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Abstract: This paper considers the problem of observer-based H∞ controller design for a class
of discrete-time nonhomogeneous Markov jump systems with nonlinear input. Actuator sat-
uration is considered to be a nonlinear input of such system and the time-varying transition
probability matrix in the system is described as a polytope set. Furthermore, a mode-dependent
and parameter-dependent Lyapunov function is investigated and a sufficient condition is de-
rived to design observer-based controllers such that the resulting error dynamical system is
stochastically stable and a prescribed H∞ performance is achieved. Finally, estimation of at-
traction domain of such nonhomogeneous Markov jump systems is also made. A simulation
example shows the effectiveness of developed techniques.

Keywords: observer-based, H∞ control, nonhomogeneous Markov jump parameters, nonlinear
input.

1 Introduction

Markov jump systems (MJSs) [1] have very strong ability to model lots of practical systems ,
which evolves in Markov process or Markov chain, such as manufacturing systems, economic
systems, electrical systems and communication systems. MJSs are also appropriate and reason-
able to describe systems subject to abrupt variation in their structures or parameters, which
caused by failures of subsystems, sudden environmental changes, and system noises. It is a fact
that transition probability plays an important role in the performance of such systems, under
the assumption that the transition probabilities of MJSs are time invariant, some problems have
been studied, such as system analysis [2, 3], stochastic stability and stabilization [4], control
[5-12], fault detection and filtering [13-17], fault tolerant and estimation [18, 19] etc. Some work
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has also been done on systems with partially known or uncertain transition probability (see,
e.g., [20-24] and the references therein). However, in many practical systems, the transition
probability is not a constant matrix, but a time-varying and time-depended matrix. One exam-
ple is the failures and repairs of subsystems on discrete-time MJSs, which depends on system
age and working time deeply. On another point, one can only obtain some measured values
of the transition probability, these estimation values of probability bring in some time-varying
uncertainty inherently in transition matrix, which leads the nonhomogeneous Markov jump
systems [25]. Another example is networked control systems, as it is well known that packet
dropout and stochastic delays in the systems can be expressed by Markov process or Markov
chain. But in practice, delay or packet dropouts are changing in different periods, which results
in the time-varying transition probabilities, so it is a challenge to study such nonhomogeneous
Markov jump systems, and the investigation of control problem on MJSs subject to nonhomo-
geneous Markov process or Markov chain would be more useful and important. These motivate
our work in this paper.

On another research front line, we also interested in Markov jump systems with actuator satu-
ration nonlinear input. Actually, in some practical manufacture systems, one can not open the
valve of input unlimitedly, in lots of situations, a bound is required, however, this limitation
will change a linear system into a nonlinear one. It is also a well recognized fact that this
nonlinearity degrades system performance and even leads a stable system into an instable one.
Therefore, actuator saturation is probably the most dangerous nonlinearity in many manufac-
ture systems. Saturation nonlinearity has received increasing attention in recent years, and the
researchers have done some attempt on control problems of stochastic systems with actuator
saturation [26, 27].

In this paper, we will design observer-based H∞ controller for a class of nonhomogeneous MJSs
subject to actuator nonlinearity. This paper is organized as follows: Problem statement and
preliminaries of this paper are given in Section 2 and a series of definitions of actuator nonlin-
earity and stochastic systems are introduced. In Section 3, stochastic stability analysis of the
aforementioned systems are made in terms of LMIs. In Section 4, observer-based H∞ controller-
s for the nonhomogeneous Markov jump systems are designed. The estimation of attraction
domain is made in Section 5. A numerical example is given to illustrate the effectiveness of our
approach in Section 6. Finally, some concluding remarks are given in Section 7.

In the sequel, the notation Rn stands for a n-dimensional Euclidean space, the transpose
of a matrix is denoted by AT, E{·} denotes the mathematical statistical expectation of the
stochastic process or vector, Ln

2 [0,∞] stands for the space of n-dimensional square integrable
function vector over [0,∞], a positive-definite matrix is denoted by P > 0, I is the unit matrix
with appropriate dimensions, and ∗ means the symmetric term in a symmetric matrix, σ(·) is
the standard saturation function with appropriate dimensions.

2 Problem Statement and Preliminaries

Consider a probability space (M,F, P ) where M , F and P represent the sample space, the
algebra of events and the probability measure defined on F , respectively, then the following
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discrete-time Markov jump systems (MJSs) with actuator nonlinearity are considered in this
paper:


xk+1 = A(rk)xk +B(rk)σ(uk) +D(rk)wk

yk = C1(rk)xk

zk = C2(rk)xk

(2.1)

where xk ∈ Rn is the state vector of the system, uk ∈ Rm is the input vector of the sys-
tem, yk ∈ Rp is the output vector of the system, zk ∈ Rp is the controlled output vec-
tor of the system, wk ∈ Lq

2[0,∞] is the external disturbance vector of the system. σ(uk) =[
σ(u1k) σ(u2k) . . . σ(umk)

]T
and σ(ulk) = {sign(ulk)min{1, |ulk|}, l = 1, . . . ,m}, {rk, k ≥

0} is the concerned time-discrete Markov stochastic process which takes values in a finite state
set Λ = {1, 2, 3, . . . , N}, and r0 represents the initial mode, the transition probability matrix is
defined as Π(k) = {πij(k)}, i, j ∈ Λ, πij(k) = P (rk+1 = j|rk = i) is the transition probability

from mode i at time k to mode j at time k + 1, which satisfies πij(k) ≥ 0 and
N∑
j=1

πij(k) = 1.

For given vertices Πs(k), s = 1, . . . , w, the time varying transition matrix Π(k) of the nonho-
mogeneous Markov jump systems is constructed as

Π(k) =
w∑

s=1

αs(k)Π
s(k)

where

0 ≤ αs(k) ≤ 1,
w∑

s=1

αs(k) = 1

Hence, time-varying transition probability matrix of system (2.1) belongs to a polytope which
described by several vertices.

We design an observer-based controller for system (2.1) of the form


x̄k+1 = A(rk)x̄k +B(rk)σ(uk) +H(rk)(yk − ȳk)

ȳk = C1(rk)x̄k

uk = K(rk)x̄k

(2.2)

where x̄k and ȳk are the estimated state and output, H(rk) is the gain matrix of the designed
observer, and K(rk) is the gain matrix of the feedback controller.

For simplicity, when rk = i, i ∈ Λ, the matrices A(rk), B(rk), C1(rk), C2(rk), D(rk), H(rk) and
K(rk) are denoted as A(i), B(i), C1(i), C2(i), D(i), H(i) and K(i).

It is worth mentioning that if Π(k) is a constant matrix, we call the systems as homogeneous
Markov jump systems. In this paper, we consider the problem of observer-based H∞ controller
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design for nonhomogeneous Markov jump systems, in which Π(k) is a time varying matrix and
evolves in a polytope.

Before proceeding with the study, some concepts and Lemmas are given below:

Definition 2.1 Given a symmetric matrix P (i) > 0 for system (2.1), one can define a series
of ellipsoid sets as follows:

ε(P (i)) = {xk ∈ Rn : xT
kP (i)xk ≤ 1}

Definition 2.2 Given a matrix F (i) for system state in (2.1), one can denote fq(i) as the qth
row of the matrix F (i), and then, a symmetric polyhedron set is defined as follows:

Θ(F (i)) = {xk ∈ Rn : |fq(i)xk| ≤ 1, q = 1, 2, . . . ,m}

Lemma 2.1 [28] For given symmetric matrices R(i) > 0, and appropriate dimensioned matri-

ces Wp, if 0 ≤ εp ≤ 1 and
h∑

p=1
εp = 1, then

(
h∑

p=1

εpWp)
TR(i)(

h∑
p=1

εpWp) ≤
h∑

p=1

εpW
T
p R(i)Wp

Lemma 2.2 Consider R1 and R2 as positive definite symmetric matrices, then it holds

R1 +RT
1 −R2 ≤ R1R

−1
2 RT

1

Proof: As R2 is a positive definite symmetric matrix, we have

(R1 −R2)R
−1
2 (R1 −R2)

T ≥ 0

subsequently, the following inequality is derived

R1R
−1
2 RT

1 −R1 −RT
1 +R2 ≥ 0

then, the proof is completed.

Lemma 2.3 [28] Given matrices uk and vk for system (2.2), if |vk| < 1, then, σ(uk) =
2m∑
t=1

θt(Mtuk + M−
t vk), where 0 ≤ θt ≤ 1,

2m∑
t=1

θt = 1, Mt is a m × m diagonal matrix whose

diagonal elements are either 1 or 0, and M−
t = I −Mt.
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Remark 2.1 Given matrices vk = F (i)x̄k for system (2.2), if x̄k ∈ Θ(F (i)), that is |vk| < 1,

then, σ(K(i)x̄k) =
2m∑
t=1

θt(MtK(i) + M−
t F (i))x̄k. Obviously, {MtK(i) + M−

t F (i) : i ∈ [1, 2m]}
is the set formed by matrices, and these matrices are formed by choosing some rows from K(i)
and the remaining from F (i).

Recalling Lemma 2.3, one can denote x̄k ∈ Θ(F (i)), then, we have σ(K(i)x̄k) =
∑2m

t=1 θt(MtK(i)+
M−

t F (i))x̄k. Augmenting system (2.1) to include the states of the observer-based controller
(2.2), we obtain the resulting closed-loop system:

 x̂k+1 = Ă(i)x̂k + D̆(i)wk

zk = C̆(i)x̂k

(2.3)

where ek = xk − x̄k, x̂
T
k =

[
eTk xT

k

]
, Ă(i) =

2m∑
t=1

θt

 A(i)−H(i)C1(i) 0

−B(i)M̂t(i) A(i) +B(i)M̂t(i)


M̂t(i) = MtK(i) +M−

t F (i), D̆(i) =

 D(i)

D(i)

, C̆(i) =
[
0 C2(i)

]

Definition 2.3 For any initial mode r0 and a given initial state x̂0, system (2.3) (with K(i) =
0, F (i) = 0 and wk = 0) is stochastically stable if

lim
m→∞

E{
m∑
k=0

x̂T
k x̂k|x̂0, r0} < ∞ (2.4)

Definition 2.4 If there exists a positive scalar λ and a positive number Ñ(x̂0, r0) such that
system (2.3) satisfies condition (2.5) and condition (2.6), then, system (2.3) is stochastically
stable and satisfies a H∞ performance index

lim
m→∞

E{
m∑
k=0

x̂T
k x̂k|x̂0, r0} < Ñ(x̂0, r0) (2.5)

E

{ ∞∑
k=0

zTk zk

}
≤ λ2E

{ ∞∑
k=0

wT
k wk

}
(2.6)

We now state formally the purpose of the paper as follows: consider system (2.1) with time-
varying jump transition probabilities. Design a mode-dependent observer-based controller (2.2),
such that the resulting closed-loop system (2.3) is stochastically stable and satisfies a prescribed
H∞ performance index.
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3 Stochastic Stability

Let us first discuss the stochastic stability of the closed-loop system (2.3), in which the transition
probability is a time-varying matrix.

Theorem 3.1 For a given initial condition, system (2.3) (with K(i) = 0, F (i) = 0 and wk = 0)
is stochastically stable, if there exist a set of positive definite symmetric matrices P1s(i), P2s(i),
P1q(j) and P2q(j) such that

Ξ =


a11 a12 a13 a14

∗ a22 a23 a24

∗ ∗ a33 a34

∗ ∗ ∗ a44

 < 0 ∀i, j ∈ Λ (3.1)

where

a11 = −
w∑

s=1

αs(k)P1s(i)

a22 = −
w∑

s=1

αs(k)P2s(i)

a13 = (A(i)−H(i)C1(i))
T

a14 = 0, a24 = AT(i)

a33 = −(
N∑
j=1

w∑
s=1

w∑
q=1

αs(k)βq(k)π
s
ijP1q(j))

−1

a44 = −(
N∑
j=1

w∑
s=1

w∑
q=1

αs(k)βq(k)π
s
ijP2q(j))

−1

a12 = 0, a23 = 0, a34 = 0

0 ≤ αs(k) ≤ 1,
w∑

s=1

αs(k) = 1

0 ≤ βq(k) ≤ 1,
w∑

q=1

βq(k) = 1

Proof: Under conditions K(i) = 0, F (i) = 0 and wk = 0, system (2.3) is reduced to

 x̂k+1 = Â(i)x̂k

zk = C̆(i)x̂k

(3.2)

where
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Â(i) =

 A(i)−H(i)C1(i) 0

0 A(i)


A parameter-dependent and mode-depended Lyapunov function for system (3.2) is constructed
by using symmetric positive definite matrices P̂s(i) as follows:

V (x̂k, i) = x̂T
k

w∑
s=1

αs(k)P̂s(i)x̂k (i ∈ Λ)

where

P̂s(i) =

 P1s(i) 0

0 P2s(i)


Then, we have

∆V (x̂k, i) = E{V (x̂k+1, i)} − V (x̂k, i)

= x̂T
k [Â

T(i)
N∑
j=1

w∑
s=1

w∑
s=1

αs(k)αs(k + 1)πs
ijP̂s(j)Â(i)]x̂k

−x̂T
k

w∑
s=1

αs(k)P̂s(i)x̂k

Define
w∑

s=1

αs(k + 1)P̂s(j) =
w∑

q=1

βq(k)P̂q(j)

One has

∆V (x̂k, i) = x̂T
k [Â

T(i)(
N∑
j=1

w∑
s=1

w∑
q=1

αs(k)βq(k)π
s
ijP̂q(j))Â(i)]x̂k

−x̂T
k

w∑
s=1

αs(k)P̂s(i)x̂k

= x̂T
kΞx̂k

For system (3.2), condition (3.1) implies

∆V (x̂k, i) < 0 ∀i ∈ Λ

On the other hand, let

µ = min
k

{λmin(−Ξ)} ∀i ∈ Λ
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where λmin(−Ξ) is the minimal eigenvalue of −Ξ

then, it follows

∆V (x̂k, i) ≤ −µx̂T
k x̂k

Hence, we have

E{
T∑

k=0
∆V (x̂k, i)} = E{V (x̂T+1, i)} − V (x̂0, i)

≤ −µE{
T∑

k=0
∥x̂k∥2}

and the following inequality holds

E{
T∑

k=0
∥x̂k∥2} ≤ − 1

µ
(E(V (x̂T+1, i)− V (x̂0, i)))

≤ 1
µ
(E(V (x̂0, i)− V (x̂T+1, i)))

which implies

lim
T→∞

E{
T∑

k=0

∥x̂k∥2} ≤ 1

µ
V (x̂0, i)

From Definition 2.3, system (3.2) is stochastically stable with K(i) = 0, F (i) = 0 and wk = 0,
and this concludes the proof.

Denote Qs(i) = P−1
s (i), then, a sufficient condition for stochastic stability of system (3.2) can

be developed as below.

Theorem 3.2 For a given initial condition x̂0 = 0, system (2.3) (with K(i) = 0, F (i) = 0
and wk = 0) is stochastically stable, if there exist a set of positive definite symmetric matrices
Gs(i), Q1s(i), Q2s(i), Q1q(j) and Q2q(j) such that
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Φ1 =



b11 0
√
πs
i1G

T
s (i)Ã

T . . .
√
πs
iNG

T
s (i)Ã

T 0 . . . 0

∗ b22 0 0 0 b23 . . . b24

∗ ∗ −Q1q(1) 0 0 0 0 0

∗ ∗ ∗ . . . 0 0 0 0

∗ ∗ ∗ ∗ −Q1q(N) 0 0 0

∗ ∗ ∗ ∗ ∗ −Q2q(1) 0 0

∗ ∗ ∗ ∗ ∗ ∗ . . . 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q2q(N)



< 0 (3.3)

where

Ã = A(i)−H(i)C1(i)

b11 = −GT
s (i)−Gs(i) +Q1s(i), Q1s(i) = P−1

1s (i), Q1q(j) = P−1
1q (j)

b22 = −GT
s (i)−Gs(i) +Q2s(i), Q2s(i) = P−1

2s (i), Q2q(j) = P−1
2q (j)

b23 =
√
πs
i1G

T
s (i)A

T(i)

b24 =
√
πs
iNG

T
s (i)A

T(i)

Proof: First note that a sufficient condition for stochastic stability of system (2.3) is that all
the vertices of the polytope satisfy the desired stable requirements.

From Theorem 3.1, we have

Φ2 =



c11 0
√
πs
i1Ã

T . . .
√
πs
iN Ã

T 0 . . . 0

∗ c22 0 0 0 c23 . . . c24

∗ ∗ −Q1q(1) 0 0 0 0 0

∗ ∗ ∗ . . . 0 0 0 0

∗ ∗ ∗ ∗ −Q1q(N) 0 0 0

∗ ∗ ∗ ∗ ∗ −Q2q(1) 0 0

∗ ∗ ∗ ∗ ∗ ∗ . . . 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q2q(N)



< 0 (3.4)

where
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c11 = −P1s(i), c22 = −P2s(i)

c23 =
√
πs
i1A

T(i)

c24 =
√
πs
iNA

T(i)

Multiply Φ2 by ĜT
s (i) and Ĝs(i) on the left hand side and right hand side respectively

where

Ĝs(i) = diag
{
Gs(i) Gs(i) I · · · I I · · · I

}
then, we have

Φ3 =



d11 0
√
πs
i1G

T
s (i)Ã

T . . .
√
πs
iNG

T
s (i)Ã

T 0 . . . 0

∗ d22 0 0 0 b23 . . . b24

∗ ∗ −Q1q(1) 0 0 0 0 0

∗ ∗ ∗ . . . 0 0 0 0

∗ ∗ ∗ ∗ −Q1q(N) 0 0 0

∗ ∗ ∗ ∗ ∗ −Q2q(1) 0 0

∗ ∗ ∗ ∗ ∗ ∗ . . . 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q2q(N)



< 0 (3.5)

where d11 = −GT
s (i)P1s(i)Gs(i), d22 = −GT

s (i)P2s(i)Gs(i).

Recalling Lemma 2.2, it follows that

GT
s (i)P1s(i)Gs(i) ≥ GT

s (i)−Q1s(i) +Gs(i)

GT
s (i)P2s(i)Gs(i) ≥ GT

s (i)−Q2s(i) +Gs(i)

Therefore, it can be shown Φ1 < 0 guarantees Φ3 < 0, which completes the proof.

Remark 3.1 Note that the results obtained in Theorem 3.2 are sufficient conditions for the
stochastic stability of system (2.3) (with K(i) = 0, F (i) = 0 and wk = 0), and they are given
in terms of linear matrix inequalities.

4 Observer-based H∞ Controller Design

In this section, observer-based controllers will be designed for system (2.3) such that the system
is stochastically stable with a given H∞ performance index λ.
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Theorem 4.1 For given matrices Mt, M
−
t and w(t) = 0, system (2.3) is stochastically stable

under controller uk, if there exist a set of positive definite symmetric matrices P1s(i), P2s(i),
P1q(j) and P2q(j) such that

Ψ =



e11 e12 e13 e14

∗ e22 e23 e24

∗ ∗ e33 e34

∗ ∗ ∗ e44

 < 0 ∀i ∈ Λ (4.1)

ε(P̂s(i)) ∈ Θ(F̃ (i)) (4.2)

where

e11 = −
w∑

s=1

αs(k)P1s(i)

e22 = −
w∑

s=1

αs(k)P2s(i)

e13 = (A(i)−H(i)C1(i))
T

e14 =
2m∑
t=1

θt[−B(i)(MtK(i) +M−
t F (i))]T

e24 =
2m∑
t=1

θt(A(i) +B(i)(MtK(i) +M−
t F (i)))T

e33 = −(
N∑
j=1

w∑
s=1

w∑
q=1

αs(k)βq(k)π
s
ijP1q(j))

−1

e44 = −(
N∑
j=1

w∑
s=1

w∑
q=1

αs(k)βq(k)π
s
ijP2q(j))

−1

e12 = 0, a23 = 0, e34 = 0

0 ≤ αs(k) ≤ 1,
w∑

s=1

αs(k) = 1

0 ≤ βq(k) ≤ 1,
w∑

q=1

βq(k) = 1

P̂s(i) =

[
P1s(i) 0

0 P2s(i)

]
, F̃ (i) =

[
F (i) 0

0 F (i)

]
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Moreover, a suitable controller uk for system (2.3) is constructed as

uk =
2m∑
t=1

θt(MtK(i) +M−
t F (i))x̄k

Proof: Under condition (4.2), by Lemma 2.3, system (2.3) (with wk = 0) can be written as

 x̂k+1 = Ă(i)x̂k

zk = C̆(i)x̂k

(4.3)

A parameter-dependent Lyapunov-Krasovskii function for system (4.3) is constructed by using
symmetric positive definite matrices P̂s(i) as follows:

V (x̂k, i) = x̂T
k

w∑
s=1

αs(k)P̂s(i)x̂k (i ∈ Λ)

where

P̂s(i) =

 P1s(i) 0

0 P2s(i)


then, we have

∆V (x̂k, i) = E{V (x̂k+1, i)} − V (x̂k, i)

= x̂T
k [Ă

T(i)
N∑
j=1

w∑
s=1

w∑
s=1

αs(k)αs(k + 1)πs
ijP̂s(j)Ă(i)]x̂k

−x̂T
k

w∑
s=1

αs(k)P̂s(i)x̂k

where

Ă(i) =
2m∑
t=1

θt

 A(i)−H(i)C1(i) 0

−B(i)M̂t(i) A(i) + B(i)M̂t(i)


M̂t(i) = MtK(i) +M−

t F (i)

We define
w∑

s=1

αs(k + 1)P̂s(j) =
w∑

q=1

βq(k)P̂q(j)

From Lemma 2.1, we have the following

12



∆V (x̂k, i) = x̂T
k [

2m∑
t=1

θtĀ
T(i)(

N∑
j=1

w∑
s=1

w∑
q=1

αs(k)βq(k)π
s
ijP̂q(j))

2m∑
t=1

θtĀ(i)]x̂k

−x̂T
k

w∑
s=1

αs(k)P̂s(i)x̂k

= x̂T
kΨx̂k

where

Ā(i) =

 A(i)−H(i)C1(i) 0

−B(i)M̂t(i) A(i) +B(i)M̂t(i)


Under condition (4.2), for system (4.3), condition (4.1) implies

∆V (x̂k, i) < 0 ∀t ∈ [1, 2m]

We denote

η = min
k

{λmin(−Ψ)} ∀i ∈ Λ

where λmin(−Ψ) is the minimal eigenvalue of −Ψ

then

∆V (x̂k, i) ≤ −ηx̂T
k x̂k

Hence, we have

E{
T∑

k=0
∆V (x̂k, i)} = E{V (x̂T+1, i)} − V (x̂0, i)

≤ −ηE{
T∑

k=0
∥x̂k∥2}

and it follows:

E{
T∑

k=0
∥x̂k∥2} ≤ − 1

η
(E(V (x̂T+1, i)− V (x̂0, i)))

≤ 1
η
(E(V (x̂0, i)− V (x̂T+1, i)))

which implies
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lim
T→∞

E{
T∑

k=0

∥x̂k∥2} ≤ 1

η
V (x̂0, i)

From Definition 2.4, system (2.3) is stochastically stable with a suitable controller uk under
condition (4.2), and this concludes the proof.

Remark 4.1 In order to decrease the influences of disturbances, H∞ performance is considered
in the following, and the controllers designed will make system (2.3) stochastically stable and
satisfies a given H∞ performance index.

Theorem 4.2 For given matrices Mt, M
−
t (∀t ∈ [1, 2m], i ∈ Λ) and a positive scalar λ, system

(2.3) is stochastically stable, and it also satisfies condition (2.6) if there exist a set of positive
definite symmetric matrices Gs(i), Q1s(i), Q2s(i), Q1q(j) and Q2q(j) such that

Γ1 =



g11 0 0
√
πs
i1G

T
s (i)Ã

T . . .
√
πs
iNG

T
s (i)Ã

T g13 . . . g14 0

∗ g22 0 0 0 0 g23 . . . g24 g25

∗ ∗ −λ2I
√
πs
i1D

T(i) . . .
√
πs
iND

T(i)
√
πs
i1D

T(i) . . .
√
πs
iND

T(i) 0

∗ ∗ ∗ −Q1q(1) 0 0 0 0 0 0

∗ ∗ ∗ ∗ . . . 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −Q1q(N) 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −Q2q(1) 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ . . . 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q2q(N) 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I



< 0

(4.4)

ε(P̂s(i)) ∈ Θ(F̃ (i)) (4.5)

Moreover, a suitable controller uk for system (2.3) is constructed as

uk =
2m∑
t=1

θt(MtK(i) +M−
t F (i))x̄k

where

Ã = A(i)−H(i)C1(i)

g11 = −GT
s (i)−Gs(i) +Q1s(i), Q1s(i) = P−1

1s (i), Q1q(j) = P−1
1q (j)
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g22 = −GT
s (i)−Gs(i) +Q2s(i), Q2s(i) = P−1

2s (i), Q2q(j) = P−1
2q (j)

g13 =
√
πs
i1G

T
s (i)(−B(i)M̂t(i))

T

g14 =
√
πs
iNG

T
s (i)(−B(i)M̂t(i))

T

g23 =
√
πs
i1G

T
s (i)(A(i) +B(i)M̂t(i))

T

g24 =
√
πs
iNG

T
s (i)(A(i) +B(i)M̂t(i))

T

g25 = GT
s (i)C

T
2 (i)

Proof:

Introduce the following cost function for system (2.3) (with wk ̸= 0) as k > 0

J(∞) = E

{ ∞∑
k=0

zTk zk

}
− λ2E

{ ∞∑
k=0

wT
k wk

}
(4.6)

Under zero initial condition, index J(T ) can be rewritten as

J(T ) ≤ E

{
T∑

k=0

[zTk zk − λ2wT
k wk +∆V (x̂k, i)]

}
(4.7)

Recalling Theorem 4.1, under condition (4.5), it follows that

J(T ) ≤ E

{
T∑

k=0
[zTk zk − λ2wT

k wk +∆V (x̂k, i)]

}

= E

{
T∑

k=0
{[C2(i)xk]

T[C2(i)xk]− λ2wT
k wk +∆V (x̂k, i)}

}

≤ E

{
T∑

k=0
{[C2(i)xk]

T[C2(i)xk]− λ2wT
k wk}

}

+E

{
T∑

k=0
[
2m∑
t=1

θtĀ
T(i)(

N∑
j=1

w∑
s=1

w∑
q=1

αs(k)βq(k)π
s
ijP̂q(j))Ā(i)]

}

−E

{
T∑

k=0
x̂T
k

w∑
s=1

αs(k)P̂s(i)x̂k

}

A sufficient condition for system (2.3) to be stable is that all the vertices of the polytope satisfy
the desired stable requirements.

From Theorem 4.1, and recalling Schur Complement, we have

J(T ) ≤ x̃T
k Γ2x̃k
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where

x̃T
k =

[
eTk xT

k wT
k

]

Γ2 =



h11 0 0
√
πs
i1Ã

T . . .
√
πs
iN Ã

T h13 . . . h14

∗ h22 0 0 0 0 h23 . . . h24

∗ ∗ −λ2I
√
πs
i1D

T(i) . . .
√
πs
iND

T(i)
√
πs
i1D

T(i) . . .
√
πs
iND

T(i)

∗ ∗ ∗ −Q1q(1) 0 0 0 0 0

∗ ∗ ∗ ∗ . . . 0 0 0 0

∗ ∗ ∗ ∗ ∗ −Q1q(N) 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −Q2q(1) 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ . . . 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q2q(N)



< 0

(4.8)

and

h11 = −P1s(i), h22 = −P2s(i) + CT
2 (i)C2(i)

h13 =
√
πs
i1(−B(i)M̂t(i))

T

h14 =
√
πs
iN(−B(i)M̂t(i))

T

h23 =
√
πs
i1(A(i) +B(i)M̂t(i))

T

h24 =
√
πs
iN(A(i) +B(i)M̂t(i))

T

Multiply Γ2 by ḠT
s (i) and Ḡs(i) on the left hand side and right hand side respectively

where

Ḡs(i) = diag
{
Gs(i) Gs(i) I I · · · I I · · · I

}
then, we have
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Γ3 =



l11 0 0
√
πs
i1G

T
s (i)Ã

T . . .
√
πs
iNG

T
s (i)Ã

T g13 . . . g14 0

∗ l22 0 0 0 0 g23 . . . g24 g25

∗ ∗ −λ2I
√
πs
i1D

T(i) . . .
√
πs
iND

T(i)
√
πs
i1D

T(i) . . .
√
πs
iND

T(i) 0

∗ ∗ ∗ −Q1q(1) 0 0 0 0 0 0

∗ ∗ ∗ ∗ . . . 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −Q1q(N) 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −Q2q(1) 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ . . . 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q2q(N) 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I



< 0

(4.9)

where l11 = −GT
s (i)P1s(i)Gs(i) and l22 = −GT

s (i)P2s(i)Gs(i).

Recalling Lemma 2.2, it follows that

GT
s (i)P1s(i)Gs(i) ≥ GT

s (i)−Q1s(i) +Gs(i)

GT
s (i)P2s(i)Gs(i) ≥ GT

s (i)−Q2s(i) +Gs(i)

Thus, Γ1 < 0 guarantees Γ3 < 0, and under condition (4.5), Γ1 < 0 can be reduced to
inequality (4.1) by denoting w(t) = 0. On the other hand, for T → ∞, Γ1 < 0 results in
J(∞) < −V (x∞, i) < 0, that is

E

{ ∞∑
k=0

zTk zk

}
≤ λ2E

{ ∞∑
k=0

wT
k wk

}
(4.10)

Therefore, system (2.3) is stochastically stable, and it also satisfies the H∞ performance (2.6),
which concludes the proof.

Our next result deals with observer-based controller design for system (2.3) in terms of linear
matrix inequalities.

Theorem 4.3 For given matrices Mt, M
−
t , initial state x̂0 and a scalar λ > 0, system (2.3)

is stochastically stable in the region
w∩

s=1

N∩
i=1

ε(P̂s(i)), and it also satisfies condition (2.6) if there

exist a set of positive definite symmetric matrices Gs(i), Ps(i), Q1s(i), Q2s(i), Q1q(i) and Q2q(j),

and matrices K̂(i), F̂ (i) and Ĥ(i) such that
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Ω =



g11 0 0 m12 . . . m13 m14 . . . m15 0

∗ g22 0 0 0 0 m23 . . . m24 g25

∗ ∗ −λ2I
√
πs
i1D

T(i) . . .
√
πs
iND

T(i)
√
πs
i1D

T(i) . . .
√
πs
iND

T(i) 0

∗ ∗ ∗ −Q1q(1) 0 0 0 0 0 0

∗ ∗ ∗ ∗ . . . 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −Q1q(N) 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −Q2q(1) 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ . . . 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q2q(N) 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I



< 0

(4.11)

f̃T
q (i)f̃q(i) ≤ P̂s(i) (4.12)

An observer-based controller uk for system (2.3) can be constructed as

uk =
2m∑
t=1

θt(MtK(i) +M−
t F (i))x̄k

where f̃q(i) is the qth row of matrix F̃ (i), q = 1, 2, . . .m

K̂(i) = K(i)Gs(i)

F̂ (i) = F (i)Gs(i)

Ĥ(i) = H(i)C1(i)Gs(i)

m12 =
√
πs
i1(A(i)Gs − Ĥ(i))T

m13 =
√
πs
iN(A(i)Gs − Ĥ(i))T

m14 =
√
πs
i1G

T
s (i)(−B(i)MtK̂(i)−B(i)M−

t F̂ (i))T

m15 =
√
πs
iNG

T
s (i)(−B(i)MtK̂(i)−B(i)M−

t F̂ (i))T
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m23 =
√
πs
i1G

T
s (i)(A(i) +B(i)MtK̂(i) +B(i)M−

t F̂ (i))T

m24 =
√
πs
iNG

T
s (i)(A(i) +B(i)MtK̂(i) +B(i)M−

t F̂ (i))T

Proof:

From Theorem 4.2, we have Γ1 < 0 is equivalent to Ω < 0

where
K(i) = K̂(i)G−1

s (i), F (i) = F̂ (i)G−1
s (i)

On the other hand, a state ellipsoid set is given as follows

x̂T
k

w∑
s=1

αs(k)P̂s(i)x̂k ≤ 1

From Lemma 2.3, we define the system state evolves in the following set

f̃T
q (i)f̃q(i) ≤

w∑
s=1

αs(k)P̂s(i)

Hence, system (2.3) is stochastically stable and satisfies a H∞ performance index. This com-
pletes the proof.

5 Estimation of Attraction Domain

In this section, we estimate the attraction domain of system (2.3) with input nonlinearity and
the largest one is also given.

Theorem 5.1 For given initial condition x̂0, the attraction domain of system (2.3) (with wk =

0) is
w∩

s=1

N∩
i=1

ε(P̂s(i)), if there exist a set of positive definite symmetric matrices P̂s(i) such that



g11 0
√
πs
i1G

T
s (i)Ã

T . . .
√
πs
iNG

T
s (i)Ã

T g13 . . . g14

∗ g22 0 0 0 g23 . . . g24

∗ ∗ −Q1q(1) 0 0 0 0 0

∗ ∗ ∗ . . . 0 0 0 0

∗ ∗ ∗ ∗ −Q1q(N) 0 0 0

∗ ∗ ∗ ∗ ∗ −Q2q(1) 0 0

∗ ∗ ∗ ∗ ∗ ∗ . . . 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q2q(N)



< 0 (5.1)
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ε(P̂s(i)) ∈ Θ(F̃ (i)) (5.2)

Proof: A parameter-dependent Lyapunov-Krasovskii function for system (2.3) can be con-
structed by using a symmetric positive definite matrices P̂s(i) as follows:

V (x̂k, i) = x̂T
k

w∑
s=1

αs(k)P̂s(i)x̂k (i ∈ Λ)

then, it follows

∆V (x̂k, i) = E{V (x̂k+1, i)} − V (x̂k, i)

= x̂T
k [Ă

T(i)
N∑
j=1

w∑
s=1

w∑
s=1

αs(k)αs(k + 1)πs
ijP̂s(j)Ă(i)]x̂k

−x̂T
k

w∑
s=1

αs(k)P̂s(i)x̂k

From Theorem 4.1, system (2.3) is stochastically stable in the region
w∩

s=1

N∩
i=1

ε(P̂s(i)), and this

concludes the proof.

Next, the largest attraction domain of system (2.3) is given in the following theorem.

Theorem 5.2 For a given positive definite symmetric matrix S, the largest attraction domain

of (2.3) (with wk = 0) is
w∩

s=1

N∩
i=1

ε(P̂s(i)) , if there exist a set of positive definite symmetric

matrices P̂s(i), Qq(j) and a number γ > 0 such that

sup γ

s.t. LMIs (5.3), (5.4), (5.5)

where

g11 0
√
πs
i1G

T
s (i)Ã

T . . .
√
πs
iNG

T
s (i)Ã

T g13 . . . g14

∗ g22 0 0 0 g23 . . . g24

∗ ∗ −Q1q(1) 0 0 0 0 0

∗ ∗ ∗ . . . 0 0 0 0

∗ ∗ ∗ ∗ −Q1q(N) 0 0 0

∗ ∗ ∗ ∗ ∗ −Q2q(1) 0 0

∗ ∗ ∗ ∗ ∗ ∗ . . . 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q2q(N)



< 0 (5.3)
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ε(P̂s(i)) ∈ Θ(F̃ (i)) (5.4)

γε(S) ∈ Θ(F̃ (i)) (5.5)

Proof: In order to enlarge the attraction domain of system (2.3), condition (5.5) is proposed.
Under conditions (5.4) and (5.5), combining Theorem 5.1, one can obtain the stable condition
for each vertices of system (2.3). Therefore, system (2.3) is stochastically stable in region
w∩

s=1

N∩
i=1

ε(P̂s(i)). This completes the proof.

Remark 5.1 Note that in order to get the largest domain of attraction for system (2.3) subject
to actuator saturation and disturbance noises, for a given positive definite matrix S, Theorem
5.2 can be transformed into an optimization problem as follows

sup γ

s.t. LMIs (5.6), (5.7), (5.8)



g11 0 0 m12 . . . m13 m14 . . . m15 0

∗ g22 0 0 0 0 m23 . . . m24 g25

∗ ∗ −λ2I
√
πs
i1D

T(i) . . .
√
πs
iND

T(i)
√
πs
i1D

T(i) . . .
√
πs
iND

T(i) 0

∗ ∗ ∗ −Q1q(1) 0 0 0 0 0 0

∗ ∗ ∗ ∗ . . . 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −Q1q(N) 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −Q2q(1) 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ . . . 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q2q(N) 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I



< 0

(5.6)

ε(P̂s(i)) ∈ Θ(F̃ (i)) (5.7)

γε(S) ∈ ε(P̂s(i)) (5.8)
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and condition (5.8) can be transformed into the following inequality.

S

γ2
> P̂s(i) ∀i ∈ Λ (5.9)

We denote γ−2 = η, then, (5.9) becomes

 −ηS I

∗ −Q̂s(i)

 < 0 ∀i ∈ Λ (5.10)

where
P̂s(i) = Q̂−1

s (i)

Therefore, the largest attraction domain of system (2.3) is
w∩

s=1

N∩
i=1

ε(P̂s(i)).

Remark 5.2 Note that attraction domain is a set of system state, system states start from it
will remain in it. In order to enlarge the initial state set, we proposed Theorem 5.2 and Remark
5.1, and we can obtain the largest feasible region. Then, in simulation part, we can choose the
initial state region in this set, such that the system is stochastically stable and satisfies a given
H∞ performance index under the controller we designed.

6 Simulation Results

First, we consider a numerical example, the jump parameters are aggregated into 2 modes:

A(1) =

[
1.3 −0.45

0 1.1

]
, A(2) =

[
0 −0.29

0.9 1.5

]

B(1) =

[
0.5
1.1

]
, B(2) =

[
0.6
1.4

]

C1(1) =
[
0.1 0.2

]
, C1(2) =

[
0.3 0.1

]

C2(1) =
[
0.2 0.2

]
, C2(2) =

[
0.3 0.1

]

D(1) =

[
0.1
0.2

]
, D(2) =

[
0.1
0.2

]

The vertices of the time-varying transition probability matrix are given by
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Π1(k) =

[
0.2 0.8

0.35 0.65

]
, Π2(k) =

[
0.55 0.45

0.48 0.52

]

Π3(k) =

[
0.6 0.4

0.3 0.7

]
, Π4(k) =

[
0.4 0.6

0.9 0.1

]

Given λ = 0.5 and x0 =
[
5 −3

]T
and by Theorem 4.3, the state trajectories of stochastic

system, observer and the jumping modes are obtained, see Figures 1-3. Obviously, the states
of the system are stable under such observer-based controller.

0 5 10 15 20 25 30
−10

−5

0

5

10

t/s

S
ta

te
s 

T
ra

je
ct

or
ie

s 
X

2

 

 
system
observer

Figure 1: Trajectory of system state x1
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Figure 2: Trajectory of system state x2

Next, we consider a nonhomogeneous economic system [29], which are aggregated into 3 modes:


xk+1 = A(i)xk +B(i)σ(uk) +D(i)wk

yk = C1(i)xk

zk = C2(i)xk

(6.1)
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Figure 3: Jumping Modes

where

A(i) =

[
0 1

−w(i) 1− s(i) + w(i)

]
, B(i) =

[
0
1

]

C1(1) =
[
0.1 0

]
, C1(2) =

[
0.1 0.1

]
, C1(3) =

[
0.1 0.1

]

C2(1) =
[
1 0

]
, C2(2) =

[
1 1

]
, C2(3) =

[
0 1

]

D(1) =

[
0.1
0.2

]
, D(2) =

[
0.1
0.2

]
, D(3) =

[
0.2
0.2

]

xk represents the national income, and uk represents the investment of the government. The
coefficients s(i) and w(i) were computed and given as follows:

Mode Terminology Description

1 Norm s (or w) in mid-range

2 Boom s in low range (or w in high)

3 Slump s in high range (or w in low)

Table 1

i s(i) w(i)

1 2.5 0.3

2 43.7 -0.7

3 -5.3 0.9

Table 2
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And the vertices of the time-varying transition probability matrix are given below:

Π1(k) =


0.2 0.7 0.1

0.35 0.2 0.45

0.1 0.4 0.5

 , Π2(k) =


0.55 0.3 0.15

0.48 0.22 0.3

0.3 0.2 0.5



Π3(k) =


0.67 0.17 0.16

0.3 0.47 0.23

0.26 0.1 0.64

 , Π4(k) =


0.4 0.2 0.4

0.8 0.1 0.1

0.25 0.25 0.5


The initial state is given as x0 =

[
−0.5 −1

]T
Given λ = 0.1, by solving LMIs (4.11) - (4.12), the state trajectory of stochastic system and
jumping modes are obtained, see Figures 4-6. Obviously, the state of the system is stable under
such observer-based controller.
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Figure 4: Trajectory of system state x1
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Figure 5: Trajectory of system state x2
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7 Conclusions

In this paper, the issue on observer-based H∞ controller design for a class of nonhomogeneous
Markov jump systems is addressed. A polytope is used to express time-varying transition prob-
ability matrices, in which values of vertices are given, and then, actuator saturation nonlinearity
is expressed in terms of linear constraints on system states. An observer-based controller is de-
signed such that the resulting closed-loop dynamic system is stochastically stable and satisfies
a prescribed H∞ performance. Furthermore, the largest domain of attraction is also given. The
simulation result shows the effectiveness of the proposed techniques.

Acknowledgment

This work was partially supported by the National Key Basic Research Program (973), China
(No. 2012CB215202), the 111 Project (B12018), the National Natural Science Foundation of
China (Nos. 61174058, 61134007), the Engineering and Physical Sciences Research Council, UK
(EP/F029195), the Fundamental Research Funds for the Central Universities (JUDCF10032).

References

[1] E. K. Boukas, Stochastic switching systems: Analysis and design. Basel, Berlin: Birkhaus-
er, 2005.

[2] O. L. V. Costa, M. D. Fragoso, and R. P. Marques, Discrete-time Markovian jump linear
systems. London: Springer-Verlag, 2005.

[3] Z. Wu, P. Shi, H. Su, and J. Chu, Passivity analysis for discrete-time stochastic Markovian
jump neural networks with mixed time-delays, IEEE Trans on Neural Networks, vol. 22,
no. 10, pp. 1566-1575, 2011.

26



[4] L. Zhang, P. Shi, Stability, l2-Gain and asynchronous H-infinity control of discrete-time
switched systems with average dwell time, IEEE Trans on Automatic Control, vol. 54, no.
9, pp. 2193-2200, 2009.

[5] P. Shi, E. K. Boukas, H-infinity control for Markovian jumping linear systems with para-
metric uncertainties, J. Optimization Theory and Applications, vol. 95, no. 1, pp. 75-99,
1997.

[6] P. Shi, Y. Xia, G. Liu, and D. Rees, On designing of sliding mode control for stochastic
jump systems, IEEE Trans on Automatic Control, vol. 51, no. 1, pp. 97-103, 2006.

[7] V. Dragan, P. Shi, and E. K. Boukas, Control of singularly perturbed systems with Marko-
vian jump parameters: an H∞ approach, Automatica, vol. 35, no. 8, pp. 1369-1378, 1999.

[8] D. P. de Farias, J. C. Geromel, J. B. R. do Val, and O. L. V. Costa, Output feedback
control of Markov jump linear systems in continuous-time, IEEE Trans on Automatic
Control, vol. 45, no. 5, pp. 944-949, 2000.

[9] E. K. Boukas and Z. K. Liu, Robust H∞ control of discrete-time Markovian jump linear
systems with mode-dependent time-delays, IEEE Trans on Automatic Control, vol. 46, no.
12, pp. 1918-1924, 2001.

[10] Z. Hou and B. Wang, Markov skeleton process approach to a class of partial differential-
integral equation systems arising in operations research, International Journal of Innova-
tive Computing, Information and Control, vol. 7, no. 12, pp. 6799-6814, 2011.

[11] Y. Li, S. Tong, and Y. Li, Observer-based adaptive fuzzy backstepping control for strict-
feedback stochastic nonlinear systems with time delays, International Journal of Innovative
Computing, Information and Control, vol. 8, no. 12, pp. 8103-8114, 2012.

[12] K. Shih, T. S. Li, and S. Tsai, Observer-based adaptive fuzzy robust controller with self-
adjusted membership functions for a class of uncertain MIMO nonlinear systems: a PSO-
SA method, International Journal of Innovative Computing, Information and Control, vol.
8, no. 2, pp. 1419-1437, 2012.

[13] Y. Yin, P. Shi, and F. Liu, Gain-scheduled robust fault detection on time-delay stochastic
nonlinear systems, IEEE Trans on Industrial Electronics, vol. 58, no. 10, pp. 4908-4916,
2011.

[14] P. Shi, E. K. Boukas, and R. Agarwal, Kalman filtering for continuous-time uncertain
systems with Markovian jumping parameters, IEEE Trans on Automatic Control, vol. 44,
no. 8, pp. 1592-1597, 1999.

[15] L. Wu, P. Shi, H. Gao, and C. Wang. Robust H-infinity filtering for 2-D Markovian jump
systems, Automatica, vol. 44, no. 7, pp. 1849-1858, 2008.

[16] H. Dong, Z. Wang, D. Ho, and H. Gao, Robust H-infinity filtering for Markovian jump
systems with randomly occurring nonlinearities and sensor saturation: the finite-horizon
case, IEEE Trans on Signal Processing, vol. 59, no. 7, pp. 3048-3057, 2011.

27



[17] J. Liu, Z. Gu, and S. Hu, H∞ filtering for Markovian jump systems with time-varying
delays, International Journal of Innovative Computing, Information and Control, vol. 7,
no. 3, pp. 1299-1310, 2011.

[18] M. Liu, P. Shi, L. Zhang, and X. Zhao, Fault tolerant control for nonlinear Markovian jump
systems via proportional and Derivative sliding mode observer, IEEE Trans on Circuits
and Systems I: Regular Papers, vol. 58, no. 11, pp. 2755-2764, 2011.

[19] L. Wu, P. Shi, and H. Gao, State estimation and sliding mode control of Markovian jump
singular systems, IEEE Trans on Automatic Control, vol. 55, no. 5, pp. 1213-1219, 2010.

[20] L. Zhang and E. K. Boukas, Mode-dependent H∞ filtering for discrete-time Markovian
jump linear systems with partly unknown transition probabilities, Automatica, vol. 45, no.
6, pp. 1462-1467, 2009.

[21] Y. Yin, P. Shi, and F. Liu, Gain scheduled PI tracking control on stochastic nonlinear
systems with partially known transition probabilities, J. of Franklin Institute, vol. 348, no.
4, pp. 685-702, 2011.

[22] L. Zhang and E. K. Boukas, H∞ control for discrete-time Markovian jump linear sys-
tems with partly unknown transition probabilities, International Journal of Robust and
Nonlinear Control, vol. 19, no. 8, pp. 868-883, 2009.

[23] J. Xiong, J. Lam, H. Gao, and D. W. C. Ho, On robust stabilization of Markovian jump
systems with uncertain switching probabilities, Automatica, vol. 41, no. 5, pp. 897-903,
2005.

[24] L. Zhang, H∞ estimation of discrete-time piecewise homogeneous Markov jump linear
systems, Automatica, vol.45, no. 11, pp. 2570-2576, 2009.

[25] S. Aberkane, Stochastic stabilization of a class of nonhomogeneous Markovian jump linear
systems, Systems & Control Letters, vol. 60, no. 3, pp. 156-160, 2011.

[26] H. Liu, E. K. Boukas, F. Sun, and W. C. Daniel, Controller design for Markov jumping
systems subject to actuator saturation, Automatica, vol. 42, no. 3, pp. 459-465, 2006.

[27] H. Liu, F. Sun, and E. K. Boukas, Robust control of uncertain discrete-time Markovian
jump systems with actuator saturation, International Journal of Control, vol.79, no. 7, pp.
805-812, 2006.

[28] Y. Cao, Z. Lin, and Y. Shamash, Set invariance analysis and gain-scheduling control for
LPV systems subject to actuator saturation, Systems & Control Letters, vol. 46, no. 2, pp.
137-151, 2002.

[29] W. P. Blair, D. D. Sworder, Feedback control of a class of linear discrete systems with
jump parameters and quadratic cost criteria, International Journal of Control, vol. 21, no.
5, pp. 833-841, 1975.

28




