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Abstract

Multi-watt lasers with an output wavelength in the eye-safe band are required
for many remote sensing applications, including Doppler or coherent laser radars
(CLR’s). Er:YAG lasers at 1617 nm or 1645 nm operating on the 4113/2 to 4115/2
transition can potentially satisfy this need. Although this transition has been known
for many years, the development of diode pumping makes these lasers practical.

Doppler wind-field mapping requires single frequency, diffraction limited pulses at
a high pulse repetition frequency (PRF) to provide a spatially dense array of samples,
allow signal averaging with minimal loss of temporal resolution and to minimize the
time required to scan an extended volume. Pulses with energies >few mJ and pulse
durations of >100 ns are essential for these measurements. Such requirements can
be satisfied by continuous-wave (CW) pumping of a Q-switched free-space laser.

In this thesis I describe the design and development of a single frequency, con-
tinuous wave, Er:YAG laser at 1645 nm that uses resonant pumping at 1470 nm.
With an intra-cavity polarizer and uncoated etalon, it produces up to 30 mW in
a narrow line-width, single frequency, plane polarized, diffraction limited, TEMq
output. The laser is suitable as a master oscillator of a CLR.

I also describe the development and characterization of an efficient high power
Er:YAG laser that is resonantly pumped using CW laser diodes at 1470 nm. For
CW lasing, it emits 6.1 W at 1645 nm with a slope efficiency of 40%, the highest
efficiency reported for an Er:YAG laser that is pumped in this manner. In Q-

switched operation, the laser produces diffraction-limited pulses with an average

vii



Contents

power of 2.5 W at 2 kHz PRF, and thus is suitable as the slave oscillator of a CLR.
To our knowledge this is the first Q-switched Er:YAG laser resonantly pumped by
CW laser diodes.

This thesis also presents an experimental investigation of the observed reduction
in the average output power of Q-switched Er:YAG lasers at low PRF. The experi-
mental results are compared with the predictions of a theoretical model developed
using rate equations so the primary causes can be determined, and thus could be

minimized in a future design.
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