6=i δjL2,ij∑
j 6=i L2,ij

−
∑

j 6=i δjLij∑
j 6=i Lij

.

The Taylor expansion of the kernel function, L2,ij, is:

L2,ij = Lij + L
(1)
ij

(
4ij

hη

)
+ L

(2)
ij (τ)

(
4ij

hη

)2

,

where L
(r)
ij is the rth derivative of Lij with respect to η with r = 1 or 2, 4ij =

{m̂x(Zj)−mx(Zj)} − {m̂x(Zi)−mx(Zi)} and τ is between the segment line of

ηj − ηi and η̂j − η̂i. Hence, the denominator of δ2,i is:

1

nhvh
q2
η

∑
j 6=i

L2,ij =
1

nhvh
q2
η

∑
j 6=i

Lij +
1

nhvh
q2+1
η

∑
j 6=i

L
(1)
ij 4ij +Rij,
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where Rij is the remainder term and the second term on the right-hand side is

op(n
−1/2), because of the following:

E

(
1

nhvh
q2+1
η

∑
j 6=i

L
(1)
ij 4ij

)2

=
1

n2h2
vh

2(q2+1)
η

E

(∑
j 6=i

(
L

(1)
ij

)2

42
ij

)
+

2

n2h2
vh

2(q2+1)
η

E

(∑
j 6=i

∑
k 6=i,j

L
(1)
ij L

(1)
ik 4ij4ik

)

=
1

n4h2qz
z h2

vh
2(q2+1)
η

E

∑
j 6=i

(
L

(1)
ij

)2
{∑

l 6=j

C(l,j;K) −
∑
l 6=i

C(l,i;K)

}2


+
2

n4h2qz
z h2

vh
2(q2+1)
η

E

(∑
j 6=i

(
L

(1)
ij

)2
{∑

l 6=j

C(l,j;K) −
∑
l 6=i

C(l,i;K)

}{∑
m6=j,l

C(m,j;K) −
∑
m6=i,l

C(m,i;K)

})

+
2

n4h2qz
z h2

vh
2(q2+1)
η

E

(∑
j 6=i

∑
k 6=i,j

L
(1)
ij L

(1)
ik

{∑
l 6=j

C(l,j;K) −
∑
l 6=i

C(l,i;K)

}
(5.A.12)

×

{∑
m 6=k,l

C(m,k;K) −
∑
m6=i,l

C(m,i;K)

})
= O

(
n−2h−qzz h−1

v h−(q2+2)
η

)
+O

(
n−1h4

zh
−1
v h−(q2+2)

η

)
+O

(
h4
z(h

2
v + h2

η)
2
)
,

where C(l,j;K) = {mx(Zl)−mx(Zj)}Kjl. Hence δ̂i =
(nhvh

q2+1
η )−1

∑
j 6=i δjL

(1)
ij 4ij

(nhvhη)−1
∑
j 6=i Lij+op(n−1/2)

.

Now consider E(
√
nSδ̂), we have:

E(
√
nSδ̂) =

1

n

n∑
i=1

E(δ̂2
i ) +

2

n

n∑
i=1

n∑
j=1, 6=i

E(δ̂iδ̂j). (5.A.13)

Using a similar argument to the above, the two terms in the right-hand side of

(5.A.13) are:
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E
(
δ̂2
i

)
=

1

n4h2qz
z h2

vh
2(q2+1)
η

E

(∑
j 6=i

δjL
(1)
ij

{∑
l 6=j

C(l,j;K) −
∑
l 6=i

C(l,i;K)

})2

=
1

n4h2qz
z h2

vh
2(q2+1)
η

E

∑
j 6=i

δ2
j

(
L

(1)
ij

)2
{∑

l 6=j

C(l,j;K) −
∑
l 6=i

C(l,i;K)

}2


+
2

n4h2qz
z h2

vh
2(q2+1)
η

E

(∑
j 6=i

δ2
j

(
L

(1)
ij

)2
{∑

l 6=j

C(l,j;K) −
∑
l 6=i

C(l,i;K)

}

×

{∑
m6=j,l

C(m,j;K) −
∑
m6=i,l

C(m,i;K)

})
= O

(
n−2h−qzz h−1

v h−(q2+2)
η

)
+O

(
n−1h4

zh
−1
v h−(q2+2)

η

)
,

and

E
(
δ̂iδ̂j

)
=

2

n4h2qz
z h2

vh
2(q2+1)
η

∑
j 6=i

∑
k 6=i,j

× E

(
δjL

(1)
ij δkL

(1)
ik

{∑
l 6=j

C(l,j;K) −
∑
l 6=i

C(l,i;K)

}{∑
m 6=k

C(m,k;K) −
∑
m 6=i,l

C(m,i;K)

})
= O

(
h4
z(h

2
v + h2

η)
2
)
.

�

Proposition 5.A.11.

(i)
√
nSδ̂X δ̂m = Op(n

−1h
−qz/2
z h

−1/2
v h

−(q2+2)/2
η ) +Op(n

1/2h2
z(h

2
v + h2

η));

(ii)
√
nSδ̂X δ̂e = Op(n

−1h
−qz/2
z h

−1/2
v h

−(q2+2)/2
η ) +Op(n

1/2h2
z(h

2
v + h2

η));

(iii)
√
nSδ̂mδ̂e = Op(n

−1h
−qz/2
z h

−1/2
v h

−(q2+2)/2
η ) +Op(n

1/2h2
z(h

2
v + h2

η)).

Proof: Proposition 5.A.10 (i), (ii) and (iii), and the Cauchy inequality pro-

vide the proof. �

Proposition 5.A.12.

(i)
√
nSUÛ = Op(n

−1/2h
−1/2
v h

−q2/2
η );

97



Chapter 3. Extended Generalised Partially Linear Single-Index Model with Con-
trol Function Approach

(ii)
√
nSÛe = Op(n

−1/2h
−1/2
v h

−q2/2
η );

(iii)
√
nSeê = Op(n

−1/2h
−1/2
v h

−q2/2
η );

(iv)
√
nSUê = Op(n

−1/2h
−1/2
v h

−q2/2
η ).

Proof: Since E(%i|L) = 0, we have:

E
(√

nS%%̂
)2

=
1

n

n∑
i=1

E
(
%2
i %̂

2
i

)
,

where:

E(%2
i %̂

2
i ) =

1

n2h2
vh

2q2
η

E

(
%2
i

∑
j 6=i

%2
jL

2
ij

)
= O(nhvh

q2
η )−1.

�

Proposition 5.A.13.

(i)
√
nSm̃x−m̂x,U = Op(n

−1/2h
−1/2
v h

−q2/2
η );

(ii)
√
nSm̃−m̂,U = Op(n

−1/2h
−1/2
v h

−q2/2
η );

(iii)
√
nSm̃x−m̂x,e = Op(n

−1/2h
−1/2
v h

−q2/2
η );

(iv)
√
nSm̃−m̂,e = Op(n

−1/2h
−1/2
v h

−q2/2
η ).

Proof: Since E(%i|L) = 0, we have:

E(
√
nS%,ϕ̃−ϕ̂)2 =

1

n

n∑
i=1

E
{
%2
i (ϕ̃i − ϕ̂i)2

}
,

where:

E
{
%2
i (ϕ̃i − ϕ̂i)2

}
=

1

n2h2
vh

2q2
η

E

(
%2
i

∑
j 6=i

(
C∗(i,j;L)

)2

)
+

2

n2h2
vh

2q2
η

E

(
%2
i

∑
j 6=i

∑
l 6=i,j

C∗(i,j;L)C
∗
(i,l;L)

)
= O(n−1h−1

v h−q2η ) +O((h2
v + q2h

2
η)

2)

with C∗(i,j;L) =
{
ϕ̃i − ϕ̃j + U ′j(α− α0)ϕ

(1)
0

}
Lij. �
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Proposition 5.A.14.

(i)
√
nSUδ̂X = Op(n

−1h
−qz/2
z h

−1/2
v h

−(q2+2)/2
η ) +Op(n

−1/2h2
zh
−1/2
v h

−(q2+2)/2
η );

(ii)
√
nSeδ̂e = Op(n

−1h
−qz/2
z h

−1/2
v h

−(q2+2)/2
η ) +Op(n

−1/2h2
zh
−1/2
v h

−(q2+2)/2
η );

(iii)
√
nSeδ̂m = Op(n

−1h
−qz/2
z h

−1/2
v h

−(q2+2)/2
η ) +Op(n

−1/2h2
zh
−1/2
v h

−(q2+2)/2
η );

(iv)
√
nSeδ̂X = Op(n

−1h
−qz/2
z h

−1/2
v h

−(q2+2)/2
η ) +Op(n

−1/2h2
zh
−1/2
v h

−(q2+2)/2
η );

(v)
√
nSUδ̂m = Op(n

−1h
−qz/2
z h

−1/2
v h

−(q2+2)/2
η ) +Op(n

−1/2h2
zh
−1/2
v h

−(q2+2)/2
η );

(vi)
√
nSUδ̂e = Op(n

−1h
−qz/2
z h

−1/2
v h

−(q2+2)/2
η ) +Op(n

−1/2h2
zh
−1/2
v h

−(q2+2)/2
η ).

Proof: Since E(%i|L) = 0, we have:

E(
√
nS%δ̂)

2 =
1

n

n∑
i=1

E
(
%2
i δ̂

2
i

)
,

where:

E(%2
i δ̂

2
i ) =

1

n4h2qz
z h2

vh
2(q2+1)
η

E

%2
i

∑
j 6=i

δ2
j

(
L

(1)
ij

)2
{∑

l 6=j

C(l,j;K) −
∑
l 6=i

C(l,i;K)

}2


+
2

n4h2qz
z h2

vh
2(q2+1)
η

E

(
%2
i

∑
j 6=i

δ2
j

(
L

(1)
ij

)2
{∑

l 6=j

C(l,j;K) −
∑
l 6=i

C(l,i;K)

}

×

{∑
m 6=j,l

C(m,j;K) −
∑
m 6=i,l

C(m,i;K)

})
= O

(
n−2h−qzz h−1

v h−(q2+2)
η

)
+O

(
n−1h4

zh
−1
v h−(q2+2)

η

)
,

using similar arguments to those in Proposition 5.A.10. �

Proposition 5.A.15.

(i)
√
nSm̃x−m̂x,Û = Op(nhvh

q2
η )−1 +Op(n

1/2(h2
v + h2

η)
2);

(ii)
√
nSm̃−m̂,Û = Op(nhvh

q2
η )−1 + +Op(n

1/2(h2
v + h2

η)
2);

(iii)
√
nSm̃x−m̂x,ê = Op(nhvh

q2
η )−1 +Op(n

1/2(h2
v + h2

η)
2);
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(iv)
√
nSm̃−m̂,ê = Op(nhvh

q2
η )−1 +Op(n

1/2(h2
v + h2

η)
2).

Proof:

E
(√

nSϕ̃−ϕ̂,%̂
)2

=
1

n

n∑
i=1

E
{
%̂2
i (ϕ̃i − ϕ̂i)2

}
+

2

n

n∑
i=1

n∑
j=1, 6=i

E {%̂i%̂j(ϕ̃i − ϕ̂i)(ϕ̃j − ϕ̂j)} ,

where:

E
{
%̂2
i (ϕ̃i − ϕ̂i)2

}
=

1

n4h4
vh

4q2
η

E

(∑
j 6=i

∑
l 6=i

%2
jL

2
ij

(
C∗(i,l:L)

)2

)

+
2

n4h4
vh

4q2
η

E

(∑
j 6=i

∑
l 6=i

∑
k 6=i,l

%2
jL

2
ijC
∗
(i,l;L)C

∗
(i,k,L)

)
= O(n−2h−2

v h−2q2
η ) +O(n−1h−1

v h−q2η (h2
v + h2

η)
2),

E {%̂i%̂j(ϕ̃i − ϕ̂i)(ϕ̃j − ϕ̂j)} =
1

n4h4
vh

4q2
η

E

(∑
l 6=i

∑
s 6=j

∑
k 6=i

∑
m6=j

%l%sLilLjsC
∗
(i,k;L)C

∗
(j,m;L)

)
= O((h2

v + h2
η)

4).

�

Proposition 5.A.16.

(i)
√
nSÛ δ̂X = Op

(
n−1h

−qz/2
z h−1

v h
−(q2+1)
η

)
+Op

(
n1/2h2

z(h
2
v + h2

η)
)
;

(ii)
√
nSêδ̂e = Op

(
n−1h

−qz/2
z h−1

v h
−(q2+1)
η

)
+Op

(
n1/2h2

z(h
2
v + h2

η)
)
;

(iii)
√
nSÛ δ̂m = Op

(
n−1h

−qz/2
z h−1

v h
−(q2+1)
η

)
+Op

(
n1/2h2

z(h
2
v + h2

η)
)
;

(iv)
√
nSêδ̂X = Op

(
n−1h

−qz/2
z h−1

v h
−(q2+1)
η

)
+Op

(
n1/2h2

z(h
2
v + h2

η)
)
;

(v)
√
nSêδ̂m = Op

(
n−1h

−qz/2
z h−1

v h
−(q2+1)
η

)
+Op

(
n1/2h2

z(h
2
v + h2

η)
)
;

(vi)
√
nSÛ δ̂e = Op

(
n−1h

−qz/2
z h−1

v h
−(q2+1)
η

)
+Op

(
n1/2h2

z(h
2
v + h2

η)
)
.

Proof:

E
(√

nS%̂δ̂

)2

=
1

n

n∑
i=1

E
(
%̂2
i δ̂

2
i

)
+

2

n

n∑
i=1

n∑
j=1,6=i

E
(
%̂iδ̂i%̂j δ̂j

)
,
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where:

E
(
%̂2
i δ̂

2
i

)
=

1

n6h2qz
z h4

vh
2(2q2+1)
η

E

(∑
j 6=i

∑
l 6=i

%jLijδl

(
L

(1)
il

){∑
k 6=j

C(k,j;K) −
∑
k 6=i

C(k,i;K)

})2

=
1

n6h2q2
z h4

vh
2(2q2+1)
η

E

∑
j 6=i

∑
l 6=i

%2
jL

2
ijδ

2
l

{
L

(1)
il

}2
{∑

k 6=l

C(k,l;K) −
∑
k 6=i

C(k,i;K)

}2


+
2

n6h2qz
z h4

vh
2(2q2+1)
η

E

(∑
j 6=i

∑
l 6=i

%2
jL

2
ijδ

2
l

(
L

(1)
il

)2
{∑

k 6=l

C(k,l;K) −
∑
k 6=i

C(k,i,;K)

}

×

{∑
m 6=l,k

C(m,l;K) −
∑
m 6=i,k

C(m,i;K)

})
= O

(
n−2h−qzz h−2

v h−(2q2+2)
η

)
+O

(
n−2h4

zh
−2
v h(−2q2+2)

η

)
,

and the cross product term, E
(
%̂iδ̂i%̂j δ̂j

)
, is (n6h2qz

z h4
vh

2(2q2+1)
η )−1 times:

E

(∑
j 6=i

∑
s 6=j

∑
l 6=i

∑
t6=j

%j%sLijLjsδlδtL
(1)
il L

(1)
jt

{∑
k 6=l

C(k,l;K) −
∑
k 6=i

C(k,i;K)

}

×

{∑
m 6=t

C(m,t;K) −
∑
m6=j

C(m,j;K)

})
.

Hence the cross product term is O
(
h4
z(h

2
v + h2

η)
2
)
.

�

Proposition 5.A.17.

(i)
√
nSm̃x−m̂x,δ̂X = Op

(
n−1h

−qz/2
z h−1

v h
−(q2+1)
η

)
+Op

(
n1/2h2

z(h
2
v + h2

η)
2
)
;

(ii)
√
nSm̃x−m̂x,δ̂m = Op

(
n−1h

−qz/2
z h−1

v h
−(q2+1)
η

)
+Op

(
n1/2h2

z(h
2
v + h2

η)
2
)
;

(iii)
√
nSm̃x−m̂x,δ̂e = Op

(
n−1h

−qz/2
z h−1

v h
−(q2+1)
η

)
+Op

(
n1/2h2

z(h
2
v + h2

η)
2
)
;

(iv)
√
nSm̃−m̂,δ̂m = Op

(
n−1h

−qz/2
z h−1

v h
−(q2+1)
η

)
+Op

(
n1/2h2

z(h
2
v + h2

η)
2
)
;

(v)
√
nSm̃−m̂,δ̂X = Op

(
n−1h

−qz/2
z h−1

v h
−(q2+1)
η

)
+Op

(
n1/2h2

z(h
2
v + h2

η)
2
)
;

(vi)
√
nSm̃−m̂,δ̂e = Op

(
n−1h

−qz/2
z h−1

v h
−(q2+1)
η

)
+Op

(
n1/2h2

z(h
2
v + h2

η)
2
)
.
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Proof:

E
(√

nSϕ̃−ϕ̂,δ̂

)2

=
1

n

n∑
i=1

E
(

(ϕ̃i − ϕ̂i)2δ̂2
i

)
+

2

n

n∑
i=1

n∑
j=1,6=i

E
(

(ϕ̃i − ϕ̂i)δ̂i(ϕ̃j − ϕ̂j)δ̂j
)
,

where:

E
(

(ϕ̃i − ϕ̂i)2δ̂i

)2

=
1

n6h2qz
z h4

vh
2(2q2+1)
η

E

∑
j 6=i

(
C∗(i,j;L)

)2
∑
l 6=j

δ2
l

(
L

(1)
il

)2
{∑

k 6=l

C(k,l:K) −
∑
k 6=i

C(k,i;K)

}2


+
2

n6h2qz
z h4

vh
2(2q2+1)
η

E

(∑
j 6=i

(
C∗(i,j;L)

)2
∑
l 6=j

δ2
l

(
L

(1)
il

)2
{∑

k 6=l

C(k,l:K) −
∑
k 6=i

C(k,i;K)

}

×

{∑
m 6=l,k

C(m,l:K) −
∑
m 6=i,k

C(m,i;K)

})
= O

(
n−2h−qzz h−2

v h−(2q2+2)
η

)
+O

(
n−2h4

zh
−2
v h−(2q2+2)

η

)
,

and the cross product term, E
(
%̂iδ̂i%̂j δ̂j

)
is (n6h2qz

z h2
vh

2(2q2+1)
η )−1 times:

E

(∑
j 6=i

∑
ks6=j

∑
l 6=i

∑
t6=j

C∗(i,j;L)C
∗
(j,s;L)δlδtL

(1)
il L

(1)
jt

{∑
k 6=l

C(l,k:K) −
∑
k 6=i

C(k,i;K)

}{∑
m6=t

C(m,t:K) −
∑
m 6=j

C(m,j;K)

})
.

Hence the cross product term is O
(
h4
z(h

2
v + h2

η)
4
)
. �

Proposition 5.A.18.
√
nSÛ ê = Op(nhvh

q2
η )−1 +Op(n

1/2(h2
v + h2

η)
2).

Proof:

E
(√

nSÛ ê
)2

=
1

n

n∑
i=1

E
{
Û2
i ê

2
i

}
+

2

n

n∑
i=1

n∑
j=1,6=i

E
{
ÛiÛ

′
j êiêj

}
,

where:

E
{
Û2
i ê

2
}

=
1

n4h4
vh

4q2
η

E

{
UjU

′
j

∑
j 6=i

L2
ije

2
l

∑
l 6=i

L2
il

}
= O(n−2h−2

v h−2q2
η ),

and:

E
{
ÛiÛ

′
j êiêj

}
=

1

n4h4h4q2
η

E

{
UlU

′
l

∑
l 6=i

∑
l 6=j

LilLjle
2
l

∑
k 6=i

∑
k 6=j

LikLjk

}
= O((h2

v+h
2
η)

4).

�
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Proposition 5.A.19.

(i)
√
nSmx−m̃x,m̃x−m̂x = Op

(
n−1h

−1/2
v h

−q2/2
η

)
;

(ii)
√
nSm−m̃,m̃−m̂ = Op

(
n−1h

−1/2
v h

−q2/2
η

)
;

(iii)
√
nSmx−m̃x,m̃−m̂ = Op

(
n−1h

−1/2
v h

−q2/2
η

)
;

(iv)
√
nSm−m̃,m̃x−m̂x = Op

(
n−1h

−1/2
v h

−q2/2
η

)
.

Proof: By (5.A.2) and (5.A.3) we deduce that, uniformly in i, we have:

ϕi − ϕ̃i = U ′i(α0 − α)ϕ
(1)
0 (X ′iα0, ηi) +O(n−1). (5.A.14)

Hence we have:

(ϕi − ϕ̃i)(ϕ̃i − ϕ̂i) =
1

nhvh
q2
η

∑
j 6=i

ti

{
ϕ̃i − ϕ̃j + U ′j(α− α0)ϕ

(1)
0

}
Lij,

where ti = U ′i(α0 − α)ϕ
(1)
0 .

For the rest of proofs, we use similar arguments to those in Proposition 5.A.13

because E(Ui|L) = 0. Hence we have:

E
(√

nSϕ−ϕ̃,ϕ̃−ϕ̂
)2

=
1

n

n∑
i=1

E
(
t2i (ϕ̃i − ϕ̂i)2

)
,

where:

E
(
t2i (ϕ̃i − ϕ̂i)2

)
=

1

n2h2
vh

2
η

E

{∑
j 6=i

t2i
(
C∗(i,j;L)

)2
L2
ij

}

+
2

n2h2
vh

2
η

E

{∑
j 6=i

∑
l 6=i,j

t2iC
∗
(i,j;L)LijC

∗
(i,l;L)Lil

}
= O

(
n−2h−1

v h−q2η

)
+O

(
n−1(h2

v + h2
η)

2
)
.

�

Proposition 5.A.20.

(i)
√
nSmx−m̃x,Û = Op

(
n−1h

−1/2
v h

−q2/2
η

)
;
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(ii)
√
nSmx−m̃x,ê = Op

(
n−1h

−1/2
v h

−q2/2
η

)
;

(iii)
√
nSm−m̃,Û = Op

(
n−1h

−1/2
v h

−q2/2
η

)
;

(iv)
√
nSm−m̃,ê = Op

(
n−1h

−1/2
v h

−q2/2
η

)
.

Proof: By (5.A.14) and E(%i|L) = 0, we use similar arguments to those in

Proposition 5.A.12 for the rest of the proofs.

E(
√
nSϕ−ϕ̃,%̂)

2 =
1

n

n∑
i=1

E
(
t2i %̂

2
i

)
,

where:

E
(
t2i %̂

2
i

)
=

1

n2h2
vh

2q2
η

E

(∑
j 6=i

t2i %
2
jL

2
ij

)
= O

(
n−2h−1

v h−q2η

)
.

�

Proposition 5.A.21.

(i)
√
nSmx−m̃x,δ̂X = Op

(
n−2h

−qz/2
z h

−1/2
v h

−(q2+2)/2
η

)
;

(ii)
√
nSm−m̃,δ̂m = Op

(
n−2h

−qz/2
z h

−1/2
v h

−(q2+2)/2
η

)
;

(iii)
√
nSm−m̃,δ̂X = Op

(
n−2h

−qz/2
z h

−1/2
v h

−(q2+2)/2
η

)
;

(iv)
√
nSmx−m̃x,δ̂m = Op

(
n−2h

−qz/2
z h

−1/2
v h

−(q2+2)/2
η

)
;

(v)
√
nSmx−m̃x,δ̂e = Op

(
n−2h

−qz/2
z h

−1/2
v h

−(q2+2)/2
η

)
;

(vi)
√
nSm−m̃,δ̂e = Op

(
n−2h

−qz/2
z h

−1/2
v h

−(q2+2)/2
η

)
.

Proof: By (5.A.14) and E(Ui|L) = 0, the rest of proofs is similar to that of

Proposition 5.A.14.

E(
√
nSϕ−ϕ̃,δ̂)

2 =
1

n

n∑
i=1

E
(
t2i δ̂

2
i

)
,
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where:

E
(
t2i δ̂

2
i

)
=

1

n6h2qz
z h2

vh
2(q2+1)
η

E

∑
j 6=i

t2i δ
2
j

{
L

(1)
ij

}2
{∑

l 6=j

C(l,j;K) −
∑
l 6=i

C(l,i;K)

}2


+
2

n6h2qz
z h2

vh
2(q2+1)
η

E

(∑
j 6=i

t2i δ
2
j

(
L

(1)
ij

)2
{∑

l 6=j

C(l,j;K) −
∑
l 6=i

C(l,i;K)

}

×

{∑
k 6=j,l

C(k,j;K) −
∑
k 6=i,l

C(k,i;K)

})
= O(n−4h−qzz h−1

v h−(q2+2)
η ) +O(n−4h4

zh
−1
v h−(q2+2)

η ).

�

3.5.2 Proof of Theorem 3.2.2

Given β̂ and α̂, we have:

m̂(v̂, η̂i)−m(v0, ηi) =
{
m̂y∗∗(v̂, ηi)− m̃y∗∗(v̂, ηi) + m̃y∗∗(v̂, ηi)−my∗∗(v0, ηi) + δ̆y∗∗,i

}
−
{
m̂x(v̂, ηi)− m̃x(v̂, ηi) + m̃x(v̂, ηi)−mx(v0, ηi) + δ̆x,i

}′
(β̂ − β0), (5.B.1)

where Y ∗∗i = Yi − X ′iβ0, δ̆y∗∗ = δ̆y − δ̆′xβ0 and m̃(v̂, η) = E(m|α̂). As the results

of Section 3.5.1, the second term in the right-hand side of (5.B.1) is op(n
−1/2),

uniformly in i, by applying (5.A.10) and (5.A.11) as sup
Xi,ηi∈A,Zi∈Az

|ϕi| = op(n
a)

since sup
Xi,ηi∈A,Zi∈Az

E|ϕi/nb|2l = O(1). Hence (5.B.1) is:

m̂(v̂, η̂i)−m(v0, ηi) =
{
m̂y∗∗(v̂, ηi)− m̃y∗∗(v̂, ηi) + m̃y∗∗(v̂, ηi)−my∗∗(v0, ηi) + δ̆y∗∗,i

}
+ op(1), (5.B.2)

where δ̆y∗∗ = op(n
−1/2) by similar arguments to those in Proposition 5.A.10 and

m̃y∗∗(v̂, ηi)−my∗∗(v0, ηi) = Op(n
−1/2) by (5.A.2) and (5.A.3), uniformly in i. Hence

(5.B.2) is:

m̂(v̂, η̂i)−m(v0, ηi) = m̂y∗∗(v̂, ηi)− m̃y∗∗(v̂, ηi) + op(1)

≡ m̂(v̂, ηi)− m̃(v̂, ηi) + op(1), (5.B.3)

105



Chapter 3. Extended Generalised Partially Linear Single-Index Model with Con-
trol Function Approach

where:

m̂(v̂, ηi)− m̃(v̂, ηi) =

∑
j 6=i {m(v0, ηj)− m̃(v̂, ηi)}L1,ij∑

j 6=i L1,ij

=

∑
j 6=i {m(v0, ηj)−m(v0, ηi)}L1,ij∑

j 6=i L1,ij

+ U ′i(α̂− α0)m
(1)
0 +O(n−1)

=

∑
j 6=i {m(v0, ηj)−m(v0, ηi)}

{
L0,ij +O(n−1/2h−1

v )
}∑

j 6=i L0,ij + o(1)
+Op(n

−1/2).

Hence (5.B.3) is:

m̂(v̂, η̂i)−m(v0, ηi) = m̂(v0, ηi)−m(v0, ηi) + op(1). (5.B.4)

Let us define m̌(v0, ηi) = m̂(v0, ηi)f̂(v0, ηi). Then we can rewrite the term in

the right-hand side of (5.B.4) as follows:

m̂(v0, ηi)−m(v0, ηi) =
m̌(v0, ηi)−m(v0, ηi)f̂(v0, ηi)

f̂(v0, ηi)

=
m̌(v0, ηi)−m(v0, ηi)f̂(v0, ηi)

f(v0, ηi)

[
1− f̂(v0, ηi)− f(v0, ηi)

f(v0, ηi)

]
. (5.B.5)

First, we consider the bias term

E(m̂(v0, ηi)−m(v0, ηi)) = f−1(v0, ηi)
(
Em̌(v0, ηi)−m(v0, ηi)E(f̂(v0, ηi))

)
, where:

Em̌(v0, ηi) = E

[
1

nhvh
q2
η

n∑
j=1

Kv

(
V0,j − v0

hv

)
Kη

(
ηj − ηi
hη

)
Y ∗∗j

]

= E

[
Ev0,ηi

{
1

nhvh
q2
η

n∑
j=1

Kv

(
V0,j − v0

hv

)
Kη

(
ηj − ηi
hη

)
Y ∗∗j

}]

= E

[
1

nhvh
q2
η

n∑
j=1

Kv

(
V0,j − v0

hv

)
Kη

(
ηj − ηi
hη

)
m(V0,j, ηj)

]
= f(v0, ηi)m(v0, ηi) +Kv,2h2

v

{
f (1)
v (v0, ηi)m

(1)
0 (v0) + f(v0, ηi)m

(2)
0 (v0)

}
+ Kη,2

q2∑
s=1

h2
η,s

{
f (1)
η,s (v0, ηi)m

(1)(ηs,i) + f(v0, ηi)m
(2)
η,s(ηi)

}
+O(h3

v) +O

(∑
s

h3
η,s

)
.

In the expression above, Ev0,ηi is the expectation conditional on v0 and ηi. Hence

we obtain:

E(m̂(v0, ηi)−m(v0, ηi)) =

{
h2
vBv(v0, ηi) +

q2∑
s=1

h2
η,sBη,s(v0, ηi)

}
+ o(1). (5.B.6)
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The single sum of (5.B.6) converges to its population mean by the Chebyshev’s

law of large numbers (see Linton & Härdle (1996)).

Now let us consider the variance term. Note that f(v0, ηi) = f(v0, η)+Op(n
1/2)

and m(v0, ηi) = m(v0, η) + Op(n
−1/2) by the law of large numbers since both

functions satisfy the bounded moment conditions. Hence we have:

V

(
1

n

n∑
i=1

m̂(v0, ηi)

)
= f(v, η)−2V

(
1

n

n∑
i=1

{
m̌(v0, ηi)−m(v0, ηi)f̂(v0, ηi)

})

= f(v0, η)−2V

(
1

n

n∑
i=1

m̌(v0, ηi)

)

+ f(v0, η)−2m(v0, η)2V

(
1

n

n∑
i=1

f̂(v0, ηi)

)

− f(v0, η)−22m(v0, η)Cov

(
1

n

n∑
i=1

m̌(v0, ηi),
1

n

n∑
i=1

f̂(v0, η)

)
,

where V (·) and Cov(·) denote variance and covariance, respectively, and:

V

(
1

n

n∑
i=1

m̌(v0, ηi)

)
= E

(
Vv0,ηi

{
1

n

n∑
i=1

m̌(v0, ηi)

})
+ V

(
Ev0,ηi

{
1

n

n∑
i=1

m̌(v0, ηi)

})

= σ2f(η)2E

[
1

nhqv

n∑
j=1

Kv

(
Vj,0 − v0

hv

)]2

+ f(η)2V

[
1

nhqv

n∑
j=1

Kv

(
V0,j − v0

hv

)
m(V0,j, ηj)

]

=
σ2f(η)2

nhqv
Kv +

m(v0, η)2f(η)2f(v0)

nhqv
Kv +O(n−1),

V

(
1

n

n∑
i=1

f̂(v0, ηi)

)
=
f(η)2f(v)Kv

nhqv
+O(n−1)

Cov

(
1

n

n∑
i=1

m̌(v0, ηi),
1

n

n∑
i=1

f̂(v0, ηi)

)
= E

{
1

n

n∑
i=1

m̌(v0, ηi)
1

n

n∑
i=1

f̂(v0, ηi)

}

− E

{
1

n

n∑
i=1

m̌(v0, ηi)

}
E

{
1

n

n∑
i=1

f̂(v0, ηi)

}

=
m(v0, η)f(η)2f(v)Kv

nhqv
+O(n−1),

where Vv0,ηi denotes the variance conditional on v0 and ηi. Hence we have:√
nhqv(m̂(v̂)−m(v0)− bias)→D N(0, var).
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The consistency of ĝ(v̂) and its asymptotic normality are argued in the same way

as above, since m(v0) = g(v0) + c1. �
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Chapter 4

Semiparametric Analysis of

Empirical Engel Curves in

Australia

Consumer demand presents an important area for the application of
semiparametric methods. In analysis of the cross-section behavior of
consumers, nonparametric analysis of the Engel curve relationship is
now common place.

Richard Blundell, Alan Duncan and Krishna Pendakur (1998)

4.1 Introduction

In this chapter, we intend to provide a further contribution to the economic

literature, particularly on the cross sectional relationships between expenditure

on specific goods and the level of total expenditure. To achieve this objective, we

employ our newly established methods to conduct a semiparametric analysis of

shape-invariant Engel curves in Australia. It should be noted that within the con-

text of the empirical demand study, Blundell et al. (2007) address the endogeneity

of the total expenditure by using the nonparametric IV method through which

some regularity conditions are imposed on the inversion matrix and a constraint

is placed on the space of the reduced relation to make it compact. Blundell et al.
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(2007) show the
√
n-consistency of the estimators of both the scale and the shift

coefficients. On the other hand, Blundell et al. (1998) address endogeneity by us-

ing the CF approach by a parametrically generated endogeneity control variable.

We will clearly explain the difference between our method and that of Blundell

et al. (1998) below. Furthermore, because of the importance of this topic, even

though an effective tool is lacking for testing endogeneity in semiparametrics, an

additional advantage of our method is that it enables a rather simple procedure

to be established for the purpose. This is brought about mainly by its ability to

identify and disentangle the effect of endogeneity in the model. This simple tool

relies on the variability bands being constructed over the estimates of the endo-

geneity measures (to be defined below) as the means of testing their statistical

significance.

In this section, we will study the relationships between expenditure on specific

goods and the level of total expenditure by using our newly established method in

Chapter 3 to conduct a semiparametric analysis of shape-invariant Engel curves

in the Australian context. The data used is based on the Household, Income and

Labor Dynamics in Australia (HILDA) Survey, which is Australia’s household-

based panel study that began in 2001. The goal of such a survey is to collect

information about economic and subjective well-being, the labour market and

family dynamics. The survey consists of more than 7,500 households with just

below 20,000 individuals. The current release, i.e. Release 8, covers the first

eight waves (out of 11) of data, which has recently become publicly available.

The current section consists of four subsections. In Section 4.2, we explain the

empirical model which our analysis will be based on. Section 4.2.1 discusses the

details of the relevance of endogeneity in the study at hand. In Section 4.2.2, we

then discuss the empirical estimation of the shape-invariant Engel curves and we

present a number of important findings in Section 4.2.3.
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4.2 The Empirical Model

Hereafter, let {Y1il, X1i, X2i}ni=1 represent an i.i.d. sequence of n household

observations on the budget share Y1il of good l = 1, . . . , L ≥ 1 for each house-

hold i facing the same relative prices, the log of total expenditure X1i, and

a vector of household composition variables X2i. For each commodity l, bud-

get shares and total outlay are related by the general stochastic Engel curve

Y1il = Gl(X1i) + εil, where Gl is an unknown function that can be estimated using

a standard nonparametric regression method under the exogeneity assumption of

X1, i.e. E(εl|x1) = 0. Furthermore, a number of previous studies have reported

that household expenditures typically display a large variation with demographic

composition. When X2 is discrete, a simple approach for model estimation is to

stratify by each distinct discrete outcome of X2 and then estimate using non-

parametric regression within each cell. At some point, however, it may be useful

to pool the Engel curves across household demographic types and to allow X1

to enter each Engel curve semiparametrically. This idea leads to the following

specification:

Y1il = gl(X1i − φ(X ′2iγ0)) +X ′2iβ0l + εil, (4.2.1)

where gl(·) is an unknown function and φ(X ′2iγ0) is a known function up to a

finite set of unknown parameters γ0 that can be interpreted as the log of general

equivalence scales for household i.

The functional form specification in (4.2.1) deserves a few remarks. To this

end, Blundell et al. (2003) show that such the functional form specification is

consistent with consumer optimisation theory; see also the discussion of Lemma

3.2 of Blundell et al. (1998). Furthermore, in the current chapter, we choose

φ(X ′2iγ0) = X ′2iγ0, where X2i is a vector of the demographic variables that repre-

sent different household types and γ0 is the vector of the corresponding equivalence

scales. Hence we have the following EGPLSI specification:

Y1il = gl(X1i −X ′2iγ0) +X ′2iβ0l + εil. (4.2.2)

In our application, we consider six broad categories of goods, namely food,

clothing, alcohol, electricity and gas, transportation and other goods. In order to
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Table 4.1: Descriptive statistics.

Couples 1 child Couples 2 children

Mean Std. Dev Mean Std. Dev

Budget shares:

Alcohol 0.03373 0.03608 0.02918 0.03409

Clothing 0.03060 0.02343 0.03212 0.02788

Electricity and gas 0.04077 0.16236 0.03850 0.14124

Food 0.31515 0.02600 0.31303 0.02872

Transportation 0.04076 0.00153 0.04385 0.00124

Other 0.56870 0.03060 0.57263 0.02308

Expenditure and income:

log (total expenditure) 4.53302 0.20566 4.58983 0.17854

log (income) 4.92124 0.23414 4.96652 0.23769

Sample size 286 531

preserve a degree of demographic homogeneity, we select a subset of married (or

cohabiting) couples with one or two dependent children aged less than 16 years,

in five Australian territory capital cities, namely Adelaide, Brisbane, Melbourne,

Perth and Sydney. Therefore, our demographic variable, X2, is simply a binary

dummy variable that reflects whether the couple has one child (X2 = 0) or two

children (X2 = 1). This leaves us with 817 observations, including 286 couples

with one child.

The budget shares of these goods are presented in Table 4.1. The log of

total expenditure on the these goods is our measure of the continuous endogenous

explanatory variable X1. Furthermore, Table 4.1 also presents descriptive statistics

for the main variables used in this study. The table shows larger expenditure

shares for alcohol, electricity and gas, and food for the couples with one child,

but larger expenditure shares for clothing, transportation and other goods for

the couples with two children. This indicates the differences in the consumption
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patterns between the two demographic groups, and we expect the estimators of

the scale and shift coefficients to reflect these patterns.

4.2.1 A Simple Test of Endogeneity

Regarding the empirical study in the current section, in order to see the reason

why the log of total expenditure X1 is likely to be endogenous, i.e. E(εl|x1) 6= 0,

let us note firstly that the system of budget shares can be thought of as the

second stage in a two-stage budgeting model (see Gorman (1959) for details),

in which total expenditure and savings are first determined conditional on total

expenditure, and individual commodity shares are chosen at the second stage; see

Blundell (1988) for example. Hence X1 is a variable which reflects savings and

other consumption decisions made at the same time as the budget shares Y1 are

chosen. In our analysis that follows, we consider an earning variable, which is the

amount that a household earned before tax in the chosen year, as an instrument.

Figures 4.1 and 4.2 present a plot of the kernel estimates for the joint density of

log(total expenditure) and log(earning) and a plot for E(log(expenditure)| log(earning)),

respectively. The two variables show strong positive correlation such that for the

sample with one child, the correlation is 0.4882 and is 0.4056 for those with two

children. As seen in the figure, the joint density is also smooth and, together with

the conditional mean, confirms our belief that the gross earnings variable should

be a good choice for our instrumental variable. Since the kernel estimate of the

density of log earnings is close to normal, we have taken the instrumental variable

Z = Φ(log earnings) in the empirical applications and write:

ηi = X1i −mX1(Zi). (4.2.3)

Our model, which consists of the index model in (4.2.2) and the specification of

the endogeneity control regressor in (4.2.3), is appropriate for the application since

it is coherent with the economic theory and it allows for the endogeneity of total

expenditure as discussed earlier.

113



Chapter 4. Semiparametric Analysis of Empirical Engel Curves in Australia

Figure 4.1: Kernel joint density estimates with a full bandwidth matrix.
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Figure 4.2: Kernel estimates of conditional expectation of log(expenditure) with
respect to log(income).
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Figure 4.3 shows log(expenditure) (black line), mX1 (red line) and η (blue line).

In the view of this triangular structure, the figure stresses that the endogenous

variable, X1, may be decomposed into the exogenous (i.e. Z) and the endogenous

(i.e. η) components. An important observation to be noted is that even for cases

in which we are able to identify a strong instrument (with strong explanatory

power), the impact of endogeneity is still determined by the relationship between

εl and η, i.e. the conditional expectation of the former with respect to the latter.

We will explore this point further below.

In the following, we discuss the construction of variability bands in our analysis

and how they can be used as a preliminary test of exogeneity. For convenience,

let us first restate the triangular structure as:

Y1il = gl(X1i −X ′2iγ0) +X ′2iβ0l + εil, (4.2.4)

X1i = mX1(Zi) + ηi, (4.2.5)

where mX1(z) = E(x1|z), under the assumptions of the following:

E(η|z) = 0 and E(εl|z, η) = E(εl|η) 6= 0. (4.2.6)

The structure described in (4.2.4) to (4.2.6) suggests that we have:

E[y1l|(x1 − x′2γ0), η]− E[x2|(x1 − x′2γ0), η]′β0l = gl(x1 − x′2γ0) + ιl(η), (4.2.7)

where E[εl|(x1 − x′2γ), η] = E[εl|x2, η] = E[εl|η] ≡ ιl(η) 6= 0. Expression (4.2.7)

implies, however, that we have:

Y1il = X ′2iβ0l + gl(X1i −X ′2iγ0) + ιl(ηi) + eil, (4.2.8)

X1i = mX1(Zi) + ηi, (4.2.9)

where E(el|η) = 0. Let Ml[(X1i − X ′2iγ0), ηi] = gl(X1i − X ′2iγ0) + ιl(ηi). In order

to use (4.2.8), it is important to note that:
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Figure 4.3: log(expenditure), mX1 and η.
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ml(x1 − x′2γ0) =

∫
Ml({x1 − x′2γ0}, η) dη = gl(x1 − x′2γ0) + c1

gl(x1 − x′2γ0) = ml(x1 − x′2γ0)− c1, (4.2.10)

where c1 =
∫
ι(η)dQ(η) and E(gl(·)) = 0; the estimation of which can be done

based on the marginal integration technique in Step 3.2.2.5 of Procedure 3.2.2.

Now, observe that if we were to impose a linear specification on ιl(·), (4.2.8)

would be closely similar to the extended partially linear (EPL) model discussed in

Blundell et al. (1998). In this case, Blundell et al. (1998) showed that a test of the

exogeneity null can be constructed by testing H0 : ιl = 0, where ιl is an unknown

parameter. To allow for more flexibility on the functional form between the total

expenditure and its instrument, as an alternative, one may apply an existing test

of a parametric mean regression model against a nonparametric alternative; see

Horowitz & Spokoiny (2001), for example. However, in the current chapter, we

suggest that it is more convenient to simply construct the variability bands for ιl(·)
since its estimate is readily available. To do so, we use the following procedure.

Procedure 4.2.1

Step 4.2.1.1: Obtain an empirical estimate of gl(x1 − x′2γ0) in (4.2.10); see also

Remark 4.1.

Step 4.2.1.2: Regress (4.2.9) using the estimates in Step 4.2.1.1 to obtain the

nonparametric estimates of ιl(·).
Step 4.2.1.3: Compute the bias-corrected confidence bands for the nonparamet-

ric regression using the procedure introduced in Xia (1998). Finally, the above

mentioned (Bonferroni-type) variability bands are obtained using a similar proce-

dure discussed in Eubank & Speckman (1993).

Remark 4.1. To complete Step 4.2.1.1, Procedure 3.2.2 in Section 3.2.2 can be

useful. However, some modifications are required to take the index coefficient γ0

into account, which can be interpreted as a general equivalence scale for house-

hold i. Steps 3.2.2.1 and 3.2.2.2 are directly applicable since they are implemented

using a given γ across l = 1, 2, . . . , 6 commodities. In this case, the objective
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function (3.2.17) in Step 3.2.2.3 is only used for the particular l commodity.

A new objective function is the summation of these individual functions, i.e.

min
γ∈An,hv,l,hη̂,l∈Hn

Ĵ(γ, hv,l, hη̂,l), which is minimised with respect to γ and 12 band-

width parameters, i.e. two for each commodity. Finally, Steps 3.2.2.4 and 3.2.2.5

are directly applicable using γ̂ as well as ĥv,l and ĥη̂,l. �

4.2.2 Shape-Invariant Engel Curves

First, observe that (4.2.8) can also be re-stated as:

Ỹ1il = gl(X1i −X ′2iγ0) + eil, (4.2.11)

where Ỹ1il = Y1il − X ′2iβ0l − ιl(ηi). The use of (4.2.11) relies on the following

corresponding expression of (4.2.10):

ml(η) =

∫
Ml(v, η) dv = ιl(η) + c2

ιl(η) = ml(η)− c2, (4.2.12)

where v = x1 − x′2γ, c2 =
∫
g(v)dQ(v) and E(ιl(·)) = 0. Hence (4.2.11) suggests

that we are able to employ Procedure 4.2.2 below in order to obtain the estimates

of the shape-invariant Engel curves and the related confidence bands.

Procedure 4.2.2

Step 4.2.2.1: Obtain empirical estimates of ιl(η) in (4.2.12).

Step 4.2.2.2: Regress (4.2.11) using the estimates in Step 4.2.2.1 to obtain the

nonparametric estimates of gl(·).
Step 4.2.2.3: Compute the bias-corrected confidence bands about the nonpara-

metric estimator in Step 4.2.2.2 using the procedure introduced in Xia (1998).

4.2.3 Empirical Findings

Prior to presenting our empirical findings, let us recapitulate our empirical model

of shape-invariant Engel curves and made a final remark on the estimation of the
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model through the EGPLSI structure. Recall from the above discussion that the

empirical model we are attempting to estimate is of the following:

Y1il = gl(X1i − γ0X2i) + β0lX2i + εil, (4.2.13)

X1i = mX1(Zi) + ηi.

The EGPLSI structure which provides a direct lead to (4.2.13) is:

Y1il = gl(α01X1i + α02X2i) + β01,lX1i + β0lX2i + εil, (4.2.14)

which satisfies all the conditions given beneath (3.2.1), such that V0i = α01X1i +

α02X2i and V 0i = X1i + (α02/α01)X2i. Hence, the estimation of the model can

be based either on the standardised (4.2.13) or the EGPLS version in (4.2.14) by

which the estimates of α01 and α02 can also be obtianed. The estimatability of the

model can be further assured by imposing an assumption which is based closely

on Assumption of Ai & Chen (2003) as follows.

Assumption 3.2.6. Assume that E [(y1l −Ml(α01x1 + α02x2)− β01,lx1 − β0lx2) |x2, z]

= E [(y1l −Ml(α01x1 + α02x2)− β0lx2) |x2, z] = 0 so that

E[y1l|x2, z] = E [(Ml(α01x1 + α02x2) + β0lx2) |x2, z] ,

and, therefore, that E[β01,lx1|x2, z] = 0. �

Hereafter, let us use ĝ1,l(·) and ι̂1,l(·) to denote the empirical estimates of gl(·)
and ιl(·) based on the marginal integration techniques, i.e. those obtained from

Steps 4.2.1.1 and 4.2.2.1, respectively. Furthermore, let us use ĝ2,l(·) and ι̂2,l(·)
to denote the empirical estimates of gl(·) and ιl(·) which are obtained from Steps

4.2.1.2 and 4.2.2.2, respectively. Table 4.2 below presents the empirical estimates

of the unknown parameters γ0 and β0l (4.2.4). In addition, to demonstrate the

validity of our Procedures 4.2.1 and 4.2.2 above, in the table we also present in

the following average squared difference:

dgl =
1

n

n∑
i=1

{ĝ1,l(v̂)− ĝ2,l(v̂)}2 and dιl =
1

n

n∑
i=1

{ι̂1,l(η̂)− ι̂2,l(η̂)}2 ,
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Figure 4.4: Engel curves for alcohol
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where v̂ = x1 − γ̂x2.

We will now summarise a number of important findings based on the empirical

results in Table 4.2 and Figures 4.4 to 4.9.

Firstly, the average squared errors reported in the fourth and the fifth columns

of Table 4.2 are virtually zero, which provides strong evidence in support of the

procedures discussed in Sections 4.2.1 and 4.2.2. Secondly, the signs and mag-

nitudes of the estimates of the parameters reported in the first and the third

columns are consistent with what is reported in the existing literature; see Blun-

dell et al. (1998) for example. Furthermore, Figures 4.4 to 4.9, present the Engel

curves for the six budget shares in our HILDA sample, each of which consists of

four panels. The first and second panels present estimates of the Engel curves (for

couples with one child and couples with two children) based on the EGPLSI model

with the endogeneity being controlled using Procedure 3.2.2 and the endogeneity

not being controlled by Procedure 3.2.1 in Chapter 3, respectively. Xia’s (1998)

confidence bands are constructed for the Engel curves of couples with one child.

Furthermore, the fourth panels present estimates of the Engel curves computed

using the partially linear model of Robinson (1988) in Chapter 2 for the sake of

comparison with the EGPLSI model. They show clear evidence that the partially

linear model restricts the empirical Engel curves to be within the same specifica-

tion; see Blundell et al. (1998) and Blundell et al. (2003) for example, where all

empirical Engel curves are similar to the quadratic functional form.

Finally, the third panel of each graph presents the nonparametric estimates

of ιl(·) with two sets of bands, namely the bias-corrected confidence bands for

the nonparametric regression of Xia (1998) (black) and the Bonferroni-type vari-

ability bands discussed in Eubank & Speckman (1993) (blue). Regarding alcohol,

clothing and transportation, ιl(·) for these cases do not seem to be statistically

significant. These findings can be linked to the fact that the shapes of the Engel

curves presented in the top two panels are similar. In other words, we show that

the seriousness of the effect of the endogeneity problem, given an instrument, de-

pends very much on the relationship between the disturbances in the structural
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Figure 4.5: Engel curves for clothing
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and the reduced relations, i.e. the relationship between ε and η, which, in this case,

is summarised by ιl(η). For a given instrument and therefore the corresponding η,

ιl(·) can be a function such that the impact of endogeneity is minimal, e.g. in the

case of alcohol, clothing and transportation. Otherwise, they may be functions

which make the effect of the endogeneity severe, such as the case of electricity and

gas.

Some of these Engel curves, e.g. those of alcohol, clothing and transportation,

appear to demonstrate that the Working-Leser linear logarithmic (Piglog) formu-

lation is a reasonable approximation. Nonetheless, for other shares, particularly

electricity and gas, and food and other goods, a more nonlinear relationship be-

tween the shares and the log expenditure is evident. Regarding alcohol, clothing

and transportation, although the Engel curves for our two demographic groups

both slope downward a broadly parallel shift in the Engel curves does not seem

to appear. In fact, the Engel curves of families with two children tend to decline

at a much faster rate as the log total expenditure increases.

On the contrary, it is interesting to note how similar the shapes of the Engel

curves are for our two demographic groups for food and other goods. In these

cases, there appears to be a parallel shift in the Engel curves. A couple with one

child spends around 15% more of their budget on food than a couple with two

children. However, couples with two children end up spending 4% more of their

budget on other goods than couples with one child at the same level of expendi-

ture. Such outcomes seem consistent with our intuitive belief about consumption

behaviour in practice, i.e. a couple with two children incurs additional costs for

having an extra child which are hidden within the other goods category.
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Figure 4.6: Engel curves for electricity and gas

125



Chapter 4. Semiparametric Analysis of Empirical Engel Curves in Australia

Figure 4.7: Engel curves for transportation
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Figure 4.8: Engel curves for food
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Figure 4.9: Engel curves for other goods
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Table 4.2: Empirical results

γ̂ Categories of goods β̂l dgl dιl ĥv,l ĥη̂,l

0.5813 Alcohol -0.0053 3.9781e-07 3.2355e-06 0.581334 0.581333

Clothing 0.0005 7.8607e-07 6.4676e-06 0.581332 0.581330

Food -0.4541 3.4367e-04 1.7932e-04 0.065466 0.065465

Electricity and Gas 0.0133 6.9226e-06 2.8772e-06 0.065465 0.065466

Transportation -0.0024 5.3794e-07 2.3716e-06 0.581335 0.581333

Other 0.1245 1.6083e-04 2.8754e-04 0.065466 0.065465

4.3 Conclusions

In this chapter, we employ the estimation procedures and methods in the pre-

vious chapters to address the endogeneity of the total expenditure for a semipara-

metric analysis of empirical Engel curves. We particularly consider the “biased-

adjusted” confidence band for the nonparametric structural function since the

index coefficient is estimated and the endogeneity control regressor is generated

when the EGPLSI model is considered. This corrected confidence band gives

us useful information such as whether the effect of endogeneity is significant by

analysing whether the band is significantly different from zero.

The application illustrates that the partially linear model restricts empirical

Engel curves to be within the same specification, where all empirical Engel curves

are similar to the quadratic functional form. However, the EGPLSI model, which

is coherent with consumption theory, shows different functional forms for different

commodities. Also, the EGPLSI model shows that the effect of endogeneity on

total expenditure is nontrivial, the magnitude of the effects can be measured by

the endogeneity control functions and they are statistically significantly different

from zero.
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Conclusion

It is good to have an end to journey toward; but it is the journey that
matters, in the end.

Ernest Hemingway

5.1 Summary

A PL semiparametric model allows us to conduct an empirical study with the

benefits of both parametric and nonparametric modelling. However, careful treat-

ment is required when addressing endogeneity in the model due to its complex

feature. For instance, identification of the source(s) of endogeneity and an ap-

propriate estimation procedure and methods accordingly are nontrivial issues as

we discussed in Chapter 2. It is essential to construct the consistent estimators

of the parametric coefficients given the dominance of the parametric part in the

model. The endogeneity in parametric regressors can conveniently addressed with-

out much difficulties using the conventional parametric alternatives such as PIV

and P2SLS estimations. Thanks to the two-stage estimation procedure of Robin-

son (1988) and Speckman (1988) which partials out the nonparametric component

from the structural one to obtain the linear reduced form then to estimate para-

metric coefficients, the estimators of the parametric coefficients is still consistent

with the presence of only nonparametric endogeneity. However, it is a challenging

task to address endogeneity particularly in the SI type of semiparametric models

130



Summary – Section 5.1

since the index coefficients also should be considered. The SI models does not

identify the unknown structural function and also the estimators of the index co-

efficients are not consistent with the presence of endogeneity. Two most popular

alternatives to address endogeneity are the NpIV estimation and the CF approach

based on the nonparametric triangular structure. In this thesis, we employ the

CF approach to address endogeneity in the PL and the EGPLSI models.

The imposition of the well-known nonparametric triangular structure of Newey

et al. (1999) allows for imposing the exclusion restriction which leads to control

endogeneity by introducing the endogeneity control function. As the result, we

use the marginal integration technique to recover the unknown structural func-

tion since we have a simple additive nonparametric model. More importantly, this

allows us to identify and disentangle the effects of endogeneity in the model. How-

ever, the generated regressor issue should be addressed since the endogeneity con-

trol variable is not observable in practice but instead estimated from the reduced

form. Given this generated regressor issue, we show the asymptotic properties of

the estimator of g(·) in both the PL and the EGPLSI models. We also show that

the estimators of the parametric coefficients are still
√
n-consistent and asymp-

totically normal in both the PL and the EGPLSI models. Furthermore, we also

show that estimators of index coefficients are
√
n-consistent and asymptotically

normal, and the attractive feature of Xia et al. (1999) (the same bandwidth(s) are

used for estimating the index coefficients and the unknown structural function) is

still applicable in the EGPLSI model with the presence of endogeneity.

In recent years, the semiparametric technique becomes the important tool

to analyse empirical Engel curves since it provides the flexibility of depicting

any type of nonlinear relationships between budget shares and total expenditure

and allows inclusion of the effects of demographic variables on demand. More

importantly, the EGPLSI is able to provide an accurate demand analysis which is

coherent with the consumer optimisation theory. Hence we conduct the analysis

of empirical Engel curves with the methodologies proposed in Chapters 2 and 3

in order to take the endogeneity of total expenditure into account. In particular,

the EGPLSI specification does not restrict overall shapes of Engel curves unlike
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the PL counterpart. More importantly, we show that the effects of endogeneity

is not trivial. The magnitude of the effects of endogeneity is measured by an

endogeneity control function by providing biased adjusted confidence band. The

biased adjusted confidence band for the nonparametric function is needed since

the scale (index) coefficients are estimated and the endogeneity control variable

is generated. As the result of the correct confidence band, we are able to obtain

the useful information such as whether the effect of endogeneity is significant by

analysing that the band is statistically significantly different from zero.

5.2 Future Research

The EGPLSI model of (3.2.1) in Chapter 3 encompasses most of the popular

econometric models as special cases such as parametric, nonparametric and semi-

parametric models. The EGPLSI model with the presence of endogeneity in the

index component is:

Yi = X ′iβ0 + g(X ′iα0) + εi, (5.1)

where β0 ⊥ α0 with ||α0|| = 1, E(ε|x1) = 0 with X1 ⊆ Rq1 and q1 < q is

the parametric regressors belong to a subset of X and E(ε|x) 6= 0. We can

conveniently address endogeneity with the the nonlinear two-stage least squares

estimation (NL2SLS) method of Amemiya (1974) in the case where g(·) is a known

link function (a nonlinear model). The estimation method possesses relatively

simple estimation procedures and an easy implementation, in practice. Hence we

intend to generalise the NL2SLS estimation method of Amemiya (1974) to the

case where g(·) is a unknown link function in order to address endogeneity in

(5.1), in the future study. Note that the parametric endogeneity, i.e. E(ε|x1) 6=
0, is conveniently addressed using the conventional parametric treatments; see

Chapter 2 for details. In this section, we firstly give a brief review on the NL2SLS

estimation method of Amemiya (1974) then generalise the method to the case

where g(·) is unknown. We also outline the main objectives and issues of the

study.
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To simplify the argument, we consider the simple nonlinear model without he

parametric component in (5.1) as shown below:

Yi = g(X ′iα0) + εi, (5.2)

where g(·) is a known link function and E(ε|x) 6= 0. We assume that Zi is a Rq2

IV vector for Xi, where q2 > q−q1 such that E(ε|z) = 0 and E(xz) 6= 0. Then the

NL2SLS estimator is the value of α that minimises the below objective function:

J(α) = E [{g(V0,i)− g(Vi) + εi}PZ {g(V0,i)− g(Vi) + εi}]

= E [{g(V0,i)− g(Vi)}PZ {g(V0,i)− g(Vi)}] + E (εiPZεi)

+ 2E [{g(V0,i)− g(Vi)}PZεi]

= A2,1 + A2,2 + A2,3, (5.3)

where V0,i = X ′iα0, Vi = X ′iα0 and PZ = Z(Z ′Z)−1Z ′. The first term in the right-

hand side of (5.3), i.e. A2,1, provides the value of α that minimises J(α) since

A2,3 converges to 0 in probability and A2,2 is not relevant to α; see discussions in

Chapter 3 and chapter 8 of Amemiya (1985) for details.

In the future study, we intend to generalise the above NL2SLS estimation to the

EGPLSI case. We firstly present the generalised NL2SLS estimation procedures

then outline the relevant issues to establish the methodology. We suppose that:

Xi = Z ′iγ + ηi, (5.4)

where η ⊥ z, E(ε|z) = 0 and γ̂ = (
∑

i ZiZ
′
i)
−1∑

i ZiX
′
i. Then the generalised

NL2SLS estimation procedure is summarised as below:

Generalised NL2SLS estimation Procedure

Step 0: Transform (5.1) using the IV projection matrix:

PZYi = PZX
′
iβ0 + PZg(V0,i) + PZεi

Ỹi = X̃ ′iβ0 + g̃(V0,i) + ei, (5.5)

where Ỹi = Z ′i (
∑

i ZiZ
′
i)
−1∑

i ZiYi, X̃i = Z ′i (
∑

i ZiZ
′
i)
−1∑

i ZiX
′
i,

g̃(V0,i) = Z ′i (
∑

i ZiZ
′
i)
−1∑

i Zig(V0,i) and ei = Z ′i (
∑

i ZiZ
′
i)
−1∑

i Ziεi.
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Step 1: Perform Steps 3.2.1.1 to 3.2.1.4 of Procedure 3.2.1 in Chapter 3 on (5.5)

to obtain the estimators of β0 and α0.

Step 2: Given β̂ and α̂, obtain the estimate of the reduced relation, i.e. g̃(·). We

have:

ˆ̃g(v̂) = Ê(ỹ|v̂)− Ê(x̃|v̂)′β̂.

Step 3: Recover the structural relation, i.e. g(·), from the previous step using

P−1
Z = {Z(Z ′Z)−1Z ′}−1

. We have:

ĝ(v̂) = P−1
Z

ˆ̃g(v̂) = P−1
Z Ê(ỹ|v̂)− P−1

Z Ê(x̃|v̂)′β̂.

In the following paragraphs, we discuss Step 3 of the above estimation pro-

cedure in greater detail. We consider the similar argument as the exclusion re-

striction (η ⊥ z) in the CF approach literature in order to recover the structural

relation from the reduced one. Given β0 and α0, we rewrite (5.5) as follows:

Ỹ ∗i = g̃(V0,i) + ei,

where Ỹ ∗i = Ỹi − X̃ ′iβ0, then we have:

E(ỹ∗|x) = E(PZy
∗|z, η) = PZE(y∗|z, η) ≡ PZE(y∗|x).

Hence we obtain the unknown structural function as shown below:

g(v0) = P−1
Z g̃(v0)

= P−1
Z E(y|v0)− P−1

Z E(x|v0).

Although the proposed models, i.e. (5.1) and (5.4), are similar to that of the

triangular structure discussed in Chapter 3, the proposed methodology is the

generalisation of the NL2SLS estimation method to the semiparametric case which

is distinctive to that of the CF approach.

We aim to investigate the asymptotic properties of the all unknown estimators

of the generalised NL2SLS estimation methods. Furthermore, we also intend to

investigate whether (5.4) can be extended to the nonparametric case to provide

more flexibility which does not require a tight functional form relation between
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the endogenous regressors and their IV. More importantly, we investigate the

practicality of Xia et al. (1999); which allows the same smoothing parameter in

the estimation of the index coefficients and the structural unknown function, is

still applicable in the proposed estimation procedure.
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