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Abstract 
The understanding and effective management of flood and drought issues within 

catchments, are critical to sustaining such systems and the environments they 

support. Surface water and groundwater systems within catchments exhibit 

important feedbacks and therefore must be considered as a single resource. 

Holistic consideration of these systems in catchment hydrology requires the 

understanding and quantification of both surface and subsurface flow processes 

and their interactions. This requires that the physics driving the 

interactions/processes are well understood. Consequently, a need has arisen for 

physics-based models that can aid in building intuition about these 

interactions/processes, and also assist in quantifying these interactions/processes. 

In the last decade, physics-based fully integrated surface-subsurface flow models 

have become an important tool in understanding and quantifying flow generation 

processes and surface-subsurface interactions. However, due to the relatively short 

history of fully integrated models, the analysis and interpretation of outputs is 

often incommensurate with the spatiotemporal information within the outputs. A 

key shortcoming of these models is the inability to use model outputs to properly 

analyse and interpret flow generation mechanisms and surface water-groundwater 

interactions with respect to the streamflow hydrograph. 

In this research, a new Hydraulic Mixing-Cell (HMC) method for quantifying in-

stream and overland flow generation mechanisms within physics-based models of 

surface-subsurface flow is developed. The HMC method is implemented and 

tested within the fully integrated surface-subsurface flow model code 

HydroGeoSphere. The HMC method is used in a series of applications to quantify 

the contributions to total streamflow of groundwater discharge to the stream and 

hillslope, and direct rainfall to the stream and hillslope.  

Application of the HMC method to a hypothetical catchment is used to investigate 

the importance of in-stream flow travel time and losses. Results showed that it is 

necessary to account for in-stream travel time and stream losses in order to 

accurately quantify the contribution of groundwater to streamflow. The HMC 

method is then used with another hypothetical catchment model to investigate the 

potential error in 10 commonly used automated baseflow separation methods. 
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Simulations with a range of hydrological forcing, soil characteristics and 

antecedent moisture conditions showed the potential error to be significant for 

these automated methods; this warrants caution in overvaluing their outputs. 

Finally, the HMC method is employed in a case study of the Lehstenbach 

catchment, which included a model of a riparian wetland and catchment. 

Application of the HMC method in this case study was used to investigate 

wetland and catchment processes through separation of streamflow hydrographs 

and spatiotemporal analysis of flow generation mechanisms. This analysis 

elucidated the dynamics of overland and in-stream flow generation processes. 

This research has opened up a new way of analysing and interpreting flow 

generation mechanisms using fully integrated surface-subsurface flow models. 

The analysis and interpretation techniques implemented in this thesis form the basis 

for comprehensive analysis of outputs from physics-based modelling of catchment 

hydrological processes. 
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