

Faculty of Engineering, Computer and Mathematical Sciences school of mechanical engineering

Modelling and design of magnetic levitation systems for vibration isolation

William Samuel Parker Robertson

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

November 2013

Supervisors: Assoc. Prof. Ben Cazzolato Assoc. Prof. Anthony Zander

Copyright 2003–2013 Will Robertson

Submission date: August 9, 2013 Amendment date: November 26, 2013

School of Mechanical Engineering The University of Adelaide, 5005 SA, Australia

DECLARATION

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree. ¶ I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. ¶ I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

SIGNED

DATED

Acknowledgements & Dedication

Thanks to my supervisors Ben and Anthony, who gave me the freedom to be myself and who inspired me beyond my work. My appreciation couldn't be greater for the long leash they allowed me. With stricter guidance I may have finished sooner, but I believe neither I nor this thesis would have been the better for it.

This thesis is dedicated to those many with whom I've shared this happy life, especially to those in this time who have come into this strange world and to those who have departed from it.

Abstract

Vibration disturbance has a consistent negative impact on equipment and processes. The central theme of this thesis is the investigation of using permanent magnets in the design of a system for vibration isolation.

The thesis begins with a comprehensive literature review on the subjects of passive and active vibration isolation, permanent magnetic systems, and the common area between these on nonlinear vibration systems using magnetic forces. The use of cylindrical and cuboid magnets is the primary focus of this work for which analytical solutions are known for calculating forces and torques. Subsequently, the state of the art in analytical modelling of permanent magnet systems is covered, including a contribution in this area for calculating the forces between cylindrical magnets.

A range of load bearing designs using simple permanent magnet arrangements are examined, with multiple designs suitable for a variety of objectives. A particular emphasis is placed on a system using inclined magnets, which can exhibit a loadindependent resonance frequency. Load bearing using multipole magnet arrays is also discussed, in which a large number of magnets are used to generate more complex magnetic fields. A variety of multipole arrays are compared against each other, including linear and planar magnetisation patterns, and an optimisation is performed on a linear array with some resulting guidelines for designing such systems for load bearing.

Permanent magnet levitation requires either passive or active stabilisation; therefore, the design of electromagnetic actuators for active control is covered with a new efficient method for calculating the forces between a cylindrical magnet and a solenoid. The optimisation of a solenoid actuator is performed and geometric parameters are found which are near-optimal for a range of operating conditions.

Two quasi-zero stiffness systems are introduced and analysed next. These systems are designed with a nonlinearity such that low stiffnesses are achieved while bearing large loads. The first system analysed is a purely mechanical device using linear springs; unlike most analyses of this design, the horizontal forces are also considered and it is shown that quasi-zero stiffness is capable in all translational directions simultaneously. However, a notable disadvantage of such spring systems is their difficulty in online tuning to adapt to changing operating conditions. A magnetic quasi-zero stiffness system is then analysed in detail and design criteria are introduced, providing a design framework for such systems and showing how the complex interaction of variables affects the resulting dynamic behaviour. Although the system is nonlinear, the effects of the nonlinearities on the vibration response are shown to be generally negligible.

The thesis concludes with some experimental results of the same quasi-zero stiffness system, constructed as a single degree of freedom prototype. The quasistatic and dynamic behaviour of the system matches the theory well, and active vibration control is performed to improve the vibration isolation characteristics of the device.

TABLE OF CONTENTS

Lı	List of Tables vii			
Lı	LIST OF FIGURES VIII			
No	Nomenclature xiv			
1	Intr	RODUCT	TION	1
	1.1	The c	entral themes of this thesis	1
		1.1.1	The problem of vibrations	1
		1.1.2	Permanent magnets used for mechanical design	2
		1.1.3	Quasi–zero stiffness systems	3
		1.1.4	Project context	4
	1.2	Vibra	tions	5
		1.2.1	Forms of vibration control	5
		1.2.2	Shock isolation	6
		1.2.3	Fundamentals of active vibration isolation	7
		1.2.4	Semi-active skyhook damping	13
		1.2.5	Active vibration control in practice	14
		1.2.6	Vibration neutralisers and narrow-band vibration control	16
		1.2.7	Summary of the vibrations literature	22
	1.3	Magr	netics	22
		1.3.1	The world of magnetic applications	22
		1.3.2	Magnets assisting motion	24
		1.3.3	Magnets opposing motion	27
		1.3.4	Magnetic damping	32
		1.3.5	Summary of magnetics	34
	1.4	Magr	nets and vibrations	35
		1.4.1	Vibration isolation platforms	35
		1.4.2	Nonlinear vibration and/or magnetic systems	35
		1.4.3	Quasi–zero stiffness systems	37
		1.4.4	Measuring nonlinear vibrations: the variance gain	39
		1.4.5	Summary of vibrations and magnetics literature	43
	1.5	Struc	ture of this thesis	44
	1.6	Publi	cations arising from this thesis	45
2	Mac	SNETIC	AND ELECTROMAGNETIC FORCES	47
	2.1	Intro	duction	47
	2.2	Wher	nce magnetic fields	47
		2.2.1	Magnetic parameters	48

		2.2.2	Relationship between magnetic parameters	49
		2.2.3	Properties of magnetic flux	52
	2.3	Magn	et properties and selection	54
		2.3.1	Homogeneity of magnetisation	55
	2.4	Gene	ral techniques for calculating forces between magnets	57
	2.5	Equat	tions for calculating the magnetic flux density	59
	2.6	Force	s between cuboid magnets	60
		2.6.1	(Anti-)parallel alignment	60
		2.6.2	Forces between orthogonal cuboid magnets	63
		2.6.3	Simplified force and stiffness expression for cube magnets	64
		2.6.4	Cuboid magnets with arbitrary magnetisations	65
		2.6.5	Forces between magnets with relative rotation	67
		2.6.6	Torques between cuboid magnets	72
	2.7	Force	s between cylindrical magnets	75
		2.7.1	Numerical evaluation of the axial force	77
		2.7.2	Implementation efficiency	77
	2.8	Sumn	nary of the magnetic theory	78
3	Mac	GNETIC	SPRINGS	79
	3.1	Overv	view	79
	3.2	Single	e-axis magnetic spring	79
		3.2.1	Square-face cuboid magnets	80
		3.2.2	Cube magnets in two orientations	82
			Cylindrical magnets	82
		3.2.4	Comparing cuboid and cylindrical magnets	83
		3.2.5	Force coupling between degrees of freedom	84
	3.3	-	le magnetic springs using cuboid magnets	87
			Unstable vertical spring	88
		3.3.2	Stable vertical spring	88
		3.3.3	Quasi–zero stiffness spring	89
		3.3.4	Horizontal spring	90
		3.3.5	Combination spring	90
		3.3.6	Combination quasi-zero stiffness spring	92
		3.3.7	Isoforces and isostiffnesses for magnetic springs	92
		3.3.8	Stability in two degrees of freedom	99
		3.3.9	Rotational degrees of freedom	100
	3.4		ed magnetic spring design	107
		3.4.1	Inclined spring geometry and theory	108
		3.4.2	Influence of design parameters	110
		3.4.3	Investigation into planar stability	116

		3.4.4	Conclusion on inclined magnetic springs	122
	3.5	Protot	type inclined magnet system	123
		3.5.1	Limitations of the prototype	127
	3.6	Summ	nary of magnetic spring design	128
4	Mui	LTIPOLE	E ARRAYS FOR IMPROVED LEVITATION	129
	4.1	0	round of multipole arrays	129
	4.2		etry of multipole magnet arrays	132
	4.3	Towar	rds optimising the forces between linear multipole arrays	136
		4.3.1	Varying magnetisation discretisation and wavelength	136
		4.3.2	Constant number of magnets	138
		4.3.3	Non-equal magnet sizes	138
		4.3.4	Separation between successive magnets	141
	4.4	Plana	r multipole arrays	143
		4.4.1	Equations describing planar magnetisation patterns	144
		4.4.2	Example comparison between planar arrays	147
		4.4.3	Forces due to horizontal displacement	149
	4.5	Concl	usions on multipole arrays	152
5	Eleo	CTROMA	AGNETIC ACTUATORS	153
	5.1	Introd	luction	153
	5.2	Cyline	drical magnet and thick coil systems	154
		5.2.1	Thick-coil/magnet axial force methods	155
		5.2.2	Axial force with eccentric displacement	162
	5.3	Optim	nisation of a sleeve coil magnetic actuator	165
		5.3.1	Relationship between coil impedance and outer diameter	166
		5.3.2	Notation	167
		5.3.3	Optimisation of magnet and coil geometry	168
		5.3.4	Optimisation of wire diameter	169
		5.3.5	Consideration of maximum current rating	170
		5.3.6	Trends in the optimisation results	172
		5.3.7	Effects of magnet volume and coil resistance	173
		5.3.8	Summary	174
	5.4	Dual-	coil electromagnet design	175
	5.5	Summ	nary of electromagnetic coil design	177
6	-		O STIFFNESS DESIGN	179
	6.1		luction to quasi-zero stiffness springs	179
	6.2		ed springs	180
		6.2.1	Geometry	180
		6.2.2	Vertical forces	182

		6.2.3	Vertical stiffnesses	184
		6.2.4	Horizontal stiffness characteristic due to vertical displacement	186
		6.2.5	Spring compression	189
		6.2.6	The general applicability of the inclined springs system	189
	6.3	Magr	netic quasi–zero stiffness	191
		6.3.1	Magnet forces	193
		6.3.2	Design criteria	198
		6.3.3	Measure of stiffness reduction	205
		6.3.4	Nonlinear behaviour	205
		6.3.5	Summary of magnetic quasi–zero stiffness design	211
	6.4	Conc	lusion on quasi–zero stiffness systems	212
7	Pro	TOTYPE	E LOW-STIFFNESS MAGNETIC SPRING	213
	7.1	Overv	view	213
	7.2	Desig	gn of the experimental apparatus	213
		7.2.1	Magnets	216
		7.2.2	Translational effects of the rotating beam	216
		7.2.3	Actuators	218
		7.2.4	Sensors	219
	7.3	Expe	rimental results	222
		7.3.1	Static displacement measurements	222
		7.3.2	Predicted resonance frequencies	224
		7.3.3	Open loop dynamic measurements	224
		7.3.4	• • • • •	225
		7.3.5	Observed nonlinear behaviour	228
		7.3.6	Closed loop velocity feedback dynamic measurements	229
		7.3.7	Analysis of the gain-induced resonance	231
	7.4	Conc	lusion on the experimental results	233
8	Con	ICLUSIC	ON	235
	8.1		s summary	235
	8.2	Futur	re work	237
		8.2.1	Magnetic forces	237
		8.2.2	Electromagnetic forces	238
		8.2.3	Vibration control	239
		8.2.4	Quasi–zero stiffness	239
Rı	EFERE	NCES		241
А	Rep	RODUC	IBLE RESEARCH	273

LIST OF TABLES

1	Introduction	1
1.1	Simulation parameters for the vibration neutraliser results.	18
1.2	Applications of permanent magnet materials.	23
1.3	Parameters used to simulate the dynamics of Eq. 1.16 (Fig. 1.14).	43
2	Magnetic and electromagnetic forces	47
2.1	Typical values for various permanent magnets.	55
2.2	Summary of the quasi-static magnetic theory presented in the literature.	78
3	MAGNETIC SPRINGS	79
3.1	Parameters used for dynamic simulations of the inclined magnetic spring	g.120
3.2	Modelled and measured vibration results for the prototype isolator.	124
4	Multipole arrays for improved levitation	129
4.1	Calculated normalised magnetisation vectors using Eq. 4.7 for the linear	
	Halbach array shown in Figure 4.14(c).	146
5	Electromagnetic actuators	153
5.1	Magnet-coil parameters for simulation of thin-coil forces.	161
5.2	Numerical output with increasing integration precision.	163
5.3	Explicit and implicit parameters for the dual-coil example.	177
6	QUASI-ZERO STIFFNESS DESIGN	179
6.1	Properties of the springs in the inclined spring system.	181
6.2	Best fit parameters for Eq. 6.37.	196
6.3	Summary of design criteria for quasi-zero stiffness magnetic design.	202
6.4	Nonlinearity values and maximum displacements of the responses.	210
6.5	Nonlinearity values and maximum displacements of the high amplitude	
	responses shown in Figure 6.24.	210
7	PROTOTYPE LOW-STIFFNESS MAGNETIC SPRING	213
7.1	Physical properties of the experimental apparatus.	215
7.2	Material properties for the magnets in the experimental apparatus.	216
7.3	Dual-coil electromagnet parameters.	219
7.4	Relevant properties of the Wenglor 05 MGV 80 laser distance sensor.	220
7.5	Relevant properties of the accelerometers used in the experimentation.	221
7.6	Parameters used in the signal and spectrum analysis for the experimental	
	measurements.	225

LIST OF FIGURES

1 I	NTRODUCTION	1
1.1	Two main types of vibration control problem.	5
1.2	Displacement feedback control.	11
1.3	Acceleration feedback control.	11
1.4	Velocity feedback control.	11
1.5	Root-sum-square transmissibility versus feedback gain of relative and	
	absolute ('skyhook') velocity feedback control.	12
1.6	An inertial force f_a designed to reduce the vibration response x_2 due to	
	disturbance x_1 .	16
1.7	Transmissibility of a structure with a vibration neutraliser.	18
1.8	Single-frequency transmissibility reduction and broadband root-sum-	
	square transmissibility versus vibration neutraliser stiffness.	19
1.9	Radial bearing cross section.	26
1.10	Multipole bearing cross section.	27
1.11	Two equivalent radial magnetic bearings.	27
1.12	A ball in unstable equilibrium on a saddle-shaped curve.	29
1.13	Orthogonal configurations of eddy current dampers for a vibrating	
	(non-magnetic) mass. The shaded section indicates conductive material.	34
1.14	Frequency response simulations of a nonlinear dynamic system with	
	cubic stiffness with random noise input.	42
1.15	Equivalent simulations to Figure 1.14 using linearised Eq. 1.18.	42
2 N	Agnetic and electromagnetic forces	47
2.1	The magnetic field and its components, both inside and outside a magnet.	49
2.2	Characteristic <i>BH</i> curves for a strong magnet and a weak magnet.	51
2.3	Lines of magnetic flux of a single magnet.	53
2.4	Magnet price versus magnet volume for rare earth magnets.	54
2.5	Magnetic flux density measurements of a cylindrical permanent magnet.	56
2.6	Geometry for calculating the force between parallel cuboid magnets.	60
2.7	Geometry for calculating the force between rotated magnets.	68
2.8	Vertical and horizontal forces on a rotating magnet due to a fixed one	
	versus rotation angle for fixed horizontal and vertical displacements.	69
2.9	Vertical and horizontal forces on a rotating magnet situated 20 mm above	
	another and displaced horizontally for a range of magnet angles.	70
2.10	Photo of the experimental apparatus to measure magnet forces.	71
2.11	Geometry of the rotational assembly to determine magnet centre offsets.	71
2.12	Measured forces versus angle of rotation for a rotating magnet assembly.	72
2.13	Two examples of interacting magnetic nodes.	74

2.14	The equivalence between a permanent magnet and a current-carrying coil. 7	
2.15	Two-dimensional side view of a system composed of two coaxial cylin-	
	drical magnets with a generated force on the second magnet.	76
3 N	Agnetic springs	79
3.1	Schematic of a repulsive magnetic spring.	80
3.2	Normalised force for square-faced cuboid magnets as a function of	
5	displacement.	81
3.3	Force/displacement curves between two cube magnets in two orientations.	82
3.4	Force between two magnets as a function of magnet ratio for a set of	
	fixed displacements.	83
3.5	For magnets with equal volume and face area to length ratios, cylindrical	5
5 5	magnets produce greater force.	84
3.6	Oscillations over time of the displacement of a suspended magnet that	
5	is excited through horizontal vibrations of the base magnet.	86
3.7	Magnetic coupling between horizontal offset and vertical forces.	86
3.8	Three magnetic springs for load bearing in the vertical direction.	88
3.9	Quasi-zero stiffness vertical spring forces versus vertical displacement	
0 2	from the centred position.	89
3.10	A horizontal spring with attracting magnets to create positive vertical	-
0	stiffness.	91
3.11	Spring forces of the stable vertical and horizontal springs.	91
- 3.12	Combination vertical/horizontal magnetic spring.	91
3.13	The combination quasi-zero stiffness magnetic spring with horizontal	-
	magnets for stabilisation.	92
3.14	Individual and total vertical forces on the combination quasi-zero stiff-	-
	ness spring.	93
3.15	Isoforces of the unstable vertical spring.	94
3.16	Isoforces of the stable vertical spring.	94
3.17	Isoforces of the quasi-zero stiffness spring.	94
3.18	Isoforces of the horizontal spring.	95
3.19	Isoforces of the combination spring.	95
3.20	Isoforces of the combination quasi-zero stiffness spring.	95
3.21	Isostiffnesses of the unstable vertical spring.	96
3.22	Isostiffnesses of the stable vertical spring.	96
3.23	Isostiffnesses of the quasi-zero stiffness spring.	96
3.24	Isostiffnesses of the horizontal spring.	97
3.25	Isostiffnesses of the combination spring.	97
3.26	Isostiffnesses of the combination quasi-zero stiffness spring.	97
3.27	The singularly-unstable magnetic spring proposed by Choi et al. [75].	99

3.28	Stiffnesses as a function of vertical displacement across a range of fixed magnet gaps.	101
2 20	Force versus vertical displacement across a range of magnet gaps.	101
3.29	An example of stabilising rotationally-unstable springs.	
3.30	Top-view schematic of a single unstable degree of freedom concept.	102
3.31	Geometry used for analysing the magnetic spring with stable rotation.	103
3.32	Demonstration of single degree of freedom instability.	103
3.33	Moment of the magnetic spring as it rotates around the \hat{y} and \hat{z} axes	104
3.34	with a varying lever arm for the stabilising magnets.	105
3.35	Varying the size of the stabilising magnets for the conceptual single	105
3.33	degree of freedom magnet spring.	106
2.26	Moment of the magnet spring as it rotates around the \hat{x} and \hat{z} axes with	100
3.30	a varying spring depth.	106
2 27	Schematic of the inclined magnet spring.	100
	Force versus displacement of the inclined magnet spring for a range of	109
3.30	magnet angles.	111
3 30	Natural frequency versus load force for a range of magnet angles.	112
	Natural frequency versus load force for a range of magnet alignet.	113
	Stiffness in three directions versus vertical displacement for a fixed	11)
J-4-	magnet offset ratio.	114
3.42	Natural frequency versus load force for a fixed magnet angle.	115
3.43	Natural frequency versus load force for a fixed magnet offset ratio and	5
0.0	angle.	115
3.44	Geometry of the planar system in which forces and torques due to	-
	rotation are calculated.	117
3.45	Representation of the small angle approximation for magnet rotations.	117
3.46	Torque versus rotation for three spring configurations.	119
3.47	Visual representation of the forces and torques at a certain rotation.	120
3.48	Dynamic simulation of the rotationally-constrained system.	121
3.49	Dynamic simulation of the horizontally-constrained system.	122
3.50	Dynamic simulation of the unconstrained system.	123
3.51	Prototype inclined magnet isolation device.	124
3.52	Measured values of resonance frequency and damping ratio of the	
	inclined magnet isolation prototype as a function of load force.	125
3.53	Measured and modelled transmissibility of the inclined magnet isolation	
	prototype.	126
3.54	Measured transmissibility of the inclined magnet isolation prototype	
	with and without active vibration control.	127
1 N	Aultipole arrays for improved levitation	120
4 N	IVEILOLE ARRAID FOR IMEROVED LEVITATION	129

4.1	Magnetic flux lines of a Halbach array.	130
4.2	Opposing Halbach arrays demonstrating magnetic field strength on the	
	strong and weak sides.	131
4.3	Magnetic field lines of linear multipole arrays.	132
4.4	Geometry of a linear Halbach array with four magnets per wavelength	
	of magnetisation.	133
4.5	Three Halbach arrays of equal length.	134
4.6	Vertical force versus displacement between two facing linear Halbach ar-	
	rays with a varying number of magnets per wavelength and wavelengths	
	of magnetisation.	137
4.7	Two multipole arrays of equal length and number of magnets demon-	
	strating extremes in wavelength of magnetisation and number of mag-	
	nets per wavelength.	139
4.8	Force characteristic with arrays each composed of fifty magnets.	139
4.9	Schematic of a four-magnet Halbach array with variable magnet sizes.	139
4.10	Influence of the magnet length ratio on the force between two modified	
	Halbach arrays.	140
4.11	Opposing multipole arrays with magnet separation.	141
4.12	Multipole force characteristic with varying gaps between magnets.	142
4.13	Opposing multipole arrays with too large a separation.	142
4.14	Three planar multipole array designs.	144
4.15	A planar Halbach array, facing up, with magnetisation directions as the	
	superposition of two orthogonal linear Halbach arrays.	145
4.16	Vertical forces versus vertical displacement between the array centres to	
	compare the load-bearing ability of a range of magnet arrays.	148
4.17	Linear multipole system with five magnets depicting horizontal displace-	
	ment and vertical displacement between the array centres.	149
4.18	Force versus horizontal displacement results between linear and planar	
	multipole arrays of total size $50 \text{ mm} \times 50 \text{ mm} \times 10 \text{ mm}$.	150
4.19	Double planar Halbach design in which complementary horizontal	
	offsets are imposed to decrease the cross-coupling stiffness.	150
4.20	Force versus horizontal displacement results between a pair of double-	
	Halbach multipole arrays.	151
5 E	LECTROMAGNETIC ACTUATORS	153
5.1	3D sketch of the system composed of a permanent magnet and thick coil.	154
5.2	Schematic of a 'sleeve coil' magnetic actuator.	155
5.3	The filament and shell models.	156
5.4	Results of various methods for calculating the force versus axial dis-	
	placement between a coaxial coil and magnet.	160

5.5	Illustrative computation times for evaluating the results shown in Table 5.2	2.162
5.6	Region of integration for a radially displaced magnet.	163
5.7	Two examples of eccentric thick coil magnet forces calculations.	165
5.8	Normalised force versus displacement calculations for two cases.	168
5.9	Peak normalised force as magnet and coil ratios are varied.	169
5.10	Maximum peak and normalised force per ampere of current, optimised	
	by magnet and coil geometry as a function of wire diameter.	171
5.11	Typical values for maximum current rating for copper wire of varying	
	diameter.	172
5.12	Optimal values of magnet ratio and coil ratio.	173
5.13	Maximum peak force as a function of coil resistance over a range of	
	magnet volumes.	174
5.14	Electromagnet system with dual push/pull coils.	175
6 Ç	Quasi–zero stiffness design	179
6.1	Inclined springs with negative stiffness in the vertical direction in parallel	
	with a positive stiffness vertical spring.	181
6.2	Vertical forces due to the inclined springs.	183
6.3	Vertical and horizontal stiffness characteristics for a range of geometric	
	ratios.	184
6.4	Force and stiffness of the inclined spring system near quasi-zero stiffness,	
	showing the effect of unstable equilibrium.	185
6.5	Horizontal stiffness characteristic at vertical quasi-zero stiffness.	188
6.6	Vertical and horizontal stiffness characteristics at quasi-zero stiffness in	
	both directions.	190
6.7	Normalised horizontal stiffness with parameters to achieve a small range	
	of displacement with positive stiffness.	190
6.8	Compression relationship of the springs for a range of spring stiffness	
	ratios, at quasi-zero stiffness both horizontally and vertically.	191
6.9	Schematic of a magnetic spring with quasi-zero stiffness.	192
6.10	Modelling errors of Eq. 6.37 compared to the exact.	196
6.11	Normalised force versus displacement curves of a quasi-zero stiffness	
	magnetic system.	197
6.12	Normalised force versus normalised displacement curve illustrating the	
	bounds of allowable load and the displacement range.	199
6.13	Map of the normalised equilibrium position over varying magnet size	
	and normalised magnet gap.	199
6.14		200
6.15	Regions of a and d satisfying the natural frequency criterion.	201
6.16	Regions of a and d satisfying the maximum displacement criterion.	202

6.17	Regions of <i>a</i> and <i>d</i> satisfying the stability criterion.	203
6.18	Regions of <i>a</i> and <i>d</i> satisfying all design criteria.	
6.19	Contours of stiffness reduction due to the negative stiffness of the	
	attractive magnet.	206
6.20	Contours of nonlinearity ratio.	207
6.21	Zoom of Figure 6.20 to show the behaviour of the nonlinearity ratio in	
	the lower limits of a magnetic design.	207
6.22	Phase plot of the magnetic system at steady state resonance.	208
6.23	Variance gain at a position close to quasi-zero stiffness.	209
6.24	Variance gain of the magnetic system comparing two excitation amplitudes	5.211
7 F	ROTOTYPE LOW-STIFFNESS MAGNETIC SPRING	213
7.1	Schematic of the experimental apparatus.	214
7.2	Photo of the experimental apparatus.	214
7.3	Geometry for calculating the minimum horizontal tolerance of the in-	
	ner dimensions of the coil due to vertical displacement of the magnet	
	arrangement.	217
7.4	Schematic of the dual-coil electromagnet built for the apparatus.	219
7.5	Normalised force versus displacement curve for the electromagnet.	219
7.6	Rest position of the system as the magnet position varies.	223
7.7	Expected natural frequency as the magnet position varies.	224
7.8	Open loop measurements of transmissibility with the electromagnetic	
	coil connected in an open and closed circuit.	226
7.9	Curve fit model of measurements with actuator disconnected.	227
7.10	Curve fit model of measurements with actuator connected	227
7.11	Analysed results from fitting the open loop measurements to the isolator	
	model of Eq. 7.13.	228
7.12	Open loop transmissibility measurements without the coil connected.	229
7.13	Closed loop frequency response measurements for a range of velocity	
	feedback gains.	230
7.14	Transmissiblity reduction for increased velocity feedback gain.	231
7.15	Vibration isolation schematic with active feedback.	233
7.16	Block diagram of Eq. 7.17 representing the system shown in Figure 7.15.	233
7.17	Closed loop simulation with increasing gain before instability.	234

Nomenclature

Most mathematical symbols used in this document are listed herein with page number cross-referencing. Page numbers listed will not include where these symbols are used in graphs or some figures. There are some cases where the same symbol has been used for multiple purposes; these should be unambiguous based on the context of the work.

In mathematical contexts, care has been take to be consistent in the use of parentheses for function arguments (such as $f(x) = x^2$) and square brackets for both grouping $(A \times [B \times C])$ and vector/matrix notation ($\mathbf{F} = [F_x, F_y, F_z]^T$).

Symbol	Description	Page
A	Vector area (direction normal to plane)	48, 52
Α	Area	58, 59
A_e	Amplitude of sinusoidal base excitation	40, 208–211
а	Half-length of cuboid magnet, \hat{x} direction	60, 62, 65, 67, 68
а	Cuboid magnet depth	80, 84, 109, 110
а	Cube magnet side length	xii, xiii, 64, 65,
		192–194, 196–209
a_w	Cross-sectional area of the wire in the coil	166
В	Magnetic flux density vector	28, 33, 48–52, 57, 59, 158
B_r	Remanence magnetisation	50–52, 55, 58, 61–68,
	Ŭ	73, 75, 76, 120, 144,
		146, 155, 157–159,
		161, 164, 167,
		195–197, 215
b	Cuboid magnet face side length	80, 84, 108–110,
		133–136, 138, 139,
		141
b	Half-length of cuboid magnet, \hat{y} direction	60, 62, 65, 67–69
$[BH]_{max}$	Maximum energy product	51, 55
C_i	Compression of the inclined springs at quasi-zero stiffness	189
C_v	Compression of the vertical spring at quasi-zero stiffness	189
С	Relative velocity damping coefficient	xxiii, 5, 7, 8, 16, 119,
C	Relative velocity damping coefficient	120
С	Damping coefficient	5, 7–10, 18, 41, 43,
v	Sumpling coefficient	85, 206, 208, 226,
		231-233
С	Half-length of cuboid magnet, \hat{z} direction	60, 62, 65, 67, 68
C C	Cube magnet side length	91, 103, 106
L	Cube magnet side tengen	91, 103, 100

Symbol	Description	Page
Ca	Damping coefficient of the vibration neutraliser	16, 18
d	Distance vector between the centres of two magnets, $\mathbf{d} = [d_x, d_y, d_z]^{T}$	xv, 60, 62, 63, 65–67,
\mathbf{d}_1	Position vector for differential magnet volume in cylindrical coordinates $\mathbf{d}_1 = [r_1, \phi_1, z_1]^T$	73 xv, 158
d ₂	Position vector for differential coil volume in cylindrical coordinates, $\mathbf{d}_2 = [r_2, \phi_2, z_2]^{T}$	xv, 158
d	Inclined magnets horizontal offset at the nominal position	108–112, 114,
d	Normalised magnet gap	117–120 xii, xiii, xix,
d d_w	Magnetic spring depth Diameter of wire	192–195, 197–211 103, 105, 106, 133 166–171, 173
e _r	Radial distance between two cylindrical objects	164, 165
F	Force vector	57, 58, 68, 99, 109, 110, 116, 118, 119, 158
$\mathbf{F}_{z,x}$	Force between two cuboid magnets; the first magnetised in the \hat{z} direction, the second in \hat{x}	66
$\mathbf{F}_{z,y}$	Force between two cuboid magnets; the first magnetised in the \hat{z} direction, the second in \hat{y}	xxiii, 63, 66, 78
$\mathbf{F}_{z,z}$	Force between two cuboid magnets both magnetised in the \hat{z} direction	xxiv, 61, 65, 66, 78, 80, 81, 109, 118
F _{eddy} F	Eddy current force vector Magnitude of force	33 41, 68, 78, 80, 81, 85, 93, 102, 107, 110–113, 119, 120, 169–171, 173, 224
F(s) F _c	Force input response, Laplace domain Axial force between a thick coil and a magnet	231, 232 156–159, 164, 167–169, 175, 176
F _f F _g	Axial force between two circular current loops Gravity force	156, 164 102
F _r	Radial force between two cylindrical thin coils/magnets	78
F_T F_z	Quasi-zero stiffness vertical magnet force function Axial force between two cylindrical thin coils/magnets	194, 206 76, 78, 157
F _{attr} F _{repl}	Magnet force (attraction magnet) Magnet force (repulsion magnet)	194 194

Symbol	Description	Page
F_i	Force characteristic of the inclined spring, with	xvi, 182, 186
	vertical component F_{i_v} and horizontal component	
	F_{i_h}	
F_v	Force characteristic of the vertical spring, with	xvi, 182, 186
	vertical component F_{v_v} and horizontal component	
	F_{v_h}	
F_t	Force characteristic of the overall inclined spring	xvi, 182–186
	quasi-zero stiffness mechanism, with vertical	
	component F_{t_v} and horizontal component F_{t_h}	
F_s	Magnet force for coaxial cube magnets	64, 81, 193, 194, 196, 197
f	Force input	5-7, 231, 233
f _a	Active force input for an inertial mass or vibration	viii, 16, 17
Ju	neutraliser	
f_d	Force disturbance	5
f_q	Normalised force at equilibrium	198, 199
f_T	Normalised Quasi-zero stiffness vertical magnet	194, 197–200, 206
	force	
f_s	Normalised magnet force for coaxial cube	64, 193–195
	magnets	
G	Force vector between inclined magnets in the local	109
	coordinate systems of the fixed magnet	,
G	Axial gap between the dual coils	175, 176, 219
G	Gap between magnets in various magnetic spring	91, 99, 100, 103, 133,
	designs	141, 142
G(s)	Transfer function	231–233
8	Acceleration due to gravity	85, 107, 111, 119,
		120, 179, 198, 200,
		206, 224
8	Normalised magnet gap	222, 226
8a	Feedback gain on relative acceleration	7-9, 11
8c	Feedback gain on relative velocity	7, 8, 10, 11
8d	Feedback gain on absolute acceleration	7–9, 11
8k	Feedback gain on relative displacement	7–9, 11, 85
8m	Feedback gain on absolute displacement	7-9, 11
g_v	Feedback gain on absolute velocity	7, 8, 10, 11, 232, 233
Н	Magnetic field strength vector	48–51
Н	Height of the apparatus	214, 215, 222–224
Η	Length of vertical spring under load	181, 183, 186, 189
H_0	Undeflected vertical spring length	180, 181, 183, 189
H_c	Coercivity	51, 52
h	Inclined spring vertical dimension	180–183, 186

Symbol	Description	Page
h	Multipole array height	133, 136–138, 140,
		141
h	Normalised nominal magnet displacement	192, 194, 195,
		197–199, 201, 206,
		210
h_b	Beam height	215, 223
h_c	Height of the coil	219
h_m	Height of the magnets support	214, 215, 222–224
h_q	Normalised displacement at equilibrium	198–201, 205, 206,
_		208
h_s	Height of the laser sensor	214, 215, 223
h_{ϵ}	Height 'buffer' to account for additional	222, 224
	thicknesses	
T	Comment	
Ι	Current	48, 75, 155–159, 161,
		164, 167, 170, 171,
I	Indinad magnet system moment of inertia	175
I _m i	Inclined magnet system moment of inertia The imaginary number $\sqrt{-1}$	119, 120 7, 8, 10, 226
i	Magnet index in the \hat{x} direction.	-
L	Magnet fildex in the x direction.	144–147
J	Current density vector	48, 158
\mathbf{J}_m	Equivalent 'surface current' vector due to	48
2	magnetisation	
J _{eddy}	Eddy current density vector	33
j	Magnet index in the \hat{y} direction.	144–147
$\mathbf{K}_{z,y}$	Stiffness between two cuboid magnets; the first	63
	magnetised in the \hat{z} direction, the second in \hat{x}	
$\mathbf{K}_{z,z}$	Stiffness between two cuboid magnets magnetised	xxiii, 62
	in the \hat{z} direction	
Κ	Magnitude of stiffness characteristic (derivative of	87–90, 92
	force with respect to displacement)	
$K_c(s)$	Controller transfer function	232, 233
K_h	Stiffness characteristic in the horizontal direction	186, 187
K_q	Stiffness at equilibrium	200, 205, 208, 210
K_T	Quasi-zero stiffness vertical magnet stiffness	194, 200, 206, 208,
.	function	210
K_v	Stiffness characteristic in the vertical direction	184
K _{attr}	Magnet stiffness (attraction magnet)	205
K _{repl}	Magnet stiffness (repulsion magnet)	205
K_s	Magnet stiffness characteristic for coaxial cube	64, 193
	magnets	

Symbol	Description	Page
k	Stiffness coefficient	xxiii, xxiv, 5, 7–10,
		16, 18, 39, 41, 43,
		107, 110, 111, 113,
		120, 179, 224, 226,
		231–233
k_i	Inclined spring stiffness	180–184, 187
k_v	Vertical spring stiffness	180–183, 186
<i>k</i> _a	Stiffness of the vibration neutraliser	16, 18
k_T	Normalised Quasi-zero stiffness vertical magnet stiffness	194, 197, 206
k _{lin}	Linearised stiffness at a certain point	43
k_s	Normalised magnet stiffness characteristic for coaxial cube magnets	64, 65, 193, 194
L	Length of inclined spring under load	181, 182, 186, 189
L_0	Undeflected inclined spring length	180–182, 186, 189
L_b	Beam length	215
L_c^{ν}	Coil length	75, 154, 155,
-	0	157–159, 161, 164,
		166, 167
L_m	Magnet length	82–84, 154, 155,
		157–159, 161, 164,
		167, 172, 215, 219,
		222–224
1	Displacement vector between magnet centre and	118
	centre of mass (lever arm)	
1	Lever arm	103, 105, 117–120
1	Multipole array length	133–136, 138
1	Normalised nominal magnet displacement	64, 65, 193, 195
l_m	Horizontal offset of the magnets support	214, 215, 223
l_s	Horizontal offset of the laser sensor	214, 215, 223
l_w	Length of the wire in the coil	166, 167
М	Magnetisation vector	28, 48–50, 57, 144,
	0	158
Ŵ	Unit magnetisation vector	144-147
$M_{\rm sat}$	Magnetisation at saturation	50, 51
m	Magnetic dipole	48
т	Mass	xxiii, xxiv, 5, 7–10,
		16, 18, 41, 43, 85,
		107, 119, 120, 179,
		198–202, 204–209,
		226, 231–233
m _a	Vibration neutraliser mass	16, 18

Symbol <i>m</i> _{eq}	Description Equivalent mass	Page 111, 224
N N N	Magnet grade, units MG Oe Multipole array number of magnets Number of turns in the coil	55 133–136, 144, 146 75, 155, 158, 159,
N_m	Magnet equivalent 'turns' for filament current model	164, 175 156, 157, 161
Nr	Number of turns in the radial direction	155–157, 160, 161, 166, 167, 175
N_z	Number of turns in the axial direction	155–157, 161, 166, 167
î n	Surface normal vector Exponential for empirical magnet force equation	57, 158 195–197, 200
$P_{bb}(\omega)$	Power spectrum accelerometer measurements of the base disturbance	39, 40, 228
$P_{mb}(\omega)$	Cross spectrum accelerometer measurements between the moving magnet and base disturbance	39, 40
$P_{mm}(\omega)$	Power spectrum accelerometer measurements of the moving magnet	228
p	Displacement vector due to rotation around centre of mass	118
р	Disturbance	41, 43, 85, 86
р	Dual-multipole array horizontal offset	150, 151
p_b	Beam pin origin height	214, 215, 223
p_g	Magnet gap	222, 223
p_m	Low magnet height	214, 215, 222, 224
p_n p_q	High magnet height Quasi-zero stiffness position	214, 215, 222–224 222, 223
$\begin{array}{c} Q_{0} \\ Q_{1} \\ Q_{2} \\ Q_{3} \\ q_{0}(d) \\ q_{2}(d) \\ q_{4}(d) \end{array}$	Coefficient for empirical magnet force equation Coefficient for empirical magnet force equation Coefficient for empirical magnet force equation Coefficient for empirical magnet force equation Polynomial coefficient for modelling magnet force Polynomial coefficient for modelling magnet force Polynomial coefficient for modelling magnet force	195–197, 200 195–197, 200 195 195 194, 195 194, 195 194, 195
$R_x R_y R_z R$	Planar rotation matrix around the \hat{x} axis Planar rotation matrix around the \hat{y} axis Planar rotation matrix around the \hat{z} axis Distance vector between a magnet's centre and one of its corners/nodes (floating magnet)	66, 67 66 66, 109, 118 62, 63, 73

Symbol	Description	Page
R	Multipole array number of magnets per	133–139
	wavelength	
R	Coil resistance	166–171, 173, 218,
		219
R_c	Thick coil outer radius	155, 157–159, 161,
		164, 166, 167, 175,
_		219
R_m	Magnet outer radius	82–84, 154–159, 161,
		164, 166, 167, 172,
		215, 219
r	Distance vector between a magnet's centre and	62, 63
	one of its corners/nodes (fixed magnet)	
r	Euclidean distance of δ , $\sqrt{\delta_x^2 + \delta_y^2 + \delta_z^2}$	62–64
r	Radial component of distance vector in cylindrical	xv, 158, 163, 164
	coordinates	
r	Radius	156, 164, 165
r _c	Thick coil inner radius	154, 155, 157–159,
		161, 164, 166, 167,
		175, 219
rg	Clearance between magnet and inner coil radii	154, 167
S	Vector of magnet side lengths (floating)	65–67
S	Integration surface	57, 158
S_f	Factor of safety	171, 173
S_w	White noise variance	41-43
s	Position vector	109, 118
s	Vector of magnet side lengths (fixed)	65–67
S	Differential region of the integration surface	57, 158
S	Laplace variable	xv–xvii, xx, xxi, 7, 8,
		231–233
$\mathbf{T}_{z,y}$	Torque between two cuboid magnets; the first	78
~,9	magnetised in the \hat{z} direction, the second in \hat{y}	,
$\mathbf{T}_{z,z}$	Torque between two cuboid magnets magnetised	xxiv, 73, 78
-/-	in the \hat{z} direction	
Т	Period	40
$T(s), T(\omega)$	Transmissibility	xxi, 8, 10, 39, 226,
., .,	·	228, 230, 231
$T_{\rm RSS}$	Root-sum-square of the transmissibility	10, 230, 231
	magnitude	
T_z	Inclined magnets torque	118, 119
t	Displacement vectors from the spring magnet	118
	centres to the centre of rotation in the coordinate	
	system of the magnets	

Symbol t	Description Time	Page 7, 40, 41, 43, 208,
t_b	Beam shell thickness	231 215, 223
U u	Potential energy Cuboid magnet unit length, cube root of volume	28 110–112, 114, 117, 119, 120
V	Volume	33, 48, 80, 81, 83, 110, 114, 158,
$V(\omega)$ v v	Variance gain, alternative of transmissibility <i>T</i> Velocity vector Differential region of the integration volume	167–171, 173 40 33 33, 158
W w w _b	Multipole array number of wavelengths Inclined spring horizontal dimension Beam width	133–140 180–182, 186 215
$X_1(s) X_2(s) x x \hat{x}$	Base response, Laplace domain Vibration mass response, Laplace domain Displacement vector Horizontal displacement of the inclined spring Cartesian unit vector	7, 8, 18, 231–233 7, 8, 18, 231–233 57–59 180–187, 189 x, xiv, xvi–xviii, xx, xxiii, 60, 61, 66, 67, 69, 78, 88, 91, 92, 94–99, 101–103, 105, 106, 109, 118, 121, 124, 144–146, 149, 150
x	Displacement	41, 43, 80, 81, 179, 222, 223
x	Inclined magnets horizontal displacement	,, 109, 110, 112, 118, 119, 121–123
<i>x</i> ₁	Base displacement	viii, 5, 7, 8, 16, 40, 192, 206, 208, 220, 221, 231, 233
<i>x</i> ₂	Displacement of the vibration mass	viii, 5, 7, 8, 16, 40, 192, 194, 206, 220, 221, 231, 233
$\begin{array}{c} x_a \\ x_b \end{array}$	Vibration neutraliser displacement Displacement of the beam at the position of the laser sensor from 'zero'	16 223
x_m	Displacement of the magnets support	223, 224

Symbol	Description	Page
x_p	Projected displacement of the beam to the	223
	magnets support	
x_s	Displacement measured by the laser sensor	214, 215, 222, 223
x_m	Magnet centre position	224
Ŷ	Cartesian unit vector	x, xiv, xvi, xvii, xx,
		xxiii, 60, 61, 63, 66,
		68, 70, 71, 86, 90,
		94–98, 103–105, 107,
		109, 121, 123, 124,
		144–146, 149–151
у	Horizontal displacement	85, 86, 149, 150
y	Inclined magnets vertical displacement	108–111, 113,
		118–123
ź	Cartesian unit vector	x, xiv, xvi, xviii, xx,
		xxiii, xxiv, 60, 61,
		63, 66, 68, 70, 71, 86,
		88, 91–99, 101–107,
		109, 117, 118,
		144–146, 149, 150
Z	Axial displacement	155–159, 164, 165,
		167–169, 175, 176
Z	Vertical displacement	85, 86, 99, 100, 103,
		136, 140, 141, 149,
		150, 180–186, 189,
		217
Z	Axial component of distance vector in cylindrical coordinates	xv, 158, 164
Z	Inclined magnets out-of-plane displacement	109, 110, 118
z_{\min}	Maximum deflection of the vertical spring	183
α	Ratio between the inclined and vertical spring	180, 181, 183, 184,
	stiffnesses	187–190
α	Cylindrical magnet aspect ratio	82–84, 154, 155,
		167–170, 173
β	Coil aspect ratio	154, 155, 167–170,
		173
γ	Ratio between the inclined spring width and height	xxii, 182–187, 189
γ	Ratio between magnet lengths in a quasi-Halbach array	138, 140
γ	Square-face cuboid magnet aspect ratio	80, 81, 84, 110, 120
δ	Distance vector between a pair of corners/nodes	xx, xxii, 61–63, 73
	of two magnets, $\boldsymbol{\delta} = \begin{bmatrix} \delta_x, \delta_y, \delta_z \end{bmatrix}^{T}$	

Symbol δ	Description Maximum displacement bound	Page 199, 201–203,
$\delta \\ \epsilon \\ \epsilon$	Displacement increment Percentage difference between γ and γ_{QZS} Closest (normalised) allowable displacement from quasi-zero stiffness to avoid instability	205–207 110, 111, 113 185, 186 199, 201–203, 205, 207
ζ η	Damping ratio, $0.5c/\sqrt{km}$. Ratio between inclined and vertical spring lengths	xxiv, 120, 208, 226, 232, 236 180, 181, 183, 184,
η_k heta	Nonlinearity measure Magnet rotation/inclination	186–190 206–208, 210
v	Multipole array magnetisation rotation between	67–70, 72, 108–112, 114, 117–120 133–135, 146
ϑ_0	successive magnets Magnetisation direction of the first magnet in a multipole array	133, 146
ϑ_{xz}	Magnetisation direction in the \hat{x} - \hat{z} plane of the first magnet in a multipole array	146
ϑ_{yz}	Magnetisation direction in the \hat{y} - \hat{z} plane of the first magnet in a multipole array	146
$\kappa_{z,y}$	'Stiffness' between two magnetic nodes for cuboid magnets magnetised in the \hat{z} and \hat{y} directions respectively, used to calculate $\mathbf{K}_{z,z}$	63, 64
$\kappa_{z,z}$	'Stiffness' between two magnetic nodes for cuboid magnets magnetised in the \hat{z} direction, used to calculate $\mathbf{K}_{z,z}$	62, 63
κ	Stiffness ratio	205
λ	Multipole array wavelength	133–136, 139
μ	Magnetic permeability of a material	30, 31, 49, 52
μ_0	Magnetic permeability of the vacuum	48–52, 55, 57, 58, 61–65, 68, 73, 75, 76, 156–158, 164, 274
μ_r	Relative permeability of a material	49, 50
ν	Ratio of magnet length squared to face area	84
ξ	Inclined spring normalised displacement in the	182–185, 187, 188,
0	load bearing direction Resistivity	190 166 16 7
$ ho \sigma$	Conductivity	166, 167 33
Φ	Magnetic flux vector	55 52
ф <i>z</i> ,у	'Force' between two magnetic nodes for orthogonally-magnetised cuboid magnets, used to calculate $\mathbf{F}_{z,y}$	63

Symbol	Description	Page
$oldsymbol{\phi}_{z,z}$	'Force' between two magnetic nodes for cuboid magnets magnetised in the \hat{z} direction, used to calculate $\mathbf{F}_{z,z}$	61, 62, 73
ϕ	Angular component of distance vector in cylindrical coordinates	xv, 158, 163, 164
φ	Inclined magnets planar rotation	116–123
ψ	'Torque' between two magnetic nodes for cuboid magnets magnetised in the \hat{z} direction, used to calculate $T_{z,z}$	73
ω	Frequency	xix–xxi, 7, 8, 10, 39, 40, 202, 204, 205, 226, 228, 230–232
ω_d	Resonance frequency, $\omega_n \sqrt{1-\zeta^2}$	200, 206, 207
ω_n	Natural frequency, $\sqrt{k/m}$	xxiv, 107, 111, 179, 208, 224–226