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Abstract

Metamaterials are generally defined as periodic composite structures that are engi-
neered to modify the electromagnetic properties of materials, especially in order to
achieve new physically realizable responses that may not be readily available in na-
ture. The key to the application of metamaterial resonators for the synthesis of such
effective media is their small electrical size. This feature can be also exploited for the

miniaturization of planar circuits.

Motivated by the need for miniaturized planar structures in mobile wireless systems,
metamaterial-inspired structures are proposed throughout this thesis for the design of
compact microwave, millimeter-wave and terahertz planar structures with improved
performance. The thesis firstly proposes slow-wave and SRR-loaded coplanar strips
resonators for the design of compact high quality factor balanced resonators for 60 GHz
VCOs in CMOS technology. Next, the thesis is focused on the miniaturization of mi-
crowave filters either by proposing resonators with dual-band functionality or through
modifying the shape of metamaterial resonators. Shape modifications of metama-
terial resonators are also used for the design of high-dynamic-range one- and two-
dimensional displacement sensors as well as of a rotation sensor with improved dy-
namic range. It is further shown that high level of miniaturization can be achieved in
a single-layer S-shaped SRR (S-SRR), if the loops of the S-SRR are excited by contra-
directional magnetic fluxes, which makes the S-SRR very well suited for application
in coplanar waveguide (CPW) technology. The thesis also proposes the dual counter-
part of the S-shaped SRR, i.e., S-shaped complementary split ring resonator (5-CSRR)
for application in the design of compact differential bandpass filters with inherent
common-mode suppression. Finally, the application of SRRs to the design of compact
bandpass filters for terahertz surface waves on single wire waveguides—the so-called
planar Goubau lines (PGLs)—is studied numerically and experimentally. The results of
this research show the versatility and potential of metamaterial-inspired resonators for

the realization of miniaturized structures in planar technologies in different frequency
bands.
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