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Abstract

Deep inelastic scattering (DIS) is an experimental process used to

probe a wide variety of properties of hadronic matter. It is a process

in which leptons collide with hadrons at high energies, resulting in

the hadron being broken into a large number of other particles. In-

formation obtained from this process is combined with what is known

from studies of the strong force in Quantum Chromodynamics (QCD),

to extract details of the hadronic structure. In this thesis, functions

that can be extracted from DIS cross sections are discussed including

structure functions, parton distribution functions, and fragmentation

functions for single hadron and dihadron cases.

This thesis is presented as a portfolio of publications that investigate

some of the previously mentioned functions that can be extracted from

DIS processes, which includes semi-inclusive deep inelastic scatter-

ing (SIDIS). The first paper describes our method for generating the

dihadron fragmentation functions (DFFs) within the Nambu–Jona-

Lasinio-jet model. These functions describe the probability of detect-

ing two hadrons with particular light-cone momentum fractions. The

DFFs for combinations of pions and kaons calculated in the first pa-

per are obtained at the model momentum scale of Q2
0 = 0.2 GeV2.

Several properties of these functions are explored, including how they

change if strange quarks are included.

In the second paper, the appropriate evolution equations are applied

to the NJL-jet model calculated DFFs to determine the DFFs at a

typical experimental scale of Q2 = 4 GeV2 for combinations of pions

and kaons. A comparison with the results of another model at Q2 =

109 GeV2 are also presented in this paper, with compelling results.



The final paper departs from the DFFs and instead investigates the

gluon spin contribution to the spin of the proton, which is extracted

from the spin dependent structure function g1 using renormalization

group techniques. An upper bound is suggested at leading order for

the value of this contribution, with an estimate of the error calculated

as well.



Statement of Originality

This work contains no material which has been accepted for the award of any other

degree or diploma in any university or other tertiary institution to Andrew Casey

and, to the best of my knowledge and belief, contains no material previously

published or written by another person, except where due reference has been

made in the text.

I give consent to this copy of my thesis when deposited in the University

Library, being made available for loan and photocopying, subject to the provisions

of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within

this thesis (as listed below) resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available

on the web, via the Universitys digital research repository, the Library catalogue,

and also through web search engines, unless permission has been granted by the

University to restrict access for a period of time.

Publications for the Portfolio

Calculating Dihadron Fragmentation Functions in the NJL-

jet model

Andrew Casey, Hrayr H. Matevosyan, and Anthony W. Thomas,

Physical Review D, 85,114049, 2012.

Copyright 2012 by the American Physical Society.

Cited as Ref. [1]

vii



CONTENTS

Dihadron Fragmentation Functions from the NJL-jet model

and their QCD Evolution
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Chapter 1

Contextual Statement

1.1 Contextual Statement

This thesis is presented as a portfolio of three publications on the topic of hadronic

structure in deep inelastic scattering. In Chapter 2 we introduce the field of

knowledge, which includes such topics as Quantum Chromodynamics, DIS pro-

cesses and DGLAP evolution equations. A brief review of the NJL model is

presented in Chapter 3, where the Lepage-Brodsky invariant mass regularization

scheme is described for the determination of the distribution and fragmentation

functions. Only the papers in Sections 1.1.1 and 1.1.2 are related to the NJL-jet

model described in Chapter 3, with the paper in Section 1.1.3 describing a sepa-

rate calculation in the understanding of the hadronic structure. We now present

the information for the published papers and the aims of these papers.

1.1.1 Calculating Dihadron Fragmentation Function in the

NJL-jet model

Authors: Andrew Casey, Hrayr H. Matevosyan and Anthony W. Thomas

Journal: Physical Review D 85, 114049 (2012)

URL: http://link.aps.org/doi/10.1103/PhysRevD.85.114049

Aims: In this paper we employ the NJL-jet model to determine the dihadron

fragmentation functions for select combinations of pions and kaons at the model

momentum scale Q2
0 = 0.2 GeV2. The aims of this paper are to study various
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properties of the DFFs at the model scale also serves the purpose of presenting

the DFFs that will be used in the paper that follows which focuses on evolving

the DFFs to a higher momentum scale.

1.1.2 Dihadron Fragmentation Functions from the NJL-

jet model and their QCD Evolution

Authors: Andrew Casey, Ian C. Cloët Hrayr H. Matevosyan and Anthony W.

Thomas

Journal: Physical Review D 86, 114018 (2012)

URL: http://link.aps.org/doi/10.1103/PhysRevD.86.114018

Aims: To enable us to compare the NJL-jet model results for the DFFs to those

of other models or experimental data, we first require the DFFs to be evolved to

a typical experimental scale of Q2 = 4 GeV2. This is achieved by employing the

DGLAP evolution equations for the DFFs we obtained in the previous paper. In

this paper we also present a comparison with the DFFs of another model to assess

the validity of our results and the implementation of the evolution equations.

1.1.3 Gluon Polarization in the Proton

Authors: Steven D. Bass, Andrew Casey and Anthony W. Thomas

Journal: Physical Review C 83, 038202 (2011)

URL: http://link.aps.org/doi/10.1103/PhysRevC.83.038202

Aims: When it was discovered that the quarks contributed much less of the spin

of the proton than initially assumed, the search for other sizeable contributions

began. Other than the quark spin, three other quantities are identified as sources

of proton spin, namely the quark orbital angular momentum, the gluon orbital

angular momentum and the gluon polarization. The focus of this paper is to study

the gluon polarization ∆g in the proton using renormalization group arguments.

2



Chapter 2

QCD and the Parton Model

2.1 History

Experimental particle physicists studying cosmic rays in the 1950’s observed a

large number of particles which at the time were assumed to be elementary.

These included the “mesons” (such as the pions, kaons and etas), which had

masses between that of the electron and proton, and the “baryons” (such as the

protons, lambdas and sigmas) which were significantly heavier than the mesons.

With so many new particles being discovered, it was suggested that they couldn’t

all be elementary particles, and so there must be some deeper structure to these

particles that we can use to describe them. This led to many attempts to order

the mesons and baryons into groups based on their properties, such as charge,

isospin, strangeness and mass. In the mid-60’s, a classification scheme known

as the eightfold way [4–6] emerged which organized the mesons and baryons into

octets. It was later realized that the eightfold pattern could be explained in terms

of elementary particles known as quarks. The quarks were at this time, theoretical

constructs with no experimental observation of their existence. The mesons and

baryons would eventually be collectively referred to as hadrons. Hadrons are

composite particles of quarks bound together by the strong force, with mesons

containing valence pairs of quarks and antiquarks, and baryons containing three

valence quarks.

Following the deep-inelastic scattering experiments of electrons off of a proton

3



target at SLAC in 1968 [7], evidence for the existence of point-like objects con-

tained within the proton was observed. These point-like objects found in hadrons

where initially termed “partons” in the parton model by Feynman [8]. Feynman’s

parton model described hadrons in a reference frame in which the momentum was

infinite. An important feature of this frame is that during the time in which the

photon interacts with the parton, there are no parton-parton interactions and we

can ignore the final state interactions.

Bjorken and Paschos [9] applied the parton model to electron-proton deep-

inelastic scattering with the assumption that in the limit of the square of the

momentum transfer of the exchanged photon (Q2) going to infinity, the struc-

ture functions (explained in later subsection) display a scaling behavior, being

dependent only on the Bjorken scaling variable x. The deep-inelastic scattering

experiments at SLAC displayed this scaling behavior approximately [10]. The

scaling behavior was approximate because infinite momentum is not possible in

reality, and thus we can only consider increasingly large values of Q2. Terms

that violated the scaling behavior would have a large cumulative effect in per-

turbation theory. An asymptotically free quantum field theory that contained

couplings that approach zero as the scale increases, would result in the scaling

violation being much less severe. The combination of this idea of asymptotic

freedom with the parton model proposed by Feynman and the quark model, led

to the formulation of Quantum Chromodynamics (QCD). QCD is a non-abelian

gauge field theory that describes the strong interactions between the fundamen-

tal particles known as quarks and gluons that carry “color” charge. The term

“parton” now refers to quarks and gluons, and is mostly used when referring

to high energy collisions, while quarks and gluons are the preferred terms when

discussing QCD.

2.2 Quantum Chromodynamics

Quantum chromodynamics is the theory which describes the strong interactions

between quarks and gluons. It is an SU(3) non-abelian gauge theory in which

the interactions are mediated by gluons. Quarks and gluons both carry a type of

charge called “color charge” which is analogous to the electromagnetic charge in

4



quantum electrodynamics (QED). Color charge was introduced in order to solve,

for example, how three up quarks could exist in a ∆++ particle with their spin

axis pointing in the same direction. Without color, this particle would violate

Pauli’s exclusion principle which states that no two identical fermions may occupy

the same state. While the electromagnetic charge of a particle takes the form of a

positive or negative value, the color charge of quark (anti-quark) takes the form of

one of three values: blue (anti-blue), green (anti-green) or red (anti-red). Gluon

color combinations are described in the SU(3) adjoint representation by eight

independent generators (Gell-Mann matrices, λi=1,..,,8). In experimental tests of

QCD we observe a phenomenon known as (color) confinement, which results in

an inability to observe free quarks or gluons as particles are confined to color

neutral states. Color neutrality can be attained by combining a particle of one

color with another particle with the anti-color of the first, or by combining three

particles with one of each of the colors. Hadrons, being particles composed of

quarks and gluons, must therefore be color neutral.

Confinement is just one interesting property of QCD, with asymptotic freedom

being another. Asymptotic freedom [11, 12], the discovery of which earned Gross,

Politzer and Wilczek the 2004 Nobel Prize in Physics, causes the coupling strength

between the quarks and gluons to become asymptotically weaker as the energy

of the interactions increases, resulting in much fewer interactions at very high

energies. It is this weakening of the interactions at high energies that allows

perturbative calculations to be performed. To show this we will first discuss the

QCD Lagrangian, followed by a discussion of the running of the strong coupling

constant. The description of QCD presented here is based on that of Ref. [13],

which we use as a resource for several other sections throughout this review of

background material.

2.2.1 QCD Lagrangian

The free field and interaction dynamics of a quantum field theory are described

by its Lagrangian density. To obtain the Lagrangian density for QCD we first

consider the interactions involving quarks. The quark fields as a function of space

5



are written as

ψ(x) =

 ψr

ψg

ψb

 (2.1)

for each active flavor of the quarks. The quarks have a corresponding mass ma-

trix M = diag(mu,md, ...). The terms in the Lagrangian must be invariant under

local gauge transformations. The generators of the unitary gauge transforma-

tions U are the Gell-Mann matrices λa, where a = 1, ..., 8. The transformations

themselves are written in the form

U = e−i
λaθa

2 (2.2)

where θa represent eight real parameters. The Gell-Mann matrices, which are

presented in Appendix .1, are traceless (Tr(λa) = 0) and satisfy the Lie algebra

[λa, λb] = 2ifabcλc, where fabc are structure functions that are antisymmetric in

color. They also have the trace property Tr(λaλb) = 2δab. The quark fields

transform under the gauge transformation as

ψ → ψ′ = Uψ (2.3)

We require the Lagrangian density to be invariant under transformation of color

at each point in space so that we have local gauge invariance. For QCD, this

requires a covariant derivative Dµ (instead of just ∂µ) for the interaction term

between quarks and the gluons, which we define so that Dµψ transforms in the

same way as ψ under gauge transformations. The gluon fields are represented as

Ga
µ, such that Gµ ≡

∑
a taG

a
µ where ta ≡ λa/2. The covariant derivative is then

expressed as

Dµψ = (∂µ − igGµ)ψ, (2.4)

where g is the coupling for the quark-gluon interactions. Dµψ must then trans-

form as

Dµψ → (Dµψ)′ ≡ ∂µψ
′ − igG′µψ′ (2.5)

= U(Dµψ). (2.6)

6



To remain gauge invariant, we must determine how Gµ transforms, which we can

find by the rearrangement of Eq. (2.5)

∂µψ
′ − igG′µUψ = U(Dµψ ) (2.7)

∂µUψ − igG′µUψ = U(∂µ − igGµ)ψ (2.8)

(∂µU)ψ + U∂µψ − igG′µUψ = U(∂µ − igGµ)ψ, (2.9)

which gives G′µU = UGµ − i
g
∂µU , and therefore, using the unitarity property of

the transformation (UU−1 = I, where I is the identity matrix),

G′µ = UGµU
−1 − i

g
(∂µU)U−1. (2.10)

For small values of θa we can calculate infinitesimal gauge transformations, since

U = e−i
λaθa

2 ≈ 1 − itaθa, to first order in θa. This results in the gluon field

transformation, to the same order, of

Ga′
µ = Ga

µ −
1

g
(∂µθ

a) + fabcθ
bGc

µ, (2.11)

where the last term, which involves the fabc factor, arises from the non-commuting

generators, a feature we obtain in a non-abelian theory, but not an abelian one

such as QED.

In an abelian theory such as electromagnetism, the field strength tensor Fµν

can be expressed as

Fµν =
i

e
[Dµ, Dν ] =

i

e
(∂µAν − ∂νAµ) (2.12)

where e is the coupling constant, Aµ is the photon field and, just for this equation,

the covariant derivative is Dµ = ∂µ − ieAµ. However, in QCD, the generators ta

do not commute, resulting in an extra term in the field strength tensor for the

gluon such that

Ga
µν =

i

g
[Dµ, Dν ] = ∂µG

a
ν − ∂νGa

µ + gfabcGb
µG

c
ν (2.13)

where g is the coupling constant. Multiplying Ga
µν with Gµν

a , allows us to write

7



the kinetic term for the gluons in the Lagrangian density. The extra term in

the gluon field strength tensor due to the non-commuting generators, results in

self interactions between the gluon fields which is something that does not occur

between the gauge fields in QED. The gluons can self-interact through a three-

gluon vertex or a four-gluon vertex. The resulting gauge invariant Lagrangian

density for QCD is of the form

LQCD = ψ̄(i /D −M)ψ − 1

4
Ga
µνG

µν
a . (2.14)

Feynman rules can be calculated to describe the interactions, though we do not

go in to the details here, and the Feynman diagrams for these interactions involve

loops. In this thesis we consider diagrams up to one-loop order in perturbation

theory as the calculations are simpler, with higher loop calculations being an

interesting topic for future work. Calculations involving these loops result in

divergent integrals, which are dealt with by a combination of regularization and

renormalization. An important feature of renormalization is that we must choose

a renormalization scale µ, which we use to add counterterms to the Lagrangian

so that the infinities caused by loop divergences are shifted to something more

manageable. Depending on the choice of renormalization scale, the Feynman

diagram for a particular process may be well approximated by a simple tree-level

diagram, while at a different renormalization scale, it may become much more

complicated and several loops may need to be included.

The physical values we wish to extract, however, must be independent of the

renormalization scale, as it is not a physical quantity itself. Since we do not

calculate to all orders of the loops in the theory, a dependence on the renormal-

ization scale arises. The variation of the coupling constant with respect to the

renormalization scale can be described by beta-functions, which we will discuss

in Section 2.2.2.

2.2.2 Running of αs and Asymptotic Freedom

In QED, the charge of the electron is screened by a cloud of virtual e+e− pairs

that are created from the vacuum and then annihilate each other. This screening

results in the charge of the electron appearing lower the further away from the

8



electron we probe (low energy). Quarks in QCD also experience a screening effect

of their color charge as a result of qq̄ pairs from the vacuum. The quarks, however,

also experience antiscreening due to gluon self interactions. This antiscreening

results in the coupling strength increasing for large distances. Therefore, at small

probing energies, the coupling is strong, which results in an inability to describe

the physics at this energy scale using perturbative methods, but does however

display the color confinement of QCD.

For large energy scales, or small distances, the coupling strength is very small,

asymptoting in the high energy probe region, resulting in the quarks behaving

almost as free particles. This is the property referred to as asymptotic freedom,

and it is very important in perturbative calculations of QCD. In this high energy

regime , we can expand the coupling perturbatively. It is convenient to write the

strong coupling constant as

αs(µ
2) =

g2(µ)

4π
. (2.15)

The dependence of αs on the renormalization scale (µ) is logarithmic due to

the loop diagrams. We can describe the strong coupling constant’s dependence

on lnµ2 using the QCD beta function

β(αs) =
∂αs(µ

2)

∂ lnµ2
= −

(
β0

2π
α2
s +

β1

(2π)2
α3
s + ...

)
, (2.16)

where βn−1 are the n-loop calculated beta function coefficients. The one-loop and

two-loop calculated beta function coefficients are

β0 =
33− 2nf

3
(2.17)

β1 =
153− 19nf

3
, (2.18)

where nf is the number of flavors considered, and at most we have nf = 6, which

results in both these quantities being positive for nf ≤ 6. The strong coupling

constant is also always positive as it is related to the square of g(µ). Therefore,

the beta function in Eq. (2.16) is negative and αs decreases with increasing scale

as a result of the minus sign on the right-hand side of Eq. (2.16). This decrease
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of the coupling with increasing scale is where asymptotic freedom originates.

While the two-loop calculated beta function coefficient was shown above, all the

calculations in the chapters that follow are calculated to one-loop order. The

solution of the one-loop calculation for αs is

αs(µ
2) =

αs(µ
2
0)

1 + β0αs(µ2
0) ln µ2

µ20

, (2.19)

where µ0 is some scale at which we start our calculation. We define the mass

scale Λ so that 1 = β0αs(µ
2
0) ln

µ20
Λ2 , which we then insert into Eq. (2.19) to obtain

Λ = µ0exp(−2π/(β0αs(µ
2
0))). This allows us to write αs at leading order as

αs(Q
2) =

4π

β0 ln Q2

Λ2

, (2.20)

where we have set µ = Q and there is no dependence on the scale µ0.

2.3 Experimental Processes

2.3.1 Overview

Our theoretical understanding of the structure of the nucleon has progressed

greatly in recent decades due in no small part to the advances of experimental pro-

cesses including deep-inelastic scattering (DIS) and semi-inclusive deep-inelastic

scattering (SIDIS). In this section we introduce these two processes as examples

of scattering processes from which we can extract functions, such as parton dis-

tribution functions (PDFs) and fragmentation functions (FFs), that encode the

deep nucleon structure. This section uses Ref. [13] as its primary resource for the

description of these processes.

2.3.2 QCD Factorization Theorem

The QCD factorization theorem is a very important tool in the description of

the experimental cross sections, and we will use it frequently in this section as

well as Section 2.4.3 where we describe the Dokshitzer-Gribov-Lipatov-Altarelli-
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Parisi (DGLAP) evolution equations [14–16]. In simple terms, QCD factorization

theorem states that the cross section for scattering processes can be written as a

convolution of short and long distance functions [17]. This allows us to separate

out the perturbatively calculable parts, such as the partonic cross sections, and

the non-perturbative, process independent functions, such as PDFs and/or FFs.

To achieve this we introduce a factorization scale which we denote as µ. Above

the factorization scale is the perturbative region, while below the factorization

scale is the non-perturbative region.

A simple example of this is the cross section for a process such as

l +N → l′ +X, (2.21)

where l and l′ are the incoming and outgoing leptons, N is the struck hadron and

X is the remnants of the collision. Employing factorization theorem allows us to

write the hadronic cross sections as [18]

σN =
∑
q

σq ⊗ fNq , (2.22)

where σN and σp are the hadronic and partonic cross sections, respectively, and fNq

is the parton distribution function for the parton q in the hadron N . This is also

shown diagrammatically [19] in Fig. 2.1. The notation used for the convolution

is

f(x)⊗ g(x) ≡
∫ 1

x

dy

y
f

(
x

y

)
g(y), (2.23)

for arbitrary functions f and g.

The factorization scale is interesting in that it is an unphysical quantity, but

because the calculations are limited to a certain order in perturbation theory,

physical quantities such as σN , which can’t be µ-dependent, are expressed as the

convolution of quantities that have some µ-dependence. This property plays an

important role in our explanation of the DGLAP evolution equations, which are

presented in Section 2.4.3.
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Figure 2.1: Diagrammatic representation of QCD factorization theorem

2.3.3 Deep Inelastic Scattering

Deep-inelastic scattering is a process in which the small-distance structure of

hadrons is probed by a high energy lepton. We consider the inclusive process of

the form

l(k) +N(p)→ l′(k′) +X(p′), (2.24)

shown diagrammatically in Fig. 2.2, where l(k) is the incoming lepton with

4-momentum kµ = (E,~k), l′ is the scattered lepton with 4-momentum k′µ =

(E ′, ~k′), N(p) is the hadron with 4-momentum pµ = (
√
m2
N + ~p2, ~p) being probed

and X(p′) is all the remnants from the scattering process. The scattered lepton

is the final particle that is detected in this process, with the observed quantities

being the angle at which the lepton scatters and the momentum of the lepton.

During the scattering process, in the one-photon exchange approximation, the

lepton emits a virtual photon that transfers momentum to the hadron. The 4-

momentum that is transferred is written in terms of the initial and final lepton

energy and momenta as

qµ = (E − E ′, ~k − ~k′). (2.25)

The transfer of momentum is generally discussed in terms of the square of the

momentum transfer, Q2 = −q2, where Q2 is usually referred to as the virtuality

of the photon. The energy transfer between the leptons is denoted as ν = E−E ′.
The mass squared, W 2, of the scattered remnants, also known as the invariant

mass squared, is equal to the square of the sum of p and q. In the laboratory

12



Figure 2.2: Deep inelastic scattering process

frame with pµ = (mN ,~0), we obtain

W 2 = (p+ q)2

= p2 + 2p · q + q2

= m2
N + 2p · q −Q2

= m2
N +Q2(

2p · q
Q2
− 1)

= m2
N +Q2(

2p · q
Q2

)(1− Q2

2p · q )

= m2
N +

Q2

xBj
(1− xBj), (2.26)

where xBj, which is the Bjorken scaling variable, is defined as

xBj ≡
Q2

2p · q . (2.27)
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The differential cross section for the DIS process can be written as

dσ

dΩdE ′
=
α2

Q4

E ′

E
LµνWµν , (2.28)

where α is the fine structure constant (= e2/4π), dΩ is the solid angle that the

lepton is scattered into, Lµν is the leptonic tensor and Wµν is the hadronic tensor.

The leptonic and hadronic tensors are factorized out separately since leptonic

and hadronic currents interact only through the transfer of a virtual photon. We

write the leptonic tensor [13] as

Lµν(k, k′) =
∑
s′

ūs(k)γµus′(k
′)ūs′(k

′)γνus(k)

= 2(kµk′ν − k · k′gµν + kνk′µ − iεµναβsαqβ), (2.29)

where sα is the lepton spin vector, us is leptons Dirac spinor, γµ are the Dirac

matrices, gµν is the Minkowski space metric tensor, εµναβ is the four-dimensional

Levi-Civita symbol with ε0123 = +1 and the small lepton mass has been neglected.

The generalized hadronic tensor can be written in the following way, using Lorentz

invariance, gauge invariance (qµWµν = qνWµν = 0) and parity conservation.

Wµν(p, p
′) =

1

2mh

∑
X

〈hs(p)|Jµ(0)|X(p′)〉〈X(p′)|Jν(0)|hs(p)〉

=

(
qµqν
q2
− gµν

)
W1(ν,Q2)

+

(
pµ −

p · q
q2

qµ

)(
pν −

p · q
q2

qν

)
W2(ν,Q2)

m2
N

+iεµναβq
α

[
SβG1(ν,Q2) +

Sβp · q − pβS · q
m2
N

G2(ν,Q2)

]
,(2.30)

where W1(ν,Q2), W2(ν,Q2), G1(ν,Q2) and G2(ν,Q2) are structure functions and

Sβ is the hadron spin vector. W1(ν,Q2) and W2(ν,Q2) are observed in scattering

of unpolarized particles, whereas G1(ν,Q2) and G2(ν,Q2) are observed in the scat-

tering of polarized leptons and hadrons. These functions are generally replaced

by the structure functions F1(x,Q2) = mNW1(ν,Q2), F2(x,Q2) = νW2(ν,Q2),

g1(x,Q2) = mNνG1(ν,Q2) and g2(x,Q2) = ν2G2(ν,Q2), to investigate scaling
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behavior in the asymptotic limit. In the näıve parton model, these structure

functions can be written in terms of unpolarized (qi(x)) and helicity (∆qi(x))

distribution functions such that,

F1(x,Q2) =
1

2

∑
i

e2
i qi(x) (2.31)

F2(x,Q2) = x
∑
i

e2
i qi(x) (2.32)

g1(x,Q2) =
1

2

∑
i

e2
i∆qi(x) (2.33)

g2(x,Q2) = 0, (2.34)

where i is a sum over the active quark flavors and ei is the charge of the quarks of

flavor i in terms of the elementary charge e. The light-cone momentum fraction

x ≡ pi−/p− of the struck parton (with momentum pi) that we have used here

is related to the Bjorken scaling variable xBj in the frame where the proton has

very high energy (the infinite momentum frame as is used in the parton model is

discussed in Section 2.4.1). In Ref. [20] (from which we reproduce this calculation

using our notation for the relevant momenta), a brief derivation is presented in

the photon-nucleon centre of mass frame to show the relationship between x and

xBj. The on-shell condition for a struck parton is given by

(pf )
2 = 2pi · q + q2 = ŝ+ t̂+ û = 0, (2.35)

where pf is the momentum of the parton after it is struck, and ŝ = (k + pi)
2,

t̂ = (k − k′)2 and û = (pi − k′)2 are elementary Mandelstam variables. After

cancellation of the appropriate terms, this expression is written as

ŝ+ t̂+ û = −(pi⊥)2xBj
x

+Q2 x

xBj
−Q2 = 0, (2.36)

where pi⊥ = |pi⊥| is the transverse momentum of the struck parton. Using the
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quadratic formula and the bounds x ∈ [0, 1] to write x as

x =
xBj
2

(
1 +

√
1 +

4(pi⊥)2

Q2

)
. (2.37)

In the limit of very large Q2, the second term in the square root approaches zero,

resulting in x = xBj. In this thesis, the light-cone momentum fraction x is the

preferred notation when discussing structure functions and parton distribution

functions, however, in Section 2.4.2 we use xBj to enforce the fact that we are

discussing Bjorken scaling.

Unpolarized parton distribution functions describe the probability to detect a

parton i with light-cone momentum fraction x inside the target, and extractions

of these quantities are obtained through fits to unpolarized DIS cross sections [21].

The helicity parton distribution functions measures the density of partons with

spin parallel minus the density of partons with spin anti-parallel, with momentum

fraction x of the longitudinally polarized target. The helicity distributions are

extracted from the cross sections of polarized DIS experiments. The measure-

ments obtained from DIS experiments are unable to distinguish contributions

from particular flavors of quark, or between quarks and antiquarks, and so SIDIS

cross section asymmetries [22], which are sensitive to the individual quark and

antiquark flavors, become very important tools in the determination of the parton

distribution functions.

2.3.4 Semi-Inclusive Deep-Inelastic Scattering

In DIS, the information we extract is the energy and angle of the scattered lepton.

SIDIS experiments detect not only the information about the final lepton, but

also information about one final emitted hadron. This provides us with a greater

ability to probe the quark flavor structure of the nucleon. We consider the SIDIS

process, which is shown diagrammatically in Fig. 2.3 of the form

l(k) +N(p)→ l′(k′) + h1(p1) +X(p′), (2.38)
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Figure 2.3: Semi-inclusive deep inelastic scattering process

where we now have a detected hadron h1 with momenta p1 and therefore a slightly

different collection of remnant hadronic matter as there is one less hadron included

in X. Using the so-called factorization theorem, the cross section for this process,

with unpolarized initial and final state particles, can be written in terms of the

convolution [18]

dσh =
∑
q

fq/N(x,Q2)⊗ dσq ⊗Dh1
q (z,Q2), (2.39)

where fq/N(x,Q2) are the parton distributions of quarks q in hadron N , dσq is the

partonic cross section and Dh1
q (z,Q2) are the fragmentation functions. The frag-

mentation functions represent the probability for a quark or gluon to fragment

in to hadron h1 with light-cone (LC) momentum fraction z of the fragmenting

quark. SIDIS processes allow extraction of the third leading twist distribution

functions, known as transversity distribution functions (∆T qi(x)) [23], which de-

scribe transversely polarized quarks within transversely polarized nucleon and

appear in SIDIS asymmetries with the Collins fragmentation functions [24–26].

Dihadron fragmentation functions, which appear in two hadron inclusive DIS,
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are also of interest in the extraction of transversity [27, 28], with comparable

results [29] to those obtained in Refs [24–26].

In the next chapter we will present a brief review of the Nambu–Jona-Lasinio

(NJL) model, which has previously been employed to calculate distribution and

fragmentation functions [30–33]. Dihadron fragmentation functions arise in pro-

cesses in which there are two detected hadrons rather than one. The work pre-

sented in Ref. [1] discusses the extension of this model to include calculations of

the dihadron fragmentation functions for pions and kaons. To be able to compare

the NJL-jet model results with other models or experimental data, we require the

DGLAP evolution equations for both the single hadron and dihadron fragmen-

tation functions, which we obtain in Section 2.4.3. These equations allow us to

determine these functions for a range of Q2 values, but before we get to them, we

first describe where they arise.

2.4 Parton Model

In the parton model, we assume that hadrons are constituted by a number of

pointlike, loosely bound particles called partons [8]. This is a reasonable assump-

tion as long as the energy scales considered are much larger than the mass of

the hadron, and thus the mass of the partons too, so that these masses can be

neglected. Colliding hadrons at high energies produces a plethora of particles.

This is an indicator that hadrons have a deeper structure that we can investi-

gate. Since the particles are travelling at high speeds in these kinds of scattering

processes, it is convenient to work in the infinite momentum frame, wherein the

hadrons are assumed to have infinite momentum in the direction of the particle

beam (usually labelled the z direction). We again use Ref. [13] here as a guide

for the description of the parton.

2.4.1 Infinite Momentum Frame

The infinite momentum frame in which the parton model is described has a

couple of interesting features. Since the momentum is so large, any particles

produced in interactions tend to be collinear with the colliding beam. In this
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(a) (b)

Figure 2.4: Parton picture of scattering with a photon probing a hadron (a) before
the virtual photon has an affect and (b) after the virtual photon collides, resulting
in multiple smaller combinations of partons

thesis we consider cross sections in which the transverse momentum has been

integrated over. In the infinite momentum frame we encounter the relativistic

effects Lorentz contraction and time dilation, and these effects are presented in

this picture of the scattering interactions. Lorentz contraction in the infinite

momentum frame results in the distribution of the partons being spread out

into a long disc shape [34], as shown in Fig 2.4. The partons in this frame are

considered to be spread far enough apart that the probability of interactions

between the partons, after the transfer of the virtual photon, is very small. Time

dilation also limits the likelihood of parton-parton interactions occurring in this

frame. The hadron would be moving so fast that the duration of any interaction

would be very long inside the hadron, such that the partons would appear to be

almost frozen in place within the hadron. From the laboratory frame this could

be alternatively viewed as the interaction involving the virtual photon occurring

very quickly, while the parton-parton interactions would take too long to occur.

For these reasons, the interactions between partons can be ignored, and the

partons considered as ’free’ so that the scattering we observe can occur. We

note, however, that we know from QCD that the partons, which we identify with

quarks and gluons, are ’free’ as a result of asymptotic freedom, rather than due

to the relativistic effects that we mentioned that produce the desired effect within
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the infinite momentum frame of the parton model.

2.4.2 Bjorken Scaling

One of the main concepts that the parton model entails is that any object with a

finite size must have a form factor to help describe its internal structure. In elastic

collisions, the form factors depend only on the momentum transfer Q2 = 2Mν,

where ν is the virtual photons energy and M is the hadronic mass. Inelastic

collisions, however, depend on two variables, the momentum transfer Q2 and the

Bjorken scaling variable xBj = Q2/(2Mν), and as result we replace the form

factors of the form Fi(Q
2) with structure functions of the form Fi(xBj, Q

2).

Back in the late 1960’s, Bjorken derived a scaling behavior for the structure

functions that arise in the hadronic tensor of electron-nucleon DIS processes [35].

This scaling behavior, which was derived from current algebra techniques, pre-

dicted that in the asymptotic or high-Q2 (and high-ν so that ν/Q2 is fixed) limit,

the structure functions would depend only on the Bjorken scaling variable xBj,

and not on the scale Q2. The Bjorken scaling behavior was later observed in

DIS experiments at SLAC [10], though it was only approximately true. Scaling

violations are observed for the structure functions in perturbative calculations

at each order. These violations would be quite severe if it weren’t for asymp-

totic freedom. Since the coupling becomes small at large Q2, the effect of the

scaling violations, which are a result of mass singularities, have a much smaller

effect. The corrections to the scaling violations have a logarithmic dependence

on the momentum scale, which can be described by a set of equations which

determine the change of functions, such as PDFs, with respect to lnQ2. While

these equations go by a variety of names, we refer to them here as the Dokshitzer-

Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations [14–16], which we

now discuss.

2.4.3 DGLAP Evolution Equations

The DGLAP evolution equations are named after multiple authors who derived

them around the same time. The authors were, in the order that their initials ap-

pear in the acronym, Yu. L. Dokshitzer [14], V.N. Gribov and L.N. Lipatov [15],
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and G.Altarelli and G. Parisi [16]. These equations allow us to calculate correc-

tions to non-perturbative functions that arise due to scaling violations that are

associated with the radiative gluons that are produced at high energies. While

perturbative QCD cannot be used to determine parton distribution functions or

fragmentation functions, due to their non-perturbative characteristics that de-

pend on momentum fractions, it can be used to determine their dependence on

momentum scale as this is perturbative. We employ DGLAP evolution equa-

tions for this purpose on numerous occasions in this thesis. We limit ourselves to

leading order evolution equations and note that evolution to low Q2, such that

we approach the hadronic or partonic masses, become less accurate as the non-

perturbative effects become more significant in this region. At that point, higher

order perturbation theory is required to obtain more accurate results.

In the literature there are typically two extremes when DGLAP evolution

equations are being discussed. Authors generally will sometimes simply write

down the evolution equations without showing much, if any, description of how

they arise. Other times, however, there will be a detailed derivation taking in to

account a variety of aspects including model-scheme dependent terms. Rather

than derive the evolution equations using renormalization group equations or

by considering Mellin moments, the derivation we present here will focus on a

simplistic interpretation in which we use the convolution properties of the cross

sections and their appropriate factorizations. While this won’t be rigorous enough

to describe model-scheme dependence, which typically don’t survive the deriva-

tions to the evolution equations anyway, it will introduce the main features of the

evolution equations, such as the logarithmic dependence on scale and the relevant

splitting functions.

We note that the use of the DGLAP evolution equations for the single hadron

and dihadron fragmentation functions is a focus of the work we presented in

Ref. [2]. In that work, we obtain results for the single hadron and dihadron

fragmentation functions evolved to a typical experimental scale of 4 GeV2, as

well as a comparison with the results obtained by Majumder et. al. in their

work [36].
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2.4.3.1 Parton Distribution Function Evolution Equations

We consider a simple process e− + h→ γ(Q)→ (e−)′ +X, where h is a hadron,

e− is an electron which emits a virtual photon γ with momenta Q, such that it

recoils as (e−)′, and X is the remnants of the process. The hadronic cross section

is an observable quantity and must therefore be independent of any logarithmic

dependency on the factorization scale µ2, which implies

d

d lnµ2

(
dσh
dx

)
= 0. (2.40)

For this process we have a hadronic cross section that factorizes as [17, 18, 21]

dσh
dx

=
∑
i

σi ⊗ fhi , (2.41)

where σi is the cross section for a parton i and fhi is the parton distribution

function for a parton i in hadron h. Applying Eq. (2.40) to Eq. (2.41) gives us

∑
i

d

d lnµ2
(σi ⊗ fhi ) = 0

∑
i

d

d lnµ2
(σi)⊗ fhi +

∑
i

σi ⊗
d

d lnµ2
(fhi ) = 0 (2.42)

If we were able to calculate the partonic cross section and parton distribution

functions to all orders in perturbation theory, they would also be independent of

the factorization scale, but since we are limited in the order at which we calculate,

they both acquire a factorization scale dependence.

We interpret increasing Q2 as increasing the resolution with which we are

probing the hadron, allowing us to consider there to be a probability that a

parton will be resolved as splitting in to two other partons. At leading order,

we consider only one splitting being resolved, such that the evolution is affected

by a factor of αs(Q
2) ln(Q2/µ2). Higher orders result in multiple splitting and

terms up to (αs(Q
2) ln(Q2/µ2))n would have to be considered, where n = 1 for

leading order (LO), n = 2 for next-to-leading order (NLO), and so forth. The

probability of splittings is described by the four LO splitting functions shown in
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Fig. 2.5. For each of the splittings, there are three partons, with the incoming

parton being labelled as i and the two outgoing partons labelled as j and k. The

parton j receives a fraction η of the incoming parton’s momentum, while the

parton k receives a fraction 1 − η of the incoming parton’s momentum. Both

Pqq(η) and Pgq(η) are splitting processes described as gluon radiation, with the

primary difference being which of the two partons, that the quark splits into,

takes the momentum fraction η. Pqg(η) is the quark pair production splitting

function, while Pgg(η) is the splitting function for gluon splitting into two gluons.

The partonic cross section is therefore of the form

σi =
∑
j

(αs ln(Q2/µ2))Pji(η)⊗ σj, (2.43)

which when we take the derivative with respect to lnµ2 gives

dσi
d lnµ2

= −
∑
j

αsPji(η)⊗ σj, (2.44)

and thus from Eq. (2.42) we obtain

−
∑
i,j

αsPji(η)⊗ σj ⊗ fhi +
∑
i

σi ⊗
d

d lnµ2
(fhi ) = 0

∑
i,j

σi ⊗ (−αsPij(η)⊗ fhj ) +
∑
i

σi ⊗
(

d

d lnµ2
(fhi )

)
= 0, (2.45)

where we relabelled the indices in the first term, set the factorization scale to

µ = Q and equated the bracketed terms to obtain the DGLAP evolution equations

for the PDFs
d

d lnQ2

(
fhi
)

=
∑
j

αsPij(η)⊗ fhj . (2.46)

The splitting functions are known up to NNLO, however we only require the LO
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(a) (b)

(c) (d)

Figure 2.5: Processes of the LO splittings involved in DGLAP evolution equa-
tions. Diagram for (a) Pqq(η), (b) Pqg(η), (c) Pgq(η) and (d) Pgg(η). The incoming
parton has a momentum fraction of 1, the parton at the top has a momentum
fraction of η and thus the parton at the bottom has momentum fraction of 1− η.

splitting functions (obtained from [37]) which are given by

Pqjqi(η) =δijCF

[
1 + y2

(1− y)+

+
3

2
δ(1− y)

]
(2.47)

Pqg(η) =TR
[
y2 + (1− y)2

]
(2.48)

Pgq(η) =CF

[
1 + (1− y)2

y

]
(2.49)

Pgg(η) =2CG

[
y

(1− y)+

+
1− y
y

+ y(1− y) +

(
11

12
− 1

3

nfTR
CG

)
δ(1− u)

]
,

(2.50)
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where CG = Nc = 3, CF = N2
c−1

2Nc
= 4

3
, TR = 1

2
, Nc is the number of colors and

nf is the number of flavors. The ‘+’ prescription used is defined for an arbitrary

function a(x) by ∫ 1

0

dx′
a(x′)

(1− x′)+

=

∫ 1

0

dx′
a(x′)− a(1)

(1− x′) , (2.51)

which can be written as∫ 1

x

dx′
a(x′)

(1− x′)+

=

∫ 1

x

dx′
a(x′)− a(1)

(1− x′) + a(1) ln(1− x). (2.52)

2.4.3.2 Single Hadron Fragmentation Function Evolution Equations

To obtain the DGLAP evolution equations for the fragmentation functions we

perform a similar combination of steps in which we consider the process e++e− →
γ(Q)→ h(p) +X where γ is a virtual photon with momenta Q, h is hadron with

momenta p and X is the remnant matter from the collision [38]. Using the

factorization theorem, the cross section for this process can be written as the

convolution of the partonic cross section σi, which is perturbatively calculable,

and the fragmentation function Dh
i (z), which is non-perturbative, in the following

form [38]
dσh

dz
=
∑
i

σi ⊗Dh
i . (2.53)

The hadronic cross section, however, is a physical quantity and therefore must

be independent of the scale of factorization, µ, such that

∂ dσ
h

dz

∂ lnµ2
= 0. (2.54)

Since the partonic cross section and the fragmentation function pick up a depen-

dence on the scale as result of factorization, this dependence must cancel out so

that the hadronic cross section remains independent of the scale. For this to be
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true, the following must hold

∂ dσ
h

dz

∂ lnµ2
=
∂(
∑

i σ
i ⊗Dh

i )

∂ lnµ2

=
∑
j

∂σj

∂ lnµ2
⊗Dh

j +
∑
i

σi ⊗ ∂Dh
i

∂ lnµ2

= 0. (2.55)

The derivatives of the partonic cross sections and fragmentation functions must

be related to the partonic cross sections and fragmentation functions, respectively,

convoluted with a function that is common to both, which we denote as αs(Q2)
2π

Pji,

of the form

∂σj

∂ lnµ2
= −

∑
i

σi ⊗ αs(Q
2)

2π
Pji (2.56)

∂Dh
i

∂ lnµ2
=
∑
j

Dh
j ⊗

αs(Q
2)

2π
Pji, (2.57)

so that

∑
j

∂σj

∂ lnµ2
⊗Dh

j = −
∑
i

σi ⊗ ∂Dh
i

∂ lnµ2

−αs(Q
2)

2π

∑
i,j

σi ⊗ Pji ⊗Dh
j = −αs(Q

2)

2π

∑
i,j

σi ⊗Dh
j ⊗ Pji. (2.58)

We could relabel the indices in Eq. (2.56) to compare it with Eq. (2.44) and

notice that the indices on the splitting functions are switched. This is a result

of the splitting occurring after the interaction of the virtual photon, rather than

before it. This is also why the evolution equations for the parton distribution

functions (Eq. (2.46)) and the fragmentation functions (Eq. (2.57)) have splitting

functions with switched indices, as the parton distribution functions are functions

of the initial state, while the fragmentation functions are final state functions.

Expanding out the convolution of Eq. (2.57) we can write the corresponding
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evolution equation for the SFFs in the more familiar form

∂

∂ lnQ2
Dh
i (z,Q2) =

αs(Q
2)

2π

∑
j

∫ 1

z

dy

y
Pji(y)Dh

j

(
z

y
,Q2

)
, (2.59)

where we have set µ = Q.

2.4.3.3 Dihadron Fragmentation Function Evolution Equations

The QCD evolution equations for DFFs are derived from factorization of the

cross-section for the production of two hadrons in e+e− → γ(Q) → h1(z1) +

h2(z2) +X [38], in much the same way as the PDFs and FFs were. More care is

required there because there are two processes in which two hadrons can fragment

from a parton. The first process considered is when both hadrons are fragmented

in the same decay chain from the same parton. The parton from which the

two hadrons are originate has momentum fraction u, since the hadrons are not

necessarily produced at the first emission step. This momentum fraction must

lie between z1 + z2 and one, since the parton must have enough momentum to

provide the momentum fractions z1 and z2 to the emitted two hadrons, and the

most momentum fraction it can carry is one. The second process considers the

possibility of the hadrons being fragmented from separate partons, which are

decaying along the same direction so that they are part of the same jet. For this

process, we assume that the parton that produces h1 carries momentum fraction

u, while the parton the emits h2 must then carry momentum fraction 1−u, where

the initial parton carries a momentum fraction of one.

QCD factorization theorem allows the cross section for the production of two

hadron’s in e+e− annihilation to be written as [38]

dσh1h2

dz1dz2

=
∑
i

σi ⊗Dh1h2
i +

∑
i,j

σij ⊗Dh1
i ⊗Dh2

j , (2.60)

where σi is the cross section for parton i and σij is the partonic cross section for

production of partons i and j. The notation used for the convolutions, where we

use f and g as arbitrary functions, is the same as in Eq. (2.23). We now apply the

same procedure on Eq. (2.60) as was applied to Eq. (2.53). Taking the derivative
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with respect to lnµ2, we obtain

d(dσ
h1h2

dz1dz2
)

d lnµ2
=
∑
i

d(σi)

d lnµ2
⊗Dh1h2

i +
∑
i

σi ⊗ d(Dh1h2
i )

d lnµ2
+
∑
i,j

d(σij)

d lnµ2
⊗Dh1

i ⊗Dh2
j

+
∑
i,j

σij ⊗ d(Dh1
i )

d lnµ2
⊗Dh2

j +
∑
i,j

σij ⊗Dh1
i ⊗

d(Dh2
j )

d lnµ2

=0, (2.61)

Using Eqs. (2.56) and (2.57), we can rewrite almost all of these terms except for

the derivatives of the DFF and σij. The derivative of σij receives contributions

from three possible processes. The first is the process in which a parton k splits to

produce partons i and j, where parton k had a cross-section of σk and a splitting

function of P̂ k
ji. The splitting functions P̂ k

ji are the same as the splitting functions

of the form Pik (making sure the indices are consistent), except we drop the delta

functions as there are no virtual contributions. The second process involves the

two partons b and j (σbj), where b splits in to a parton i, resulting in partons i and

j. The third process is similar to the second, with the parton j being produced

as a result of a splitting from a parton a instead of i from b. This results in the

derivative of the form

d(σij)

d lnµ2
= −αs(Q

2)

2π

∑
k

σk ⊗ P̂ k
ji −

αs(Q
2)

2π

∑
b

σbj ⊗ Pib −
αs(Q

2)

2π

∑
a

σia ⊗ Paj,

(2.62)
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which we can then insert into Eq. (2.61), resulting in

−αs(Q
2)

2π

∑
i,j

σj ⊗ Pij ⊗Dh1h2
i +

∑
i

σi ⊗ d(Dh1h2
i )

d lnµ2

−αs(Q
2)

2π

∑
i,j,k

σk ⊗ P̂ k
ji ⊗Dh1

i ⊗Dh2
j

−αs(Q
2)

2π

∑
b,i,j

σbj ⊗ Pib ⊗Dh1
i ⊗Dh2

j −
αs(Q

2)

2π

∑
a,i,j

σia ⊗ Paj ⊗Dh1
i ⊗Dh2

j

+
αs(Q

2)

2π

∑
b,i,j

σij ⊗ Pbi ⊗Dh1
b ⊗Dh2

j +
αs(Q

2)

2π

∑
a,i,j

σij ⊗ Paj ⊗Dh1
i ⊗Dh2

a = 0,

(2.63)

where the third and fourth lines cancel each other, after a relabeling of indices.

Further relabeling of indices on the remaining terms leads to

∑
i

σi ⊗ d(Dh1h2
i )

d lnµ2
=
αs(Q

2)

2π

∑
i,j

σi ⊗ Pji ⊗Dh1h2
j

+
αs(Q

2)

2π

∑
i,j,k

σi ⊗ P̂ i
kj ⊗Dh1

j ⊗Dh2
k . (2.64)

Using the convolution in Eq.(2.23) and setting µ = Q, we obtain the correspond-

ing DGLAP evolution equations used to describe the Q2-dependence of the DFFs

in the form

d

d lnQ2
Dh1h2
i (z1, z2, Q

2) =
∑
j

αs(Q
2)

2π

∫ 1

z1+z2

du

u2
Dh1h2
j

(z1

u
,
z2

u
,Q2

)
Pji(u)

+
∑
j,k

αs(Q
2)

2π

∫ 1−z2

z1

du

u(1− u)
Dh1
j

(z1

u
,Q2

)
Dh2
k

(
z2

1− u,Q
2

)
P̂ i
kj(u), (2.65)

where the sums are over u, d, s, ū, d̄, s̄ and g for Nf = 3 (number of flavors).

We restrict ourselves to the up, down and strange quarks and antiquarks as the

heavy quark fragmentations would be very small. Their inclusion is left for future

extensions of this line of research.
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2.5 Proton Spin Crisis

In Section 2.3.3 we introduced the nucleon structure functions F1, F2, g1 and g2,

which in the Bjorken limit were independent of Q2 and thus only depended on

the scaling variable x. The spin dependent structure function g1 for the proton

provides us with a starting point for determining the contributions to the spin of

the proton. The proton is a subatomic particle that is comprised of three valence

quarks bound together by gluons, with a spin of 1
2
. It was initially believed that

the protons spin could be calculated by summing the spins of the quarks that it

is composed of. Through experiments in the late 1980’s by the European Muon

Collaboration (EMC) [39], it was shown that the quarks contribute only a small

portion of the protons spin. It was this result that led to what is referred to as

the “Proton Spin Crisis”, which led to a search for how much other components

may contribute to the spin of the proton.

In fact, the spin of the quarks, written as ∆Σ, contributes approximately

a third of the spin to the proton. This leaves about two thirds of the spin

unaccounted for. There are three candidates that are considered to contribute

to the proton’s spin. The first of these is the orbital angular momentum of the

quarks which is represented by the symbol Lq. Two others are the gluon spin,

∆G, and the orbital angular momentum of the gluons, Lg. We write the spin of

the proton in terms of these quantities as

1

2
= ∆Σ + Lq + ∆G+ Lg, (2.66)

which can also be written as 1
2

= Jq + Jg where Jq and Jg are the total angular

momenta of the quarks and gluons, respectively, and each are the sum of their

respective spin and orbital angular momentum components.

When the EMC determined that the quark spin contribution was smaller

than expected, they did so through measuring the spin asymmetry in DIS of

longitudinally polarized muons by longitudinally polarized protons over a large

range of x. This allowed them to determine the spin dependent structure function

of the proton, gp1(x), and its integral over x. The result obtained by the EMC
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was

∆Σ = ∆u+ ∆d+ ∆s ≈ (14± 9 [statistical]± 21 [systematic])%, (2.67)

where ∆u, ∆d and ∆s are the up, down and strange quark contributions to the

spin of the proton, where [40]

∆q =

∫ 1

0

∆q(x)dx, (2.68)

with helicity distribution functions ∆q(x) for each quark flavor. The EMC re-

sult (Eq. 2.67) allowed for a quark spin contribution consistent with zero, which

could have meant that the proton contained a large amount of polarized gluons.

Polarized gluons can contribute to gp1(x) through the U(1) axial anomaly [41–46].

In that case, the axial anomaly can be accounted for by writing the quark spin

contribution as

∆Σ = ∆Σquark −
Nfαs(Q

2)

2π
∆G(Q2), (2.69)

where ∆Σquark is the prediction from the quark model.

However, ∆Σ has been more precisely calculated to now be about a third,

∆Σ ≈ (33 ± 3 ± 5)% [47–49]. Myhrer and Thomas [50] showed that using

∆Σquark ≈ 67%, calculated from the naive bag model, and αs(Q
2) ≈ 0.3, ∆G(Q2)

would have to be approximately 2.4. Experimental data indicates that ∆G(Q2)

is much smaller than this. Through the combination of one-gluon exchange and

pion-cloud corrections [50], Myhrer and Thomas were able to obtain a model

calculation for ∆Σquark between 0.35 and 0.4, which would allow for values of

∆G(Q2) consistent with experimental data [51].

2.5.1 Polarization of the Gluon in the Proton

The spin structure function is related to the quark spin contribution through [52]∫ 1

0

dxgp1(x,Q2) =

(
1

12
g

(3)
A +

1

36
g

(8)
A

)
cNS(Q2) +

1

9
cS(Q2)g

(0)
A |inv, (2.70)
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where g
(3)
A (Eq. (2.71)) and g

(8)
A (Eq. (2.72)) are the isovector and octet axial

charges, respectively, and cNS(Q2) and cS(Q2) are the non-singlet and singlet

Wilson coefficients, respectively. The scale-invariant flavor singlet axial charge is

equivalent to g
(0)
A (Q2) evaluated in the limitQ2 →∞, such that g

(0)
A |inv = g

(0)
A (∞).

The axial charges can be written, in the Nf = 3 flavor theory, in terms of ∆q as

g
(3)
A = ∆u−∆d (2.71)

g
(8)
A = ∆u+ ∆d− 2∆s (2.72)

g
(0)
A |inv/ENf (αs) ≡ g

(0)
A = ∆u+ ∆d+ ∆s. (2.73)

where ∆q refers to the expectation value

2Mpsµ∆q = 〈p, s|q̄γµγ5q|p, s〉. (2.74)

Here Mp and sµ are the mass and spin of the proton, respectively. ENf (αs) is a

renormalization group factor in the Nf flavor theory written as

ENf (αs) = exp

∫ αs

0

dα̃sγNf (α̃s)/βNf (α̃s), (2.75)

where γNf (α̃s) is the anomalous dimension and β(α̃s) is the QCD beta function.

The singlet axial-vector current Jµ5 =
∑

q=u,d,s q̄γµγ5q has a non-zero anomalous

dimension (at two loops) [53] γNf (αs), and so ENf (αs) is used to correct this. To

evaluate the expression for Ef (αs) in Eq. (2.75), we use the perturbative QCD

expressions for γNf (αs) and βNf (αs):

γNf (αs) = Nf

(αs
π

)2

+ ... (2.76)

and

βNf (αs) = −
(

11− 2

3
Nf

)
α2
s

2π
+ ... (2.77)

to first order in αs, where CF = 4
3

and CA = 3.

The scale-invariant flavor singlet axial charge is equivalent to g
(0)
A (Q2) evalu-

ated in the limit Q2 →∞, such that g
(0)
A |inv = g

(0)
A (∞). Using Eq. (2.73) we can
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relate these to ENf (αs) in the following way:

g
(0)
A |inv = g

(0)
A (∞) = ENf (αs)g

(0)
A (Q2) (2.78)

In Eq. (2.69), the quark spin was related to contribution from the gluon spin.

This can be written in terms of g
(0)
A (Q2) such that

g
(0)
A =

(∑
q

∆q −Nf
αs
2π

∆g

)
partons

+ C∞, (2.79)

where C∞ denotes a potential non-perturbative gluon topological contribution.

The singlet axial charge measured by polarized DIS equals g
(0)
A − C∞.

In Eq. (2.79), the ∆qpartons and C∞ terms are renormalization group invari-

ant, so the difference between g
(0)
A |∞ and g

(0)
A |Q2 is related only to the difference

between terms involving the gluonic contribution in the following way:

g
(0)
A |inv − g

(0)
A |Q2 = −Nf

(
(
αs
2π

∆g)|∞ − (
αs
2π

∆g)|Q2

)
. (2.80)

Using Eq. (2.78), and rearranging to obtain (αs
2π

∆g)|Q2 , this can be written as

(αs
2π

∆g
)
|Q2 =

(αs
2π

∆g
)
|∞ −

1

Nf

g
(0)
A |inv

(
1

E(Nf )(αs)
− 1

)
, (2.81)

In the limit where Q2 →∞, ENf (αs) goes to a value of one. This implies that

αs(Q
2)∆g(Q2)→ constant, Q2 →∞. (2.82)

By considering the 4-flavor theory and employing Eqs. (2.79) and (2.81), we

can investigate the gluon polarization ∆g and even suggest an upper bound on

its value. This is the calculation presented in Ref. [3], where the possible error for

the bound is assessed by considering the NLO evolution associated with γNf (αs)

and the size of ∆cpartons.
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Chapter 3

Nambu–Jona-Lasinio model

3.1 Concepts and Properties of the

Nambu–Jona-Lasinio model

The dynamics of QCD is described by its Lagrangian and the applications of QCD

to scattering processes at high momentum transfers has had considerable success.

This is in no small part due to the property of QCD at short distances known

as asymptotic freedom, which is the phenomenon, where the coupling strength

between quarks and gluons reduces asymptotically as the momentum transfer

increases. It is this feature of QCD that allows us to carry out perturbative cal-

culations of scattering cross sections. However, at low momentum transfers (typ-

ically < 1 GeV2), or equivalently large distances, such QCD calculations are not

viable. This is due to the coupling strength being too large, which means that

perturbative techniques that are valid at low strength can no longer be applied

with the same certainty.

Several approaches have been considered to obtain results in the low energy

region, though each must make approximations. Lattice gauge theory, which dis-

cretizes spacetime in to a number of points to produce a lattice, is one such ap-

proach which has received considerable resources [54]. Another method employed

to model the low energy region is to construct a simpler Lagrangian density that

retains some essential features of QCD, such as symmetries. This method allows

the exploration of specific features of the strong interactions in the low energy
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region.

The Nambu–Jona-Lasinio (NJL) model [55, 56] is one such model, with La-

grangian density constructed to contain symmetries of QCD. Chiral symmetry

is one such symmetry that is necessary for understanding the properties of the

lightest hadrons. The spontaneous breaking of chiral symmetry, which results

in the dynamic generation of fermion masses, and the appearance of Goldstone

bosons are two important features of the NJL model. One of the downsides of

the NJL model is that the interactions between quarks are assumed to be point-

like, which results in the NJL model being a nonrenormalizable field theory. This

results in divergences appearing in the loop integrals. A suitable regularization

scheme must be prescribed to deal with these. The regularization scheme chosen

in this work is the Lepage-Brodsky invariant mass cutoff scheme [57]. Another

downside of the NJL model is that due to the lack of gluons in the model, the

confinement property of QCD is not described.

In this chapter we will discuss the Lagrangian used for the NJL model, the

resultant quark mass gap equation, meson decay constant and the quark-meson

coupling. The last two topics in particular are of importance for the later calcu-

lations of fragmentation functions from the NJL-jet model. A brief description

of the Lepage-Brodsky regularization scheme is also presented.

3.1.1 Nambu–Jona-Lasinio Model Lagrangian

For the NJL model, we consider a Lagrangian density composed of two terms [58,

59]. The first is the free quark field Lagrangian, which describes quarks in isola-

tion, while the second term is the chiral invariant interaction Lagrangian. This

is expressed as

LNJL = ψ̄(i/∂ −m)ψ +G[(ψ̄ψ)2 + (ψ̄iγ5τψ)2] (3.1)

In the three-flavor NJL model, the SU(3)-flavor symmetry is explicitly broken

since the strange quark mass cannot be chosen equal to the mass of the the

non-strange quarks. We note that the interaction Lagrangian here is for the four-

quark interaction only, as we have chosen to restrict ourselves to interactions of

this form. An additional six-quark interaction term can also be considered to
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Figure 3.1: Diagrammatic representation of the mass gap equation in the NJL
model. Bold lines represent the propagators for the dynamically generated mas-
sive constituent quarks and the thin lines are propagators for the current quarks.

explicitly break axial U(1) symmetry, however we do not consider it here as it

has its own consequences that we do not wish to study.

3.1.2 Mass Gap Equation

In the NJL model, the mass gap equation allows us to describe the interaction of

a particle with the quark condensate. It has the form:

M = mq − 2G〈ψ̄ψ〉, (3.2)

where M is the dynamically generated quark mass, mq is the current quark mass

from the NJL Lagrangian, G is the coupling for the q̄q channel and 〈ψ̄ψ〉 is the

quark q̄q condensate. We show the diagrammatic representation of Eq. (3.2)

in Fig. 3.1, where the bold lines represent the propagators of the dynamically

generated massive constituent quarks and the thin lines are the propagators for

the current quarks. The quark condensate is calculated as a quark self-energy

Σ = −2G〈ψ̄ψ〉 and can thus be expressed in terms of the integral of the trace

over color, isospin and Dirac indices for the Feynman propagator of a constituent

quark in the form

〈ψ̄ψ〉 =− i
∫

d4q

(2π)4
TrS(q)

=− i2Nc

∫
d4q

(2π)4
TrD[S(q)]

=− 2Nci

∫
d4q

(2π)4
TrD

[
/q +M

q2 −M2 + iε

]
, (3.3)
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where Nc is the number of colors and the Dirac trace of the gamma matrices (see

Appendix .2) can easily be solved using the properties shown in Appendix .3,

resulting in

〈ψ̄ψ〉 =− 2Nci

∫
d4q

(2π)4

[
4M

q2 −M2 + iε

]
=− 8MNciI1(M2), (3.4)

with

I1(M2) =

∫
d4q

(2π)4

1

q2 −M2 + iε
. (3.5)

The integral in Eq. (3.5) is divergent as q2 → ∞, and thus requires some form

of regularization. By employing three-momentum cutoff regularization, which we

discuss in Section 3.3.1 with the cutoff denoted as Λ3M , and using integration by

parts (some useful integral relations are included in Appendix .4), we obtain the

following expression for the quark condensate:

〈ψ̄ψ〉 =− 8MNci

∫ Λ3M

−Λ3M

d3q

(2π)3

[
i

−2Eq

]
=− 4MNc

∫ Λ3M

−Λ3M

dq

(2π)3
(4π)q2

[
1√

q2 +M2

]

=− 2MNc

π2

(
Λ3M

√
Λ2

3M +M2 −M2arcsinh

(
Λ3M

M

))
, (3.6)

which leads to the mass gap equation of the form

M = mq + 12G
M

π2

(
Λ3M

√
Λ2

3M +M2 −M2arcsinh

(
Λ3M

M

))
. (3.7)

We now consider Eq. (3.7) in the chiral limit, mq → 0, to investigate the

constraint the mass gap equation places on values for the coupling G. Imposing
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this limit, we obtain

M =12G
M

π2

(
Λ3M

√
Λ2

3M +M2 −M2arcsinh

(
Λ3M

M

))
π2

12G
=Λ3M

√
Λ2

3M +M2 −M2arcsinh

(
Λ3M

M

)
π2

12GΛ2
3M

=

√
1 +

M2

Λ2
3M

− M2

Λ2
3M

arcsinh

(
Λ3M

M

)
, (3.8)

where in the limit of M → 0 the right hand side approaches one, resulting in a

critical value of the coupling

Gcrit =
π2

12Λ2
3M

. (3.9)

For G < Gcrit in the chiral limit, the condensate equals zero as we require M to be

positive. The right hand side of Eq. (3.8) decreases and eventually asymptotically

approaches 0 as M becomes larger, and so G ≥ Gcrit, and thus Gcrit is the value

of the coupling strength above which the quark condensate becomes non-zero and

chiral symmetry is dynamically broken.

3.2 Bethe-Salpeter Equation and the Bubble

Graph

We now consider mesons within the NJL model. The mesons are bound states of

quarks and antiquarks that are typically produced in a relativistic frame, and so

in the NJL model we typically study them by solving the relativistic two-body

bound state equation known as the Bethe-Salpeter equation (BSE) [60]. In the

NJL model, the BSE is written as [61]

Tαβ,γδ(k) = Kαβ,γδ +

∫
d4q

(2π)4
Kαβ,λεSεε′(k − q)Sλλ′(q)Tε′λ′,γδ(k), (3.10)

where the indices (α, β, γ, δ, etc) denote the quark flavors, T is the two-body

t-matrix, S is the fermion propagator and K is the relevant interaction kernel.
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Figure 3.2: Diagrammatic representation of the Bethe-Salpeter equation shown
in Eq. (3.10).

This equation is shown diagrammatically in Fig. 3.2. The relevant interaction

kernel for the pseudoscalar mesons is of the form

Kαβ,γδ = −2iGm(γ5τi)αβ(γ5τi)γδ, (3.11)

where τi are the generators of the isospin groups denoted with isospin indices i

(τi = σi for SU(2), τi = λi for SU(3)). Eq. (3.10) can be rearranged to describe

T in terms of K and S, which we show in Eq. (3.12) and Fig. 3.3,

Tαβ,γδ(k) =
Kαβ,γδ

1−
∫

d4q
(2π)4

Tr [Sεε′(q − k)Kαβ,λεSλλ′(q)]

=(γ5τi)αβτm(k)(γ5τi)γδ, (3.12)

where τm(k) is the reduced t-matrix given by

τm(k) =
−2iGm

1 + 2GmΠm(k2)
, (3.13)

and the quark-antiquark bubble graph is given by

Πm(k2) = i

∫
d4q

(2π)4
Tr [(γ5τi)S1(q)(γ5τi′)S2(q − k)] , (3.14)

with the subscripts on the propagators indicating quarks of different flavors which

we call q and Q such that the meson can be identified as m = qQ̄. The trace in

Eq. (3.14) includes traces over Dirac, isospin and color indices and the labels on
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Figure 3.3: Diagrammatic representation of the rearranged Bethe-Salpeter equa-
tion shown in Eq. (3.12).

the propagators. Performing the trace we obtain

Πm(k2) = 2Nci

∫
d4q

(2π)4
TrD [γ5S1(q)γ5S2(q − k)] , (3.15)

where Nc = 3. Taking the trace using the properties of the gamma matrices listed

in Appendix .3, and using the mass gap equation (3.2), we can rewrite Eq. (3.15)

as

Πm(k2) =12iI12(k2)[k2 − (M1 −M2)2]− 4Nci

∫
d4q

(2π)4

[
1

q2 −M2
1

+
1

q2 −M2
2

]
(3.16)

where M1 and M2 are the masses of the quarks with propagators S1 and S2,

respectively, and I12(k2) is an integral of the form

I12(k2) =

∫
d4q

(2π)4

1

(q2 −M2
1 + iε)((q − k)2 −M2

2 + iε)
. (3.17)

For the pion case, we note that since the up and down quarks are assumed to be

equal in mass, M1 and M2 can simply be replaced by M . This allows us to right

40



the second term on the right hand side as

−4Nci

∫
d4q

(2π)4

[
1

q2 −M2
1

+
1

q2 −M2
2

]
=− 8Nci

∫
d4q

(2π)4

[
2

q2 −M2

]
=
〈ψ̄ψ〉
M

, (3.18)

where we replaced the integral with the quark condensate from Eq. (3.4). Using

the mass gap equation (Eq. (3.2)), we obtain a much simpler form for Ππ(k2),

written as

Ππ(k2) = 12k2iI11(k2)− M −mq

2GπM
. (3.19)

The mass of the meson is obtained from the pole of the t-matrix, which can

be expressed as

1 + 2GmΠm(k2 = m2
m) = 0, (3.20)

where we will demonstrate the solution for the pion case due to its simplicity.

This pole is then expressed as

1 + 2GπΠπ(k2 = m2
π) = 0

1 + 2Gπ

(
12m2

πiI11(m2
π)− M −mq

2GπM

)
= 0

−−mq

M
+ 24m2

πiI11(m2
π) = 0,

which rearranges into the expression for the mass of the pion as follows

m2
π = −mq

M

1

24iGπI11(m2
π)
. (3.21)

It is noted that, as a manifestation of chiral symmetry, the pion mass vanishes in

the chiral limit mq → 0.

3.2.1 Quark-Meson Coupling

We now return to the diagram on the left hand side of Fig. 3.2 and its solution

in Eq. (3.12), as it can be equivalently expressed in terms of the quark-meson

coupling, gmqQ. This coupling arises in several of the functions that we will be dis-
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Figure 3.4: Feynman diagram for the decay of a meson

cussing the later sections, and thus we outline the way it is typically determined.

In the pole approximation, we define the relationship between quark-meson cou-

pling and the reduced t-matrix solution to the BSE as

ig2
mqQ

k2 −mm2

≈ −2iGm

1 + 2GmΠm(k2)
, (3.22)

which is inverted and the derivative with respect to k2 is taken to obtain

g−2
mqQ = −

(
∂Πm(k2)

∂k2

)
k2=m2

m

, (3.23)

which for the pions can be expressed as

g−2
πqQ =− 12i

(
∂(k2I11(k2))

∂k2

)
k2=m2

π

. (3.24)

Before this expression can be determined, we require an appropriate regularization

scheme. The regularization schemes employed will be discussed in Section 3.3.

The quark-meson coupling is related to another important variable known as the

meson decay constant, which we discuss now.

3.2.2 Meson Decay Constant

The meson decay constant, which we denote as fm, is another observable quantity

that arises in the determination of the constituent quark masses and is a measure

of the strength of chiral symmetry breaking. It is defined by the matrix element

of the diagram in Fig. 3.4 which we express as
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ifmqµδab = 〈0|ψ̄γµγ5
1

2
τaψ|mb(q)〉 (3.25)

=

∫
d4k

(2π)4
Tr
[
iγµγ5

τa
2
S1(k)iγ5gmqQτbS2(k − q)

]
|q2=m2

m

fmqµδab

= iNcgmqQδab

∫
d4k

(2π)4
TrD

[
γµγ5(γαk

α +M1)γ5(γν(k
ν − qν) +M2)

(k2 −M2
1 + iε)((k − q)2 +M2

2 + iε)

]
|q2=m2

m
,

(3.26)

where qµ is the momentum of the meson mb which has isospin τb and τa/2 is the

isospin associated with the axial vector current. Here, the isospin indices a and

b run over the number of generators of the SU(Nf ) group (over 1 to 3 for SU(2)

and over 1 to 8 SU(3)).

Performing the trace over the Dirac indices, we obtain

fmqµδab =iNcgmqQδab

∫
d4k

(2π)4

[
4kµ(M1 −M2)− 4M1qµ

(k2 −M2
1 + iε)((k − q)2 +M2

2 + iε)

]
|q2=m2

m
.

(3.27)

It is easy to see that for the pion, the term involving kµ disappears as a result of

M1 = M2 ≡M , leading to

fπqµδab

=− 4Mqµ(iNcgπqQδab)

∫
d4k

(2π)4

[
1

(k2 −M2 + iε)((k − q)2 +M2 + iε)

]
|q2=m2

π

fπ =− 4M(iNcgπqQ)

∫
d4k

(2π)4

[
1

(k2 −M2 + iε)((k − q)2 +M2 + iε)

]
|q2=m2

π

fπ =− 4M(iNcgπqQ)I11(m2
π). (3.28)

Combining the equations for the pion mass from Eq. (3.2) and the pion decay
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constant from Eq. (3.28), we can write the following expression

f 2
πm

2
π =(−4M(iNcgπqQ)I11(m2

π))2

(
−mq

M

1

24iGπI11(m2
π)

)
=

42M2i2N2
c g

2
πqQI

2
11(m2

π)

24iGπI11(m2
π)

(
−mq

M

)
=
i12M2g2

πqQI11(m2
π)

2Gπ

(
−mq

M

)
,

(3.29)

where

g2
πqQ =

[
−12i

(
∂(k2I11(k2))

∂k2

)
k2=m2

π

]−1

=

[
−12i

(
I(m2

π) +m2
π

∂(I11(m2
π))

∂m2
π

)]−1

. (3.30)

Inserting this into the previous expression, we obtain

f 2
πm

2
π =

i12M2I11(m2
π)

2Gπ

(
−mq

M

) 1

−12i
(
I11(m2

π) +m2
π
∂(I11(m2

π))
∂m2

π

)


=
MI11(m2

π)

2Gπ

(mq)

 1(
I11(m2

π) +m2
π
∂(I11(m2

π))
∂m2

π

)


=
mqM

2Gπ

[
1

1 +m2
π

1
I11(m2

π)
∂(I11(m2

π))
∂m2

π

]
.

(3.31)

Inserting the mass gap equation (Eq. (3.2)) into Eq. (3.31), we can write this as

f 2
πm

2
π =

mq(mq − 2Gπ〈ψ̄ψ〉)
2Gπ

[
1

1 +m2
π

1
I11(m2

π)
∂(I11(m2

π))
∂m2

π

]
,

(3.32)
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which to first order in mq, where I11(m2
π) is regarded as a slowly varying func-

tion [62] so that fraction involving the integral is approximately one, is the the

Gell-Mann-Oakes-Renner (GOR) relation [63]:

f 2
πm

2
π ≈ −mq〈ψ̄ψ〉. (3.33)

The GOR relation describes the connection between the explicit (masses: mπ, mq)

and spontaneous (fπ, 〈ψ̄ψ〉) breaking of chiral symmetry for pions and quarks.

3.3 Regularization

In the process of calculating Feynman diagrams, we repeatedly encounter integrals

that are divergent as the momentum approaches infinity. We therefore require an

appropriate regularization scheme to be able to obtain results with finite values.

In the line of research in which previous calculations regarding PDFs and FFs

have been calculated, there have been two particular schemes that have been em-

ployed, namely three-momentum cutoff regularization and Lepage-Brodsky (LB)

invariant mass cutoff regularization. These two regularization schemes have been

shown to be consistent with each other, as will be discussed later. We will first

describe the three-momentum cutoff regularization scheme, which we will label

with the subscript 3M , and demonstrate its application to several of the divergent

integrals we have encountered. This will be followed by a description of light-

cone (LC) variables, which then leads on to the Lepage-Brodsky (LB) invariant

mass cutoff regularization scheme.

3.3.1 Three-Momentum Cutoff Regularization

Feynman diagrams calculated in momentum space have an integration variable

of the form d4q = dq0dq1dq2dq3 for a four-momentum qµ. In the three-momentum

cutoff regularization scheme, we first integrate out the time component of the

momentum, q0, which is typically achieved using the residue theorem. Integrals
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of the form∫
d4q

(2π)4

A(q)

q2 −M2 + iε
=

∫
d3q

(2π)3

∫
dq0

(2π)

A(q)

q2
0 − (q2 +M2) + iε

, (3.34)

occur regularly throughout our calculations, for an arbitrary function A(q), such

as the integral in the quark q̄q condensate of Eq. (3.4). We define the energy

Eq =
√
q2 +M2 and note that the q0 integral can expressed as∫

dq0

(2π)

A(q0, q)

q2
0 − E2

q + iε
=

∫
dq0

(2π)

A(q0, q)

q0 − Eq + iε′
1

q0 + Eq − iε′
, (3.35)

where ε′ = ε/(2Eq). This shows that there are poles at q0 = Eq − iε′ and q0 =

−(Eq − iε′). Since the integrand falls off quadratically as |q0| → ∞, we can

choose a contour such that only the positive imaginary part of the complex plane

contributes to the integral and the radius of the resultant semicircular contour

is sufficient to include the necessary poles. This results in only the pole at q0 =

−(Eq − iε′) contributing the integral, which leads to Eq. (3.35) being expressed

as ∫
dq0

(2π)

A(q0, q)

q0 − Eq + iε′
1

q0 + Eq − iε′

=
2πi

2π
Res[q0=−(Eq−iε′)]

[
A(q0, q)

q0 − Eq + iε′

]
=

i

−2Eq
A(q0 = −(Eq − iε′), q), (3.36)

and therefore Eq. (3.34) becomes∫
d4q

(2π)4

A(q)

q2 −M2 + iε
=

∫
d3q

(2π)3

i

−2Eq
A(q0 = −(Eq − iε′), q). (3.37)

In a similar fashion, we encounter integrals involving two Feynman propaga-

tors, S1 and S2, for particles with masses M1 and M2, respectively. This results
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in an integral of the form∫
d4q

(2π)4

B(q, k)

q2 −M2
1 + iε

1

(q − k)2 −M2
2 + iε

=

∫
d3q

(2π)3

∫ 1

0

dx

∫
dq0

(2π)

B(q0, q, k, x)

(x((q − k)2 −M2
2 + iε) + (1− x)(q2 −M2

1 + iε))2

(3.38)

where B(q, k) is an arbitrary function and the Feynman parameterization has

been used to combine the denominators:

1

AB
=

∫ 1

0

dx
1

(xA+ (1− x)B)2
. (3.39)

Expanding Eq. (3.38) and rewrite in terms of the variable l = q − xk, we obtain∫
d3l

(2π)3

∫ 1

0

dx

∫
dl0

(2π)

B(l = q − xk, k)

(l2 − ((1− x)M2
1 + xM2

2 − k2x(1− x)) + iε)2

=

∫
d3l

(2π)3

∫ 1

0

dx

∫
dl0

(2π)

B(l = q − xk, k)

(l2 −∆12 + iε)2
(3.40)

where

∆12 = (1− x)M2
1 + xM2

2 − k2x(1− x). (3.41)

The denominator can be expressed as

(l2 − (1− x)M2
1 + xM2

2 − k2x(1− x) + iε)2

=(l20 − (l2 + ∆12 + iε))2

=
(
l0 −

√
(l2 + ∆12 + iε)

)2 (
l0 +

√
(l2 + ∆12 + iε)

)2

, (3.42)

from which we choose the pole at l0 =
√

(l2 + ∆12 + iε), and obtain the residue
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of the integral. This pole is of order 2 and so we obtain the residue as follows

Res

(
B(l = q − xk, k)

(l2 −∆12 + iε)2
, l0 =

√
(l2 + ∆12 + iε)

)

=
d

dl0

 B(l = q − xk, k)(
l0 +

√
(l2 + ∆12 + iε)

)2


l0=
√

l2+∆12+iε

. (3.43)

Inserting Eq. (3.43) in to Eq. (3.40), and relabelling l → q, the integrals of this

form can be calculated by setting the cutoff |q|2 < Λ2
3M .

For a simple example, we consider the bubble graph for the pion.

Ππ(k2) =2Nci

∫
d4q

(2π)4
TrD [γ5S1(q)γ5S2(q − k)]

=8Nci

∫
d4q

(2π)4

−q2 + q · k +M1M2

(q2 −M2
1 + iε)((q − k)2 +M2

2 + iε)
, (3.44)

which when we set M1 = M2 = M and integrate over q0 and the x variable we

introduce when using Feynman parameterization, we obtain the same expression

obtained in Ref. [64], written as

Ππ(k2) =48

∫
|q|<Λ3M

d3q

(2π)3

Eq
k2 − 4E2

q + iε
. (3.45)

Converting to spherical coordinates, d3q = dqdφdθq2 sin(φ), where the integrals

over dφ sin(φ) and dθ produce a factor of 4π, we can write Eq. (3.45) as

Ππ(k2) =48

∫
|q|<Λ3M

dq

(2π)3
4πq2 Eq

k2 − 4E2
q + iε

=48

∫ Λ2
3M

0

dq2

(2π)3
4π
q

2

Eq
k2 − 4E2

q + iε
(3.46)

where dqq2 = dq2q/2. This equation can then be expressed by change of variables

in terms of µ2 = 4(q2 + M2). The resulting integration bounds are µ2
min =

4M2 and µ2
max = 4(Λ2

3M + M2) = Λ2, corresponding to q2 = 0 and q2 = Λ2
3M ,
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respectively, and so Eq. (3.45) can be written as

Ππ(k2) =48

∫ λ2

4M2

dµ2

4(2π)3
4π

√
µ2

4
−M2

2

µ

k2 − µ2 + iε

=

∫ µ2max

µ2min

dµ2

(2π)2

3µ2
√

1− 4M2

µ2

k2 − µ2 + iε
. (3.47)

This reproduces the result from Ref. [64]

Ππ(k2) =

∫ µ2max

µ2min

dµ2 ρ(µ2)

k2 − µ2 + iε
, (3.48)

where

ρ(µ2) =
3µ2

4π2

√
1− 4M2

µ2
. (3.49)

3.3.2 Light Cone Coordinates

Fragmentation functions and parton distribution functions are expressed in terms

of light-cone (LC) variables, and this is of particular use for our description of the

Lepage-Brodsky invariant mass cutoff scheme. For a four-vector V µ

= (V 0, V 1, V 2, V 3) in spacetime coordinates, we define the change of variables

to light-cone coordinates as:

V ± =
V 0 ± V 3

√
2

(3.50)

V ⊥ = (V 1, V 2), (3.51)

and write V µ = (V +, V −,V ⊥), where V + and V − can act as ‘time’ coordinates,

and V ⊥ is the transverse spatial component. The dot product of two four-vectors

V µ and Wµ is expressed in LC coordinates as

V µ ·Wµ = V +W+ + V −W− − V ⊥ ·W⊥

= V−W+ + V+W− − V⊥ ·W⊥, (3.52)
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where we used the property V ± = V∓.

Expressing Feynman propagators in terms of these coordinates results in

S(q) =
/q +M

q2 −M2 + iε

=
γ+q+ + γ−q− − γ⊥ · q⊥ +M

q2 −M2 + iε
, (3.53)

where the denominator can be expressed in light-cone coordinates as

1

q2 −M2 + iε
=

1

q+q+ + q−q− − (q2
⊥ +M2) + iε

=
1

2q−q+ − (q2
⊥ +M2) + iε

=
1

2q−

(
Θ(q−)

q+ − eq + iε
+

Θ(−q−)

q+ − eq − iε

)
, (3.54)

where Θ are Heaviside functions, and we denote

eq =
q2
⊥ +M2

2q−
. (3.55)

Inserting this into Eq. (3.15), and fixing q− = xk−, we can write the bubble graph

[31] as

Πm(k2) = 2Nci

∫
d4q

(2π)4
TrD [γ5S1(q)γ5S2(q − k)]

= −2Nc

∫
dx

Θ(x)Θ(1− x)

x(1− x)

∫
d2q⊥
(2π)3

q2
⊥ + ((1− x)M1 + xM2)2

q2
⊥ + (1− x)M2

1 + xM2
2 − x(1− x)k2 − iε ,

(3.56)

where k⊥ = 0, and the appropriate poles are considered when employing the

residue theorem.
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3.3.3 Lepage-Brodsky Invariant Mass Cutoff Scheme

The bubble graph of Eq. (3.56) involves a qQ̄ intermediate state with invariant

mass squared, M2
12 given by

M2
12 = k2 = (p1 + p2)2, (3.57)

where k is the total four-momentum for the state, with p1 = q and p2 = −(q− k)

being the four-momentum for the quark q and antiquark Q̄, respectively. In light

cone coordinates, this can be expressed as

M2
12 =2k−k+ − k2

⊥

=2(q− + (k − q)−)(q+ + (k − q)+)− (q⊥ + (k − q)⊥)2

=2(k−)(eq + ek−q), (3.58)

where the total transverse momentum k⊥ = 0, and the on-shell momentum for

the components q+ and (k− q)+ are equal to eq and ek−q expressed by Eq. (3.55),

with masses M1 and M2, respectively. Inserting the expressions for the plus

components of momentum we obtain

M2
12 =2(k−)

(
q2
⊥ +M2

1

2q−
+

(k− q)2
⊥ +M2

1

2(k − q)−

)
=2(k−)

(
q2
⊥ +M2

1

2xk−
+

(−q)2
⊥ +M2

2

2(1− x)k−

)
. (3.59)

Canceling the factors of k−, we obtain the invariant mass M12 of two quarks as

M2
12 =

q2
⊥ +M2

1

x
+
q2
⊥ +M2

2

1− x . (3.60)

The maximum value of invariant mass that we set as a cutoff for the invariant

mass in the Lepage-Brodsky regularization scheme is defined as

Λ12 =
√

Λ2
3M +M2

1 +
√

Λ2
3M +M2

2 , (3.61)
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where both particles have 3-momentum Λ3M . Combining Eq. (3.60) and Eq. (3.61),

and imposing the condition M2
12 ≤ Λ2

12, we obtain the upper limit on q2
⊥ of the

form

q2
⊥ ≤ Λ2

12x(1− x)−M2
1 (1− x)− xM2

2 . (3.62)

In the previous subsection we finished by noting that for the pion case as

in Ref. [64], after a change of variables to µ2, the upper bound of the three-

momentum cutoff version of Ππ could be expressed as µ2
max = Λ2. This Λ2 is con-

sistent with the invariant mass cutoff defined in Eq. (3.61), Λ2
12 = (2

√
Λ2

3M +M2)2

= 4(Λ2
3M +M2) ≡ Λ2. In fact, as suggested in Ref. [64], if we employ the change

of variable

x =
1

2

(
1 +

q3

Eq

)
, (3.63)

in Eq. (3.56) for the pion (M1 = M2 = M), we obtain Eq. (3.45), showing that

the three-momentum cutoff and Lepage-Brodsky schemes are equivalent.

With the requirement that p2
⊥ ≥ 0, limitations are placed on the allowed

values of x. The maximum allowed region of x is found at p2
⊥ = 0, resulting in

Λ2
12x(1− x)−M2

1 (1− x)− xM2
2 = 0. (3.64)

Applying the quadratic equation, we obtain upper (xupp) and lower (xlow) limits

on x such that

xupp =
Λ2

12 +M2
1 −M2

2 +
√

(Λ2
12 +M2

1 −M2
2 )2 − 4Λ2

12M
2
1

2Λ2
12

, (3.65)

xlow =
Λ2

12 +M2
1 −M2

2 −
√

(Λ2
12 +M2

1 −M2
2 )2 − 4Λ2

12M
2
1

2Λ2
12

, (3.66)

where 0 < xlow ≤ x ≤ xupp < 1. Outside of the range defined by xlow and xupp,

the integrals equate to zero.
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(a) (b)

Figure 3.5: Cut diagrams for (a) valence quark distribution functions fmq (x) and
(b) elementary fragmentation functions dmq (z).

3.4 Fragmentation Functions from the NJL-jet

model

Quark distribution and fragmentation functions are process independent func-

tions that appear in the convolutions of hard scattering cross sections and are

therefore of interest to both the experimental and theoretical branches of particle

physics. The valence quark distribution functions, denoted by fmq (x), describe

the probability of finding a quark q within a hadron h (= m as we consider only

mesons), where the quark has a momentum fraction x of the hadron’s light-cone

momentum, while the elementary fragmentation functions, denoted by dmq (z), de-

scribe the probability that a fragmenting quark produces a hadron h (= m) with

light-cone momentum fraction z of the fragmenting quark. The cut diagrams for

the valence quark distribution functions and elementary fragmentation functions

are shown diagrammatically in Figs. 3.5(a) and 3.5(b), respectively. The PDFs

are expressed as

fmq (x) =iNc

Cm
q

2
g2
mqQ

∫
d4k

(2π)4
TrD

[
S1(k)γ+S1(k)γ5(/k − /p+M2)γ5

]
× δ(k− − p−x)2πδ((p− k)2 −M2

2 )

=Nc

Cm
q

2
g2
mqQ

∫
d2k⊥
(2π)3

k2
⊥ + ((1− x)M1 + xM2)2

(k2
⊥ + (1− x)M2

1 + xM2
2 − x(1− x)m2

m)2
, (3.67)
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and the FFs as

dmq (z) =− Cm
q

2
g2
mqQ

z

2

∫
d4k

(2π)4
TrD

[
S1(k)γ+S1(k)γ5(/k − /p+M2)γ5

]
× δ(k− − p−/z)2πδ((p− k)2 −M2

2 )

=
Cm
q

2
g2
mqQz

∫
d2p⊥
(2π)3

p2
⊥ + ((z − 1)M1 +M2)2

(p2
⊥ + z(z − 1)M2

1 + zM2
2 + (1− z)m2

m)2
, (3.68)

where the flavor factors denoted by Cm
q are obtained from Ref. [31] and presented

in Appendix .5. These functions are related by the Drell-Levy-Yan (DLY) rela-

tion [65–68], which describes them as the same function in different regions of the

Bjorken x variable, with the elementary quark fragmentation functions being a

continuation of the valence quark distribution functions in to the x > 1 region.

The DLY relation is based on charge conjugation and crossing symmetry, and is

expressed [30] as

dmq (z) =(−1)2(sq+sm)+1 z

dq
fmq

(
x =

1

z

)
(3.69)

=− z

2Nc

fmq

(
x =

1

z

)
(3.70)

where sq and sm are the spins of q and m, respectively, and dq is the spin-color

degeneracy of q. This relation has been proved for these functions in Ref. [30].

The integrals in Eq. (3.67) and (3.68) are divergent and so the Lepage-Brodsky

invariant mass regularization scheme, which we discussed in Section 3.3.3, is

chosen to regularize the integrals. The focus of the work that we present in

this thesis that relies on the NJL model relates to the fragmentation functions.

Calculations involving the distribution functions from the NJL model have been

carried out by others and can be found in Refs. [30, 31]. For the remainder of

this section we will focus on the fragmentation functions.

The total probability of a quark splitting into a hadron of a given type plus

a remnant quark is represented by the elementary quark fragmentation function,

integrated over the light-cone momentum fraction z. In the construction of the

NJL-jet model, only processes where a hadron is produced at each step are con-

sidered. Thus the renormalized elementary fragmentation functions, d̂hq (z), is
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Figure 3.6: Cascade of hadrons produced in jet models.

constructed such that the total probability of emitting a hadron (summed over

all possible hadron types h′ that the quark q can emit in the elementary splitting

process) is one:

d̂hq (z) =
dhq (z)∑

h′

∫ 1

0

dz dh
′

q (z)

. (3.71)

The elementary fragmentation functions only describe the probability for frag-

mentation to occur once. In the NJL-jet model we require the possibility that the

fragmenting quark produces a cascade of hadrons as a result of multiple fragmen-

tations within a jet. Field and Feynman [69] describe such a cascade of hadrons

through fragmentation within their quark jet model, which is referred to as the

Field-Feynman quark-jet model (FFQJM). The jet process producing a cascade

within these models is shown diagrammatically in Fig. 3.6, where an incoming

quark q fragments in to a remnant quark Q and a hadron of type qQ̄, followed by

further fragmentations of the remnant quark to other hadrons (QQ̄′, Q′Q̄′′, etc)

and corresponding remnant quarks (Q′, Q′′, etc). The produced hadrons receive

a light-cone momentum fraction ηi of the fragmenting quark’s momentum and

the remnant quarks receive light-cone momentum fractions 1−∑i ηi, where the

subscript i corresponds to the emission step at which they are produced. For a

detected hadron h, the total fragmentation function (Dh
q (z)) for the jet produced

by a quark q can be written as the sum of the renormalized elementary fragmenta-

tion function and an integral term. The integral term describes the contribution

to the total fragmentation function from the remnant quark fragmentations that

occur when the detected hadron is not produced at the first emission step (first
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green circle in Fig. 3.6). It is the convolution of the elementary fragmentation

function for a remnant quark Q which is produced after the first hadron emis-

sion in the jet and is carrying a momentum fraction y of the original quark q,

with the total fragmentation function for the quark Q to the hadron h carrying

momentum fraction z. This results in a set of coupled integral equations for the

total fragmentation function written as

Dh
q (z) = d̂hq (z) +

∫ 1

z

dy d̂Qq

(
z

y

)
Dh
Q(y), (3.72)

which we discuss how to solve in Ref. [1].

The advantage of the NJL-jet model approach is that there is a single under-

lying effective quark model description at the microscopic level for both parton

distribution functions and fragmentation functions, with no fitted parameters to

fragmentation data. NJL-jet model calculations of pion fragmentation functions

were performed in Ref. [30]. The NJL-jet model was extended to include the

strange quark contributions and kaon fragmentation functions in Ref. [31]. Fur-

ther extensions of the model involved the inclusion of vector meson, nucleon and

antinucleon fragmentation channels [32], as well as the study of their transverse

momentum dependence [33] and Collins fragmentation functions [70–72]. The

dihadron fragmentation functions determined in Ref. [1], which are included as

part of this thesis, were obtained from the single hadron fragmentation functions

in Ref. [31], as the other extensions were being developed at the same time as

this work was being carried out, and so the determination of the DFFs with these

extensions is considered a future direction of this research.
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Chapter 4

Portfolio of Publications

In this chapter of the thesis we include the three papers discussed in Chapter

1. All three papers were accepted to reputable journals within the field. Each

paper is prefaced with a Statement of Authorship, signed by the authors, which

identifies the contributions made by the author in the process of producing the

paper, including the calculations. We document some minor errata to the papers

in Appendix .6.
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4.1 Calculating dihadron fragmentation

functions in the Nambu–Jona-Lasinio–jet

model
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Calculating dihadron fragmentation functions in the Nambu–Jona-Lasinio–jet model
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The Nambu–Jona-Lasinio–jet model provides a framework for calculating fragmentation functions

without the introduction of ad hoc parameters. We develop the Nambu–Jona-Lasinio–jet model to

investigate dihadron fragmentation functions (DFFs) of the form Dh1 ;h2
q ðz1; z2Þ. Here we studied DFFs

for q ! f�þ��g, f�þK�g and fKþK�g with q ¼ u, d, s. The driving terms, which represent the

probability of one of the hadrons being emitted in the first emission step of the quark-jet hadronization

picture, dominate the solutions of the DFFs where either z1 or z2 is large, and z1 (z2) is the light-cone

momentum fraction of the emitted hadron, h1 (h2). The higher order terms, which represent the

probability of neither of the hadrons being emitted in the first emission step of the quark-jet, become

more significant as z1 (z2) is lowered. Finally, we present a sample result for QCD evolution of DFFs, that

significantly modify the model solutions when evolved to typical experimental scale of 4 GeV2.

DOI: 10.1103/PhysRevD.85.114049 PACS numbers: 13.87.Fh, 13.60.Le, 13.60.Hb, 12.39.Ki

I. INTRODUCTION

Deep inelastic scattering (DIS) has proven to be an
invaluable source of information about the structure of
the nucleon [1]. Initially it provided critical information
on the relative distribution of momentum between valence
and sea quarks and the gluons. As the experimental capa-
bilities have grown so have our ambitions and over the past
decade semi-inclusive deep-inelastic scattering (SIDIS)
has helped (along with Drell-Yan) to expand our knowl-
edge of quark flavor structure [2–10]. With several new
experimental facilities with 100% duty factor under con-
struction, SIDIS will become even more important. For
example, we may finally be able to pin down the elusive
s� �s asymmetry [8,11–13]. Another area of great current
excitement concerns the distribution of the spin of the
proton [14–34]. There polarized SIDIS is potentially ex-
tremely valuable through the study of TMDs [35–44],
which will complement work on GPDs [18,45–50].

For these studies to achieve their full potential it is vital
that we develop the deepest understanding of the fragmen-
tation functions [51], especially their flavor dependence,
and ultimately their dependence on spin and transverse
momentum. Fragmentation functions are an important
theoretical tool in the investigation of scattering reactions,
for example in the separation of the flavor dependence of
parton distribution functions (PDFs). Experimental extrac-
tions of fragmentation functions from deep-inelastic scat-
tering data [52,53] have increased theoretical activity in
this area. Yet the phenomenological extraction of even
favored fragmentation functions suffers from significant
uncertainty while the situation for the unfavored is worse.
This in turn affects the systematic errors associated with
the extraction of the flavor dependence of parton distribu-

tion functions through SIDIS. These considerations have
led us to develop and study the Nambu–Jona-Lasinio
(NJL)-jet model [54–57]. This model builds on the field-
Feynman quark-jet model (FFQJM) [58], by using an
effective chiral quark model to provide a framework in
which calculations of both quark distribution and fragmen-
tation functions can be performed without introducing
ad hoc parameters. Pion fragmentation functions in the
NJL-jet model were calculated in Ref. [54]. The NJL-jet
model was then extended to include strange quark contri-
butions and kaon fragmentation functions were obtained
[55]. Further extensions of the model are the inclusion of
vector meson, nucleon and antinucleon fragmentation
channels [56], and the inclusion of transverse momentum
dependence [57].
Dihadron fragmentation functions (DFFs) represent the

probability of producing two hadrons in the decay chain of
a fragmenting quark. Some recent work in the area of DFFs
include Refs. [59,60]. In Ref. [59], parameters for a spec-
tator model are fitted to output from the PYTHIA event
generator [61] tuned for HERMES [62] for dihadron frag-
mentation functions with a dependence on the sum of the
light-cone momentum fractions of the two produced had-
rons and their invariant mass squared. DFFs for large
invariant mass are studied in Ref. [60]. The dihadron frag-
mentation functions’ evolution equations are derived in
Ref. [63] from factorization of the cross section for the

production of two hadrons in eþe� annihilation in the MS
factorization scheme. Evolution equations for nonsinglet
quark DFFs are studied in Ref. [64], while the singlet quark
and gluon DFF evolution equations are studied in Ref. [65].
In Refs. [64,65] the ratio of the dihadron and single hadron
fragmentation functions are examined, as this ratio is useful
when considering experimental measurements. The choice
of initial conditions is studied in Ref. [66], primarily by
considering the two-body correlation function.*http://www.physics.adelaide.edu.au/cssm
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Depending on the polarization of the fragmenting
quark, special types of DFFs known as interference
fragmentation functions (IFFs) can be constructed. The
chiral-odd IFFs can be related to transversity [67–71].
Transversity is one area of current interest that requires
knowledge of the fragmentation functions of quarks
[29]. Out of the three leading-twist distribution func-
tions that describe the quark structure of hadrons, it is
the least well known, the other two being the unpolar-
ized and helicity distributions. Recent work [72–74]
suggests that DFFs may be useful in extracting trans-
versity distributions by considering the SIDIS produc-
tion of two hadrons with small invariant mass. Though
transversity will not be the focus of this paper, it is
presented as one possible motivation for further inves-
tigation into DFFs.

In this work we extend the latest version of the NJL-jet
model, presented in Refs. [55,56], to investigate dihadron
fragmentation functions. In Sec. II we present a summary
of fragmentation functions in the NJL-jet model, as set out
in the aforementioned papers, with a focus on those parts
that are relevant to understanding the dihadron fragmenta-
tion functions. Section III outlines the extension of the
NJL-jet model to be used in investigating DFFs, while
results at the model scale for the DFFs are presented in
Sec. IV. In Sec. V we briefly discuss the QCD evolution

equations for DFFs and present sample evolution results
for our model.

II. QUARK FRAGMENTATION FUNCTIONS

This section provides a quick overview of the calcula-
tion of the quark fragmentation functions in the NJL-jet
model [54–56], focusing on the aspects important to
obtaining dihadron fragmentation functions within the
model. Here we employ the SUð3Þ NJL effective quark
model [75–79] using light-cone (LC) coordinates [55]. In
the NJL model we include only the four-point quark inter-
action in the Lagrangian, with up, down, and strange
quarks, and no additional free parameters. We employ
Lepage-Brodsky (LB) ‘‘invariant mass’’ cutoff regulariza-
tion for the loop integrals (see Ref. [55] for a detailed
description as applied to the NJL-jet model).
The quark fragmentation function Dh

qðzÞ is the probabil-
ity for a quark of type q to emit a hadron of type h carrying
fraction z of its light-cone momentum h (here meson
m ¼ q �Q). We denote the elementary quark fragmentation
function, corresponding to the situation where the detected
hadron is the only emitted hadron, by dhqðzÞ. The corre-

sponding cut diagram for the elementary quark frag-
mentation function is shown in Fig. 1. The elementary
fragmentation function depicted in Fig. 1 can be written as

dmq ðzÞ ¼ Nc

Cm
q

2
g2mqQ

z

2

Z d4k

ð2�Þ4 Tr½S1ðkÞ�þS1ðkÞ�5ðk=� p=þM2Þ�5� � �ðk� � p�=zÞ2��ððp� kÞ2 �M2
2Þ

¼ Cm
q

2
g2mqQz

Z d2p?
ð2�Þ3

p2
? þ ððz� 1ÞM1 þM2Þ2

ðp2
? þ zðz� 1ÞM2

1 þ zM2
2 þ ð1� zÞm2

mÞ2
; (1)

whereCm
q is the corresponding flavor factor and gmqQ is the

quark-meson coupling. The massesM1,M2 andmm are the
masses of the fragmenting quark, the remnant quark and
the produced hadron (here the hadron is a meson),
respectively.

If a sharp cutoff in the transverse momentum, P2
?, is

assumed, the integration in Eq. (1) can be evaluated
analytically [Eq. (2)].

dmq ðzÞ ¼
Cm
q

2

g2mqQ

8�2
z

�
A=B� 1

B=P2
? þ 1

þ lnð1þ P2
?=BÞ

�
; (2)

where

A � ððz� 1ÞM1 þM2Þ2; (3)

B � zðz� 1ÞM2
1 þ zM2

2 þ ð1� zÞm2
m: (4)

The Lepage-Brodsky ‘‘invariant mass’’ cutoff regulari-
zation method (Refs. [54,80] describe this when applied to
the NJL-jet model) is employed to regularize the loop
integrals. The loop integrals are regularized by setting a
cutoff on the invariant mass, M12, such that

M12 � �12 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

3 þm2
m

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

3 þM2
2

q
; (5)

where �12 is the maximum invariant mass. Here the
3-momentum cutoff, denoted by �3, is fixed by reproduc-
ing the value of the experimentally measured pion decay
constant. In Lepage-Brodsky regularization, P2

? is given by

P2
? ¼ zð1� zÞð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

3 þm2
m

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

3 þM2
2

q
Þ

� ð1� zÞm2
m � zM2

2: (6)

FIG. 1 (color online). Cut diagram for quark fragmentation
function. Solid lines represent quarks and the double dashed
lines a meson.
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The value of the 3-momentum cutoff used in this work,
�3 ¼ 0:67GeV, was obtained in Ref. [80] by choosing
the constituent light quark mass M ¼ 0:3GeV and using
pion decay f� ¼ 0:093. The corresponding constituent
strange quark mass, Ms ¼ 0:537GeV, was obtained by
reproducing the pion and kaon masses, m� ¼ 0:14GeV
and mK ¼ 0:495GeV. The calculated values of the quark-
meson couplings are g�qQ ¼ 3:15 and gKqQ ¼ 3:3876.

The elementary quark fragmentation function, inte-
grated over the light-cone momentum fraction z, represents
the total probability of a quark splitting into a hadron of a
given type plus another quark. In construction of the NJL-
jet model we are interested in processes where a hadron is
produced at each step. Thus we construct the renormalized

elementary fragmentation functions, d̂mq ðzÞ, such that the

total probability of emitting a hadron (summed over all
possible hadron types m0 that the quark q can emit in the
elementary splitting process) is one:

d̂ m
q ðzÞ ¼

dmq ðzÞP
m0
R
1
0 d

m0
q ðzÞ : (7)

In a quark-jet-model, the total fragmentation function,
Dm

q ðzÞ, is described by successive elementary splittings of a

quark into hadrons. This process is shown diagrammati-
cally in Fig. 2. The initial quark q fragments into a meson,
m ¼ q �Q, with light-cone momentum fraction z of the
initial quark’s momentum, and a quark, Q, with light-
cone momentum fraction 1� z. The emitted quarkQ frag-
ments as well, and the process repeats, forming a cascade
of hadrons. It is important to note that within the model the
emitted hadrons do not interact with the other hadrons
produced in the quark jet. An integral equation for the
quark cascade process shown in Fig. 2 was derived in the
quark-jet model of Ref. [58]. The integral equation for
the total fragmentation function is

Dm
q ðzÞ ¼ d̂mq ðzÞ þ

X
Q

Z 1

z

dy

y
d̂Qq ðzyÞD

m
QðyÞ; (8)

where d̂Qq ðzÞ ¼ d̂mq ð1� zÞjm¼q �Q.

The probabilistic interpretation of Eq. (8) can be clari-
fied by multiplying both sides by a factor of dz. The term
on the left-hand side is the probability for the quark q to
emit meson m with light-cone momentum fraction z. On
the right-hand side, the first term is the driving function,
which represents the probability of creating a meson m
carrying momentum fraction z to zþ dz from the first
emission step and the second term represents the probabil-

ity of creating the meson, m, further in the quark decay
chain. The above equation is solved by uniformly discretiz-
ing z and y in the interval ½0; 1� and approximating the
integrals as sums over these discrete values of z and y.

Then Dm
q ðzÞ and d̂mq ðzÞ can be expressed as vectors ~Dm

q and

~f of values at the discretization points of z; and the inte-
grand of the second term, without Dm

q ðyÞ, can be written

as a matrix g over the values of the discretization points of
z and y:

~Dm
q ¼ ~fþ g � ~Dm

q ðI � gÞ � ~Dm
q ¼ ~f ~Dm

q ¼ ðI � gÞ�1 ~f;

(9)

where I is the unit matrix.
Here it is important to use an appropriate number of

discretization points to avoid large numerical errors when
solving for Dm

q ðzÞ. The number of points used was

increased until there was sufficient convergence of the
solutions of the fragmentation functions. The resulting
solutions for the fragmentation functions of u, d and s
quarks to �þ and Kþ are presented in Ref. [56]. The
fragmentation functions of u, d and s quarks to �þ are
also shown here in Fig. 3, as well as the driving function of

the u to �þ, d̂�
þ

u , which is labeled as Df:u (the notation
Df:q will be adopted in Sec. IVA as well).

III. DIHADRON FRAGMENTATION FUNCTIONS

We now consider a semi-inclusive process in which two
hadrons are detected in the final state. This requires a new
fragmentation function, known as the dihadron fragmenta-
tion function, that describes the probability of this process.
DFFs may be useful in the extraction of transversity
distributions [72], which are the least well known of the
three leading-twist distribution functions that describe
the quark structure of hadrons, the other two being the
unpolarized and helicity distribution functions. We now
extend the NJL-jet model to describe the DFFs. Dihadron

q

h 1
(z

1
)

h 2
(z

2
)

FIG. 2 (color online). Quark cascade
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FIG. 3 (color online). Fragmentation functions of u (black
solid line), d (blue dashed line) and s (red dot-dashed line)
quarks to �þ as a function of the light-cone momentum fraction
z. Driving function of the u (purple dotted line) to �þ is labeled
as Df:u.
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fragmentation functions, Dh1;h2
q ðz1; z2Þ, correspond to the

probability of a quark q producing two hadrons, h1 and h2,
that carry its light-cone momentum fractions z1 and z2,
respectively. An illustration of how a quark cascade can
produce two observed hadrons, h1 and h2, in the NJL-jet
model is shown in Fig. 2.

The integral equation for the dihadron fragmentation

function Dh1;h2
q ðz1; z2Þ has been constructed by Field and

Feynman in the quark-jet model [Eqs. (2.43a)–(2.43d) of

Ref. [58]], which is shown in Eq. (10). Here d̂hqðzÞ and

d̂Qq ð�Þ are the elementary splitting functions of the quark q

to the corresponding hadron h and quark Q. On the left-
hand side of Eq. (10) is the term representing the proba-
bility for the quark q to emit hadrons h1 and h2 with light-
cone momentum fractions z1 and z2, respectively. The first
term on the right-hand side of Eq. (10) corresponds to the
probability of producing hadron h1 from the quark q at the
first step in the cascade, followed by hadron h2 produced
either directly afterwards or further down in the quark

decay chain, while the second term is similar to the first
one, except for h1 $ h2 . The third term corresponds to the
probability of having both h1 and h2 produced after the first
hadron emission.

Dh1;h2
q ðz1; z2Þ ¼ d̂h1q ðz1Þ

Dh2
q1ð z2

1�z1
Þ

1� z1
þ d̂h2q ðz2Þ

Dh1
q2ð z1

1�z2
Þ

1� z2

þX
Q

Z 1

z1þz2

d�

�2
d̂Qq ð�ÞDh1;h2

Q ðz1
�
;
z2
�
Þ;

(10)

q ! h1 þ q1; q ! h2 þ q2: (11)

In the integral term we perform a change of integration
variables to �1 ¼ z1=� and �2 ¼ z2=�, so that the argu-

ments ofDh1;h2
Q ð�1; �2Þ will correspond to �1 and �2 at grid

point values when uniformly discretized:

Z 1

z1þz2

d�

�2
d̂Qq ð�ÞDh1;h2

Q ðz1
�
;
z2
�
Þ ¼

Z z1
z1þz2

z1

d�1

Z z2
z1þz2

z2

d�2

Z 1

z1þz2

d�
�ð�1 � z1=�Þ

�

�ð�2 � z2=�Þ
�

d̂Qq ð�ÞDh1;h2
Q ð�1; �2Þ

¼
Z z1

z1þz2

z1

d�1

Z z2
z1þz2

z2

d�2

Z 1

z1þz2

d��ðz1 � �1�Þ�ðz2 � �2�Þd̂Qq ð�ÞDh1;h2
Q ð�1; �2Þ

¼
Z z1

z1þz2

z1

d�1

Z z2
z1þz2

z2

d�2�ðz2�1 � z1�2Þd̂Qq ðz1=�1ÞDh1;h2
Q ð�1; �2Þ (12)

Then the equation for the dihadron fragmentation functions takes the following form:

Dh1;h2
q ðz1; z2Þ ¼ d̂h1q ðz1Þ

Dh2
q1ð z2

1�z1
Þ

1� z1
þ d̂h2q ðz2Þ

Dh1
q2ð z1

1�z2
Þ

1� z2
þX

Q

Z z1
z1þz2

z1

d�1

Z z2
z1þz2

z2

d�2�ðz2�1 � z1�2Þd̂Qq ðz1=�1ÞDh1;h2
Q ð�1; �2Þ:

(13)

To solve the above equation for the dihadron fragmen-

tation function Dh1;h2
q ðz1; z2Þ, we discretize z1, z2, �1, and

�2 uniformly in the interval ½0; 1� and approximate the
integrals as sums over the discretized values of these
variables. The fragmentation functions are written in ma-
trix form, where the elements of the matrices are their
values at the corresponding uniformly discrete values of
the arguments. We used Mathematica to solve for both the
single hadron and dihadron fragmentation functions. The
number of discretization points used for the single hadron
fragmentation functions was 500, while the number of the
discretization points afforded for the dihadron fragmenta-
tion functions was 200. These values for the numbers of
discretization points produced convergence of the solu-
tions within typically 5%, while allowing for a reasonable
computational time and computer memory size required by
the problem. Several techniques were used to lower
the memory use of the program, including the use of the
sparse arrays in Mathematica. To calculate the third term of

Eq. (13), the integrals over �1 were converted to a sum
over its uniformly discrete values. The delta function was
used to eliminate the integration over �2. The values of �2

that are selected by the delta function may not match
any of its uniformly discretized values. To account for
this, the values of the DFFs at the selected �2 were obtained
using linear interpolation from neighboring discrete
values.
The advantage of the approach presented here is that

there is a single underlying effective quark model descrip-
tion at the microscopic level for both parton distribution
functions and fragmentation functions, with no fitted pa-
rameters to fragmentation data. Moreover, recent develop-
ments of the model for the single quark fragmentations
allow us to extend the model using Monte Carlo techniques
to describe the production of hadronic resonances and the
inclusion of transverse momenta [56,57]. In the future, this
and other extensions of the model can also be incorporated
for the DFFs.
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IV. RESULTS

In this section we investigate various features of the
DFFs obtained as solutions of Eq. (13). Section IVA in-
vestigates the contribution of the integral term versus
that of the driving term to the solution of DFF. The impact

of the inclusion of the strange quark on D�þ��
u and D�þ��

u

is studied in Sec. IVB. In Sec. IVC, we consider

D�þK�
q ðz1; z2Þ and fix either z1 or z2, to study the depen-

dence of this DFF on each of the variables.

A. Contribution of the integral term

In Eq. (13), the sum of the first two terms is considered
to be the driving function of the dihadron fragmentation
function, and they describe the probability of emitting one
of the detected hadrons in the first emission step. The last
term in Eq. (13) corresponds to the probability of emitting
both detected hadrons after the emission of a hadron in
the first step. We now consider the contribution of this
last term to the solution for DFF by comparing them
with the corresponding driving functions for three
combinations of observed pions and kaons: �þ��,
�þK� and KþK�.

The DFFs for the produced hadrons �þ��, �þK� and
KþK� as functions of z2 with z1 ¼ 0:5 are shown in Fig. 4.
The plots in the figures show that the favored DFFs, where
the initial quark can produce either of the detected hadrons
from the initial quark, are almost equal to the driving
function, with the integral term giving only a very small
contribution. The unfavored DFFs, where neither of the
hadrons can be directly produced by the initial quark, are
generated entirely by the integral term.

In Figs. 4 and 5, the solution of the DFF for the up quark
is shown by the orange circle points and the driving func-
tion is shown as a solid gray line. The green diamond
points and dotted black line show the DFF and the driving
function for the down quark, respectively. The DFF and the
driving function for the strange quark are shown by the
blue square points and the dot-dashed red line, respec-
tively. In each of the figures, the number in the brackets
in the corresponding legend indicate the scaling factor used
in depicting the curve on the plot. This notation for the
scaling factor is also used in Sec. IVB and Sec. IVC.

In Fig. 5, the results for the DFFs and driving functions
for the �þ��, �þK� and KþK� are presented for the
fixed value of z1 ¼ 0:1. Here the integral term contribution
to the up quark DFFs become visible as the value of z1 is
lowered because the driving function’s contribution to the
DFF becomes less significant. The driving function’s
contribution for the down (! �þ��) and strange quark
(! �þK� and KþK�) DFFs are still very dominant, so
there is no noticeable contribution from the integral term
here. It is worth noting that the integral term contributions
to both favored and unfavored DFFs are of the same
magnitude, but the contributions to the favored DFFs are

only noticeable when the driving function is not dominat-
ing the solution. We note also that the integral equations of

D�þ��
u and D�þ��

d are symmetric in z1 $ z2, such that the

integral equation of q ¼ u for fixed z1 equals the integral

FIG. 4 (color online). Dihadron fragmentation functions for
z1 ¼ 0:5 for (a) h1 ¼ �þ; h2 ¼ ��, (b) h1 ¼ �þ; h2 ¼ K� and
(c) h1 ¼ Kþ; h2 ¼ K�. The DFFs and driving functions of the
up, down and strange quarks are shown by the orange circle
points and solid gray line, green diamond points and dotted black
line, and the blue square points and the dot-dashed red line,
respectively. Driving functions for fragmenting quark q are
also labeled in the legend as Df:q. The number in the brackets
in the legend indicates the scaling factor used in depicting the
curve
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equation of q ¼ d for fixed z2 (D�þ��
u ðz1; z2Þ ¼

D�þ��
d ðz2; z1Þ). In Sec. IVC, we will use the same fixed

values for z1 and z2 when examining D�þK�
q , as this flavor

symmetry is absent there.

B. Impact of including the strange quark on the D�þ��
q

We now study the impact of the inclusion of the strange

quark on D�þ��
u and D�þ��

d . In Eq. (13) the integral term

contains a sum over Q that runs over the flavors of the
quarks considered in the model, thus the inclusion of the
strange quark couples the DFFs for the u and d quarks to
those of the s quark. Also, the inclusion of the strange
quark affects the single hadron fragmentations of the
driving terms, as in their respective integral equations
there is a sum over Q as well [Eq. (8)]. This potentially
can have a large effect, as in Sec. IVA it was shown that the
driving functions give most of the contribution to the
favored DFFs.

The solution of D�þ��
q for z1 fixed at 0:1 and 0:5 are

shown in Fig. 6. Here, the dashed blue line and the red
dot-dashed line represent the results for up quark DFF
with and without the strange quark [denoted by (s) and

FIG. 5 (color online). Dihadron fragmentation functions for
z1 ¼ 0:1 for (a) h1 ¼ �þ; h2 ¼ ��, (b) h1 ¼ �þ; h2 ¼ K� and
(c) h1 ¼ Kþ; h2 ¼ K�. The DFFs and driving functions of the
up, down and strange quarks are shown by the orange circle
points and solid gray line, green diamond points and dotted black
line, and the blue square points and the dot-dashed red line,
respectively. Driving functions for fragmenting quark q are also
labeled in the legend as Df:q. The number in the brackets in the
legend indicates the scaling factor used in depicting the curve.

FIG. 6 (color online). Comparison of strange quark contribu-
tion of �þ�� dihadron fragmentation functions for (a) z1 ¼ 0:1
and (b) z1 ¼ 0:5. The dashed blue line and the red dot-dashed
line represent the results for up quark DFF with and without the
strange quark [denoted by (s) and (no s) in the captions],
respectively. Similarly, the purple dotted line and the black solid
line represent the results for the down quark DFF with and
without the strange quark, respectively. The number in the
brackets in the legend indicates the scaling factor used in
depicting the curve.
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(no s) in the captions], respectively. Similarly, the purple
dotted line and the black solid line represent the results for
the down quark DFF with and without the strange quark,
respectively.

The shapes of the dihadron fragmentation functions
remain the same for both the u and d quark DFFs, with
the down quark DFF being the larger in magnitude com-
pared to the up quark DFF for low z1 and vice versa when
z1 is increased. The main change is the considerable re-
duction in the magnitude of DFFs when the strange quark
is included, caused by the availability of the kaon emission
channels. Thus the inclusion of the strange quark in our
model proves to be very important in describing the light
quark DFFs.

C. Study of D�þK�
q

In this section, we examine the plots of D�þK�
q , where

either z1 or z2 is fixed. These particular DFFs were chosen
since q ! �þK� is a favored fragmentation channel to
one of the hadrons both for a light and a strange quark q.
This produces more interesting results to examine than if

we had chosen D�þ��
q , as those DFFs are symmetric in

q ¼ u and q ¼ d; thus the DFF for q ¼ u at fixed z1 is the
same as that for the DFF for q ¼ d at fixed z2, etc. The
results for fixed values of z1 and z2 are shown on the plots
in Figs. 7 and 8. The up quark DFFs are represented by
dotted red lines, while the down quark DFFs are repre-
sented by dashed blue lines and the strange quark DFFs are
represented by solid black lines.
We first examine the DFFs for z1 ¼ 0:1 [Fig. 7(a)] and

z2 ¼ 0:1 [Fig. 7(b)]. Since the hadron corresponding to the
fixed light-cone momentum fraction only has a small
amount of the fragmenting quark’s momentum, most of
the momentum is attributed to the favored fragmentation
channel of the other hadron. For Figs. 7(a) and 7(b), this
corresponds to the strange and up quark’s fragmentations
to the K� and �þ, respectively. The down quark is unfa-
vored for both hadrons and thus receives very little con-
tribution to its DFF in both plots.
After increasing the fixed value of z1 [Fig. 8(a)] and z2

[Fig. 8(b)] to 0:5, the strange quark DFFs are the largest for
both. The strange quark is the only initial quark that can
produce both hadrons in the first two steps of the cascade,
whereas both the up and down quarks require multiple

FIG. 8 (color online). �þK� dihadron fragmentation func-
tions for (a) z1 ¼ 0:5 and (b) z2 ¼ 0:5. The up, down and strange
quark DFFs are represented by dotted red lines, dashed blue lines
and solid black lines, respectively. The number in the brackets in
the legend indicates the scaling factor used in depicting the
curve.

FIG. 7 (color online). �þK� dihadron fragmentation func-
tions for (a) z1 ¼ 0:1 and (b) z2 ¼ 0:1. The up, down and strange
quark DFFs are represented by dotted red lines, dashed blue lines
and solid black lines, respectively. The number in the brackets in
the legend indicates the scaling factor used in depicting the
curve.
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decays to produce both hadrons. The up quark’s solutions
are the second largest since it can produce the�þ hadron in
the first emission step, while the down quark’s solutions are
low for both plots, as it can’t produce either of the hadrons
in the first emission step.

V. EVOLUTION OF THE DFFS

The results for the dihadron fragmentation functions in
the NJL-jet model presented in Sec. IV are all at the
model scale of 0:2GeV2. The model scale was obtained
in Ref. [55] such that after NLO evolution the model-
calculated u quark valence distribution function in
the �þ matched those experimentally measured in
Refs. [81,82]. To compare our results to experiment or
results from other models, we need to evolve the dihadron

fragmentation functions to an appropriate momentum
scale. In Ref. [63], the dihadron fragmentation func-
tions’ evolution equations are derived from factorization
of the cross-section for the production of two hadrons

in eþe� annihilation in the MS factorization scheme.
Using JetCalculus, Ref. [83] deduces the evolution
equations for DFFs with an explicit dependence on
the invariant mass of the hadron pairs, Mh. The DFFs
with a dependence on the invariant mass are addressed
as extended dihadron fragmentation functions (extDFF).
The extDFFs are important as they will relate to ex-
perimental results that include the dependence on in-
variant mass spectra.
The leading order (LO) evolution equation for DFF from

Ref. [83] is presented in Eq. (14).

d

dlnQ2 D
h1h2
i ðz1; z2; Q2Þ ¼ �sðQ2Þ

2�
�

Z 1

z1þz2

du

u2
Dh1h2

j ðz1
u
;
z2
u
;Q2ÞPjiðuÞ þ �sðQ2Þ

2�

�
Z 1�z2

z1

du

uð1� uÞD
h1
j ðz1

u
;Q2ÞDh2

k ð z2
1� u

;Q2ÞP̂i
jkðuÞ; (14)

where Q2 is the momentum scale, �sðQ2Þ is the strong
coupling at that momentum scale.

On the left-hand side of Eq. (14), the rate that the DFFs
change with respect to lnQ2 is represented. The first term
on the right-hand side represents the effect of the parton i
emitting a parton j with light-cone momentum fraction u,
with probability PjiðuÞ that it produces the two detected

hadrons, h1 and h2, while the second term represents the
effect of two partons, j and k, being emitted by iwith light-
cone momentum fractions u and 1� u, respectively, with

probability P̂i
jkðuÞ; and each of these partons producing one

of the detected hadrons.
We developed a computer code to perform the QCD

evolution of the dihadron fragmentation functions accord-
ing to Eq. (14), where the DFFs were separated into non-
singlet, singlet and gluon dihadron fragmentation
functions. The code is based on the single hadron frag-
mentation function evolution program by the authors of
Refs. [84–87]. The details on the evolution method em-
ployed, along with the full set of the results, will be
presented in our upcoming paper [88]. As an example,
here we present the results for LO evolution of

D�þ��
u ðz1; z2Þ from our model scale of 0:2GeV2 to the

typical experimental scale of 4GeV2. The results for the
evolved DFFs are presented in Figs. 9(a) and 9(b) corre-
sponding to the solutions at z1 ¼ 0:5 and z2 ¼ 0:5, respec-
tively. The dotted red line represents the solution at the
model scale (0:2GeV2) and the solid black line represents
the solution at the final scale Q2 ¼ 4GeV2. Both Figs. 9(a)
and 9(b) show a shift in the peak of the model results
towards the lower z region after the evolution, similar to
the single hadron evolution.

VI. CONCLUSIONS AND OUTLOOKS

In this paper we have presented results for dihadron
fragmentation functions calculated within the NJL-jet
model. DFFs were obtained as numerical solutions of the
corresponding integral equations derived using the quark-
jet description of the hadronization process. In Sec. IVA,
we showed that the integral term, that represents the effects
of initial undetected hadron emission, has a very small
effect on the DFFs, except when the driving function was
zero or when z1 was low. For driving functions equal to
zero, the corresponding DFFs were generated entirely by
the integral term and when z1 was lowered to 0:1, the
relative contribution of the driving function to the DFF
was also lowered for most values of z2. For the u ! �þ��

DFF, the peak value of z2D
h1h2
q ðz1; z2Þ at z1 ¼ 0:5 was

almost ten times the peak value at z1 ¼ 0:1. Because of
the lower value of the DFF at low z1, the integral term
contribution becomes a more significant part of the DFF,
reducing the relative contribution of the driving function.
This effect occurs when the fragmenting quark is the
favored quark for the hadron that receives a small light-
cone momentum fraction, but is unfavored for the hadron
that has access to most of the light-cone momentum of the
fragmenting quark. One example where this effect is par-
ticularly visible is in Fig. 5(c), where the u ! KþK� DFF
is mostly composed of the integral term at low z2 and the
driving function at higher z2. In all three results with low z1
(Fig. 5), the effect is seen for the up quark DFF, which is
the favored quark for the hadrons h1 ¼ �þ and h1 ¼ Kþ,
but is unfavored for hadrons h2 ¼ �� and h2 ¼ K�.
In Sec. IVB we showed that the strange quark’s inclu-

sion has a significant impact on the DFFs. The main change
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to the DFFs when the strange quark is included is a con-
siderable reduction in magnitude, similar to the single
hadron fragmentation functions [55], caused by the avail-
ability of the kaon emission channels. The comparison
plots for the �þ�� dihadron fragmentation functions
were shown in Fig. 6, where the results are similar for
the �þ�þ and �þ�0 DFFs.

We examined D�þK�
q ðz1; z2Þ, where either z1 or z2 is

fixed (Figs. 7 and 8), in Sec. IVC. The �þK� DFFs were
chosen as they are favored both for a light quark and a
strange quark. At low values of z1 and z2, the strange quark

and up quark DFFs, respectively, are dominant. The
strange quark DFF is dominant for low z1 because the
�þ has a small fraction of the light-cone momentum of
the initial quark, leaving most of the initial momentum
available to the strange quark’s favored fragmentation to
K�. Similarly, the up quark is dominant for low z2 because
the K� has a small light-cone momentum fraction, allow-
ing the �þ to access most of the momentum for its favored
fragmentation. Increasing the fixed value of either z1 or z2
to 0:5 in the �þK� DFF shows that the strange quark DFF
is dominant. This can be easily interpreted within the
model, as only the strange quark can produce both the
K� then the �þ in the first two steps of the decay chain,
whereas the up and down quarks both require at least three
steps in the decay chain to produce both hadrons.
Finally, in Sec. V we discuss the QCD evolution of the

dihadron fragmentation functions, which is essential in
comparing our model calculations with experimental ex-
tractions, as well as Monte Carlo simulations or other
analytical results. The evolution equations are presented
and the method for the numerical solutions is briefly dis-

cussed. As an example, the results for D�þ��
u presented in

Fig. 9, show the significant modification of the DFFs with
evolution. The details for solving the evolution equations
and the complete set of results for evolved DFFs will be
presented in our upcoming paper [88]. A comparison be-
tween our results and others will also be presented in that
work.
Future work to extend the NJL-jet model for DFFs

include the inclusion of hadronic resonances and their
decays, as well as the inclusion of the transverse momen-
tum dependence. These have been accomplished in the
single hadron fragmentations [56,57] using a Monte
Carlo framework. These extensions for the DFFs are cer-
tainly possible, but lay beyond the scope of the current
work and are left for the future.
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I. INTRODUCTION

Experimental processes such as deep-inelastic scattering,
semi-inclusive deep-inelastic scattering (SIDIS) and Drell-
Yan have provided invaluable information about the struc-
ture of the nucleon [1–11]. With several new experimental
facilities with 100% duty factor under construction, SIDIS
will play an increasingly important role in the develop-
ment of our theoretical and experimental understanding of
the structure of the nucleon. The elusive s-�s asymmetry
[12–15] is one area of interest that may finally be pinned
down through the results obtained at these new facilities.
The distribution of the spin of the proton [16–36] is an area
of current excitement where polarized SIDIS is potentially
extremely valuable through the study of transverse momen-
tum dependent parton distribution functions [37–47], which
will complement work on generalized parton distributions
[20,48–53].

To allow these studies to fulfill their potential, we must
develop a deep understanding of the fragmentation functions
[54], particularly their flavor, spin and transverse momentum
dependence. Fragmentation functions appear in certain scat-
tering reactions, for example, in SIDIS experiments [55,56]
and in eþe� annihilation reactions [57–61]. Experiments
are planned to use SIDIS to probe the flavor dependence of
the parton distribution functions, for example, and therefore
understanding fragmentation functions has become very
important. Phenomenological extraction of fragmentation
functions suffers from significant uncertainty, even for
favored fragmentation functions, which effects the system-
atic errors associated with extracting the flavor dependence
of parton distribution functions through SIDIS. The increas-
ing interest in SIDIS experiments led to the development
of the Nambu–Jona-Lasinio (NJL)-jet model [62–65], which
builds on the Field-Feynman quark-jet model [66], by using
an effective chiral quark model to provide a unified frame-
work in which calculations of both quark distribution and
fragmentation functions can be performed. NJL-jet model
calculations of pion fragmentation functions were obtained

in Ref. [62]. The NJL-jet model was extended to include
strange quark contributions and kaon fragmentation func-
tions were calculated in Ref. [63]. Further extensions of the
model involved the inclusion of vector meson, nucleon and
antinucleon fragmentation channels [64], as well as the study
of their transverse momentum dependence [65] and Collins
fragmentation functions [67–69].
The probability of a fragmenting quark to produce two

hadrons is represented by dihadron fragmentation functions
(DFFs). DFFs have been studied recently in Refs. [70,71]
in order to understand their dependence on invariant mass
of the two produced hadrons. The focus of Ref. [70] was
to fit parameters for a spectator model to output from the
PYTHIA event generator [72] tuned for HERMES experi-
ments [73] for DFFs with a dependence on the sum of
the light-cone momentum fractions of the two produced
hadrons and their invariant mass squared. Reference [71]
focused on studying DFFs for large invariant mass. DFFs
with no invariant mass dependence were studied in the
NJL-jet model in Ref. [74] at the model momentum scale
of Q2

0 ¼ 0:2 GeV2. In order to compare the results with

experimental data, we need to evolve the DFFs up to a
typical experimental scale. The evolution equations for the
DFFs are derived in Ref. [58] from factorization of the cross
section for the production of two hadrons in eþe� annihi-

lation in the MS factorization scheme. In Ref. [75], the
nonsinglet quark evolution equations for DFFs were studied,
while Ref. [76] focused on the QCD evolution equations
for singlet quark and gluon DFFs. The ratio of the dihadron
and single hadron fragmentation functions, which is useful
when considering experimental measurements, was also
examined in Refs. [75,76]. Initial conditions for DFFs for
different pairs of hadrons and different values of z1 and z2
are investigated in Ref. [77], with a focus on the correlation
function Rcor obtained in the Field-Feynman quark-jet
model [66].
An area of current interest in which the dihadron frag-

mentation functions of quarks may be useful are trans-
versity distributions [31]. Transversity distributions are
one of the three leading-twist distribution functions that
do not vanish when integrated over the transverse*http://www.physics.adelaide.edu.au/cssm
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momentum. They describe the quark structure of the nu-
cleon (the other two being unpolarized and helicity quark
distribution functions) and these functions enter into asym-
metries with chiral-odd versions of a special type of DFF
known as interference fragmentation functions [78–82].
Interference fragmentation functions are DFFs with a
dependence on the polarization of the fragmenting quark.
In Refs. [83–85], it was suggested that DFFs may be useful
in extracting transversity distributions by considering the
SIDIS production of two hadrons with small invariant
mass. Transversity distribution functions are not a focus
of this paper, but are presented as motivation for further
investigation into DFFs.

This work focuses on performing QCD evolution of
the DFFs from the NJL-jet model momentum scale of
Q2

0 ¼ 0:2 GeV2 to a typical experimental momentum scale

of Q2 ¼ 4 GeV2. In Sec. II we present a brief summary of
fragmentation function equations from which the model
scale solutions were obtained and used as input for the
evolution equations of the DFFs. Section III describes the
method for solving the evolution equations for single had-
ron fragmentation functions (SFFs), which are needed for
the evolution of the DFFs. It also serves as a simple version
of the method used to solve the DFF evolution equations,
while the method for solving the evolution equations for
the DFFs is described in Sec. IV. A comparison of the
model scale and evolved scale DFFs is presented in Sec. V.
Section VI shows how the evolution code works on data
from Ref. [76] as well as comparing our solutions to that
data. Our data is evolved to a range of values of Q2 in this
section to display how the up quark and gluon DFFs
change for larger values of Q2.

II. SINGLE HADRON AND DIHADRON
FRAGMENTATION FUNCTIONS FROM

THE NJL-JET MODEL

In Ref. [74], integral equations for the single hadron and
dihadron fragmentation functions from the NJL-jet model
are described, and the method employed to solve them at
the model scale of Q2

0 ¼ 0:2 GeV2 is presented. SFFs

appear in the cross section for SIDIS experiments and
thus play an important part in the theoretical understanding
of these experiments. In the NJL-jet model the SFFs,
Dh

qðzÞ, which correspond to the probability of producing

a hadron h with light-cone momentum fraction z from a
fragmenting quark q, are given by [62]

Dh
qðzÞ ¼ d̂hqðzÞ þ

X
Q

Z 1

z

dy

y
d̂Qq

�
z

y

�
Dh

QðyÞ: (1)

The first term on the right-hand side of Eq. (1) is the
renormalized elementary quark fragmentation function,
which corresponds to the process where the detected
hadron is the only emitted hadron. We refer to this term
as the driving function. The second term corresponds to the

probability of emitting a hadron after the first emission step
in the quark cascade and these terms have a sizable effect
at low values of z, while vanishing for higher z values.

To solve the second term we use d̂Qq ðzÞ ¼ d̂hqð1� zÞjh¼q �Q

to write all functions in terms of their relation to the
emitted hadron h.
Dihadron fragmentation functions are another important

tool in the theoretical understanding of the structure of
hadrons. In the NJL-jet model, the DFF are given by

Dh1;h2
q ðz1; z2Þ ¼ d̂h1q ðz1Þ

Dh2
q1ð z2

1�z1
Þ

1� z1
þ d̂h2q ðz2Þ

Dh1
q2ð z1

1�z2
Þ

1� z2

þX
Q

Z z1
z1þz2

z1

d�1

Z z2
z1þz2

z2

d�2�ðz2�1 � z1�2Þ

� d̂Qq ðz1=�1ÞDh1;h2
Q ð�1; �2Þ; (2)

where the first term corresponds to the probability of pro-
ducing hadron h1 from the quark q at the first emission step
in the cascade, followed by hadron h2 produced either
directly afterwards or further down in the quark decay
chain, while the second term is similar to the first one,
except for h1 $ h2. These two terms constitute the driving
function of the DFFs, similar to the first term in Eq. (1).
The third term on the right-hand side of Eq. (2) corresponds
to the probability of having both the detected hadrons

FIG. 1 (color online). �þ�� dihadron fragmentation function
for the u quark at the (a) model scale (Q2

0 ¼ 0:2 GeV2) and

(b) the evolved scale (Q2 ¼ 4 GeV2).
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produced after the first hadron emission. DFFs correspond
to the probability of producing two hadrons, h1 and h2, in
the decay chain of a fragmenting quark q, with light-cone
momentum fractions z1 and z2, respectively.

Results for the SFFs and DFFs from the NJL-jet model
at the model scale of Q2

0 ¼ 0:2 GeV2 are described in

detail in Ref. [74]. In this paper, they are used as the input
for the DFF evolution equations that will be discussed in
Secs. III and IV. In Fig. 1(a), we present a 3-dimensional

plot ofD�þ��
u ðz1; z2Þ, at the model scale, while in Fig. 1(b)

the result for the same DFF evolved to 4 GeV2 is shown.
These plots demonstrate the effect of evolution on the
DFFs, particularly where the functions achieve their peaks
with respect to z1 and z2.

III. EVOLUTION OF THE SFFS

To evolve the DFFs, we need to evolve the SFFs as well.
This section will focus on the evolution of the SFFs, and
will also serve as a simple introduction to the method used
to solve the DFF evolution equations. This procedure for
solving the SFF and DFF evolution equations can, of
course, be used for models other than the NJL-jet model.

The single hadron fragmentation function evolution
equations used in our calculations were based on those
presented in Ref. [86]. The evolution equations are written
in the form of nonsinglet quark, plus-type quark and gluon
fragmentation function equations. The plus-type quark and
gluon fragmentation functions are coupled and therefore
need to be solved simultaneously, whereas the nonsinglet
quark fragmentation functions are decoupled and can be
solved separately. The nonsinglet [Dh

q�i
ðz; Q2Þ] and plus-

type [Dh
qþi
ðz; Q2Þ] quark fragmentation functions are,

respectively, constructed from the combinations of SFFs,

Dh
q�i
ðz;Q2Þ ¼ Dh

qiðz; Q2Þ �Dh
�qi
ðz; Q2Þ

¼ Dh
qiðz; Q2Þ �D

�h
qiðz; Q2Þ;

(3)

and

Dh
qþi
ðz;Q2Þ ¼ Dh

qiðz; Q2Þ þDh
�qi
ðz; Q2Þ

¼ Dh
qiðz; Q2Þ þD

�h
qiðz; Q2Þ;

(4)

where qi is the fragmenting quark. These combinations,
rewritten using charge symmetry, allow for a simpler
method of solving the evolution equations.

We define the variable t as

t � � 2

�0

ln

�
�sðQ2Þ
�sðQ2

0Þ
�
; (5)

where

�sðQ2Þ ¼ 4�

,�
�0 ln

Q2

�2
QCD

�
(6)

is the leading-order strong coupling constant, �0 ¼
ð33� 2nfÞ=3 is the one-loop � function, nf is the number

of flavors and�QCD is the QCD scale parameter.1 We write

the evolution equations with respect to t rather than lnQ2 to
simplify the numerical calculation.
The QCD evolution equations for the SFFs allow us to

determine the SFFs at momentum scales that vary from the
scale at which they are originally defined. This is achieved
by calculating the rate of change of the SFF with respect to
the momentum scale. The nonsinglet, plus-type and gluon
leading-order (LO) evolution equations are, respectively,
given by

@

@t
Dh

q�i
ðz; tÞ ¼ X

j

Z 1

z

dy

y
PqjqiðyÞDh

q�j

�
z

y
; t

�
; (7)

@

@t
Dh

qþi
ðz; tÞ ¼

Z 1

z

dy

y

�X
j

PqjqiðyÞDh
qþj

�
z

y
; t

�

þ 2PgqðyÞDh
g

�
z

y
; t

��
; (8)

@

@t
Dh

gðz; tÞ ¼
Z 1

z

dy

y

�
PqgðyÞ

X
j

Dh
qþj

�
z

y
; t

�

þ PggðyÞDh
g

�
z

y
; t

��
: (9)

The left-hand sides of Eqs. (7)–(9) represent the rate of
change of the corresponding SFFs with respect to t. The
right-hand sides of these equations represent the effect that
a parton j (either a quark of flavor qj or a gluon g), that

emits a hadron h with light-cone momentum fraction z=y,
has on the evolution of the nonsinglet (q�i ), plus-type (qþi )
or gluon (g) SFFs, through the splitting functions PjiðyÞ
(obtained from Ref. [86]), where i is the parton for the
corresponding SFF on the left-hand side.
To solve Eqs. (7)–(9), we express the derivatives as finite

differences using

@fðtÞ
@t

� fðtjþ1Þ � fðtjÞ
�t

; (10)

where fðtÞ is the corresponding SFF. We divide the range
of interest for t into Nt steps of size �t.
The integrals on the right-hand side of the LO evolution

equations are converted into sums over logarithmically
discretized values of y (denoted by zl). The corresponding
equations for the nonsinglet, plus-type and gluon fragmen-
tation functions are, respectively, rearranged to obtain the
functions at the (kþ 1)th step in t such that

1In this work we take nf ¼ 3 and �QCD ¼ 0:25.
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Dh
q�i
ðzm; tkþ1Þ ¼ Dh

q�i
ðzm; tkÞ

þ �t
X
j

XNz

l¼m

�zl
zl

PqjqiðzlÞDh
q�j

�
zm
zl

; tk

�
;

(11)

Dh
qþi
ðzm; tkþ1Þ ¼ Dh

qþi
ðzm; tkÞ

þ �t
XNz

l¼m

�zl
zl

�X
j

PqjqiðzlÞDh
qþj

�
zm
zl

; tk

�

þ 2PgqðzlÞDh
g

�
zm
zl

; tk

��
; (12)

Dh
gðzm; tkþ1Þ ¼ Dh

gðzm; tkÞ

þ�t
XNz

l¼m

�zl
zl

�
PqgðzlÞ

X
j

Dh
qþj

�
zm
zl

; tk

�

þ PggðzlÞDh
g

�
zm
zl

; tk

��
: (13)

The first term on the right sides of Eqs. (11)–(13) are the
fragmentation functions at the (k)th step in t. The second
term on the right-hand side of each equation is the change
in the fragmentation function from the (k)th step to the
(kþ 1)th step in t. The SFF at Q2

0 are inserted as the input

at k ¼ 1, with the evolution to the next step, t2 ¼ t1 þ�t,
calculated using the previous result. This process is
repeated to obtain the SFF evolved to the chosen Q2 at
tNtþ1.

IV. EVOLUTION OF THE DFFS

The DFF evolution equations are derived from factori-
zation of the cross section for the production of two

hadrons in eþe� annihilation in the MS factorization
scheme in Ref. [58]. Using jet-calculus, Ref. [87] deduces
the evolution equations for DFFs with an explicit

dependence on the invariant mass of the hadron pairs,
Mh, which are addressed as extended dihadron fragmen-
tation functions. The latter are important as they relate to
experimental results that include the dependence on invari-
ant mass spectra. We concentrate on the DFF that have
been integrated over the invariant mass. The LO evolution
equation for DFFs, from Ref. [87], reads

d

d lnQ2
Dh1h2

i ðz1; z2; Q2Þ

¼ �sðQ2Þ
2�

Z 1

z1þz2

du

u2
Dh1h2

j

�
z1
u
;
z2
u
;Q2

�
PjiðuÞ

þ �sðQ2Þ
2�

Z 1�z2

z1

du

uð1� uÞD
h1
j

�
z1
u
;Q2

�

�Dh2
k

�
z2

1� u
;Q2

�
P̂i
kjðuÞ; (14)

where Q2 is the momentum scale, �sðQ2Þ is the strong
coupling constant at the corresponding momentum scale
and a sum over the repeated indices is implied. The rate at
which the DFFs change with respect to lnQ2 is represented
on the left-hand side of Eq. (14). The first term on the right-
hand side of the LO DFF evolution equation represents
the effect that a parton j fragmenting into two hadrons, h1
and h2, has on the fragmentation of parton i into the two
hadrons, through the splitting function PjiðuÞ. The second
term represents the effect of parton i splitting into two
partons, j and k, that fragment separately to produce h1 and
h2 with light-cone momentum fractions u and 1� u,

respectively, through the splitting function P̂i
kjðuÞ. For the

QCD evolution of the DFFs, both PjiðuÞ and P̂i
kjðuÞ were

obtained from Ref. [87].
In Eq. (14), the parton i can be either a quark, antiquark

or gluon. We choose to express the evolution equations for
the quark and gluon DFFs, respectively, written in terms
of t [Eq. (5)] as

d

dt
Dh1h2

qi ðz1; z2; tÞ ¼
Z 1

z1þz2

du

u2
Dh1h2

qj

�
z1
u
;
z2
u
; t

�
PqjqiðuÞ þ

Z 1�z2

z1

du

uð1� uÞD
h1
g

�
z1
u
; t

�
Dh2

qk

�
z2

1� u
; t

�
P̂qi
qkgðuÞ

þ
Z 1

z1þz2

du

u2
Dh1h2

g

�
z1
u
;
z2
u
; t

�
PgqiðuÞ þ

Z 1�z2

z1

du

uð1� uÞD
h1
qj

�
z1
u
; t

�
Dh2

g

�
z2

1� u
; t

�
P̂qi
gqjðuÞ; (15)

d

dt
Dh1h2

g ðz1; z2; tÞ ¼
Z 1

z1þz2

du

u2
Dh1h2

qj

�
z1
u
;
z2
u
; t

�
PqjgðuÞ þ

Z 1�z2

z1

du

uð1� uÞD
h1
qj

�
z1
u
; t

�
Dh2

�qj

�
z2

1� u
; t

�
P̂g

�qjqj
ðuÞ

þ
Z 1

z1þz2

du

u2
Dh1h2

g

�
z1
u
;
z2
u
; t

�
PggðuÞ þ

Z 1�z2

z1

du

uð1� uÞD
h1
g

�
z1
u
; t

�
Dh2

g

�
z2

1� u
; t

�
P̂g
ggðuÞ: (16)

To obtain nonsinglet [Dh1h2
q�i

ðz1; z2; tÞ] and plus-type [Dh1h2
qþi

ðz1; z2; tÞ] quark DFFs we use the combinations

Dh1h2
q�i

ðz1; z2; tÞ ¼ Dh1h2
qi ðz1; z2; tÞ �Dh1h2

�qi
ðz1; z2; tÞ ¼ Dh1h2

qi ðz1; z2; tÞ �D
�h1 �h2
qi ðz1; z2; tÞ; (17)

and
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Dh1h2
qþi

ðz1; z2; tÞ ¼ Dh1h2
qi ðz1; z2; tÞ þDh1h2

�qi
ðz1; z2; tÞ ¼ Dh1h2

qi ðz1; z2; tÞ þD
�h1 �h2
qi ðz1; z2; tÞ; (18)

respectively. The combination of terms on the second line of each equation has been rewritten using charge symmetry and
this is the form that is employed to solve the LO DFF evolution equations.

Using Eqs. (17) and (18), we write the evolution equations in terms of the nonsinglet quark, plus-type quark and gluon
DFFs as

d

dt
Dh1h2

q�i
ðz1; z2; tÞ ¼

X
j¼u;d;s

Z 1

z1þz2

du

u2
Dh1h2

q�j

�
z1
u
;
z2
u
; t

�
PqjqiðuÞ þ

X
k¼u;d;s

Z 1�z2

z1

du

uð1� uÞD
h1
g

�
z1
u
; t

�
Dh2

q�
k

�
z2

1� u
; t

�
P̂qi
qkgðuÞ

þ X
j¼u;d;s

Z 1�z2

z1

du

uð1� uÞD
h1
q�j

�
z1
u
; t

�
Dh2

g

�
z2

1� u
; t

�
P̂qi
gqjðuÞ; (19)

d

dt
Dh1h2

qþi
ðz1; z2; tÞ ¼

X
j¼u;d;s

Z 1

z1þz2

du

u2
Dh1h2

qþj

�
z1
u
;
z2
u
; t

�
PqjqiðuÞ þ 2

Z 1

z1þz2

du

u2
Dh1h2

g

�
z1
u
;
z2
u
; t

�
PgqiðuÞ

þ X
k¼u;d;s

Z 1�z2

z1

du

uð1� uÞD
h1
g

�
z1
u
; t

�
Dh2

qþ
k

�
z2

1� u
; t

�
P̂qi
qkgðuÞ

þ X
j¼u;d;s

Z 1�z2

z1

du

uð1� uÞD
h1
qþj

�
z1
u
; t

�
Dh2

g

�
z2

1� u
; t

�
P̂qi
gqjðuÞ; (20)

d

dt
Dh1h2

g ðz1; z2; tÞ ¼
X

j¼u;d;s; �u; �d;�s

Z 1

z1þz2

du

u2
Dh1h2

qj

�
z1
u
;
z2
u
; t

�
PqjgðuÞ þ

Z 1

z1þz2

du

u2
Dh1h2

g

�
z1
u
;
z2
u
; t

�
PggðuÞ

þ X
j¼u;d;s; �u; �d;�s

Z 1�z2

z1

du

uð1� uÞD
h1
qj

�
z1
u
; t

�
Dh2

�qj

�
z2

1� u
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�
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ðuÞ

þ
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du

uð1� uÞD
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g

�
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�
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1� u
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�
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¼ X
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Z 1
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du

u2

�
Dh1h2

qþj

�
z1
u
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u
; t

�
PqjgðuÞ

�
þ

Z 1

z1þz2

du

u2
Dh1h2

g

�
z1
u
;
z2
u
; t

�
PggðuÞ

þ X
j¼u;d;s; �u; �d;�s

Z 1�z2

z1

du

uð1� uÞD
h1
qj

�
z1
u
; t

�
Dh2

�qj

�
z2

1� u
; t

�
P̂g

�qjqj
ðuÞ

þ
Z 1�z2

z1

du

uð1� uÞD
h1
g

�
z1
u
; t

�
Dh2

g

�
z2

1� u
; t

�
P̂g
ggðuÞ: (21)

For clarity, we show the sums over the repeated indices
and use Eq. (21) to display how the combinations are
applied to simplify the equations. The nonsinglet quark
evolution equation is decoupled from the plus-type
quark and gluon DFFs and can be evolved separately
from them. Using Eq. (10) and converting integrals
into sums over logarithmically discretized values of u,
expressions for the DFFs evolved to the (kþ 1)th step
in t can be obtained, producing results analogous to
Eqs. (11)–(13).

V. RESULTS

QCD evolution equations are derived in the regime
where perturbative approximations are valid, that is where
the scaleQ � �QCD. The scale of the underlying model in

these calculations (Q2
0 ¼ 0:2 GeV2) is low, thus one needs

to be cautious when applying the evolution equations.
For that reason here we first present the results for model
SFFs for u ! �þ and u ! Kþ evolved to Q2 ¼ 4 GeV2.
We compare these results with empirical parametrizations
of experimental data to ensure a reasonable description.
Then we present the results comparing the model scale
DFFs with those evolved toQ2 ¼ 4 GeV2 for u ! �þ��,
u ! �þK� and q ! KþK�, where q ¼ u, d, s. The first

subsection explores the evolution of D�þ��
u by comparing

the model and evolved DFFs at particular values of z1 or z2,
while the second subsection focuses on favored and unfa-

vored hadron emission in the evolution of D�þK�
u . Finally,

the last subsection demonstrates the evolution of DKþK�
q

for q ¼ u, d or s.
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A. Q2 evolution of D�þ
u and DKþ

u

The results of the evolution of our model calculated
SFFs for up quark to �þ and Kþ to the scale Q2 ¼
4 GeV2 are shown in Fig. 2. In the plots the red solid
line represents the NJL-jet model calculated fragmentation
functions for (a) �þ and (b) Kþ evolved at the leading
order from the model scale of Q2

0 ¼ 0:2 GeV2 to scale of

Q2 ¼ 4 GeV2. The grey dashed lines with the grey bands
show the HKNS parametrizations with their uncertainties
taken from Ref. [55] and the dash-dotted lines represent the
DSS parametrizations of Ref. [56], both at the leading
order. From these plots it appears that the NJL-jet model
compares favorably to the empirical parametrizations
within their uncertainties. Thus we can proceed with the
evolution of our model DFFs.

B. Q2 evolution of D�þ��
u

We consider the DFF for an up quark fragmenting to �þ
and��. When the up quark fragments to�þ, for which it is
the favored emission channel, it produces a down quark,
which has the favored emission channel to ��. Since both
emissions are favored channels for the detected hadrons in

this quark cascade, the DFF has sizable peaks in the higher
z2 and z1 regions for z1 ¼ 0:5 [Fig. 3(a)] and z2 ¼ 0:5

[Fig. 3(b)], respectively. For D�þ��
u , the second term of

Eq. (2) is zero (because d̂�
�

u ¼ 0) and the integral term is
small, so this DFF is dominated by the first term of Eq. (2).

The model scale plot forD�þ��
u fixed at z1 ¼ 0:5 [Fig. 3(a)]

has the shape of a favored single hadron fragmentation
function since fixing z1 effectively makes the first term on
the right-hand side of Eq. (2) a constant multiplied by the
favored fragmentation D��

d . For z2 fixed at 0.5 [Fig. 3(b)]

the model scale D�þ��
u is shaped by the elementary quark

fragmentation function d̂�
þ

u , resulting in a peak at higher z1,
while having a very small contribution at low values of z1.
After evolution of the DFF, there is a reduction in magnitude
and a shift in the peak towards the low z2 region for z1 ¼ 0:5
[Fig. 3(a)]. When z2 is fixed at 0.5 [Fig. 3(b)], the magnitude
of the DFF is reduced and the peak value shifts towards the
low z1 region. Both plots in Fig. 3 display a range of values
at low z where the evolved DFF obtains a larger magnitude
than the model scale DFF. At higher momentum scales, the
low z1 and z2 regions of the DFFs grow in magnitude
because they can access the gluon emission channel.
We present the results for z1 and z2 fixed to 0.2 in

Figs. 4(a) and 4(b), respectively, to investigate the DFF at
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FIG. 2 (color online). NJL-jet fragmentation functions of u
quark to (a) �þ and (b) Kþ evolved at leading order to
Q2 ¼ 4 GeV2 (shown by solid red line) compared to HKNS
[55] and DSS [56] parametrizations at the same scale (shown by
a gray dashed line with a gray uncertain band and a black dash-
dotted line respectively).
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FIG. 3 (color online). �þ�� dihadron fragmentation functions
for the u quark at the model scale (Q2

0 ¼ 0:2 GeV2, shown by

dotted red line) and the evolved scale (Q2 ¼ 4 GeV2, shown by
solid black line) for (a) z1 ¼ 0:5 and (b) z2 ¼ 0:5.
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low fixed light-cone momentum fraction. The structure of

the model scale D�þ��
u for z1 ¼ 0:2, shown in Fig. 4(a),

is similar in shape to that of the model scale DFF at
z1 ¼ 0:5, having the peak in the higher z2, except it is
spread out more and has a lower peak value. At z2 ¼ 0:2,
the structure of the model scale DFF is again similar to
the corresponding z2 ¼ 0:5 plot in Fig. 3(b), being small
in the low z1 region and having a large peak in the higher
z1 region, which is rather narrow. Evolution of the DFF
results in a shift of the peak towards the lower z regions,

with the magnitude of the evolved D�þ��
u becoming

larger than the model scale D�þ��
u at midrange values

of the allowed light-cone momentum fraction; rather than
in the lower range of values that was observed for the z1
and z2 fixed to 0.5 results. The shape of the evolved

D�þ��
u for z2 ¼ 0:2 in Fig. 4(b) appears very similar to

that of the evolved D�þ��
u for z2 ¼ 0:5 in Fig. 3(b),

whereas the shape for the evolved D�þ��
u for z1 ¼ 0:2

[Fig. 4(b)] is quite different to the corresponding result at
z1 ¼ 0:5 in Fig. 3(a). Instead of the concave structure at
z1 ¼ 0:5 shown in Fig. 3(a), at z1 ¼ 0:2 [Fig. 4(a)] the
evolved DFF has a large contribution at low z2 and
steadily decreases as z2 increases.

C. Q2 evolution of D�þK�
u

In Fig. 5 we present the results for D�þK�
u , where the up

quark is a favored channel for�þ emission, but the remnant
down quark is an unfavored channel forK� emission. At the

model scale, D�þK�
u shows no contribution in the large z2

and z1 regions for z1 [Fig. 5(a)] and z2 [Fig. 5(b)] fixed at

0.5, respectively. For D�þK�
u at the model scale the second

term of Eq. (2) is zero (because d̂K
�

u ¼ 0) and the integral

term is small, so D�þK�
u is dominated by the first term of

Eq. (2). In Fig. 5(a), the model scale DFF has the structure
of the unfavored DK�

d , while also being suppressed in

magnitude by d̂�
þ

u ðz1 ¼ 0:5Þ, which achieves its peak value
in the high z1 region while vanishing in the low z1 region.
For z2 ¼ 0:5 [Fig. 5(b)], the model scale DFF shows a very
small magnitude for values of z1 because of the combination

of d̂�
þ

u multiplied by DK�
d . Elementary fragmentation func-

tions for favored emission channels are very small in the low
z region, and achieve large peak values in the high z region.

This forcesD�þK�
u ðz1; z2Þ to have a very small magnitude in

the low z1 region as it is dependent on d̂�
þ

u ðz1Þ. DK�
d is an

unfavored SFF and therefore is constructed by the integral
term on the right-hand side of Eq. (1) because the first term
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FIG. 4 (color online). �þ�� dihadron fragmentation functions
for the u quark at the model scale (Q2

0 ¼ 0:2 GeV2, shown by

dotted red line) and the evolved scale (Q2 ¼ 4 GeV2, shown by
solid black line) for (a) z1 ¼ 0:2 and (b) z2 ¼ 0:2.
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equals zero. Unfavored SFFs peak in the low z region and
have very small magnitudes in the medium to high z
region. Both of these effects combine to cause the resultant
low peak in the middle of the allowed region of z1.

When the DFF is evolved there is a shift towards the low
z2 region for z1 fixed at 0.5 [Fig. 5(a)] and towards the low
z1 region for z2 fixed at 0.5 [Fig. 5(b)]. We observe that the
evolved DFF in Fig. 5 has a larger magnitude in the low z1
and z2 regions, while steadily decreasing as z1 and z2
increase. This is quite different to the results shown in
Fig. 3, where there is either a large contribution for almost
all the allowed range of values of z2 [Fig. 3(a)] or a
substantial peak still in the higher z1 values with the
magnitude of the DFF decreasing as z1 is decreased.
In both those cases, the DFF is largest away from the low
values of z2 and z1. This effect could be caused by the
down quark, which is produced in both fragmentations
after the up quark fragments to �þ, being an unfavored
emission channel for K�, as opposed to the favored emis-
sion channel for ��. The favored emission channel loses
magnitude at higher z1 as the momentum scale is
increased, while the unfavored emission channels, which
have no higher z1 peak, increase at lower z1 due to the
greater access to the gluon emission channel.

D. Q2 evolution of DKþK�
q for q ¼ u, d or s

WenowconsiderDKþK�
q forq ¼ u [Fig. 6(a)],d [Fig. 6(b)]

or s [Fig. 6(c)]. The q ¼ u and q ¼ s DFFs both have
large peaks in the high z2 region at the model scale since
both are favored fragmentation channels in the driving

function of DKþK�
q . The first term on the right-hand side

of Eq. (2) produces most of the magnitude of the model

scale DKþK�
u because the second term equates to zero and

the integral term is small. DKþK�
s emerges from the second

term on the right-hand side of Eq. (2) because the first term
equates to zero and the integral term of the DFF is small.

The first term on the right-hand side of Eq. (2) for DKþK�
u

contains the elementary quark fragmentation function for
the fragmentation from an up quark to Kþ as a function of
z1, multiplied by DK�

s ðz2=ð1� z1ÞÞ=ð1� z1Þ. For z1 fixed
to 0.5, this term simplifies to a constant multiplied by

DK�
s ðz2=ð1� z1ÞÞ. However, for DFFs such as DKþK�

s ,
which emerge from the second term on the right-hand

side of Eq. (2), fixing z1 to 0.5 restricts d̂K
�

s ðz2Þ to values
of z2 less than 0.5. This suppresses the term considerably

since the z2 > 0:5 region of d̂K
�

s ðz2Þ is where the function
achieves its larger values. This is why the u ! KþK� DFF
is larger than the s ! KþK� DFF when z1 is fixed to 0.5.

After QCD evolution, the DFFs for fragmenting up
[Fig. 6(a)] and strange [Fig. 6(c)] quarks at z1 ¼ 0:5 show
the shift of the peak value to the lower z2 region, with

DKþK�
u having a structure similar to that seen for the evolved

D�þ��
u at z1 ¼ 0:5 [Fig. 3(a)], while DKþK�

s has a structure

similar to that of the evolvedD�þ��
u at z2 ¼ 0:5 [Fig. 3(b)].

For DKþK�
d , the model scale plot is very small compared to

DKþK�
u and DKþK�

s , since it is unfavored for both detected
hadrons. When the momentum scale is evolved up to

4 GeV2, DKþK�
d increases in the low z2 region for z1 fixed

to 0.5, because of the effects of gluon fragmentation.

VI. COMPARISON WITH OTHER WORK

With very little in the way of DFFs from experiments
being available for comparison, we look to compare our
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FIG. 6 (color online). KþK� dihadron fragmentation func-
tions for z1 fixed to 0.5 at the model scale (Q2
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shown by solid black line) for a fragmenting (a) u quark, (b) d
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results with the work presented in Ref. [76]. We will
first show that using our code and their parametrized
DFFs as initial conditions, we do indeed obtain solutions
comparable with those presented in Ref. [76] when evolved
to Q2 ¼ 109 GeV2. We also present our data evolved to a

range of different scales for D�þ��
u .

First, we briefly describe the procedures used in
Ref. [76]. The evolution equations used there are those of
Eqs. (15) and (16), with only minor rewriting of terms in
the equations. For the gluon DFF evolution equations, the
difference in the equations arises from alternate definitions
of the functions. In Ref. [76], the DFF is taken to be
identical for the up, down and strange quarks, and so the
gluon evolution equation term involving these functions is
written with the function multiplied by a factor of 2nf,

whereas the DFFs in our approach differ and so we sum
over each flavor. Similar reasoning is used for the other
terms in the gluon evolution equation. To obtain the initial
DFF at Q2 ¼ 2 GeV2, the authors of Ref. [76] simulate
three million dijet events, distributed equally over the
number of flavors (nf ¼ 3), using JETSET. The resultant

DFFs are parametrized by fitting to a functional form:

Dðz1; z2Þ ¼ Nz�1

1 z�2

2 ðz1 þ z2Þ�3ð1� z1Þ�1ð1� z2Þ�2

� ð1� z1 � z2Þ�3 ; (22)

where N, �1, �2, �3, �1, �2 and �3 are the parameters
fitted by minimizing the logarithm of �2. The fit describes
the JETSET results better at larger values of z1 and z2,
while not reproducing the results well for low values
of z1 and z2. Values for the parameters are provided
for the quark and gluon DFFs for momentum scales of
Q2 ¼ 2 GeV2 and Q2 ¼ 109 GeV2. The SFFs used are
obtained from the parametrization in Ref. [88]. The DFFs
are QCD evolved from the initial scale of Q2 ¼ 2 GeV2,
and results are presented for several values ofQ2, including
Q2 ¼ 109 GeV2.

Using the initial parametrized DFFs at Q2 ¼ 2 GeV2,
in Fig. 7 we present the comparison of the parametrized
�þ�� up quark and gluon DFFs obtained from JETSET at
Q2 ¼ 109 GeV2 (dotted red line) with the evolved solu-
tions (blue circles) both taken from Ref. [76]. The solutions
obtained using our code on the same initial parametrized
DFFs (black crosses) and the solution to NJL-jet model
DFFs evolved to the same momentum scale (solid orange
line) are shown too.2 We also consider solutions for the
parametrized DFFs evolved using an altered version of our
code that treats the QCD evolution of the SFFs with the
same parametrized evolution as in Ref. [76] (purple dot-
dashed line), rather than using the evolution equations.
This serves the purpose of exhibiting how well our code
reproduces the parametrized JETSET results.

The results for the NJL-jet model evolved to Q2 ¼
109 GeV2 are similar to the parametrized JETSET results
of Ref. [76] for values of z2 above 0.2 for both the up
quark [Fig. 7(a)] and gluon [Fig. 7(b)] DFFs. Below
z2 ¼ 0:2, our solutions are smaller. Such differences may
be expected as the parametrization in Ref. [76] overesti-
mates the JETSET results in the low z1 and z2 regions, and so
the NJL-jet model results may well be closer to the actual
JETSET output.

We also observe that for the up quark DFF [Fig. 7(a)],
the solution for the parametrized JETSET input evolved
using our code produces similar results to the parametrized
solution of the JETSET results atQ2 ¼ 109 GeV2 for values
of z2 greater than approximately 0.1. The gluon DFF
[Fig. 7(b)] solutions differ only at values of z2 lower than
0.25. In order to understand this difference we explored
using the parametrized evolution of the SFFs [88] used by
Ref. [76]. This produced an improved comparison between
the parametrized JETSET solution and the DFFs obtained
through our code. It is shown that by employing the
parametrized SFF evolution we produce results that are
similar to the parametrized JETSET solutions for both the up
quark [Fig. 7(a)] and gluon [Fig. 7(b)] for values of z2
above approximately 0.1.
In Fig. 8, we present the results for the NJL-jet model

DFFs evolved to a range ofQ2 values: 5 GeV2 (blue dotted
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FIG. 7 (color online). �þ�� dihadron fragmentation functions
for z1 ¼ 0:5 at Q2 ¼ 109 GeV2 for a fragmenting (a) u quark
and (b) gluon—see text for details.

2These comparisons are at best semiquantitative as we do not
know the value of �QCD used in Ref. [76].
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line), 20 GeV2 (black dash-dotted line), 50 GeV2 (green
dashed line) and 109 GeV2 (orange solid line). For z1 ¼
0:5, the results show that as Q2 increases, the DFFs appear
to gradually reduce. The peak value is also observed to
shift towards lower z2 values.

VII. CONCLUSIONS AND OUTLOOKS

In this article, solutions are presented for dihadron frag-
mentation functions from the NJL-jet model evolved to
a typical experimental scale of Q2 ¼ 4 GeV2, from the
model scale of Q2

0 ¼ 0:2 GeV2. We first presented a brief

summary of the integral equations used to obtain the model
scale SFFs and DFFs in Sec. II. Sections III and IV
describe the numerical method used to solve the evolution
equations for SFFs and DFFs, respectively. The QCD
evolution equations for the SFFs and the FORTRAN code
used to solve them was based on the method described in
Refs. [86,89–91]. The method used rearranges the evolu-
tion equations into nonsinglet quark and coupled plus-type
quark and gluon equations, followed by discretizing the
variables z and t and converting the integral terms into
sums over the integration variable. The same method is
employed to solve the QCD evolution equations for the
DFFs with the variables z1, z2 and t being discretized.

Section V compares the model scale DFFs with the
evolved DFFs for �þ��, �þK� and KþK�. In Sec. VB

we investigated the evolution of D�þ��
u by comparing the

model scale and evolved scale DFFs when either z1
[Fig. 3(a)] or z2 [Fig. 3(b)] is equal to 0.5. We also consid-
ered z1 [Fig. 4(a)] or z2 [Fig. 4(b)] equal to 0.2. For the
fragmentation of the up quark to�þ�� we noted that the up
quark was a favored emission channel for the �þ, while the
down quark produced after the up quark fragments to a �þ
is a favored emission channel for the ��. The evolved DFF
showed a shift in the peak value towards the lower z regions,
with each plot showing the evolved DFF obtaining a larger
magnitude than the model scale DFF in the lower z region.

The focus of Sec. VC is on the evolution of D�þK�
u .

Similar to D�þ��
u , the up quark is the favored emission

channel for �þ, however the produced down quark is an
unfavored emission channel for K�. The magnitude of

the model scale DFF was significantly smaller for D�þK�
u

(Fig. 5) than for D�þ��
u (Fig. 3) at light-cone momentum

fractions fixed to 0.5. After evolution, D�þK�
u displayed a

similar shift in the peak value towards the low z region. For
z1 ¼ 0:5 [Fig. 5(a)], the evolved DFF does not obtain a
larger magnitude than the model scale DFF in the lower z2
region, whereas for z2 ¼ 0:5 [Fig. 5(b)] the evolved DFF
obtains a substantial increase over the model scale DFF in
the lower z1 region. This demonstrates the effect evolution
has on favored and unfavored emission channels.

Finally, Sec. VD demonstrates the evolution of DKþK�
q

for q ¼ u, d or s. DKþK�
q has favored fragmentation chan-

nels for both the up quark and strange quark. This is
observed in the results presented in Fig. 6 where both

DKþK�
u and DKþK�

s have large peaks in the upper z2 region.

Both DKþK�
u and DKþK�

s display the shift of the peak value
to the lower z region that has been shown in other favored
emission channels at light-cone momentum fractions of 0.5.
The down quark is an unfavored emission for both Kþ and

K�, and soDKþK�
d has a very small magnitude at the model

scale. EvolvingDKþK�
d shows a considerable increase in the

lower z2 region, though the magnitude is still much lower

than that of DKþK�
u and DKþK�

s at z1 ¼ 0:5.
Evolution of the DFFs has the effect of reducing the

magnitudes at higher z, resulting in peaks occurring earlier
in the range of z values with a reduced magnitude. If
the magnitude of the DFF was small at the model scale,
a significant increase in the magnitude at the low z region
is observed after evolution. The first of these two ef-
fects generally occurs for the favored emission channels,
where the light-cone momentum fraction of the emitted
hadron is not in the low z region. The second effect
typically occurs when the fragmentation channel is unfa-
vored or when the emitted hadron carries a small light-cone
momentum fraction.
In Sec. VI, we evolve the parametrized JETSET data at

2 GeV2 from Ref. [76] to 109 GeV2 using our code to
compare the solutions obtained with the parametrized
JETSET data at the same scale for both the up quark and
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FIG. 8 (color online). �þ�� dihadron fragmentation functions
for the NJL-jet model, for z1 ¼ 0:5 at Q2 ¼ 5 GeV2, 20 GeV2,
50 GeV2, and109 GeV2 for a fragmenting (a)u quarkand (b) gluon.
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gluon fragmenting to �þ�� (Fig. 7). We also presented
solutions for the NJL-jet model up quark and gluon DFFs
evolved to Q2 values of 5 GeV2, 20 GeV2, 50 GeV2 and
109 GeV2 (Fig. 8). The solutions show that for z1 ¼ 0:5,
the DFFs are reduced as Q2 increases and the peak value
shifts towards the lower z2 region.

Extensions of the NJL-jet model for single hadron frag-
mentation functions such as the inclusion of hadronic
resonances and their decays [64] and inclusion of the
transverse momentum dependence [65] have been accom-
plished using a Monte Carlo framework. These extensions

are possible for DFFs as well, but they are beyond the
scope of this work and are left for the future.
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Polarized deep inelastic scattering (pDIS) experiments have
revealed a small value for the nucleon’s flavor-singlet axial-
charge, g

(0)
A |pDIS ∼ 0.3, suggesting that the quarks’ intrinsic

spin contributes little of the proton’s spin. The challenge to
understand the spin structure of the proton [1–6] has inspired
a vast program of theoretical activity and new experiments.
Why is the quark spin content g

(0)
A |pDIS so small? How is the

spin 1
2 of the proton built up from the spin and orbital angular

momentum of the quarks and gluons inside?
A major topic of investigation has been the role of polarized

glue in the nucleon, both in terms of its contribution to the nu-
cleon’s spin and possible suppression of the nucleon’s singlet
axial charge through the QCD axial anomaly. Key experiments
to measure gluon polarization are COMPASS at CERN and
PHENIX and STAR at RHIC. In this paper we investigate
gluon polarization via the charm-quark axial charge, matching
the results of the heavy-quark renormalization group with what
we know of the proton’s wave function. We suggest a bound
|�g(m2

c)| � 0.3, which is consistent with the results of the
present experiments.

We start by recalling the g1 spin sum rules, which are
derived from the dispersion relation for polarized photon-
nucleon scattering and, for deep inelastic scattering, the
light-cone operator product expansion. At leading twist the
first moment of the g1 spin structure function measures a linear
combination of the nucleon’s scale-invariant axial charges g

(3)
A ,

g
(8)
A , and g

(0)
A |inv plus a possible subtraction constant β∞ in the

dispersion relation [1]∫ 1

0
dx g1(x,Q2) =

(
1

12
g

(3)
A + 1

36
g

(8)
A

)
cNS[αs(Q

2)]

+ 1

9
g

(0)
A |invcS[αs(Q

2)] + β∞. (1)

Here cNS and cS are the nonsinglet and singlet Wilson
coefficients. In terms of the flavor dependent axial charges
2Msµ�q = 〈p, s|qγµγ5q|p, s〉 the isovector, octet, and sin-
glet axial charges are g

(3)
A = �u − �d, g

(8)
A = �u + �d −

2�s, and g
(0)
A |inv/E(αs) ≡ g

(0)
A (Q2) = �u + �d + �s. Here

E(αs) = exp
∫ αs

0 dα̃s γ (α̃s)/β(α̃s) is a renormalization group
factor which corrects for the (two-loop) nonzero anomalous
dimension γ (αs) of the singlet axial-vector current [7],
Jµ5 = ūγµγ5u + d̄γµγ5d + s̄γµγ5s, which is close to one

and which goes to one in the limit Q2 → ∞; β(αs) =
−(11 − 2

3f )(α2
s /2π ) + · · · is the QCD beta function and

γ (αs) = f (αs/π )2 + · · ·, where f is the number of active
flavors. The singlet axial charge, g

(0)
A |inv, is independent of the

renormalization scale µ and corresponds to g
(0)
A (Q2) evaluated

in the limit Q2 → ∞. The flavor nonsinglet axial charges are
renormalization group invariants.

The isovector axial charge is measured independently in
neutron β decays (g(3)

A = 1.270 ± 0.003 [8]) and the octet
axial charge is commonly taken to be the value extracted
from hyperon β decays assuming a two-parameter SU(3) fit
(g(8)

A = 0.58 ± 0.03 [9]). The uncertainty quoted for g
(8)
A has

been a matter of some debate [10,11]. There is considerable
evidence that SU(3) symmetry may be badly broken and some
have suggested that the error on g

(8)
A should be as large as 25%

[10]. Indeed, prompted by the work of Myhrer and Thomas
[12], which showed that the effect of the one-gluon-exchange
hyperfine interaction [13] and the pion cloud [14] of the
nucleon was to reduce g

(0)
A calculated in the cloudy bag model

to near the experimental value, a reevaluation of these effects
on g

(3)
A , g

(8)
A , and g

(0)
A including kaon loops led to the value

g
(8)
A = 0.46 ± 0.05 [15]. Here the reduction from the SU(3)

value came primarily from the pion cloud.
Assuming no twist-two subtraction constant, polarized

deep inelastic scattering experiments have been interpreted
in terms of a small value for the flavor-singlet axial charge:
g

(0)
A |pDIS,Q2→∞ = 0.33 ± 0.03 (stat.) ± 0.05 (syst.) [16] if

one uses the SU(3) value for g
(8)
A . On the other hand,

using the value g
(8)
A = 0.46 ± 0.05 from SU(3) breaking, the

corresponding experimental value of g
(0)
A |pDIS would increase

to g
(0)
A |pDIS = 0.36 ± 0.03 ± 0.05. In the naive parton model

g
(0)
A |pDIS is interpreted as the fraction of the proton’s spin

which is carried by the intrinsic spin of its quark and antiquark
constituents.

Historically, the wish to understand the suppression of
g

(0)
A relative to g

(8)
A led to considerable theoretical efforts

to understand the flavor-singlet axial charge in QCD. QCD
theoretical analysis leads to the formula [1,17–20]

g
(0)
A =

(∑
q

�q − 3
αs

2π
�g

)
partons

+ C∞. (2)
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Here �gpartons is the amount of spin carried by polarized
gluons in the polarized proton (αs�g ∼ constant as Q2 → ∞
[17,18]) and �qpartons measures the spin carried by quarks and
antiquarks carrying “soft” transverse momentum k2

t ∼ P 2,m2

where P is a typical gluon virtuality and m is the light quark
mass. The polarized gluon term is associated with events in
polarized deep inelastic scattering where the hard photon
strikes a quark or antiquark generated from photon-gluon
fusion with k2

t ∼ Q2 [19,20]. It corresponds to the QCD axial
anomaly in the flavor-singlet axial-vector current. C∞ denotes
a potential nonperturbative gluon topological contribution
[1] associated with the possible subtraction constant in the
dispersion relation for g1 and possible spin contributions at
Bjorken x = 0, that is outside the range of polarzed deep
inelastic scattering experiments. The measured singlet axial
charge is g

(0)
A |pDIS = g

(0)
A − C∞.

In the parton model �qpartons is associated with the forward
matrix of the partially conserved axial-vector current J con

+5 eval-
uated in the light-cone gauge A+ = 0 and corresponds to the
quark spin contribution extracted from experiments using the
JET or AB factorization schemes [21]. For each flavor q, this
term and the possible topological term C∞ are renormalization
group invariants [1]. All of the renormalization group scale
dependence induced by the anomalous dimension, γ (αs), is
carried by the polarized glue term:{

αs

2π
�g

}
Q2

=
{

αs

2π
�g

}
∞

− 1

f
{1/E(αs) − 1} g

(0)
A

∣∣
inv,

(3)

where all quantities in this equation are understood to be de-
fined in the f -flavor theory. Flavor nonsinglet combinations of
the �q are renormalization group invariant so that each flavor
evolves at the same rate, including heavy-quark contributions
(q = c, b, t). The growth in the gluon polarization �g ∼ 1/αs

at large Q2 is compensated by growth with opposite signs in the
gluon orbital angular momentum. The quark and gluon total
angular momenta in the infinite scaling limit are given by [22]
Jq(∞) = 1

2 {3f/(16 + 3f )} and Jg(∞) = 1
2 {16/(16 + 3f )}.

There is presently a vigorous program to disentangle the dif-
ferent contributions involving experiments in semi-inclusive
polarized deep inelastic scattering and polarized proton-proton
collisions [3,23].

Heavy-quark axial charges have been studied in the context
of elastic neutrino-proton scattering [24,25] and heavy-quark
contributions to g1 at Q2 values above the charm production
threshold [26–29]. Charm production in polarized deep in-
elastic scattering is an important part of the COMPASS spin
program at CERN [30].

Following Eq. (2) we can write the charm-quark axial-
charge contribution as

�c(Q2) = �cpartons −
{

αs

2π
�g

}
Q2,f =4

, (4)

where �cpartons corresponds to the forward matrix element
of the plus component of the renormalization group invariant
charm-quark axial current with just mass terms in the diver-
gence (minus the QCD axial anomaly), viz. (c̄γµγ5c)con =
(c̄γµγ5c) − kµ with kµ the gluonic Chern-Simons current, and

we neglect any topological contribution.1 For scales Q2 � m2
c ,

�cpartons corresponds to the polarized charm contribution one
would find in the JET or AB factorization schemes.

The heavy-quark contributions to the nonsinglet neutral
current axial charge measured in elastic neutrino-proton
scattering have been calculated to next-to-leading order (NLO)
in Ref. [24]. For charm quarks, the relevant electroweak
doublet contribution at leading order (LO) is

(�c − �s)(f =4)
inv = − 6

27π
α(3)

s

(
m2

c

)
g

(0)
A

∣∣(f =3)
inv

−�s(f =3)
inv + O

(
1/m2

c

)
. (5)

For the LO contribution this is made up from

�s(f =4)
inv = �s(f =3)

inv +
(

6

27π
− 6

25π

)
α(3)

s

(
m2

c

)
g

(0)
A

∣∣(f =3)
inv ,

+ O(1/m2
c), (6)

�c(f =4)
inv = − 6

25π
α(3)

s

(
m2

c

)
g

(0)
A

∣∣(f =3)
inv + O

(
1/m2

c

)
.

Here �cinv = �c(Q2) evaluated in the limit Q2 → ∞, where
the charm-quark axial-charge contribution is 2Msµ�c =
〈p, s|c̄γµγ5c|p, s〉. The change in �sinv between the four-
and three-flavor theories in Eqs. (6) comes from the different
number of flavors in E(αs) for the four- and three-flavor
theories.

Equations (6) contain vital information about
{(αs/2π ) �g}∞ in Eq. (4) if we know the renormalization
group (RG) invariant quantity �cpartons. Indeed, if the latter
were zero and if we ignore the NLO evolution associated
with the two-loop anomalous dimension γ (αs), then Eqs. (6)
would imply (at LO)

�g(f =4)(Q2) = 12

25

α
(f =3)
s

(
m2

c

)
α

(f =4)
s (Q2)

g
(0)
A

∣∣(f =3)
inv , (7)

or �g ∼ 0.23 when αs(Q2) ∼ 0.3. The following discussion
is aimed at assessing the possible size of �cpartons plus the
NLO evolution associated with γ (αs), and hence the error on
this value.

Canonical (anomaly free) heavy-quark contributions to the
proton wave function are, in general, suppressed by powers of
1/m2

c , so we expect �cpartons ∼ O(1/m2
c). The RG invariant

quantity �cpartons takes the same value at all momentum
scales. We may evaluate it using quark-hadron duality in a
hadronic basis with meson cloud methods [32]. Experimental
studies of the strange quark content of the nucleon over the
past decade have given us considerable confidence that both
the matrix elements of the vector and scalar charm-quark
currents (which are anomaly free) in the proton are quite small
[33,34]. This gives us confidence in estimating the polarized
charm contribution through its suppression relative to the
corresponding polarized strangeness −0.01 [15] by the factor

1Any topological contribution will be associated with some of the
�cpartons being shifted to Bjorken x = 0. In general, topological
contributions are suppressed by powers of 1/m2

c for heavy-quark
matrix elements [31].
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∼ (m� − mN + mK )2/4m2
c < 0.1 so that |�cpartons| < 0.001.

QCD four-flavor evolution and Eqs. (6) then enable an estimate
of �g at scales relevant to experiments at COMPASS and
RHIC.

In perturbative QCD the LO contribution to heavy-quark
production through polarized photon-gluon fusion yields∫ 1

0
dx g

(γ ∗g→hh̄)
1 ∼ 0, Q2 � m2

h, (8)

where mh is the heavy-quark mass (h = c, b, t). The anoma-
lous −αs/2π term is canceled against the canonical term when
m2

h � P 2 (the typical gluon virtuality in the proton) [19].
If the gluon polarization were large so that − αs

2π
�g made

a large contribution to the suppression of g
(0)
A , at this order

one would also find a compensating large canonical polarized
charm contribution in the proton. To understand this more
deeply, we note that the result in Eq. (8) follows from the
complete expression [20]∫ 1

0
dx g

(γ ∗g)
1

= − αs

2π

⎡
⎣1 + 2m2

P 2

1√
1 + 4m2

P 2

ln

⎛
⎝

√
1 + 4m2

P 2 − 1√
1 + 4m2

P 2 + 1

⎞
⎠

⎤
⎦ .

(9)

Here m is the mass of the struck quark and P 2 is the
gluon virtuality. We next focus on charm production. The
first term in Eq. (9) is the QCD anomaly and the second,
mass-dependent, canonical term gives �c

(gluon)
partons for a gluon

“target” with virtuality P 2. Evaluating Eq. (9) for m2
c � P 2

gives the leading term
∫ 1

0 dx g
(γ ∗g)
1 ∼ − αs

2π
5
8

P 2

m2
c
, hence the

result in Eq. (8).
It is interesting to understand Eqs. (8) and (9) in terms

of deriving the QCD axial anomaly via Pauli-Villars reg-
ularization (instead of the usual dimensional regularization
derivation used in [19]). The anomaly corresponds to the heavy
Pauli-Villars “quark,” which will cancel against the heavy
charm quark for a charm-quark mass much bigger than gluon
virtualities in the problem (there are no other mass terms to
set the scale). When the axial-vector amplitude is evaluated
at the two-loop level there will be gluon loop momenta
between mc and the ultraviolet cut-off scale generating a small
scale dependence so that the cancellation between canonical
heavy-quark and anomalous polarized glue terms is not exact in
full QCD. This scale dependence corresponds to the two-loop
anomalous dimension γ (αs) in E(αs). The result in Eq. (8)
was previously discussed in Refs. [10,27] in the context of
the phenomenology that would follow if there were large
gluon polarization in the proton. Nonperturbative evaluation
of �cpartons allows us to constrain the size of �g given what
we know about charm and strangeness in the nucleon’s wave
function.

There is a further issue that the derivation of Eqs. (6)
involves matching conditions where the spin contributions
are continuous between the three- and four-flavor theories
at the threshold scale mc modulo O(1/m2

c) corrections,

which determine a theoretical error for the method. Using
QCD evolution with the renormalization group factor E(αs),
the results in Eqs. (6) are equivalent to the leading twist
term �c(m2

c) vanishing at the threshold scale mc modulo
O(1/m2

c) corrections, viz. �c(m2
c) = O(1/m2

c) [10]. The lead-
ing O(1/m2

c) term is estimated using effective field theory in
Refs. [10,25,27]. For polarized photon-gluon fusion, this is the
−(αs/2π )(5/8)(P 2/m2

c) leading term in the heavy-quark limit
of Eq. (9). The heavy charm quark is integrated out at threshold
to give the matrix element of a gauge-invariant gluon operator
with dimension 5 and the same quantum numbers as the axial-
vector current, viz. �c(m2

c) ∼ O[αs(m2
c)/4π ](M2/m2

c) [27] or
�c(m2

c) ∼ O[αs(m2
c)�2

QCD/m2
c] ∼ 0.017 [10].2 Taking this as

an estimate of the theoretical error gives �c(m2
c) = 0 ± 0.017.

We next combine this number for �c(m2
c) with our

estimate of the canonical charm contribution |�cpartons| <

0.001 in quadrature to obtain a bound including theoreti-
cal error on the size of the polarized gluon contribution:
| − (αs/2π )�g(m2

c)| � 0.017 or

|�g
(
m2

c

)| � 0.3 (10)

with αs(m2
c) = 0.4. Values at other values of Q2 are readily

obtained with Eq. (3) or αs�g ∼ constant for large values
of Q2.

It is interesting to extend this analysis to full six-flavor
QCD. The values of �c

(f =6)
inv , �b

(f =6)
inv , and �t

(f =6)
inv were

derived in Ref. [24] to NLO in the heavy-quark expansion.
Taking just the leading-order contribution plus the heavy-
quark power correction according to the recipe [10,27]
described above gives �c(f =5)(m2

b) = −0.006 ± 0.017 and
�c(f =6)(m2

t ) = −0.009 ± 0.017 for polarized charm. For
the bottom and top quarks one obtains �b(f =5)(m2

b) = 0 ±
0.001 ± 0.017, �b(f =6)(m2

t ) = −0.003 ± 0.001 ± 0.017, and
�t(m2

t ) = 0 ± 2 × 10−7 ± 0.017. Here the first error comes
from the O(1/m2

h) mass correction for the heaviest quark of
c, b, and t . The second error comes from the other heavy-
quarks with lesser mass as we evaluate these heavy-quark
contributions in terms of the measured value of the light-quark
quantity g

(0)
A |(f =3)

inv . These numbers overlap with a zero value
for (αs/2π ) �g in the relevant f -flavor theories. The QCD
scale dependence of (αs/2π ) �g starts with NLO evolution
induced by Kodaira’s two-loop anomalous dimension γ (αs).
The combination (αs/2π ) �g is scale invariant at LO. This
means that if we work just to LO and �g vanishes at one scale,
it will vanish at all scales (in LO approximation). The LO QCD
evolution equation for gluon orbital angular momentum in the
proton [22] then simplifies so that Lg(∞) = 1

2 {16/(16 + 3f )}.
In practice, the two-loop anomalous dimension generates
slow evolution of (αs/2π ) �g. Dividing the finite value of
this combination at large scales by the small value of αs

gives a finite value for the gluon polarization �g, which
can readily be the same order of magnitude as the gluon

2These O(1/m2
c) terms associated with the full �c are manifest

in polarized photon-gluon fusion through the heavy-quark limit
of Eq. (9),

∫ 1
0 dx g

(γ ∗g)
1 ∼ −(αs/2π )(5/8)(P 2/m2

c), and are to be
distinguished from the model evaluation of �cpartons.
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total angular momentum (or larger with cancellation against
a correspondingly larger gluon orbital angular momentum
contribution).

It is interesting that the value of �g deduced from present
experiments COMPASS at CERN and PHENIX and STAR at
RHIC typically give |�g| < 0.4 with αs ∼ 0.3 corresponding
to | − 3(αs/2π )�g| < 0.06 [3]. This experimental value is
extracted from direct measurements of gluon polarization at
COMPASS in the region around xgluon ∼ 0.1, NLO QCD mo-

tivated fits to inclusive g1 data taken in the region x > 0.006,
and RHIC spin data in the region 0.02 < xgluon < 0.4. The
theoretical bound, Eq. (10), is consistent with this experimental
result.

The research of S.D.B. is supported by the Austrian Science
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supported by the Australian Research Council and by the
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Chapter 5

Concluding Remarks

5.1 Overview

In this thesis, several topics pertaining to the deep inelastic processes that probe

the structure of hadrons have been considered. We begin with a literature review,

which is separated into two chapters. In the first of these chapters we established

the features of QCD that are relevant to our later discussions, including the QCD

Lagrangian, asymptotic freedom and the running of the strong coupling constant.

This was followed by a brief description of the QCD factorization theorem, as

well as the DIS and SIDIS processes. We also discussed the parton model, and

presented a simplified description of the DGLAP evolution equations for PDFs,

SFFs and DFFs. The first chapter of background material was finished with a

brief discussion of the proton spin crisis.

The second background chapter included a review of the NJL model, which

is related to the calculations carried out in two of the papers we include here as

part of the portfolio. We focus on discussing the mass gap equation, the bubble

graph which arises in the solution to the Bethe-Salpeter equation, the quark-

meson coupling and the meson decay coupling. The three-momentum cutoff and

Lepage-Brodsky invariant mass cutoff regularization schemes are also discussed.

This chapter is finished up with a discussion of the single hadron fragmentation

functions within the NJL-jet model.

We now discuss the papers presented in the portfolio of publications, in terms

of three aspects, with the first being a summary of the contributions each paper
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provides and their significance to the field. This is followed by an account of the

issues encountered throughout this research. Finally, ideas for future research

directions are suggested.

5.2 Summary of Research and its Significance

This thesis has been presented as a portfolio of publications containing three peer-

reviewed papers, with each paper contributing new knowledge to the field. In the

paper labeled Ref. [3], we obtained a theoretical upper bound on the contribution

of the gluon polarization to the spin of the proton, with an estimation of the error

on this bound if next-to-leading order effects were considered. The value obtained

for the upper bound was |∆g(m2
c)| . 0.3 with αs(m

2
c) = 0.4, which is consistent

with recent calculations from experimental data at COMPASS [48]. The proton

spin crisis is still a topic of much discussion, with both experimental and theo-

retical considerations needed to determine the contributions to the proton’s spin.

We presented our theoretical calculation of the gluon polarization contribution

to the spin of the proton as one piece of this very complicated puzzle, to aid the

field in the building of a complete solution.

DFFs are interesting functions because they describe properties of the rela-

tionship between two hadrons produced in the same jet. Recently, DFFs have

also been considered as an alternative way to study transversity distribution func-

tions [29] because, much like the Collins fragmentation functions [25], they appear

in SIDIS asymmetries with the transversity distribution functions. Two of the

papers included in the portfolio relate to dihadron fragmentation functions from

the NJL-jet model. In the first of the two papers, Ref. [1], we determine DFFs

from the NJL-jet model for pion and kaon combinations, with results involving

π+π−, π+K− and K+K− combinations discussed. It was shown that the inclusion

of the strange quark in the π+π− DFF had a significant effect, with a reduction

in magnitude of approximately a third when compared to its corresponding func-

tion for the two-flavor case. This reduction effect is caused by the availability of

the kaon emission channels when the strange quarks are included. By comparing

the total DFF to its corresponding driving function we showed that the integral
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term, which appears in the expression for the DFFs, contributes very little to the

total DFF, except in the region where one of the light-cone momentum fractions

was approximately 0.1 or smaller, or when the driving function was equal to zero.

The first of these integral term effects was particularly visible for the up quark

to K+K− combination.

The calculations of the DFFs from the NJL-jet model can only be meaningfully

compared to other models, simulations or experimental results when we evolve

them with respect to the momentum scale Q2. DGLAP evolution equations

for the DFFs had already been determined and so we used those included in

Ref. [38]. Fortran code developed by the authors of Refs. [37, 73–75], which

perform Q2 evolution on the PDFs or FFs, was adapted to perform evolution on

the DFFs, producing the results shown in Ref. [2], where we evolved the DFFs

from the model momentum scale of Q2
0 = 0.2 GeV2 to a typical experimental

scale of Q2 = 4 GeV2. This allowed us to examine some general features of

the DFFs at an appropriate scale, and we also presented solutions for z2D
π+π−
u

and z2D
π+π−
g from the NJL-jet model evolved to Q2 values of 5 GeV2, 20 GeV2,

50 GeV2 and 109 GeV2 at z1 = 0.5, which showed the functions, which are the

DFFs multiplied by the LC momentum fraction z2 to control the plot in the low

z2 region, are reduced as Q2 increases and the peak value shifts, but the change

is much less than that of Q2
0 = 0.2 GeV2 to Q2 = 4 GeV2.

This paper also compared the solutions for the NJL-jet model obtained DFFs

to the DFFs of Majumder and Wang (Ref. [36]), at a momentum scale of 109 GeV2.

The results obtained for that comparison displayed agreement in the higher al-

lowed z2 region (z2 ≤ (1 − z1)) for values above 0.2, while differing at the lower

values. We suggested this difference may be attributed to the parameterization

method employed in Ref. [36], in which data outputted from JETSET simulations

are parameterized in such a way as to fit the data at the higher z2 values well,

while the lower region does not fit as well. To test our evolution code, we used

their input functions for the DFFs in our code, with quite good agreement for

about half of the range of allowed z2 values. There was still quite a considerable

difference in the low z2 region, however, and so we investigated the evolution of

the SFFs used in Ref. [36]. By replacing the code that we used for the SFFs

evolution with the parameterized SFF evolution that was used in Ref. [36], which
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we obtained from Ref. [76], and produced solutions that were a better fit to the

parameterized JETSET results at 109 GeV2. We have shown that the Q2 evolu-

tion code for the DFFs produces solutions to a reasonable level of accuracy for

most of the allowed z2 region that we could compare our results to.

Through the two DFF focused papers, we have presented an NJL-jet model

calculation of the DFFs, as well as produced solutions for the DFFs at typical

experimental scales, allowing others in the field to compare their own models or

experimentally obtained data to these results. There is currently very little data

or model calculations for the DFFs, particularly the DFFs in the form which we

used where the dependence is on just z1 and z2 rather than z(= z1 + z2) and

the invariant mass squared (M2
h) of the two hadrons [27, 77], and so the results

in these papers provide quite a valuable resource to the field, with others taking

note of them already in Refs. [78] and [29].

5.3 Issues Encountered

The initial issues we encountered with the work presented in Ref. [3] was deciding

on how we would calculate the value for ∆g and what assumptions were neces-

sary. Our initial attempt was focussed on employing DGLAP evolution equations

to ∆Σ and ∆g, at both LO and NLO, using a numerical method. However, we

needed to be careful with the flavor properties, which led to discussion of the

charm quark and its threshold. Further discussion on the heavy quark renor-

malization group equations led to a more developed understanding, resulting in

the use of the expression for the charm quark contribution to the proton spin.

The charm quark is much heavier than the up, down and strange quarks, and so

producing one within the proton is much less probable, resulting in the charm

quark contribution to the proton spin being, within error, consistent with zero.

Using these properties, while noting possible values and errors, we obtained the

result presented in the paper.

For both NJL-jet model DFF papers, time and data usage were significant

factors in producing the results. For the model scale paper, we needed to vectorize

the range of LC momentum fractions into a particular number of discretized
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points, which defines the size of the matrix form of the DFF. Setting the number

of points too large would result in durations for running the code that were too

long, as well as requiring too much memory, which if it used up all the RAM,

would result in paging, causing the duration to become even longer. If the number

of points is set too small, the solutions for the DFFs didn’t have enough data

to converge to similar solutions. This issue was addressed in Ref. [79], where we

compare solutions for the number of points set to 50, 100, 150 and 200 for the up

quark to π+π− (z2D
π+π−). For z1 = 0.5 it was observed that the solutions had

converged quite well for all four number of points, with less the variation being

smaller at higher number of points, while for z1 = 0.1 the solutions for 50 and

100 points were quite different, with the difference between 100 and 150 points

being noticably less. By 200 points the solutions have converged quite well, with

very little variation between the 200 point solution and the 150 point solutions,

and so the error in the numerical process we used is greatly reduced if we use

200 points. To reduce the data usage of our code and speed up calculations, we

implemented the DFF matrices as sparse arrays, which are a Mathematica array

type that only store non-zero elements, and also made clever use of the properties

of the integration kernel matrix.

Another issue we encountered for the model scale calculations was related

to the integration variables, ξ1 and ξ2, and their bounds. For the ξ2 variable,

which appears as part of the DFF Dh1h2
q (ξ1, ξ2), the value was obtained through

the implementation of the delta functions. Since we calculate the integration

kernel with z1 and z2 fixed to particular points, and integrate (by converting to

a sum over discrete points) over ξ1, the ξ2 points that we extract did not have

to sit on the grid points defined by the discretization method. To deal with this,

we employed linear interpolation between neighboring ξ2 grid points, contributing

fractions of the integral kernel to the points either side. We also needed to account

for the integration over ξ1, which had an upper bound of ξ1upp = z1/(z1+z2). This

upper bound could lie between grid points, resulting in some of the integration

kernel elements receiving the full regions contribution even though the integral

cuts off inbetween the two grid points. This was dealt with by multiplying the

last contributing element with the ratio (ξ1upp − ξ1below)/(ξ1above − ξ1below), where

ξ1below and ξ1above are the grid points that ξ1upp lie between.
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We note that the desription of the NJL-jet model DFFs are incomplete and

therefore the solutions are subject to change. For a more complete description,

we will need to include several of the extensions to the model discussed in the

section that follows. The inclusion of these extensions will likely introduce their

own issues that will need to be overcome. We cannot predict how troublesome

these will be, but we can limit some of the mby making the developed code as

efficient as possible, so that both time and data usage are not unnecessarily large.

For the Q2 evolution of the DFFs, we encountered similar time and data

usage obstacles. These were dealt with in much the same way, by choosing an

appropriate discretization of the LC momentum fractions and discretizing the

steps in the evolution. We also limited our output data to only the z1 and z2

combinations that summed to less than or equal to one, as the DFFs are defined

to be zero for combinations greater than one.

Other problems were encountered when we decided to compare our results to

those of Ref. [36], particularly when we decided to use our code to evolve their

input functions. We first had to determine which particular functions to use as

input. For the NJL-jet model, the strange quark to π+π− fragmentations were

set to be different than those of the up and down quark fragmentations, while

in Ref. [36] they appeared to be set equal, which we ended up assuming. After

performing the Q2 evolution on the DFFs, we still observed some variation in the

lower LC momentum fraction region between our results and the parameterized

JETSET output at 109 GeV2, as well as the evolution performed by Ref. [36],

and so considered changing the implementation of the SFF Q2 evolution. Since

Ref. [36] used the parameterized evolution present in Ref. [76], we altered the code

to perform the SFF evolution using that parameterization, producing results that

matched closer to the parameterized JETSET results at 109 GeV2 for a slightly

larger range of LC momentum fraction.

5.4 Future Research

In Ref. [3] we considered only the contribution of the gluon polarization to the

spin of the proton. Further research on this particular term may be higher or-
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der (NLO or above) calculations of the terms used, particularly the anomalous

dimension γNf (αs), or perhaps an alternative method to obtain the charm quark

contributions may be suggested. The “proton spin” issue can be approached in

several different ways [80–82]. Investigating other components that contribute to

the proton’s spin, such as the orbital angular momentum of the quarks [83] may

also prove useful in formaing a better understanding of the proton spin and thus

its deeper structure.

The NJL-jet model DFFs can be advanced in several possible directions.

Though their contributions would be small, we could include more active quark

flavors above the relevant Q2 thresholds, which would in turn require changes to

the way in which the evolution code handles the steps in Q2 as αs(Q
2) would

need to be adjusted at each quark flavor threshold. Obtaining the NLO DGLAP

evolution equations for the DFFs and performing that calculation is another pos-

sible direction with which to continue research, which would likely provide some

correction to the DFFs at low LC momentum fractions. Recent progress in the

DFFs from the NJL-jet model includes vector mesons [84], altering the results

significantly, and so this is a very important avenue to continue with. Obtaining

the DFFs with transverse momentum dependence not integrated out would also

provide valuable insight into the hadron structure, with similar calculations al-

ready performed for SFFs. Implementation of Monte Carlo simulation methods

to obtain the DFFs is another useful approach, particularly for the transverse

momentum dependence calculations, and has already been done for the SFFs

from the NJL-jet model [32].
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Appendix

In this thesis we have used the following notations, with the matrix and trace

properties being obtained from Ref. [13].

.1 Gell-Mann Matrices

We use the Gell-Mann matrices shown below as one of the representations of the

generators of the SU(3) matrices.

λ1 =

 0 1 0

1 0 0

0 0 0

 , λ2 =

 0 −i 0

i 0 0

0 0 0

 , (1)

λ3 =

 1 0 0

0 −1 0

0 0 0

 , λ4 =

 0 0 1

0 0 0

1 0 0

 , (2)

λ5 =

 0 0 −i
0 0 0

i 0 0

 , λ6 =

 0 0 0

0 0 1

0 1 0

 , (3)

λ7 =

 0 0 0

0 0 −i
0 i 0

 , λ8 =
1√
3

 1 0 0

0 1 0

0 0 −2

 . (4)
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.2 Dirac Gamma Matrices

Throughout this thesis we use the Dirac basis for representing the gamma matri-

ces

γµ = (γ0, γ1, γ2, γ3), (5)

where

γ0 =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 , γ1 =


0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

 , (6)

γ2 =


0 0 0 −i
0 0 i 0

0 i 0 0

−i 0 0 0

 , γ3 =


0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0

 . (7)

These matrices satisfy {γµ, γν} = 2gµν , where

gµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 (8)

is the metric tensor for the Minkowski space. A commonly used combination of

these matrices is

γ5 = iγ0γ1γ2γ3 =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 . (9)
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.3 Gamma Trace Properties

Tr[γµ] = 0 (10)

Tr[γµγν ] = 4gµν (11)

Tr[odd #′s of γµ] = 0 (12)

.4 Useful Integral Relations

Integration by parts can be written as

∫ b

a

dxu(x)v′(x) = [u(x)v(x)]ba −
∫ b

a

dxu′(x)v(x). (13)

We include here some integration formulae for arcsinh(x) as they arose in the

derivation of the mass gap equation.

∫ b

a

arcsinh(cx)dx =

[
xarcsinh(cx)−

√
c2x2 + 1

c

]b
a

(14)

∫ b

a

xarcsinh(cx)dx =

[
x2arcsinh(cx)

2
+
x2arcsinh(cx)

4c2
− x
√
c2x2 + 1

4c

]b
a

(15)

∫ b

a

x2arcsinh(cx)dx =

[
x3arcsinh(cx)

3
− (c2x2 − 2)

√
c2x2 + 1

9c3

]b
a

(16)

Other useful properties of arcsinh(x) are

∫ b

a

dx√
c2 + x2

=
[
arcsinh

(x
c

)]b
a

(17)

101



.5 Table of Flavor Factors for Distribution and

Fragmentation Functions

Here is the table of flavor factors denoted by Cm
q which we obtained from Ref. [31].

Cm
q π0 π+ π− K0 K̄0 K+ K−

u 1 2 0 0 0 2 0

d 1 0 2 2 0 0 0

s 0 0 0 0 2 0 2

ū 1 0 2 0 0 0 2

d̄ 1 2 0 0 2 0 0

s̄ 0 0 0 2 0 2 0

.6 Errata

In the final published version of Ref. [1] there were a few minor errors present.

In Eq. (9) of Ref. [1], there was supposed to be three separate lines, rather than

one, written in the form:

~Dm
q = ~f + g · ~Dm

q

(I − g) · ~Dm
q = ~f

~Dm
q = (I − g)−1 ~f. (18)

The beginning paragraph of Section IV , in the third sentence, should be between

written as:

The impact of the inclusion of the strange quark on Dπ+π−
u and Dπ+π−

d

is studied in Sec. IV. A.

Instead of:

The impact of the inclusion of the strange quark on Dπ+π−
u and Dπ+π−

u

is studied in Sec. IV. A.
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In the third paragraph of Section IV. A and the description of Figs. 4 and

5, the points for the initial down quark DFF are said to be plotted with green

diamonds, when they should have been described as green crosses.
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Thomas. Transverse Momentum Dependent Fragmentation and Quark Dis-

tribution Functions from the NJL-jet Model. Phys.Rev., D85:014021, 2012.

18, 56

[34] George F. Sterman. Partons, factorization and resummation, TASI 95. 1995.

19

[35] J.D. Bjorken. Asymptotic Sum Rules at Infinite Momentum. Phys.Rev.,

179:1547–1553, 1969. 20

[36] A. Majumder and Xin-Nian Wang. Evolution of the parton dihadron frag-

mentation functions. Phys.Rev., D72:034007, 2005. 21, 94, 97

[37] M. Hirai and S. Kumano. Numerical solution of Q2 evolution equations for

fragmentation functions. Comput.Phys.Commun., 183:1002–1013, 2012. 24,

94

[38] Federico A. Ceccopieri, Marco Radici, and Alessandro Bacchetta. Evolu-

tion equations for extended dihadron fragmentation functions. Phys.Lett.,

B650:81–89, 2007. 25, 27, 94

[39] J. Ashman et al. A Measurement of the Spin Asymmetry and Determination

of the Structure Function g(1) in Deep Inelastic Muon-Proton Scattering.

Phys.Lett., B206:364, 1988. 30

107



REFERENCES

[40] Anthony W. Thomas. Spin and orbital angular momentum of the proton.

Int.J.Mod.Phys., E18:1116–1134, 2009. 31

[41] A.V. Efremov and O.V. Teryaev. Spin Structure of the Nucleon and Triangle

Anomaly. Nucl.Phys., 1988. 31

[42] Guido Altarelli and Graham G. Ross. The Anomalous Gluon Contribution

to Polarized Leptoproduction. Phys.Lett., B212:391, 1988.

[43] Robert D. Carlitz, John C. Collins, and Alfred H. Mueller. The Role of

the Axial Anomaly in Measuring Spin Dependent Parton Distributions.

Phys.Lett., B214:229, 1988.

[44] Elliot Leader and Mauro Anselmino. A Crisis in the Parton Model: Where,

Oh Where is the Proton’s Spin? Z.Phys., C41:239, 1988.

[45] Geoffrey T. Bodwin and Jian-Wei Qiu. The Gluonic Contribution to G(1)

and Its Relationship to the Spin Dependent Parton Distributions. Phys.Rev.,

D41:2755, 1990.

[46] Steven D. Bass, Boris L. Ioffe, Nikolai N. Nikolaev, and Anthony William

Thomas. On the infrared contribution to the photon - gluon scattering and

the proton spin content. J.Moscow.Phys.Soc., 1:317–333, 1991. 31

[47] E.S. Ageev et al. Measurement of the spin structure of the deuteron in the

DIS region. Phys.Lett., B612:154–164, 2005. 31

[48] V. Yu. Alexakhin et al. The Deuteron Spin-dependent Structure Function

g1(d) and its First Moment. Phys.Lett., B647:8–17, 2007. 93

[49] A. Airapetian et al. Precise determination of the spin structure function g(1)

of the proton, deuteron and neutron. Phys.Rev., D75:012007, 2007. 31

[50] F. Myhrer and A. W. Thomas. A possible resolution of the proton spin

problem. Phys.Lett., B663:302–305, 2008. 31

[51] A. Adare et al. The Polarized gluon contribution to the proton spin from

the double helicity asymmetry in inclusive pi0 production in polarized p +

p collisions at s**(1/2) = 200-GeV. Phys.Rev.Lett., 103:012003, 2009. 31

108



REFERENCES

[52] A.W. Thomas. The Spin of the Proton. Prog.Part.Nucl.Phys., 61:219–228,

2008. 31

[53] Jiro Kodaira. QCD Higher Order Effects in Polarized Electroproduction:

Flavor Singlet Coefficient Functions. Nucl.Phys., B165:129, 1980. 32

[54] Stephan Durr. Recent Progress in Lattice QCD. PSNUM-

31, arXiv:1301.1914 [hep-lat], 2013. 34

[55] Yoichiro Nambu and G. Jona-Lasinio. Dynamical model of elementary parti-

cles based on an analogy with superconductivity. I. Phys. Rev., 122:345–358,

1961. 35

[56] Yoichiro Nambu and G. Jona-Lasinio. Dynamical model of elementary parti-

cles based on an analogy with superconductivity. II. Phys. Rev., 124:246–254,

1961. 35

[57] Stanley J. Brodsky and G. Peter Lepage. Exclusive Processes in Quantum

Chromodynamics. SLAC-PUB-2762, C81-03-25.1-10, 1981. 35

[58] S. Klimt, M. Lutz, U. Vogl, and W. Weise. Generalized SU(3) Nambu–Jona-

Lasinio Model. Part. 1. Mesonic Modes. Nucl. Phys., A516:429–468, 1990.

35

[59] U. Vogl, Matthias F.M. Lutz, S. Klimt, and W. Weise. Generalized SU(3)

Nambu–Jona-Lasinio Model. Part 2. From Current to Constituent Quarks.

Nucl.Phys., A516:469–495, 1990. 35

[60] E.E. Salpeter and H.A. Bethe. A Relativistic equation for bound state prob-

lems. Phys.Rev., 84:1232–1242, 1951. 38

[61] N. Ishii, W. Bentz, and K. Yazaki. Baryons in the NJL model as solutions

of the relativistic Faddeev equation. Nucl.Phys., A587:617–656, 1995. 38

[62] S.P. Klevansky. The Nambu-Jona-Lasinio model of quantum chromodynam-

ics. Rev.Mod.Phys., 64:649–708, 1992. 45

109



REFERENCES

[63] Murray Gell-Mann, R.J. Oakes, and B. Renner. Behavior of current diver-

gences under SU(3) x SU(3). Phys.Rev., 175:2195–2199, 1968. 45

[64] W. Bentz, T. Hama, T. Matsuki, and K. Yazaki. NJL model on the light

cone and pion structure function. Nucl.Phys., A651:143–173, 1999. 48, 49,

52

[65] S. D. Drell, Donald J. Levy, and Tung-Mow Yan. A Theory of Deep Inelas-

tic Lepton-Nucleon Scattering and Lepton Pair Annihilation Processes. 1.

Phys.Rev., 187:2159–2171, 1969. 54

[66] S. D. Drell, Donald J. Levy, and Tung-Mow Yan. A Theory of Deep Inelastic

Lepton Nucleon Scattering and Lepton Pair Annihilation Processes. 2. Deep

Inelastic electron Scattering. Phys.Rev., D1:1035–1068, 1970.

[67] S. D. Drell, Donald J. Levy, and Tung-Mow Yan. A Theory of Deep Inelastic

Lepton-Nucleon Scattering and Lepton Pair Annihilation Processes. 3. Deep

Inelastic electron-Positron Annihilation. Phys.Rev., D1:1617–1639, 1970.

[68] J. Blumlein, V. Ravindran, and W. L. van Neerven. On the Drell-Levy-Yan

relation to O(alpha(s)**2). Nucl.Phys., B586:349–381, 2000. 54

[69] R. D. Field and R. P. Feynman. A Parametrization of the Properties of

Quark Jets. Nucl.Phys., B136:1, 1978. 55

[70] Hrayr H. Matevosyan, Anthony W. Thomas, and Wolfgang Bentz. Collins

Fragmentation Function within NJL-jet Model. Phys.Rev., D86:034025,

2012. 56

[71] Hrayr H. Matevosyan, Anthony W. Thomas, and Wolfgang Bentz. Effects

of Quark Spin Flip on the Collins Fragmentation Function in a Toy Model.

J.Phys.Conf.Ser., 403:012042, 2012.

[72] Hrayr H. Matevosyan, Anthony W. Thomas, and Wolfgang Bentz. Higher

Order Collins Modulations in Transversely Polarized Quark Fragmentation.

arXiv:1207.1433 [hep-ph], 2012. 56

110



REFERENCES

[73] M. Miyama and S. Kumano. Numerical solution of Q**2 evolution equations

in a brute force method. Comput.Phys.Commun., 94:185–215, 1996. 94

[74] M. Hirai, S. Kumano, and M. Miyama. Numerical solution of NLO Q**2 evo-

lution equations for spin dependent structure functions. In C. W. de Jager,

T. J. Ketel, P. J. Mulders, J. E. J. Oberski, and M. Oskam-Tamboezer, ed-

itors, High-energy spin physics. Proceedings, 12th International Symposium,

SPIN 96, Amsterdam, Netherlands, September 10-14, 1996., pages 410–412,

1996.

[75] M. Hirai, S. Kumano, and M. Miyama. Numerical solution of Q**2 evolution

equations for polarized structure functions. Comput.Phys.Commun., 108:38,

1998. 94

[76] J. Binnewies, Bernd A. Kniehl, and G. Kramer. Pion and kaon production in

e+ e- and e p collisions at next-to-leading order. Phys.Rev., D52:4947–4960,

1995. 95, 97

[77] Jian Zhou and Andreas Metz. Dihadron fragmentation functions for large

invariant mass. Phys.Rev.Lett., 106:172001, 2011. 95

[78] Wouter J. Waalewijn. Calculating the Charge of a Jet. Phys.Rev.,

D86:094030, 2012. 95

[79] A. Casey, A.W. Thomas, and H.H. Matevosyan. Dihadron Fragmentation

Functions in the NJL-jet model. AIP Conf.Proc., 1418:143–146, 2011. 96

[80] Xiang-Dong Ji. Gauge invariant decomposition of nucleon spin and its spin

- off. Phys.Rev.Lett., 78:610–613, 1997. 98

[81] M. Wakamatsu. The Role of orbital angular momentum in the proton spin.

Eur.Phys.J., A44:297–303, 2010.

[82] Christine A. Aidala, Steven D. Bass, Delia Hasch, and Gerhard K. Mallot.

The Spin Structure of the Nucleon. Rev.Mod.Phys., 85:655–691, 2013. 98

111



REFERENCES

[83] A. W. Thomas, A Casey, and H. H. Matevosyan. What we know and don’t

know about the origin of the spin of the proton. Int.J.Mod.Phys., A25:4149–

4162, 2010. 98

[84] Hrayr H. Matevosyan, Anthony W. Thomas, and Wolfgang Bentz. The

Effect of Vector Meson Decays on Dihadron Fragmentation Functions.

arXiv:1307.8125 [hep-ph], in proceedings of INPC 2013, Firenze, Italy, June

2-7, 2013. 98

112


	TITLE: Hadron Structure in Deep Inelastic Scattering
	Contents
	Dedication
	Abstract
	Statement of Originality
	Publications for the Portfolio
	Acknowledgements
	List of Figures

	Chapter 1 Contextual Statement
	Chapter 2 QCD and the Parton Model
	Chapter 3 Nambu-Jona-Lasinio model
	Chapter 4 Portfolio of Publications
	Published paper
	Published paper
	Published paper

	Chapter 5 Concluding Remarks
	Appendix
	References



