

Plastic Tuners for Power Steering Pump Noise Reduction

James Wilkie

School of Mechanical Engineering

The University of Adelaide South Australia 5005 Australia

A thesis submitted in fulfilment of the requirements for the degree of Ph.D. in Mechanical Engineering 28th October 2011

Abstract

Tuning cables of various designs are commonly included in automotive power steering systems to reduce the undesirable effects of pressure pulsations generated in the power steering pump. A recent development which has the potential to reduce noise is the plastic tuner (PT). The main benefit of this device when compared with the existing spiral wound steel tuner (SWST) is the vastly reduced cost associated with the methods of manufacturing.

Despite the apparent attractiveness of such a device, the PT has not been widely implemented by automotive fluid system suppliers. The main reason is relatively little is known about the performance of these devices and indeed their comparative performance with respect to a SWST. This research seeks to address this issue by developing a better understanding of the PT using experimental and analytical techniques to examine the acoustic noise reduction mechanisms of a variety of PT designs.

This thesis examines the relevant literature associated with the subject and covers several noise reduction techniques that can be applied to this research. The literature review section highlights a general gap in the knowledge base, where little specific detail exists that has not been derived experimentally from SWSTs. As such the general aim of this research is to further the knowledge into PTs, investigate the significant parameters of PT designs, and generate a suitable system model. The methodology proposed to achieve these aims is explained in detail and experimental and theoretical approaches are outlined. Finally, conclusions derived from the experimental investigations are discussed and a comparison is drawn between experimental and predicted results. For all PT parameters evaluated, good agreement is illustrated between predicted and experimental results.

Statement of Originality

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Jamie Wilkie and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give my consent to the copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give my permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Jamie Wilkie

Acknowledgements

I would like to acknowledge some people who have contributed to this thesis or supported me during my time as an industry based postgraduate student.

Firstly I would like to thank my two supervisors Anthony Zander and Con Doolan. Their flexibility with respect to my industry based working life has assisted enormously and without their ready knowledge and guidance, I simply would not have completed this thesis.

I would like to thank Cooper Standard Automotive and in particular Troy Kelly for assistance with my experiments. The un-foreseen plant closure drastically impacted my research plans and without his help in setting up, dismantling, re-assembling, cups of tea etc., the full experimental schedule may not have been possible in the time available.

I am also thankful to the University Electronics Laboratory, for the use of their equipment, and in particular to Silvio De Ieso for his assistance in the early stages.

Finally, I would like to thank my family and close friends for their support over the last few years. I didn't anticipate the demands that this project would thrust upon me or the twists and turns my life would take along the way. Thanks for the understanding and for giving me the strength to keep going.

This thesis is dedicated to my son Innes. I hope it inspires you to be everything you can be.

Research Background

It should be noted that a significant portion of this research, specifically the experimental phase, was conducted whilst the author was an employee of Cooper Standard Automotive (CSA), Woodville North, Adelaide. CSA very kindly granted access to their power steering noise tuning rig as well as data acquisition software. In addition, a number of the test samples as well as baseline comparison samples were derived from CSA products. As a consequence, this research contains some context which has been deemed to be commercially sensitive, and hence, CSA have requested that no journal or conference papers associated with this research be published at this time. It is hoped that the outcomes from this research will be able to be published in the future, once sufficient intellectual property protection is in place.

In mid 2008 CSA closed their manufacturing facility in Adelaide and as a consequence, the scope of the experimental phase was constrained. Furthermore, considering the phase of the project at that time (approximately half-way through), it was difficult to predict future outcomes that may require further experimental investigation. To reduce this impact, the author completed a series of final experiments in the lead-up to the closure, in an effort to capture as much data as possible before the experimental facility was dismantled. This approach proved very useful upon reflection, and has contributed to some of the main outcomes derived in this thesis.

Contents

At	stract.		iii
Sta	atemen	t of Originality	iv
Ac	knowl	edgements	V
Re	search	Background	vi
Co	ontents		vii
Lis	st of Fi	gures	xii
Lis	st of Ta	ıbles	xxiii
1	Int	roduction	1
	1.1	Objectives	6
	1.2	Key Objectives	7
	1.2	1 Baseline Evaluation	7
	1.2	2 Tuner Length	7
	1.2	3 Tuner Hole Location	7
	1.2	4 Tuner Hole Diameter	8
	1.2	5 Multi-hole Tuners	8
	1.2	6 Plastic Tuner Model	8
	1.3	Outline	8
2	Lit	erature Review	9
	2.1	General Features of Hydraulic Power Steering Systems	9
	2.2	Noise Characteristics Overview	10
	2.2	1 Noise Generation	10
	2.2	2 Noise Reduction	12
	2.2	3 Acoustic Behaviour	13
	2.3	Existing Attenuation Devices	15
	2.3	1 Quincke Tube	15

	2.3.	2 Standpipe	17
	2.3.	3 The Spiral Wound Steel Tuner	18
	2.3.	4 The Plastic Tuner	21
	2.4	Other Noise Reduction Methods	22
	2.4.	1 Turbofan Engine Noise Control	22
	2.4.	2 Sound Absorption of Honeycomb Panels	25
	2.4.	3 Transfer Matrix Methodology	28
	2.4.	4 Perforated Muffler Tube Components	33
	2.5	Existing Acoustic Test Methods	36
	2.5.	1 The Two Microphone Method	36
	2.5.	2 Test Bench for Power Steering Noise Assessment	38
	2.5.	3 Standardised Test Procedures	39
	2.6	Summary	44
3	The	eory	45
	3.1	Plastic Tuner Model Development	45
	3.2	Tuner System Definition	46
	3.3	Performance of Tuner and Tuner Elements	47
	3.4	Plane Wave Assumption	48
	3.5	Tuner Element Modelling	49
	3.5.	1 Tuner Duct Element	49
	3.5.	2 Tuner Extension Element	50
	3.5.	3 Tuner Expansion Element	52
	3.5.	4 Tuner Contraction Element	52
	3.5.	5 Tuner Hole Element	53
	3.5.	6 Parallel Branch Element	55
	3.6	Validation of Modelling Approach	57
	3.6.	1 Transmission Matrix Validation – Single Expansion Chamber .	57
	3.6.	2 Transmission Matrix Validation – Extended Inlet	59
	3.6.	3 Transmission Matrix Validation – Noise Reduction	61
	3.7	Model of Tuner with No Holes	64
	3.8	Model of Tuner with single hole (fixed diameter varied location)	65
	3.9	Model of Tuner with single hole (fixed location varied diameter)	66
	3.10	Model of Tuner with multiple holes	66

	3.11	Summary	69
4	Exp	periments	70
	4.1	Experimental Approach	70
	4.1.	1 Experimental Layout – Benchmarking	71
	4.1.	2 Experimental Layout – Tuner Design Investigations	72
	4.1.	3 Plastic Tuner Design	73
	4.1.	4 Control Sample	74
	4.1.	5 Plastic Tuner / Hose Coupling	74
	4.1.	6 Plastic Tuner Material Properties	75
	4.1.	7 Experimental Procedure	75
	4.1.	8 Experimental Noise Reduction	76
	4.1.	9 Empirical Approach to Termination Impedance	77
	4.2	Termination Impedance Measurement	77
	4.3	Baseline Evaluation Testing	78
	4.3.	1 Baseline Evaluation Results	78
	4.3.	2 Discussion arising from baseline evaluation	80
	4.4	Tuner Length Experiments	
	4.4.	1 Tuner Length Test Procedure	82
	4.4.	2 Tuner Length Test Results	
	4.5	Tuner Hole Location Experiments	
	4.5.	1 Tuner Hole Location Test Procedure	
	4.5.	2 Tuner Hole Location Test Results	
	4.6	Tuner Hole Diameter Experiments	90
	4.6.	1 Hole Diameter Test Procedure	91
	4.6.	2 Hole Diameter Test Results	91
	4.7	Multi-hole Tuner Experiments	93
	4.7.	1 Multi-hole Tuner Test Procedure	94
	4.7.	2 Multi-hole Tuner Test Results	95
	4.8	Conclusions	100
	4.9	Summary	101
5	Res	sults and Analysis	
	5.1	Tuner Length Validation	

	5.1	.1	Analysis and discussion	102
	5.2	Hol	e Location Validation	112
	5.2	.1	Analysis and discussion	112
	5.3	Hol	e Diameter Validation	121
	5.3	.1	Analysis and discussion	121
	5.4	Mu	lti-hole Validation	128
	5.4	.1	Analysis and discussion	128
	5.5	Ter	mination Impedance	142
	5.5	.1	Analysis and Discussion	142
	5.5	.2	Proposed Theory	143
	5.5	.3	Validation and Discussion	144
	5.5	.4	Tuner Length Termination Impedance Prediction	150
	5.5	.5	Developed Tuner Length Noise Reduction Prediction	152
	5.5	.6	Hole Location Termination Impedance Prediction	154
	5.5	.7	Developed Hole Location Noise Reduction Prediction	155
	5.5	.8	Hole Diameter Termination Impedance Prediction	157
	5.5	.9	Developed Hole Diameter Noise Reduction Prediction	
	5.5	.10	Multi Hole Termination Impedance Prediction	164
	5.5	.11	Developed Multi Hole Noise Reduction Prediction	167
	5.6	Sun	nmary	171
6	Co	onclu	sions and Future Work	172
	6.1	Sun	nmary	172
	6.2	Key	y Objectives Achieved	173
	6.2	.1	Baseline Evaluation Summary	173
	6.2	.2	Tuner Length Summary	173
	6.2	.3	Tuner Hole Location Summary	174
	6.2	.4	Tuner Hole Diameter Summary	174
	6.2	.5	Multi-hole Summary	175
	6.2	.6	Plastic Tuner Model Summary	176
	6.3	Fut	ure Work	178
7	Re	ferer	1ces	179

Appendix	A	
A.1	Matlab Code – Tuner Duct Element	
A.2	Matlab Code – Tuner Expansion Element	
A.3	Matlab Code – Tuner Contraction Element	
A.4	Matlab Code – Parallel Branch Element	190
A.5	Matlab Code – Transmission Loss	191
A.4	Matlab Code – Noise Reduction	

List of Figures

Figure 1-1 Hydraulic Power Assisted Steering System: Component layout (Hydraulic
Equipment Manufacturers, 2011)1
Figure 1-2 Typical Power Steering Vane Pump (Howstuffworks, 2001)2
Figure 1-3 Typical Power Steering Pump Response (Howstuffworks, 2001)2
Figure 1-4 Photograph of a) spiral wound steel tuner and baffle b) spiral wound steel
tuner located inside hose bore
Figure 1-5 SWST Manufacturing Process
Figure 1-6 Photographs of filter paper from internal cleanliness testing
Figure 1-7 a) Fixture and clamp device b) Plastic tuner inserted over mandrel c) Hose
insert / tuner end d) Completed plastic tuner assembly cross-section
Figure 2-1 Hydraulic Power Steering System (ZF, 2011)9
Figure 2-2 a) 'In-phase': phase difference is zero, b) 'Out-of-phase: phase difference is
180°
Figure 2-3 a) Illustration of standing wave generation b) Attenuation of a standing
Figure 2-3 a) Illustration of standing wave generation b) Attenuation of a standing wave
Figure 2-3 a) Illustration of standing wave generation b) Attenuation of a standing wave
Figure 2-3 a) Illustration of standing wave generation b) Attenuation of a standingwave
Figure 2-3 a) Illustration of standing wave generation b) Attenuation of a standingwave
Figure 2-3 a) Illustration of standing wave generation b) Attenuation of a standingwave
Figure 2-3 a) Illustration of standing wave generation b) Attenuation of a standingwave
Figure 2-3 a) Illustration of standing wave generation b) Attenuation of a standingwave
Figure 2-3 a) Illustration of standing wave generation b) Attenuation of a standingwave
Figure 2-3 a) Illustration of standing wave generation b) Attenuation of a standingwave

Figure 2-11 Quincke tube representations a) physical representation. b) simplified
model
Figure 2-12 Perforated Panel illustration
Figure 2-13 The three basic elements in an equivalent electrical representation a) a
distributed element b) an in-line element c) a branch element
Figure 2-14 Basic silencer system – representation of elements
Figure 2-15 Beranek and Vér, 'Silencer system'
Figure 2-16 Acoustic impedance of a small circular orifice (Stinson and Shaw, 1985)
Figure 2-17 Two Microphone Method illustration
Figure 2-18 Test bench description and measurement points (Sciortino and Bamdad-
Soufi, 1998)
Figure 2-19 Example of Ford Australia Noise Tuning Test Record (Ford Motor
Company of Australia, 1979)40
Figure 2-20 Illustrations of impedance representations a) simple circuit b) using
impedance notation
Figure 2-21 Secondary Source technique
Figure 3-1 Power steering hose assembly incorporating a plastic tuner and component
models a) Power steering hose containing plastic tuner b) Model of tuner body c)
Model of hole profile d) Model of tuner body downstream of the hole profile e) Model
outside tuner f) Model at tuner outlet45
Figure 3-2 Tuner System a) Acoustic b) Electrical Analogy46
Figure 3-3 Noise Reduction of Tuner
Figure 3-4 Tuner Duct Element
Figure 3-5 Tuner Extension Element a) 3D view b) 2D view
Figure 3-6 Tuner Expansion Element
Figure 3-7 Tuner Contraction Element

Figure 3-8 Tuner Hole Element a) 3D view b) 2D view	
Figure 3-9 Parallel Branch Element a) physical arrangement b) transmission matrix	
representation	
Figure 3-10 Single expansion chamber dimensions used for validation	
Figure 3-11 Comparison of Theoretical and Transfer Matrix predictions of	
Transmission Loss	1
Figure 3-12 Extended Inlet Expansion Chamber dimensions	1
Figure 3-13 Comparison of Transfer Matrix and 1-D Experimental Model of an	
extended inlet by Selamet and Ji (1998)	
Figure 3-14 Geometry of a Simple Duct System	
Figure 3-15 Simple Duct System Noise Reduction	
Figure 3-16 Tuner with no holes a) physical arrangement b) transmission matrix	
representation	
Figure 3-17 Tuner with single hole a) physical arrangement b) transmission matrix	
representation	
Figure 3-18 Tuner with two holes a) physical arrangement b) transmission matrix	
representation	
Figure 3-19 Tuner with three holes a) physical arrangement b) transmission matrix	
representation	
Figure 4-1 Experimental layout71	
Figure 4-2 a) Test rig for plastic tuner investigation b) plastic tuner mounting detail	
Figure 4-3 a) Length dimension in mm b) internal bore dimension in mm	
Figure 4-4 Plastic Tuner design	
Figure 4-5 CSA Ford India (B265) Spiral Wound Steel Tuner (Cooper Standard	
Automotive, 2007)	

Figure 4-6 a) Tuner pull-off specification b) Graph of temperature effects (Merkel,
2004)
Figure 4-7 Sample auto-power spectra from SignalCalc76
Figure 4-8 Auto Power Spectrum a) SWST b) PT79
Figure 4-9 Tuner length test construction a) longitudinal cross-section b) end view81
Figure 4-10 Photograph of experimental layout
Figure 4-11 Auto Power Spectrum for Test Rig containing No Tuner
Figure 4-12 Termination impedance constant for Tuner Length experiments
Figure 4-13 Power spectrum - Tuner inlet vs Tuner outlet for various tuner lengths
Figure 4-14 Tuner Length Experiments – Measured Noise Reduction
Figure 4-15 Hole location test sample a) longitudinal cross section b) end view87
Figure 4-16 Termination Impedance Constant for Hole Position Experiments88
Figure 4-17 Power spectrum - tuner inlet vs tuner outlet for various positions of a single
hole
Figure 4-18 Hole Location Experiment – Measured Noise Reduction
Figure 4-19 Hole diameter test sample a) longitudinal cross section b) end view91
Figure 4-20 Impact of changing hole diameter on noise reduction
Figure 4-21 Termination Impedance Constant for Hole Diameter Experiment92
Figure 4-22 Tuner inlet signal vs tuner outlet signal for hole diameter experiment .93
Figure 4-23 BMW 5 Series Plastic Tuner
Figure 4-24 Multi-hole test sample a) longitudinal cross section b) end view94
Figure 4-25 Comparison of one, two or three equally spaced holes of common
diameter
Figure 4-26 Tuner inlet vs tuner outlet for two-hole tuner experiments
Figure 4-27 Termination Impedance Constant for two-hole experiments
Figure 4-28 Tuner inlet vs tuner outlet for three-hole tuner experiments

Figure 4-29 Termination Impedance Constant for three-hole experiments
Figure 4-30 Selected broadband attenuation results for multi-hole test samples99
Figure 5-1 Predicted Transmission Loss for a 50mm long tuner 103
Figure 5-2 Predicted versus Measured Noise Reduction for a 50mm long tuner 103
Figure 5-3 Predicted Transmission Loss for a 100mm long tuner 104
Figure 5-4 Predicted versus Measured Noise Reduction for a 100mm long tuner 104
Figure 5-5 Predicted Transmission Loss for a 150mm long tuner 105
Figure 5-6 Predicted versus Measured Noise Reduction for a 150mm long tuner 105
Figure 5-7 Predicted Transmission Loss for a 200mm long tuner 106
Figure 5-8 Predicted versus Measured Noise Reduction for a 200mm long tuner 106
Figure 5-9 Predicted Transmission Loss for a 250mm long tuner 107
Figure 5-10 Predicted versus Measured Noise Reduction for a 250mm long tuner . 107
Figure 5-11 Predicted Transmission Loss for a 300mm long tuner 108
Figure 5-12 Predicted versus Measured Noise Reduction for a 300mm long tuner . 108
Figure 5-13 Predicted Transmission Loss for a 350mm long tuner 109
Figure 5-14 Predicted versus Measured Noise Reduction for a 350mm long tuner . 109
Figure 5-15 Predicted Transmission Loss for a 400mm long tuner 110
Figure 5-16 Predicted versus Measured Noise Reduction for a 400mm tuner 110
Figure 5-17 Tuner Length - Predicted versus Measured, 1st Pump Order
Figure 5-18 Tuner Length - Predicted versus Measured, 2nd Pump Order 111
Figure 5-19 Predicted Transmission Loss for a 400mm long tuner with a 1mm hole
located 50mm from the tuner inlet
Figure 5-20 Predicted versus Measured Noise Reduction for a 400mm long tuner with a
1mm hole located 50mm from the tuner inlet
Figure 5-21 Predicted Transmission Loss for a 400mm long tuner with a 1mm hole
located 100mm from the tuner inlet

Figure 5-22 Predicted versus Measured Noise Reduction for a 400mm long tuner with a
uniform hole located 100mm from the tuner inlet114
Figure 5-23 Predicted Transmission Loss for a 400mm long tuner with a 1mm hole
located 150mm from the tuner inlet115
Figure 5-24 Predicted versus Measured Noise reduction for a 400mm long tuner with a
1mm hole located 150mm from the tuner inlet115
Figure 5-25 Predicted Transmission Loss for a 400mm long tuner with a 1mm hole
located 200mm from the tuner inlet116
Figure 5-26 Predicted versus Measured Noise Reduction for a 400mm long tuner with a
1mm hole located 200mm from the tuner inlet116
Figure 5-27 Predicted Transmission Loss for a 400mm long tuner with a 1mm hole
located 250mm from the tuner inlet117
Figure 5-28 Predicted versus Measured Noise Reduction for a 400mm long tuner with a
1mm hole located 250mm from the tuner inlet117
Figure 5-29 Predicted Transmission Loss for a 400mm long tuner with a 1mm hole
300mm from the tuner inlet118
Figure 5-30 Predicted versus Measured Noise Reduction for a 400mm long tuner with a
1mm hole located 300mm from the tuner inlet118
Figure 5-31 Predicted Transmission Loss for a 400mm long tuner with a 1mm hole
located 350mm from the tuner inlet119
Figure 5-32 Predicted versus Measured Noise Reduction for a 400mm long tuner with a
1mm hole located 350mm from the tuner inlet119
Figure 5-33 Hole Location – Predicted versus Measured Noise Reduction, 1st Pump
Order
Figure 5-34 Hole Location - Predicted versus Measured Noise Reduction, 2nd Pump
Order

Figure 5-35 Predicted Transmission Loss for a 400mm long tuner with a 1.0mm hole
located 100mm from the tuner inlet
Figure 5-36 Predicted versus Measured Noise Reduction for a 400mm long tuner with a
1.0mm hole located 100mm from the tuner inlet
Figure 5-37 Predicted Transmission Loss for a 400mm long tuner with a 1.5mm hole
located 100mm from the end of the tuner
Figure 5-38 Predicted versus Measured Noise Reduction for a 400mm long tuner with a
1.5mm hole located 100mm from the tuner inlet
Figure 5-39 Predicted Transmission Loss for a 400mm long tuner with a 2.0mm hole
located 100mm from the tuner inlet
Figure 5-40 Predicted versus Measured Noise Reduction for a 400mm long tuner with a
2.0mm hole located 100mm from the tuner inlet
Figure 5-41 Predicted Transmission Loss for a 400mm long tuner with a 2.5mm hole
located 100mm from the tuner inlet
Figure 5-42 Predicted versus Measured Noise Reduction for a 400mm long tuner with a
2.5mm hole located 100mm from the tuner inlet
Figure 5-43 Predicted Transmission Loss for a 400mm long tuner with a 3.0mm hole
located 100mm from the tuner inlet
Figure 5-44 Predicted versus Measured Noise Reduction for a 400mm long tuner with a
3.0mm hole located 100mm from the tuner inlet
Figure 5-45 Hole Diameter – Predicted versus Measured Noise Reduction, 1 st Order
Figure 5-46 Hole Diameter – Predicted versus Measured Noise Reduction, 2nd Order
Figure 5-47 Predicted Transmission Loss for a 400mm long tuner with two 1.0mm
holes located 100mm and 200mm from the tuner inlet

Figure 5-48 Predicted versus Measured Noise Reduction for a 400mm long tuner with
two 1.0mm holes located 100mm and 200mm from the tuner inlet
Figure 5-49 Predicted Transmission Loss for a 400mm long tuner with two 1.5mm
holes located 100mm and 200mm from the tuner inlet
Figure 5-50 Predicted versus Measured Noise Reduction for a 400mm long tuner with
two 1.5mm holes located 100mm and 200mm from the tuner inlet
Figure 5-51 Predicted Transmission Loss for a 400mm long tuner with two 2.0mm
holes located 100mm and 200mm from the tuner inlet
Figure 5-52 Predicted versus Measured Noise Reduction for a 400mm long tuner with
two 2.0mm holes located 100mm and 200mm from the tuner inlet
Figure 5-53 Predicted Transmission Loss for a 400mm long tuner with two 2.5mm
holes located 100mm and 200mm from the tuner inlet
Figure 5-54 Predicted versus Measured Noise Reduction for a 400mm long tuner with
two 2.5mm holes located 100mm and 200mm from the tuner inlet
Figure 5-55 Predicted Transmission Loss for a 400mm long tuner with two 3.0mm
holes located 100mm and 200mm from the tuner inlet
Figure 5-56–Predicted versus Measured Noise Reduction for a 400mm long tuner with
two 3.0mm holes located 100mm and 200mm from the tuner inlet
Figure 5-57 Predicted versus Measured Noise Reduction for tuners with two holes, 1st
Pump Order
Figure 5-58 Predicted versus Measured Noise Reduction for tuners with two holes, 2nd
Pump Order
Figure 5-59 Predicted Transmission Loss for a 400mm long tuner with three 1.0mm
holes located at 100mm, 200mm and 300mm from the tuner inlet
Figure 5-60 Predicted versus Measured Noise reduction for a 400mm long tuner with
three 1.0mm holes located 100mm, 200mm and 300mm from the tuner inlet

Figure 5-61 Predicted Transmission Loss for a 400mm long tuner with three 1.5mm
holes located 100mm, 200mm, and 300mm from the tuner inlet
Figure 5-62 Predicted versus Measured Noise Reduction for a 400mm long tuner with
three 1.5mm holes located 100mm, 200mm and 300mm from the tuner inlet 137
Figure 5-63 Predicted Transmission Loss for a 400mm long tuner with three 1.5mm
holes located 100mm, 200mm and 300mm from the tuner inlet
Figure 5-64 Predicted versus Measured Noise Reduction for a 400mm long tuner with
three 2.0mm holes located 100mm, 200mm and 300mm from the tuner inlet 138
Figure 5-65 Predicted Transmission Loss for a 400mm long tuner with three 3.0mm
holes located 100mm, 200mm and 300mm from the tune inlet
Figure 5-66 Predicted versus Measured Noise Reduction for a 400mm long tuner with
three 2.5mm holes lcoated 100mm, 200mm and 300mm from the tuner inlet 139
Figure 5-67 Predicted Transmission Loss for a 400mm long tuner with three 3.0mm
holes located 100mm, 200mm and 300mm from the tuner inlet
Figure 5-68 Predicted versus Experimental Noise Reduction for a 400mm long tuner
with three 3.0mm holes located 100mm, 200mm and 300mm from the tuner inlet . 140
Figure 5-69 Predicted versus Experimental Noise Reduction for three holes tuners, 1st
Pump Order
Figure 5-70 Predicted versus Experimental Noise Reduction for three holes tuners, 2nd
Pump Order
Figure 5-71 Comparison of Termination Impedance Constant and New Theory 144
Figure 5-72 Predicted versus Empirical Termination Impedance for a 50mm long tuner
Figure 5-73 Predicted versus Empirical Termination Impedance for a 100mm long
tuner
Figure 5-74 Predicted versus Empirical Termination Impedance for a 150mm long
tuner

Figure 5-75 Predicted versus Empirical Termination Impedance for a 200mm long
tuner
Figure 5-76 Predicted versus Empirical Termination Impedance for a 250mm long
tuner
Figure 5-77 Predicted versus Empirical Termination Impedance for a 300mm long
tuner
Figure 5-78 Predicted versus Empirical Termination Impedance for a 350mm long
tuner
Figure 5-79 Predicted versus Empirical Termination Impedance for a 400mm long
tuner
Figure 5-80 1st Pump Order Termination Impedance (Real) for a range of tuner lengths
Figure 5-81 1st Pump Order Termination Impedance (Imag) for a range of tuner lengths
Figure 5-82 Tuner Length - Predicted versus Measured Noise Reduction at 1 st Pump
Order
Figure 5-83 1 st Pump Order Termination Impedance (Real) for a range of tuner hole
locations
Figure 5-84 1st Pump Order Termination Impedance (Imag) for a range of tuner hole
locations
Figure 5-85 Hole Location – Predicted vs Measured Noise Reduction at 1 st Pump Order
Figure 5-86 1 st Pump Order Termination Impedance (Real) for a range of tuner hole
diameters
Figure 5-87 1st Pump Order Termination Impedance (Imag) for a range of tuner hole
diameters

Figure 5-88 Hole Diameter – Predicted vs Measured Noise Reduction at 1 st Pump
Order
Figure 5-89 Sketch of micro-perforated panel absorber (Maa, 1988), where $d =$
diameter of orifice, b = spacing between orifices, t = thickness of panel and D = air
cavity depth between panel and rigid backing wall
Figure 5-90 Absorption coefficient for a single hole in the tuner wall with varying
diameter
Figure 5-91 1st Pump Order Termination Impedance (Real) for two hole tuners with a
range of hole diameters
Figure 5-92 1st Pump Order Termination Impedance (Imag) for two hole tuners with a
range of holes diameters
Figure 5-93 1st Pump Order Termination Impedance (Real) for three hole tuners with a
range of hole diameters
Figure 5-94 3-Hole 1st Pump Order Termination Impedance (Imag) for three hole
tuners with a range of hole diameters
Figure 5-95 Two Hole Tuner – Predicted vs Measured Noise Reduction 1 st Pump Order
Figure 5-96 Three Hole Tuner – Predicted vs Measured Noise Reduction 1 st Pump
Order
Figure 5-97 Absorption coefficient for a 2 hole tuners with varying diameter
Figure 5-98 Absorption coefficient for a 3 hole tuners with varying diameter

List of Tables

Table 4-1 Tuner properties table	.75
Table 4-2 Preliminary Test Results	.80
Table 4-3 Tuner Length Test Sample	.81
Table 4-4 Hole location test sample construction	.87
Table 4-5 Hole Diameter test sample construction	.91
Table 4-6 Longitudinal cross section of multi-hole test sample	.94
Table 5-1 Experimental Correlation Coefficients	142