
  

A Recoil Resilient  

Luminal Support 
Title 

by 

 
 

Arash Mehdizadeh 
 

B. Sc. (Computer Systems Engineering, Honours) 

Amirkabir University of Technology (Tehran Polytechnic), Iran, 2005 

 

M. Sc. (Computer Architecture Engineering, First Class) 

Amirkabir University of Technology (Tehran Polytechnic), Iran, 2008 

 

 

 

Thesis submitted for the degree of  

 

 
Doctor of Philosophy 

 
in 

 
School of Electrical & Electronic Engineering 

Faculty of Engineering, Computer & Mathematical Sciences 

The University of Adelaide, Australia 

 

 

April 2014 

  



Supervisors: 

Dr Said Al-Sarawi, School of Electrical & Electronic Engineering 

Prof. Derek Abbott, School of Electrical & Electronic Engineering 

  

Centre for 

Biomedical Engineering 

(CBME) 
  

  

© 2014 

Arash Mehdizadeh 

All Rights Reserved 



 

      Page i 

 

Contents 
 

Contents 

Contents ................................................................................................................................................ i 

Abstract ................................................................................................................................................ v 

Statement of Originality .................................................................................................................. ix 

Acknowledgments ............................................................................................................................ xi 

Conventions....................................................................................................................................... xv 

Publications & Awards .................................................................................................................. xvii 

List of Symbols ................................................................................................................................ xix 

Abbreviations .................................................................................................................................. xxv 

List of Figures ................................................................................................................................ xxvii 

List of Tables .................................................................................................................................. xxxi 

Chapter 1. Introduction and Motivation ......................................................................................... 1 

1.1 Abstract .................................................................................................................................... 2 

1.2 Atherosclerosis and Luminal Occlusion ............................................................................. 3 

1.3 Non-surgical Treatments ...................................................................................................... 5 

1.4 Surgical Treatments ............................................................................................................... 6 

1.4.1 Coronary Artery Bypass Grafting ............................................................................. 6 

1.4.2 Endarterectomy ........................................................................................................... 7 

1.4.3 Percutaneous Transluminal Angioplasty ................................................................ 8 

1.4.4 Stenting ......................................................................................................................... 9 

1.4.5 Atherectomy ............................................................................................................... 11 

1.5 Stents Current Status and the Future ................................................................................ 13 

1.5.1 Materials and Expansion Mechanism .................................................................... 15 

1.5.2 Material Form ............................................................................................................ 19 



Contents  

 

Page ii       

 

1.5.3 Fabrication Method ................................................................................................... 20 

1.5.4 Design and Geometrical Features ........................................................................... 23 

I. Coil Stents ............................................................................................................... 23 

II. Spiral Stents ........................................................................................................... 24 

III. Woven Stents ....................................................................................................... 25 

IV. Modular (sequential) Stents............................................................................... 25 

1.5.5 Stent Coatings and Surface Treatments ................................................................. 29 

1.5.6 Stenting Limitations and Mitigation Efforts .......................................................... 31 

I. Stent Recoil ............................................................................................................. 31 

I. Stent Thrombosis ................................................................................................... 32 

II. Restenosis .............................................................................................................. 33 

1.6 Chapter Summary ................................................................................................................ 35 

1.7 Thesis Overview ................................................................................................................... 37 

1.7.1 Thesis Structure and Original Contributions ........................................................ 37 

Chapter 2. A Recoil Resilient Luminal Support ......................................................................... 41 

2.1 Abstract .................................................................................................................................. 42 

2.2 Introduction........................................................................................................................... 43 

2.3 Design and Modelling ......................................................................................................... 47 

2.3.1 Free Expansion Analysis .......................................................................................... 47 

I. Materials and Methods ......................................................................................... 47 

II. Results .................................................................................................................... 51 

2.3.2 Radial Strength .......................................................................................................... 52 

2.3.3 Axial Strength and Feasible Improvements .......................................................... 54 

2.4 Fabrication ............................................................................................................................. 60 

2.4.1 Machining ................................................................................................................... 60 

2.4.2 Shaping ....................................................................................................................... 61 

I. Surface Profile ........................................................................................................ 62 

II. RRR Patency .......................................................................................................... 63 



 Contents 

 

      Page iii 

 

2.4.3 Experimental Results ................................................................................................ 64 

2.5 Chapter Summary ................................................................................................................ 69 

Chapter 3. Hemodynamic Risk Assessment by Computational Fluid Dynamics ................ 71 

3.1 Abstract .................................................................................................................................. 72 

3.2 Introduction .......................................................................................................................... 73 

3.3 Materials and Methods ........................................................................................................ 75 

3.3.1 Models Development ............................................................................................... 78 

3.3.2 Discretisation ............................................................................................................. 79 

3.3.3 Dimensional Analysis ............................................................................................... 81 

3.4 Results and Discussion ........................................................................................................ 83 

3.4.1 Part 1 – Unbranched Fluid Domain ........................................................................ 83 

I. LWSS in Unbranched Fluid Domains .................................................................. 83 

II. Drag Force in the Unbranched Domains ........................................................... 92 

3.4.2 Part 2 – Branched Fluid Domain ............................................................................. 94 

I. LWSS in Branched Fluid Domains ....................................................................... 94 

II. Drag Force and Output Flow Rate ..................................................................... 96 

3.4.3 Part 3 – Dimensional Analysis .............................................................................. 103 

I. Dimensional Assumptions and LWSS ............................................................... 104 

II. Dimensional Assumptions, Drag Force and Flow Supply ............................ 106 

III. Dimensional Assumptions, Final Notes ......................................................... 112 

3.5 Chapter Summary .............................................................................................................. 113 

Chapter 4. Thermal Actuation of the Recoil Resilient Ring .................................................... 117 

4.1 Abstract ................................................................................................................................ 118 

4.2 Introduction ........................................................................................................................ 118 

4.3 Materials and Methods ...................................................................................................... 121 

4.4 Theoretical Analysis ........................................................................................................... 124 

4.4.1 Results ...................................................................................................................... 134 

4.5 Numerical Analysis: Uniform Heat Transfer ................................................................. 136 



Contents  

 

Page iv       

 

4.5.1 Materials and Methods ........................................................................................... 137 

4.5.2 Results ....................................................................................................................... 139 

4.6 Numerical Analysis: Conjugate Heat Transfer .............................................................. 143 

4.6.1 Materials and Methods ........................................................................................... 143 

4.6.2 Results ....................................................................................................................... 147 

4.7 Experimental Results ......................................................................................................... 154 

4.7.1 Heat-induced Actuation in vitro ............................................................................ 157 

4.7.2 Heat-induced Actuation in Free Expansion ........................................................ 158 

4.7.3 Heat-induced Actuation Force .............................................................................. 160 

4.8 Electro-Thermal Actuation ................................................................................................ 164 

4.8.1 Theoretical Framework .......................................................................................... 165 

4.8.2 Numerical Analysis ................................................................................................. 169 

I. Materials and Methods ....................................................................................... 169 

II. Results .................................................................................................................. 172 

4.9 Chapter Summary .............................................................................................................. 176 

Chapter 5. Conclusion and Future Directions ........................................................................... 179 

5.1 Introduction......................................................................................................................... 180 

5.2 Contributions and Conclusions ........................................................................................ 181 

5.3 Recommendations for Future Work ................................................................................ 187 

5.4 Closing Comments ............................................................................................................. 188 

Bibliography .................................................................................................................................... 189 

Index .................................................................................................................................................. 209 

Biography ......................................................................................................................................... 215 

Scientific Genealogy ...................................................................................................................... 216 

 

 



 

      Page v 

 

Abstract 
 

Abstract 

Cardiovascular disease (CVD) refers to a class of diseases affecting normal function of 

cardiovascular system and its momentous role to carry oxygenated blood to the entire 

body. Taking lives of more than 17 million people in 2008, CVD has yet remained as the 

primary cause of deaths around the world. Statistics from World Health Organisation in 

2002 associated CVD with 10% of the disability-adjusted life years lost in low/middle- 

income countries and 18% in high-income countries. 

Atherosclerosis, as one of the primary causes of CVD, refers to the thickening of vascular 

walls due to deposition of fatty materials wherein it can lead to impeded or completely 

occluded blood flow. Obstruction of coronary arteries, referred to as coronary heart dis-

ease (CHD), is estimated to become the single leading health problem by 2020. Occur-

rence and further development of CHD is associated with a number of biological and 

environmental factors such as an individual’s genetic predisposition, lifestyle, climate 

conditions, exercise habits and emotions to name a few. 

Treatment and management of vascular constrictions consists of a combination of non-

surgical and surgical methods. The former includes approaches such as healthy lifestyle 

changes and pharmacological interventions while the later includes bypass grafting, bal-

loon angioplasty with or without deployment of a stent and atherectomy. Stents are me-

chanical devices that provide a chronic support against internal walls of occluded vessels 

to restore their normal luminal patency. In the past decade, stenting has prevailed as the 

conventional treatment option in management of CVD, exceeding current number of by-

pass grafting procedures, owing this success to its proven efficacy in short and long-term 

treatment of occluded vessels. Common stent structures are simply made of a metal 

mesh, e.g. stainless steel, and deployed in a blood vessel such as an artery during a per-

cutaneous coronary intervention procedure, also known as angioplasty. Several attempts 

to meet the often self-competing objectives of stents such as high radial strength, low 

elastic recoil, axial flexibility, trackability in tortuous paths, biocompatibility and radio-
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pacity gave birth to a multitude of different stent design and improvement iterations to 

date. The acute luminal gain after stenting is often compromised by the two most com-

mon post intervention complications, namely in-stent thrombosis (formation of blood 

clot) and restenosis (re-narrowing of the lesion). Induced trauma during stent deploy-

ment is proven to play a key role in the occurrence of these complications. Elastic recoil 

of stents after deployment due to the intrinsic material properties and the compressive 

forces from a vessel accounts for both acute and chronic luminal loss after stent deploy-

ment. Mitigation measures such as over-expansion in balloon-expandable (BE) stents and 

use of self-expandable (SE) stents so far have proven to aggravate vascular trauma lead-

ing to thrombosis and restenosis. Pharmacological approaches such as systemic admin-

istration of blood-thinners or localized drug release in drug-eluting (DE) stents aim to 

control these complications by inhibition of an accentuated inflammatory response from 

the body. Despite the promising results in reduction of restenosis after use of DE stents, 

increased rate of late thrombosis raised concerns about efficacy of these stents in compar-

ison with bare-metal (BM) stents. Moreover, it is important to note that in these ap-

proaches the mechanical aspect of the problem still stands. As a result, to meet the often-

competing aforementioned imperatives of stents, a new design paradigm is called for.  

To address the issue of recoil and extend capability of current stents to controlled and 

incremental expansion steps with alternative expansion mechanisms, in this thesis a 

novel recoil resilient stent is proposed and developed. The proposed luminal support 

called a recoil resilient ring (RRR) is an open ring with overlapping ends and asymmet-

rical sawtooth structures from the two ends that are intermeshed. Utilized as a 

standalone support or integrated with other stent structures, upon expansion of the RRR, 

the teeth from opposite ends can slide on top of each other, yet interlock step-by-step in 

the opposite direction so to keep the final expanded state against compressive forces that 

normally cause recoil.  

Design, fabrication and compatibility of the proposed stent with current state-of-the-art 

stent deployment procedures and its superior radial strength in comparison with com-

mercial stents are extensively studied in this thesis through finite element modelling 

(FEM) and experimental studies. The RRR is fabricated from Nitinol sheets with trans-

formation temperatures well above typical body temperature ensuring martensite mode 
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of operation of the device after deployment. Fabrication is carried out by linear pattern-

ing of Nitinol sheets of 200-µm thickness utilizing µEDM technology. Superior radial 

strength of the RRR in comparison with a commercial stent composed of the stiffer mate-

rial, stainless steel, is demonstrated via experimental and numerical studies. 

Hemodynamic risk assessment of the proposed design as a standalone and integrated 

support compared with a typical commercial stent is then carried out by transient com-

putational fluid dynamics (CFD). Subject to a realistic pulsatile blood flow, spatial and 

temporal restenosis risk indicators of three luminal supports are extensively studied uti-

lizing CFD. These luminal supports include a standalone RRR, a nominal BE stent and 

an RRR-integrated stent. Risk factors including extension of areas subject to low wall 

shear stress as the primary risk factor of restenosis after deployment, tendency of sup-

ports to migrate in response to fluid drag forces as well as flow supply changes to side 

branches are extensively investigated. Furthermore, sensitivity of the results to the di-

mensional assumptions of the deployment domain, branching vessels and patency of the 

supports is studied. Our results indicate superior hemodynamic performance of the 

standalone RRR compared with the others. In addition, close correspondence of the per-

formance indicators of RRR-integrated stent and the standalone stent demonstrates min-

imal hemodynamic footprint of the proposed RRR highlighting its merit as a viable 

luminal support given its superior radial strength.  

Attractive attributes such as shape memory effect of Nitinol, the thermally trained ex-

panded shape of the RRR, its unique incremental slide and lock expansion mechanism 

and its higher transformation temperature compared to the body temperature, bring new 

potential for alternative controlled and incremental actuation of the RRR. These alterna-

tive expansion methods, by application of direct or electrically-induced heat are further 

explored through extensive analytical, multi-field numerical and experimental studies. 

The knowledge and contributions made in the current work, in addition to the design, 

development, experimental and multi-field numerical results provide a general engineer-

ing framework applicable to other biomedical luminal supports in the future. 
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