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Abstract

Background: Antibodies that impair Plasmodium falciparum merozoite invasion and intraerythrocytic development are one
of several mechanisms that mediate naturally acquired immunity to malaria. Attempts to correlate anti-malaria antibodies
with risk of infection and morbidity have yielded inconsistent results. Growth inhibition assays (GIA) offer a convenient
method to quantify functional antibody activity against blood stage malaria.

Methods: A treatment-time-to-infection study was conducted over 12-weeks in a malaria holoendemic area of Kenya.
Plasma collected from healthy individuals (98 children and 99 adults) before artemether-lumefantrine treatment was tested
by GIA in three separate laboratories.

Results: Median GIA levels varied with P. falciparum line (D10, 8.8%; 3D7, 34.9%; FVO, 51.4% inhibition). The magnitude of
growth inhibition decreased with age in all P. falciparum lines tested with the highest median levels among children
,4 years compared to adults (e.g. 3D7, 45.4% vs. 30.0% respectively, p = 0.0003). Time-to-infection measured by weekly
blood smears was significantly associated with level of GIA controlling for age. Upper quartile inhibition activity was
associated with less risk of infection compared to individuals with lower levels (e.g. 3D7, hazard ratio = 1.535, 95%
CI = 1.012–2.329; p = 0.0438). Various GIA methodologies had little effect on measured parasite growth inhibition.

Conclusion: Plasma antibody-mediated growth inhibition of blood stage P. falciparum decreases with age in residents of a
malaria holoendemic area. Growth inhibition assay may be a useful surrogate of protection against infection when outcome
is controlled for age.
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Introduction

Epidemiological evidence shows that people living in Plasmodium

falciparum malaria holoendemic areas who experience repeated or

chronic blood stage parasitemia develop clinical immunity with

increasing age [1]. This naturally acquired immunity is in part due

to antibodies elicited in response to infection since passive transfer

of sera from clinically immune African adults to malaria-infected

children decreases the level of blood stage malaria coincidental

with reduced symptoms [2,3]. The mechanisms by which such

antibodies protect against parasitemia are complex and have been

suggested to include i) inhibition of erythrocyte invasion and

growth by antibodies directed against proteins expressed by

merozoites and subsequent intraerythrocytic developmental stages

of the parasite [4]; ii) antibody-dependent mononuclear cell

cytokine-mediated inhibition of intraerythrocytic parasite growth

directed by antibodies to a limited set of antigens [5,6]; and iii)

sequestration and phagocytosis of malaria-infected erythrocytes in

the spleen mediated by antibodies to parasite antigens expressed

on the erythrocyte surface [7–9]. Understanding the roles of anti-

malaria antibodies is important to advance knowledge of the

fundamental processes that underlie age-related acquired immu-

nity since repeated exposure to blood stage malaria has different

immunologic consequences compared to first or infrequent

malaria infection [10]. In addition, reproducible in vitro assays

of antibody-mediated malaria immunity are needed as surrogate

endpoints to inform clinical trials of blood stage vaccines that are

tested in malaria endemic populations [11–13].
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Previous studies of naturally occurring immunity have relied

primarily on serologic methods to measure antibodies to

recombinant malaria protein vaccine candidates, infected eryth-

rocytes, and parasite extract [14–22]. Observed inconsistencies

and the poor predictive value of these serologic assays for malaria

infection and morbidity may be related to the lack of compre-

hensive analysis of antibody responses to multiple blood stage

antigens, many of which may not be included in the assays

performed, and the likelihood that serology alone does not reflect

the functional activity of such antibodies, e.g. recombinant

proteins may have a conformation dissimilar to that of the native

protein. Evaluating the broad repertoire of functional antibodies to

blood stage malaria may also be useful in the future if attenuated

whole blood stage parasites are considered as a strategy to develop

a human malaria vaccine [23].

Growth inhibition assays (GIA) quantify the functional activity

of antibodies directed against multiple blood stage antigens by

measuring parasite growth in the presence of ‘‘immune’’ plasma

compared to ‘‘non-immune’’ plasma. GIA have been used in

vaccine development for merozoite antigens to assess the

relationship of antibody responses after immunization to the time

and level of parasitemia following challenge infection in monkeys

[24–26]. Vaccine trials of Apical Membrane Antigen-1 (AMA-1)

and Merozoite Surface Protein-1 (MSP-1) in malaria naı̈ve human

volunteers have elicited high antibody titers with increased

parasite growth inhibitory antibody activity but have not been

correlated with protection (Spring et al, manuscript in preparation,

Bergmann-Leitner et al, manuscript in preparation). Studies of

persons with naturally acquired malaria immunity have shown an

inconsistent relationship between serologic and functional anti-

body responses [17,27]. Blood stage antigen (AMA-1 and MSP-1)

vaccine studies in malaria experienced individuals demonstrate

variable serologic and functional antibody responses, depending

on the antigen tested [13,28,29]. Vaccine efficacy as related to

GIA has been observed in animal models but not yet in humans.

Logistical impediments to the use of GIA in large scale

population-based field studies have included the limited volume

of blood that can be obtained from research participants,

particularly children and infants, and time consuming determina-

tion of parasite growth endpoints. These logistical issues have in

large measure been overcome [30–34]. In this study we used

several methodologies from different laboratories to examine

whether GIA could be used as a surrogate of protection against

blood stage infection in children and adults living in a malaria

holoendemic area of western Kenya.

Methods

Study population and study design
After community information sessions explaining the objectives

of the research to understand the immune mechanisms underlying

acquired resistance, assent and informed consent for enrolment

and participation in the study was obtained from 117 healthy

individuals (98 children and 99 adults) who were residents of the

village of Kanyewegi, Nyanza Province, Kenya. The study took

place in July 2003, during a time of relatively high malaria

transmission. Previous studies from this area have shown that anti-

parasite and clinical immunity to malaria is acquired with

increasing age such that adult levels are attained by 10–14 years

[35]. The average age of children and adults participating in our

study was 7.7 and 39.4 years, respectively. Participants were

asymptomatic without fever and had normal age-adjusted

hemoglobin levels. Venous blood samples were collected prior to

directly observed consumption of age- and weight-appropriate 6-

dose regimens of CoArtemH (Artemether/Lumefantrin) regardless

of baseline infection status. At baseline, 72% of children and 48%

of adults had parasites present on peripheral blood smears. Weekly

finger prick blood samples were collected for 11 consecutive weeks

to determine time to infection by blood smear. All of the

individuals included in this analysis had negative blood smears by

microscopy two weeks post-treatment. Ethical approval for human

investigation was obtained from the Institutional Review Board at

Case Western Reserve University, University Hospital of Cleve-

land and the Ethical Review Committee at the Kenya Medical

Research Institute. Adults participants signed a consent form in

English or Duhluo (the local language); parents or guardians

signed in the case of minors ,18 years.

Blood smear examination
Thick and thin blood smears (BS) were prepared, fixed in 100%

methanol, stained with 5% Giemsa solution and examined by light

microscopy for infected erythrocytes as described previously [36].

Growth Inhibition Assays
Selected assays were performed with all 197 plasma samples,

and all assays were performed with an identical subset of 54

plasma samples in three different laboratories using their standard

procedures. The subset of 54 plasma samples was chosen to

evaluate MSP-142 specific antibody responses and T cell responses

as they related to age. The subset contained equal numbers of

adults (average age 50 years) and children (average age 5.8 years),

and both groups contained equal numbers of MSP-142 responders

and non-responders. Power calculations indicated a sample size of

12 for each group was needed resulting in the subset of 54

(Moormann, manuscript in preparation). Plasma volume was not a

limiting factor as all individuals had venous blood draws with

several mL of plasma collected. Plasma samples were tested

individually. No Kenyan plasma samples were pooled for any

assay. For ease of description, the methods are described by

laboratory location: CWRU = Case Western Reserve University,

WEHI = Walter and Eliza Hall Institute, WRAIR = Walter Reed

Army Institute of Research. Table 1 summarizes the GIA assays

performed with the subset of 54 samples.

CWRU. D10 parasites (D10-PfM3’ [37]) were utilized and

plasma was not dialyzed. Ring-stage parasites were synchronized

twice by sorbitol lysis (5% D-sorbitol (Sigma, St. Louis, MO)) and

allowed to mature to late trophozoite/schizont stages. Parasites

were cultured at 4% hematocrit in RPMI-1640 supplemented with

25 mg/mL HEPES, 2 mg/mL sodium bicarbonate, 0.5%

Albumax II (Gibco, Grand Island, NY), 2.4 mM L-glutamine,

0.08 mg/ml gentamicin, and 0.2 mM hypoxanthine. Cultures

were maintained at 37uC in an atmosphere of 5% CO2, 1% O2

and 94% N2. Parasites were adjusted to 0.5% infected red cells

with a final 2% hematocrit, 1:10 plasma dilution, and 100 mL final

volume in 96-well flat-bottom microtiter plates. The cultures were

incubated for 26 hours to allow for schizont rupture and

merozoite invasion (monitored by microscopy to ensure full

schizont rupture). 25 mL of resuspended cultures were removed,

fixed with 0.25% gluteraldehyde in PBS for 45 minutes, and

placed in 1 mg Hoechst 33342 (HO) stain (Molecular Probes,

Eugene, OR) in 400 mL 16 PBS for .24 hours at 4uC [38,39]).

Stained cells were examined with a BD LSR II flow cytometer to

collect data from a minimum of 56104 cells. Becton-Dickinson

FACS Diva 5.01 was used to collect and FlowJo 8.5.1 to analyze

cytometry data. Where indicated, 106SYBR Green I (Molecular

Probes, Eugene, OR) instead of HO was used to stain fixed cells.

Parasitemia was recorded as the number of infected erythrocytes.

The mean parasitemia for duplicate wells was used to determine

Acquired Immunity to Malaria
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growth inhibition calculated with the following equation: 100-(test

plasma parasitemia/non-immune plasma parasitemia6100).

Plasma samples from four North Americans who had never

been exposed to malaria were pooled as the ‘‘non-immune’’

plasma controls.

WEHI. D10 (D10-PfM3’ [37]) and 3D7 parasites were

utilized. Test plasma was dialyzed against PBS using 50-kDa-

molecular-weight cutoff dialysis tubes (2051; Chemicon,

Temecula, CA) and concentrated to the original starting volume

using centrifugal concentration tubes (100-kDa MWCO; Pall

Corp, Ann Arbor, MI) [34,40].

D10 parasites (D10-PfM3’ [37]) were transfected to express a

green fluorescent protein (GFP) to facilitate detection by flow

cytometry (Wilson, Crabb, and Beeson, manuscript in prepara-

tion). Parasites were cultured and assays performed as previously

described [34]. Briefly, a synchronous late trophozoite parasite

suspension of 0.4% with a final 2% hematocrit was cultured with a

final plasma dilution 1:10 in a final volume of 100 mL using U-

bottom 96-well plates. The assay was harvested at two time points,

after one and two cycles of parasite growth. This was

accomplished by incubating the cultures for 26 hours to allow

for schizont rupture and merozoite invasion (ring stage, monitored

by microscopy). Then 20 mL of resuspended cultures were

removed, fixed with 0.25% gluteraldehyde for 45minutes, placed

in 106 SYBR Green I stain, and stored at 4uC [41]. After an

additional 24 hours of culture, 35 mL media were added to each

well. After a total of 96 hours of culture (two cycles of growth,

trophozoite stage) the cultures were resuspended and GFP was

detected using a FaCSCalibur flow cytometer.

GIA utilizing 3D7 parasites was performed using a parasite

suspension of 0.1% with a final 2% hematocrit was cultured with a

final plasma dilution 1:10 in a final volume of 100 mL using U-

bottom 96-well plates. The cultures were incubated for a total of

96 hours of culture (2 cycles of growth until trophozoite stage,

monitored by microscopy) at which time 3D7 parasite containing

wells were stained with 100 mL of 10 mg/ml ethidium bromide

(Bio-Rad, Hercules, CA) in PBS for 1 hour [34]. Parasitemia was

assessed using a FaCSCalibur flow cytometer. The mean

parasitemia for duplicate wells was used to determine growth

inhibition calculated as described above.

WRAIR. 3D7 and FVO parasites were utilized. Test plasma

was dialyzed against PBS followed by RPMI using 12-kDa

MWCO [42] and heat-inactivated. The GIA was performed as

previously described [31,32] with synchronized schizonts and a

starting parasitemia of 0.3% in 384-well flat-bottom plates with a

final hematocrit of 2% in a final volume of 20 mL. The assays were

cultured for one cycle with harvest at late trophozoite stage (i.e.,

40 hours for 3D7, 48 hours for FVO). Cells were harvested and

parasite lactic dehydrogenase (pLDH) was measured and detected as

previously described [43]. The mean parasitemia for triplicate wells

was used to determine growth inhibition calculated using the following

equation: {12([ODtest plasma2ODRBC]/[ODnon-immune serum

2ODRBC])}6100. Non-immune serum pool of .5 individual sera

obtained from the Interstate Bloodbank Tennessee was used as ‘‘non-

immune’’ controls.

Statistical analyses
Adults were defined as .14 years of age. Continuous variables

were compared using Mann-Whitney, Spearman’s rho, and

Kruskal-Wallis tests. Inter-assay comparison of results were

evaluated using Wilcoxon signed rank test, Bland-Altman plots

to describe the equivalence of paired results [44], and the

McNemar test to assess the differences in the proportion of

responders (defined as .15% growth inhibition) vs. non-

responders in paired assays. Kaplan Meier and Cox proportional

hazards regression were used to compare time to infection across

groups stratified by upper quartile vs. lower quartiles GIA

responders. The assumption of proportionality was tested using

plots of hazard functions and residuals. Analyses were conducted

using SAS Version 8.2 (Carey, NC) and GraphPad Prism 4.

Results

Plasma exhibits parasite specific growth inhibition in GIA
Plasma samples from 197 Kenyan adults and children were

tested with various GIA against three different laboratory-adapted

lines. The D10 GIA was performed at CWRU while the 3D7 and

FVO GIA were performed at WRAIR. Plasma samples demon-

strated more inhibitory activity against FVO (median 51.4%) than

3D7 (34.9%; p = 0.0005, Mann-Whitney test) as shown in

Figure 1A. D10 GIA results are included in Figure 1A, but

because assay methodology for D10 GIA was different from 3D7

and FVO GIA, direct comparison of results cannot be made.

These assays utilized one cycle of parasite growth and comparable

methods of measuring parasitemia were used. These plasma

samples appear to have lower growth inhibition against D10

(median 8.8%) than 3D7 or FVO. Figure 1B demonstrates D10

and 3D7 GIA results with the subset of 54 plasma samples. These

GIA were performed at WEHI using 2 cycles of parasite growth

with parasitemia assessed by flow cytometry at the trophozoite

stage. In these experiments, plasma samples demonstrated more

inhibitory activity against 3D7 (median 52.6%) than D10 (median

18.5%; p,0.0001, Mann-Whitney). Growth inhibition levels are

higher in these experiments compared to those conducted with all

Table 1. Summary of GIA methodologies performed with 54 Kenyan plasma samples.

Parasite line
# of growth
cycles Stage harvested

Method of parasitemia
measurement Plasma dialyzed Location GIA performed

D10 1 Ring FACS (HO) No CWRU

D10 1 Ring FACS (SYBR) Yes WEHI

D10 2 Late Troph FACS (GFP) Yes WEHI

3D7 1 Late Troph pLDH Yes WRAIR

FVO 1 Late Troph pLDH Yes WRAIR

3D7 2 Late Troph FACS (EtBr) Yes WEHI

HO = Hoechst 33342, Troph = trophozoite, pLDH = parasite lactic dehydrogenase, SYBR = SYBR Green I, GFP = green fluorescent protein, EtBr = Ethidium Bromide.
CWRU = Case Western Reserve University, WRAIR = Walter Reed Army Institute of Research, WEHI = Walter and Eliza Hall Institute
doi:10.1371/journal.pone.0003557.t001
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197 plasma samples as the parasites were allowed to complete 2

growth cycles [34]. From these data we conclude that the same

plasma samples exhibit different levels of growth inhibition with

different parasite lines. Plasma samples exhibiting growth

inhibition against 3D7 also tended to exhibit growth inhibition

against FVO (Pearson correlation r2 = 0.763). The rank order

magnitude of growth inhibition mediated against each parasite line

was not consistent among individual plasma samples (Figure 2).

Growth inhibitory activity decreases with age
The median level of growth inhibition was consistently greater

for plasma from children than adults (Figure 3) regardless of

parasite line, assay conditions and methods of measuring

parasitemia (Mann-Whitney test: D10 p,0.0001, 3D7

p = 0.0003, and FVO p = 0.0087). To characterize the relationship

between age and growth inhibitory activity, the 98 plasma samples

from children were divided into three age groups; 1–4, 5–9, and

10–14 years. Note that the youngest child participating in this

study was 15 months, and only two participants were less than

2 years. Thus, immune responses in children examined here were

not affected by maternal antibodies which wane by age 9–12

months [45]. Growth inhibitory activity decreased progressively

with each age group for all parasite lines tested (Figure 4). The

youngest age group had significantly higher growth inhibition

compared to the other age groups with all parasite lines tested. For

D10 GIA, all age groups differed significantly from each other. For

3D7 and FVO GIA, the youngest age group differed significantly

from the other two age groups. The 5–9 and 10–14 year old group

GIA did not differ significantly from each other, though a

decreasing trend was apparent. No significant difference was

observed between the 10–14 year olds and adults. Additionally,

baseline malaria infection status, controlling for age, did not affect

GIA levels at a statistically significant level. However, a trend that

baseline BS negative children and adults had higher GIA than

baseline BS positive children and adults was seen especially in 3D7

and FVO GIA (Figure 5). A larger study population (we estimate

at least n = 258 children and n = 3912 adults for 3D7 GIA) would

be needed to observe a statistically significant difference in GIA

stratified by baseline BS status.

GIA is associated with increased time to malaria blood
stage infection

Using a time-to-infection study design to examine the relation

between growth inhibition in vitro and protection against blood

stage infection, weekly finger stick blood samples were examined

by microscopy for malaria parasites for the 11 weeks following

administration of anti-malarial drugs. To accommodate the

observation that the magnitude of growth inhibition differs among

the various parasites lines (Figure 1), positive cut-off values were

defined by the upper quartile of responders. Comparing high vs.

low functional antibody assay responders has previously been used

in Kaplan Meier analyses [46].

Time to infection was significantly associated with the degree of

growth inhibition. While the time to infection differed between

children and adults, the effect size (hazard ratios) were very similar

Figure 1. GIA of Kenyan plasma samples for various P.
falciparum lines. Panel A, box plot of GIA result distribution for
N = 197 samples for each parasite line tested (D10, 3D7, and FVO).
Horizontal bars indicate the median percent growth inhibition. D10 GIA
was conducted with different methodology than that of 3D7 and FVO
GIA. All assays utilized one cycle of parasite growth and comparable
methods of measuring parasitemia. Plasma exhibited higher growth
inhibition against FVO than 3D7 (p = 0.0005, Mann-Whitney test). Panel
B, box plot of GIA result distribution for N = 54 samples for D10 and 3D7
GIA utilizing the same methodology. Horizontal bars indicate the
median percent growth inhibition. Plasma samples demonstrated more
inhibitory activity against 3D7 than D10 (p,0.0001, Mann-Whitney).
doi:10.1371/journal.pone.0003557.g001

Figure 2. GIA of 5 representative Kenyan samples tested in
parallel against 3 parasite lines (D10, 3D7 and FVO). Individual A
has significant inhibitory activity against the 3 lines tested whereas
individual D has essentially no inhibitory activity against all lines tested.
Individual B has a growth inhibition pattern that reflects that of the
entire population (Figure 1). Other individual samples demonstrate
variable growth inhibitory activity against the different lines tested.
doi:10.1371/journal.pone.0003557.g002
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(e.g., 3D7 GIA HR = 1.43, 95% CI = 0.85–2.38 for children and

HR = 1.60, 95% CI = 0.78–3.28 for adults.). Therefore, age was

treated as a confounder in these analyses as it was significantly

associated with time-to-infection and growth inhibition (p,0.001).

Individuals whose plasma was within the upper quartile of

growth inhibition experienced significantly less risk of infection

compared to individuals with lower levels for the 3D7 GIA (hazard

ratio = 1.535, 95% CI = 1.012–2.329; p = 0.0438) and FVO GIA

(hazard ratio = 1.600, 95% CI = 1.014–2.526; p = 0.0435). These

quartiles represented, respectively, positive growth inhibition cut-

off values of 60% and 75%, corresponding to 53% and 60% less

risk of infection.

Age remained an independent risk factor for infection in these

proportional hazards models of GIA. For example, the magnitude

of risk of infection decreased with each category of age from 1–

4 years, 5–9, and 10–14, relative to adults (hazard ratio = 6.040

(3.719, 9.810); 4.160 (2.754–6.286); and 1.619 (0.897–2.923),

respectively) controlling for 3D7 GIA. Figure 6 further illustrates

that age is an essential feature of growth inhibition assessment.

The hazard ratio was not significantly different for D10 at the

upper quartile cutoff value (p = 0.25). However, a difference was

observed among the 7% of individuals with the highest levels of

growth inhibition using D10 (hazard ratio = 2.292, 95%

CI = 1.009–5.208; p = 0.0475). Just as baseline infection status

determined by positive BS had no effect on GIA levels controlling

for age, baseline infection status did not affect time to infection

controlling for age.

Various GIA methodologies have little effect on parasite
growth inhibition

Comparisons between GIA methods were undertaken to

differentiate the effects of dialysis, culture media, heat-inactivation

of plasma, flat vs. U-bottom tissue culture plates, number of

growth cycles examined, and parasitemia measurement modali-

ties. The same 54 plasma samples from the total 197 were

examined with all assays. We focused on three main methodolog-

ical disparities; 1) one vs. two growth cycles, 2) flow cytometry vs.

pLDH assessment of parasitemia, and 3) dialysis vs. no dialysis of

plasma. Method comparisons were made between GIA conducted

with the same parasite line using the preferred methodology of the

testing laboratory (summarized in Table 1). Inter-assay compar-

ison of results were evaluated using Wilcoxon signed rank test,

Bland-Altman plots to describe the equivalence of paired results

[44], and the McNemar test to assess the differences in the

proportion of responders (defined as .15% growth inhibition) vs.

non-responders. Bland-Altman and McNemar tests have been

shown to be superior to Spearman correlation tests (r2) when

comparing assay results [31,44].

GIA results were affected by the number of growth cycles

parasites were permitted to complete (Figure 7A and B). Using

D10 parasites and flow cytometry to measure parasitemia, growth

inhibition was significantly greater with two cycles (96 hour

culture, median inhibition 18.5%) compared to one cycle (24 hour

culture, median inhibition 8.3%; p = 0.0003, Wilcoxon signed-

rank test). A Bland-Altman plot shows a bias of 211.05, indicating

the two assays produce different results. Also, the difference in the

proportion of plasma donors classified as responders and non-

responders in the two assays was statistically different (p = 0.006,

McNemar test). The increased growth inhibition with two growth

Figure 3. Box plot of GIA distribution for each parasite line tested (D10, 3D7, and FVO) divided by child (n = 98) and adult (n = 99).
Horizontal bars indicate the median % growth inhibition. The child and adult growth inhibition medians differ significantly from each other for each
parasite line tested (Mann-Whitney test). Child growth inhibition is consistently higher than adult growth inhibition for each parasite line tested.
doi:10.1371/journal.pone.0003557.g003

Figure 4. Box plot of GIA distribution for each parasite line
tested (D10, 3D7, and FVO) with only children’s plasma
samples (n = 98) divided by age group: 1–4 years (n = 28), 5–
9 years (n = 48), and 10–14 years (n = 22). The youngest age group
consistently had higher growth inhibition compared to children in older
age groups (Mann-Whitney test).
doi:10.1371/journal.pone.0003557.g004
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cycles may be attributed to amplified inhibitory antibody effects

[34] and/or poorly characterized nutritional variables. Addition-

ally, parasite growth from one to two cycles in the presence of

human immune plasma could select for merozoite antigenic

variation that may affect parasite invasion efficiency [40,47–49]

Thus comparison of different GIA must take cycle number into

consideration.

GIA using 3D7 parasites performed with pLDH compared to

FACS to assess parasitemia revealed no difference between the

median growth inhibition levels for these two assays (pLDH,

48.4%; FACS, 52.6%; p = 0.88, Wilcoxon signed-rank test).

Bland-Altman plots showed negligible bias (0.3), and the difference

in proportions of responders and non-responders was not

statistically different (p = 0.99, McNemar test) (Figure 7C and

D). One important caveat is that pLDH was used to assess

parasitemia after one cycle of growth (48 hour culture) whereas the

FACS was used to assess parasitemia after two cycles (96 hour

culture). Similarities in results of the two assays despite the shorter

period of culture for the pLDH assay could be related to a wider

range of responses for pLDH assay and therefore lower sensitivity

compared to FACS [34]. We believe that flow cytometry using

DNA stains [32,38] is preferable to pLDH because of greater

sensitivity [34] and to microscopy because of the capacity to

evaluate greater numbers of infected erythrocytes with no observer

bias.

Dialysis of plasma had no effect on the level of growth inhibition

in this population of healthy asymptomatic Kenyans. GIA using

FACS and D10 parasites at one growth cycle resulted in median

growth inhibition of 8.3% and 9.1% for dialyzed and non-dialyzed

plasma samples respectively (p = 0.165, Wilcoxon signed-rank

test). Bland-Altman plots showed minimal bias (22.8) and the

difference in proportion of responders and non-responders was not

statistically different (p = 0.40, McNemar test) (Figure 7E and F).

Earlier studies confirmed that dialysis can effectively remove

common antimalarials from plasma [34]. Others have attempted

to avoid dialysis by using drug resistant parasites [50]. Indeed, the

D10 PfM3’ line used here contains a drug resistant cassette [37].

Since it is not possible to exclude definitively the presence of anti-

malarial drugs or other non-antibody inhibitors, our recommen-

dation is that standardized GIA include prior dialysis of plasma.

Furthermore, well shape (flat vs. U-bottom), heat-inactivation of

plasma, and different media components did not have an effect on

growth inhibitory levels (data not shown). In sum, little difference

in growth inhibition according to GIA method was appreciated

beyond growth cycle number.

Discussion

Antibodies that impair merozoite invasion and subsequent

development of parasites in erythrocytes are one of several

mechanisms by which persons who experience repeated malaria

exposure during childhood are thought to acquire protection

against high-density parasitemia and symptomatic infection later

in life [4]. We compared in this study various GIA methodologies

from three different laboratories and evaluated GIA results as

potential immunologic surrogates of protection against blood stage

infection in children and adults living in a malaria holoendemic

area of Kenya.

Figure 5. Box plot of GIA distribution of 197 plasma samples stratified by BS status at baseline and age for each parasite line
examined (D10, 3D7, FVO). BS- children (n = 17), BS+ children (n = 81), BS2 adults (n = 66) and BS+ adults (n = 33). No statistical
difference was detected between any comparison groups (ie. BS2 children vs. BS+ children with D10 GIA; Mann-Whitney test). A trend that BS2
groups had higher growth inhibition than BS+ groups was observed. P values of visually dissimilar pairs are included.
doi:10.1371/journal.pone.0003557.g005

Figure 6. Relationship of growth inhibition with time to
infection. Time to infection in individuals with upper quartile GIA
results (.60% inhibition) tested against 3D7 compared to lower
quartiles GIA results (,60% inhibition) controlling for age (Cox
regression, p = 0.0438). Kaplan-Meier curves are divided by child and
adult to illustrate age effects on growth inhibition. Similar analyses
controlling for age were performed with D10 and FVO GIA.
doi:10.1371/journal.pone.0003557.g006
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Figure 7. Comparison between different GIA methods. Panel A depicts box plots for D10 GIA using the same 54 dialyzed Kenyan plasma
samples to compare one growth cycle (harvest at ring stage) to two growth cycles (harvest at trophozoite stage). Parasitemia was assessed by flow
cytometry (106 SYBR Green 1 stain for one cycle, GFP for two cycles). Two growth cycles of D10 GIA had a statistically significant higher median
inhibition (18.5% inhibition) compared to one cycle D10 GIA (8.3% inhibition; p = 0.0003; Wilcoxon signed-rank test). Panel B shows the Bland-
Altman plot to assess the degree of agreement between paired results after one vs. two growth cycles. The points display the difference in growth
inhibition between the two assays (y-axis) against their corresponding average values (x-axis). The horizontal lines correspond to the mean difference
(solid line) 62SD (dashed lines). The mean shows a bias of -11.05, indicating the two assays are producing different results with a trend of increasing
differences with increased averages. Panel C depicts box plots for 3D7 GIA using the same 54 Kenyan samples. All samples were dialyzed prior to
use. 3D7 GIA using one cycle of parasite growth, harvest at the trophozoite stage with parasitemia measured by pLDH was compared to 3D7 GIA
using two growth cycles, harvest at the trophozoite stage with parasitemia measured by flow cytometry (EtBr). No statistically significant difference
was noted (Wilcoxon signed-rank test). Panel D shows the Bland-Altman plot to assess the degree of agreement between paired assay results. The
points display the difference in growth inhibition between the two assays (y-axis) against their corresponding average values (x-axis). The horizontal
lines correspond to the mean difference (solid line) 62SD (dashed lines). Panel E depicts box plots for D10 GIA using the same 54 Kenyan samples
either dialyzed or not dialyzed. GIA was performed using one cycle of parasite growth (harvest at ring stage) followed by flow cytometry to measure
parasitemia (SYBR Green 1 stain for dialyzed samples, Hoechst stain for non dialyzed samples). No statistically significant difference was noted
(Wilcoxon signed-rank test). Panel F shows the Bland-Altman plot to assess the degree of agreement between paired assay results. The points
display the difference in growth inhibition between the two assays (y-axis) against their corresponding average values (x-axis). The horizontal lines
correspond to the mean difference (solid line) 62SD (dashed lines). The mean has minimal bias (22.8) with a small trend of increasing differences
with increased averages.
doi:10.1371/journal.pone.0003557.g007

Acquired Immunity to Malaria

PLoS ONE | www.plosone.org 7 October 2008 | Volume 3 | Issue 10 | e3557



An important and unexpected observation in our study was that

growth inhibition decreased with age in all parasite lines tested,

regardless of assay methodology. Indeed, the age-related decrease

in growth inhibition parallels age-related decrease in the

prevalence of high density parasitemia [35]. This inverse

correlation between growth inhibition and age is counterintuitive

when considered in the context of other studies showing that

antibody prevalence and titers to blood stage antigens measured

by serology increase with age [15,51–57]. The data presented here

thus underscore the notion that serologic and functional

measurements of antibodies directed against merozoite pathways

involved in invasion and intra-erythrocytic growth may be

incongruent in persons with naturally acquired immunity, as

demonstrated previously for antibodies to single antigens such as

the C-terminal region of MSP-1 [46,58]. It is not yet known why

increasing age is associated with reduced overall growth inhibitory

antibodies in our study population, but similar results are also

reported by McCallum et al [59]. We speculate that single or few

malaria infections may generate low-complexity ‘‘mono-specific’’

antibody responses directed against selected antigenic domains of

merozoite ligands that are functionally critical to invasion, akin to

the situation when malaria-naı̈ve individuals are vaccinated with

single candidate antigens [11,12]. In contrast, the multiple

infections experienced with increasing age in high malaria

transmission areas may generate a more complex antibody

repertoire, including a subset of antibodies that interfere with or

impair functional inhibitory activity. Additionally, IgM antibodies

that characterize early infections may have greater functional

inhibitory activity than IgG antibodies which are predominant

after greater numbers of infection. It is important to recognize that

anti-malaria antibodies acquired as a result of natural infections

can function in various ways, not only by preventing merozoite

invasion and intra-erythrocytic growth as studied here, but also by

binding to malaria proteins expressed on the erythrocyte surface

and thereby facilitating phagocytosis and preventing cytoadhesion

of infected erythrocytes [60,61]. Furthermore, anti-idiotypic

antibodies and immune complexes may develop with repeated

infections and affect GIA levels. In any event, our data suggest that

the mechanisms of protective immunity in children and adults may

differ whereby antibody-mediated processes are more important in

the former than the latter age group. Ongoing studies of MSP-1

specific immunity in Western Kenya are consistent with this since

anti-MSP-1 antibodies appear to predominate in children whereas

adults demonstrate more robust MSP-1 specific T cell immunity

(Moormann, manuscript in preparation).

Comparison of GIA methodologies showed that inhibition

was greater when parasites were allowed to undergo two rather

than one growth cycle, but that measurements of parasitemia,

dialysis of plasma and minor factors such as growth media and

plate configuration did not substantially affect GIA results. On

the other hand, the parasite line used in the GIA greatly affected

the magnitude of plasma mediated growth inhibition. Differ-

ences in growth inhibition levels observed among 3D7, FVO

and D10 are likely related to the high level of parasite antigenic

diversity and the effect of natural selection on pathways involved

in merozoite invasion and blood stage parasite development

[62]. McCallum et al also report differences in the level of serum

inhibition when using different laboratory adapted parasite lines

or parasites that differ by invasion phenotype. Although our

study and that conducted by McCallum et al utilized laboratory

adapted parasite lines, differential growth inhibition by plasma

against various field isolates has been demonstrated [63]. Using

multiple laboratory and/or field isolates may improve the

characterization of plasma growth inhibitory activity for a

population.

Testing the hypothesis that GIA could be used as a marker of

partial protection against blood stage malaria that develops in

residents of malaria holoendemic areas, our results show that

higher levels of growth inhibition activity were associated with a

modest delay in time to infection with age as an important

independent variable. Additionally, a trend was observed that

individuals who were BS negative at baseline had higher GIA

compared to those with positive BS, though this was not

statistically significant. It is important to emphasize that GIA

results likely represent only one of several immune endpoints

that may be considered as surrogates of protection against blood

stage malaria. It is possible that growth inhibitory antibodies

have a more important function in children than adults, an

important consideration in blood stage vaccine endpoint

evaluation. GIA used in blood stage vaccine studies by the

Malaria Vaccine Initiative (MVI) reference laboratory utilizes

purified and concentrated IgG from plasma with one growth

cycle parasitemia measured by pLDH [28,43,64]. Growth

inhibitory activity of plasma is thought to be mediated primarily

by IgG [34,59]. Our use of diluted plasma in GIA may be

comparable to MVI GIA, but our plasma samples were not

tested by the MVI reference laboratory and therefore no

definitive conclusions can be made. Understanding the develop-

ment of parasite growth inhibition within the context of natural

malaria infection and transmission is essential to blood stage

vaccine endpoint evaluation. GIA would not be appropriate for

use with pre-erythrocytic vaccine evaluation unless the targeted

antigen were also highly expressed in the blood stage. Using GIA

as method to predict the risk of malaria disease (our study had

insufficient power for this analysis) and examination of other

malaria-endemic populations is needed to corroborate our

findings and further define the value of GIA as a tool to

evaluate human malaria immunity.
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