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Abstract

Vibration disturbance has a consistent negative impact on equipment and processes.
The central theme of this thesis is the investigation of using permanent magnets in
the design of a system for vibration isolation.

The thesis begins with a comprehensive literature review on the subjects of
passive and active vibration isolation, permanent magnetic systems, and the common
area between these on nonlinear vibration systems using magnetic forces. The use of
cylindrical and cuboid magnets is the primary focus of this work for which analytical
solutions are known for calculating forces and torques. Subsequently, the state of
the art in analytical modelling of permanent magnet systems is covered, including a
contribution in this area for calculating the forces between cylindrical magnets.

A range of load bearing designs using simple permanent magnet arrangements
are examined, with multiple designs suitable for a variety of objectives. A particular
emphasis is placed on a system using inclined magnets, which can exhibit a load-
independent resonance frequency. Load bearing using multipole magnet arrays is
also discussed, in which a large number of magnets are used to generate more
complex magnetic fields. A variety of multipole arrays are compared against each
other, including linear and planar magnetisation patterns, and an optimisation is
performed on a linear array with some resulting guidelines for designing such
systems for load bearing.

Permanent magnet levitation requires either passive or active stabilisation; there-
fore, the design of electromagnetic actuators for active control is covered with a
new efficient method for calculating the forces between a cylindrical magnet and
a solenoid. The optimisation of a solenoid actuator is performed and geometric
parameters are found which are near-optimal for a range of operating conditions.

Two quasi–zero stiffness systems are introduced and analysed next. These sys-
tems are designed with a nonlinearity such that low stiffnesses are achieved while
bearing large loads. The first system analysed is a purely mechanical device using
linear springs; unlike most analyses of this design, the horizontal forces are also
considered and it is shown that quasi–zero stiffness is capable in all translational
directions simultaneously. However, a notable disadvantage of such spring systems
is their difficulty in online tuning to adapt to changing operating conditions. A mag-
netic quasi–zero stiffness system is then analysed in detail and design criteria are
introduced, providing a design framework for such systems and showing how the
complex interaction of variables affects the resulting dynamic behaviour. Although
the system is nonlinear, the effects of the nonlinearities on the vibration response
are shown to be generally negligible.

The thesis concludes with some experimental results of the same quasi–zero
stiffness system, constructed as a single degree of freedom prototype. The quasi-
static and dynamic behaviour of the system matches the theory well, and active
vibration control is performed to improve the vibration isolation characteristics of
the device.
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magnetised in the ẑ direction, the second in x̂

66

Fz,y Force between two cuboid magnets; the first
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H Length of vertical spring under load 181, 183, 186, 189
H0 Undeflected vertical spring length 180, 181, 183, 189
Hc Coercivity 51, 52
h Inclined spring vertical dimension 180–183, 186



Nomenclature xvii

Symbol Description Page
h Multipole array height 133, 136–138, 140,

141
h Normalised nominal magnet displacement 192, 194, 195,

197–199, 201, 206,
210

hb Beam height 215, 223
hc Height of the coil 219
hm Height of the magnets support 214, 215, 222–224
hq Normalised displacement at equilibrium 198–201, 205, 206,

208
hs Height of the laser sensor 214, 215, 223
hε Height ‘buffer’ to account for additional

thicknesses
222, 224

I Current 48, 75, 155–159, 161,
164, 167, 170, 171,
175

Im Inclined magnet system moment of inertia 119, 120
i The imaginary number

√
−1 7, 8, 10, 226

i Magnet index in the x̂ direction. 144–147

J Current density vector 48, 158
Jm Equivalent ‘surface current’ vector due to

magnetisation
48

Jeddy Eddy current density vector 33
j Magnet index in the ŷ direction. 144–147

Kz,y Stiffness between two cuboid magnets; the first
magnetised in the ẑ direction, the second in x̂

63

Kz,z Stiffness between two cuboid magnets magnetised
in the ẑ direction

xxiii, 62

K Magnitude of stiffness characteristic (derivative of
force with respect to displacement)

87–90, 92

Kc(s) Controller transfer function 232, 233
Kh Stiffness characteristic in the horizontal direction 186, 187
Kq Stiffness at equilibrium 200, 205, 208, 210
KT Quasi–zero stiffness vertical magnet stiffness

function
194, 200, 206, 208,
210

Kv Stiffness characteristic in the vertical direction 184
Kattr Magnet stiffness (attraction magnet) 205
Krepl Magnet stiffness (repulsion magnet) 205
Ks Magnet stiffness characteristic for coaxial cube

magnets
64, 193



xviii Nomenclature

Symbol Description Page
k Stiffness coefficient xxiii, xxiv, 5, 7–10,

16, 18, 39, 41, 43,
107, 110, 111, 113,
120, 179, 224, 226,
231–233

ki Inclined spring stiffness 180–184, 187
kv Vertical spring stiffness 180–183, 186
ka Stiffness of the vibration neutraliser 16, 18
kT Normalised Quasi–zero stiffness vertical magnet

stiffness
194, 197, 206

klin Linearised stiffness at a certain point 43
ks Normalised magnet stiffness characteristic for

coaxial cube magnets
64, 65, 193, 194

L Length of inclined spring under load 181, 182, 186, 189
L0 Undeflected inclined spring length 180–182, 186, 189
Lb Beam length 215
Lc Coil length 75, 154, 155,

157–159, 161, 164,
166, 167

Lm Magnet length 82–84, 154, 155,
157–159, 161, 164,
167, 172, 215, 219,
222–224

l Displacement vector between magnet centre and
centre of mass (lever arm)

118

l Lever arm 103, 105, 117–120
l Multipole array length 133–136, 138
l Normalised nominal magnet displacement 64, 65, 193, 195
lm Horizontal offset of the magnets support 214, 215, 223
ls Horizontal offset of the laser sensor 214, 215, 223
lw Length of the wire in the coil 166, 167

M Magnetisation vector 28, 48–50, 57, 144,
158

M̂ Unit magnetisation vector 144–147
Msat Magnetisation at saturation 50, 51
m Magnetic dipole 48
m Mass xxiii, xxiv, 5, 7–10,

16, 18, 41, 43, 85,
107, 119, 120, 179,
198–202, 204–209,
226, 231–233

ma Vibration neutraliser mass 16, 18



Nomenclature xix

Symbol Description Page
meq Equivalent mass 111, 224

N Magnet grade, units MG Oe 55
N Multipole array number of magnets 133–136, 144, 146
N Number of turns in the coil 75, 155, 158, 159,

164, 175
Nm Magnet equivalent ‘turns’ for filament current

model
156, 157, 161

Nr Number of turns in the radial direction 155–157, 160, 161,
166, 167, 175

Nz Number of turns in the axial direction 155–157, 161, 166,
167

n̂ Surface normal vector 57, 158
n Exponential for empirical magnet force equation 195–197, 200

Pbb(ω) Power spectrum accelerometer measurements of
the base disturbance

39, 40, 228

Pmb(ω) Cross spectrum accelerometer measurements
between the moving magnet and base disturbance

39, 40

Pmm(ω) Power spectrum accelerometer measurements of
the moving magnet

228

p Displacement vector due to rotation around centre
of mass

118

p Disturbance 41, 43, 85, 86
p Dual-multipole array horizontal offset 150, 151
pb Beam pin origin height 214, 215, 223
pg Magnet gap 222, 223
pm Low magnet height 214, 215, 222, 224
pn High magnet height 214, 215, 222–224
pq Quasi–zero stiffness position 222, 223

Q0 Coefficient for empirical magnet force equation 195–197, 200
Q1 Coefficient for empirical magnet force equation 195–197, 200
Q2 Coefficient for empirical magnet force equation 195
Q3 Coefficient for empirical magnet force equation 195
q0(d) Polynomial coefficient for modelling magnet force 194, 195
q2(d) Polynomial coefficient for modelling magnet force 194, 195
q4(d) Polynomial coefficient for modelling magnet force 194, 195

Rx Planar rotation matrix around the x̂ axis 66, 67
Ry Planar rotation matrix around the ŷ axis 66
Rz Planar rotation matrix around the ẑ axis 66, 109, 118
R Distance vector between a magnet’s centre and

one of its corners/nodes (floating magnet)
62, 63, 73



xx Nomenclature

Symbol Description Page
R Multipole array number of magnets per

wavelength
133–139

R Coil resistance 166–171, 173, 218,
219

Rc Thick coil outer radius 155, 157–159, 161,
164, 166, 167, 175,
219

Rm Magnet outer radius 82–84, 154–159, 161,
164, 166, 167, 172,
215, 219

r Distance vector between a magnet’s centre and
one of its corners/nodes (fixed magnet)

62, 63

r Euclidean distance of δ,
√

δ2
x + δ2

y + δ2
z 62–64

r Radial component of distance vector in cylindrical
coordinates

xv, 158, 163, 164

r Radius 156, 164, 165
rc Thick coil inner radius 154, 155, 157–159,

161, 164, 166, 167,
175, 219

rg Clearance between magnet and inner coil radii 154, 167

S Vector of magnet side lengths (floating) 65–67
S Integration surface 57, 158
S f Factor of safety 171, 173
Sw White noise variance 41–43
s Position vector 109, 118
s Vector of magnet side lengths (fixed) 65–67
s Differential region of the integration surface 57, 158
s Laplace variable xv–xvii, xx, xxi, 7, 8,

231–233

Tz,y Torque between two cuboid magnets; the first
magnetised in the ẑ direction, the second in ŷ

78

Tz,z Torque between two cuboid magnets magnetised
in the ẑ direction

xxiv, 73, 78

T Period 40
T(s), T(ω)Transmissibility xxi, 8, 10, 39, 226,

228, 230, 231
Trss Root-sum-square of the transmissibility

magnitude
10, 230, 231

Tz Inclined magnets torque 118, 119
t Displacement vectors from the spring magnet

centres to the centre of rotation in the coordinate
system of the magnets

118



Nomenclature xxi

Symbol Description Page
t Time 7, 40, 41, 43, 208,

231
tb Beam shell thickness 215, 223

U Potential energy 28
u Cuboid magnet unit length, cube root of volume 110–112, 114, 117,

119, 120

V Volume 33, 48, 80, 81, 83,
110, 114, 158,
167–171, 173

V(ω) Variance gain, alternative of transmissibility T 40
v Velocity vector 33
v Differential region of the integration volume 33, 158

W Multipole array number of wavelengths 133–140
w Inclined spring horizontal dimension 180–182, 186
wb Beam width 215

X1(s) Base response, Laplace domain 7, 8, 18, 231–233
X2(s) Vibration mass response, Laplace domain 7, 8, 18, 231–233
x Displacement vector 57–59
x Horizontal displacement of the inclined spring 180–187, 189
x̂ Cartesian unit vector x, xiv, xvi–xviii, xx,

xxiii, 60, 61, 66, 67,
69, 78, 88, 91, 92,
94–99, 101–103, 105,
106, 109, 118, 121,
124, 144–146, 149,
150

x Displacement 41, 43, 80, 81, 179,
222, 223

x Inclined magnets horizontal displacement 109, 110, 112, 118,
119, 121–123

x1 Base displacement viii, 5, 7, 8, 16, 40,
192, 206, 208, 220,
221, 231, 233

x2 Displacement of the vibration mass viii, 5, 7, 8, 16, 40,
192, 194, 206, 220,
221, 231, 233

xa Vibration neutraliser displacement 16
xb Displacement of the beam at the position of the

laser sensor from ‘zero’
223

xm Displacement of the magnets support 223, 224



xxii Nomenclature

Symbol Description Page
xp Projected displacement of the beam to the

magnets support
223

xs Displacement measured by the laser sensor 214, 215, 222, 223
xm Magnet centre position 224

ŷ Cartesian unit vector x, xiv, xvi, xvii, xx,
xxiii, 60, 61, 63, 66,
68, 70, 71, 86, 90,
94–98, 103–105, 107,
109, 121, 123, 124,
144–146, 149–151

y Horizontal displacement 85, 86, 149, 150
y Inclined magnets vertical displacement 108–111, 113,

118–123

ẑ Cartesian unit vector x, xiv, xvi, xviii, xx,
xxiii, xxiv, 60, 61,
63, 66, 68, 70, 71, 86,
88, 91–99, 101–107,
109, 117, 118,
144–146, 149, 150

z Axial displacement 155–159, 164, 165,
167–169, 175, 176

z Vertical displacement 85, 86, 99, 100, 103,
136, 140, 141, 149,
150, 180–186, 189,
217

z Axial component of distance vector in cylindrical
coordinates

xv, 158, 164

z Inclined magnets out-of-plane displacement 109, 110, 118
zmin Maximum deflection of the vertical spring 183
α Ratio between the inclined and vertical spring

stiffnesses
180, 181, 183, 184,
187–190

α Cylindrical magnet aspect ratio 82–84, 154, 155,
167–170, 173

β Coil aspect ratio 154, 155, 167–170,
173

γ Ratio between the inclined spring width and
height

xxii, 182–187, 189

γ Ratio between magnet lengths in a quasi-Halbach
array

138, 140

γ Square-face cuboid magnet aspect ratio 80, 81, 84, 110, 120
δ Distance vector between a pair of corners/nodes

of two magnets, δ =
[
δx , δy , δz

]T xx, xxii, 61–63, 73



Nomenclature xxiii

Symbol Description Page
δ Maximum displacement bound 199, 201–203,

205–207
δ Displacement increment 110, 111, 113
ε Percentage difference between γ and γqzs 185, 186
ε Closest (normalised) allowable displacement from

quasi–zero stiffness to avoid instability
199, 201–203, 205,
207

ζ Damping ratio, 0.5c/
√

km. xxiv, 120, 208, 226,
232, 236

η Ratio between inclined and vertical spring lengths 180, 181, 183, 184,
186–190

ηk Nonlinearity measure 206–208, 210
θ Magnet rotation/inclination 67–70, 72, 108–112,

114, 117–120
ϑ Multipole array magnetisation rotation between

successive magnets
133–135, 146

ϑ0 Magnetisation direction of the first magnet in a
multipole array

133, 146

ϑxz Magnetisation direction in the x̂–ẑ plane of the
first magnet in a multipole array

146

ϑyz Magnetisation direction in the ŷ–ẑ plane of the
first magnet in a multipole array

146

κz,y ‘Stiffness’ between two magnetic nodes for cuboid
magnets magnetised in the ẑ and ŷ directions
respectively, used to calculate Kz,z

63, 64

κz,z ‘Stiffness’ between two magnetic nodes for cuboid
magnets magnetised in the ẑ direction, used to
calculate Kz,z

62, 63

κ Stiffness ratio 205
λ Multipole array wavelength 133–136, 139
µ Magnetic permeability of a material 30, 31, 49, 52
µ0 Magnetic permeability of the vacuum 48–52, 55, 57, 58,

61–65, 68, 73, 75, 76,
156–158, 164, 274

µr Relative permeability of a material 49, 50
ν Ratio of magnet length squared to face area 84
ξ Inclined spring normalised displacement in the

load bearing direction
182–185, 187, 188,
190

ρ Resistivity 166, 167
σ Conductivity 33
Φ Magnetic flux vector 52
φz,y ‘Force’ between two magnetic nodes for

orthogonally-magnetised cuboid magnets, used to
calculate Fz,y

63



xxiv Nomenclature

Symbol Description Page
φz,z ‘Force’ between two magnetic nodes for cuboid

magnets magnetised in the ẑ direction, used to
calculate Fz,z

61, 62, 73

φ Angular component of distance vector in
cylindrical coordinates

xv, 158, 163, 164

ϕ Inclined magnets planar rotation 116–123
ψ ‘Torque’ between two magnetic nodes for cuboid

magnets magnetised in the ẑ direction, used to
calculate Tz,z

73

ω Frequency xix–xxi, 7, 8, 10, 39,
40, 202, 204, 205,
226, 228, 230–232

ωd Resonance frequency, ωn
√

1− ζ2 200, 206, 207
ωn Natural frequency,

√
k/m xxiv, 107, 111, 179,

208, 224–226
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