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Abstract

Quantisation of a signal or data source refers to the division or classification of that

source into a discrete number of categories or states. It occurs, for example, when

analog electronic signals are converted into digital signals, or when a large amount of

data is binned into histograms. By definition, quantisation is a lossy process, which

compresses data into a more compact representation, so that the number of states in

a quantiser’s output are usually far fewer than the number of possible input values.

Most existing theory on the performance and design of quantisation schemes specify

only deterministic rules governing how data is quantised.

By contrast, stochastic quantisation is a term intended to pertain to quantisation where

the rules governing the assignment of input values to output states are stochastic, rather

than deterministic. One form of stochastic quantisation that has already been widely

studied is dithering. However, the stochastic aspect of dithering is usually restricted

so that it is equivalent to adding random noise to a signal, prior to quantisation. The

term stochastic quantisation is intended to be far more general, and apply to the situation

where the rules of the quantisation process are stochastic.

The inspiration for this study comes from a phenomenon known as stochastic resonance,

which is said to occur when the presence of noise in a system provides a better perfor-

mance than the absence of noise. Specifically, this thesis discusses a particular form

of stochastic resonance known as suprathreshold stochastic resonance, which occurs

in an array of identical, but independently noisy threshold devices, and demonstrates

how this effect is essentially a form of stochastic quantisation.

The motivation for this study is two fold. Firstly, stochastic resonance has been ob-

served in many forms of neurons and neural systems, both in models and in real phys-

iological experiments. The model in which suprathreshold stochastic resonance occurs

was designed to model a population of neurons, rather than a single neuron. Unlike sin-

gle neurons, the suprathreshold stochastic resonance model supports stochastic reso-

nance for input signals that are not entirely or predominantly subthreshold. Hence,

it has been conjectured that the suprathreshold stochastic resonance effect is utilised

by populations of neurons to encode noisy sensory information, for example, in the

cochlear nerve.
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Abstract

Secondly, although stochastic resonance has been observed in many different systems,

in a wide variety of scientific fields, to date very few applications inspired by stochas-

tic resonance have been proposed. One of the reasons for this is that in many circum-

stances, utilising stochastic resonance to improve a system is sub-optimal when com-

pared to systems optimised to operate without requiring stochastic resonance. How-

ever, given that stochastic resonance is so widespread in nature, and that many new

technologies have been inspired by natural systems—particularly biological systems—

applications incorporating aspects of stochastic resonance may yet prove revolutionary

in fields such as distributed sensor networks, nano-electronics and biomedical pros-

thetics.

Hence, as a necessary step towards confirming the above two hypotheses, this thesis

addresses in detail for the first time various theoretical aspects of stochastic quantisa-

tion, in the context of the suprathreshold stochastic resonance effect. The original work

on suprathreshold stochastic resonance considers the effect from the point of view of an

information channel. This thesis comprehensively reviews all such previous work. It

then extends such work in several ways; firstly, it considers the suprathreshold stochas-

tic resonance effect as a form of stochastic quantisation; secondly it considers stochastic

quantisation in a model where all threshold devices are not necessarily identical, but

are still independently noisy; and thirdly, it considers various constraints and tradeoffs

in the performance of stochastic quantisers.
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Chapter 1

Introduction and
Motivation

W
E begin by briefly outlining the background and motiva-

tion for the research described in this thesis, before giving

an overview of each chapter, and pointing out the most

significant contributions.
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1.1 Background and Motivation

1.1 Background and Motivation

Although the methodology used to perform the research contained in this thesis is

firmly within the fields of signal processing and applied mathematics, the motivation

is interdisciplinary in nature.

The initial open questions that inspired this PhD research were (i) how might neurons

make use of a phenomenon known as stochastic resonance, and (ii) how might a path

towards engineering applications inspired by these studies be initiated?

Stochastic resonance (SR) is a counter-intuitive phenomenon where the presence of

noise in a system is essential for optimal system performance. It is an effect that has

been observed to occur in many systems, including both in neurons, and in electronic

circuits. The term ‘resonance’ was originally used because the signature feature of SR

is that a plot of output signal-to-noise ratio (SNR) has a single maximum, for some

nonzero input noise intensity. Such a plot, as shown in Fig. 1.1, has a similar appear-

ance to frequency dependent systems that have a maximum SNR, or output response,

for some resonant frequency. However, in the case of SR, the resonance is ‘noise in-

duced,’ rather than at a particular frequency.

← Stochastic Resonance Peak

Noise magnitude

O
ut

pu
t S

N
R

Figure 1.1. Typical stochastic resonance plot. This plot shows the typical curve of output SNR

vs input noise magnitude, for systems capable of stochastic resonance. For small and

large noise values, the output SNR is very small, while some intermediate nonzero noise

value provides the maximum output SNR.

The motivation for the research undertaken in this thesis is that, since we know the

brain is far better at many tasks compared to electronic and computing devices, then

maybe we can learn something from the brain. If we can ultimately better understand
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Chapter 1 Introduction and Motivation

the possible role of SR in the brain and nervous system, we may also be able to improve

aspects of electronic systems.

1.1.1 Stochastic Resonance and Sensory Neural Coding

Although it is important to have an overall vision, in practical terms it is necessary to

consider a concrete starting point. This research therefore began by investigating an

exciting new development in the field of SR, known as suprathreshold stochastic reso-

nance (SSR) (Stocks 2000a). Suprathreshold stochastic resonance occurs in an array of

simple threshold devices. Each individual threshold device receives the same signal,

but is subject to independent additive input noise. The output of each device is a binary

signal, which is unity if the input is greater than the threshold value, and zero other-

wise. The overall output of the SSR model is the sum of the individual binary signals.

Originally, all threshold devices were considered to have the same threshold value.

Previous research into SSR considers the effect from the point of view of information

transmission, and the model in which SSR occurs as a communication channel. Fur-

thermore, the model in which SSR occurs was originally inspired by questions of sen-

sory neural coding in the presence of noise. Unlike previously studied forms of SR,

either in neurons or simple threshold based systems, SR can occur in such a model for

signals that are not entirely or predominantly subthreshold. Although each threshold

device in the SSR model is very simple, in comparison with more realistic neural mod-

els, such devices have actually been used to model neurons, under the name of the

McCulloch-Pitts neural model (McCulloch and Pitts 1943).

The aim of the research undertaken for this thesis was to comprehensively investi-

gate all known theoretical and numerical results on SSR, and extend this theory. It

is anticipated that the results presented here will form a launching pad for future re-

search into the specific role that SSR may play in real neural coding. Note that the

goal is not to prove that living systems actively exploit SR or SSR—these are ongoing

research areas, in the domain of neurophysiology and biophysics. Rather, our start-

ing point is the theoretical mathematical underpinning of SR-type effects in the very

simple McCulloch-Pitts model.

This is in-line with the time-honoured approach in physics and engineering: namely,

to begin with the simplest possible model. As this thesis unfolds, it will be seen that

the analysis of SR in arrays of such simplified neural models gives rise to rich complex
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phenomena and also to a number of surprises. Explanation, or indeed, discovery, of

these effects would not have been tractable if the starting point was an intricate neural

model. Analysis of the simple model lays the foundation for adding further complexi-

ties in the future.

The intention is that the mathematical foundation provided by this thesis will assist

future neurophysiologists into asking the right questions and in performing the right

experiments when establishing if real neurons actively exploit SSR. In the meantime,

this thesis also contributes to the application of SSR in artificial neural and electronic

systems.

1.1.2 Low Signal-to-Noise Ratio Systems and Sensor Networks

Another motivation for this research is the important problem of overcoming the ef-

fects of noise in sensors and signal and data processing applications. For example, mi-

croelectronics technologies are shrinking, and are beginning to approach the nanoscale

level (Martorell et al. 2005). At this scale, device behaviour can change and noise levels

can approach signal levels. For such small SNRs, it may be impossible for traditional

noise reduction methods to operate, and it may be that optimal circuit design needs to

make use of the effects of SR.

A second area of much current research is that of distributed sensor networks (Akyil-

diz et al. 2002, Pradhan et al. 2002, Chong and Kumar 2003, Iyengar and Brooks 2004,

Martinez et al. 2004, Xiong et al. 2004). Of particular interest to this thesis is the problem

where it is not necessarily a network of complete sensors that is distributed, but it is ac-

tually the data acquisition or compression that is distributed (Berger et al. 1996, Draper

and Wornell 2004, Pradhan et al. 2002, Xiong et al. 2004, Pradhan and Ramchandran

2005). A key aspect of such a scenario is that data is acquired from a number of in-

dependently noisy sources, that do not cooperate, and is then fused by some central

processing unit. In the information theory and signal processing literature, this is re-

ferred to as distributed source coding or distributed compression.

Given that the SSR effect overcomes a serious limitation of all previously studied forms

of SR, a complete theoretical investigation of its behaviour may lead to new design

approaches to low SNR systems, or data acquisition and compression in distributed

sensor networks.
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1.2 Specific Research Questions

1.2.1 From Stochastic Resonance to Stochastic Quantisation

During the course of the research contained in this thesis, it became apparent that the

SSR effect is equivalent to a noisy, or stochastic, quantisation of a signal (Widrow et al.

1996). Consequently, as well as describing its behaviour from the perspective of infor-

mation transmission, it is equally valid to describe it from the perspective of information

compression, or more specifically, lossy compression. Note that quantisation of a signal is

a form of lossy compression (Berger and Gibson 1998, Gray and Neuhoff 1998).

The distinguishing feature of SSR that sets it apart from conventional forms of quan-

tisation, is that conventionally, the rules that specify a quantiser’s operation are con-

sidered to be fixed and deterministic. In contrast, when the SSR effect is viewed as

quantisation, the governing rules are a set of independent random variables. Hence,

we often refer to the SSR model’s output as a stochastic quantisation.

Given this perspective, there are three immediate research questions that can be asked:

• Can we describe the SSR effect in terms of conventional quantisation and com-

pression theory?

• Given that a question addressed in all SR research is that of finding the opti-

mal noise conditions, what noise intensity optimises the performance of the SSR

model, when it is described as a quantiser?

• How good is the SSR effect at quantisation when compared with conventional

quantisers?

The underlying theme of this thesis is to address these three questions.

1.3 Thesis Overview and Original Contributions

This thesis consists of ten chapters, as follows:

• Chapter 1, the current chapter, provides the background and motivation for the

work described in this thesis, and gives an overview of its original contributions

to knowledge.
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• Chapter 2 contains a detailed overview of the historical landscape against which

this thesis is set. It defines stochastic resonance and quantisation and gives a detailed

literature review of SR, with particular emphasis on aspects relevant to quanti-

sation. Chapter 2 is deliberately sparse in equations and devoid of quantitative

results, but does provide qualitative illustrations of how SR works.

• Chapter 3 provides results that are somewhat peripheral to the main scope of this

thesis, but that will prove useful for readers unfamiliar with, or confused about

SR.

• Chapters 4 and 5 begin the main focus of the thesis, by defining the SSR model,

giving a detailed literature review of all previous research on SSR, and replicating

all the most significant theoretical results to date. These two Chapters consider

only the original concept of the SSR model as a communications channel. In par-

ticular, we examine how the mutual information between the input and output

of the SSR model varies with noise intensity. A subset of these results pertain

specifically to a large number of individual threshold devices in the SSR model.

Chapter 5 is devoted to replicating all such previous results, as well as develop-

ing new results in this area, while Chapter 4 focuses on more general behaviour.

• Chapters 6 and 7 contain original work on the description of the SSR model as a

quantiser. There are two main aspects to such a description. Firstly, quantisers

are specified by two operations: an encoding operation and a decoding opera-

tion. The encoding operation assigns ranges of values of the quantiser’s input

signal to one of a finite number of output states. The decoding operation ap-

proximately reconstructs the original signal, by assigning ‘reproduction values’

to each encoded state. In contrast to conventional quantisers, the SSR model’s

encoding is stochastic, as the output state for given input signal values is nonde-

terministic. However, it is possible to decode the SSR output in a similar manner

to conventional quantisers, and we examine various ways to achieve this. The

second aspect we consider is the performance of the decoded SSR model. Since

the decoding is designed to approximate the original signal, performance is mea-

sured by the average properties of the error between this original signal, and the

quantiser’s output approximation. Conventionally, mean square error distortion

is used to measure this average error, and we examine in detail how this measure

varies with noise intensity, the decoding scheme used, and the number of thres-

hold devices in the SSR model. As with Chapters 4 and 5, Chapter 6 focuses on
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general behaviour, while Chapter 7 is devoted to discussion of the SSR model in

the event of a large number of individual threshold devices.

• Chapter 8 contains original work that extends the SSR model beyond its original

specification. We relax the constraint that all individual threshold devices must

have identical threshold values, and allow each device to have an arbitrary thres-

hold value. We then consider how to optimally choose the set of threshold values

as the noise intensity changes. The most important result of this study is the nu-

merical demonstration that the SSR model—where all threshold devices have the

same threshold value—is optimal, for sufficiently large noise intensity.

• Motivated by recent neural-coding research, Chapter 9 further extends the SSR

model, by including a constraint on the energy available to the system. The per-

formance of a quantiser is characterised by two opposing factors: rate, and dis-

tortion. Chapter 9 also explores the SSR model, and its extension to arbitrary

thresholds, from the point of view of rate-distortion theory.

• Finally, Chapter 10 concludes this thesis, by summarising its major results, and

pointing out areas for possible further research.

This concludes Chapter 1. Without further ado, we now in Chapter 2 take a historical

tour of prior research in the areas of SR and quantisation theory.
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Chapter 2

Historical Landscape

B
Y definition, quantisation schemes are noisy in that some infor-

mation about a measurement or variable is lost in the process

of quantisation. Other systems are subject to stochastic forms of

noise that interfere with the accurate recovery of a signal, or cause inaccura-

cies in measurements. However stochastic noise and quantisation can both

be incredibly useful in natural processes or engineered systems. One way

in which noisy behaviour can be useful is through a phenomenon known as

stochastic resonance. The first main section of this chapter, Section 2.2, de-

fines stochastic resonance and explores its history, with a particular empha-

sis on forms of stochastic resonance where the thresholding of random sig-

nals occurs. An important example where this occurs is in the generation of

action potentials by spiking neurons. Thresholding a random signal can be

described as a form of stochastic quantisation and hence Section 2.3 gives

a brief history of standard quantisation theory. Such results and research

have come mainly from the electronic engineering community, where quan-

tisation needs to be understood for the very important process of analog-to-

digital conversion—a fundamental requirement for the plethora of digital

systems in the modern world. This chapter is entirely qualitative. Illustra-

tive examples of stochastic resonance in threshold systems are given, but

mathematical and numerical details are left for subsequent chapters.
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2.1 Introduction

2.1.1 Chapter Structure

This Chapter is intended to set the context for the original work contained in this the-

sis. There are two sections; the first explores the history of stochastic resonance, and

particularly the concept of stochastic resonance in threshold systems. The second sec-

tion briefly outlines the concept of quantisation, and its role in digital systems and

analog-to-digital conversion.

2.2 Stochastic Resonance

Stochastic Resonance (SR), although a term originally used in a very specific context,

is now broadly applied to describe any phenomenon where the presence of internal

noise or external input noise in a nonlinear system provides a better—according to

some measure of performance—system response to a certain input signal than in the

absence of noise. The key term here is nonlinear. SR cannot occur in a linear system—

linear in this sense means that the output of the system is a linear transformation of

the input of the system. A wide variety of performance measures have been used—we

will discuss some of these later.

The term stochastic resonance was first used in this context in 1980 (Benzi 1980), and

since then has been used—according to the ISI Web of Science database—in around

2000 publications, over a period of a quarter of a century. The frequency of publication,

by year, of these papers is shown in Fig. 2.1. This figure illustrates how the use of the

term expanded rapidly in the 1990s, and may possibly have plateaued in the 2000s.

SR has been the subject of many reviews, including full technical journal articles (Jung

1993, Moss et al. 1994, Dykman et al. 1995, Gammaitoni et al. 1998, Wiesenfeld and

Jaramillo 1998, Luchinsky et al. 1999, Luchinsky et al. 1999, Anishchenko et al. 1999,

Hänggi 2002, Harmer et al. 2002, Wellens et al. 2004, Shatokhin et al. 2004, Moss et al.

2004), editorial works (Bulsara et al. 1993, Astumian and Moss 1998, Petracchi et al.

2000, Abbott 2001), a book chapter (Wiesenfeld 1993) and magazine articles (Wiesen-

feld 1993, Moss and Wiesenfeld 1995). There have been articles and letters on SR pub-

lished in the prestigious journal, Nature (Douglass et al. 1993, Moss et al. 1993, Wiesen-

feld and Moss 1995, Moss and Pei 1995, Bezrukov and Voydanoy 1995, Collins et al.
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1995, Noest 1995, Collins et al. 1995b, Levin and Miller 1996, Bezrukov and Voydanoy

1997, Astumian et al. 1997, Dykman and McClintock 1998, Collins 1999, Bulsara 2005,

Badzey and Mohanty 2005). A book has been written exclusively on SR (Ando and

Graziani 2000), as well as a large section of another book (Anischenko et al. 2002), and

sections on SR written in a popular science book (von Baeyer 2003).

SR has been widely observed throughout nature—it has been discovered in such di-

verse systems as climate models (Benzi et al. 1982), electronic circuits (Fauve and Heslot

1983), differential equations (Benzi et al. 1985), ring lasers (McNamara et al. 1988), semi-

conductor lasers (Iannelli et al. 1994), neural models (Bulsara et al. 1991, Longtin et al.

1991), physiological neural populations (Douglass et al. 1993), chemical reactions (Leo-

nard and Reichl 1994), ion channels (Bezrukov and Voydanoy 1995), SQUIDs (Super-

conducting Quantum Interference Devices) (Hibbs et al. 1995), ecological models (Bla-

rer and Doebeli 1999), cell biology (Paulsson and Ehrenberg 2000, Paulsson et al. 2000),

financial models (Mao et al. 2002), and even social systems (Wallace et al. 1997). A

slightly more exhaustive, albeit older, list is given in Luchinsky et al. (1998).

The first highly successful application inspired by SR involves the use of electrically

generated subthreshold stimuli in biomedical prosthetics to improve human balance

control and somatosensation (Priplata et al. 2004, Priplata et al. 2003, Collins et al. 2003,

Harry et al. 2005). This work led to James J. Collins winning a prestigious MacArthur

Fellowship (Harry et al. 2005).

SR is often described as a counter-intuitive phenomenon. This is largely due to its

historical background, since in the first decade and a half since its ’discovery’ in 1980,

virtually all research into SR considered only systems driven by periodic—most often a

sine-wave—input signals and broadband noise. In such systems, a natural measure of

system performance is the output signal-to-noise ratio (SNR), or more precisely, often

the ratio of the output Power Spectral Density (PSD) at the input frequency, to the

output noise floor PSD. In linear systems driven by periodic input signals—in fact,

any linear system—it is well known that the output SNR is maximised in the absence

of noise. When systems are analysed in terms of SNR, it is the norm to implicitly

assume that noise is a problem, usually with good reason. Hence, observations of the

presence of noise in a system providing the maximum output SNR are often seen to be

highly counter-intuitive.
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Figure 2.1. Frequency of stochastic resonance papers by year. This plot shows the frequency

of stochastic resonance papers by year—between 1980 and 2004—according to the

ISI web of knowledge database. There are several epochs in which large increases in

the frequency of SR papers occurred. The first of these is between 1989 and 1992,

when the most significant events were the first papers examining SR in neural mod-

els (Bulsara et al. 1991, Bulsara and Moss 1991, Longtin et al. 1991), and the descrip-

tion of SR by linear response theory—see Dykman et al. (1995) for a review. The second

epoch is between about 1993 and 1996, when the most significant events were the ob-

servation of SR in physiological experiments on neurons (Douglass et al. 1993, Levin

and Miller 1996), the popularisation of array enhanced SR (Linder et al. 1994), and of

Aperiodic Stochastic Resonance (ASR) (Collins et al. 1995a). Around 1997, a steady

increase in SR papers occurred, as investigations of SR in neurons and ASR became

widespread. A rough plateau in growth appears to have formed between 2000 and 2004.
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However, although not all noise can be described well as a random variable—it can, for

example be constant or deterministic (even chaotic)—workers in the field have tended

to focus on the stochastic case. The most common assumption is that the noise is Gaus-

sian distributed, and white—that is, constant in power across all frequencies. When it

is noted that there are many examples of systems or algorithms where randomness is

of benefit, SR does not seem quite so counter-intuitive. Such examples include:

• Brownian ratchets (Doering 1995)—mechanical applications of this idea include

self-winding (batteryless) wristwatches (Paradiso and Starner 2005);

• dithering in analog-to-digital conversion (Gray and Stockham 1993, Dunay et al.

1998, Wannamaker et al. 2000b);

• Parrondo’s games—the random combination of losing games to produce a win-

ning game (Harmer and Abbott 1999);

• noise induced linearisation (Yu and Lewis 1989, Dykman et al. 1994), noise in-

duced stabilisation (Toral et al. 1999, Basak 2001), noise induced synchronisa-

tion (Neiman 1994), and noise induced order (Matsumoto and Tsuda 1985);

• the use of mixed (probabilistic) optimal strategies in game theory (von Neumann

and Morgenstern 1944);

• random switching to control electromagnetic compatibility performance (Allison

and Abbott 2000);

• random search optimisation techniques, including genetic algorithms (Gershen-

feld 1999) and simulated annealing (Kirkpatrick et al. 1983);

• random noise radars—i.e. radars which transmit random noise waveforms in or-

der to provide immunity from jamming, detection, and interference (Narayanan

and Kumru 2005).

• techniques involving the use of Brownian motion for solving non-stochastic par-

tial differential equations, such as the Dirichlet problem (Øksendal 1998);

• stochastic iterative decoding in error control coding applications (Gaudet and

Rapley 2003)

• estimation of linear functionals (Plaskota 1996a, Plaskota 1996b).
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Further discussion and other examples appear in Harmer and Abbott (2001) and Ab-

bott (2001). Furthermore, the concept of making positive use of inherently undesirable

phenomena is closely related to the idea of combining several faulty objects to obtain

a working system (Challet and Johnson 2002).

The distinguishing feature of SR that sets it apart from most of the above list is that

SR is usually1 understood to occur in systems where there are well-defined input and

output signals and the optimal output signal, according to some measure, occurs for

some non-zero level and type of noise. As mentioned, SR was initially considered to

be restricted to the case of periodic input signals. However, now it is used as an all

encompassing term, whether or not the input signal is a periodic sine-wave, a periodic

broadband signal, or aperiodic. An appropriate measure of output response depends

on the task at hand, and the form of input signal. For example, for periodic signals

and broadband noise, SNR is often used, but for random aperiodic signals, mutual

information or correlation based measures are more appropriate.

The remainder of this section provides a more detailed history of the beginnings of

SR research. It then proceeds to give the historical background to one of the simplest

situations where SR can occur—the case where the nonlinearity involved is a simple

threshold—and the extension of such simple situations to parallel arrays of thresholds.

Finally, this section briefly explores some of the history of studies of SR in possibly the

most important systems where SR is known to occur—that of neurons in the brain and

nervous system.

2.2.1 A Brief History of Stochastic Resonance

The early years: 1980-1992

The term Stochastic Resonance was first used2 in the open literature—at least, in the

context of a noise-optimised system output SNR—by Benzi, Sutera and Vulpiani, in

1981, as a name for the mechanism they suggested is behind the periodic behaviour of

the earth’s major ice ages (Benzi et al. 1981, Benzi et al. 1982, Benzi et al. 1983). The term

1An early paper on SR examined a system in which SR is said to occur that did not have any input

signal (Gang et al. 1993)
2A search in the Inspec database for ’stochastic resonance’ returns a number of published papers

prior to 1981, commencing in 1973 (Frisch et al. 1973). However, these all use the term ‘stochastic reso-

nance’ in the context of ‘stochastic wave parametric resonance,’ ‘stochastic magnetic resonance,’ or other

stochastic systems, where the term ‘resonance,’ has nothing to do with the presence of noise.
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was apparently also mentioned one year earlier by Benzi (Abbott 2001), in discussions

at a workshop on climatic variations and variability in 1980 (Berger 1980). Climate

records show that the period for the earth’s climate switching between major ice ages

and warmer periods is around 100,000 years. This also happens to be the period of the

eccentricity of the earth’s orbit. However current theories suggest that the eccentricity

is not enough to cause such dramatic changes in climate. Benzi et al. (1981) —and,

independently, Nicolis (1981), Nicolis (1982)—suggested that it is the combination of

stochastic perturbations in the earth’s climate, along with the changing eccentricity,

which is behind the ice age cycle. Benzi et al. (1981) gave this mechanism the name

Stochastic Resonance. In its early years, the term was defined only in the very specific

context of a bistable system driven by a combination of a periodic force and random

noise. Note that Benzi et al. (1981) considered the earth’s orbital eccentricity to be

a periodic driving signal, and the mentioned stochastic perturbations as the random

noise. Interestingly, as pointed out in Hohn (2001), this theory for explaining the ice

ages is still a subject of debate, even though SR is now well established as a bona fide

phenomenon in a huge variety of other systems.

Further mathematical investigations of SR in the following few years included the

demonstration of SR in a simple two-state model (Eckmann and Thomas 1982), the

observation of SR in the Landau-Ginzberg equation (Benzi et al. 1985)—which is a par-

tial differential equation—and the observation of SR in a system undergoing a Hopf

bifurcation (Coullet et al. 1985).

Experimental observations of SR in physical systems also came quickly. In 1983 SR was

reported in a Schmitt trigger electronic circuit (Fauve and Heslot 1983). This circuit is

a bistable system; it was originally thought that bistability is a necessary condition

for SR (McNamara and Wiesenfeld 1989). Three years later, SR was observed in a

bidirectional ring laser, where the deliberate addition of noise was shown to lead to an

improved output SNR (McNamara et al. 1988).

The ring laser paper brought about a large increase in interest in SR—approximately 50

published journal papers from 1989 to 1992—with a number of theoretical treatments

being published in the next few years, for example, Gammaitoni et al. (1989a), Deb-

nath et al. (1989), McNamara and Wiesenfeld (1989), and Gammaitoni et al. (1989b),

including the important realisation that SR, in the limit of relatively small signal and

relatively strong noise, can be described using linear response theory; see Dykman et al.

(1995) for a review.
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Incidentally, it has been pointed out that for bistable systems, the mechanism of SR

has probably been known about for over 75 years. According to Dykman et al. (1995)

and Luchinsky et al. (1998), the work of prolific Nobel prize winning chemist, Peter

Debye, on the dielectric properties of polar molecules in a solid (Debye 1929), effec-

tively shows SR behaviour. This fact is not entirely clear from a reading of Debye

(1929), as it does not derive a formula for SNR, nor comment on the fact that any

measure is optimised by a nonzero noise intensity; nevertheless, the relevant page is

105 (Dykman 2002). More recently, Kalmykov et al. (2004) points out that another work

of Debye can be related to SR, stating that

“...it is possible to generalize the Debye-Fröhlich model of relaxation over a poten-

tial barrier ... and so to estimate the effect of anomalous relaxation on the stochastic

resonance effect.” (Kalmykov et al. 2004)

However this does not imply that Debye knew of SR, only that his work has been

generalised to show SR.

Expansion: 1993-1996

Stochastic resonance in excitable systems

The first important milestone in the period from 1993-1996 was the initial investiga-

tion into SR in neural and excitable systems. Previously, SR was only considered in

bistable systems. An excitable system is one which has only one stable or rest state

and a threshold, above which an excited state can occur, but which is not stable. The

excited state eventually decays to the rest state (Gammaitoni et al. 1998). Neurons are

a significant example of an excitable system. The first papers on the observation of

SR in neural models were published by Bulsara et al. (1991), Bulsara and Moss (1991)

and Longtin et al. (1991), although an earlier paper by Yu and Lewis (1989) effectively

demonstrates how noise in a neuron model linearises the system response, a situation

later described as SR. However research into SR in neurons and neural models only

really took off in 1993, when a heavily cited Nature article reported the observation of

SR in physiological experiments on crayfish mechanoreceptors (Douglass et al. 1993).

In the same year a heavily cited paper by Longtin (1993) on SR in neuron models also

became widely known and since then many published papers examine stochastic res-

onance in neurons—whether in mathematical models of neurons, or in biological ex-

periments on the sensory neurons of animals—triggering a large expansion in research

into SR. Stochastic resonance in neurons is discussed further in Section 2.2.3.
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Aperiodic stochastic resonance

This important extension of SR was first addressed in Hu et al. (1992), which examines

a bistable system driven by an aperiodic input signal consisting of a sequence of bi-

nary pulses, subject to noise. Extending SR to aperiodic signals is significant because

while some important signals in nature and electronic systems are periodic, very many

signals are not.

However further discussion of aperiodic SR was not undertaken until 1995, when Col-

lins et al. (1995a) popularised the term Aperiodic Stochastic Resonance (ASR) in an

investigation of an excitable system—a FitzHugh-Nagumo neuron model—subject to

an aperiodic signal. Shortly afterwards, a letter to the journal Nature demonstrated

the same behaviour in arrays of FitzHugh-Nagumo neuron models (Collins et al. 1995).

These two papers are amongst the most highly cited of all papers on SR. The Nature

paper is not without criticism however, and a letter to Nature by Noest (1995), followed

by a reply from Collins et al. (1995b), only served to enhance the exposure of this work

to the field.

As an aside, in the abstract of Collins et al. (1996a), the term aperiodic appears to be

equated with the term broadband. However, of course, a signal can be periodic and

broadband, for example a periodically repeated radar chirp pulse, or a simple square

wave. Equating broadband with aperiodic appears to be due to the early work in SR

considering only single frequency periodic signals (Gammaitoni et al. 1998), usually

a sine wave of the form x(t) = A cos (ωt), where ω = 2π f is the frequency of the

sine wave. Thus, in general, an aperiodic signal can be considered to be broadband,

but a broadband signal does not need to be aperiodic. The relevance to SR research

is that the SNR measure used for single frequency signals is not applicable for either

broadband and periodic signals, or aperiodic signals.

Shortly after these initial two papers by Collins et al., the same authors also demon-

strated ASR in three other theoretical models: a bistable-well system, an integrate-and-

fire-neuronal model, and the Hodgkin-Huxley neuronal model (Collins et al. 1996a); as

well as in physiological experiments on rat mechanoreceptors (Collins et al. 1996b).

In these works, power-norm measures—both the correlation between the input and

output signals, and the normalised power norm, or correlation coefficient—are used

to characterise ASR, instead of the SNR, which is considered to be inappropriate for

aperiodic signals.
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Almost simultaneously with Collins et al., an alternative approach to measuring the

effects of SR on aperiodic signals was proposed by Kiss (1996). By contrast, this work

employs an SNR-like measure based on cross-spectral densities to show the existence

of SR in simple threshold based systems. The technique is demonstrated on a signal

similar to that used by Hu et al. (1992), but can theoretically be applied to any broad-

band input. Although Collins et al. thought SNR measures to be inappropriate for

aperiodic signals, as was soon demonstrated by Neiman et al. (1997), the correlation

measures of Collins et al. can be derived from the cross-spectral density, which forms

the basis of the SNR measure proposed in Kiss (1996).

Furthermore, the SNR measure used by Kiss can be rewritten in terms of a correlation-

like measure. This issue is examined in detail in Section 3.4 of Chapter 3. Kiss considers

that one of the advantages of his method is that it is robust to phase shifts between the

input and output signal, whereas the correlation based measures of Collins et al. are

not (Kish 2002) 3. However this only applies to the first papers of Collins et al. since

in Collins et al. (1996a)—unlike Collins et al. (1995a)—the cross-correlation between the

input and output signals is calculated as a function of time delay, which is the more

conventional way of calculating cross-correlation. Such a measure is indeed robust to

phase shifts; the maximum cross-correlation simply occurs for a non-zero time lag. In

fact, the cross-correlation is an ideal measurement of a time delay, and hence of phase

shift.

Of these initial studies of ASR, it is the work by Collins et al. that gained the greatest

exposure (Collins et al. 1995, Collins et al. 1995b), and thus many works on ASR have

also used correlation based measures. However, also of great influence is a paper pre-

sented before the work of Collins et al. at a 1994 workshop on stochastic resonance,

which shows that SR can occur for an aperiodic input signal, and the mutual infor-

mation measure. This paper was subsequently published in a journal (DeWeese and

Bialek 1995).

There are several reasons the work by DeWeese and Bialek (1995) has been significant

for SR researchers:

• The point is made that one potentially universal characteristic of neural coding is

that the

3Note that Kiss and Kish are the same person. All pre-1999 papers spell his name using ‘Kiss,’

whereas later papers use the spelling ‘Kish.’ The pronunciation is the same in both cases—‘Kish.’ This

thesis will cite and refer to the spelling used in the corresponding publication.

Page 18



Chapter 2 Historical Landscape

“SNR (is) of order unity over a broad bandwidth.” (DeWeese and Bialek 1995)

Since this means that the environment in which sensory neural coding takes place

appears to be very noisy, its is highly plausible that neural coding makes use of

SR. This point is also made in Bialek et al. (1993) and DeWeese (1996).

• It is pointed out that measuring information transfer for single frequency sine

waves by SNR is only really applicable in linear systems. Since SR cannot occur

in linear systems, then the use of SNR only really applies to the case of small

input signals so that the output exhibits a linear response.

• A proof is given of the fact that, for small signals in Gaussian noise, it is impos-

sible for the output SNR to be greater than the input SNR. This fact has led some

researchers to search for—and find (see Chapter 3)—circumstances in which the

proof does not apply and that SNR gains can occur. These works did not pay at-

tention to the previous point above, and therefore are possibly not really proving

much.

• It is pointed out that sine waves do not carry information that increases with the

time of observation:

“No information can be carried by the signal unless its entropy is an extensive

quantity. In other words, if we choose to study a signal composed of a sine

wave, the information carried by the signal will not grow linearly with the

length of time we observe it, whether or not the noise is present. In addition to

this, we would like to compare our results to the performance of real neurons

in as natural conditions as possible, so we should use ensembles of broad-

band signals, not sine waves.” (DeWeese and Bialek 1995)

• It is demonstrated for the case of a subthreshold signal in a single threshold sys-

tem that the information transferred through such a system can be optimised by

modifying the threshold setting. With the optimal value for the threshold, the

mutual information is strictly decreasing for increasing noise, and SR does not

occur.

“So it seems that if you adapt your coding strategy, you discover that stoch-

astic resonance effects disappear... More generally, we can view the addition

of noise to improve information transmission as a strategy for overcoming the

incorrect setting of the threshold.” (DeWeese and Bialek 1995)
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Thus, the conclusions drawn are that single frequency periodic signals are not relevant

for information transfer, and particularly not relevant for neurons. At the time, with

a growing interest into SR in neurons, such a realisation led researchers away from

studying conventional single frequency SR in neurons, to more realistic broadband

and aperiodic signals. For most authors, this naturally led to using measures other

than SNR. Note however, that one important exception to this idea is in the encoding

of sound by the cochlear nerve. The mechanism by which audio signals are encoding

is essentially a biological Fourier transform; different spatial regions in the organ of

Corti—that is, the part of the inner ear that contains sensory neurons—are sensitive to

different frequencies of sound waves (Kandel et al. 1991).

Furthermore, the conclusion that SR in threshold systems is simply a way to overcome

the incorrect threshold setting seems to have led many to think that making use of

noise is a sub-optimal means of designing a system. The contrasting viewpoint is that

noise is ubiquitous; since it is virtually impossible to remove all noise completely from

systems, design methods should consider the effects of SR, and that various design

parameters, such as a threshold value, may in some circumstances need to be set in

ways that make use of the inherent noise to obtain an optimal response. We discuss

exactly this situation in Chapter 8.

Subsequent to DeWeese and Bialek (1995), the next paper to use mutual information as

a measure of ASR is a highly cited paper published in the journal Nature, which uses

mutual information to experimentally show SR occurring in the cercal sensory system

of a cricket (Levin and Miller 1996). As discussed in DeWeese and Bialek (1995), Levin

and Miller (1996) point out that rather than using SNR,

“It is the total information encoded about a signal that is the biologically relevant

quantity to consider.” (Levin and Miller 1996)

In the same year, two articles were published in the same issue of Physical Review E—

those of Bulsara and Zador (1996) and Heneghan et al. (1996)—which theoretically ex-

amine the use of mutual information to measure SR for aperiodic signals. These papers

paved the way for the use of information theory in SR research. The same year also

saw a paper that applies other information theoretic measures—dynamical entropies

and Kullback entropy—to measure SR, however unlike ASR, the system considered is

driven by a periodic signal (Neiman et al. 1996).
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Array enhanced stochastic resonance

The bulk of this thesis concerns a form of SR that occurs in arrays of parallel thres-

hold devices. We briefly mention some of the history of what is sometimes known as

Array Enhanced Stochastic Resonance (AESR). The first paper to use this term is Lind-

ner et al. (1995), which shows that a chain of coupled nonlinear oscillators can provide

an enhanced SR effect, when compared with a single oscillator. A very similar effect is

discussed in Collins et al. (1995) where ASR is studied in an array of FitzHugh-Nagumo

neuron models. Each neuron is considered to receive the same subthreshold aperiodic

input signal, but independent noise, and the overall output is the summed response

from all neurons. This result is also discussed in Moss and Pei (1995).

Other early papers showing the effect of AESR include Bezrukov and Voydanoy (1995),

Pei et al. (1996), Gailey et al. (1997), Neiman et al. (1997), and Chialvo et al. (1997). An

unpublished preprint gives a more detailed history (Góra 2003). The main point in

these works is that the magnitude of SR effects can be enhanced by combining the

outputs of more than one single SR-capable component.

Consolidation 1997-2005

Between 1997 and 2000 there was a large increase in the number of published papers

either directly about SR, or listing SR as a keyword. The main development is that

starting in 1997, a large number of papers examine systems showing ASR for aperiodic

input signals. For example some of the papers in 1997-98 are Chialvo et al. (1997), Gai-

ley et al. (1997), Eichwald and Walleczek (1997), Neiman et al. (1997), Vaudelle et al.

(1998), Fakir (1998a), Fakir (1998b), and also Godivier and Chapeau-Blondeau (1998).

The popularisation of SR as a phenomenon that is not restricted to periodic signals has

seen its original definition expanded to encompass almost any system in which input

and output signals can be defined, and in which noise can have some sort of beneficial

role. This period of growth however appears to have plateaued a little between 2001

and 2004. The general consensus appears to be that the most recent highly significant

result in SR research is its expansion to aperiodic input signals. It could be said how-

ever, due to the number of papers investigating SR in neurons, that the most significant

result of SR may be yet to come. If it can be established that SR plays an important role

in the encoding and processing of information in the brain, and that it somehow pro-

vides part of the brain’s superior performance to computers and artificial intelligence
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in some areas, then using this knowledge in engineering systems may revolutionise

the way we design computers, sensors and communications systems.

2.2.2 Stochastic Resonance in Threshold Systems

The prime objective of this thesis is to examine stochastic quantisation4. We define stoch-

astic quantisation to mean:

The quantisation of a signal by thresholds that are independent and identically

distributed random variables.

The starting point of this work is a particular form of SR known as Suprathreshold

Stochastic Resonance (SSR). To set the context for SSR, it is necessary to briefly review

SR in threshold based systems, a story that began in 1994. In a decade, the phenomenon

is now known to be so widespread that a recent paper has made the point that almost

all threshold systems exhibit stochastic resonance (Kosko and Mitaim 2004).

A single threshold

The first paper to consider SR in a system consisting of a simple threshold, which

when crossed by an input signal gives an output pulse, was published in April 1994

under the curious title of Stochastic resonance on a circle (Wiesenfeld et al. 1994). In this

paper, the authors note that all previous treatments of SR are based on the classical

motion of a particle confined in a monostable or multistable potential. This appears to

not be strictly true, as in 1991 and 1993 Bulsara et al. (1991), Bulsara and Moss (1991),

Longtin et al. (1991), Longtin (1993), Douglass et al. (1993) and Moss et al. (1993) all anal-

ysed SR in neurons, which as excitable systems are not bistable systems in the classical

sense. Additionally, although the work on SR in Schmitt trigger circuits (Fauve and

Heslot 1983, Melnikov 1993) has been put into the bistable system category, a Schmitt

trigger is closely related to the simple threshold crossing system—see the discussion

on page 1219 of Luchinsky et al. (1999).

Nevertheless, the paper by Wiesenfeld et al. (1994) does appear to be the first paper to

show the presence of SR in a system consisting of a simple threshold and the sum of

4Note that this is a different usage of the term ’stochastic quantisation’ than that prevalent in areas of

quantum physics, stochastic differential equations, and path-integrals such as the Parisi-Wu stochastic

quantisation method (Damgaard and Huffel 1988).
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a subthreshold signal and noise. Unlike previous work on SR, this paper explores SR

with

“...a different class of dynamical systems based not on bistability but rather an

excitable dynamics.” (Wiesenfeld et al. 1994)

The system considered consists of a weak subthreshold periodic signal, a potential

barrier, and zero-mean Gaussian white noise. The output is a “spike”, which is a short

duration pulse, with a large amplitude and deterministic refractory time. Note that a

short refractory time for the pulse is important; the refractory time must be much less

than the correlation time of the noise, or threshold crossings will occur that cannot give

an output pulse. This system is described as

“...a simple dynamical process based on a single potential well, for which SR can

be observed.” (Wiesenfeld et al. 1994)

It is also observed to represent the process of action potential events in sensory neu-

rons.

Fig. 2.2 illustrates qualitatively why SR occurs in such a system. In each subfigure,

the lower plot indicates the input signal’s amplitude against increasing time, with the

straight line being the threshold value. The upper trace is the output signal plotted

against the same time scale as the input signal. This output signal is simply a narrow

pulse, or ’spike,’ every time the input signal crosses the threshold with positive slope.

Fig. 2.2(a) shows a noiseless subthreshold periodic input signal. Such a signal never

induces a threshold crossing, and the output remains constant and spike-less. Clearly

nothing at all can be said about the input signal by examining the output signal, ex-

cept that the input is entirely subthreshold. Fig. 2.2(b) indicates how in the absence

of a signal, threshold crossings will occur randomly. The input signal in this plot is

bandlimited—i.e. coloured—Gaussian noise. The statistics of this case are required

for obtaining output SNRs when a signal is present, although such formulas will only

hold when the input signal is small compared to the noise. In Fig. 2.2(c), the lower

trace shows the sum of a periodic input signal, and bandlimited Gaussian noise. Un-

like Fig. 2.2(a), for this signal some threshold crossings do occur. The probability of an

output pulse is dependent on the amplitude of the noiseless input signal. This is clear

visually and intuitively; a threshold crossing is more likely to occur when the input
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signal is close to the threshold, than when it is not. Thus, compared with the absence

of noise, some information about the original noiseless input signal is now available

at the output, and hence removing the noise is counterproductive in this system. Note

that the output pulse ‘train’ does not ’look’ anything like the input signal, but in fact

encodes the input by a form of stochastic frequency modulation. If the input signal

is to be recovered, one must obtain an ensemble average to make sense of this, as is

demonstrated shortly, and described in Sulcs et al. (2000).

Another way of understanding this effect is to realise that adding noise to a subthresh-

old periodic signal, and then thresholding the result, is equivalent to thresholding the

noiseless signal with a time varying stochastic threshold value. This is equivalent to

having a signal that is thresholded at a random amplitude, where sometimes the ran-

dom amplitude is greater than the signal’s maximum amplitude. Hence, the periodic

signal is thresholded at a random phase in its period, and sometimes not at all.

Returning to Wiesenfeld’s work, his paper notes that such a threshold-based system

can be realised by a Josephson junction biased in its zero voltage state. It then provides

a general theoretical approach for what it calls a “generic threshold-plus-reinjection

dynamics” and shows how it can lead to SR. The main theoretical result given is a

derivation of the SNR at the output of the generic system, using the autocorrelation of

the output. This formula for SNR is shown to have a maximum for a non-zero value of

noise strength, and hence shows that SR exists in such a system.

Shortly after this initial paper, several other authors also analysed SR in threshold

systems subject to periodic input signals and additive noise. The first of these is an

excellent paper by Jung (1994), which extends the theory of Wiesenfeld et al. (1994)

by removing an assumption of Poisson statistics, and using the decades old work of

S.O. Rice, who analysed the expected number of threshold crossings by either broad-

band noise alone, or the sum of a sinusoid and broadband noise (Rice 1944, Rice 1945,

Rice 1948). Jung (1994) shows mathematically that the correlation coefficient between

a subthreshold periodic input signal and its corresponding random output pulse train

possesses a noise induced maximum.

Jung (1994) also gives a convincing argument, which has been much used in SR re-

search, for why such simple threshold crossing systems can be used to provide simple

models of neurons, particular in studies of neural networks, with large numbers of

neurons. As noted by Jung (1994), such a simple two-state model of a neuron was first

proposed over fifty years ago by McCulloch and Pitts (1943).
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noiseless input signal
threshold
output signal

(a) Sub-threshold periodic input signal

threshold
noise only
output signal

(b) Noise only

noiseless input signal
threshold
noisy input signal
output signal

(c) Sub-threshold but noisy periodic input

signal

Figure 2.2. Qualitative illustration of SR occurring in a simple threshold based system. In

each subfigure, the lower trace indicates the input signal’s amplitude against increasing

time, with the black line being the threshold value. The upper plot is the output

signal plotted against the same time scale as the input signal. The output signal is a

‘spike’—that is, a short duration pulse—every time the input crosses the threshold with

positive slope, i.e. from subthreshold to suprathreshold but not vice versa. Fig. 2.2(a)

shows an entirely sub-threshold periodic input signal. Such a signal will never cause an

output spike. Fig. 2.2(b) shows the case of threshold crossings occurring randomly due

to coloured Gaussian noise. Fig. 2.2(c) illustrates how the presence of noise enables

some information about a subthreshold input signal to be present at the output. In the

absence of noise, the output will always remain constant. When noise is added to the

input, threshold crossings can occur, with a probability related to the amplitude of the

input signal.
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Another observation made is that SR occurs for subthreshold signals since, in the ab-

sence of noise, no threshold crossings can occur, whereas

“...in the presence of noise, there will be noise-induced threshold crossing(s), but

at preferred instants of time, i.e. when the signal is larger.” (Jung 1994)

In addition, the conclusion is made that suprathreshold signals will never show stoch-

astic resonant behaviour. We will see later in this Chapter that this is not true, once

some of the assumptions used by Jung are discarded. Jung (1994) was followed up

shortly afterwards in two more papers on the same topic (Jung and Mayer-Kress 1995,

Jung 1995).

Simultaneously with Jung, an alternative approach was taken by Gingl et al. (1995b)—

aspects of which also appeared in Kiss (1996) and Gingl et al. (1995a)—who consider

a threshold based system to be a “Level Crossing Detector” (LCD), that is, a system

that detects whether or not an input signal has crossed a certain voltage level. Such

a system is described as “non-dynamical,” to differentiate it from the bistable systems

used in ‘classical’—i.e. pre 1994—SR studies. Like Jung (1994), this work also uses the

established work of Rice. Formulas first given in Rice (1944) are applied to derive a

formula for the SNR in the linear response limit at the output of a LCD, a formula that

is quite similar to that of Wiesenfeld et al. (1994). The equation obtained is verified by

simulation in Gingl et al. (1995b).

These works on SR in threshold based systems led Gammaitoni to publish two separate

papers illustrating his view that SR in threshold systems is equivalent to the effect of

dithering—a technique used in the process of analog-to-digital conversion and image

processing (Gray and Stockham 1993). This point is concisely made in the abstract

of Gammaitoni (1995a), where it is stated that

“...the use of the term resonance is questionable and the notion of noise induced

threshold crossings is more appropriate.” (Gammaitoni 1995a)

As commented on by Gammaitoni (1995b), such a question of nomenclature had arisen

previously in the history of SR research, namely that the term ‘resonance’ had attracted

some early criticism, since resonance is usually thought of in the sense of a resonant

frequency. We take the point of view that such questions of nomenclature are no longer

relevant, as the widely accepted definition of SR is now broad enough to cover dither-

ing. A discussion of this topic is given in Ando (2002). The important lesson that
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must be taken from Gammaitoni though is that analysis of systems that show SR can

be aided by a thorough knowledge of pre-existing theories of dithering and associated

research—namely the fields of lossy source coding, and quantisation. These fields are

both briefly discussed in Section 2.3, and specific theoretical results stated in Chapters 4

to 9.

As with the previously mentioned papers in this Section, both Gammaitoni (1995a)

and Gammaitoni (1995b) consider a periodic subthreshold input signal subject to ad-

ditive white noise. In the initial paper, only a single threshold is considered at first.

In subsequent sections and in the follow-up paper, a system in which more than one

threshold is used to quantise a subthreshold signal is examined. However in both

cases, the main point made is that SR in such systems can be considered as a special

case of dithering.

Also of interest to this thesis is a formula for measuring the dithering effect proposed

in Gammaitoni (1995a). This can be written as

D =

√

∫

x
(E[y|x]− x)2 dx, (2.1)

where x is the input signal to a threshold system, y is the output signal, and E[·] in-

dicates the expected value. Thus, D is the root mean square (rms) error between the

input signal and the average output signal. An undiscussed assumption built into this

equation is that a uniform weighting is given to each possible input signal value. In

general, if the input signal is taken from a random distribution with Probability Den-

sity Function (PDF) P(x), Eqn. (2.1) can be rewritten to take into account the varying

probabilities of each value of x occurring as

D =

√

∫

x
(E[y|x]− x)2 P(x)dx, (2.2)

where the integration is over the support of P(x). This formula now gives the root mean

square bias of the system, a term that will be discussed in Chapter 6, where we will see

that a performance measure of a quantiser should, in contrast to Gammaitoni (1995b)

and Gammaitoni (1995a), also take into account the average conditional error variance

as well as the bias.

A more recent paper by an experienced worker in the area of dithering in analog-to-

digital conversion has also compared SR in threshold systems with non-subtractive

dithering (Wannamaker et al. 2000a). This paper demonstrates that
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“...the existence or absence of stochastic resonance in [static nonlinear systems] can

be predicted from the effects of “dither averaging” upon their transfer characteris-

tics.” (Wannamaker et al. 2000a)

However, Wannamaker et al. (2000a) considers only small periodic input signals, and

not suprathreshold, or random input signals, which are the situations that will be dealt

with in this thesis.

Other early papers on SR in threshold-based systems appeared in 1996 from Bulsara

and Zador (1996) and Bulsara and Gammaitoni (1996), who use mutual information

to measure SR for a sub-threshold aperiodic input signal. Shortly after this, Chapeau-

Blondeau and co-authors (Chapeau-Blondeau 1996, Chapeau-Blondeau and Godivier

1996, Chapeau-Blondeau and Godivier 1997, Chapeau-Blondeau 1997b, Godivier and

Chapeau-Blondeau 1997, Chapeau-Blondeau 1997a, Godivier et al. 1997), published

several papers examining threshold-based SR from a wide variety of new angles.

Multiple thresholds and soft thresholds

The first paper to consider systems consisting of more than one threshold is Gam-

maitoni (1995b), which, as mentioned, considers SR in threshold based systems to be

equivalent to dithering. The second is Gailey et al. (1997), which analyses an ensemble

of N threshold elements, using the classical theory of nonlinear transformations of a

Gaussian process to obtain cross correlations. Bezrukov and Voydanoy (1997) were the

first to address a

“...class of non-dynamical and threshold-free systems that also exhibit stochastic

resonance” (Bezrukov and Voydanoy 1997),

thus showing that a ‘hard’ threshold—that is, a threshold that divides its inputs into

exactly two states, rather than a continuum of states—is not a necessary condition for

SR to occur in non-dynamical systems.

Stochastic resonance for suprathreshold signals

The common aspect of all the above cited works is that for a single threshold, SR is only

shown to occur for subthreshold input signals. It has been discussed several times

that SR cannot occur in a threshold based system for an optimally placed threshold.

However this is only true for certain situations. One such situation is where only the
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output SNR at the frequency of a periodic signal is measured. For example, consider

the case of a threshold system where the output is a pulse whenever the input signal

crosses the threshold with positive slope. In the absence of noise, placing the threshold

at the mean of the input signal will cause output pulses to occur once per input period.

In the presence of noise, the output signal will be noisy, since spurious pulses, or jitter

in the timing of the desired pulse, will occur. Thus the absence of noise is desirable in

this case. This situation is illustrated in Fig. 2.3.

Another such situation, as already discussed, is given in DeWeese and Bialek (1995).

When the input signal is aperiodic, and the measure used is mutual information, an

optimally placed threshold also precludes SR from occurring.

However, one example that shows that SR can indeed occur for a signal that is not

entirely subthreshold5, is when averaging is allowed for a periodic—but not single

frequency—signal. Figs. 2.4 and 2.5 illustrate that the ensemble average of a noisy

thresholded periodic signal—with an optimal threshold—can be better in a certain

sense, in the presence of noise than without it.

Figs. 2.4(b) and 2.4(c) show a periodic but not single frequency signal being thresholded

at its mean. Fig. 2.4(a), which shows the same signal completely subthreshold, is pro-

vided for comparison. In Fig. 2.4(b) where noise is absent, the output is identical to

that of the single frequency sine wave of Fig. 2.3(a). Thus, no amount of averaging

can differentiate between the two output signals. However, in Fig. 2.4(c), where noise

is present, the shape of the periodic signal can be recovered upon averaging. This is

illustrated in Figs. 2.5(a) and 2.5(b), which show that the shape of both subthreshold

and suprathreshold input signals can be recovered in the presence of noise by ensem-

ble averaging the output, albeit with a certain amount of distortion.

The use of ensemble averaging to increase the SNR of a noisy signal is a well known

technique in areas like sonar signal processing—see also Section 6.2 in Chapter 6.

When N independently noisy realisations of the same signal are averaged, the result-

ing SNR is known to be increased by a factor of N. This is illustrated in Figs. 2.5(c)

and 2.5(d), where the input signals shown in Figs. 2.2 and 2.4 respectively have been

ensemble averaged for 1000 different noise realisations. The difference between this

technique, and the situation described in Figs. 2.5(a) and 2.5(b), is that in one case the

5In this thesis, the term ‘suprathreshold’ is not intended to mean that a signal is always entirely

greater than a certain threshold. Instead, it refers to a signal that is allowed to have values that are both

above and below a threshold. This includes the special case of entirely suprathreshold signals.
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noiseless input signal
threshold
output signal

(a) Absence of noise

noiseless input signal
threshold
noisy input signal
output signal

(b) Noise present

noiseless input signal
threshold
noisy input signal
output signal

(c) Larger noise

threshold
noise only
output signal

(d) Noise only

Figure 2.3. Thresholding a periodic signal at its mean. This plot illustrates that for an optimally

placed threshold, at least as far as determining the frequency of a sine wave, the optimal

output occurs in the absence of noise. In each subfigure, the lower trace indicates

the input signal’s amplitude against increasing time, with the straight line being the

threshold value. The upper plot is the output signal plotted against the same time scale

as the input signal. The output signal is a ‘spike’—that is, a short duration pulse—every

time the input crosses the threshold with positive slope—that is, from subthreshold to

suprathreshold but not vice versa. Fig. 2.3(a) shows that in the absence of noise, there

is exactly one threshold crossing per period. Fig. 2.3(b) shows that as soon as some

small amount of additive noise is present, extra threshold crossings occur. This results

in some noise being present in the output, as there is no longer exactly one output

pulse per period. Fig. 2.3(c) shows that as the noise becomes larger, many more output

pulses occur, although with a higher frequently when the input signal is close to the

threshold, than when it is near its maximum or minimum. This indicates that averaging

should recover the signal period. Fig. 2.3(d) shows that in the absence of a signal, the

occurrence of output pulses are completely random.
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signal being averaged is continuously valued, whereas in the thresholded signal case,

the signal being averaged is binary. This distinction is crucial. Different techniques

must be used to properly analyse each case. Furthermore, in practice, ensemble av-

eraging a continuously valued signal to increase its SNR is simply not practical, due

do the difficulty of precisely storing an analog quantity. Instead, such a signal is con-

verted to a digital signal by quantisation, prior to averaging, giving rise to a highly

analogous situation to the scenario in Figs. 2.5(a) and 2.5(b). The difference is that the

quantisation is performed by a quantiser with a number of different threshold values,

on each signal realisation. In the case of Figs. 2.5(a) and 2.5(b), a one bit quantisation

is performed. The presence of noise then allows ensemble averaging to improve the

resulting output SNR.

Thus, it seems that, at least in terms of efficiency, if the input SNR is very large, it might

be worthwhile to perform the one bit quantisation N times—provided the noise is in-

dependent in each realisation—rather than try to obtain a high precision quantisation

of a very noisy signal—which is stored in a multi-bit binary number—and then aver-

age the result N times. Such a technique has indeed been performed in sonar signal

processing, in a method known as DIgital MUltibeam Steering (DIMUS), employed in

submarine sonar arrays (Rudnick 1960)—see Section 4.2.5 of Chapter 4

Hence, SR can occur for non-subthreshold signals; one simply needs to clarify what

it is that is being measured! This fact was perhaps overlooked due to an ingrained

emphasis on measuring SR by the output SNR at the fundamental frequency of the

input periodic signal. At the point in time where this was starting to be questioned,

the emphasis switched to aperiodic input signals. As discussed below, the ensemble

averaging performed here cannot be carried out for aperiodic signals in the same way.

Suprathreshold stochastic resonance

The fact that ensemble averaging a thresholded periodic signal can provide a better

response in the presence of noise rather than its absence leads, almost, but not quite, to

the concept of Suprathreshold Stochastic Resonance (SSR) (Stocks 2000a).

In the situations illustrated above, it is the periodicity of the input—regardless of the

shape—that allows ensemble averages, taken over a period of time, to increase the out-

put SNR. Since one knows that the signal is periodic, provided that separate ensembles

of the input are all mutually in phase, each signal segment that is averaged can be col-

lected at any point in time. This allows independent amplitudes of noise to be added
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noiseless input signal
threshold
noisy input signal
output signal

(a) Subthreshold signal

noiseless input signal
threshold
output signal

(b) Suprathreshold, noise absent

noiseless input signal
threshold
noisy input signal
output signal

(c) Suprathreshold, noise present

Figure 2.4. Threshold SR for a periodic, but not sinusoidal signal. This figure shows an input

signal that while periodic, is not a single frequency sine wave. Instead, the input is

the sum of two sine waves of different frequencies. In each subfigure, the lower trace

indicates the input signal’s amplitude against increasing time, with the straight line

being the threshold value. The upper plot is the output signal plotted against the same

time scale as the input signal. The output signal is a ‘spike’—that is, a short duration

pulse—every time the input crosses the threshold with positive slope—that is, from

subthreshold to suprathreshold but not vice versa. Fig. 2.4(a) shows the output signal

for the case where the input signal is subthreshold, but additive noise causes threshold

crossings. As with the single frequency input signal of Fig. 2.2, the noise causes output

pulses to occur. The probability of a pulse is higher when the signal is closer to the

threshold. Fig. 2.4(b) illustrates how, in the absence of noise, thresholding this signal at

its mean will provide exactly the same output as a single frequency sine wave. Fig. 2.4(c)

shows the output signal when the input is thresholded at its mean and additive noise

is present. Unlike in the absence of noise, more than one pulse per period can occur.

Thus, the presence of input noise creates output noise if it is only the input signal’s

period that is to be recovered. On the other hand, the presence of noise allows the

shape of the input signal to be recovered by ensemble averaging—see Fig. 2.5.
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subthreshold signal
suprathreshold noiseless signal
suprathreshold noisy signal
signal absent (threshold at noise mean)
signal absent (subthreshold signal)

(a) Ensemble average of thresholded sig-

nal

subthreshold signal
suprathreshold noiseless signal
suprathreshold noisy signal
signal absent (threshold at noise mean)
signal absent (subthreshold signal)

(b) Ensemble average of thresholded sig-

nal

signal present
signal absent

(c) Ensemble averaged signal

signal present
signal absent

(d) Ensemble averaged signal

Figure 2.5. Ensemble averages of thresholded and unthresholded signals. This figure shows

the result of ensemble averaging 1000 realisations of the outputs shown in Figs. 2.2, 2.3

and 2.4, as well as ensemble averages of the input signals. Fig. 2.5(a) shows ensemble

averages when the input is the single frequency sine wave of Figs. 2.2 and 2.3. In the

absence of noise, the ensemble average is a square wave. However, in the presence of

noise, the ensemble average is clearly closer in shape to the original input signal, although

also somewhat distorted. This is true for both subthreshold and suprathreshold input

signals. The average of the noise is also shown for comparison. Fig. 2.5(b) shows the

ensemble averages for the periodic but not single frequency input signal of Fig. 2.4. The

absence of noise gives the same signal as for the single frequency input, whereas again

the presence of noise provides a signal that has a shape close to the input signal’s. It

is well known that averaging a noisy signal N times reduces the SNR by a factor of N.

This is illustrated for the unthresholded input signals in Figs. 2.5(c) and 2.5(d). Clearly

the ensemble averaging of the thresholded signals in the presence of noise provides a

similar effect to this, although since distortion is introduced due to the discrete nature

of the output, the output SNR is greater.
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to each amplitude of the signal, since each amplitude of signal is periodically repeated,

whereas the noise is not. This situation is described in Gammaitoni et al. (1998). In such

a situation, if the input signal is aperiodic, ensemble averaging in this fashion would

not work.

By contrast, we will see in Chapter 4 that SSR refers to the instantaneous averaging of

the outputs from an array of independently noisy threshold devices that all receive the

same signal.

Further discussion of SSR is deferred until Chapters 4–9. However we demonstrate in

these Chapters that SSR can be described as a form of non-deterministic quantisation.

Hence, the next section of this chapter discusses quantisation theory. Before then how-

ever, we give a brief pointer to some of the most important results on SR in neurons

and neural systems.

2.2.3 Stochastic Resonance in Neural Systems

According to the ISI Web of Science database, about 20% of SR papers also contain a

reference in the title, abstract, or keywords to the words neuron or neural.

As mentioned previously, the first papers investigating SR in neuron models appeared

in 1991 (Bulsara et al. 1991, Bulsara and Moss 1991, Longtin et al. 1991) with such re-

search accelerating—for example Longtin (1993)—after the observation of SR in phys-

iological experiments on crayfish mechanoreceptors in 1993 (Douglass et al. 1993). A

good history of this early work on SR in neurons is given in Hohn (2001), and a recent

summary of progress in the field was published in Moss et al. (2004).

However, there are some other published works that indicate that the positive role of

noise in neurons was noticed prior to 1991. For example, Horsthemke and Lefever

(1980) discuss noise-induced transitions in neural models, and in particular Yu and

Lewis (1989) advocate noise as being an important element in signal modulation by

neurons.

One of the most intriguing proposed applications inspired by SR, is that of enhanced

cochlear implant signal encoding; various authors have advocated the exploitation of

SR in this area (Morse and Roper 2000, Morse and Meyer 2000, Hohn and Burkitt 2001,

Stocks et al. 2002, Chatterjee and Robert 2001, Rubinstein and Hong 2003, Behnam and

Zeng 2003, Chatterjee and Oba 2005). A more exhaustive list is given in Hohn (2001).
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2.3 Information and Quantisation Theory

Analog-to-digital Conversion (ADC) is a fundamental stage in the electronic storage

and transmission of information. This process involves obtaining a sample of a signal,

and its quantisation6 to one of a finite number of levels.

According to the Australian Macquarie Dictionary (Delbridge et al. 1997), the definition

of the word ‘quantise’ is

“1. Physics: a. to restrict (a variable) to a discrete value rather than a set of contin-

uous values. b. to assign (a discrete value), as a quantum, to the energy content

or level of a system. 2. Electronics: to convert a continuous signal waveform into a

waveform which can have only a finite number (usually two) of values.”

(Delbridge et al. 1997)

One of the aims of this thesis it to consider theoretical measures of the performance of a

stochastic quantisation method—that is, a method that assigns discrete values in a non-

deterministic fashion—and compare its performance with some of the conventional

quantisation schemes that are often used in ADCs.

This section describes the basic ideas of quantisation and then briefly lists some impor-

tant results in quantisation theory. However, firstly we touch briefly on information

theory, and the concepts of entropy and mutual information. These ideas are required

for most other chapters in this thesis.

2.3.1 Definition of Mutual Information

Consider two correlated random variables, X and Y. If X has a PDF P(X) and Y has a

PDF P(Y), and the joint PDF is P(X, Y), then Shannon’s mutual information between X

and Y is defined as the relative entropy between the joint PDF, P(X, Y), and the product

of the PDFs P(X) and P(Y), where the relative entropy (in bits) (Cover and Thomas

1991) is

D(P(X)||P(Y)) =
∫

P(η) log2

(

P(η)

P(η)

)

dη. (2.3)

6The Australian Macquarie Dictionary (Delbridge et al. 1997) lists the spellings of ‘quantise’ and

‘quantisation’, as being equally frequent in usage in Australia, with the U.S. English spelling of ‘quan-

tize’ and ‘quantization’. Although the ‘iz’ spelling is the most commonly used in the literature, the

convention in this thesis is to take the first listed spelling from the Australian Macquarie Dictio-

nary (Delbridge et al. 1997), that is, the ‘is’ spelling.
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Thus, the mutual information is

I(X, Y) =
∫

X

∫

Y
P(X, Y) log2

(

P(X, Y)

P(X)P(Y)

)

dXdY. (2.4)

It can be shown (Cover and Thomas 1991) that mutual information can be expressed as

the difference between the entropy of X, H(X), and the average conditional entropy,

or equivocation, H(Y|X), as

I(X, Y) = H(Y)− H(Y|X). (2.5)

For a discrete random variable, Xd,with n possible states that occur with probabilities

pi, i = 1, .., n where 0 ≤ pi ≤ 1 and ∑
n
i=1 pi = 1, the entropy of Xd is defined as

H(Xd) = −
n

∑
i=1

pi log2 pi. (2.6)

For a continuous random variable, Xc, with probability density function pXc(x) where,

q ≤ x ≤ r, the entropy of Xc is defined as

H(Xc) = −
∫ r

q
pXc(x) log2 pXc(x)dx. (2.7)

Note that in this case the entropy is known as differential entropy, and is subtly differ-

ent from the discrete entropy (Cover and Thomas 1991). For example, discrete entropy

is always non-negative where as differential entropy can be positive, zero or negative.

We also have the conditional entropy of two discrete random variables, X (n states)

and Y (m states) given by

H(Y|X) = −
n

∑
i=1

m

∑
j=1

P(Xi, Yj) log2 P(Yj|Xi), (2.8)

where P(Xi, Yj) is the joint probability mass function of X and Y and P(Yj|Xi) is the

conditional probability that Y is Yj given X is Xi. If Y is a continuous random vari-

able with probability density pY(y) and X (n states) is a discrete random variable, the

conditional entropy of Y given X is

H(Y|X) =
n

∑
i=1

∫

y
P(Xi, Y) log2 P(Y|Xi)dy, (2.9)

where p(Xi, Y) is the joint probability density of Xi and Y and P(Y|Xi) is the condi-

tional probability density of Y given Xi.
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2.3.2 The Basics of Quantisation Theory

Quantisation of a signal or source consists of the partitioning of the signal into a dis-

crete number of intervals, or cells. Certain rules specify which range of values of the

signal get assigned to each cell. This process is known as encoding. If an estimate of the

original signal is required to be made from this encoding, then each cell must also be

assigned a reproduction value. This process is known as decoding.

Encoding

Although quantisation is an integral part of an ADC, it is of course not restricted to

such a narrow scope; the input does not need to be an electronic signal, or a con-

tinuously valued variable. A basic example of quantisation is in the formation of a

histogram for some real valued data set. For example, consider a study that measures

the heights of 1000 people. The researcher may decide to divide her measurements up

into ten bins, of which eight are equally spaced with length 5 cm starting from 160 cm.

The other two bins—overflow bins—are for measured heights of less than 160 cm, and

more than 200 cm. To obtain a histogram, the number of measurements that fall into

each bin are then counted and plotted against the index of the bin.

What information can then be gleaned from the histogram about the heights of the

people in the study? The researcher will look at statistical measures such as percent-

age frequency of each bin, mean, mode, median and variance. If all the measurements

fall in just one or two bins, the researcher will realise that the bin spacing, and the

difference between the maximum and minimum bins is too wide to obtain any detail

about the distribution of heights, or that more bins are required. Another similar pro-

blem will occur if most of the measured heights are in one or both of the overflow

bins.

Decoding

Such questions of bin number, size and placement are precisely those faced by the de-

signer of a quantiser. The difficulty of finding a good design may also be compounded

by the fact that the signal being quantised may not be as stationary as the heights of

people. Furthermore, not only does the quantisation of a signal usually require the

encoding into bins, it also requires the decoding operation to be specified. In the his-

togram binning analogy, the need for decoding is probably not all that interesting to
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the anatomy researcher measuring people’s heights, but could be understood as fol-

lows. Select randomly one of the 1000 people whose heights were measured and ask

that person to specify which bin his height falls in, without specifying his exact height.

What can the researcher then say about the height? If the bin is the one from 180-

185 cm, only that the person is no shorter than 180 cm and no taller than 185 cm. If

asked to guess the height, the researcher would probably guess 182.5 cm, knowing

that the maximum error in the guess would be 2.5 cm.

It is this question of assigning an estimated height to a bin that is exactly the problem

of decoding in quantisation. In the case of a signal being quantised, the value assigned

as the decoding for each quantisation bin is sometimes known as the reproduction point.

Another example of quantisation is the representation of real numbers in a computer’s

architecture. Examples of such quantisation schemes include the IEEE floating-point

and fixed point standards (Widrow et al. 1996).

Measures of a quantiser’s performance

One important measure of a quantiser is its rate. In this context, ‘rate’ does not neces-

sarily refer to a quantity that is defined in terms of ‘per unit time.’ For example mutual

information, entropy, or the number of output bits have all been used as the definition

of ‘rate.’ The idea is that rate provides a measure of how many bits—that is, how many

binary symbols—are required to represent information. Thus, the rate of a quantiser

is usually meant as the (average) number of bits per sample that the quantiser output

consists of, or contains about the input. If mutual information is used as the defini-

tion of rate, then in general, the rate will depend on the statistics of the input signal as

well as the encoding process. However, for a deterministic encoding, the rate is sim-

ply the average entropy of the output encoding, which will be the same as the mutual

information, and is given by

I(x, y) = H(y) = −
N

∑
n=0

Py(n) log2 Py(n), (2.10)

where Py(n) is the probability of output state n occurring. The maximum rate occurs

when all output states are equally likely and is given by I(x, y)max = log2 (N + 1), that

is, the number of bits at the output of the quantiser.

Information theory also tells us that the quantisation of a signal will always cause some

error in a reproduction of the original signal. This error is known as the distortion, and
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is most commonly measured by the mean square error between the original signal, and

the reproduced signal (Gray and Neuhoff 1998). Thus, if the encoding is decoded to a

signal, z, the error is given by

ǫ = x− z, (2.11)

and the mean square distortion is

Dms = E[(x− z)2]. (2.12)

A commonly used measure of a quantiser’s performance is its Signal-to-Quantisation-

Noise Ratio (SQNR), which is the ratio of the input signal’s power to the mean square

distortion power. If the input signal has power σ2
x , then this can be expressed as

SQNR = 10 log10

(

σ2
x

Dms

)

. (2.13)

2.3.3 Quantisation Literature Review

Comprehensive reviews of the history of quantisation theory, and the closely related

topic of lossy source coding can be found in Gray and Neuhoff (1998) and Berger and

Gibson (1998). These papers provide a detailed history of early practically motivated

quantisation work, such as pulse code modulation in the 1950s, as well as early the-

oretical work on lossy source coding, including Shannon’s initial formulation of the

problem of minimising the rate required to achieve a given distortion. As well as set-

ting the historical context for these fields, Gray and Neuhoff (1998) and Berger and

Gibson (1998) also work through the state of the art, and future directions for research.

Another excellent reference is the textbook Gersho and Gray (1992).

We will now briefly discuss some of the aspects of quantisation theory most pertinent

to the work in this thesis.

Optimal quantisation

We have seen that the design of a quantiser reduces to choosing how to partition an

input into bins, and the selection of reproduction points for each bin. Selecting the

bins requires choosing the number of bins and the values of the thresholds that define

which input values go in to each bin. Reproduction points should be selected that

provide a good estimate of all the values represented by the corresponding bin.
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So how should a quantiser be optimally designed? Suppose that only N-bit quantisa-

tions can be performed. Then N − 1 threshold values and N reproduction points are

required.

Given a measure of distortion, the reproduction points can be chosen as the values

that, on average, minimise that distortion measure, for a given input signal. For con-

tinuously valued random source distributions—other than the uniform distribution—

analytic expressions for the optimal thresholds are rare, at least for the mean square

error distortion. However, standard numerical algorithms such as the Lloyd-Max

method (Max 1960, Lloyd 1982, Gersho and Gray 1992) can be applied to find the op-

timal partition and reproduction points for a given specified source distribution, or a

set of training data.

However, these algorithms appear to never have been extended to consider the situ-

ation where the threshold values that form the partitions are independently noisy, or

random variables. Such a situation is discussed in this thesis.

Dithering and stochastic quantisation

Although we have defined ‘stochastic quantisation’ to mean quantisation by thres-

holds that are independent random variables, the concept of ‘dithering’ could also be

understood as stochastic quantisation, in that it also results in an output signal which

is not deterministic.

For technical references on dithering, see for example Chou and Gray (1991), Gray

and Stockham (1993), Kikkert (1995), Zamir and Feder (1995) Wannamaker (1997),

Carbone and Petri (1998), Dunay et al. (1998), Carbone and Petri (2000), and Wanna-

maker et al. (2000b).

Work commenting on the relationship between SR and dithering includes Gammaitoni

(1995b) Gammaitoni (1995b), Wannamaker et al. (2000a), Ando and Graziani (2000)

and Ando (2002). Note that Vaudelle et al. (1998) discusses SR in images—in a way

that appears to be identical to dithering in images—without citing dithering.

Recall from earlier discussion in this Chapter how a subthreshold signal subject to a

threshold is non-detectable at the output. Adding noise to the input signal to allow

threshold crossings is effectively the same as dithering in a single bit quantiser, when

the signal amplitude is smaller than the quantiser’s bin size. This illustrates how SR

can be related to the use of dithering to increase the dynamic range of an ADC. See,
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for example, Wannamaker et al. (2000a) and Lim and Saloma (2001) for discussions on

this.

However, there are several crucial differences between dithering as it is usually under-

stood, and the concept we have called ‘stochastic quantisation.’ These are that dither

signals:

• are usually considered to have a dynamic range smaller than the width of a quan-

tiser’s bin size, and therefore are small compared to the signal’s dynamic range;

• are usually applied to quantisers with widely spaced thresholds;

• and usually have PDFs with finite support, like the uniform distribution, rather

than infinite support, like the Gaussian distribution.

By contrast, we will consider stochastic quantisation in the following scenarios:

• large dither—or noise—amplitudes, compared to the signal’s amplitude;

• the case where all thresholds in a quantiser have identical values, but becomes

independent random variables due to the addition of noise;

• and noise signals with PDFs with infinite support.

Estimation theory

We will also in this thesis touch on areas of point estimation theory. An excellent techni-

cal reference encompassing this field is Lehmann and Casella (1998). The main estima-

tion topic we will look at is that of minimising mean square error distortion between

the input and output signals of a nonlinear system. Such a goal also appears in quanti-

sation theory, however we will find it useful to use ideas from estimation theory, such

as Fisher information, and the Cramer-Rao bound, which are not generally used in

conventional quantisation theory.

There are also a number of papers in the SR literature which tackle SR from this point

of view (Greenwood et al. 1999, Greenwood et al. 2000, Chapeau-Blondeau and Rojas-

Varela 2001, Greenwood et al. 2003, Chapeau-Blondeau and Rousseau 2004).
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2.4 Chapter Summary

This chapter reviews the two main areas in the scientific literature that are relevant

to the new work presented in this thesis. Section 2.2 uses a historical perspective to

review stochastic resonance, and the main sub-areas of stochastic resonance important

to this thesis. In particular we define stochastic resonance, and discuss its occurrence

in simple threshold based systems, and neurons.

Section 2.3 then introduces the concept of quantisation, briefly indicates some of the

most commonly used measures of a quantisers performance, and points out references

in the literature that discuss quantisation in full technical detail.

2.4.1 Original Contributions for Chapter 2

This chapter included the following original contributions:

• A discussion of the evolution of the term ‘stochastic resonance,’ and—in the first

sentence of Section 2.2—a statement defining stochastic resonance as it is cur-

rently widely understood.

• An argument explaining why SR need not necessarily be thought of as ‘counter-

intuitive,’ based on the fact that there are many systems known where random-

ness can be useful.

• A historical review and elucidation of the major epochs in the history of stochastic

resonance research.

• A qualitative demonstration that SR can occur in a single threshold device, where

the threshold is set to the signal mean. Stochastic resonance will not occur in the

conventional SNR measure in this situation, but only in a measure of distortion,

after ensemble averaging.

2.4.2 Further Work

Possible future work and open questions arising from this chapter might include:

• Further investigation of the simple example illustrating the way that stochastic

resonance can be understood to occur in a threshold system for a signal with a

mean value equal to the threshold.
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This concludes Chapter 2, which sets the historical context for the work in this thesis.

The following chapter looks in more detail at some of aspects of SR that seem confusing

to the uninitiated. It also provides the first analytical and numerical results of this

thesis.
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Chapter 3

How Should Stochastic
Resonance be Measured?

I
NITIALstudies of stochastic resonance focused on systems driven

by a periodic signal, and hence used a signal-to-noise ratio based

measure for comparison between the input and output of the sys-

tem. It has been pointed out that for the more general case of aperiodic sig-

nals other performance measures are necessary, such as cross-correlation or

information theoretical tools. This Chapter analyses the application of such

measures to stochastic resonance, and discusses situations where signal-to-

noise ratio based measures have been used. The relevance (or lack thereof)

of these measures to engineering problems is discussed.
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3.1 Introduction

There can sometimes be a certain amount of skepticism about claims made in the Stoch-

astic Resonance (SR) literature from researchers who have never seriously performed

research in this field. Partly this is due to the emphasis often put on the counter-

intuitive notion of noise being “useful,” rather than “a nuisance.”7 As discussed in

Chapter 2, the skeptics may find it easier to come to grips with SR when it is described

as a way to make use of randomness to overcome certain limitations of a system. The

second source of skepticism stems from the extensive use of techniques borrowed from

other fields, which are then used slightly out of their original context. A third source

is due to confusion about the definition of SR and how it has changed. Originally it

was said to only occur for periodic input signals in bistable systems subject to broad-

band noise. At present, some authors still use only this definition, whereas others are

familiar with SR in a myriad of other forms.

The aim of this Chapter is to investigate several sources of such confusion, in particular,

the use of signal-to-noise ratio (SNR) measures to quantify SR, the debate about SNR

gains due to SR, and the relationship between SNRs and information theory.

Section 3.3 contains original work that uses the data processing inequality to investigate

certain results on channel capacity in a system capable of SR (McDonnell et al. 2003b,

McDonnell et al. 2003c).

Section 3.4 contains original work exploring the theory behind a frequency dependent

SNR measure, and its application to the measurement of SR (McDonnell et al. 2004a).

3.1.1 How Do I Measure Thee? Let Me Count The Ways

The reason for the name of this Section8 is to draw attention to the fact that SR has

been measured in many different ways. Examples include SNR (Benzi et al. 1981),

spectral power amplification (Rozenfeld and Schimansky-Geier 2000, Imkeller and

Pavlyukevich 2001, Drozhdin 2001), correlation coefficient (Collins et al. 1995a), mu-

tual information (Levin and Miller 1996), Kullback entropy (Neiman et al. 1996), chan-

nel capacity (Chapeau-Blondeau 1997b), Fisher information (Greenwood et al. 1999),

φ–divergences (Inchiosa et al. 2000, Robinson et al. 2001), and mean square distor-

tion (McDonnell et al. 2002a). It has also been analysed in terms of residence time

7The phrase “noise is often thought of as a nuisance” can be found in numerous papers on SR.
8Apologies to Elizabeth Barrett Browning (1998)
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distributions–see Gammaitoni et al. (1998) for a review—and Receiver Operating Char-

acteristic (ROC) curves (Robinson et al. 1998, Galdi et al. 1998, Zozor and Amblard

2002), which are based on probabilities of detecting a signal to be present, or falsely

detecting a non-existing signal (Urick 1967).

The key point is that the measure appropriate to a given task should be used. Unfortu-

nately, due to historical reasons, many authors tend to use the original measure used,

SNR, in contexts where it is effectively meaningless. This Section gives a brief history

of the use of SNRs in SR research, and a discussion of some of the criticisms of its use.

It was first thought that SR occurs only in bistable dynamical systems, generally driven

by a periodic input signal, A sin (ω0t + φ), and broadband noise. Since the input to

such systems is a simple sinusoid, the SNR at the input is a natural measure to use,

with the following definition most common,

SNR =
P(ω0)

SN(ω0)
. (3.1)

In Eqn. (3.1), P(ω0) is the input signal power and SN(ω0) is the Power Spectral Density

(PSD) of the noise at frequency ω0. Stochastic resonance occurs when the ratio of the

output power at frequency ω0 to the background noise PSD at ω0, is maximised by a

nonzero value of noise intensity.

It is well known in electronic engineering that nonlinear devices cause output fre-

quency distortion—that is, for a single frequency input, the output will consist of var-

ious harmonics of the input (Cogdell 1996). Hence, basic circuit design requires the

use of filters that remove unwanted output frequencies. For example, this harmonic

distortion in audio amplifiers is very undesirable. On the other hand, high frequency

oscillators make use of this effect, by starting with a very stable low frequency oscil-

lator, and sending the generated signal through a chain of frequency multipliers. The

final frequency is harmonically related to the low frequency source.

For more than one input frequency, the output of the nonlinear device will contain the

input frequencies, as well as integer multiples of the sum and difference between all

frequencies (Cogdell 1996). This effect of creating new frequencies is known as inter-

modulation distortion. In the field of optics this phenomenon can be used to generate

lower frequency signals—for example, T-rays (i.e. terahertz radiation)—from differ-

ent optical frequencies by a method known as optical rectification (Mickan et al. 2000,

Mickan and Zhang 2003).
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A study of such higher harmonics generated by a nonlinear system exhibiting SR has

been published (Bartussek et al. 1994), and the phenomenon is also discussed in subse-

quent works (Bulsara and Inchiosa 1996, Inchiosa and Bulsara 1998). However, much

research into SR has only been interested in the output frequency component that cor-

responds to the fundamental frequency of the periodic input signal, in which case the

output SNR is given by Eqn. (3.1) and ignores all other output harmonics.

More recently, attempts have been made to overcome this, by defining the output SNR

as a function of all input frequencies (Kiss 1996, Gingl et al. 2001, Mingesz et al. 2005).

However, while such formulations may have some uses—see Section 3.4—there has

been much discussion regarding the inadequacies of SNR as an appropriate measure

for many signal processing tasks (DeWeese and Bialek 1995, Galdi et al. 1998).

One of the most important objections can be illustrated as follows. Consider a periodic,

but broadband input signal, such as a regularly repeated radar chirp signal. The use of

SNR as the ratio of the output power of the fundamental frequency to the background

noise PSD is meaningless for signal recovery here, unless only the fundamental period

is of interest. This output SNR measure only provides information about the period

of the signal—the output SNR at that frequency—and nothing about the shape of the

chirp in the time domain.

This inadequacy was recognised when researchers first turned their attention to ASR,

who ushered in the widespread use of cross-correlation and information theoretic mea-

sures, which can, in some sense, describe how well the shape of the output signal is

related to the input signal. Inchiosa and Bulsara (1995) give an excellent description of

the issue,

“...a nonlinear signal processor may output a signal that has infinite SNR but is

useless because it has no correlation with the input signal. Such a system would

be one which simply generates a sine wave at the signal frequency, totally ignoring

its input.” (Inchiosa and Bulsara 1995)

While many SR researchers realised that studying aperiodic input signals substantially

increases the relevance of SR to applications such as studies of neural coding, some did

not get past the need to move on to measures other than SNR in such circumstances.

This has led to a somewhat strange debate about whether or not ‘SNR gains’ can be

made to happen in a nonlinear system by the addition of noise.
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3.1.2 Chapter Structure

This Chapter is divided into three—mostly self-contained—main sections. Firstly, Sec-

tion 3.2 discusses the SNR gain debate, and the main questions on this issue in the

literature. Next, Section 3.3 considers an apparent contradiction in the SR literature,

regarding whether the addition of noise to a system can increase the information avail-

able at the output. The conclusion drawn is that, as we might expect, information

cannot be increased by any form of signal processing, although the right amount of

noise might minimise the amount of information lost. Thirdly, Section 3.4 examines

the theory behind a frequency dependent SNR formula introduced to the SR litera-

ture in Kiss (1996). Some results relevant to this chapter are given in more detail in

Appendix A.

3.2 The SNR Gain Debate

In the last decade, a number of researchers have reported results claiming that it is pos-

sible to obtain an SNR gain in some nonlinear systems by the addition of noise (Kiss

1996, Loerincz et al. 1996, Vilar and Rubı́ 1996, Chapeau-Blondeau 1997a, Chapeau-

Blondeau and Godivier 1997, Chapeau-Blondeau 1999, Gingl et al. 2000, Liu et al. 2001,

Gingl et al. 2001, Makra et al. 2002, Casado-Pascual et al. 2003). There has been some

criticism of these works, for example the comment on Liu et al. (2001) given in Kho-

vanov and McClintock (2003).

When only the frequency of an input periodic signal is of interest, the SNR gain in a

nonlinear system is defined as

G = SNRo/SNRi =
Po(ω0)

Pi(ω0)

SN,i(ω0)

SN,o(ω0)
. (3.2)

In the SR community, such results have been seen as fairly controversial, for two rea-

sons, as discussed in the remainder of this Section.

3.2.1 Can SNR Gains Occur At All?

Firstly, initially it seemed that SNR gains contradicted proofs that SNR gains cannot

occur. For example DeWeese and Bialek (1995)—see also Dykman et al. (1995)—show

for stationary Gaussian noise and a signal that is small compared to the noise, that
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for nonlinear systems the gain, G, must be less than or equal to unity, and that hence

no SNR gain can be induced by utilising SR. This proof is based on the use of linear

response theory, where, since the signal is small compared to the noise, both the signal

and noise are transferred linearly to the output, and as in a linear system, no SNR gain

is possible. Much attention has been given to this fact, since most of the earlier studies

on SR were kept to cases where the linear response limit applies, to ensure that the

output is not subject to the above mentioned harmonic distortion (Gingl et al. 2000).

Once this fact was established, researchers still hoping to be able to find systems in

which SNR gains due to noise could occur turned their attention to situations not cov-

ered by the proof—that is, the case of a signal that is not small compared to the noise,

or broadband signals or non-Gaussian noise.

For example, Kiss (1996) considers a broadband input signal, and being broadband,

the conventional SNR definition cannot be used. Instead, a new frequency dependent

SNR measure is derived, a measure with which an SNR gain is shown to occur. Further

examples are Chapeau-Blondeau and Godivier (1997) and Chapeau-Blondeau (1997a),

which use the conventional SNR definition, but the large signal regime to show the

existence of SNR gains. Furthermore, Chapeau-Blondeau (1999) also considers the case

of non-Gaussian noise.

However, the interpretation of some of this work can be a little fuzzy. For example, it

is stated in Makra et al. (2002) that

“...it is a legitimate question whether systems showing SR can possibly function as

filters, making the signal passing through them less noisy. A positive answer to

this question might have great significance: it might establish the theoretical basis

for technical applications and might lead us to a better understanding of several

(especially biological) systems.” (Makra et al. 2002)

The title of Makra et al. (2002) is “Signal-to-noise ratio gain by stochastic resonance in

non-dynamical and dynamical bistable systems” and implies that the SNR gain is due

to SR, and hence implies that the gain is due to the addition of noise to an already noisy

signal, whilst keeping the input SNR constant.

However, what is actually performed, is that the SNR gain is plotted against input

noise, where modifying the input noise simultaneously changes the input SNR—that

is, an increase in input noise causes a decrease in input SNR. Since it is known that

SR occurs in the systems analysed, the output SNR initially increases with increasing
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noise, reaches a maximum, and then decreases again. Hence with increasing input

noise, the output SNR has a single-peaked curve, and the input SNR has a linearly

increasing curve. Therefore a general statement is that the SNR gain also has a single-

peaked curve, when plotted against input noise, and shows a maximum with nonzero

noise. What is described in Makra et al. (2002) is effectively exactly the same thing as

SR—that is, a plot of the output SNR against input noise.

If an SNR gain was to be “caused by SR”, then it would need to be caused by the addi-

tion of noise to an already noisy signal, where the input SNR gain is unaffected by the

addition of more noise. Hence, the statements implying that the gain is due to SR are

a little misleading.

Instead, the SNR gain does not occur due to the addition of noise to an already noisy

signal. An increase in input noise—which causes a decrease in input SNR—can in-

crease the SNR gain, due to the same mechanism that causes the SR itself. This means

that the gain is due to the characteristics of the system itself rather than the addition of

noise.

However, the main point emphasised is that the SNR gain can be greater than one,

which does not occur for the linear response regime, and is a valid point. Thus, the

answer to the title of this subsection is “yes, SNR gains can occur.” The more important

question is whether such gains are meaningful.

3.2.2 Are SNR Gains Meaningful?

By looking outside the conditions of the proof that SNR gains cannot occur in the linear

response limit, SNR gains can be found. However, the second reason that an emphasis

on SNR gains due to SR are seen to be controversial is that the definitions of SNR used

in cases where SNR gains occur are not always particularly meaningful. Taking the

approach of looking outside the parameters of the proof assumes that SNR is still a

useful measure outside these parameters. A strong argument against this assumption,

and for the use of information theory, rather than SNRs, is given in DeWeese and Bialek

(1995), as discussed in Section 2.2.1 of Chapter 2.

Intelligent discussions of this point are given in Inchiosa and Bulsara (1995), Galdi et al.

(1998), Robinson et al. (1998), Petracchi (2000), Hänggi et al. (2000), and Robinson et al.

(2001). For example, Hänggi et al. (2000) give a general investigation of SNR gains due

to noise, and are highly critical of the use of SNR in such systems, and indicate more
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appropriate measures to use, at least for signal detection or estimation problems. Thus,

the answer to the title of this subsection is “probably not, for most tasks.”

Recall the quote given in Section 3.1.1; Inchiosa and Bulsara (1995) recognise what is

well known to electronic engineers—that an SNR gain is not in itself a remarkable

thing, and that SNR gains are routinely obtained by filtering—for example, the band-

pass filter. The reason that more is made of such phenomena in the SR literature, is that

the reported SNR gains are said to be due to the addition of noise to an already noisy sig-

nal, rather than a deliberately designed filter. Another paper by the same authors also

discusses this topic (Inchiosa and Bulsara 1996). As discussed in Subsection 3.2.1, the

view that SNR gains occur due to SR, can be misleading.

Despite the objections raised, work reporting SNR gains continue to be churned out

without regard to these criticisms. An associated problem is that of relating SNRs to

information theory. For example, it has sometimes been stated that an SNR gain in

a periodic system is analogous to an increase in information. The following Section

investigates such a claim.

3.3 The Data Processing Inequality and SR

The search for SNR gains due to SR in the case of periodic input signals naturally led

some authors to look for an analogy to compare input performance to output perfor-

mance for Aperiodic Stochastic Resonance (ASR). As mentioned, Kiss (1996) defined

a frequency dependent SNR measure based on cross-spectral densities, which he con-

sidered to be valid for such aperiodic input signals. This method is discussed further

in Section 3.4.

An alternative approach for measuring ASR is mutual information. A special case of

mutual information is known as channel capacity (Cover and Thomas 1991). Channel

capacity is simply defined as the maximum possible mutual information through a

‘channel’ or system. It is usually defined in terms of the input probability distribution

that provides the maximum mutual information, subject to certain constraints. For

example, the input signal may be restricted to two states—that is, a binary signal—or

to be a continuously valued random variable, but with a specified power.

The most widely known formula describing channel capacity is the Shannon-Hartley

formula, which gives the channel capacity for the transmission of a power-limited and
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band-limited signal through an additive, signal-independent, Gaussian white noise

channel. As mentioned in Berger and Gibson (1998), this formula is often misused in

situations where it does not apply, including one could argue, in the SR literature, for

example, Kish et al. (2001).

Channel capacity as a measure of SR is discussed in Chapeau-Blondeau (1997b), Go-

divier and Chapeau-Blondeau (1998), Goychuk and Hänggi (1999), Kish et al. (2001),

Goychuk (2001) and Bowen and Mancini (2004), all of which show that the right level

of noise can provide the maximum channel capacity. However, in general this only

means that the right level of input noise optimises the channel, that is, SR occurs.

Of more interest to us here is a way of comparing the input signal to the output signal in

a way analogous to SNR gains for periodic signals. For example, in Chapeau-Blondeau

(1999) it is considered that comparing the channel capacity at the input and the output

of a system for an aperiodic input signal is analogous to a comparison of the input and

output SNRs for periodic input signals. This Section investigates the use of channel

capacity in simple threshold based systems where SR can occur, and shows by use of a

well known theorem of information theory, that such an analogy is a false one.

3.3.1 The Data Processing Inequality

The Data Processing Inequality (DPI) of information theory proves that no more infor-

mation can be obtained out of a set of data than is there to begin with. It states that

given random variables X, Y, and Z that form a Markov chain in the order X→Y→Z,

then the mutual information between X and Y is greater than or equal to the mutual

information between X and Z (Cover and Thomas 1991). That is

I(X, Y) ≥ I(X, Z). (3.3)

In practice, this means that no signal processing on Y can increase the information that

Y contains about X.

It should be noted that the terminology Markov chain used in connection with the DPI

is somewhat more inclusive than that prevalent in applied probability. DPI usage re-

quires only the basic Markov property that Z and X are conditionally independent

given Y. By contrast the usage in applied probability requires also that X, Y, and Z

range over the same set of values and that the distribution of Z given Y be the same as

that of Y given X.
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Generic nonlinear noisy system

To illustrate the arguments in this Section, consider a generic system where a signal,

s(t), is subject to independent additive random noise, n(t), to form another random

signal, x(t) = s(t) + n(t). The signal x(t) is then subjected to a nonlinear transfor-

mation, T[·] to give a final random signal, y(t) = T[x(t)]. A block diagram of such a

system is shown in Fig. 3.1.

As noted in the previous Section, many papers have demonstrated that SNR gains can

occur due to SR. Such a system as that of Fig. 3.1 describes many of those reported to

show SNR gains for both periodic or aperiodic input signals.

s(t)

n(t)

x(t) T[·] y(t) = T[x(t)]

Figure 3.1. Generic nonlinear system. A schematic diagram of a generic noisy nonlinear system.

The input signal, s(t), is subject to additive noise, n(t). The sum of the signal and

noise, x(t) is subjected to the nonlinear transfer function, T[·], to give y(t) = T[x(t)].

Channel capacity, information, and SNR gains

Ignoring for now the question over whether the SNR measure has much relevance in

such cases, the observation of SNR gains can appear on the surface to contradict the

DPI. The reason for this is that one could be led to believe that information can always

be related to SNR by the Shannon-Hartley channel capacity formula9,

C = 0.5 log2 (1 + SNR) bits per sample. (3.4)

Clearly, when this formula applies, an increasing SNR leads to an increase in the max-

imum possible mutual information through a channel. Suppose that Eqn. (3.4) does

apply in Fig. 3.1 and that the SNR of s(t) in x(t) is SNR1. Then the maximum mutual

information between s(t) and x(t) is I(s, x) = 0.5 log2 (1 + SNR1) bits per sample.

Suppose also that the operation T[·] filters x(t) to obtain y(t), such that the filtering

provides an output SNR for s(t) in y(t) of SNR2. If the filtering provides an SNR gain

9Some references instead refer to this formula as the “Hartley-Shannon formula”, the “Shannon-

Hartley-Tuller law”, or simply as “Shannon’s channel capacity formula.” It is also variously known as

a ‘theory,’ ‘law,’ ’equation,’ ’limit,’ or ’formula.’
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then SNR2 > SNR1. Now, consider the overall system that has input, s(t), and output,

y(t). If Eqn. (3.4) applies for this whole system, then the mutual information between

s(t) and y(t) is I(s, y) = 0.5 log2 (1 + SNR2) > I(s, x). This is clearly a violation of the

DPI. Thus, an SNR gain either cannot occur in a system in which Eqn. (3.4) applies, or

Eqn. (3.4) does not apply. If one believes that Eqn. (3.4) always applies, then skepticism

about the occurrence of SNR gains can be forgiven.

However, it is instead the validity of Eqn. (3.4) that needs consideration. As mentioned,

this formula is often widely misused (Berger and Gibson 1998), as it only applies for

additive Gaussian white noise channels, where the signal is independent of the noise.

Of particular relevance here is the additive noise part. No SNR gain such as that from

SNR1 to SNR2 can be achieved in such an additive noise channel. Hence, Eqn. (3.4)

can never apply to the situation mentioned above between signals s(t) and y(t), since

even if it applies between s(t) and x(t), the SNR gain required in the filtering operation

rules it invalid. Hence, there is no reason to be skeptical about SNR gains, except for

cases where the Shannon-Hartley channel capacity formula is actually valid.

However, such a discussion does indicate that any analogy between SNR gains and

mutual information is fraught with danger. In the remainder of this Section we will

examine this in further detail. Using simple examples, we show that such an analogy

is generally false. In particular, in Chapeau-Blondeau (1999), a calculation of the max-

imum mutual information between the output and input—labelled as Cout—is made,

as well as what appears to be a calculation of the maximum mutual information be-

tween the signal by itself and the signal plus noise—labelled as Cin. It is shown that

it is possible for Cout > Cin. This appears on the surface to be a clear contradiction of

the DPI. This contradiction is investigated in this Section.

Binary signals

We consider in this investigation only random input signals consisting of a random

pulse train with two discrete levels, such as 0 and 1 or−1 and +1. With this signal, the

model shown in Fig. 3.1 is equivalent to the binary memoryless channel often consid-

ered in information theory textbooks. The noise and the threshold are characteristics of

the channel, and the addition of noise to the signal causes the input signal to be trans-

mitted through the channel with errors. For the particular case of a binary symmetric

memoryless channel, the typical analysis is to calculate the probability p that the input

is inverted—that is, the probability of error—so that p(y = 1|s = 0) = p(y = 0|s =
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1) = p. If we had p(y = 1|s = 0) 6= p(y = 0|s = 1) then the channel would not be

symmetric.

The channel capacity of a discrete memoryless channel is defined as

C = max
p(x)

I(X, Y) (3.5)

where the maximum is taken over all possible input Probability Density Functions

(PDFs), p(x). Therefore, for a binary channel, the channel capacity occurs for the value

of p(y = 0)—since p(y = 1) = 1− p(y = 0)—that maximises I(X, Y).

Does this model form a Markov chain?

The DPI states that I(s, x) ≥ I(s, y) provided s, x and y form a Markov chain s→x→y.

This means that the conditional distribution of y depends only on x and is conditionally

independent of s (Cover and Thomas 1991). For the model illustrated in Fig. 3.1, since

y = T[x], y is a function of x and thus y is conditionally independent of s. Hence the

model forms a Markov chain s→x→y.

We are now ready to begin our investigation of the implications of the DPI in systems

like that shown in Fig. 3.1, subject to binary signals. We provide two examples, firstly

the asymmetric binary channel, and secondly, a form of binary erasure channel.

3.3.2 Example 1: Asymmetric Binary Channel

Let T[·] be defined such that

y(t) = T[x(t)] =

{

1 if x(t) = s(t) + n(t) ≥ θ,

0 otherwise.
(3.6)

Let the input signal, s(t), be a discrete time random binary signal such that both possi-

ble values of s are equally likely. Hence, s is a discrete random variable with probability

mass function P(s) = 0.5, s ∈ {0, 1}. The noise is assumed to be continuously valued.

Noiseless case

In the noiseless case, P(n = 0) = 1, and if 0 < θ ≤ 1, then the output, y, will be

identical to the input. Also, P(y = s) = 1, and the system is a symmetric binary

channel with p = 0. But if θ > 1 then the output will be always zero—that is, P(y =
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0) = 1. Hence, for a threshold greater than the maximum input signal—or less than

the minimum input signal—then all information is lost, since it is impossible to infer

anything at all about the input signal, other than that it is always subthreshold.

Finite nonzero noise and subthreshold signal

Let the threshold, θ = t > 1, so that the maximum value of the signal is below the

threshold by t− 1. Let the noise be uniformly distributed between 0 and b. Hence, the

PDF of the noise is

pn(n) =

{

1
b 0 ≤ n ≤ b,

0 otherwise.
(3.7)

Consider only the case of t− 1 ≤ b < t, so that the output, y, will sometimes be equal

to 1 when s = 1, but never equal to 1 when s = 0. If b < t− 1, then y will always be

zero, since the threshold is never crossed. If b ≥ t then sometimes the threshold will

be crossed when s = 0. Thus the system is an asymmetric binary channel. Hence, by

the addition of noise to the input signal, the output becomes correlated with the input

signal—some information is conveyed; the output is only ever 1 when the input is 1—

an improvement over the case of zero noise, where the output conveys no information

about the input.

Such a channel is a specific case of those already analysed in Chapeau-Blondeau (1997b)

in the SR context, where a calculation of the mutual information for the general case of

an arbitrary noise distribution and arbitrary P(s) is made. Chapeau-Blondeau (1997b)

also calculates the channel capacity and shows the existence of a noise induced maxi-

mum. Here we consider a specific case simply as a means of illustrating the validity of

the DPI.

Comparing I(s, x) and I(s, y)

It is shown in Section A.1 of Appendix A that the mutual information between s and

x is always one bit per sample, that is, I(s, x) = 1. This is consistent with the fact that

the noise is small enough to allow b < 1 always, and therefore the input signal can be

determined from the noisy signal without error, if a threshold is placed between b and

1.

It is also shown in Section A.1 of Appendix A that

I(s, y) = 0.5 + Pe log2 Pe − (0.5 + Pe) log2 (0.5 + Pe) bits per sample, (3.8)
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where Pe = t−1
2b is the probability of an error. However, b ≥ t − 1, 0 < b < 1 and

t − 1 > 0, therefore 0 < Pe ≤ 0.5. Hence 0.5 < 0.5 + Pe ≤ 1. Therefore the second

term in Eqn. (3.8) is always negative and the maximum value of the third term is 0.5.

Therefore I(s, y) < 1 always. Since I(s, x) = 1 then I(s, x) > I(s, y) always and since

s, x and y form a Markov chain s→x→y, the DPI holds for this example.

Note that since t > 1 that Pe > 0. As t → 1, Pe → 0 and therefore I(s, y) → 1.

When t− 1 = b, Pe = 0.5 and I(s, y) = 0. It might seem strange that even though the

probability of error is 0.5 that the mutual information is zero, however this corresponds

to the case where, since the output is always zero, nothing can be said about the input.

3.3.3 Example 2: Binary Erasure Channel

Our second example, as considered in Chapeau-Blondeau (1999), is a form of binary

erasure channel. This example can also be described by Fig. 3.1, where all signals are

discrete time. Suppose the input signal, s(t), is a discretely valued random signal that

can have values ±sv. Suppose also that the output signal, y(t), can have three values,

(−sv, 0, sv), which are determined by two thresholds, ±θ such that T[·] is defined by

y = T[x] =















sv if x = s + n ≥ θ,

−sv if x = s + n ≤ −θ,

0 otherwise,

(3.9)

where an output value of zero indicates the complete erasure of an input value, rather

than its corruption.

However, in the textbooks (Cover and Thomas 1991), the binary erasure channel is a

channel in which there is no possibility of error, only a possibility of erasure, and hence

there is no possibility of an inverted output. The channel in Chapeau-Blondeau (1999)

does allow for this possibility, so it is not equivalent to the classical binary erasure

channel. Hence, we will refer to the channel considered in Chapeau-Blondeau (1999)

as the CB erasure channel.

Chapeau-Blondeau (1999) shows, for a system where θ > 1 and therefore the signal is

subthreshold for even noise probability densities, that channel capacity occurs when

p(s = −1) = p(s = 1) = 0.5. As expected, this capacity is shown to have a maximum

for nonzero noise, as the addition of noise allows threshold crossings to occur that

otherwise would not have. Chapeau-Blondeau (1999) also claimed to show that the
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capacity at the output—that is, the maximum mutual information about s contained

in y—could be greater than the capacity at the input, that is, the maximum mutual

information about s contained in s + n. Note that this possibility appears to be ruled

out by the DPI. The remainder of this Section indicates the source of this apparent

contradiction.

Binary symmetric channel

Suppose θ = 0, and the probability of error given the input, pe, is known, and that

pe = p(y = sv|s = −sv) = p(y = −sv|s = sv). Such a channel is a binary symmetric

channel, and the possibility of erasure no longer exists. The mutual information of this

channel (Cover and Thomas 1991) is

I(s, y) = H(y)− H(pe). (3.10)

The channel capacity occurs when p(±sv) = 0.5 (Cover and Thomas 1991) and is given

by

C1 = 1 + pe log2 (pe) + (1− pe) log2 (1− pe). (3.11)

If the noise in the channel has an even PDF, then pe = Fn(sv), where Fn(·) is the Cumu-

lative Distribution Function (CDF) of the noise.

Capacity at the output of the CB erasure channel

For the classical binary erasure channel, where there is no possibility of error, only

of erasure, if the probability of erasure is denoted as α, then the capacity is given by

C = 1− α, where capacity is achieved when p(±sv) = 0.5 (Cover and Thomas 1991).

The channel considered in Chapeau-Blondeau (1999), in which there is a possibility

of error as well as erasure—so that θ > 0—is still a symmetric memoryless discrete

channel, provided the noise has an even PDF. Hence, for this case, capacity is achieved

when p(±sv) = 0.5. Chapeau-Blondeau (1999) derives formulas for the mutual infor-

mation for such a channel, from which channel capacity can be found be taking the

input probabilities as p(±sv) = 0.5. These formulas depend on the CDF of the noise.

For example, let the threshold values be θ = ±1.1sv (subthreshold signal) and the noise

be uniform with a variance of σ2
n/12. Hence, the noise has PDF

p(n) =

{

1
σn
−σn/2 ≤ n ≤ σn/2,

0 otherwise.
(3.12)
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Therefore, the CDF of the noise is

p(n < u) = Fn(u) =















1 u ≥ σn/2,
u
σn

+ 1
2 −σn/2 ≤ u ≤ σn/2,

0 u ≤ −σn/2.

(3.13)

Using Eqn. (3.13), along with Eqns. (10)-(17) from Chapeau-Blondeau (1999), the chan-

nel capacity for the CB erasure channel—which we label as C2—can be calculated nu-

merically.

Fig. 3.2 shows a plot of the capacity of the CB erasure channel, C2, against the rms

value of the uniformly distributed noise when θ = ±1.1sv. Note that the rms value

of the noise is given by σn/
√

12. It also shows the capacity of the binary symmetric

channel, calculated using Eqn. (3.11) with, as in Chapeau-Blondeau (1999), pe = Fn(1),

since the noise PDF is symmetric. Note that the maximum value of the capacity for

the CB erasure channel corresponds to a nonzero value of noise. This shows that SR

can occur in the channel capacity measure, verifying the results of Chapeau-Blondeau

(1997b).

The capacity of the binary symmetric channel is a decreasing function of the noise rms

amplitude, except for small values, where the capacity is one bit per sample. This

makes sense, since for small values of noise, the probability of error is zero—for ex-

ample, by using a threshold at zero—and for larger values of noise, the probability of

error increases as the rms noise amplitude increases.

Capacity at the input to CB erasure channel

So far we have calculated and plotted the channel capacity between the input and

output of two different channels. In Chapeau-Blondeau (1999), the intention was to

find an analogy between channel capacity and SNR gains. To achieve this, Chapeau-

Blondeau (1999) needed to define an input channel capacity and an output channel

capacity. With reference to Fig. 3.1, the only way this is possible is to say the input

capacity is the maximum mutual information between s and x, and the output capacity

is the maximum mutual information between s and y.

However, in Chapeau-Blondeau (1999), C1 is considered to be the maximum mutual

information at the input of the CB erasure channel, and C2 to be the maximum mutual

information at the output of the CB erasure channel. When the rms noise amplitude

is such that C2 > C1, this is interpreted to mean that the capacity at the output of the
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Figure 3.2. Channel capacity for several channels. Plot of channel capacity for the binary sym-

metric channel, C1, the CB erasure channel, C2, and the maximum input capacity,

C(s, x), against the rms value of uniform input noise. The maximum value of the ca-

pacity for the CB erasure channel corresponds to a nonzero value of noise. This shows

that SR can occur in the channel capacity measure, verifying the results of Chapeau-

Blondeau (1997b). This maximum can be interpreted to mean that a certain nonzero

value of noise can minimise the information lost in the channel for a binary input signal.

The capacity of the binary symmetric channel is a decreasing function of the noise rms

amplitude, except for small values, where the capacity is one bit per sample. It can

be seen that the capacity at the output of both the binary symmetric channel and the

CB erasure channel is less than or equal to the capacity at the input, C(s, x), and that

hence the DPI holds. The input capacity is reached by the binary symmetric channel

when the rms noise value is less than 2/
√

12, and by the CB erasure channel when the

rms noise value is about 1.215.

CB erasure channel is greater than the capacity at the input. According to the DPI, the

information between s and y is always less than or equal to the information between s

and x. Thus, there is a contradiction between the interpretation of Chapeau-Blondeau

(1999), and the DPI.

Source of the apparent contradiction

Chapeau-Blondeau (1999) interpreted the result obtained to mean that for noise values

where the ratio C2 > C1 is greater than one, the capacity at the output of the CB erasure

channel is greater than the capacity at the input.

However, in contrast to Chapeau-Blondeau (1999), C1 is the channel capacity of the

binary symmetric channel, not the erasure channel, and hence cannot be considered
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as the maximum input mutual information to the CB erasure channel. The DPI states

that the mutual information at the output of the CB erasure channel is less than or

equal to the maximum mutual information at the input of that channel, which is also

the input to the binary symmetric channel. Thus Chapeau-Blondeau (1999) has shown

only that for the values of rms noise where the ratio C2/C1 > 1, more information can

be obtained about s by the CB erasure channel than for the binary symmetric channel.

This does not show that the output of the CB erasure channel is more detectable than

the input, as claimed in Chapeau-Blondeau (1999).

Using the results plotted in Fig. 3.2, we can obtain a graph for the ratio of C2 to C1, as

shown in Fig. 3.3 for a uniform noise distribution and for θ = 1.1. Note that Fig. 3.3

is identical to the plot produced in Chapeau-Blondeau (1999) for uniform noise and

θ = 1.1. Where this ratio is greater than unity, the CB erasure channel has greater

capacity than the binary symmetric channel.
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Figure 3.3. Ratio of C2 to C1. This plot shows the ratio of C2 (capacity of CB erasure channel,

with θ = 1.1) to C1 (capacity of binary symmetric channel) against the rms value of the

uniformly distributed noise. For values of noise rms amplitude where the ratio is greater

than unity, the CB erasure channel has greater capacity than the binary symmetric

channel.

The actual capacity at the input, C(s, x), can only really be taken to be the maximum

of the mutual information between the input signal, s, and the input signal plus noise,

x = s + n. As in the example of Section 3.3.2, the mutual information between x and s

can be derived, this time using Eqn. (3.12) for the noise PDF. The derivation is given in
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Section A.2 of Appendix A and finds that the mutual information between s and x is

I(s, x) =

{

1 σn < 2,
2
σn

σn ≥ 2.
(3.14)

The following assumes (without proof) that due to the symmetry involved, capacity

does occur when p(±sv) = 0.5 and is given by Eqn. (3.14). Thus, C(s, x) is plotted

in Fig. 3.2. It can be seen that the capacity at the output of both the binary symmet-

ric channel and CB erasure channel is less than or equal to the capacity at the input,

C(s, x), and that hence the DPI holds. Fig. 3.2 indicates that capacity is reached by the

binary symmetric channel when the rms noise value is less than 2/
√

12, and capacity

is reached by the CB erasure channel when the rms noise value is about 1.215.

For the binary symmetric channel, where there is a noise induced maximum in the

capacity, this maximum can be interpreted to mean that a certain nonzero value of

noise can minimise the information lost in the channel.

3.3.4 Discussion

From this investigation, it is clear that although SNR gains may exist due to SR for pe-

riodic input signals, no information theoretical analogy exists for random noisy aperi-

odic signals. The simplest illustration of this is to threshold a noisy binary pulse train

at its mean. For uniform noise with a maximum value less than half the pulse ampli-

tude, the mutual information between input and output remains constant, regardless

of the input SNR.

Furthermore, it has been demonstrated that since the DPI holds, the addition of more

noise to a noisy signal cannot be of benefit as far as obtaining an input-output mutual

information gain is concerned.

Such a result does not rule out the fact that the addition of noise at the input to a

channel can maximise the mutual information at the output, in other words, the effect

of SR for aperiodic signals is perfectly valid. When this occurs, an optimal value of

input noise means minimising the information lost in the channel.
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3.4 Cross-Spectral Measures

The aim of this Section is to examine the merits of using a frequency dependent signal-

to-noise Ratio (SNR) measure for SR research. This SNR measure requires a calculation

of the Cross-power Spectral Density (CSD) between the input and output signals in a

system. It was first proposed as a measure for SR in Kiss (1996), but apart from a

handful of other papers (Sethuraman and Kish 2003, Mingesz et al. 2005), has not been

otherwise discussed in the SR literature.

As discussed in Chapter 2, all early work on SR considered only periodic input signals.

As pointed out in DeWeese and Bialek (1995), for studies of neural systems such signals

are not particularly realistic. Hence, Collins et al soon popularised the term Aperiodic

Stochastic Resonance (ASR) in several studies, measuring its effects using correlation

based measures. Independently, Kiss (1996) also recognised the need to consider sys-

tems with aperiodic inputs. However, the driving force for Kiss was the fact that it

had been shown conclusively by linear response theory that for small periodic input

signals the output SNR is always less than the input SNR (DeWeese and Bialek 1995).

Kiss was looking for ways to obtain an SNR gain due to SR, and hence looked to sys-

tems not covered under the conditions for which linear response theory applies. This

includes aperiodic signals, and signals that are strong compared to additive noise.

Hence, Kiss was motivated to consider the case of a broadband—and aperiodic, as

opposed to broadband periodic—input signal. He recognised that in this case, the

usual means of calculating SNR used in the SR literature—the ratio of the output signal

power at the input frequency to the background noise Power Spectral Density (PSD)—

is inadequate, since the output noise is usually taken as the output signal that occurs

in the absence of an input signal. He noted that for nonlinear systems that the input

signal can interact with the input noise to yield extra cross-modulation spectra at the

output—see also Section 3.1.1. This is extra output noise that is not present in the

absence of a signal. Hence, the output noise spectrum cannot be taken as that which

occurs when no signal is present.

For the computation of output SNRs in such systems, it is therefore necessary to be able

to separate output signal and noise components for all frequencies at which the signal

exists. Hence Kiss (1996) proposed—in particular, for the context of SR research—that

an appropriate means of achieving this separation is to classify the output signal as

the component of the output spectrum that is the magnitude of the CSD between the
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input signal and the system output, divided by the PSD of the system input, with the

remainder of the output spectrum being noise.

Cross-spectral measures similar to those used in Kiss (1996) have also been used else-

where in SR research. In particular, Neiman et al. (1997) uses the coherence function (Car-

ter 1993, Bendat 1998) to calculate cross-correlation measures for ASR. We shall soon

see that the SNR measure proposed in Kiss (1996) can be expressed as a renormalisation

of the coherence function. Later, Goychuk and Hänggi (1999) and Nikitin and Stocks

(2004) make use of a result that relates mutual information to correlation coefficient, by

way of cross-spectral densities (Pinsker 1964).

It is shown in the remainder of this Section that the proposed separation of output

signal and noise spectra has a strong basis in signal processing theory and applica-

tions. It is also shown to be related to other standard signal processing techniques and

measures, including the coherence function, time delay estimation (Carter 1993) and

Wiener-Kolmogorov filtering (Poor 1994). To illustrate an application in SR research,

the method is applied to measure ASR in a model neural system driven by a broad-

band input signal. Firstly, however, the next Section gives the definition of the CSD

function, and derivations of Kiss’ frequency dependent SNR formula.

3.4.1 Power and Cross-Power Spectral Densities

The PSD, Sxx( f ), of an ergodic, finite power signal—such as a stationary random

signal—x(t), is given by the Fourier transform of its autocorrelation function (Bendat

1998), Rxx(τ), as

Sxx( f ) =
∫ ∞

−∞
Rxx(τ) exp (−j2πτ)dτ. (3.15)

The CSD of two such signals, x(t) and y(t), is given by the Fourier transform of the

cross correlation of x and y, Rxy(τ), as

Sxy( f ) =
∫ ∞

−∞
Rxy(τ) exp (−j2πτ)dτ. (3.16)

Unlike the PSD function, which is always a real-valued function of frequency, the CSD

is a complex-valued function of frequency. A well known inequality (Bendat 1998)

relates the CSD to the PSDs of x and y,

|Sxy( f )|2 ≤ Sxx( f )Syy( f ). (3.17)
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One of the uses for the CSD function is the coherence function, which for two signals

x(t) and y(t) is defined as (Bendat 1998)

Γ2
xy( f ) =

|Sxy( f )|2
Sxx( f )Syy( f )

. (3.18)

This function is real valued between zero and unity, and is a measure of the linearity

between x and y. That is, if a perfect linear relationship exists between x and y at

frequency f , then |Sxy( f )|2 = Sxx( f )Syy( f ) and the coherence function will be equal

to unity at that frequency. Thus, the coherence function can be considered to be a

correlation coefficient for the frequency domain.

The coherence function has been used previously in the context of SR, both for con-

ventional periodic SR and aperiodic SR (Neiman et al. 1997, Anishchenko et al. 1999).

The first work on ASR used the cross-correlation measure (Collins et al. 1995a). It was

subsequently noted (Neiman et al. 1997) that if the coherence function can be found,

the cross correlation measure and the correlation coefficient easily follow since the cor-

relation between the input and output is

Cxy =
∫

f
Re[Sxy( f )]d f . (3.19)

The input and output autocorrelation functions, or mean square powers, are similarly

obtained from the integral over all f of their PSDs. Hence, the correlation coefficient is

ρxy =

∫

f Re[Sxy( f )]d f
√

∫

f Sxx( f )d f
∫

f Syy( f )d f
. (3.20)

Linear systems

CSDs can arise when two correlated signals are added. For example, if the two signals

are s(t) and n(t), the result x(t) = s(t) + n(t) has auto-correlation

Rxx(τ) = 〈x(t)x(t− τ)〉
= 〈[s(t) + n(t)][s(t− τ) + n(t− τ)]〉
= Rss(τ) + Rsn(τ) + Rns(τ) + Rnn(τ). (3.21)

Taking the Fourier transform of both sides gives the PSD of x(t) in terms of the spectral

densities of s(t) and n(t) and the CSD of s(t) and n(t) as

Sxx( f ) = Sss( f ) + 2Re[Ssn( f )] + Snn( f ), (3.22)
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where we have used the property that Ssn( f ) = S∗ns( f ), where ∗ denotes the complex

conjugate. Note that if s(t) and n(t) are uncorrelated then Ssn( f ) is zero for all f and

the output PSD is the sum of the PSDs of x(t) and n(t).

We may also be interested in the CSD of s(t) and x(t), i.e. Ssx( f ). This is, again, the

Fourier transform of the cross correlation of s(t) and x(t), which is

Rsx(τ) = 〈s(t)x(t− τ)〉
= 〈s(t)[s(t− τ) + n(t− τ)]〉
= Rss(τ) + Rsn(τ). (3.23)

Taking the Fourier transform of both sides gives

Ssx( f ) = Sss( f ) + Ssn( f ). (3.24)

The magnitude squared of Ssx is given by

|Ssx( f )|2 = Ssx( f )S∗sx( f )

= (Sss( f ) + Ssn( f ))(Sss( f ) + Ssn( f ))∗

= Sss( f )(Sss( f ) + 2Re[Ssn( f )]) + |Ssn( f )|2. (3.25)

Substituting Eqn. (3.22) into Eqn. (3.25) gives

|Ssx( f )|2 = Sss( f )(Sxx( f )− Snn( f )) + |Ssn( f )|2 (3.26)

and the coherence function is therefore

Γ2
sx( f ) = 1− Snn( f )

Sxx( f )
+
|Ssn( f )|2

Sss( f )Sxx( f )
∀ f s.t. Sss( f )Sxx( f ) 6= 0. (3.27)

Uncorrelated signal and noise

If the signal and noise are uncorrelated then Ssn( f ) = 0 and from Eqn. (3.22) the sum

of the PSDs is the output PSD. Therefore from Eqn. (3.26)

|Ssx( f )|2 = S2
ss( f ), (3.28)

and the coherence function between s and x is

Γ2
sx( f ) =

Sss( f )

Sss( f ) + Snn( f )
, (3.29)

and is only unity when noise is absent. Thus, the coherence function can be reduced

from unity by the presence of noise, even when the signal and noise are added and un-

correlated, simply due to the noise being nonzero at frequencies present in the signal.
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Nonlinear systems

We now consider the general case of a system with input signal, s(t), subject to additive

noise, n(t), so that the overall input is x(t) = s(t) + n(t). Let the output be the result

of a nonlinear transformation of x(t), i.e. y(t) = T[x(t)]. Then the PSDs of s and y are

Sss( f ) and Syy( f ) respectively, and Ssy( f ) is the CSD between s and y.

According to the ideas in Kiss (1996), an ideal metric for such a system is one which

will give a consistent, frequency dependent, phase independent measure for an output

SNR under all circumstances, including either single frequency periodic, broadband

periodic, or aperiodic input signals, and regardless of whether the signal is subthresh-

old or not, or has a small amplitude compared to the noise or not. To this end Kiss

(1996) defined the following “generalised amplification” factor, which is a complex

function of frequency,

K( f ) =
Ssy( f )

Sss( f )
. (3.30)

Using carets to indicate output signal and noise, as opposed to input signal and noise,

we can simplify the notation used by Kiss to define the “generalised output signal”

spectrum as

Ŝss( f ) = Sss( f )|K( f )|2 =
|Ssy( f )|2

Sss( f )
. (3.31)

Note that since the PSD is a real number, |Sss( f )|2 is simply Sss( f )2. Kiss (1996) notes

that Ŝss( f ) can be considered to be the spectrum of the signal component of the output

signal and that the remainder of the output spectrum to be noise, so that

Ŝnn( f ) = Syy( f )− Ŝss( f ). (3.32)

Substituting Eqn. (3.31) into Eqn. (3.32) gives the output noise spectrum in terms of the

signal PSD, the CSD and the overall output PSD as

Ŝnn( f ) = Syy( f )− |Ssy( f )|2
Sss( f )

. (3.33)

Thus, the output SNR obtained with these quantities is a function of frequency given

by

SNR( f ) =

|Ssy( f )|2
Sss( f )

Syy( f )− |Ssy( f )|2
Sss( f )

. (3.34)

We now add several observations and caveats to this measure.
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Firstly, in order to avoid infinities, the quantity K( f ), and therefore the output SNR,

must be defined only for frequencies for which Sss( f ) is nonzero and not a delta func-

tion. Delta functions will occur in the input spectrum if the input has a nonzero mean,

or contains periodic components. To avoid this scenario, we will consider only non-

periodic, zero mean, ergodic random signals.

Secondly, the “generalised amplification” factor can be seen to look like the same quan-

tity as the susceptibility function, χ( f ), used in the context of linear response theory,

for which it is stated that

Ssy( f ) = χ( f )Sss( f ). (3.35)

Linear response theory also states that for a sufficiently weak input signal, the output

spectrum is

Syy( f ) = S0
yy( f ) + |χ( f )|2Sss( f ), (3.36)

where S0
yy( f ) is the output PSD which occurs when s(t) = 0 (Neiman et al. 1997).

However, for the general case we are considering, these equations are not valid, since in

linear response theory, the susceptibility is taken to be constant for a system, regardless

of the input, whereas K( f ) is defined for a combination of the system and input.

Thirdly, from Eqn. (3.18), we can rewrite Eqns. (3.31) and (3.32) in terms of the coher-

ence function as

Ŝss( f ) = Γ2
sy( f )Syy( f ) (3.37)

and

Ŝnn( f ) = (1− Γ2
sy( f ))Syy( f ). (3.38)

Hence, if s and y are linearly related, then 1− Γ2
sy( f ) = 0, the output signal is the entire

output spectrum, and the output noise is zero. Hence, the SNR can be written as

SNR( f ) =
Γ2

sy( f )

1− Γ2
sy( f )

. (3.39)

It turns out that Eqn. (3.39) is not new. This relation between frequency dependent

SNR and the coherence function—as well as the same means of output signal and noise

separation—can be found in Gabbiani (1996) and Borst and Theunissen (1999). In par-

ticular, it has been applied to neural systems, at least as early as 1991 by Bialek et al.

(1991).

It can also be seen that this formulation of SNR is effectively a renormalisation of the co-

herence function. If the coherence function approaches unity, then the SNR approaches
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infinity. If the coherence function is zero, then the SNR is zero. If the coherence func-

tion is one half, then the SNR is unity. Hence, measuring system performance by the

SNR gives exactly the same information as the coherence function, and vice versa. The

only possible advantage of using this SNR measure rather than the coherence function

is that SNR may be more useful if comparing two systems with nearly the same perfor-

mance, as the coherence function near zero or unity is effectively highly compressed

when compared to the SNR.

Eqn. (3.39) can be rearranged to give the magnitude of the coherence function in terms

of the SNR as

|Γ( f )| =
√

SNR( f )

1 + SNR( f )
. (3.40)

The very fact that the SNR can be expressed in terms of the coherence function, which is

a measure of the linearity between two signals, may seem surprising since the original

goal of Kiss (1996) was to derive a measure that is robust to nonlinear transformations

of a signal. However, the root of this fact can be seen by re-examination of Eqns. (3.30)

and (3.31). Even though K( f ) may not be a linear function of f , these equations define a

linear relationship between the PSDs of s(t) and y(t), in the sense that Ssy( f ) is a linear

function of Sss( f ). Furthermore, this does not mean that the method is not applicable

for highly nonlinear signal transfer, since K( f ) is not defined as being applicable for

all possible input signal and noise combinations, but is defined for a given signal and

noise combination.

Fourthly, note that electronic engineers also use Eqn. (3.30) in linear systems theory,

except that K( f ) is usually specified as the ‘transfer function,’ H( f ), which is used to

define a linear system. Again, the approach taken here differs from such linear systems

theory, in that K( f ) is not defined by only the system, but also by the input signal and

noise.
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Applicability to linear systems

To illustrate that the frequency dependent SNR is applicable to linear systems, consider

that when two signals s(t) and n(t) are added,

Ŝss( f ) =
|Ssx( f )|2

Sss( f )

= Sxx( f )− Snn( f ) +
|Ssn( f )|2

Sss( f )

= Sss( f ) + 2Re[Ssn( f )] +
|Ssn( f )|2

Sss( f )
, (3.41)

and

Ŝnn( f ) = Snn( f )− |Ssn( f )|2
Sss( f )

. (3.42)

If the signal and noise are completely uncorrelated then Ssn( f ) is zero and the output

signal and noise PSDs are simply the input signal and noise PSDs. Thus the SNR of

Eqn. (3.34) is simply the conventional linear systems definition,

SNR( f ) =
Sss( f )

Snn( f )
. (3.43)

Notice also that the coherence function is given as in Eqn. (3.29) and substitution of

this expression into Eqn. (3.39) gives exactly Eqn. (3.43).

3.4.2 New Interpretation

The quantity labelled by Kiss (1996) as the “generalised output signal,” that is, Ŝss( f ),

can be interpreted as an estimate for the input signal PSD. The process of obtaining

Ŝss( f ) is implicitly a linear filtering operation, which depends on knowledge of the

input PSD. Hence, this filtering is similar to matched filtering, which also depends on

knowledge of the input signal. To illustrate this, consider the system as a ‘black-box,’

which has as input a known input signal, s(t), and an output y(t). The processes inter-

nal to the black box are the addition of the input noise, n(t), to s(t) and the nonlinear

transformation, T[s(t) + n(t)]. To obtain Ŝss, the CSD of the output of the black-box,

and the input signal, s(t) is found, and divided by the PSD of the input signal. These

two operations form the filtering. The SNR can then be found from Eqn. (3.34).

It is evident that such a filter will not be useful if the input signal’s PSD is unknown,

since then there is no means of obtaining Ŝss and therefore the output SNR cannot
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be determined. However, this method can provide a useful means of characterising

a system, and determining performance for a known input signal, when the system

transfer function is unknown. An example of such a scenario is where a known signal

is applied to a physiological population of neurons, and the output is measured further

down the neural pathway.

The formulation of Kiss (1996) has many similarities to the Wiener-Kolmogorov fil-

ter (Poor 1994). In this filter, the output time signal, y(t), is convolved with the linear

filter given by

K(τ) = F−1

(

S∗sy( f )

Syy( f )

)

, (3.44)

where F−1 is the inverse Fourier transform. This means that in the frequency domain

Ŝss( f ) =
S∗sy( f )

Syy( f )
. (3.45)

Such a technique is well known in signal processing, and has been applied frequently

in the computational neuroscience literature in the analysis of neural spike trains (Gab-

biani 1996, Manwani and Koch 1998, Manwani and Koch 1999).

Note that if the spectrum of the output signal is defined as

Ŝss( f ) =
|Ssy( f )|2
Syy( f )

, (3.46)

rather than as in Eqn. (3.31), then the noise spectrum at the output can be considered

as the difference between the input spectrum and the output spectrum, which is

Ŝnn( f ) = Sss( f )− Ŝss( f ) = Sss( f )− |Ssy( f )|2
Syy( f )

, (3.47)

and the SNR at the output is

SNR( f ) =

|Ssy( f )|2
Syy( f )

Sss( f )− |Ssy( f )|2
Syy( f )

=
Γ2

sy( f )

1− Γ2
sy( f )

, (3.48)

which is precisely the same formula as Eqn. (3.39).

3.4.3 Applying the Frequency Dependant SNR Formula

A simple way to illustrate the possible use of this work is to apply the generalised

frequency dependent SNR formula to a model neural system driven by a broadband
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and aperiodic input signal. In line with much SR research, we use a very simple model

of a neuron that encapsulates its main nonlinearity—that of a threshold. The output

from the neuron is a spike when the input, s(t), is greater than the neuron’s threshold,

θ. We also assume additive Gaussian white noise, n(t), at the input to the neuron, so

that the output contains noise due to both the nonlinearity and the input noise. Thus,

assuming an infinitesimal refractory time, the neuron’s output is

y(t) =

{

1 if s(t) + n(t) > θ,

0 otherwise.
(3.49)

The remainder of this Section examines the use of the frequency dependent SNR for-

mula of Eqn. (3.39) by simulating input and output signals from this neural model.

Note that care must be taken when attempting to calculate spectral densities and SNRs

by simulation. Due to the necessity of simulating signals by discrete time series, the

Discrete Fourier Transform (DFT) must be used. This has not always been recognised

in SR research, but Mitaim and Kosko (1998) give a clear view on how to use the DFT

to calculate SNR (page 2157).

Practical implementation of the DFT is usually achieved by the Fast Fourier Transform

(FFT) algorithm (Proakis and Manolakis 1996). Inherent in the FFT is a gain factor

which depends on the number of samples used in the FFT. Furthermore, unlike for

finite energy signals such as pulses, for random signals the magnitude of the FFT is

not necessarily the correct quantity to take as the PSD. Instead, estimation techniques

such as Welch’s averaged, modified periodogram method are required (So et al. 1999).

Broadband random input signal

The simplest way to illustrate the effectiveness of the frequency dependent SNR mea-

sure is to let the input signal be a bandpass Gaussian random signal, s(t), with zero

mean and unity variance. Let the signal have a bandwidth of 2 kHz between 4 and

6 kHz, with a sampling frequency of 20 kHz. A 200 sample realisation of such a

signal is shown in Fig. 3.4. This realisation was produced by applying an elliptic

filter to a sequence of 200 samples drawn the unity variance Gaussian distribution.

The PSD of such a signal—obtained using Welch’s averaged, modified periodogram

method (So et al. 1999) with 100, 000 samples—is shown in Fig. 3.5.

Let the noise signal, n(t), be Gaussian white noise with variance σ2. For a sampling fre-

quency of 20 kHz, the noise bandwidth is therefore effectively the Nyquist frequency
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Figure 3.4. Bandpass signal example. A 10 millisecond realisation of a Gaussian bandpass signal,

generated by applying an elliptic filter to a sequence of 200 samples drawn from a

Gaussian distribution with a unity variance. The bandwidth is 2 kHz, between 4 and

6 kHz. The sampling frequency is 20 kHz.
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Figure 3.5. PSD of bandpass signal. The PSD of the bandlimited signal illustrated in Fig. 3.4.

The PSD was obtained from a sequence of 100, 000 samples of the signal, by using

Welch’s averaged, modified periodogram method. The bandpass nature of the signal

is clearly evident, with a power magnitude of 0 dB between 4 kHz and 6 kHz, and a

power magnitude decreasing rapidly to lower than −20 dB outside this range.
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of 10 kHz. Let the neuron’s threshold be θ = 3 (arbitrary units). Hence, since the sig-

nal has unity variance, it will nearly always be subthreshold, and hence our simulation

is exactly that which is most commonly used in threshold-based SR studies; that of a

subthreshold signal to which noise is added, in order to induce threshold crossings.

To illustrate the various spectra involved, Fig. 3.6 shows plots of the input and output

power spectral densities, and the magnitude of the CSD obtained for 1, 000, 000 sam-

ples, and a noise variance of 4. It turns out that this is close to the optimal value of noise

variance for this signal and threshold value. Despite this, only a very slight increase—

invisible in Fig. 3.6—in the output PSD is evident in the bandpass frequencies, relative

to the stop band frequencies. However, the magnitude of the CSD is relatively large

when compared to non-optimal values of noise, and it is this fact which leads to the

SNR containing a maximum near this point, as we shall now see.

Fig. 3.7 shows the SNR of Eqn. (3.39) plotted against frequency for a number of noise in-

tensities. It is clear that there must be a nonzero value of noise intensity which provides

the optimal output response and that therefore SR occurs. Since Fig. 3.7 indicates that

the output SNR is approximately constant for all pass-band frequencies, Fig. 3.8 shows

the value of the output SNR for the center frequency of 5 kHz, as a function of noise

standard deviation. Inspection of Fig. 3.8 verifies that there is indeed a noise-induced

maximum in the SNR at this frequency. However, also note from Figs. 3.7 and 3.8 that

the SNR is very small—less than −10 dB. Fig. 3.9 shows the plot obtained by normal-

ising the SNR to obtain the magnitude of the coherence function, as in Eqn. (3.40). It

can be seen that the peak value of the coherence magnitude is about 0.25.

3.4.4 Discussion

It is clear from the results presented in this Section that although we have shown that

SR occurs in the frequency dependent SNR measure in a simple model neural system,

the very low maximum output SNR means that the output signal is only slightly coher-

ent with the input signal. For other forms of input signal we might expect the output

SNR to be much higher than this—see, for example, Sethuraman and Kish (2003). The

main conclusion to be drawn from these simulations is that the frequency dependent

output SNR formulation outlined does indeed show SR behaviour.
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Figure 3.6. PSDs and CSD of input and output signals. This plot shows the PSD of both the

bandpass input signal, x(t)—as also shown in Figure 3.5—and the output neural pulse

train, y(t). It also shows the magnitude of the CSD between the input and output

signals. The noise variance is 4. The PSD of the output signal is virtually flat for all

frequencies. However, the CSD magnitude is relatively large for the passband compared

to the stopband.
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Figure 3.7. Output SNR against frequency. Output SNR against frequency for four values of

noise standard deviation, σ. For both small noise and very large noise, there is no

noticeable increase in SNR in the passband frequencies when compared to the stopband.

However for the intermediate values of noise, there is definitely a larger SNR for the

passband. This indicates that a certain range of nonzero noise levels provide a better

performance than the absence of noise, or too much noise, and that therefore SR

occurs as expected. However, unlike the conventional single frequency SNR measure,

the measure used here works for a broadband aperiodic input signal.
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Figure 3.8. Output SNR against input noise. Output SNR at 5 kHz against log of noise standard

deviation. This curve shows SR occurring in the simple neural model as expected. For

smaller and larger noise standard deviations than the optimum value, either too few

threshold crossings occur, or threshold crossings are almost entirely due to noise, thus

causing very low SNRs.
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Figure 3.9. Coherence magnitude against input noise. Magnitude of the coherence function

at 5 kHz against log of noise standard deviation. This plot shows the same data as

Fig. 3.8, but normalised to give the magnitude of the coherence function, as expressed

in Eqn. (3.40). The peak coherence magnitude is about 0.25.
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Also of significance is that the frequency dependent SNR formula has been shown to

be closely related to the coherence function, and Wiener-Kolmogorov filtering. Since

the latter technique has been applied extensively in studies of neural spike trains, we

expect that it could be usefully applied to studies of SR in more realistic neural systems

than that considered here.

3.5 Chapter Summary

The initial Section of this Chapter gave a brief discussion of the use of SNR measures

in SR research, and pointed out that the SNR definition used for conventional, sin-

gle frequency input signal SR work is irrelevant for broadband periodic or aperiodic

signals.

The second Section discussed the SNR gain debate, and concluded that some of the

reported SNR gains should not be considered to be “due to noise,” but due to the same

mechanism as SR.

The third Section then analysed and discussed previous work that claimed to show

an analogy to SNR gains for periodic signals in a system driven by an aperiodic sig-

nal. This analogy was shown to be false, both in abstract theory, and in the particular

example studied.

Finally, the fourth Section of this Chapter discussed a frequency dependent SNR for-

mula that does have some relevance to certain engineering problems, and showed that

it is effectively the same measure as the coherence function.

3.5.1 Original Contributions for Chapter 3

This Chapter included the following original contributions:

• A demonstration that the Data Processing Inequality is not violated, despite an

apparent contradiction to this in the literature.

• It is shown that the frequency dependent SNR formula first used in SR research

by Kiss (1996) is equivalent to a renormalisation of the coherence function. Hence,

using this formula to measure SR is equivalent to measuring it using the coher-

ence function.
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• The first application of the frequency dependent SNR formula to measure the

coherence between an aperiodic bandpass signal in a simple neural model.

• It is pointed out that the frequency dependent SNR formula has previously been

used in neural coding research, and is equivalent to Wiener-Kolmogorov filter-

ing. Furthermore, this fact is used to interpret the spectra of the “generalised

output signal” of Kiss (1996), as being an estimate for the input signal’s spectra.

3.5.2 Further Work

Possible future work and open questions arising from this Chapter might include:

• A more comprehensive review of engineering uses of the coherence function, and

after obtaining this understanding, applying it more thoughtfully to SR research.

Such a review would begin with a reading of Carter (1993).

• A more thorough investigation of the previous use of coherence function based

measures in computational neuroscience. Such research could start by thorough-

ly understanding the application of Wiener-Kolmogorov filtering to spike-train

analysis, such as the work presented in Gabbiani and Koch (1998) and Rieke et al.

(1997).

This concludes Chapter 3. The next Chapter begins the main topic of this thesis—that

of Suprathreshold Stochastic Resonance (SSR). As mentioned briefly in Chapter 2, SSR

is a form of aperiodic stochastic resonance that occurs in arrays of parallel identical

threshold devices.
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Chapter 4

Suprathreshold Stochastic
Resonance: Encoding

I
N many of the systems and models in which Stochastic Resonance

(SR) has been observed, the essential nonlinearity is effectively a

single threshold. Usually SR occurs when an entirely subthreshold

signal is subjected to additive noise, which allows threshold crossings to oc-

cur that otherwise would not have. In such systems, it is generally thought

that when the input signal is suprathreshold, then the addition of noise will

not have any beneficial effect on the system output.

However, the 1999 discovery of a novel form of SR in simple threshold-

based systems showed that this is not the case. This phenomenon is known

as Suprathreshold Stochastic Resonance (SSR), and occurs in arrays of iden-

tical threshold devices subject to independent additive threshold noise. In

such arrays, SR can occur regardless of whether the signal is entirely sub-

threshold or not, hence the name suprathreshold SR.

This chapter presents a review of the original theoretical work on SSR.

Novel theoretical extensions are also presented, as well as numerical anal-

ysis of previously unstudied input and noise signals, a new technique for

calculating the mutual information by integration, and an investigation of

a number of channel capacity questions for SSR. Finally, the chapter shows

how SSR can be interpreted as a stochastic quantisation scheme.
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4.1 Introduction

Suprathreshold Stochastic Resonance (SSR) is a form of Stochastic Resonance (SR) that

occurs in arrays of identical threshold devices. A schematic model of the system is

shown in Fig. 4.1, and is described in detail in Section 4.3. The discovery of SR in such

a system was made by Stocks in 1999 (Luchinsky et al. 1999, Stocks 2000a)10. Stocks

showed—using an aperiodic input signal, meaning that SSR is a form of Aperiodic

Stochastic Resonance (ASR)—that SR can occur in Shannon’s average mutual infor-

mation measure between the input and output of the array, under the constraint that

all thresholds are set to the same value. Most importantly, SR occurs regardless of

whether the input signal is entirely subthreshold or not, which is the first known oc-

currence of such behaviour in threshold devices. Stocks named this effect suprathreshold

stochastic resonance, to distinguish it from the occurrence of SR in previous studies of

single-threshold systems, and subsequently showed that the effect is maximised when

all threshold values are set to the signal mean (Stocks 2001a). Fig. 4.1 also serves to

describe the more general case when all thresholds are not identical, a case which is

examined in detail in Chapter 8. In this chapter we will only consider the case of all

thresholds set to the same value.

This Chapter contains original work on the topic of SSR that has been published, in

part, in the open literature (McDonnell et al. 2001, McDonnell et al. 2002a, McDonnell

and Abbott 2004b).

4.1.1 Chapter Structure

This chapter provides, in Section 4.2, a brief literature review that outlines the main

results of all previous studies of SSR. Then in Section 4.3 we reproduce the most im-

portant results from this previous work, provide some extensions to theory, and nu-

merically examine some hitherto unconsidered signal and noise distributions. This is

followed in Section 4.4 by an investigation into a number of channel capacity questions

for the SSR model. Finally, an interpretation of SSR as stochastic quantisation is intro-

duced in Section 4.5. Some results relevant to this chapter are given in more detail in

Appendix B.

10Note that the first description of SSR was given in a 1999 paper reviewing non-conventional forms

of SR (Luchinsky et al. 1999). However, although this paper was published first, it references a paper

submitted to Physical Review Letters, which was subsequently published in 2000 (Stocks 2000a).
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4.2 Literature Review

4.2.1 Information Theoretic Studies of SR in Threshold Systems

As discussed in Chapter 2, although the term aperiodic stochastic resonance was popu-

larised by work using correlation based measures (Collins et al. 1995a), the first pa-

pers to study ASR using mutual information (Levin and Miller 1996, Bulsara and

Zador 1996, Heneghan et al. 1996) are of more relevance to SSR. These papers, along

with DeWeese and Bialek (1995), paved the way for the use of information theory in

SR research.

Of particular importance to SSR was the first study using mutual information to anal-

yse a single threshold-device system (Bulsara and Zador 1996). This system is very

similar to that discussed in Section 3.3.1 of Chapter 3, where the input signal to the sys-

tem is a random binary signal, subject to continuously valued noise. The initial section

of Bulsara and Zador (1996) calculates the input-output mutual information for this

system for various threshold values, and shows that SR occurs for entirely subthresh-

old signals. Subsequently, Bulsara and Zador (1996) also consider mutual information

in a leaky integrate-and-fire neuron model.

Also of relevance to SSR are the final paragraphs of Bulsara and Zador (1996), which

discuss how future work might extend the system they considered. Specifically, Bul-

sara and Zador (1996) propose allowing continuously valued input signals, and an out-

put signal which is the sum of the outputs of N binary threshold devices. It is stated

that the mutual information in such a model would be of the order of 0.5 log2 (N).

These extensions are exactly what is carried out in the first work on SSR.

4.2.2 Original Work on SSR

The earliest work published in the open literature in which the phenomenon of SSR is

presented, is in the second part of a two part review of SR in electrical circuits (Luchin-

sky et al. 1999). Although this work was published first, it references a paper submitted

to Physical Review Letters, which was subsequently published in 2000 (Stocks 2000a).

This latter paper contains the same results as Luchinsky et al. (1999) as well as some

further analysis. In this original work of Stocks, the input signal, x, is taken to be

a Gaussian random variable, and the noise on each threshold is likewise a Gaussian
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random variable. No reduced analytical expressions are obtained for the mutual infor-

mation, which is instead calculated by numerical integration and validated by digital

simulation.

A later paper (Stocks 2001c) presents an analytical expression for the mutual infor-

mation in the specific case of a uniformly distributed signal, and uniformly distributed

threshold noise. Another longer paper (Stocks 2001a) examines the behaviour of SSR in

the event of large N, as well as providing an exact expression for the mutual informa-

tion in the event that both the signal and noise distributions are identical, that is, they

have the same distribution and moments. Furthermore, Stocks (2001a) finds that the

SSR effect is optimised in the case of all thresholds being set equal to the signal mean,

as well as presenting an analysis of the output signal-to-noise ratio (SNR). Several con-

ference and book chapters published a combination of the material presented in Stocks

(2000a), Stocks (2001c) and Stocks (2001a). These include Stocks (2000c), Stocks (2000b)

and Stocks (2001b). In Stocks (2001b), an interesting new measure of the performance

of SSR is briefly described, that of a coding efficiency. This measure is briefly explored

in Section 4.4. Furthermore, in both Stocks (2000b) and Stocks (2001b), an analysis of

the optimal threshold configuration for the system in Fig. 4.1 is given. Such calcula-

tions are the subject of Chapter 8, and will not be considered here.

4.2.3 SSR in Neurons and Cochlear Implant Encoding

The original work on SSR commented briefly—see, in particular, Stocks (2000b)—that

the model shown in Fig. 4.1 has similarities to ensembles of sensory neurons. This,

combined with the fact that SR is well known to occur in neurons (Levin and Miller

1996), is one of the motivations for studying such a system. In order to further inves-

tigate the possibility that SSR can occur in real neurons, Stocks and Mannella (2001)—

see also the book chapter, Stocks and Mannella (2000)—replaces the simple threshold

device building-block that makes up the system shown in Fig. 4.1, with the FitzHugh-

Nagumo neuron model. It is shown that SSR can still occur despite this change in the

model. Calculations of the mutual information in such a case are more complicated

than the simple model analysed in depth in this chapter, as the output is no longer

discretely valued. Hence, investigation of this topic is beyond the scope of this thesis,

and the reader is referred to Stocks and Mannella (2001).
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Figure 4.1. Array of N noisy threshold devices. This schematic diagram shows the model in

which SSR occurs. There are N identical threshold devices. The input signal is taken

to be a random signal, consisting of a sequence of discrete time uncorrelated samples

drawn from a continuously valued probability distribution. Each device receives the

same input signal sample, x, and is subject to independent additive noise, ηi. The noise

is also a random signal, and is independent from the input signal, x. The output from

the n–th device, yi, is unity if the sum of the signal and noise at its input is greater

than the corresponding threshold, θi and zero otherwise. The overall output, y, is the

sum of the individual outputs, yi.

The only other work to consider SSR in neural coding is Hoch et al. (2003b), which

examines how SSR can occur in leaky integrate-and-fire and Hodgkin-Huxley neural

models, with an emphasis on finding the optimal noise level for a large number of

neurons.

Cochlear implants11 are prosthetic devices (Dorman and Wilson 2004) that enable pro-

foundly deaf people to hear. The operation of cochlear implants requires direct elec-

trical stimulation of the cochlear nerve. Such stimulation requires sophisticated meth-

ods of signal encoding, and although hearing can be restored, patients still have dif-

ficulty perceiving speech in a noisy room, or music. An interesting and potentially

very important proposed application of both SR in general, and the SSR effect, is to

incorporate its effects in the design of cochlear implant encoding. The idea is based

11Historical note: the world’s first multi-channel cochlear implant was invented in Australia by

Graeme Clarke—the first patient to receive the implant was in Melbourne, 1978 (Clark 1986).
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on the fact that people requiring cochlear implants are missing the natural sensory

hair cells that a functioning inner ear uses to encode sound in the cochlear nerve. It

is known that these hair cells undergo significant Brownian motion—i.e. random-

ness (Jaramillo and Wiesenfeld 1998, Bennett et al. 2004). Hence, the hypothesis is that

employing the principles of SSR to re-introduce this natural randomness to the en-

coding of sound could improve speech comprehension in patients fitted with cochlear

implants (Morse et al. 2002, Stocks et al. 2002, Allingham et al. 2003, Allingham et al.

2004, Morse and Stocks 2005). Investigation and further discussion of this work is be-

yond the scope of this thesis, and the reader is referred to the stated references, as well

as to other references proposing the use of SR to improve signal encoding in cochlear

implants (Morse and Roper 2000, Morse and Meyer 2000, Hohn 2001, Chatterjee and

Robert 2001, Rubinstein and Hong 2003).

4.2.4 Work on SSR by Other Authors

Several other authors besides Stocks and colleagues have now published results on

SSR. On the theoretical side, Hoch et al. (2003b)—identical work is given in Hoch et al.

(2003b) and Wenning (2004)—derives an approximation for the mutual information

through the system of Fig. 4.1 that applies in the case of large N. Using this result, it

is shown that for the case of a Gaussian signal and independent Gaussian noise—as

studied in Stocks (2000a) and Stocks (2001a)—the value of noise intensity at which the

mutual information reaches its maximum converges to a fixed value as N increases. As

mentioned, Hoch et al. (2003b) also examine SSR in a neural coding context, including

an investigation into the effects of SSR under energy efficiency coding constraints. We

consider such a question from a different perspective in Chapter 9.

An analysis of the SSR model in terms of Fisher information is given in Rousseau et al.

(2003). This paper also discusses for the first time the case of deterministic time-

varying input signals, rather than random input signals. Such an input signal allows

analysis of the performance of the SSR model in terms of SNR in the conventional

SR sense. A detailed investigation of exactly this topic is reported in Rousseau and

Chapeau-Blondeau (2004). Subsequently, Wang and Wu (2005) also use Fisher informa-

tion to measure the performance of the SSR model, by examining how the ‘thickness’

of the ‘tail’ of the noise distribution affects the output response.
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The SSR model shown in Fig. 4.1 is mentioned in Sato et al. (2004), however this work

considers the input signal to always be entirely subthreshold. In such a case SR can still

occur, however in this chapter, unlike Sato et al. (2004), we will not restrict attention to

entirely subthreshold input signals.

More practically oriented work includes an investigation of the potential use of SSR

in motion detection systems (Harmer 2001, Harmer and Abbott 2001, McDonnell and

Abbott 2002). There has also been a proposal to use the entire SSR model as the com-

parator component of a sigma-delta modulator (Oliaei 2003), which is a specific type

of analog-to-digital converter that makes use of feedback.

4.2.5 Similarity to SSR in Other Work

As already mentioned, the model shown in Fig. 4.1 can also serve as a model for a

population of neurons. Furthermore, we will see in Chapters 6-8 that it also serves as

a model for quantisation and analog-to-digital conversion (ADC). However, in quan-

tisers and ADCs it is certainly not conventional to assume that all thresholds have the

same value, as is the case in this chapter. There are however, some other systems in

which all thresholds are identical, and hence, the SSR model shares similarities with

work previously considered in the literature. The remainder of this subsection briefly

points out references to such work. Finally, it discusses how the results on SSR first

given in Stocks (2000a) differs from these works.

DIMUS sonar arrays

DIMUS (Digital Multibeam Steering) sonar arrays (Rudnick 1960) are arrays of spa-

tially distributed hydrophones that each ‘clip’ their inputs to provide a digital binary

signal. If there are N hydrophones, then the overall output is the sum of the N individ-

ual binary signals. Such a method for acquiring acoustic sonar signals was first used

prior to the 1960s, and provided the introduction of digital signal processing to the

field. Due to the spatially distributed nature of the hydrophones, it is usually assumed

that noise at the input to each hydrophone is mutually independent of every other hy-

drophone, while the signal at each remains identical. As noted in Stocks (2001a), such

a situation is virtually identical to the SSR model. However, unlike the SSR model,

DIMUS has never been analysed from an information theoretic perspective, and no

results have been published indicating the performance of the DIMUS sonar array as
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the noise intensity increases from zero to input SNRs smaller than zero dB (Anderson

1960, Rudnick 1960, Wolff et al. 1962, Remley 1966, Kanefsky 1966, Berndt 1968, Fitelson

1970, Wang 1972, Bershad and Feintuch 1974, Wang 1976, Anderson 1980, Tuteur and

Presley 1981). The interested reader is referred to the cited references.

Semi-continuous channels

Although it is not immediately apparent on a first reading of a paper by Chang and

Davisson (1988), which considers algorithms for calculating channel capacity for “an

infinite input and finite output channel,” it actually is highly relevant to the SSR sce-

nario. Both the channel considered by Chang and Davisson (1988)—see also Davisson

and Leon-Garcia (1980)—and the SSR model of Fig. 4.1 have an input signal consisting

of a continuously valued random signal, and an output signal that consists of a finite

number of states. As will be discussed in Section 4.4, calculations of channel capac-

ity values for various N given in Chang and Davisson (1988), are in fact equivalent to

channel capacity values for SSR, under certain assumptions on the noise distribution.

Detection scenarios

A summation of independent binary values is also used in Kay (2000) in a detection

scenario. This work describes the occurrence of SR in a suboptimal detector. However,

unlike SSR, the input signal is only ever a single value, and is not considered to be a

random variable.

4.2.6 Discussion

All of the situations above—apart from Chang and Davisson (1988)—are considered

from the viewpoint of signal detection, and the SNR of the output signal. As in Chang

and Davisson (1988), another way of describing such systems is in terms of information

theory. In each case, the system in which a signal is propagated to its detected output

state can be described as a channel. An important branch of information theory is con-

cerned with the transmission of information through channels. Often, it is assumed

that the signal is discrete-time in nature. Often, the basis for this assumption is that the

input signal can be described as a random signal, and has a certain finite bandwidth.

Under such an assumption, the sampling theorem guarantees that a continuous time

signal can be sampled at the Nyquist rate. Subsequently, the original continuous time
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signal can be perfectly reconstructed from those samples. In such a situation, or indeed

any case where a signal is composed of iid—independent and identically distributed—

samples from some probability distribution, Shannon’s mutual information measure

provides a measure of the average number of bits per sample that can be transmitted

by a single sample in some channel. When combined with a sample rate, measured in

samples per second—often called bandwidth—an information rate through a channel

can be stated, by multiplying the sample rate by the mutual information, to obtain the

number of bits per second that are transmitted through the channel.

The remainder of this Chapter studies the system in Fig. 4.1 from this information

theoretic viewpoint. All input signals are assumed to be discrete-time sequences of

samples drawn from some stationary probability distribution. Thus, this work differs

from the detection scenario of Kay (2000), which considers a constant signal. Such a

signal does not convey new information with an increasing number of samples, and

cannot be considered from an information theoretic viewpoint.

Finally, note that another branch of information theory is concerned with the problem

of lossy source coding. This includes studies of quantisation theory, where a continu-

ously valued signal is compressed to a discretely valued encoding. Although com-

bined source-channel coding research is increasing, information theory traditionally

separates source coding and channel coding into two separate independent compo-

nents of a communications system. An interesting feature of the SSR model is that it

can be interpreted both as a channel model and as a source coding model. This is be-

cause the channel is semi-continuous; it has a continuously valued input signal, but

a discretely valued output signal. This viewpoint leads to a natural interpretation of

the SSR model as a quantisation scheme. This subject is further studied in Chapters 6

and 7. On the other hand, since there is channel noise in the system, and the output

is a noisy version of the input signal, the system can also naturally be seen as a chan-

nel. The remainder of this chapter looks at this topic, and analyses SSR from a channel

coding viewpoint.
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4.3 Suprathreshold Stochastic Resonance

4.3.1 The SSR Model

Fig. 4.1 shows a schematic diagram of the model system in which SSR occurs. This

system consists of N threshold devices—which we will also refer to as comparators—

which all receive the same sample of a random input signal, x. This random signal is

assumed to consist of a sequence of independent samples drawn from a distribution

with Probability Density Function (PDF), P(x). For such a situation to apply in a real

system, the independence of each sample usually requires that a random continuous

time signal is bandlimited and sampled at the Nyquist rate (Proakis and Salehi 1994),

prior to being input to this system as a sequence of discrete-time samples.

The i–th device in the model is subject to continuously valued iid—independent and

identically distributed—additive noise, ηi (i = 1, .., N), drawn from a probability dis-

tribution with PDF Rη(η). Each noise signal is required to also be independent of the

signal, x. For each individual comparator, the output signal, yi, is unity if the input sig-

nal, x, plus the noise on that comparators thresholds, ηi, is greater than the threshold

value, θi. The output signal is zero otherwise. The outputs from each comparator, yi,

are summed to give the overall system output signal, y. Hence, y is a discrete signal

which can take integer values between 0 and N.

The output of device i is then given by

yi =

{

1 if x + ηi ≥ θi,

0 otherwise.
(4.1)

The overall output of the array of comparators is y = ∑
N
i=1 yi. This can be expressed as

a function of x in terms of the signum (sign) function as

y(x) =
1

2

N

∑
i=1

sign[x + ηi − θi] +
N

2
. (4.2)

As mentioned in Section 4.2.5, Kay (2000) has previously published work describing

the occurrence of SR in a suboptimal detector. This work uses an expression similar to

Eqn. (4.2) in terms of the signum function, indicating some similarities between SSR

and detection problems. However, the problem of deciding whether a constant signal

has been detected, as carried out in Kay (2000), is beyond the scope of this thesis; the

main task considered here is that of signal transmission and quantisation, rather than

detection.
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Note that Eqn. (4.2) completely describes the transfer function for the model system of

Fig. 4.1. However, the output of the array of comparators is non-deterministic—except

in the complete absence of noise—and represents a lossy encoding of the input signal.

Hence, the transfer function is not deterministic, since for a given input value, x, the

output, y(x), depends on the set of random variables, {ηi}, i = 1, .., N.

This chapter considers only the case of all threshold values being identical. Hence, we

let θi = θ for all i and, without loss of generality, in this Chapter the subscript, i, is

dropped from all references to threshold values. It is also dropped for references to

noise signals, η, but this does not imply that the noise on each threshold is no longer

independent.

Since the encoding given by the transfer function of Eqn. (4.2) is not deterministic,

probabilistic measures are required for mathematical analysis of the system. The key

function required is therefore the joint PDF between the input and output signals,

P(x, y). Denoting the probability mass function of the output signal as Py(n) and mak-

ing use of Bayes’ theorem (Shiryaev 1996, Yates and Goodman 2005) gives the joint

PDF as

P(x, y) = P(y = n|x)P(x) (4.3)

= P(x|y = n)Py(n). (4.4)

We will describe the conditional distribution of the output given the input, denoted by

P(y = n|x), as the transition probabilities, since P(y = n|x) gives the probability that the

encoding for a given input value, x, is encoded by output state n. From here on we will

abbreviate the notation P(y = n|x) to P(n|x). The transition probabilities can be used

to obtain Py(n) as

Py(n) =
∫ ∞

−∞
P(n|x)P(x)dx n ∈ 0, .., N. (4.5)

In this Chapter we will always assume that the PDF, P(x), is known, except briefly

in Section 4.4, where channel capacity is considered. To progress further requires

a method for calculating the transition probabilities. Using the notation of Stocks

(2000a), let P1|x be the probability of any comparator being ‘on’—that is, the sum of

the signal, x, and noise, η, exceeds the threshold value, θ, for a single comparator—

given that the input signal value, x, is known. Thus

P1|x = P(x + η > θ|x). (4.6)
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This probability depends on the noise PDF, R(η), as

P1|x =
∫ ∞

θ−x
R(η)dη = 1− FR(θ − x), (4.7)

where FR(·) is the Cumulative Distribution Function (CDF) of the noise. If R(η) is an

even function of η then

P1|x = FR(x− θ). (4.8)

Since all thresholds have the same value, then—as noted in Stocks (2000a)—-the tran-

sition probabilities are given by the binomial distribution (Shiryaev 1996) as

P(n|x) =

(

N

n

)

Pn
1|x(1− P1|x)

N−n n ∈ 0, .., N. (4.9)

In many applications of the binomial distribution, the probability of a single event

is a constant. Instead, here P1|x is a function of x and the transition probabilities are

binomially distributed for a given value of x.

However, for a given value of n, the nature of the transition probabilities for a given

n as a function of x is not as easily characterised. We can however easily find the

value of x at which the maximum value, or peaks, of P(n|x) for a given n occurs, by

differentiating P(n|x) with respect to x, setting to zero and solving for x. The details

of this procedure are given in Section B.1 of Appendix B, which shows that the peak

occurs when

P1|x =















1 for n = 0,
n
N for n ∈ 1, .., N − 1,

0 for n = N.

(4.10)

In all cases we examine, the CDF will be sigmoidal rather than peaked for n = 0 and

n = N, which means that the peaks occur at±∞. Hence, for the context of determining

the peaks, we will ignore these values of n in this discussion. Substituting for Eqn. (4.7)

in Eqn. (4.10) and solving for x gives

x = θ + F−1
R

(

1− n

N

)

for n ∈ 1, .., N − 1, (4.11)

where F−1
R (·) is the Inverse Cumulative Distribution Function (ICDF) of the noise dis-

tribution. For even noise PDFs,

x = θ + F−1
R

( n

N

)

for n ∈ 1, .., N − 1. (4.12)

These values of x at which the maximum value of P(n|x) occurs are known as the mode

of the conditioned random variable, y given x (Yates and Goodman 2005).
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4.3.2 Measuring SSR with Mutual Information

We will refer to the model described in the above subsection as the SSR model.

The mutual information—see Section 2.3.1 in Chapter 2 for a definition—between the

input and output signals of the SSR model can be expressed as

I(x, y) = H(y)− H(y|x)

= −
N

∑
n=0

Py(n) log2 Py(n)−
(

−
∫ ∞

−∞
P(x)

N

∑
n=0

P(n|x) log2 P(n|x)dx

)

. (4.13)

As noted in Stocks (2001a), since the input signal is continuously valued and the output

is discretely valued, the mutual information is that of a semi-continuous channel. Since

Py(n) is a function of P(x) and P(n|x)—see Eqn. (4.5)—the mutual information can be

expressed in terms of only P(x) and P(n|x). The transition probabilities, P(n|x), are

given by Eqn. (4.9), which for a given N depends only on P1|x and therefore only on

the noise PDF, R(η), and the threshold values, θ.

Stocks (2000a) simplifies this expression for the mutual information by use of Eqn. (4.9).

In particular, consider the entropy of the output for a given value of the input,

Ĥ(y|x) = −
N

∑
n=0

P(n|x) log2 P(n|x). (4.14)

Note that the quantity, Ĥ, is labelled with a caret to make explicit that this formula is

not the average conditional entropy, H(y|x). Substituting Eqn. (4.9) into Eqn. (4.14) and

simplifying gives

Ĥ(y|x) = −N
(

P1|x log2 P1|x + (1− P1|x) log2 (1− P1|x)
)

−
N

∑
n=0

P(n|x) log2

(

N

n

)

.

(4.15)

This simplification uses the fact that ∑
N
n=0 P(n|x) = 1 and that the expected value of the

binomial distribution is ∑
N
n=0 nP(n|x) = NP1|x. Eqn. (4.15) is identical to one expressed

by Davisson and Leon-Garcia (1980) and Chang and Davisson (1990), although their

use of this equation is under far more specific conditions.

The average conditional entropy, or equivocation, is

H(y|x) =
∫

x
P(x)Ĥ(y|x)dx

=−
N

∑
n=0

Py(n) log2

(

N

n

)

− N
∫

x
P(x)

(

P1|x log2 P1|x + (1− P1|x) log2 (1− P1|x)
)

dx, (4.16)
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where the simplification comes from use of Eqn. (4.5). Notice that the integral on the

RHS is N times the conditional entropy of the output of a single comparator. Hence,

since ∑
N
n=0 Py(n) log2 (N

n ) is always smaller than zero, the overall average conditional

entropy is smaller than the sum of the average conditional entropy of its parts, by this

factor. This means that the average uncertainty about the input signal, x, is reduced by

observing the added outputs of more than one single threshold device.

Note that in the absence of noise, the system is deterministic, and P1|x can only be zero

or unity. This means that the only possible overall output states are 0 or N, and the

conditional output entropy is always zero, since there is never any uncertainty about

the output given the input. Thus, the mutual information is always exactly one bit per

sample, provided the threshold is set to the signal mean, so that Py(0) = Py(N) = 0.5.

Substituting Eqn. (4.16) into Eqn. (4.13) gives the mutual information as

I(x, y) =−
N

∑
n=0

Py(n) log2 P∗(n)

+ N
∫

x
P(x)

(

P1|x log2 P1|x + (1− P1|x) log2 (1− P1|x)
)

dx, (4.17)

where P∗(n) = Py(n)/(N
n ) and thus P∗(n) =

∫

x P(x)Pn
1|x(1− P1|x)N−ndx. The above

derivation is given in Stocks (2001a).

Change of probability measure

We now introduce a mathematically convenient change of probability measure. The

function P1|x is a function of x. The range of x is the range of allowable values of

the input, and for infinite support input PDFs, x∈[−∞, ∞]—an example of this is the

Gaussian distribution. We will see that certain equations can be simplified if integra-

tions are performed over the interval [0, 1] rather than [−∞, ∞]. This can be achieved

by a change of probability measure as follows.

Let τ = P1|x so that from Eqn. (4.7), τ = 1− FR(θ − x). Then, differentiating τ with

respect to x—assuming τ is differentiable for all x—gives

dτ

dx
= R(θ − x). (4.18)

Multiplying both sides by P(x) and rearranging leaves

P(x)dx =
P(x)

R(θ − x)
dτ. (4.19)
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Substituting for x = θ − F−1
R (1− τ) gives

P(x)dx =
P(θ − F−1

R (1− τ))

R(F−1
R (1− τ))

dτ. (4.20)

The LHS of the above expression is the infinitesimally small probability that the input

is x. The RHS is dτ times the ratio of the signal PDF to the noise PDF, calculated at the

values x and (θ − x) respectively. Let this RHS expression be Q(τ)dτ so that

Q(τ) =
P(x)

R(θ − x)

∣

∣

∣

x=θ−F−1
R (1−τ)

. (4.21)

Thus, provided the support of P(x) is contained in the support of R(θ − x), since oth-

erwise division by zero occurs, then Q(τ) is a PDF defined on the interval [0, 1]. We

will see later in this Chapter that the case of uniform signal and uniform noise, with

the signal variance larger than the noise variance, is an example where Q(τ) is not a

PDF.

Thus, making a change of variable in Eqn. (4.16) gives

H(y|x) =−
N

∑
n=0

Py(n) log2

(

N

n

)

− N
∫ τ=1

τ=0
Q(τ) (τ log2 τdτ + (1− τ) log2 (1− τ)) dτ, (4.22)

and in Eqn. (4.17) gives

I(x, y) =−
N

∑
n=0

Py(n) log2 P∗(n)

+ N
∫ τ=1

τ=0
Q(τ) (τ log2 τdτ + (1− τ) log2 (1− τ)) dτ (4.23)

where

P∗(n) =
∫ τ=1

τ=0
Q(τ)τn(1− τ)N−ndτ. (4.24)

Input and noise PDFs that are even functions about identical means

Further simplification can be made in the case where both the signal and noise PDFs

are even valued functions, with identical means, and all thresholds are set equal to that

mean. Without loss of generality, assume the mean is zero. Hence if R(η) is even and

θ = 0, from Eqn. (4.8), P1|x = FR(x) = 1− P1|−x. Considering the integral

A =
∫ x=∞

x=−∞
P(x)(1− P1|x) log2 (1− P1|x)dx, (4.25)
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and putting s = −x, then making a change of variable and letting P(x) be even so that

P(x) = P(−x), gives

A = −
∫ s=−∞

s=∞
P(−s)(1− P1|−s) log2 (1− P1|−s)ds

=
∫ s=∞

s=−∞
P(s)P1|s log2 P1|sds. (4.26)

Thus Eqn. (4.16) reduces to

H(y|x) = −
N

∑
n=0

Py(n) log2

(

N

n

)

− 2N
∫

x
P(x)P1|x log2 P1|xdx, (4.27)

and Eqn. (4.17) reduces to

I(x, y) = −
N

∑
n=0

Py(n) log2 P∗(n) + 2N
∫

x
P(x)P1|x log2 P1|xdx. (4.28)

Also, Q(τ) simplifies when θ = 0 and P(x) and R(η) are even, to yield

Q(τ) =
P(F−1

R (1− τ))

R(F−1
R (1− τ))

=
P(F−1

R (τ))

R(F−1
R (τ))

. (4.29)

It turns out that besides being mathematically convenient, the function Q(τ) has fur-

ther significance, and assists greatly in intuitively understanding the behaviour of SSR.

We shall return to this point in Section 4.3.3 and Chapter 5.

The average conditional entropy can now be written in terms of the function Q(τ) as

H(y|x) = −
N

∑
n=0

Py(n) log2

(

N

n

)

− 2N
∫ τ=1

τ=0
Q(τ)τ log2 τdτ, (4.30)

and the mutual information as

I(x, y) = −
N

∑
n=0

Py(n) log2 P∗(n) + 2N
∫ τ=1

τ=0
Q(τ)τ log2 τdτ. (4.31)

Identical signal and noise distributions

Further analytical simplification of Eqn. (4.13) is possible in the case where the signal’s

PDF is ‘matched’ with the noise PDF, so that P(x) = R(θ − x) ∀ x. This means that the

signal and noise must have identical even moments.

Note that for some signal and noise distribution pairs, it is not possible for P(x) =

R(θ − x) ∀ x. Examples include (i) if P(x) and R(η) are uniform, and E[x] 6= θ − E[η]
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and (ii) if both P(x) and R(η) have only positive support, with infinite tails, that is,

P(x) > 0 ∀ x ∈ [0, ∞].

We begin with a result given in Stocks (2001a) showing that all output states are equipr-

obable in this situation, that is

Py(n) =
1

N + 1
n = 0, .., N. (4.32)

This result can be proved as follows. Firstly, consider Q(τ) as given by Eqn. (4.21). If

P(x) = R(θ − x) ∀ x then it is clear that Q(τ) = 1 ∀ τ. Hence, from Eqn. (4.24),

P∗(n) =
∫ τ=1

τ=0
τn(1− τ)N−ndτ. (4.33)

This is simply a Beta function (Spiegel and Liu 1999), which evaluates to

P∗(n) =
n!(N − n)!

(N + 1)!
, (4.34)

and thus,

Py(n) =

(

N

n

)

P∗(n) =
1

N + 1
. (4.35)

Interestingly, this means that the output entropy is maximised, since, as noted in Stocks

(2001a), it is well known that maximum entropy occurs when all states are equally

likely (Cover and Thomas 1991). Thus, the output entropy is

H(y) = −
N

∑
n=0

1

N + 1
log2

(

1

N + 1

)

= log2 (N + 1). (4.36)

This does not however mean that mutual information is maximised, since it depends

also on the average conditional entropy, H(y|x). It is possible for a discrete signal like

y to have a uniform distribution, yet still have a very large average uncertainty about

y given x, whereas a smaller output entropy might provide a far smaller H(y|x).

Stocks (2001a) calculates the integral on the RHS of Eqn. (4.16), to obtain an exact ex-

pression for the average conditional entropy. This integral can be solved equivalently

from Eqn. (4.22), by using the fact that Q(τ) = 1 to get

∫ τ=1

τ=0
Q(τ) (τ log2 τdτ + (1− τ) log2 (1− τ)) dτ = 2

∫ τ=1

τ=0
τ log2 τdτ = − 1

2 ln 2
.

(4.37)

In order to further simplify the average conditional entropy, Stocks (2001a) uses the

identity (see Section B.2 in Appendix B for a proof):

−
N

∑
n=0

log2

(

N

n

)

=
N

∑
n=1

(N + 1− 2n) log2 n. (4.38)
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When Eqns. (4.37) and (4.38) are substituted into Eqn. (4.22) we get

H(y|x) =
N

2 ln 2
+

1

N + 1

N

∑
n=1

(N + 1− 2n) log2 n. (4.39)

Hence, the mutual information is

I(x, y) = log2 (N + 1)− N

2 ln 2
− 1

N + 1

N

∑
n=2

(N + 1− 2n) log2 n. (4.40)

This equation is plotted against increasing N in Fig. 4.2. What is quite remarkable

about this result is that it is independent of the nature of the PDFs of the signal and

noise, other than that P(x) = R(θ − x) for all valid values of x, so that both PDFs have

the same shape, but may possibly have different means, and be mutually reversed

along the x-axis about their means.

0 100 200 300 400 500
0

1

2

3

4

5

N

I(
x,

y)
,σ

=
1

Figure 4.2. Mutual information for the case of P(x) = R(θ − x). This plot shows the mutual

information against an increasing number of array elements, N = 0, .., 511, for the case

of P(x) = R(θ − x), calculated from Eqn. (4.40). Notice that the mutual information

increases with increasing N, although the rate of increase decreases with increasing N.

Further simplification of Eqn. (4.40) is insightful. Firstly, the second term of Eqn. (4.39)

can be expressed as

1

N + 1

N

∑
n=1

(N + 1− 2n) log2 n = log2 (N!)− 2

N + 1

N

∑
n=1

n log2 n

= log2 (N!)− N log2 (N + 1)

− 2
N

∑
n=1

n

N + 1
log2

(

n

N + 1

)

. (4.41)
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Thus, the average conditional entropy can be written as

H(y|x) = log2 (N!)− N log2 (N + 1) +
N

2 ln 2
− 2

N

∑
n=1

n

N + 1
log2

(

n

N + 1

)

. (4.42)

Note that the first two terms scale with N log N, since log2 (N!) approaches N log N for

very large N. Such large N behaviour is discussed in Chapter 5. The term inside the

summation in the final term is always between 0 and 0.5, so therefore the summation is

always smaller than N. Hence, the average conditional entropy consists of two terms

of the order of N log N and two terms of the order of N.

Stocks (2001a) also shows that as N becomes large, Eqn. (4.42) reduces to I(x, y) ≃
0.5 log2 (N + 1), and that this implies that a maximum must occur in the mutual infor-

mation for a nonzero noise intensity for any N > 1. The large N behaviour of SSR is

further examined in Chapter 5. Additional analytical progress on calculating the mu-

tual information for small N can only be made if the signal and/or noise distributions

are specified. This is the focus of the next subsection.

4.3.3 SSR for Specific Signal and Noise Distributions

This subsection examines whether SSR can occur for a range of different signal and

noise distributions. Before doing this, we firstly describe seven different probability

distributions, and also make some comments on the function, Q(τ).

Seven different probability distributions

Table 4.1 gives expressions for the PDF, CDF and ICDF of a number of different proba-

bility distributions. Section B.3 in Appendix B gives specific details of employing each

of these distributions as the signal or noise distribution. The PDF, CDF and ICDF of

each distribution are plotted in Fig. 4.3, where the variance is σ = 1 for all distribu-

tions except Cauchy, and the parameter λ = 1 for the Cauchy distribution. For the

CDF, z is limited to the values of support of the corresponding PDF, and for the ICDF

w ∈ [0, 1]. Note that P1|x can be obtained from the CDF by use of Eqn. (4.7) and the

mode of P(n|x) for each n by use of Eqn. (4.11).

The first five PDFs can be seen to be even functions about their means. The Gaussian

and logistic PDFs are almost identical in shape, and have infinite support, whereas the

uniform PDF has finite support, and is flat. The Laplacian PDF has infinite support, but
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is more sharply peaked than either the Gaussian or logistic distributions. The Cauchy

distribution—also known as the Lorentzian distribution—is unusual, in that it has an

infinite variance, yet is still a PDF. Instead of characterising its width by its standard

deviation, a property known as its Full Width at Half Maximum (FWHM) is usually

used, as explained in Section B.3 of Appendix B. The FWHM is the distance between

points on the curve at which the function reaches half its maximum value. This is

given for the Cauchy distribution by the parameter, λx. The Rayleigh and exponential

distributions exist only for positive support. This fact ensures that no PDF, Q(τ), can

be found for these cases for all τ, since there will always exist points of support for

which P(x) is nonzero, yet R(θ − x) = 0.

For the CDFs, in each case there is a substantial range of z for which the CDF is ap-

proximately linearly increasing. The support of the CDF is the same as the support for

the corresponding PDF. The ICDF can be seen to have support between zero and unity.

This reflects the fact that probabilities must be between zero and unity.

Observations about Q(τ)

It will prove to be convenient to parameterise the forthcoming results in terms of the

ratio of noise standard deviation to signal standard deviation, σ = ση/σx. Likewise,

for the Cauchy distribution, let σλ = λη/λx. Note from Appendix B.3 that the variance

of the noise is always a function of ση, and the variance of the signal is a function of

σx. The reason that this parameterisation is convenient is that the mutual information

turns out—in the cases examined here, where θ is equal to the signal mean—to be a

function of the ratio, σ, so that it is invariant to a change in σx provided ση changes by

the same proportion.

This result can be seen by deriving the function Q(τ) for specific signal and noise

distributions cases. For the case of signal and noise sharing the same distribution—but

with not necessarily equal variances—the function Q(τ) is listed in Table 4.2 for θ = 0.

In all cases, Q(τ) is a function of the ratio σ. Hence, by inspection of Eqns. (4.24), (4.22)

and (4.23) it is clear that Py(n), H(y), H(y|x), and I(x, y) will also be functions of σ,

and not ση or σx in isolation. Note that if θ 6=0 then Q(τ) will depend on the ratio θ
σx

, as

well as θ and the ratio, σ, and therefore so will the mutual information.
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Table 4.1. List of probability distributions and corresponding PDFs.

Distribution support mean variance PDF, P(x) CDF, FR(z) ICDF, F−1
R (w)

Gaussian [−∞, ∞] 0 σ2
x

1√
2πσ2

x

exp
(

− x2

2σ2
x

)

0.5 + 0.5erf

(

z√
2ση

) √
2σηerf

−1 (2w− 1)

Uniform [− σx
2 , σx

2 ] 0 σ2
x

12

{

1
σx

, x ∈ [− σx
2 , σx

2 ],

0, otherwise















0, z < − ση

2 ,
z

ση
+ 1

2 , z ∈ [− ση

2 ,
ση

2 ],

1, z >
ση

2 .

ση(w− 1
2)

Laplacian [−∞, ∞] 0 σ2
x

1√
2σx

exp
(

−
√

2|x|
σx

)







1
2 exp

(√
2z

ση

)

, z ≤ 0,

1− 1
2 exp

(

−
√

2z
ση

)

, z ≥ 0.







ση√
2

ln (2w), w ∈ [0, 1
2 ],

−ση√
2

ln (2(1− w)), w ∈ [ 1
2 , 1].

Logistic [−∞, ∞] 0 σ2
x = π2b2

x
3

exp (− x
bx )

bx(1+exp (− x
bx ))

2
1

1+exp
(

− z
bη

) bη ln
(

w
1−w

)

Cauchy [−∞, ∞] 0 ∞ λx
π

1
λ2

x+x2
1
2 + 1

π arctan
(

z
λη

)

λη tan (π(w− 1
2 ))

Exponential [0, ∞] σx σ2
x

1
σx

exp
(

− x
σx

)

1− exp
(

−z/ση

)

ση ln
(

1
1−w

)

Rayleigh [0, ∞] σx

√

π
2 (2− π

2 )σ2
x

x
σ2

x
exp

(

− x2

2σ2
x

)

1− exp
(

− z2

2σ2
η

)

ση

√

2 ln
(

1
1−w

)

P
a
g
e

1
0
1
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Figure 4.3. Various probability distributions. Plot showing the PDF, P(x), the CDF, FR(z), and

the ICDF, F−1
R (w), for seven different distributions. The left hand panels show the

PDFs, the middle panels show the CDFs and the right hand panels the ICDFs. The first

row shows the four double-sided, zero-mean, finite variance distributions, the second

row shows the infinite variance Cauchy distribution, and the third row shows the two

finite variance one-sided PDFs. All distributions have been plotted with a variance of

σ = 1, except for the Cauchy distribution, which has been plotted with a FWHM of

λ = 1.
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Table 4.2. List of ratios of signal PDF to noise PDF, Q(τ), for θ = 0. This table also shows

H(τ)—that is, the entropy of Q(τ). The label ‘NAS’ indicates that there is no analytical

solution for the entropy.

Distribution Q(τ) H(τ)

Gaussian σ exp

(

(1− σ2)
(

erf−1(2τ − 1)
)2
)

− log2 (σ)− 1
2 ln 2

(

1
σ2 − 1

)

Uniform, σ ≥ 1

{

σ, − 1
2σ + 0.5 ≤ τ ≤ 1

2σ + 0.5,

0, otherwise.
log2 σ

Laplacian

{

σ(2τ)(σ−1) for 0 ≤ τ ≤ 0.5,

σ(2(1− τ))(σ−1) for 0.5 ≤ τ ≤ 1.
NAS

Logistic σ
(τ(1−τ))(σ−1)

(τσ+(1−τ)σ)2 NAS

Cauchy σλ
1+tan2 (π(τ−0.5))

(1+σ2
λ tan2 (π(τ−0.5)))

NAS

The PDFs, Q(τ), are also plotted for various values of σ in Fig. 4.4 for θ = 0. Table 4.2

also lists the entropy of τ—which is equivalent to the negative of the relative entropy

between P(x) and R(x)—for two cases. In this table, NAS indicates that No Analytical

Solution can be found for the entropy.

We are now in a position to comment further on interpreting the significance of the

function Q(τ). Recall that P(x)dx = Q(τ)dτ. Assume that Q(τ) is a PDF—which will

be the case if the support of P(x) is contained in the support of R(θ − x), and is given

by Eqn. (4.21). Thus, the entropy of the random variable τ is

H(τ) = −
∫ τ=1

τ=0
Q(τ) log2 (Q(τ))dτ = −

∫ x=∞

x=−∞
P(x) log2

(

P(x)

R(θ − x)

)

dx, (4.43)

which is the negative of the relative entropy between P(x) and R(x− θ), that is H(τ) =

−D(P(x)||R(θ − x))—see Section 2.3.1 in Chapter 2 for the definition of relative en-

tropy. If R(η) is even about a mean of zero, and θ is equal to the signal mean of zero,

then the entropy of τ is the negative of the relative entropy, D(P(x)||R(x)). Since rela-

tive entropy is always positive, this means that the entropy of Q(τ) is always negative

or zero. Since τ is a continuously valued random variable, its entropy is differential

entropy, and negative entropy is allowable.

The relative entropy for the four cases of matched Gaussian, logistic, Laplacian and

Cauchy distributions is shown for θ = 0 in Fig. 4.5, against increasing σ. The Gaussian

case was calculated from the exact formula given in Table 4.2. The other cases were

found numerically. Clearly, the relative entropy is zero at σ = 1, which is as expected,

since at σ = 1, P(x) = R(x) ∀ x. For σ < 1, the relative entropy becomes very large as
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Figure 4.4. Q(τ) for various even PDFs and θ = 0. Plot showing Q(τ) for various values of σ

for four even, infinite support PDFs, where both R(·) and P(·) have identical PDFs and

θ = 0. For σ < 1, Q(τ) is convex, for σ = 1, Q(τ) is uniform, and for σ > 1, Q(τ) is

concave. For the Gaussian, Laplacian and logistic cases, Q(τ) is infinite at τ = 0 and

τ = 1 for σ < 1, and is equal to zero at τ = 0 and τ = 1 for σ > 1. For the Cauchy

case, Q(0) = Q(1) = 1
σλ
∀ σ.
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σ gets smaller, and for σ > 1 gets larger, but more slowly with σ. The Gaussian case

always gives the largest relative entropy for the same value of σ.

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

σ

D
(P

(x
)|

|R
(x

))
=

−
H

(τ
)

Gaussian
Logistic
Laplacian
Cauchy

Figure 4.5. Relative entropy between P(x) and R(x). This figure shows the relative entropy—

which is equivalent to the negative of the entropy of τ—plotted against σ for four cases

of matched signal and noise distributions, for θ = 0. The Gaussian case was calculated

from the exact formula given in Table 4.2. The other cases were found numerically.

Clearly, the relative entropy is zero at σ = 1, which is as expected, since at σ = 1,

P(x) = R(x) ∀ x. For σ < 1, the relative entropy becomes large as σ gets smaller,

and for σ > 1 also becomes larger, but more slowly with σ. The Gaussian case always

gives the largest relative entropy for the same value of σ.

Also, the first two moments of the random variable, τ, are

E[τ] =
∫ τ=1

τ=0
τQ(τ)dτ, (4.44)

E[τ2] =
∫ τ=1

τ=0
τ2Q(τ)dτ. (4.45)

Notice also that the term that appears on the RHS in Eqn. (4.30) and Eqn. (4.31) is

E[τ log2 (τ)].

For the specific distributions listed in this Section that have infinite support, Q(τ) has

support τ ∈ [0, 1]. For the uniform case, when σ > 1, τ has support [− 1
2σ + 0.5, 1

2σ +

0.5]. Note that for uniform signal and noise, Q(τ) is only valid for σ ≥ 1, since for

σ ≤ 1, dτ
dx = 0 for x < −ση

2 and x >
ση

2 . In all the cases in Table 4.2, Q(τ) is a PDF, as

one would expect from Eqn. (4.20). This is proven in Section B.4 in Appendix B for the

cases of Gaussian and Laplacian signal and noise.

Note also from Table 4.2 and Fig. 4.4 that, apart from the Cauchy case, when σ = 1,

Q(τ) = 1 ∀ τ, that is, Q(τ) is uniform. Furthermore, for σ > 1, Q(0) = Q(1) = 0, so
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that Q(x) is concave, and for σ < 1, Q(x) is convex and Q(0) = Q(1) = ∞. For the

Cauchy case, a finite limit exists at τ = 0 and τ = 1, such that Q(0) = Q(1) = 1
σλ
∀ σ.

That a PDF may have values that approach infinity may at first seem surprising. How-

ever, to be a PDF, a function only needs to be nonnegative for its entire support, and

have a total area of unity when integrated with respect to its support. Infinite values

do not preclude this, no more than the fact that a Gaussian PDF is never equal to zero,

even for infinite values of its support. An example of a relatively well known PDF

with infinite values is the PDF of a sine wave with a random phase and amplitude

A (Damper 1995, Wannamaker et al. 2000a),

P(x) =







1
π
√

A2−x2
, x ∈ [−A, A],

0 otherwise.
(4.46)

This PDF is plotted in Fig. 4.6 for A = 0.5.
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Figure 4.6. PDF of a random phase sine wave. This figure shows the PDF of a random phase

sine wave that has an amplitude of A = 0.5. Notice that the PDF approaches infinity

at x = ±A, just as the PDF Q(τ) does for small values of σ.

Interpreting Q(τ)

For uniform signal and noise with σ < 1, define Q′(τ) = Q(τ) to be valid for x ∈
[−ση

2 ,
ση

2 ]. Hence, Q′(τ) is not a PDF for σ < 1, since
∫ τ=1

τ=0 σdτ = σ. Therefore any

integrations over τ in this case require extra consideration of x < −ση

2 and x >
ση

2 . This

will not be the case for the integral on the RHS of Eqn. (4.28) since in this range of x,

P1|x is either zero or unity and therefore P1|x log2 P1|x = 0. Likewise, it will not be the
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case in calculating Py(n), since P1|x(1− P1|x) = 0, except when n = 0 or N = 1. A

simple integration in these cases finds that

Py(0) = Py(N) =
∫ τ=1

τ=0
Q′(τ)τNdτ +

∫ x=σx/2

x=ση/2

1

σx
1Ndx

=
σ

N + 1
+

1

2
− σ

2
. (4.47)

Note that the integral in the region x ∈ [ση/2, σx/2] is the region of the support of P(x)

for which all thresholds are always ‘on.’ This occurs since for these values of x, the

noise is never negative enough to cause any threshold devices to be ‘off,’ that is, we

have x + η > θ ∀ x ∈ [ση/2, σx/2].

Thus, a possible interpretation of the significance of Q(τ) is that it is related to the

output distribution, Py(n). As previously noted, for σ < 1, Q(τ) is concave, and for

σ > 1, Q(τ) is convex. For σ = 1, Q(τ) is uniform. Recall also that σ = 1 corresponds

to the case of optimal output entropy, so that Py(n) = 1
N+1 , that is, the output prob-

ability mass function is uniform. Furthermore, for σ = 0, only output states 0 and N

are available, each with probability one half. Also, for uniform signal and noise and

σ < 1 where Q′(τ) is not a PDF, there is a contribution to Py(0) and Py(N) that cannot

be explained by this interpretation of Q′(τ).

The obvious possibility is to suggest that

Py(n) =
∫ τ= n+1

N+1

τ= n
N+1

Q(τ)dτ. (4.48)

However, this does not agree with Eqn. (4.24). In the case of large N however, it will

be seen in Chapter 5 that the output distribution does indeed approach Q(τ).

Hence, given that Q(τ) is a PDF, an intuitive explanation of its significance is that it

is the PDF of the average fraction of thresholds that are ‘on’, given x, that is, Q(τ)dτ

is the probability that 100τ is the average percentage of times that x + η > θ. Hence,

since there are N thresholds, the average number of thresholds crossed is Nτ, and

Q(τ) is the probability that Nτ thresholds are crossed. We discuss this in more detail

in Section 5.4.3 in Chapter 5.

By contrast with the probability mass function, Py(n), of the output states of the dis-

crete random variable, y, the random variable of the average number of thresholds

crossed is a continuous random variable. The reason that the average value of y is a

continuous random variable, is that it is being conditioned on x, which is also a con-

tinuous random variable. Hence, the average value of y given x—that is, E[y|x]—is
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described by a PDF, which we are interpreting as Q(τ). Thus, the CDF of Q(τ) evalu-

ated at x is the probability that E[y|x]/N is less than x.

Furthermore, the expected value of τ, as given by Eqn. (4.44), is then the actual ex-

pected value of the output y (not conditioned on x) and the expected value of τ2, as

given by Eqn. (4.45), is the mean square value of the output (not conditioned on x).

This subsection has presented the distributions we will study for the signal and/or

noise, as well as commenting on the function Q(τ), and giving an interpretation for

its significance in the SSR model. The next subsection presents an exact result for the

mutual information for the specific case of signal and noise both being uniformly dis-

tributed, and σ ≤ 1.

4.3.4 Exact Result for Uniform Signal and Noise, and σ ≤ 1

Exact analytical results for the SSR model are rare, and in most cases quantities need

to be found numerically. However, Stocks (2001c) gives an exact expression for the

mutual information in the case of a uniform signal and uniform noise when σ ≤ 1 and

θ = 0.

In this case, Py(0) and Py(N) have already been derived, as given by Eqn. (4.47). For

other n, from Eqn. (4.24) for x ∈ [−ση

2 ,
ση

2 ],

P∗(n) = σ

∫ 1

0
τn(1− τ)N−ndτ. (4.49)

For x outside this range, there is no additional contribution to P∗(n), as already dis-

cussed. Eqn. (4.49) is the same expression as Eqn. (6) in Stocks (2001c). As noted

in Stocks (2001a), this integral is simply a Beta function. The solution to such a Beta

function (Spiegel and Liu 1999) is

P∗(n) = σ
Γ(n + 1)Γ(N − n + 1)

Γ(N + 2)
, (4.50)

where Γ(·) is the Gamma function (Spiegel and Liu 1999). For integer k, Γ(k + 1) = k!,

and hence, since n and N are integers,

P∗(n) = σ
n!(N − n)!

(N + 1)!
=

σ

(N + 1)(N
n )

. (4.51)

Therefore

Py(n) =

(

N

n

)

P∗(n) =
σ

N + 1
. (4.52)
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Thus, the complete output probability mass function for uniform signal and noise and

σ ≤ 1 is

Py(n) =

{

σ
N+1 + 1

2 − σ
2 for n = 0, N

σ
N+1 for n = 1, .., N − 1.

(4.53)

It is clear that when σ = 0, Py(0) = Py(N) = 0.5, which is expected, as in the absence

of noise either all comparators are switched on, or all are off. It is also clear that for

σ = 1 that Py(n) = 1
N+1 ∀ n, which is verified by Eqn. (4.32).

Thus, the output entropy is

H(y) = −2Py(0) log2 Py(0)− (N − 1)Py(1) log2 Py(1)

= −
(

2σ

N + 1
+ 1− σ

)

log2

(

σ

N + 1
+

1

2
− σ

2

)

− (N − 1)σ

N + 1
log2

(

σ

N + 1

)

.

(4.54)

The conditional output entropy can be evaluated from Eqn. (4.27). First,

∫ τ=1

τ=0
Q′(τ)τ log2 τdτ =

−σ

4 ln 2
, (4.55)

which is valid for all x, as previously discussed. Secondly,

−
N

∑
n=0

log2

(

N

n

)

Py(n) = −
N−1

∑
n=1

log2

(

N

n

)

Py(n)

= − σ

N + 1

N−1

∑
n=1

log2

(

N

n

)

− Py(0) log2 1− Py(N) log2 1

= − σ

N + 1

N

∑
n=0

log2

(

N

n

)

=
σ

N + 1

N

∑
n=2

(N + 1− 2n) log2 n, (4.56)

since, as before, −∑
N
n=0 log2 (N

n ) = ∑
N
n=1(N + 1− 2n) log2 n. Thus,

H(y|x) = σ

(

N

2 ln 2
+

1

N + 1

N

∑
n=2

(N + 1− 2n) log2 n

)

. (4.57)

It is clear that this is exactly σ times Eqn. (4.39), the average conditional entropy for

identical signal and noise distributions at σ = 1, and that therefore H(y|x) is a linearly

increasing function of σ for this specific case. This is due to Py(n) being uniform at

σ = 1, and Py(n) being uniform—that is, Py(n) = σ/(N + 1) for all n except n = 0 and

n = N. The n = 0 and n = N terms do not appear in the conditional entropy term due

to being multiplied by the logarithm of unity.
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Therefore, the complete exact expression for the mutual information for uniform signal

and noise and σ ≤ 1 is

I(x, y) =−
(

2σ

N + 1
+ 1− σ

)

log2

(

σ

N + 1
+

1

2
− σ

2

)

− (N − 1)σ

N + 1
log2

(

σ

N + 1

)

− σ

N + 1

N

∑
n=2

(N + 1− 2n) log2 n− Nσ

2 ln 2
. (4.58)

This expression is that derived in Stocks (2001a) and stated as Eqn. (7) in Stocks (2001c).

Note that if σ = 0 in Eqn. (4.58) then I(x, y) = 1 and if σ = 1, Eqn. (4.58) becomes

identical to Eqn. (4.40).

This exact expression for the mutual information is plotted against σ for various values

of N in Fig. 4.7, as well as the average conditional output entropy and the output en-

tropy. Apart from N = 1, it is clear that there is a maximum in the mutual information

for some value of σ between zero and unity. As N gets larger, the value of σ at which

the maximum occurs gets closer to unity. It is also clear that both the output entropy,

and the average conditional output entropy are strictly increasing with increasing σ.

Note that, as indicated by Eqn. (4.57), the average conditional output entropy is a lin-

ear function of σ, whereas the output entropy increases with a larger slope for smaller

σ.

The maximum in the mutual information occurs for the value of σ for which the slope

of the output entropy is equal to the slope of the average conditional output entropy.

Label this optimal value as σo. This can be found by differentiating I(x, y) with re-

spect to σ and setting the result to zero. Carrying this out, and after some algebra, the

following expression gives σo as a function of N,

σo =
N + 1

N − 1 + 2B+1
, (4.59)

where B = N(N+1)
2 ln 2(N−1)

+ 1
N−1 ∑

N
n=2(N + 1− 2n) log2 n. The mutual information at this

optimal value is indicated in Fig. 4.7(a) with crosses, for N = 2, .., 1000.

Before discussing these observations further, the next subsection presents numerical

results for the other signal and noise distributions given in Table 4.1.
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Figure 4.7. Exact I(x, y) for uniform signal and noise and σ ≤ 1. Fig. 4.7(a) shows the

exact mutual information, Fig. 4.7(b) shows the average conditional output entropy,

and Fig. 4.7(c) shows the output entropy, in the case of uniform signal and noise, and

σ ≤ 1, for various values of N. The threshold value is θ = 0. The increasing value

of the curves up the y-axis correspond to larger values of N. The average conditional

entropy can be seen to increase linearly with increasing σ, as indicated in Eqn. (4.57).

The output entropy is also an increasing function of σ, but appears to increase faster for

smaller σ than for larger σ. The mutual information shows a noise induced maximum,

and the value of σ at which this occurs increases with increasing N. The optimal value

of mutual information is shown with a cross in Fig. 4.7(a) for N = 2, .., 1000.
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4.3.5 Numerical Results

In this Section we show that SSR is not a phenomenon that occurs only for the specific

cases of uniform or Gaussian signal and noise distributions. We begin by considering

various cases of ‘matched’ signal and noise, so that the signal and noise both have

the same distribution, although with different variances. This is the same situation as

studied in Stocks (2000a), Stocks (2001c) and Stocks (2001a). The facts that an exact

solution for the mutual information holds in such a case when σ = 1, and the mutual

information is a function of the ratio, σ, and not both the signal and the noise variance

independently, are the reasons that this situation is the natural situation to examine

first. However, there is no other reason why the signal and noise need to have the

same distribution.

Therefore, we also briefly look at some examples where the noise is Gaussian, and the

signal has some other distribution, to illustrate that the qualitative behaviour of SSR

does not depend on the actual signal and noise distribution to any large extent.

The mutual information between the input and output signals of the array of threshold

devices can be obtained by numerical integration for any given signal and noise dis-

tribution. Some technical details on how the numerical integrations have been carried

out are presented in Section B.5 of Appendix B.

Matched signal and noise

We now present figures showing the mutual information, average conditional entropy,

and output entropy for five different matched signal and noise distributions, for a

range of σ and N, and θ = 0. Each of these five distributions have PDFs which are

even functions about a mean of zero.

Gaussian Fig. 4.8 shows the mutual information, average conditional entropy, and

output entropy for Gaussian signal and noise.

Uniform Fig. 4.9 shows the mutual information, average conditional entropy, and out-

put entropy for uniform signal and noise. Fig. 4.9 also shows with circles the ex-

act mutual information, average conditional entropy and output entropy already

plotted in Fig. 4.7, for a number of values of σ. Clearly, the numerically calculated

results agree with the known exact values in all cases.
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Laplacian Fig. 4.10 shows the mutual information, average conditional entropy, and

output entropy for Laplacian signal and noise.

Logistic Fig. 4.11 shows the mutual information, average conditional entropy, and

output entropy for logistic signal and noise.

Cauchy Fig. 4.12 shows the mutual information, average conditional entropy, and out-

put entropy for Cauchy signal and noise.

In each case, the mutual information shows a noise induced maximum, and the value

of σ at which this occurs increases with increasing N, and corresponds to the point

where the slope of the output entropy is equal to the slope of the average conditional

entropy. Clearly, the maximum in I(x, y) must occur for σ ≤ 1, since for σ > 1, the

output entropy decreases while the average conditional entropy increases. Hence, the

slope of each can never be the same, and therefore no stationary point in the mutual

information exists for σ > 1. For σ ≤ 1, both the average conditional entropy and

the output entropy can be seen to increase with increasing σ. For σ ≥ 1, the aver-

age conditional entropy continues to increase, but the output entropy decreases. This

makes sense, since from Eqn. (4.36), the output entropy reaches its maximum value at

log2 (N + 1) at σ = 1.

Each figure shows with circles the exact mutual information, average conditional en-

tropy, and output entropy at σ = 1, calculated from Eqns. (4.40) and (4.36). Also shown

with circles is the fact that the mutual information and output entropy is exactly unity

at σ = 0, and that the average conditional entropy is zero at σ = 0. Clearly, the numer-

ically calculated results agree with the known exact values in all cases.

Given the very similar qualitative behaviour for these five signal and noise pairs, it

is of interest to examine more closely the differences between them. To facilitate this,

Fig. 4.13 shows the mutual information, average output entropy, and output entropy

for all five cases superimposed, for N = 127. As of course should be the case, given

the previously presented theory, for σ = 1 the mutual information, average output

entropy and output entropy is the same for all signal/noise pairs. A close inspection

shows that the Gaussian case gives the largest maximum mutual information out of all

the plotted cases. A further observation is that the maximum mutual information for

the Gaussian, Laplacian and logistic cases occurs for nearly the same values of σ—a

value that is much smaller than the maximising σ for the uniform case. The Cauchy
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case has a slightly smaller maximum, but also occurs for a much smaller σ than the

uniform case.
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Figure 4.8. I(x, y), H(y|x) and H(y) for Gaussian signal and noise. Fig. 4.8(a) shows the

mutual information, Fig. 4.8(b) shows the average conditional output entropy, and

Fig. 4.8(c) shows the output entropy, in the case of Gaussian signal and noise for

various values of σ and N. The threshold value is θ = 0. The increasing value of the

curves up the y-axis correspond to larger values of N. The circles at σ = 0—for which

the mutual information and output entropy is always exactly unity—and σ = 1, indicate

exact values for each quantity, calculated using Eqns. (4.40) and (4.36). For σ ≤ 1,

both the average conditional entropy and the output entropy can be seen to increase

with increasing σ. For σ ≥ 1, the average conditional entropy continues to increase,

but the output entropy decreases. This makes sense, as the output entropy reaches

its maximum value at σ = 1 of log2 (N + 1). The mutual information shows a noise

induced maximum, and the value of σ at which this occurs increases with increasing

N, and corresponds to the point where the slope of the output entropy is equal to the

slope of the average conditional entropy.
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Figure 4.9. I(x, y), H(y|x) and H(y) for uniform signal and noise. Plot showing the mutual

information, average conditional output entropy, and output entropy, against σ for

various values of N and uniform signal and noise. The solid line indicates numerical

integration and the circles indicate the exact results that appear in Fig. 4.7. The

increasing value of the curves up the y-axis correspond to larger values of N.
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Figure 4.10. I(x, y), H(y|x) and H(y) for Laplacian signal and noise. Plot showing the mutual

information, average conditional output entropy, and output entropy against σ for

various values of N and Laplacian signal and noise. The increasing value of the curves

up the y-axis correspond to larger values of N. The solid lines where obtained by

numerical integration and the circles at σ = 0—for which the mutual information and

output entropy is always exactly unity—and σ = 1, indicate exact values for each

quantity, calculated using Eqns. (4.40) and (4.36).
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Figure 4.11. I(x, y), H(y|x) and H(y) for logistic signal and noise. Plot showing the mutual

information, average conditional output entropy, and output entropy against σ for

various values of N and logistic signal and noise. The increasing value of the curves

up the y-axis correspond to larger values of N. The solid lines where obtained by

numerical integration and the circles at σ = 0—for which the mutual information and

output entropy is always exactly unity—and σ = 1, indicate exact values for each

quantity, calculated using Eqns. (4.40) and (4.36).
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Figure 4.12. I(x, y), H(y|x) and H(y) for Cauchy signal and noise. Plot showing the mutual

information, average conditional output entropy, and output entropy against σ for

various values of N and Cauchy signal and noise. The increasing value of the curves

up the y-axis correspond to larger values of N. The solid lines where obtained by

numerical integration and the circles at σ = 0—for which the mutual information and

output entropy is always exactly unity—and σ = 1, indicate exact values for each

quantity, calculated using Eqns. (4.40) and (4.36).
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Figure 4.13. I(x, y), H(y|x) and H(y) for N = 127 and five signal and noise pairs with even

PDFs. Plot showing the mutual information, average conditional output entropy, and

output entropy against σ for N = 127 and each of five signal and noise pairs. The

solid lines where obtained by numerical integration and the circles at σ = 0—for

which the mutual information and output entropy is always exactly unity—and σ = 1,

indicate exact values for each quantity, calculated using Eqns. (4.40) and (4.36).

Notice that in all cases the mutual information, output entropy and average conditional

output entropy have the same value at σ = 1, as it should be, given the known

exact expressions at this point. The maximum mutual information for the Gaussian,

Laplacian and logistic cases occurs for nearly the same values of σ, a value which is

much smaller than the maximising σ for the uniform case. For the Cauchy case, the

maximum σ is slightly smaller, but also occurs for a much smaller value of σ than the

uniform case.
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We now consider two cases of distributions with single sided PDFs, that is, the PDF of

random variables which are only defined for positive values.

Fig. 4.14 shows the mutual information, average conditional entropy, and output en-

tropy for Rayleigh signal and noise, for a range of σ and N, and two values of the

threshold. The first case, shown with solid lines, is for the threshold set to the signal

mean, which is θ = σx

√

π
2 . This ensures that the mutual information at σ = 0 is equal

to unity. However, due to the one-sided nature of the noise PDF, this also means that

for all values of x greater then the mean, the output will always be N, since the noise

can never help these values of the signal cross below any thresholds. This causes the

maximum value of the mutual information to be much smaller than for the same N in

the Gaussian case. The second case shown in Fig. 4.14 is for the threshold value set to

twice the signal mean. Although this decreases the mutual information for small σ, it

substantially increases it for large σ, since there is now far fewer values of x for which

the output will always be zero.

Fig. 4.15 shows the mutual information, average conditional entropy, and output en-

tropy for exponential signal and noise, for a range of σ and N. The threshold value

is set to the signal mean, which is θ = σx. This ensures that the mutual information

at σ = 0 is equal to unity. Although the results shown in Fig. 4.15 show the same

qualitative behaviour as in the Gaussian signal and noise case, the maximum value of

the mutual information for each N is much smaller. As with the Rayleigh case, this is

because with the threshold set to the signal mean, there is a large range of x for which

the output is always zero.

To compare the mutual information in the Rayleigh and exponential cases to the even

PDF cases, Fig. 4.16 shows the mutual information, average output entropy, and out-

put entropy for the both these distributions for N = 127, as well as the case of Gaus-

sian signal and noise. The Rayleigh case is shown for both threshold values plotted

in Fig. 4.14. It is clear that the mutual information is far smaller for the Rayleigh and

exponential cases than for the Gaussian case. However in the case of the Rayleigh dis-

tribution, where the threshold is set to twice the signal mean, the mutual information

for large σ is very close to that obtained for the Gaussian case. Indeed, at σ = 1, it

is only a small fraction smaller, indicating that even though the exact formula for the

mutual information at σ = 1 given in Eqn. (4.40) does not apply for one-sided signal

and noise PDFs, it can give a close upper bound, for an optimally set threshold.

In the next subsection we briefly consider mixed signal and noise distributions.
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Figure 4.14. I(x, y), H(y|x) and H(y) for Rayleigh signal and noise. Plot showing the mutual

information, average conditional output entropy, and output entropy against σ for

various values of N and Rayleigh signal and noise. The solid lines are the results

for the threshold set to the signal mean, so that the mutual information is exactly

unity in the absence of noise. The dashed lines are the results for the threshold set

to twice the signal mean, showing that in this case a much larger maximum mutual

information occurs. This happens due to the one-sided nature of the noise PDF; for

all signal values above the mean, the noise cannot cause thresholds to be crossed, and

the overall output will always be N. For a larger mean, this is less likely to occur, and

for sufficiently large σ, the noise is better matched to the signal. The increasing value

of the curves up the y-axis correspond to larger values of N.
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Figure 4.15. I(x, y), H(y|x) and H(y) for exponential signal and noise. Plot showing the

mutual information, average conditional output entropy, and output entropy against σ

for various values of N and exponential signal and noise. The threshold is set to the

signal mean, θ = σx, so that the mutual information is exactly unity in the absence of

noise. As with the Rayleigh case, the maximum mutual information is far smaller than

for the even PDFs, due to the one-sided nature of the noise PDFs. The increasing

value of the curves up the y-axis correspond to larger values of N.
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Figure 4.16. I(x, y), H(y|x) and H(y) for N = 127 and the Rayleigh and exponential cases.

Plot showing the mutual information, average conditional output entropy, and output

entropy against σ for N = 127 and the cases of Rayleigh signal and noise, and

exponential signal and noise. The Rayleigh case is shown for two different threshold

values, firstly the threshold set to the signal mean (Rayleigh1), and secondly the

threshold set to twice the signal mean (Rayleigh2). The Gaussian case is shown for

comparison. The circles indicate known exact results at σ = 0 and σ = 1 that apply

for the Gaussian case. Note that there is no exact result for the Rayleigh or exponential

cases, due to the one-sided nature of their PDFs. It is clear that the maximum mutual

information is far smaller for the Rayleigh and exponential cases than for the Gaussian

case. This is due to the one-sided nature of the noise PDF. However, for a threshold

set to allow more threshold crossings, the mutual information in the Rayleigh case

approaches that of the Gaussian case for large σ near σ = 1.
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Mixed signal and noise

Unlike in the matched cases above, in general the mutual information will be a func-

tion of both the signal and noise variances independently. Hence, our results for the

mutual information in this Section are plotted as a function of the ratio of noise stan-

dard deviation to signal standard deviation, and the signal standard deviation will be

set to unity.

We consider the case of Gaussian noise. This is usually the first assumption to be made

when the distribution of a noise source is unknown. Partly this is because Gaussian

distributions are ubiquitous in nature, and partly this is because for all continuously

valued distributions with a known variance, the Gaussian distribution has the largest

entropy.

Figs. 4.17, 4.18, 4.19 4.20 and 4.21 show with dashed lines the numerical results for

the cases of uniform, Laplacian, logistic, Cauchy and Rayleigh signals, with Gaussian

noise. The solid lines show the previously plotted results for noise having the same

distribution as the signal. In all cases except for a uniform or Rayleigh signal, Gaussian

noise provides a slightly larger maximum mutual information than for the matched

case. In the Rayleigh case, a much larger mutual information results from Gaussian

noise. Fig. 4.22 shows the mutual information for all cases with Gaussian noise for

N = 127. Very similar qualitative behaviour is seen for each. The maximum mutual

information is between 3 and 3.2 bits per sample for all cases, and occurs for a value

of σ close to that for matched Gaussian signal and noise. Fig. 4.22 also shows that

the mutual information for a Rayleigh signal and Gaussian noise, is very close to that

of Gaussian signal and Gaussian noise, indicating that Gaussian noise is a far better

match for a Rayleigh signal than Rayleigh noise.

Such results lead into the focus of the next section, that of channel capacity. Chan-

nel capacity is defined as the maximum possible mutual information, subject to certain

constraints. The results presented here lead us to ask questions like “what noise dis-

tribution provides the maximum mutual information in the SSR model for a given

signal?” and “what signal distribution provides the maximum mutual information for

a given noise distribution?”
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Figure 4.17. I(x, y), H(y|x) and H(y) for a uniform signal and Gaussian noise. Plot show-

ing the mutual information, average conditional output entropy, and output entropy

against noise intensity, σ, for various values of array size, N. The solid lines show

uniform signal and uniform noise, and the dashed lines show uniform signal and Gaus-

sian noise, with the signal standard deviation set to σx =
√

12 in both cases. The

increasing value of the curves up the y-axis correspond to larger values of N.

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

4

σ

I(
x,

y)

(a) Mutual information

0 0.5 1 1.5
0

1

2

3

4

5

6

σ

H
(y

|x
)

N=1
N=3
N=7
N=15
N=31
N=63
N=127

(b) Ave. conditional entropy

0 0.5 1 1.5
0

1

2

3

4

5

6

7

8

σ

H
(y

)

(c) Output entropy

Figure 4.18. I(x, y), H(y|x) and H(y) for a Laplacian signal and Gaussian noise. Plot show-

ing the mutual information, average conditional output entropy, and output entropy

against σ for various values of N. The solid lines show Laplacian signal and Laplacian

noise, and the dashed lines show Laplacian signal and Gaussian noise, with σx = 1

in both cases. The increasing value of the curves up the y-axis correspond to larger

values of N.
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Figure 4.19. I(x, y), H(y|x) and H(y) for a logistic signal and Gaussian noise. Plot showing the

mutual information, average conditional output entropy, and output entropy against σ

for various values of N. The solid lines show logistic signal and logistic noise, and the

dashed lines show logistic signal and Gaussian noise, with σx = 1 in both cases. The

increasing value of the curves up the y-axis correspond to larger values of N.
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Figure 4.20. I(x, y), H(y|x) and H(y) for a Cauchy signal and Gaussian noise. Plot show-

ing the mutual information, average conditional output entropy, and output entropy

against noise intensity, σ, for various values of N. The solid lines show Cauchy signal

and Cauchy noise, and the dashed lines show Cauchy signal and Gaussian noise. In

both cases, for the Cauchy signal, the FWHM for the signal is λx = 1 and the FWHM

for the noise is λη = σ/5. The increasing value of the curves up the y-axis correspond

to larger values of N.
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Figure 4.21. I(x, y), H(y|x) and H(y) for a Rayleigh signal and Gaussian noise. Plot show-

ing the mutual information, average conditional output entropy, and output entropy

against σ for various values of N. The solid lines show Rayleigh signal and Rayleigh

noise, and the dashed lines show Rayleigh signal and Gaussian noise. In both cases,

σx = 1 and the threshold value, θ, is set to the signal mean so that θ =
√

2− π
2 σx.

The increasing value of the curves up the y-axis correspond to larger values of N.

Clearly, Gaussian noise provides a far larger maximum mutual information than for

matched signal and noise in this case.
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Figure 4.22. I(x, y), H(y|x) and H(y) for N = 127, various signals and Gaussian noise.

Plot showing the mutual information, average conditional output entropy, and output

entropy against σ for N = 127 and various signal distributions with Gaussian noise.

The maximum mutual information is between 3 and 3.2 bits per sample, and occurs

for nearly the same values of σ for all cases.
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4.4 Channel Capacity for SSR

In information theory, the term channel capacity is usually defined as being the max-

imum possible (on average) mutual information, per sample, that can be transmitted

through a given channel. Usually, the channel is fixed and the maximisation performed

over all possible source probability distributions. Thus the problem of finding channel

capacity, C(x, y), can be expressed as the optimisation problem,

Find: C = max
{P(x)}

I(x, y). (4.60)

Often there are prescribed constraints on the source distribution, P(x), such as a fixed

average power, or a finite alphabet, that is, P(x) is discretely valued, with a fixed,

finite number of states. Relevant attributes of the given channel are the noise power

and distribution, and bandwidth. The second most well known example of a channel

capacity formula is that for a binary symmetric channel—see Section 3.3.3 of Chapter 3.

The most well known example of a channel capacity formula is Shannon’s famous,

but often misused, formula for the channel capacity of a bandlimited, additive white

Gaussian noise channel (Shannon 1948),

C = B log2

(

1 +
Ps

Pn

)

bits per second, (4.61)

where B is the channel bandwidth, Ps is the prescribed maximum mean square signal

power and Pn is the mean square noise power (within the channel bandwidth). Note

that this formula has many names—see Section 3.3.1 in Chapter 3.

The channel capacity of Eqn. (4.61) can be rewritten in its most well known form, in

terms of the input SNR, as

C = B log2 (1 + SNR) bits per second. (4.62)

The main reason that this formula is often misapplied—see Berger and Gibson (1998)

for a discussion—is that it only applies when the channel noise has a Gaussian distri-

bution that is independent of the signal and is additive in nature. It also does not apply

if the noise is not white in the channel bandwidth—that is, if the power spectral den-

sity of the noise is not constant for all frequencies in the passband of the channel—or if

there are constraints other than the power constraint on the input signal. Furthermore,

capacity can only be achieved if the input signal has a Gaussian distribution.
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In channel capacity research, conventionally the channel is prescribed, and subject to

certain imposed input signal constraints, the optimal signal distribution found. Pre-

viously in this chapter, we have seen that the mutual information in the SSR model

is maximised by a nonzero value of noise. If we determine the optimal ratio of noise

standard deviation to signal standard deviation, σ, we have effectively found channel

capacity. At first glance, when compared to conventional studies of information chan-

nels, varying the noise level for a given signal seems as if it is equivalent to modifying

the channel, rather than looking for an optimal source distribution.

However, recall that in the case of even PDFs, the mutual information for matched

signal and noise is a function of σ. Thus, adjusting σ to find the maximum mutual

information for given signal and noise pairs is also equivalent to modifying the source

distribution, by increasing or decreasing its variance, for fixed noise.

Thus, the questions of “what noise variance maximises the mutual information, for

given matched signal and noise distributions and a fixed signal variance?” and ”what

signal variance maximises the mutual information, for given matched signal and noise

distributions and a fixed noise variance?” are equivalent. The following subsection

looks at this question, and in light of the above discussion, is no different to conven-

tional channel capacity questions, since the channel is fixed—that is, a noise distribu-

tion and variance is given—and the source distribution is to be found, subject to the

constraint that it has the same PDF as the noise, but can have any variance.

4.4.1 Matched and Fixed Signal and Noise PDFs

In light of the proceeding discussion, consider the case of a channel being prescribed—

that is, the number of comparators, N, and the noise PDF, R(η), and variance, σ2
η , will

remain fixed—and the constraint on the signal that its PDF is the same as the noise,

other than the variance.

Thus, in this situation, finding the SSR channel capacity means finding the optimal

signal variance—or, equivalently, power—for a given noise variance. Thus, we can

express this problem in the following manner,

Find: C(x, y) = max
var[x]

I(x, y)

subject to: R(η) and var[η] fixed

and P(x) matched with R(η). (4.63)
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The result of solving this optimisation problem is the optimal value of the variance of

the signal. Since this value will hold for a specified variance of the noise, the result will

give the optimal value of σ.

Although solving this problem analytically is intractable—apart from the uniform sig-

nal and noise case—numerical solution is straightforward. The result of such an op-

timisation is shown in Fig. 4.24(a), which shows the channel capacity for the cases

of matched Gaussian, Laplacian and logistic signal and noise, for increasing N, and

Fig. 4.23, which shows the values of σ at which channel capacity is achieved. Also

shown in these figures is the capacity for uniform signal and noise, where σo is calcu-

lated from Eqn. (4.59) and plotted in Fig. 4.23, and the mutual information at this σo,

plotted in Fig. 4.24(a). Fig. 4.24(a) also shows the mutual information obtained at σ = 1

using the exact formula of Eqn. (4.40), which holds in all cases.
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σ o
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Figure 4.23. Optimal σ for Gaussian, Laplacian and logistic signal and noise. This figure

shows σo—that is, the value of σ that achieves channel capacity—against increasing

N. The Gaussian, Laplacian and logistic cases were calculated numerically, and the

uniform case was calculated from the exact formula of Eqn. (4.59). Although it is not

completely clear from this figure with the scale limited to N ≤ 1000, for larger N, σo

asymptotically approaches a fixed value.

From Fig. 4.24(a) the difference between the capacity of each of the three infinite sup-

port distributions is very small, and indeed is hard to resolve on the scale shown.

Hence, the difference between each case is plotted in Fig. 4.24(b). This plot shows that

the difference in channel capacity between each case appears to be decreasing as N

increases, apart from an initial increase in difference for small N.
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Fig. 4.24(c) shows the difference between channel capacity, and the mutual information

at σ = 1. The capacity is, of course, always greater than the exact mutual information

at σ = 1, although the difference between the capacity and this value appears to also

approach a constant slightly greater than 0.2 bits per sample for large N, apart from

the uniform case. In the uniform case, the optimising σ approaches unity for large

N. Thus, as previously noted here, and in Stocks (2001a), the maximum in the mutual

information appears to always be between σ = 0 and σ = 1, since at σ = 0, the mutual

information is always 1 bit per sample.

It is clear from Fig. 4.24(a) that as N increases, the channel capacity also increases.

However, from Fig. 4.23, the optimising value of σ appears to converge asymptotically

to a constant value, σo, as N increases. For Gaussian signal and noise, this large N

value appears to be σo ≃ 0.607, for Laplacian signal and noise, σo ≃ 0.5 and for logistic

signal and noise σo ≃ 0.564. It is not visible on the axes of Fig. 4.23, but for uniform

signal and noise, the large N value of σo ≃ 1. This is shown to be the case in Chapter 5.

Furthermore, the difference between channel capacities for the various distributions

appears as if it might approach zero for very large N. These results indicate the pos-

sibility that proofs of this behaviour may be possible in a large N limit. Chapter 5 is

devoted to the investigation of expressions for the mutual information and channel

capacity that hold for large N.

4.4.2 Channel Capacity in General

We saw for the case of mixed signal and noise distributions that Gaussian noise can

provide a larger maximum mutual information than noise matched with the signal.

Hence, the natural question to ask is “what signal distribution maximises the mutual

information for a given noise distribution?” In contrast to the previous subsection,

where we imposed the constraint that the signal distribution must be matched with

the source distribution, and therefore the shape of the signal PDF is known, to solve

this problem the optimal source PDF must be found. This problem can be expressed as

Find: C(x, y) = max
P(x)

I(x, y)

subject to: R(η) and var[η] fixed. (4.64)

The constraint that specifies that the noise distribution is fixed can be dropped from

the expression of the problem, as it simply specifies the nature of the channel. Thus,

Page 129



4.4 Channel Capacity for SSR

200 400 600 800 1000
0

1

2

3

4

5

N

C
(x

,y
)

Gaussian
Uniform
Laplacian
Logistic
σ=1

(a) Channel Capacity

200 400 600 800 1000
−0.01

0

0.01

0.02

0.03

0.04

N

∆C
(x

,y
)

Gaussian−Laplacian
Gaussian−Logistic
Laplacian−Logistic

(b) Differences in Channel Capacity

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

N

C
(x

,y
)−

I(
x,

y)

Gaussian capacity − Info at σ=1
Uniform capacity − Info at σ=1
Laplacian capacity − Info at σ=1
Logistic capacity − Info at σ=1

(c) Difference between Channel Capacity

and I(x, y) at σ = 1

Figure 4.24. Channel capacity for matched signal and noise. Fig. 4.24(a) shows the channel

capacity calculated numerically for Gaussian, Laplacian and logistic signal and noise

pairs against increasing N. It also shows the exact channel capacity for uniform signal

and noise, calculated from Eqns. (4.59) and (4.58), and the mutual information that

holds for all cases where P(x) = R(θ− x) so that σ = 1, calculated from Eqn. (4.40).

Clearly, the channel capacity is almost identical for the Gaussian, Laplacian and logistic

cases, and is larger than the mutual information at σ = 1. Fig. 4.24(b) shows the

difference between the channel capacity each of these three pairs is very small, and the

difference gets smaller with larger N. Fig. 4.24(c) shows the difference between the

channel capacity and the mutual information at σ = 1 for each case. Apart from the

uniform case, this difference appears to approach a constant value, again indicating

that the maximum mutual information occurs for σ < 1 for these cases for all N.
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the optimisation problem to be solved is

Find: C(x, y) = max
P(x)

I(x, y). (4.65)

For channels with continuously valued inputs and outputs, usually a constraint such

as a peak power or fixed average power constraint are specified. This is to give some

realism to a signal’s distribution, since otherwise the optimal P(x) could have infinite

power. Such channel capacity problems can be solved by use of the Arimoto-Blahut

algorithm (Arimoto 1972, Blahut 1972, Cover and Thomas 1991).

This iterative algorithm begins with an initial guess for P(x). It then uses this P(x)

along with the channel characteristics to calculate the joint probabilities of all pairs of

input and output values, P(x, n). The current mutual information can be calculated

from these distributions. The algorithm then calculates a new P(x), one that is op-

timal for the current joint probabilities. This process is repeated, until the algorithm

converges to a solution such that the difference between successive values of the mu-

tual information is smaller than a specified error tolerance, and therefore the channel

capacity has been found.

The Arimoto-Blahut algorithm is fairly general, and can be easily extended to incorpo-

rate various constraints on the input signal, or specified costs for using various values

of the input (Blahut 1972, Hoch et al. 2003b). It can also be used to calculate rate-

distortion functions—see Chapter 9.

Applying the Arimoto-Blahut algorithm to calculating channel capacity for the SSR

model, as specified in Problem (4.65) does indeed find solutions. Specific values for

channel capacity for each N are slightly larger than in the case of matched signal and

noise. In fact, although not once thought of as being a case of a noise optimised signal,

such a calculation has been previously performed in Chang and Davisson (1988). The

main purpose of Chang and Davisson (1988) is to specify two algorithms based on

the Arimoto-Blahut algorithm for finding channel capacity in an infinite-input, finite-

output channel. The SSR model is exactly such a channel.

Chang and Davisson (1988) use an example situation to test each of these algorithms,

where the input signal is a continuously valued variable, x′, between zero and unity,

and the output signal is integer valued between 0 and L. The channel transition prob-

abilities are specified to be given by the binomial distribution as a function of x′ as

P(k|x′) =

(

L

k

)

(x′)k
(1− x′)(L−k) k = 0, .., L. (4.66)
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If P1|x is substituted for x′, Eqn. (4.66) is recognisable as being equivalent to Eqn. (4.9).

This substitution is allowable, since P1|x ∈ [0, 1] and x′ ∈ [0, 1]. With reference to

Table 4.1, a situation where P1|x increases linearly with x for all valid x, occurs when

the noise is uniform, and the signal PDF is limited to the support of the uniform noise.

Therefore, the channel of Chang and Davisson (1988) is exactly the same as the SSR

model when subjected to uniform noise, provided the signal and noise have the same

support.

However it turns out after replicating the results in Chang and Davisson (1988)—which

does not give the actual optimal P(x), only the capacity—the input PDF that achieves

the channel capacity is quite often unrealistic, in that in most cases P(x) has more than

one local maximum, and has small regions of highly probable values located symmet-

rically a long distance from its mean, particularly if non-uniform noise is allowed, and

the signal support allowed to be very large. Even in such situations, the capacity found,

although larger than for matched signal and noise, is only larger by a few percent.

Thus, for the case of SSR, a more realistic channel capacity question is one that specifies

a set of input PDF constraints that might include a maximum variance, combined with

a minimum entropy. Furthermore, constraints on the number of local maxima of the

PDF might be included. Such questions are left for future work.

Alternatively, constraints can be set on the output distribution. Such a situation can

arise naturally in a neural coding context, where coding of information might be sub-

ject to strict energy constraints. This scenario has been studied in Hoch et al. (2003b),

which uses the Arimoto-Blahut algorithm to derive optimal input PDFs under an out-

put energy constraint, such as might occurs in real neurons.

4.4.3 Coding Efficiency

Recall that the channel capacity was given for the binary symmetric channel, in terms

of the probability of error, by Eqn. (3.11) in Section 3.3.3 of Chapter 3. For this channel,

there is a well defined upper bound on the channel capacity of one bit per sample,

since the output can only take two states. This is verified by Eqn. (3.11), which shows

that the channel capacity is always less than or equal to unity, since terms of the form

p log p are always less than or equal to zero when p is a probability.

Likewise, since the SSR model has a discretely valued output signal, it also has a well

defined limit to its channel capacity. This is log2 (N + 1) bits per sample, since the
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output has N + 1 states. This contrasts with the additive Gaussian white noise channel

considered as the channel for Shannon’s channel capacity formula, for which the out-

put is a continuously valued signal. For such systems, there is no upper bound on the

channel capacity, which can theoretically be infinite.

Note that it is possible to achieve this maximum channel capacity in a situation where

not all thresholds are equal to the signal mean. For example, in the absence of noise,

this maximum channel capacity is achieved by setting the thresholds such that all out-

put states are equally likely. Such a scenario however is beyond the scope of this chap-

ter, and will be considered in Chapter 8. Here, we are only considering the case of all

thresholds identical.

The existence of such an upper bound on channel capacity allows the definition of a

coding efficiency measure as

Γ(N) =
C(x, y)

log2 (N + 1)
. (4.67)

This measure gives the fraction of the maximum possible mutual information provided

by given signal and noise distributions in the SSR model. If Γ is multiplied by 100, then

the coding efficiency can be measured as a percentage. This idea is expressed in Stocks

(2001b). An alternative way of measuring the same thing is to measure the difference

between C(x, y) and log2 (N + 1). However, since this is an absolute measure, and Γ is

a relative measure, we will focus on Γ.

The results for channel capacity in the previous parts of this section can be re-plotted

in terms of coding efficiency. Fig. 4.25 shows the coding efficiency for matched signal

and noise for the Gaussian, uniform, Laplacian and logistic cases, as well as the coding

efficiency when P(x) = R(θ − x), so that σ = 1. For large N, the coding efficiency

appears to asymptotically approach a value slightly less than 0.5. As noted in Stocks

(2001b), this means that SSR for matched signal and noise is less than 50 percent of the

maximum noiseless channel capacity. However, given that in most systems, noise is

unavoidable, it may be the case that a coding efficiency of about 50 percent is quite

acceptable.

4.5 SSR as Stochastic Quantisation

We have seen in this chapter how the mutual information in the SSR model has a max-

imum for a nonzero noise intensity. We have also seen how the maximum mutual
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Figure 4.25. Coding efficiency for matched signal and noise. This figure shows the coding

efficiency, Γ, as a function of N, for matched signal and noise for the Gaussian,

uniform, Laplacian and logistic cases. Also shown is the coding efficiency when P(x) =

R(θ− x), so that σ = 1. For large N, the coding efficiency appears to asymptotically

approach a value slightly less than 0.5.

information in the absence of noise is exactly one bit per sample, since all thresholds

have the same value and the output can only ever be zero or N. Why is it that the

presence of noise allows a larger information rate per sample? The explanation is that

the presence of independent noise on each threshold has the effect of distributing all

N thresholds to different values, rather than the same value. Instead of modelling the

noise as being added to the signal, it is equivalent to model the noise as being threshold

noise, so that the threshold is a random variable. Hence, if the threshold is θ, then the

signal, x, is thresholded N times by N independent samples taken from the random

variable, η, described by the PDF, R(θ − η).

Thus, when noise is present, effectively all threshold values will be unique. This allows

the output to take values other than zero and N, and thus allow the output to become

a log2 (N + 1) bit stochastic quantisation of the input signal. For noise with a small vari-

ance compared to the signal, most of the output states will occur with a very small—or

zero, for noise with finite support—probability. Hence, very little extra information

can be gained, since only a fraction of the N + 1 output states are utilised. However,

when the noise variance is such that each output state is occupied with a probability

that reflects the shape of the input PDF, far more information can be gained, although

as we have seen, this appears to be at most about fifty percent of the maximum possible

channel capacity. For a noise variance larger than optimal, the dependence between
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the input and output signals decreases, and the mutual information starts to decrease

again.

Such a description of SSR as stochastic quantisation is given in Stocks (2000b), which

states that

“At any instant of time, finite noise results in a distribution of thresholds that, in

turn, leads to the signal being ‘sampled’ at N randomly spaced points across the

signal space.”

As discussed, the realisation that nonzero noise causes a distribution of thresholds is

the key to understanding why a nonzero noise intensity gives best performance, the

end result being a non-deterministic—or stochastic—quantisation of the signal.

Example random distributions of thresholds across the support of the Gaussian PDF

is shown in Fig. 4.26. In the subfigures, Fig. 4.26(a) shows the optimal noiseless thres-

hold values for this Gaussian source, while Figs. 4.26(b), 4.26(c) and 4.26(d) show

examples of the random threshold distribution in the SSR model, for three different

values of Gaussian noise variance. Clearly, although the example of the random thres-

hold distribution does not give the optimal threshold distribution, as we have seen in

this chapter it does give a distribution that allows the average mutual information of

the SSR model to approach half the maximum noiseless channel capacity.

It is now clear why channel capacity occurs at σo → 1 in the case of uniform signal

and noise, but approaches a value much less than unity in the cases of infinite support

PDFs. In the uniform case, when σ > 1 the random distribution of thresholds for any

given input sample sometimes places thresholds outside the dynamic range of the sig-

nal. This can only reduce the mutual information. Furthermore, since for the uniform

PDF, all values of x are equally probable, it is desirable that the random threshold dis-

tribution is just as likely to consist of a threshold near the mean of the signal as it is

close to its maximum and minimum value. For large N, this can only occur if the noise

PDF has a variance close to that of the signal.

By contrast, for the infinite support signal and noise cases, the most probable values

of the signal occur within several standard deviations of the mean. Therefore, the

noise distribution does not need to be as wide as the signal distribution for the optimal

random threshold distribution to occur. Hence, channel capacity occurs for σo ≪ 1 for

these cases.
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Figure 4.26. Random threshold distribution for Gaussian signal and noise. Fig. 4.26(a) shows

the optimal—that is, maximum mutual information—threshold values, θ, for N = 15

and a unity variance Gaussian source. The stem plot indicates with crosses the val-

ues of x for each threshold, and the value of P(x) at which each threshold occurs.

Figs. 4.26(b), 4.26(c) and 4.26(d) show particular instances of the random SSR thres-

hold distribution for three different values of noise variance. Notice that for small

noise variance, most thresholds are likely to end up close to the signal mean. For

intermediate and larger variances, more thresholds are likely to be located closer to

the tails of the source.
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4.5.1 Encoder Transfer Function

Given this stochastic quantisation interpretation of the SSR model, it is natural to won-

der how the SSR output compares with a standard quantisation of the input. We will

examine this question more closely in Chapter 6, however here we illustrate the affect

of independent threshold noise in this context by comparing the transfer function of a

conventional deterministic quantiser’s encoder, with the mean transfer function of the

SSR model’s encoding. When conventional quantisation is introduced in standard text-

books, it is usual to graphically illustrate the transfer function by plotting the output

values that correspond to certain input values.

For example, suppose a quantiser’s output has 3 bits, so that N = 7 thresholds are

required, and there are N + 1 = 8 output states. For the case where the thresholds

uniformly quantise a signal between ±1, the transfer function is shown with a thick

black line in Fig. 4.27(a). Note that this transfer function is deterministic, so therefore

there is no uncertainty about which output value is attained for every input value.

In contrast, the average transfer function for SSR is simply the expected value of the

output, y, given the input, x. Recall from Eqn. (4.9) that the conditional probability

distribution of the output given the input, is given by the binomial distribution. Here,

the expected value of the binomial distribution is given by

E[y|x] = NP1|x, (4.68)

which gives the average transfer function for SSR. However, unlike conventional quan-

tisers, the output is not-deterministic. One way of characterising this uncertainty is

with the conditional variance, var[y|x], which for the binomial distribution is given by

var[y|x] = NP1|x(1− P1|x). (4.69)

Fig. 4.27(a) shows the average transfer function for the SSR model, with N = 7, for

various values of noise standard deviation, ση, and Gaussian noise, as a function of x.

Fig. 4.27(b) shows the variance corresponding to each value of ση as a function of x.

We see that for the intermediate values of ση, the average transfer function appears to

more closely approximate the deterministic transfer function, whereas for ση = 0.3 and

ση = 1.2, the average transfer function appears to have too sharp, or too broad a slope

to give a good approximation. The relationship between the ideal and the average

transfer function is broadly measured by what is known as bias.
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However, the performance of the SSR model as a quantiser cannot be measured only

by how well its average transfer function compares with an ideal transfer function.

From Fig. 4.27(b), we see that the variance of the output for a given value of the input

always increases with increasing ση. Hence, there is a tradeoff required between the

bias and the variance for a given x. We will see quantitatively in Chapter 6 how the

performance of the SSR model depends on both of these quantities, and also on the

input distribution.
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Figure 4.27. Average transfer function, and its variance for SSR. Fig. 4.27(a) shows with a

thick black line the output of a conventional deterministic 3-bit uniform quantiser as

a function of the input, x. It also shows the average transfer function for the SSR

model, with N = 7, for various values of noise standard deviation, ση, and Gaussian

noise. Fig. 4.27(b) shows the variance corresponding to each value of ση as a function

of x.

4.5.2 Decoding the SSR Output

This description of SSR as a stochastic quantisation of the signal leads naturally to ask

whether SSR can be described in terms of conventional quantisation. The answer is

yes. Such theory usually considers a quantiser as having two stages—the encoding

stage and the decoding stage. The encoding stage can be described in terms of mutual

information, for randomly noisy encoding. Thus, as well as describing the interpre-

tation of SSR as an information channel, the current Chapter serves as a description

for the encoding of a signal in a quantisation scheme. Analysis of SSR in terms of the

decoder component of a quantiser is left for Chapter 6.
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Furthermore, the realisation that SSR can be described as a stochastic quantisation of a

signal also leads to the subject of optimal quantisation. Usually a quantisation scheme

is considered to be deterministic, and optimising the quantisation requires the optimal

selection of threshold values. There is no reason why such optimal threshold selection

cannot be considered for the case of noisy thresholds. This is the focus of Chapters 8

and 9.

4.6 Chapter Summary

This Chapter commences with a historical literature review of the initial discovery of

suprathreshold stochastic resonance, and all subsequent substantial work published

on the topic. We also briefly compare and contrast SSR with other similar work, and

discuss why the SSR model can be analysed from an information theoretic perspective.

Next, Section 4.3 comprehensively defines, and discusses the SSR model, and replicates

the approach used by Stocks to measure the mutual information between its input and

output signals. We also introduce a generic change of probability measure and show

how this approach can be used to calculate the mutual information. This change of

probability measure results in a new PDF, Q(τ), which we interpret as being the PDF

of the average transfer function of the SSR model, and is used to show that the mutual

information is a function of σ for specific matched signal and noise. Exact results for

identical signal and noise distributions, and the case of uniform signal and noise, as

derived by Stocks are re-derived. Finally, Section 4.3 presents numerical results for

seven different matched signal and noise distributions, as well as for various signal

distributions subject to Gaussian noise.

Section 4.4 then discusses finding channel capacity for the SSR model. We first present

numerical results showing the capacity obtained, and the value of σ which attains ca-

pacity, for four specified matched signal and noise cases. We then discuss briefly how

the Arimoto-Blahut algorithm can be applied to find an input PDF which achieves ca-

pacity, when the input PDF is not specified. The last subsection in Section 4.4 gives a

short discussion of how a coding efficiency measure can be defined for SSR, since there

is a known finite upper bound on the mutual information.

Finally, Section 4.5 gives an interpretation of the SSR model as being a stochastic quan-

tiser, since the independent noise on each threshold acts to randomise the effective

threshold values. This point is illustrated by plots showing examples of the values of
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such random thresholds, and plots showing the average transfer function for the SSR

model, when compared to a conventional quantiser.

4.6.1 Original Contributions for Chapter 4

This chapter includes the following original contributions:

• The first literature review of all previous work on the SSR model.

• The introduction of a generic change of probability measure in the equations used

to determine the mutual information through the SSR model, and the realisation

that this change of probability measure results in a PDF that describes the average

transfer function of the SSR model. This PDF is derived for several cases, for

which it is proved that the mutual information is a function of the ratio, σ, rather

than a function of the noise variance, and signal variance independently.

• The entropy of Q(τ) is shown to be equal to the relative entropy between the

signal and noise PDFs.

• Numerical calculations of the output entropy, average conditional entropy and

mutual information, for a number of signal and noise distributions not previ-

ously considered are plotted. These include the Laplacian, logistic, Cauchy, Ray-

leigh and exponential distributions. SSR is shown to occur in all cases.

• Numerical calculations of the mutual information for mixed signal and noise dis-

tributions are plotted. SSR is shown to occur in all cases.

• Channel capacity is found as a function of N for the Gaussian, Laplacian, uni-

form and logistic cases, as is the value of σ that achieves capacity. The difference

between channel capacity and the mutual information at σ = 1 is calculated, and

found to converge towards a constant value with increasing N.

• A comparison of coding efficiency for each signal and noise pair.

• Illustrations of why the signal encoding provided by the SSR model can be inter-

preted as a stochastic quantisation.
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4.6.2 Further Work

Possible future work and open questions arising from this chapter might include:

• The use of the Arimoto-Blahut algorithm to find input PDFs that attain channel

capacity in the SSR model, subject to the specification of constraints. Such con-

straints might include a specified variance, combined with a unimodal constraint.

• Investigation of multi-peaked or discretely valued signal and noise distributions.

• More thorough investigation of cases of mixed signal and noise distributions.

This concludes Chapter 4, which introduces the SSR model, and presents results that

apply for any value of N. Chapter 5 now examines approximations for the information

transmission in the SSR model, under the assumption of a large number of threshold

devices.
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Chapter 5

Suprathreshold Stochastic
Resonance: Large N

Encoding

T
HIS chapter discusses the behaviour of the mutual information

and channel capacity in the suprathreshold stochastic resonance

model as the number of threshold elements becomes large or ap-

proaches infinity. The results in Chapter 4 indicate that the mutual infor-

mation and channel capacity might converge to simple expressions of N in

the case of large N. The current chapter finds that accurate approximations

do indeed exist in the large N limit.
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5.1 Introduction

Section 4.4 of Chapter 4 presents results for the mutual information and channel capac-

ity through the Suprathreshold Stochastic Resonance (SSR) model shown in Fig. 4.1.

Recall that σ is the ratio of the noise standard deviation to the signal standard devi-

ation. For the case of matched signal and noise distributions and a large number of

threshold devices, N, the optimal value of σ—that is, the value of σ that maximises

the mutual information and achieves channel capacity—appears to asymptotically ap-

proach a constant value with increasing N. This indicates that analytical expressions

might exist in the case of large N for the optimal noise intensity and channel capacity.

We also saw that the channel capacity appeared as if it might become independent of

the signal and noise distribution for large N. We now explore these questions and find

accurate large N approximations in some specific cases. Firstly however we briefly

summarise relevant results given in Chapter 4 and then describe work already com-

pleted on this topic by other authors.

5.1.1 Mutual Information

As described in Chapter 4, for N threshold devices, the output of the SSR model is a

discretely valued signal, y, that takes on integer values between 0 and N. As explained,

y can be considered to be a stochastic encoding of the continuously valued input signal

x.

Regardless of the fact that N is allowed to approach infinity in the present chapter, the

output can never be considered to be a continuously valued signal, even if it is de-

coded to a finite range. This fact has its roots in the notion of countable and uncountable

infinities—the set of integers is called countably infinite, whereas the set of real numbers

is called uncountably infinite (Courant and Robbins 1996). An illustration of this notion

is to consider the question “how many real numbers are located between the integers

m and m + 1?” The answer is that there are infinitely many real numbers between m

and m + 1. By extension, since there are infinitely many integers, there are infinitely

more real numbers than there are integers. Furthermore, there are infinitely many real

numbers between any given pair of distinct real numbers, regardless of how small the

difference between them. By contrast, the distance between any two consecutive inte-

gers is finite. Thus, the real numbers are said to be uncountably infinite, whereas the

integers are countably infinite in size.
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This fact is also the basis for the difference between the entropy of a discrete random

variable, which is always non-negative, and the differential entropy of a continuously

valued random variable, which may be positive, negative or zero.

Thus, theoretically, quantisation of a continuously valued signal always gives a lossy

encoding, even if the quantisation noise—that is, the noise introduced into an encod-

ing of a number by quantisation, or truncation—can be made arbitrarily small, or to

asymptotically approach zero, by allowing N to approach infinity. This is manifested

by a term in the mutual information of the order of log2 N. This term approaches in-

finity for large N, and accounts for the fact that the quantisation noise can decrease

inversely with N. We will return to this fact in Chapters 6 and 7.

In light of this discussion, it is important that large N approximations to the mutual

information between the input and the output of the SSR model do not assume that

the output is continuously valued, without rigorous justification.

Before proceeding to examining in detail previous results on this topic in Stocks (2001c)

and Hoch et al. (2003a), we firstly summarise the relevant results from Chapter 4. As in

Chapter 4, this chapter only considers the case of all threshold values being identical,

so that all threshold values are equal to θ. We assume throughout this Chapter, apart

from Section 5.5.1, that the Probability Density Functions (PDFs) of the signal, P(x),

and the noise, R(η), are known, share the same distribution, and are even functions

about a mean of zero. Thus, we will always set the threshold value to be θ = 0.

Review of key results from Chapter 4

We define Py(n), n = 0, .., N to be the probability mass function of the output signal,

y, and P(n|x), n = 0, .., N to be the set of transition probabilities giving the probability

that the output is y = n given input signal value, x.

The mutual information between the input signal, x, and the output, y, of the SSR

model can be written as

I(x, y) = H(y)− H(y|x)

= −
N

∑
n=0

Py(n) log2 Py(n)−
(

−
∫ ∞

−∞
P(x)

N

∑
n=0

P(n|x) log2 P(n|x)dx

)

. (5.1)
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The entropy of the output for a given value of the input can be expressed in terms of

the probability that any given device is ‘on’, given x, P1|x as

Ĥ(y|x) = N
(

P1|x log2 P1|x + (1− P1|x) log2 (1− P1|x)
)

+
N

∑
n=0

P(n|x) log2

(

N

n

)

. (5.2)

For even signal and noise PDFs, and all thresholds equal to zero we have the average

conditional output entropy as

H(y|x) = −
N

∑
n=0

Py(n) log2

(

N

n

)

− 2N
∫

x
P(x)P1|x log2 P1|xdx, (5.3)

and Eqn. (5.1) reduces to

I(x, y) = −
N

∑
n=0

Py(n) log2 P∗(n) + 2N
∫

x
P(x)P1|x log2 P1|xdx, (5.4)

where P∗(n) = Py(n)/(N
n ) so that P∗(n) =

∫

x P(x)Pn
1|x(1− P1|x)

N−ndx.

Recall also that integrations over the signal PDF’s support variable, x, can be simplified

to expressions defined in terms of integrations over the variable, τ, which exists only

between zero and unity, via the transformation τ = P1|x. The resultant expressions are

functions of the PDF, Q(τ), where

Q(τ) =
P(x)

R(x)

∣

∣

∣

x=F−1
R (τ)

. (5.5)

5.1.2 Literature Review

Stocks’ seminal paper (Stocks 2000a) on SSR briefly discusses the scaling of SSR with

N, for large N. It states that an exact expression for mutual information can be found at

σ = 1 for identical signal and noise distributions. From this expression, it can be shown

that the mutual information scales with 0.5 log2 (N) for large N. Stocks notes that

this means that the channel capacity for large N is about half the maximum noiseless

channel capacity, since in the absence of noise, the maximum mutual information is

the maximum entropy of the output signal, which is log2 (N + 1). The mathematical

details of this result are not presented in Stocks (2000a), but left for Stocks (2001c)

and Stocks (2001a).

Stocks (2001c) presents an exact result for the mutual information in the SSR model for

the case of uniform signal and noise and σ ≤ 1. He also derives an approximation
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to this exact expression that holds in the case of large N, and shows that the mutual

information scales with 0.5σ log2 (N). Using this expression, Stocks (2001c) derives

formulas for the channel capacity for a given N, and the value of σ at which capacity

occurs, σo, finding that as N → ∞, σo → 1. Thus the main result is that for uniform

signal and noise and large N, capacity occurs at σo = 1 and scales with 0.5 log2 (N).

It is shown in Section 4.3.2 of Chapter 4 that the mutual information at σ = 1 is inde-

pendent of the signal and noise distribution, provided P(x) = R(θ − x) for all valid

x. This means that the result of Stocks (2001c) showing that the mutual information

at σ = 1 scales with 0.5 log2 (N) holds for any matched signal and noise distributions

where P(x) = R(θ − x). This is also demonstrated in Stocks (2001a).

The only other authors to consider SSR in the large N regime find that, in contrast

to uniform signal and noise—as studied in Stocks (2001c)—the channel capacity for

Gaussian signal and noise occurs for a value of σo ≃
√

1− 2/π ≃ 0.603 (Hoch et al.

2003a, Hoch et al. 2003b). We have already seen in Section 4.4 that for Gaussian signal

and noise the channel capacity appears to occur for σo approaching this value for N =

1000.

In contrast to Stocks (2001c)—which makes use of an exact expression for the mutual

information, and derives a large N approximation by approximating a summation

with an integral—Hoch et al. (2003a) begins by using a Fisher information based ap-

proximation to mutual information. The optimal value of σ is found by an analytical

approximation to the stationary point of the resultant expression. Hoch et al. (2003b)

and Wenning (2004) also give the results of Hoch et al. (2003a), but provide more de-

tails. In addition, Hoch et al. (2003b) gives an extensive investigation into quantifying

SSR in populations of spiking neuron models, including a section on SSR and energy

constraints. We also study the behaviour of SSR under constraints on the energy avail-

able in the model in Chapter 9.

5.1.3 Chapter Structure

The remainder of this chapter is organised as follows. Section 5.2 discusses Stocks’

large N approximation to the mutual information at σ = 1 and Section 5.3 discusses

his approximation to the mutual information for uniform signal and noise and σ ≤ 1.

Hoch et al’s Fisher information approach to approximating the mutual information for

large N and all σ is discussed in Section 5.4, which also provides an alternative and
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more accurate derivation of their results. Finding the noise intensity at which channel

capacity occurs is the subject of Section 5.5. Several results relevant to this chapter are

given in more detail in Appendix C.

5.2 SSR for Large N and σ = 1

Recall from Section 4.3.2 in Chapter 4 that for the specific case of signal and noise PDFs,

and θ, such that P(x) = R(θ − x), the following exact results are obtained,

H(y) = log2 (N + 1), (5.6)

H(y|x) =
N

2 ln 2
+

1

N + 1

N

∑
n=1

(N + 1− 2n) log2 n, (5.7)

and

I(x, y) = log2 (N + 1)− N

2 ln 2
− 1

N + 1

N

∑
n=2

(N + 1− 2n) log2 n. (5.8)

If both P(x) and R(x) have the same distribution, then we have σ = 1. Although, we

consider only this situation in this Section, the above results hold for any case of θ,

P(x) and R(η) such that P(x) = R(θ − x) for all valid x.

It is shown in Stocks (2001a) that as N approaches infinity, Eqn. (5.8) reduces to the

approximation, I(x, y) ≃ 0.5 log2 (N + 1), and that this implies that a maximum must

occur in the mutual information for a nonzero noise distribution (Stocks 2001a). This

section examines the derivation of this result in detail, and finds a slightly more accu-

rate expression for the large N mutual information at σ = 1.

5.2.1 Average Conditional Entropy for Large N and σ = 1

We begin by finding a simplified version of Eqn. (5.7) that holds for large N. Rather

than beginning with Eqn. (5.7) though, we start with Eqn. (5.3). Firstly, it is convenient

to express the first term in Eqn. (5.3) without the combinatorial term. Note that for

σ = 1, Py(n) = 1
N+1 ∀ n. This is proven in Section 4.3.2 in Chapter 4—see Eqn. (4.35).

After some algebra—see Section C.1 of Appendix C—the following identity is proven,

−
N

∑
n=0

Py(n) log2

(

N

n

)

= log2 (N!)− 2

N + 1

N

∑
n=1

n log2 n. (5.9)
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Note that Eqn. (5.9) can also be expressed as in the third term of Eqn. (5.8) as

−
N

∑
n=0

Py(n) log2

(

N

n

)

=
1

N + 1

N

∑
n=2

(N + 1− 2n) log2 n, (5.10)

which is the expression used in Stocks (2001a). However, here it will prove more con-

venient to use Eqn. (5.9). Note firstly that this expression still holds for any value of N,

not just large N.

We will now see that both terms of Eqn. (5.9) can be simplified by approximations

that hold for large N. Firstly, for the log2 (N!) term, we can make use of Stirling’s

formula (Spiegel and Liu 1999), which is valid for large N,

N! ∼
√

(2πN)NN exp (−N). (5.11)

This approximation is particularly accurate if the log is taken of both sides,

log2 (N!) ∼ N log2 N + 0.5 log2 N − N

ln 2
+ 0.5 log2 (2π), (5.12)

where, for N = 100, the absolute error is approximately 1.2× 10−3, dropping to about

1.2× 10−4 for N = 1000. Thus, the absolute error is O
(

N−1
)

. This is to be expected,

since Stirling’s formula results from an asymptotic expansion of the Gamma function,

with a second term of 1/(12x). The percentage errors are of course far smaller. Hence,

this approximation to log2 (N!) can be used for moderately small N.

Secondly, the sum in the second term of Eqn. (5.9) can be simplified by way of the Euler-

Maclaurin summation formula (Spiegel and Liu 1999). Section C.2 of Appendix C

shows that

2

N + 1

N

∑
n=1

n log2 n ≃ N log2 (N + 1)− N(N + 2)

2 ln 2(N + 1)
+ O

(

log N

N

)

. (5.13)

Even though Eqn. (5.13) on its own can be reduced further for large N, we are looking

for a large N approximation to Eqn. (5.9). Thus, it is safer to firstly subtract Eqn. (5.13)

from Eqn. (5.12), before letting N become large. Carrying this out gives

−
N

∑
n=0

Py(n) log2

(

N

n

)

≃ 0.5 log2 N − N log2 (1 +
1

N
)− N

2 ln 2

(

2− N + 2

N + 1

)

+ 0.5 log2 (2π)−O

(

log N

N

)

. (5.14)
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Noting that for |x| < 1, ln (1 + x) = x− x2/2 + x3/3− x4/4... (Spiegel and Liu 1999),

we have

N log2 (1 +
1

N
) =

1

ln 2

(

1− 1/(2N) + 1/(3N2)− 1/(4N3)...
)

=
1

ln 2
+ O

(

1

N

)

. (5.15)

Using Eqn. (5.15) allows a simplification of Eqn. (5.14), which when combined with

Eqn. (4.37), and substituted into Eqn. (5.3), gives the average conditional entropy as

H(y|x) =
N

2 ln 2
−

N

∑
n=0

Py(n) log2

(

N

n

)

≃ 0.5 log2 N − 1

ln 2
+

1

2 ln 2

N

N + 1
+ 0.5 log2 (2π)−O

(

log N

N

)

= 0.5 log2 N + 0.5

(

N

N + 1
− 2

)

log2 (e) + 0.5 log2 (2π)−O

(

log N

N

)

. (5.16)

For large N, the average conditional output entropy of Eqn. (5.16) can be approximated

as

H(y|x) ≃ 0.5 log2

(

2πN

e

)

, (5.17)

which scales with 0.5 log2 N.

5.2.2 Mutual Information for Large N and σ = 1

It is demonstrated in Section 4.3.2 of Chapter 4 that for the conditions of this sec-

tion, H(y) = log2 (N + 1), as given in Eqn. (5.6). Thus, subtracting Eqn. (5.16) from

Eqn. (5.6) gives the mutual information as

I(x, y) ≃ log2(N + 1)− 0.5 log2 N − 0.5

(

N

N + 1
− 2

)

log2 (e)

− 0.5 log2 (2π) + O

(

log N

N

)

= 0.5 log2

(

N + 2 +
1

N

)

− 0.5

(

N

N + 1
− 2

)

log2 (e)

− 0.5 log2 (2π) + O

(

log N

N

)

. (5.18)

Letting N approach infinity in Eqn. (5.18) gives an approximation to the large N mutual

information for σ = 1 as

I(x, y) ≃ 0.5 log2

(

(N + 2)e

2π

)

. (5.19)
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Eqn. (5.19) differs slightly from that stated in Eqn. (7) in Stocks (2001a), which can be

written as

I(x, y) = 0.5 log2

(

N + 1

e

)

. (5.20)

The explanation of the discrepancy is that Stocks (2001a) uses the Euler-Maclaurin

summation formula to implicitly calculate log2 (N!) in the large N approximation to

the average conditional entropy, under the assumption that the remainder terms are

not of consequence. It turns out that these terms are of consequence, the reason be-

ing that the Bernoulli numbers, Bp, do not decrease with p, other than for the first

few terms—see Section C.2 of Appendix C. After the third term, the Bernoulli num-

bers increase with p. Stirling’s approximation for N! used here takes this into ac-

count (Abramowitz and Stegun 1972), and therefore gives a more accurate approxi-

mation than Stocks (2001a).

The increased accuracy of Eqn. (5.19) can be confirmed by comparing both Eqn. (5.19)

and Eqn. (5.20) with the exact expression for I(x, y) of Eqn. (5.8), as N increases. Fig. 5.1

shows the mutual information for σ = 1 obtained by the exact expression given by

Eqn. (5.8) compared with the approximations of Eqn. (5.18)—with the O
(

log N
N

)

term

ignored— Eqn. (5.19) and Eqn. (5.20). Fig. 5.2 shows that the error between the exact

expression and the first two approximations approaches zero as N increases, whereas

the error between Eqn. (5.8) and Eqn. (5.20) approaches a nonzero constant for large N,

of about 0.5 log2

(

e2

2π

)

≃ 0.117.

If one was however truly interested in a very large N approximation, the percentage er-

ror resulting from this term of course becomes very small. This can be seen as follows.

For very large N, Eqn. (5.19) can be simplified to

I(x, y) ≃ 0.5 log2

(

Ne

2π

)

. (5.21)

This expression—also shown in Fig. 5.1—is obtained in Section 5.4 by an alternative

derivation of an approximation to the mutual information at σ = 1 for large N—see

Eqn. (5.67).

Since Eqn. (5.21) can be written as I ≃ 0.5 log2 (N)− 0.6044, for very large N the con-

stant term becomes insignificant. However due to the very slowly increasing nature of

the logarithm function, N needs to be very large for 0.6 bits per sample to be consid-

ered very small. For example, if N = 1010, the relative error is 3.77 percent. It takes

N ≃ 1037 for the error to fall beneath one percent!
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Part of our interest in a large N approximation to the mutual information is due to

the underlying motivation of studying SSR, which is its possible relationship to neural

coding. However, although there are approximately N = 1011 neurons in the whole

human brain, it is unlikely that the number of neurons devoted to a specific task is any

more than 1000 (Hoch et al. 2003b), in which case the error incurred by dropping the

constant term from Eqn. (5.21) is about 14 percent. Since this is quite significant, we

suggest that it is appropriate to consider the constant term in Eqn. (5.21) if a quanti-

tative approximation to the mutual information in the SSR model is required. How-

ever, the main conclusion from this analysis, as first noted in Stocks (2001a), is that the

mutual information scales with 0.5 log2 (N) as N increases—this conclusion remains

unchanged whether the constant term is included or not.

From Fig. 5.2 it appears that surprisingly—given that Eqn. (5.19) was derived from

Eqn. (5.18)—Eqn. (5.19) gives a better approximation than Eqn. (5.18) for small N. This

can be seen more clearly in Fig. 5.3, which plots the difference between the absolute

errors of these two equations. This discrepancy is due to the discarded terms that make

these equations valid for large N. Two of the discarded terms from Eqn. (5.18) cancel

each other out for small N, which makes Eqn. (5.19) misleadingly more accurate. For

N > 6 the true nature of the approximations starts to show, with Eqn. (5.18) being more

accurate than Eqn. (5.19), as indicated by the negative value of the plot. As expected

though, Fig. 5.3 shows that the difference between each equation approaches zero as

N gets larger.

In summary, this section has derived a large N expression for the mutual information

at σ = 1, given by Eqn. (5.19), which is very accurate—an error of less than 0.01 bits

per sample, even for N as low as 20. As N gets larger, the error converges towards

zero. This is an improvement on the approximation given in Stocks (2001a), for which

the error converges towards 0.5 log2

(

e2

2π

)

≃ 0.117 bits per sample for large N.

For larger N, Eqn. (5.19) can be simplified to Eqn. (5.21). For example, if N is of the

order of 1000, the error in Eqn. (5.21) is of the order of 10−3.

Having now derived the specific case of an accurate asymptotic expression for the

mutual information for σ = 1, as carried out in Stocks (2001a), the next logical step is

to try to obtain an asymptotic expression for arbitrary σ. This is the focus of the next

two sections. Firstly, in Section 5.3 a result is given for the specific case of uniform

signal and noise, and then Section 5.4 gives results for arbitrary matched signal and

noise distributions.
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Figure 5.1. Mutual information for σ = 1 and large N. This figure shows the exact mutual

information for noise intensity, σ = 1, given by Eqn. (5.8), against increasing array size,

N, as well as the four approximations given by Eqns. (5.18), (5.19), (5.20) and (5.21).

The plot has been divided into two scales to indicate how well the approximations work

for small N and large N. In Fig. 5.1(a), the line plots are used as an aid to the eye, with

the marker showing the mutual information at the integer values of N between 1 and

20. It appears from this plot that Eqn. (5.19) gives the best approximation for small N.

Fig. 5.1(b) shows that for larger N, the approximations of Eqns. (5.18), (5.19), (5.21)

are indistinguishable by eye, whereas the approximation of Eqn. (5.20) clearly gives a

larger error. The actual errors in each approximation are shown in Fig. 5.2.
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Figure 5.2. Error in large N approximations to I(x, y) for σ = 1. Plot showing the error

between the exact expression for the mutual information at noise intensity, σ = 1, given

by Eqn. (5.8), and the various large N approximations to the mutual information at

σ = 1, given by Eqns. (5.18), (5.19), (5.20) and (5.21). Eqns. (5.18) and (5.19) give

the smallest error for small N, but once N gets close to 1000, all approximations except

Eqn. (5.20) converge towards an error of zero. By contrast, Eqn. (5.20) converges to a

nonzero error of −0.5 log2 (0.5e2/π) ≃ −0.117.

1 5 10 15 20
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

N

E
rr

or
 D

iff
er

en
ce

(a) Error comparison N = 1, .., 20

20 200 400 600 800 1000
−0.025

−0.02

−0.015

−0.01

−0.005

0

N

E
rr

or
 D

iff
er

en
ce

(b) Error comparison N = 1, .., 1000

Figure 5.3. Error comparison for large N approximations to I(x, y) for σ = 1. The two large

N approximations that give the smallest error are Eqns. (5.18) and (5.19). This figure

shows how for very small array size (1 ≤ N ≤ 6), Eqn. (5.19) gives the smallest absolute

error, and for N > 6, Eqn. (5.18) gives the smallest absolute error. This discrepancy is

due to the discarded terms that make these equations valid for large N. In Eqn. (5.19)

two discarded terms cancel each other out for small N. For 6 ≤ N ≤ 20, the difference

in the errors gets larger, but for N > 20, gets smaller again, until as N gets larger than

about 250, the difference between the two equations starts to converge asymptotically

towards zero. From Fig. 5.2, the actual error in both these approximations approaches

zero for large N.
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5.3 I(x, y) for Large N, Uniform Signal & Noise & σ ≤ 1

Section 4.3.2 in Chapter 4 included the derivation given in Stocks (2001c) of an exact

expression for the mutual information for uniform signal and noise and σ ≤ 1. The

relevant expressions, repeated here, are

Py(n) =

{

σ
N+1 + 1

2 − σ
2 for n = 0, N

σ
N+1 for 1 ≤ n ≤ N − 1,

(5.22)

H(y) = −
(

2σ

N + 1
+ 1− σ

)

log2

(

σ

N + 1
+

1

2
− σ

2

)

− (N − 1)σ

N + 1
log2

(

σ

N + 1

)

,

(5.23)

H(y|x) =
σ

N + 1

N

∑
n=2

(N + 1− 2n) log2 n +
Nσ

2 ln 2
, (5.24)

I(x, y) = −
(

2σ

N + 1
+ 1− σ

)

log2

(

σ

N + 1
+

1

2
− σ

2

)

− (N − 1)σ

N + 1
log2

(

σ

N + 1

)

− σ

N + 1

N

∑
n=2

(N + 1− 2n) log2 n− Nσ

2 ln 2
. (5.25)

In addition, Stocks (2001c) shows that a large N approximation can be made to these

equations. His derivation is repeated here, and as was the case in Section 5.2, we find

a similar approximation, with improved accuracy.

Large N mutual information

For large N, Eqn. (5.23) reduces to

H(y) ≃ σ log2 (N + 1) + (1− σ)(1− log2 (1− σ))− σ log2 (σ). (5.26)

Furthermore, the average conditional entropy is simply σ multiplied by Eqn. (5.7).

Thus, using the large N approximation to Eqn. (5.7) given by Eqn. (5.17), we have

H(y|x) ≃ σ

2
log2

(

2πN

e

)

. (5.27)

Hence, using the same arguments as for the σ = 1 case of Section 5.2 the mutual

information approximation for large N is

I(x, y) ≃ σ

2
log2

(

(N + 2)e

2π

)

+ (1− σ)(1− log2 (1− σ))− σ log2 (σ). (5.28)

Thus, the mutual information is equal to σ times the σ = 1 mutual information plus

the term (1− σ)(1− log2 (1− σ))− σ log2 (σ), which reduces to zero for σ = 1.
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Due to the same differences in the derivation as stated in Section 5.2, Eqn. (5.28) differs

from Eqn. (9) given in Stocks (2001c), which can be written as

I(x, y) =
σ

2
log2

(

(N + 1)

e

)

+ (1− σ)(1− log2 (1− σ))− σ log2 (σ), (5.29)

so that the error is exactly that described in the σ = 1 case, only here it is a function of

σ, i.e. σ
2 log2

(

e2

2π

)

.

This error can be seen in Fig. (3) of Stocks (2001c). To illustrate this, and the accuracy

of Eqn. (5.28), Fig. (3) of Stocks (2001c) is reproduced here as Fig. 5.4, with the mutual

information given by Eqn. (5.28) superimposed. It is clear that Eqn. (5.28) gives a better

approximation. Fig. 5.5 shows that the error between Eqn. (5.28) and the exact mutual

information of Eqn. (5.25) asymptotically approaches zero for all σ ≤ 1 as N increases.

Large N channel capacity

Differentiating Eqn. (5.28) with respect to σ and setting to zero obtains the extrema of

the large N approximation of the mutual information. The result is a single extremum

at

σo =

√

(N + 2)
√

(N + 2) +
√

(

8π
e

)

. (5.30)

Taking the second derivative of Eqn. (5.28) results in an expression that is always neg-

ative and hence the extremum is a maximum. The value of the mutual information at

this peak, can be found as the very simple formula

Io(x, y) = 1− log2 (1− σo) = log2

(

2 +

√

(N + 2)e

2π

)

. (5.31)

Clearly, as N becomes very large, the optimal value of σ given by Eqn. (5.30) ap-

proaches unity, and the mutual information at this σ given by Eqn. (5.31) approaches

0.5 log2 ((N + 2)e/(2π)), which agrees with Eqn. (5.28) at σ = 1, and Eqn. (5.17).

Recall that an exact expression for σo was given by Eqn. (4.59) in Section 4.3.2 of Chap-

ter 4. Eqn. (5.30) and Eqn. (4.59) can be seen to be closely related when Eqn. (5.30) is

rewritten as

σo =
N + 2

N + 2 +

√

(

8π(N+2)
e

)

. (5.32)

The error between Eqn. (5.32) and Eqn. (4.59) also converges to zero for large N, again

validating our approximations.
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Stocks (2001c) also gives expressions for the optimal σ and the corresponding mutual

information. Again, these are slightly different to Eqns (5.30) and (5.31), due to the

slightly inaccurate terms in the large N approximation to the average conditional en-

tropy. However the important qualitative result remains the same, which is that the

maximum mutual information scales with half the logarithm of N, and the value of σ

which achieves this asymptotically approaches unity. Fig. 5.4 illustrates this behaviour

of σo and the corresponding Io(x, y), as N increases from 1 to 8000.
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Figure 5.4. Mutual information for uniform signal and noise and large N. Plot showing mutual

information against noise intensity, σ ∈ [0, 1], for uniform signal and noise. The line

plot shows the exact mutual information calculated using Eqn. (5.25). Plus signs are

the large N approximation of Eqn. (5.28) and dots show the slightly less accurate large

N approximation of Eqn. (5.29), given in Stocks (2001c). The dots plot the curve of

the optimal value of σ obtained from Eqn. (5.30) against the corresponding mutual

information of Eqn. (5.31), for N between 1 and 8000. As N becomes larger, it is clear

that Eqn. (5.28) gives a more accurate approximation to Eqn. (5.25) than Eqn. (5.29).
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Figure 5.5. Error in mutual information for uniform signal and noise and large N. Plot

showing the difference between the exact mutual information for uniform signal and

noise given by Eqn. (5.25) and the approximation given by Eqn. (5.28), as the array

size, N, increases, for various values of noise intensity, σ. The error can be seen to

approach zero as N increases, for each value of σ.
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5.4 Mutual Information for Large N and Arbitrary σ

The previous two subsections give asymptotic results for (i) σ = 1 for arbitrary distri-

butions, and (ii) for σ ≤ 1 for uniform signal and noise. This section attempts to find an

expression for the mutual information for arbitrary distributions and all σ. The σ = 1

result can be used to verify that any new expressions are correct at σ = 1.

5.4.1 The Gaussian Approximation to the Binomial Distribution

In the SSR model, for each value of the input, x, the probability that the output is y = n

is given by the binomial formula, as given by Eqn. (4.9), repeated here as

P(n|x) =

(

N

n

)

Pn
1|x(1− P1|x)

N−n. (5.33)

Consider only one value of x. For this value, P(n|x) is a function of n. As N becomes

large, the binomial distribution is known to approach a Gaussian distribution, with

the same mean and variance as the binomial distribution (Kreyszig 1988), provided

the mean of the binomial is sufficiently large. The mean is given by NP1|x and the

variance is NP1|x(1− P1|x). Thus, provided 0≪NP1|x≪N,

P(n|x) ≃ 1
√

2πNP1|x(1− P1|x)
exp

(

−
(n− NP1|x)2

2NP1|x(1− P1|x)

)

. (5.34)

This approximation breaks down when P1|x is close to zero or unity, in which case,

P(n|x) can be approximated by the Poisson distribution, or the Edgeworth series ap-

proximation (Harrington 1955). However here we will use Eqn. (5.34), and find that it

is valid for our needs, since for infinite support PDFs such as the Gaussian, logistic and

Laplacian distributions, when P1|x is close to zero or unity, P(x) is also very close to

zero. Note that even though Eqn. (5.34) is a Gaussian function, since n is still discretely

valued, Eqn. (5.34) still represents a discrete probability mass function rather than a

PDF.

The large N approximation given by Eqn. (5.34) allows us to obtain a general large N

approximation for the average conditional entropy. This is the focus of the following

section.
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5.4.2 Conditional Entropy for Large N

Using the binomial approximation

Recall in Chapter 4 that we used the notation Ĥ(y|x) to denote the conditional output

entropy for a given value of x. The average conditional output entropy is then H(y|x) =
∫

x P(x)Ĥ(y|x)dx, where

Ĥ(y|x) = −
N

∑
n=0

P(n|x) log2 (P(n|x)). (5.35)

Taking the log of the Gaussian approximation to the binomial given by Eqn. (5.34), and

substituting into Eqn. (5.35) gives

Ĥ(y|x) ≃−
N

∑
n=0

P(n|x)

(

−0.5 log2 (2πNP1|x(1− P1|x))−
(n− NP1|x)2

2 ln (2)NP1|x(1− P1|x)

)

= 0.5 log2 (2πNP1|x(1− P1|x))

+
1

2 ln (2)NP1|x(1− P1|x)

N

∑
n=0

P(n|x)(n− NP1|x)
2

= 0.5 log2 (2πNP1|x(1− P1|x)) +
1

2 ln (2)NP1|x(1− P1|x)
var[y|x]

= 0.5 log2 (2πNP1|x(1− P1|x)) +
1

2 ln (2)

= 0.5 log2 (2πeNP1|x(1− P1|x)), (5.36)

where we have used the fact that the variance of the binomial distribution, P(n|x), is

NP1|x(1− P1|x), and the mean is NP1|x.

Multiplying both sides of Eqn. (5.36) by P(x) and integrating over all x gives

H(y|x) ≃ 0.5 log2 (2πeN) + 0.5
∫ ∞

x=−∞
P(x) log2

(

P1|x(1− P1|x)
)

dx

= 0.5 log2 (2πeN) +
∫ ∞

x=−∞
P(x) log2 P1|xdx, (5.37)

since P(x) and R(η) are even functions about means of zero.

Eqn. (5.37) can also be written in terms of Q(τ). Recall from Chapter 4 that if we let

τ = P1|x, then P(x)dx = Q(τ)dτ. Making this change of variable in Eqn. (5.37),

H(y|x) = 0.5 log2 (2πeN) +
∫ τ=1

τ=0
Q(τ) log2 τdτ. (5.38)

Recalling that in general Q(τ) is a PDF, the integral in Eqn. (5.38) is the expected value

of log2 (τ) with respect to the PDF Q(τ).
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Verification at σ = 1

Using the large N approximation to H(y|x) derived in Section 5.2 for the specific case

of σ = 1, we can verify Eqn. (5.38) for the case of σ = 1. At σ = 1, Q(τ) = 1 and

therefore
∫ τ=1

τ=0 Q(τ) log2 (τ)dτ = − log2 (e) and Eqn. (5.38) reduces to

H(y|x) = 0.5 log2

(

2πN

e

)

, (5.39)

which agrees precisely with Eqn. (5.17).

Hoch’s approach

An alternative approach, taken in Hoch et al. (2003a) and Hoch et al. (2003b), which

does not explicitly use the Gaussian approximation to the binomial, is to use the Euler-

Maclaurin summation formula (Spiegel and Liu 1999), to approximate Ĥ(y|x) as an

integral for large N as

Ĥ(y|x) = −
∫ N

n=0
P(n|x) log2 (P(n|x))dn. (5.40)

This is the entropy of a continuous random variable defined on the support n ∈ [0, N].

If this random variable has a variance σ2
y|x then the entropy is less than or equal to the

variance of a Gaussian random variable with the same variance. This is due to the well

known result that the maximum entropy distribution for continuous random variables

under a power constraint—that is, a specified variance in this case—is the Gaussian

distribution (Cover and Thomas 1991). Hence, we have

Ĥ(y|x) ≤ 0.5 log2 (2πeσ2
y|x). (5.41)

The variance in this case is again the binomial variance of var[y|x] = NP1|x(1− P1|x).

Therefore

Ĥ(y|x) ≤ 0.5 log2 (2πeNP1|x(1− P1|x)). (5.42)

Multiplying both sides of Inequality (5.42) by P(x) and integrating over all x leaves

H(y|x) ≤0.5 log2 (2πeN) + 0.5
∫

x
P(x) log2

(

P1|x(1− P1|x)
)

dx

=0.5 log2 (2πeN) +
∫

x
P(x) log2 P1|xdx. (5.43)

This is identical to Eqn. (5.37) except that (5.43) is an inequality. The equality given by

the Gaussian approximation to the binomial of Eqn. (5.37) will only hold for values of

x for which P(n|x) is exactly Gaussian.
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A small N refinement

A refinement to the upper bound on H(y|x) given by Eqn. (5.43) may be obtained for

small N. Since P(n|x) is actually a discrete distribution for a given x, we can make

use of a formula for the differential entropy bound on discrete entropy (Cover and

Thomas 1991), to get

Ĥ(y|x) ≤ 0.5 log2

(

2πe

(

var[y|x] +
1

12

))

. (5.44)

This leads to

Ĥ(y|x) ≤ 0.5 log2 (2πeNP1|x(1− P1|x)) + 0.5 log2

(

1 +
1

12NP1|x(1− P1|x)

)

. (5.45)

Thus, using the fact that ln (1 + x) = x− x2/2 + x3/3− x4/4... for |x| ≤ 1, for values

of x such that P1|x(1− P1|x) ≥ 1/12N,

Ĥ(y|x) ≤ 0.5 log2 (2πeNP1|x(1− P1|x)) +
1

24 ln (2)NP1|x(1− P1|x)
+ O

(

1

N2

)

. (5.46)

The result of multiplying Inequality (5.46) by P(x), and integrating over all x, reduces

for large N to the bound given by Inequality (5.42).

Numerical verification

Consider the exact conditional entropy, Ĥ(y|x), given by Eqn. (5.35) and the approxi-

mation given by Eqn. (5.36). These are both functions of N and P1|x. However, since

P1|x is always between zero and unity, we do not need to specify a noise PDF to com-

pare the approximation to the exact formula—we need only plot both as a function of

P1|x ∈ [0, 1]. Fig. 5.6 shows the absolute error between Eqns. (5.35) and (5.36), calcu-

lated numerically for P1|x ∈ [0.01, 0.99], for various values of N. It is clear from Fig. 5.6

that the absolute error decreases with increasing N, but is larger for P1|x near zero

and unity. This illustrates the caveat that the Gaussian approximation to the binomial

requires 0≪NP1|x≪N to be sufficiently large for high accuracy. Fig. 5.6 verifies this,

by clearly showing that the absolute error in the approximation decreases as P1|x gets

closer to 0.5 and as N gets larger.

We will see however, that the inaccuracy for NP1|x → 0 and NP1|x → N becomes more

important for σ ≪ 1, that is, when the variance of the noise is much smaller than the

variance of the signal. Assuming that P(x) and R(x) have long tails, such as in the
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Gaussian distribution, if σ ≪ 1 then P1|x gets very close to zero or unity for quite a

large range of highly probable x values. Thus, we can expect that the accuracy of the

approximation to H(y|x) decreases for smaller σ.

This is indeed the case, as can be seen from Fig. 5.7, which shows plots of the approx-

imation to H(y|x) given by Eqn. (5.37), against increasing σ, compared with the exact

H(y|x) of Eqn. (5.3). These results were calculated numerically for the cases of Gaus-

sian signal and noise, Laplacian signal and noise, and logistic signal and noise, and

σ = 0.2, 0.3, .., 1.6. It is clear from Fig. 5.7 that the approximation to H(y|x) is highly

accurate for σ > 0.7, and although less accurate for smaller σ, the accuracy increases

with increasing N.
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Figure 5.6. Error in the large N approximation to Ĥ(y|x). This figure shows the absolute error

between the exact conditional entropy—that is, the conditional entropy of y, given

a particular value of x—Ĥ(y|x), of Eqn. (5.35), and the large N approximation of

Eqn. (5.36), and demonstrates that it decreases with increasing N. The data were

calculated numerically for various values of N for P1|x ∈ [0.01, 0.99]. The error clearly

gets larger for P1|x → 0 and P1|x → 1. As the absolute error gets very large at 0 and 1,

the data were not calculated at these values.

Having obtained a large N approximation to the average conditional entropy that,

unlike the result of Section 5.2 is valid for σ other than σ = 1, we now wish to find a

similar approximation for the output entropy.
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(a) Gaussian signal and noise
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(b) Laplacian signal and noise
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(c) Logistic signal and noise

Figure 5.7. Approximate H(y|x) for large N. This figure shows the exact average conditional

output entropy, H(y|x), of Eqn. (5.3) and the approximate average conditional entropy

of Eqn. (5.37), for Gaussian signal and noise, Laplacian signal and noise, and logistic

signal and noise. The exact H(y|x) is shown with a thin solid line, while the approximate

H(y|x) is shown with circles and a thicker solid line to interpolate between values of

noise intensity, σ. Clearly, the approximation is very accurate for σ > 0.7 in all cases.

The accuracy for σ < 0.7 decreases with decreasing σ, but increases for increasing N.
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5.4.3 Output Distribution and Entropy for Large N

This section aims to find a large N approximation to the output entropy. As discussed

in the introduction to this chapter, since the output is discretely valued, the output

entropy is that of a discrete random variable, regardless of how large N is. Thus, we

require a large N approximation to the output probability mass function, Py(n).

Although the output of the SSR model is a discrete random variable, in the presence

of noise the expected value of the output of the SSR array, y, given x, is a continuously

valued variable, giving an average transfer function, ȳ(x). Since E[y|x] = NP1|x, the

average transfer function for noise distributions with an even PDF about a mean of

zero is ȳ(x) = NFR(x).

If we can find the PDF of the average transfer function, P(ȳ), for the continuous ran-

dom variable, ȳ, then for large N we can use this PDF to approximate the actual output

discrete probability mass function, Py(n).

PDF of the average transfer function

The PDF of the average transfer function can be easily derived from the input signal’s

PDF by a transformation from coordinate x, with PDF P(x), to coordinate ȳ, with PDF

P(ȳ).

In general, a transformation from coordinate a with PDF Pa(a) to coordinate b with PDF

Pb(b), where b = f (a) is a differentiable and invertible function, is given by (Fry 1928)

Pb(b) = Pa( f−1(b))

∣

∣

∣

∣

d f−1(b)

db

∣

∣

∣

∣

. (5.47)

Thus, in this case we use the average transfer function, ȳ(x), so that the inverse transfer

function is x = F−1
R

(

ȳ
N

)

, and the result for P(ȳ) is

P(ȳ) =P

(

F−1
R

(

ȳ

N

))

∣

∣

∣

∣

∣

∣

dF−1
R

(

ȳ
N

)

dȳ

∣

∣

∣

∣

∣

∣

= P

(

F−1
R

(

ȳ

N

))(

1

NR(x)

)

=
P
(

F−1
R

(

ȳ
N

))

NR
(

F−1
R

(

ȳ
N

)) =
P
(

F−1
R

(

P1|x
))

NR
(

F−1
R

(

P1|x
))

=
P(x)

NR(x)
. (5.48)
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Recall from Section 4.3.2 in Chapter 4 the definition of the PDF Q(τ), where τ = P1|x ∈
[0, 1]. It is clear that Eqn. (5.48) can be rewritten as

P(ȳ) =
Q
(

ȳ
N

)

N
, (5.49)

which is a PDF for the continuously valued variable, ȳ. Unlike Q(τ), which has sup-

port [0, 1], the support of P(ȳ) is [0, N].

If we make a change of probability measure so that τ = ȳ
N , Eqn. (5.49) becomes

P(τ) = Q(τ). (5.50)

This agrees with the discussion about Q(τ) in Chapter 4 where it was hypothesised

that Q(τ) is the PDF of the continuous random variable given by E[y|x].

Approximating the output distribution

For large N, we can assume that ȳ(x)→ n and hence the PDF of Eqn. (5.49) satisfies

P(ȳ)dȳ ≃ Py(n). (5.51)

Thus, the PDF P(ȳ) approximates the discretely valued probability mass function,

Py(n) ≃ Q
(

n
N

)

N
. (5.52)

An alternative approach is to examine the large N behavior of the Gaussian approxi-

mation to P(n|x) under a change of probability measure. Firstly, upon substituting for

τ = P1|x, Eqn. (5.34) can be rewritten as

P(n|x) ≃ 1√
2πs2

exp

(

− (τ − n
N )2

2s2

)

1

N

=
P(n|τ)

N
, (5.53)

where s2 = τ(1−τ)
N . The term P(n|τ) is a function defined on τ ∈ [0, 1], and hence, it

cannot be Gaussian. However, consider 0≪ n≪ N. In this region, P(n|τ) approaches

zero for τ near zero or unity and hence P(n|τ) is approximately a Gaussian PDF with a

variance that decreases with 1
N . Such a Gaussian with a variance that approaches zero

can be approximated by a delta function located at the mean of the Gaussian and thus,

P(n|τ) ≃ δ
(

τ −
( n

N

))

. (5.54)
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Thus, P(n|τ) = 1 iff τ = n/N. This means P(n|x) approaches 1/N at x = F−1
R (τ) =

F−1
R ( n

N ). This value of x is the maximum likelihood value of the output, given x, and

can be easily shown—see Eqn. (4.12)—without recourse to large N, to be the mode of

P(n|x) for each n.

Using the fact that Py(n) =
∫

x P(x)P(n|x)dx, changing variable from x to τ gives

Py(n) ≃
∫ τ=1

τ=0 Q(τ)P(n|τ) 1
N dτ, which can be simplified by substitution of Eqn. (5.54)

to

Py(n) ≃ 1

N

∫ τ=1

τ=0
Q(τ)δ

(

τ − n

N

)

dτ

=
Q
(

n
N

)

N
, (5.55)

which verifies Eqn. (5.52). As with the Gaussian approximation to the binomial, we

can expect that this approximation gets less accurate for values of n near 0 and N.

Numerical verification of large N approximation to Py(n)

We have for the Gaussian, Laplacian and logistic cases, that when the noise intensity,

σ > 1, Q(0) = Q(1) = 0, whereas for σ < 1, we have Q(0) = Q(1) = ∞. From

Eqn. (5.52), this would mean that Py(0) and Py(N) are either zero of infinite. However,

for finite N, there is some finite nonzero probability that all output states are on or off.

Indeed, at σ = 1, we know that Py(n) = 1
N+1 ∀ n, and at σ = 0, Py(0) = Py(N) =

0.5. Furthermore, for finite N, the approximation of Eqn. (5.55) does not guarantee

that ∑
N
n=0 Py(n) = 1. A little trial and error finds that two simple adjustments to the

approximation deals with these problems. The two different cases of σ < 1 and σ ≥ 1

require different adjustments to achieve a high accuracy that increases with increasing

N.

Firstly, for σ ≥ 1, we adjust Eqn. (5.52) to become

P′y(n) =
Q
(

n+1
N+2

)

∑
N
m=0 Q

(

m+1
N+2

) n = 0, .., N. (5.56)

Eqn. (5.56) ensures ∑
N
n=0 P′y(n) = 1 and also ensures that Py(0) and Py(N) are nonzero

for finite N as required, while remaining identical to Eqn. (5.52) in the large N limit.

Secondly, for σ < 1 we adjust Eqn. (5.52) to become

P′y(n) =
Q
(

n
N

)

N
n = 1, .., N − 1. (5.57)
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Recall that the approximation is expected to be less valid for n near 0 and N for smaller

σ. Hence, to increases the accuracy of our approximation, and to ensure Py(n) forms a

valid probability mass function, we define our approximation as

P′y(n) =











Q( n
N )

N for n = 1, .., N − 1

0.5

(

1−∑
N−1
m=1

Q( m
N )

N

)

for n = 0, n = N.
(5.58)

For σ < 1, Py(0) and Py(N) are the most likely values of y. Eqn. (5.56) ensures that

Py(0) and Py(N) are reasonably accurate.

Fig. 5.8 shows that the approximation to Py(n) is highly accurate for N as small as 63,

for Gaussian signal and noise, and three values of σ. Similar results can be obtained

for the Laplacian or logistic cases. Note from Fig. 5.8(a), where σ = 0.4, how Py(0) and

Py(N) are the most inaccurate approximations. This is not surprising, given that we

expected the approximation to decrease in accuracy for small σ, and n close to 0 or N.

The approximations to the output probability mass function given by Eqns. (5.56)

and (5.58) can also be used to approximate the output entropy as

H(y) ≃ −
N

∑
n=0

P′y(n) log2

(

P′y(n)
)

. (5.59)

The result of this is shown in Fig. 5.9, where the absolute error between Eqn. (5.59)

and the exact output entropy, calculated numerically, is shown for the cases of Gaus-

sian signal and noise, Laplacian signal and noise, and logistic signal and noise. The

accuracy can be seen to increase as N increases for all σ. The approximation is more

accurate near σ = 1.

Consider the approximation for P′y(n) and σ < 1 given by Eqn. (5.58). Let A =
1
N ∑

N−1
n=1 Q

(

n
N

)

. Then the output entropy of Eqn. (5.59) is

H(y) = − 1

N

N−1

∑
n=1

Q
( n

N

)

log2

(

Q
(

n
N

)

N

)

− (1− A) log2 (0.5(1− A))

= − 1

N

N−1

∑
n=1

Q
( n

N

)

log2

(

Q
( n

N

))

+ A log2 N + (1− A) (1− log2 (1− A)) .

(5.60)

Eqn. (5.60) can also be expressed as

H(y) = − 1

N

N−1

∑
n=1

Q
( n

N

)

log2

(

Q
( n

N

))

+ log2 N − 2Py(0) log2 (NPy(0)). (5.61)
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Figure 5.8. Large N approximation to Py(n). This figure shows for various values of noise inten-

sity, σ, that for N = 63 and Gaussian signal and noise, the approximation to the output

probability mass function, Py(n), given by Eqns. (5.56) and (5.56), gives a highly ac-

curate approximation to the output probability mass function. The circles indicate the

exact Py(n) obtained by numerical integration and the crosses show the approximations.

Similar results can be obtained for the Laplacian or logistic cases. Fig. 5.8(a) shows

that Py(0) and Py(N) are the most inaccurate approximations for σ = 0.4. This is not

surprising, given the approximation is expected to decrease in accuracy for small σ, and

n close to 0 or N.
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(b) Error in output entropy, Laplacian
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(c) Error in output entropy, logistic

Figure 5.9. Absolute error in output entropy using large N approximation to Py(n). This

figure shows that the approximation to the output probability mass function, Py(n),

given by Eqns. (5.56) and (5.58), gives a highly accurate approximation to the output

entropy, as expressed by Eqn. (5.59). The accuracy increases as the array size, N,

increases. Notice that the approximation is more accurate near a noise intensity of

σ = 1.
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Approximating the output entropy

Consider the entropy of the discrete random variable y. Making use of Eqn. (5.55), we

have

H(y) = −
N

∑
n=0

Py(n) log2 (Py(n))

= −
N

∑
n=0

Q
(

n
N

)

N
log2

(

Q
(

n
N

)

N

)

= − 1

N

N

∑
n=0

Q
( n

N

)

log2

(

Q
( n

N

))

+
log2 (N)

N

N

∑
n=0

Q
( n

N

)

. (5.62)

Suppose that the summations above can be approximated by integrals, without any

remainder terms. Carrying this out and then making the change of variable τ = n/N

gives

H(y) ≃ − 1

N

∫ N

n=0
Q
( n

N

)

log2

(

Q
( n

N

))

dn +
log2 (N)

N

∫ N

n=0
Q
( n

N

)

dn

= −
∫ τ=1

τ=0
Q(τ) log2 (Q(τ))dτ + log2 N

∫ τ=1

τ=0
Q(τ)dτ

= log2 N −
∫ τ=1

τ=0
Q(τ) log2 (Q(τ))dτ

= log2 N + Hd(ȳ), (5.63)

where Hd(ȳ) is the differential entropy of the random variable ȳ. This analysis agrees

with Theorem 9.3.1 of Cover and Thomas (1991), which states that the entropy of an

M bit quantisation of a continuous random variable Z is approximately the sum of M

and the entropy of Z. Here, we have ȳ as the continuous random variable that approx-

imates the N + 1 state discrete output distribution. Hence the discrete output distribu-

tion is a log2 (N + 1) bit quantisation of ȳ, and has entropy approximately equal to the

differential entropy of ȳ plus log2 (N + 1), which for large N agrees with Eqn. (5.63).

Performing a change of variable in Eqn. (5.63) of τ = FR(x) gives

H(y) ≃ log2 N −
∫ x=∞

x=−∞
P(x) log2

(

P(x)

R(x)

)

dx = log2 (N)− D(P(x)||R(x)), (5.64)

where D(P(x)||R(x)) is the relative entropy between P(x) and R(x).
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Thus, H(y) for large N is approximately the sum of the number of output bits and

the negative of the relative entropy between P(x) and R(x). Therefore, since relative

entropy is always non-negative, the approximation to H(y) given by Eqn. (5.64) is

always less than or equal to log2 (N). This agrees with the known expression for H(y)

in the specific case of σ = 1 of log2 (N + 1), which holds for any N.

Fig. 5.10 shows the approximation of Eqn. (5.64), as well as the exact output entropy,

for the Gaussian, Laplacian and logistic cases, for a range of σ and increasing N. The

approximation is quite good for σ > 0.7, but worsens for smaller σ. However, as N

increases the approximation improves. This indicates that approximating the summa-

tion in Eqn. (5.62) with the relative entropy between P(x) and R(x) gets more accurate

for small σ with increasing N.

We are now in a position to combine the results of this section and the previous, to

obtain a result for the mutual information.

5.4.4 Mutual Information for Large N

Section 5.4.2 obtained a large N approximation to the average conditional output en-

tropy, given by Eqn. (5.38), and Section 5.4.3 obtained a large N approximation to the

output entropy, given by Eqn. (5.63). These two equations can be combined to give a

large N approximation to the mutual information as

I(x, y) ≃H(y)− H(y|x)

= log2 N −
∫ τ=1

τ=0
Q(τ) log2 (Q(τ))dτ − 0.5 log2 (2πeN)−

∫ τ=1

τ=0
Q(τ) log2 τdτ

= 0.5 log2

(

N

2πe

)

−
∫ τ=1

τ=0
Q(τ) log2 (τQ(τ))dτ (5.65)

= 0.5 log2

(

N

2πe

)

−
∫ τ=1

τ=0
Q(τ) log2 (τ)dτ + Hd(τ). (5.66)

The integral on the RHS of Eqn. (5.65) is independent of N and therefore for large N,

the mutual information scales with 0.5 log2 (N). As noted previously in this chapter,

and in Stocks (2001a), this is half the maximum channel capacity for an N compara-

tor system. The integral on the RHS of Eqn. (5.65) is insignificant when compared to

log2 (N), but its importance is that it determines how the mutual information varies

from 0.5 log2

(

N
2πe

)

as σ varies.
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(b) Laplacian
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Figure 5.10. Large N approximation to output entropy. This figure shows the approximate

output entropy given by Eqn. (5.64), as well as the exact output entropy calculated

numerically. Clearly the approximation is quite good for noise intensities, σ > 0.7.

The exact expression is shown by thin solid lines, and the approximation by circles,

with a thicker solid line interpolating between values of σ as an aid to the eye. The

approximation can be seen to always be a lower bound on the exact entropy.
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For the specific case of σ = 1, Q(τ) = 1 so that −
∫ τ=1

τ=0 log2 (τ)dτ = log2 (e). Therefore

I(x, y) = 0.5 log2

(

Ne

2π

)

, (5.67)

which for large N agrees precisely with Eqn. (5.19), validating the new formula in this

specific case.

Note that Eqn. (5.65) can be rewritten in terms of x as

I(x, y) = 0.5 log2

(

N

2πe

)

−
∫ x=∞

x=−∞
P(x) log2

(

P1|xP(x)

R(x)

)

dx

= 0.5 log2

(

N

2πe

)

−
∫ x=∞

x=−∞
P(x) log2 (P1|x)dx− D(P(x)||R(x)). (5.68)

Fig. 5.11 shows the approximation of Eqn. (5.65), as well as the exact mutual informa-

tion, for the Gaussian, Laplacian and logistic cases, for a range of σ and increasing N.

As with the output entropy, and conditional output entropy approximations, the mu-

tual information approximation is quite good for σ > 0.7, but worsens for smaller σ.

However, as N increases the approximation improves.

5.4.5 Relationship to Fisher Information

Chapters 6 and 7 in this thesis make extensive use of Fisher information (Cover and

Thomas 1991) in relation to the decoding of the SSR model. Hoch et al. (2003a) shows

that the Fisher information for SSR is given by

J(x) =

(

dP1|x
dx

)2
N

P1|x(1− P1|x)
=

NR(x)2

P1|x(1− P1|x)
. (5.69)

Eqn. (5.69) is also derived in Section D.6 of Appendix D. Note that the Fisher informa-

tion is always non-negative and has the same support as R(x).

Rewriting the large N expression for mutual information of Eqn. (5.68) gives

I(x, y) = −0.5 log2 (2πe)−
∫ x=∞

x=−∞
P(x) log2

(

P1|xP(x)√
NR(x)

)

dx

= H(x)− 0.5 log2 (2πe) + 0.5
∫ x=∞

x=−∞
P(x) log2

(

NR(x)2

P1|x(1− P1|x)

)

dx

= H(x)− 0.5 log2 (2πe) + 0.5
∫ x=∞

x=−∞
P(x) log2 (J(x))dx

= H(x)− 0.5
∫ x=∞

x=−∞
P(x) log2

(

2πe

J(x)

)

dx. (5.70)
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(b) Laplacian
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Figure 5.11. Large N approximation to mutual information. This figure shows the approximate

output entropy given by Eqn. (5.65), as well as the exact mutual information calculated

numerically. Clearly the approximation is quite good for noise intensities, σ > 0.7.

The exact expression is shown by thin solid lines, and the approximation by circles,

with a thicker solid line interpolating between values of σ as an aid to the eye. The

approximation can be seen to always be a lower bound on the exact mutual information.
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Eqn. (5.70) is precisely the same as that derived in Hoch et al. (2003a) as an asymp-

totic large N expression for the mutual information. Hoch et al. (2003a) derived this

expression by considering a result from Brunel and Nadal (1998), which shows that

in the limit of large N, the mutual information in a system becomes equal to the mu-

tual information between the input signal and an efficient Gaussian estimator for that

signal. Efficient has a precise technical meaning, which we will explore in Chapter 6.

Furthermore, discussion of this result will also be examined later, since understanding

it depends on the concept of optimally decoding the SSR system. Decoding is the focus

of Chapter 6 for small N, and Chapter 7 for large N.

5.5 Channel Capacity for Large N

Inspection of Eqn. (5.65) shows that the large N approximation to the mutual informa-

tion consists of a term that depends on N and a term that depends only on σ. Hence,

for large N, this shows that the channel capacity occurs for the same value of σ—

which, as before, we denote as σo—for all N. This fact is recognised in Hoch et al.

(2003a) and Hoch et al. (2003b), which derives an analytical approximation for σo for

the case of Gaussian signal and noise. The derivation is given in Hoch et al. (2003b),

and depends on a Taylor expansion of the Fisher information inside the integral in

Eqn. (5.70). However, before repeating and discussing this derivation, the following

subsection shows that a channel capacity achieving input PDF can be found for any

given noise PDF, whenever the approximation of Eqn. (5.65) holds.

5.5.1 General Channel Capacity

To begin, Eqn. (5.70) can be written as

I(x, y) = −0.5 log2 (2πe)−
∫

x
P(x) log2

(

P(x)
√

J(x)

)

dx. (5.71)

The integral in Eqn. (5.71) can be recognised as being very similar to the relative en-

tropy between P(x) and
√

J(x). However, in general, the Fisher information as a func-

tion of x is not a PDF and thus the integral cannot be relative entropy. In the case of

SSR though, remarkably—as shown in Section C.3 of Appendix C—the function,

S(x) =

√

J(x)

π
√

N
=

R(x)

π
√

P1|x(1− P1|x)
, (5.72)
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is indeed a PDF, one which has the same support as J(x), and for the noise distributions

considered in this chapter, is a function of the single parameter, ση.

Note that the PDF, S(x), can be written in terms of the Fisher information as

S(x) =

√

J(x)
∫

x

√

J(φ)dφ
. (5.73)

Such a PDF is therefore simply a normalisation of the square root of the Fisher informa-

tion. A PDF with this property is known as Jeffrey’s Prior (Rissanen 1996, Jaynes 2003).

Using Eqn. (5.72), Eqn. (5.71) can be written as

I(x, y) = 0.5 log2

(

Nπ

2e

)

− D(P(x)||S(x)). (5.74)

Thus, since relative entropy is always non-negative, the large N channel capacity is

achieved for any given R(x) when P(x) = S(x) and is given by

C(x, y) = 0.5 log2

(

Nπ

2e

)

≃ 0.5 log2 N − 0.3956. (5.75)

Eqn. (5.75) holds provided the conditions for the approximation given by Eqn. (5.70)

hold, and gives an upper bound for the large N mutual information. In other words,

when in the following subsection we consider matched signal and noise distributions,

we can expect to find channel capacity that is less than or equal to that of Eqn. (5.75).

5.5.2 Capacity for Matched Signal and Noise

Unlike the previous subsection, we now consider the case of matched signal and noise

distributions. From Eqn. (5.74), channel capacity occurs for the value of σ that min-

imises the relative entropy between P(x) and S(x). From Eqn. (5.70), it is also clear

that this is equivalent to solving the following problem,

lim
N→∞

σo = min
σ

f (σ) =
∫ x=∞

x=−∞
P(x) ln

(

1

J(x)

)

dx. (5.76)

This is exactly the formulation stated in Hoch et al. (2003b). Recalling the change of

variable defined by τ = P1|x = FR(x), Problem (5.76) can be equivalently expressed as

lim
N→∞

σo = min
σ

f (σ) =
∫ τ=1

τ=0
Q(τ) ln (τQ(τ))dτ, (5.77)
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or as

lim
N→∞

σo = min
σ

f (σ) = D(P(x)||R(x)) +
∫ x=∞

x=−∞
P(x) log2 (P1|x)dτ. (5.78)

Thus, the channel capacity depends on a term that comes from the large N approxi-

mation to the output entropy, and a term—the relative entropy between the signal and

noise PDFs—that comes from the large N approximation to the average conditional

output entropy.

5.5.3 Gaussian Signal and Noise

This section gives a slightly different derivation of the optimal value of σ for large

N and Gaussian signal and noise to that given in Hoch et al. (2003b). We begin with

Problem (5.78). Solving this problem requires differentiating f (σ) with respect to σ and

solving for zero. This means

d

dσ
D(P(x)||R(x)) +

d

dσ

∫ x=∞

x=−∞
P(x) log2 (P1|x)dx = 0. (5.79)

Recall from Table 4.2 in Chapter 4 that the entropy between P(x) and R(x) is

D(P(x)||R(x)) = log2 (σ) +
1

2 ln 2

(

1

σ2
− 1

)

. (5.80)

Therefore
d

dσ
D(P(x)||R(x)) =

1

ln 2

(

σ−1 − σ−3
)

. (5.81)

For the other term in Eqn. (5.79), we take the lead from Hoch et al. (2003b) and approxi-

mate ln (P1|x) by its second order Taylor series expansion (Spiegel and Liu 1999) about

the mean of the noise. Hoch et al. (2003b) uses an arbitrary mean, however here, in line

with the rest of this chapter, we set the signal and noise means to be zero. The result of

this, after some algebra, and using the fact that for Gaussian noise, P1|x = 0.5 at x = 0,

and R(0) = 1/
√

2πσ2
η , where ση is the standard deviation of the noise, is

− ln (P1|x) = ln 2−
√

2

π

x

ση
+

x2

πσ2
η

−O

(

x4

σ4
η

)

. (5.82)

Multiplying Eqn. (5.82) by P(x) and integrating over all x gives

−
∫ x=∞

x=−∞
P(x) ln (P1|x)dx ≃ ln 2−

√

2

π

1

ση
E[x] +

1

πσ2
η

E[x2]. (5.83)
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Since for a Gaussian signal, E[x] = 0 and E[x2] = σ2
x , Eqn. (5.83) becomes a function of

σ,

g(σ) = −
∫ x=∞

x=−∞
P(x) log2 (P1|x)dx ≃ 1 +

1

πσ2 ln 2
, (5.84)

where as before, σ = ση/σx.

The approximation of Eqn. (5.84) appears to be quite accurate for all σ, as can be seen

in Fig. 5.12. Numerical experiments show that the relative error is no more than about

10 percent for σ > 0.2. However, as we will see, this is inaccurate enough to cause

the end result for the approximate channel capacity to significantly overstate the true

channel capacity.

The derivative of Eqn. (5.84) with respect to σ is

− d

dσ

∫ x=∞

x=−∞
P(x) log2 (P1|x)dx ≃ − 2

πσ3 ln 2
. (5.85)

Combining Eqn. (5.85) with Eqn. (5.81) and substituting into Eqn. (5.79) gives

2

πσ3 ln 2
+

1

ln 2

(

σ−1 − σ−3
)

= 0. (5.86)

Solving Eqn. (5.86) gives the optimal value of σ as

σo ≃
√

1− 2

π
≃ 0.6028, (5.87)

as found in Hoch et al. (2003b).

An expression for the mutual information at σo can be found by substituting Eqn. (5.87)

into Eqns. (5.84) and (5.80), and substituting the results into Eqn. (5.68). Carrying this

out gives the large N channel capacity for Gaussian signal and noise as

C(x, y) ≃ 0.5 log2

(

2N

e(π − 2)

)

, (5.88)

which can be written as C(x, y) ≃ 0.5 log2 N − 0.3169.

Although this is expression for the channel capacity is close to correct, recall that the

previous subsection showed that the channel capacity must be less than 0.5 log2 N −
0.3956. Hence, Eqn. (5.88) gives a value for channel capacity that is too large. The rea-

son for this is that the Taylor expansion approximation we used requires consideration

of more terms. An expression including such higher order terms is given in Hoch et al.

(2003b), however this also appears to not give quite the right answer. Hence, the next

section solves Problem (5.78) numerically.
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Figure 5.12. Approximation to g(σ) =
∫ x=∞

x=−∞
P(x) log2 (P1|x)dx. This figure shows the ap-

proximation given for Gaussian signal and noise by Eqn. (5.84), compared with the

corresponding exact result, calculated numerically. Clearly, the approximation is quite

accurate for most values of the noise intensity, σ, however, as shown in the text, it

is inaccurate enough to cause the approximation to significantly overstate the true

channel capacity.

5.5.4 Numerical Verification and Other Distributions

Due to the slight inaccuracy found in the previous subsection, and the fact that no

analytical expression could be found for any other signal and noise distributions, we

now solve Problem (5.78) numerically. The term g(σ) =
∫

x P(x) log2 (P1|x)dx can be

found for any specified signal and noise distribution by numerical integration, just as

carried out for the relative entropy plotted in Fig. 4.5 in Chapter 4 for cases other than

Gaussian. Thus, the function of Problem (5.78) can be easily found as a function of x,

and minimised. This function is plotted in Fig. 5.13.

Fig. 5.13 also shows the Gaussian case obtained using the approximation of Eqn. (5.82).

It is clear that although this approximation is close to being correct, it does understate

the true value of σo, and gives a more negative value of the function, which means

overstating the channel capacity.

Table 5.1 gives the result of numerically calculating the value of σo, and the correspond-

ing large N channel capacity. Note that in each case, C(x, y)− 0.5 log2 (N) < −0.3956,

as required by Eqn. (5.75). Note that the difference between capacity and 0.5 log2 (N)

is about 0.4 bits per sample in each case. Thus, in the limit of very large N, this shows

that capacity is almost identical, regardless of the distribution. The value of σo at which
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Table 5.1. Large N channel capacity and optimal σ for matched signal and noise.

Distribution C(x, y)− 0.5 log2 (N) σo C(x, y)− I(x, y)σ=1

Gaussian −0.3964 0.6563 0.208

Logistic −0.3996 0.5943 0.205

Laplacian −0.3990 0.5384 0.205

this capacity occurs though is different in each case. The results of Table 5.1 compare

favourably with the results presented in Section 4.4 in Chapter 4 where capacity was

found for N up to 1000. At N = 1000, for Gaussian signal and noise, σo ≃ 0.607,

for Laplacian signal and noise, σo ≃ 0.5 and for logistic signal and noise σo ≃ 0.564.

Since we also saw that σo increases with increasing N, these results are consistent with

Table 5.1.

Difference Between Channel Capacity and I(x, y) at σ = 1

Section 4.4 in Chapter 4 shows in Fig. 4.24(c) the difference between the channel ca-

pacity, and the mutual information at σ = 1. This figure shows that for N = 1000,

this difference appears to be asymptotically converging towards a constant value for

each matched signal and noise case. The value of this difference appears to be of the

order of 0.22–0.24 bits per sample. Recall from Section 5.2 that at σ = 1, the mutual

information is identical for each signal and noise pair considered here, and is approxi-

mately I(x, y) = 0.5 log2 (N)− 0.6444. Thus, given that the channel capacity is slightly

larger than this, as indicated by Table 5.1, for each case there is a constant difference

between the channel capacity and the mutual information at σ = 1, for large N. This

value is also listed in Table 5.1, and compares favourably with the results of Fig. 4.24(c)

at N = 1000, which is simply not large enough to show the final asymptotic value of

this difference.

The main conclusion to be drawn from this analysis though, is that the channel capacity

is only of the order of 0.2 bits per sample larger at σo than it is at σ = 1. As N gets larger,

this difference becomes more and more insignificant.

5.6 Chapter Summary

The initial section of this chapter gives a brief discussion of previous work on large N

limit results for the SSR model.
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Figure 5.13. Finding channel capacity for large N. This figure shows the function that re-

quires minimisation to find the channel capacity, that is, f (σ) = D(P(x)||R(x)) +
∫ x=∞

x=−∞
P(x) log2 (P1|x)dx, as a function of noise intensity, σ, for the Gaussian, lo-

gistic and Laplacian cases. The Gaussian case obtained using the approximation of

Eqn. (5.82) is also shown. Clearly, although the approximation gives σo close to the

right answer, it underestimates the true value slightly, and also provides a minimum

smaller than the true minimum, and hence significantly overstates the channel capacity.

Next, Section 5.2 re-derives and improves a large N expression for the mutual informa-

tion first found in Stocks (2001a). This expression holds for the case of matched signal

and noise, that is, for the case where P(x) = R(θ − x), so that the mutual information

is independent of the actual signal and noise distribution.

Section 5.3 re-derives, and improves, a large N expression first found in Stocks (2001c)

for the mutual information for the specific case of uniform signal and noise and σ ≤ 1.

It also gives an expression for the value of σ at which channel capacity occurs, in this

case. The mutual information is found to scale with 0.5 log2 N.

Section 5.4 then looks at the more general case of any σ, and any matched signal and

noise distributions. Work on this topic was first published in Hoch et al. (2003a), who

found an expression for the large N mutual information that is more accurate for large

N and σ greater than about 0.7. We obtain an alternative derivation of this expression,

by finding separate expressions for the output entropy, conditional output entropy, and

output probability mass function. Furthermore, it is shown that all expressions can be

written either in terms of the support of the signal distribution, x, and its associated

PDF, P(x), or in terms of the transformed random variable, τ, and its associated PDF,

Q(τ), with support τ ∈ [0, 1].
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Finally Section 5.5 uses the large N expression for mutual information to find an ex-

pression for a channel capacity achieving input PDF, for any given noise PDF. This

expression is related to the Fisher information, and holds for distributions for which

the large N mutual information approximation holds. This section also numerically

finds the large N channel capacity for the cases of matched Gaussian signal and noise,

Laplacian signal and noise, and logistic signal and noise. It is found in each case that

the large N channel capacity is only about 0.2 bits per sample greater than the channel

capacity at σ = 1, although the optimal noise intensity, σ, ranges between about 0.5

and 0.65. Furthermore, for the Gaussian signal and noise case, the optimal value of σ

reported in Hoch et al. (2003a) is found to underestimate the true value by about 0.05.

5.6.1 Original Contributions for Chapter 5

This chapter included the following original contributions:

• An improved approximation to the large N average conditional output entropy,

and mutual information at σ = 1, is obtained by making use of Stirling’s formula.

The improved mutual information approximation is shown to have an error that

approaches zero as N increases, whereas the formula given in Stocks (2001a) is

shown to have an error approaching about 0.117 bits per sample.

• An improved approximation to the large N average conditional output entropy,

and mutual information for uniform signal and noise, and σ ≤ 1 is derived. The

improvement is due to the same reasoning as the improvement at σ = 1. The

improved formula for the mutual information also leads to an improved formula

for the optimal value of σ, and the channel capacity. As in Stocks (2001c), these

new formulas show that the channel capacity occurs for σ = 1 at N = ∞.

• A new approximation to the conditional entropy of y given x, Ĥ(y|x), is given,

based on the fact that the binomial distribution approaches a Gaussian for large

N. This approximation is shown to give the same result as the approximation

used in Hoch et al. (2003b), and is used to approximate the average conditional

entropy, H(y|x), for large N. The approximation to Ĥ(y|x) is numerically verified

to become more accurate for increasing N, and the approximation to H(y|x) is

verified at σ = 1 by the results of Section 5.2.

Page 183



5.6 Chapter Summary

• A derivation of the PDF of the average transfer function, ȳ, of the SSR model is

given. This PDF is shown to be Q( ȳ
N )/N.

• A large N approximation of the output probability mass function, Py(n), that

is highly accurate for all σ is derived. This approximation is obtained in two

different ways, and numerically verified to be accurate.

• A large N approximation to the output entropy, H(y), is found, and is shown to

be the difference between log2 (N) and the relative entropy between P(x) and

R(x), or equivalently, the sum of log2 (N) and the entropy of τ.

• The new methods of approximating H(y|x) and H(y) are used to obtain the same

large N approximation to I(x, y) as expressed in Hoch et al. (2003b).

• An expression for a channel capacity achieving input PDF for any given noise

PDF is found. The channel capacity for these conditions is derived as C(x, y) =

0.5 log2

(

Nπ
2e

)

, thus giving an upper bound for the achievable channel capacity for

SSR, under the conditions for which the large N mutual information approxima-

tion formula holds.

• Asymptotic large N expressions for the channel capacity, and optimal noise in-

tensity, σ, for the Gaussian, logistic and Laplacian cases are found. It is shown

that the difference between capacity and the mutual information at σ = 1 is of

the order of 0.2 bits per sample for large N. It is also shown that the optimal σ for

Gaussian signal and noise given in Hoch et al. (2003a) understates the true value

by about 0.05.

5.6.2 Further Work

Possible future work and open questions arising from this Chapter might include:

• Analytical proofs that the large N approximations converge to zero error as N

approaches infinity.

• Analytical proof that the large N approximation to the output probability mass

function converges to the exact output probability mass function.

• Studies of large N approximations for one-sided signal and noise PDFs such as

the Rayleigh or exponential PDFs, or finite support PDFs, such as the uniform

case, when σ > 1.
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• Studies of large N approximations for mixed signal and noise distributions.

• More rigorous justification of the use of the Fisher information approximation to

the mutual information, and its relationship to the concept of stochastic complex-

ity (Rissanen 1996) and Minimum Description Length (MDL) (Grunwald et al.

2005). Such work could begin by building on the work of Davisson and Leon-

Garcia (1980), Clarke and Barron (1990), Barron and Cover (1991), Nadal and

Parga (1994), Rissanen (1996) and Brunel and Nadal (1998), and may find an al-

ternative derivation of the SSR channel capacity and large N mutual information

in the MDL framework.

This concludes Chapter 5. Chapters 4 and 5 studied information transmission and en-

coding in the SSR model, by analytical and numerical studies of the mutual informa-

tion and channel capacity. The following Chapter studies the SSR model as a quanti-

sation or lossy source coding model, by examining decoding of the SSR model output,

to achieve low distortion between the input and output signals.
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Chapter 6

Suprathreshold Stochastic
Resonance: Decoding

T
HE initial research into suprathreshold stochastic resonance con-

siders the viewpoint of information transmission. As discussed

briefly in Chapter 4, the suprathreshold stochastic resonance ef-

fect can also be modelled as stochastic quantisation, and therefore provides

a nondeterministic lossy compression of a signal. The reason for this is

that the effect of independently adding noise to a common signal before

thresholding the result a number of times, with the same static threshold

value, is equivalent to quantising a signal with random thresholds. This

observation leads naturally to measuring and describing the performance

of suprathreshold stochastic resonance with standard quantisation theory.

In a context where a signal is to be reconstructed from its quantised ver-

sion, this requires a reproduction value or reproduction point to be assigned to

each possible state of a quantised signal. The quantising operation is often

known as the encoding of a signal, and the assignment of reproduction val-

ues as the decoding of a signal. This chapter examines various methods for

decoding the output of the suprathreshold stochastic resonance model, and

evaluates the performance of each technique, as the input noise intensity

and array size changes. As it is the performance criterion most often used

in conventional quantisation theory, the measure used is the mean square

error distortion between the original input signal, and the decoded output

signal.
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6.1 Introduction

We begin this Chapter by very briefly reviewing the SSR model introduced in Chap-

ter 4. We then introduce the concept of decoding the output of a quantiser’s encoding to

reconstruct the input signal, and consider measuring the performance of such a recon-

struction. Three measures are considered, the mean square error distortion, the signal-

to-quantisation-noise ratio (SQNR) and the correlation coefficient. The latter two measures

are however shown to be very closely related to the Mean Square Error (MSE) distor-

tion. The remainder of this Chapter is outlined in Section 6.1.3.

This Chapter contains original work on the description of the SSR model as a quantiser

that has been published, in part, in the open literature (McDonnell et al. 2002a, McDon-

nell et al. 2002b, McDonnell et al. 2003a, McDonnell et al. 2005c, McDonnell et al. 2005d).

6.1.1 Summary of Relevant Results from Chapters 4 and 5

Chapter 4 introduced the array of threshold devices in which Suprathreshold Stochas-

tic Resonance (SSR) occurs. The model is shown in Fig. 4.1, and consists of N binary

threshold devices. As in Chapters 4 and 5, we consider each threshold device to have

an identical value, θ, and to receive the same input signal, x, which is a sequence of

independent samples from the random signal with Probability Density Function (PDF)

given by P(x) and a standard deviation being a function of σx. However, iid additive

noise, with PDF R(η), and a standard deviation being a function of ση, is present at the

input to each threshold, so that the output of each threshold device is unity if x + η > θ

or zero otherwise. The overall output of the SSR model is the sum of all the threshold

outputs, y ∈ [0, N], which is an integer encoding of the input signal.

We saw in Chapter 4 that the performance of the SSR model can be measured by the

mutual information between x and y, and that the maximum mutual information oc-

curs for a nonzero noise intensity. Calculating the mutual information depends on

knowing the transition probabilities, P(y = n|x), which we abbreviate to P(n|x). For

the SSR model, this conditional probability mass function is given by the binomial dis-

tribution, in terms of the probability that any given threshold device is on, given x,

denoted as P1|x. Furthermore, the output probability mass function can be found by

integrating the joint input-output probability density function, P(x, y) = P(x)P(n|x)

to get Py(n) =
∫

x P(x)P(n|x)dx.
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A convenient parameterisation of the noise intensity is given by the ratio of the noise

standard deviation to the signal standard deviation, which for ‘matched’ signal and

noise distributions is σ = ση/σx. For such a case, the mutual information can be ex-

pressed as a function of σ, and is therefore independent of the signal’s variance for a

given σ. In this chapter however, we will see that sometimes the performance of the

decoded SSR array depends on both ση and σx.

Furthermore, under certain conditions on the support of P(x) and R(x), the mutual

information can be expressed, by a transformation using the Inverse Cumulative Dis-

tribution Function (ICDF) of the noise, F−1
R (·), in terms of a PDF with support between

zero and unity,

Q(τ) =
P(x)

R(θ − x)

∣

∣

∣

x=θ−F−1
R (1−τ)

. (6.1)

Chapter 5 shows that Q(τ) is the PDF of the average transfer function of the SSR model

divided by N—that is, the PDF of the random variable, E[y|x]/N—and how, for large

N, the mutual information is highly dependent on the entropy of Q(τ).

In this chapter, we will consider only cases where P(x) and R(x) are even functions

about a mean of zero and the threshold value is θ = 0.

The next subsection introduces the concept of decoding a quantised signal to recon-

struct an approximation to the input signal, and how the performance of such a recon-

struction can be measured by the MSE distortion.

6.1.2 Decoding a Quantised Signal

The output of the SSR model, y, is a non-deterministic integer encoding of the input

signal, x. The set of possible values of y are the integers from 0 to N, and is therefore

a quantisation of x. We consider now any scalar quantisation scheme. To enable a

reconstruction of the input signal from such a quantisation, each value of y must be

assigned a reconstruction point. Label the n–th reconstruction point, that is, the point

corresponding to y = n, as ŷn. Therefore, the decoded output is the discretely valued

signal ŷ, which has possible values ŷ0, ..., ŷn, ..., ŷN .

Assuming suitable values of ŷ = {ŷn} have been set, then it is possible to define an

error signal between the input x, and the reconstructed input, ŷ. Let this error be

ǫ = x− ŷ. (6.2)
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Clearly, this error is a function of x. Since x is a continuously valued variable, some

measure of the average error—or distortion—is required.

Mean square error distortion

There are many possible ways to define such an average error, the most common of

which are the absolute error and the Mean Square Error (MSE) distortion. The MSE

distortion is also sometimes known as the quantisation noise. We will only focus on

the MSE distortion, as this is very commonly used in estimation and quantisation the-

ory (Gray and Neuhoff 1998).

Firstly, it is sometimes convenient to consider the conditional MSE distortion for a

given value of the input, x, which we label as

D(x) = E[ǫ2|x]

= E[(x− ŷ)2|x]

=
N

∑
n=0

P(n|x)(x− ŷn)2. (6.3)

Note also that

D(x) = var[ǫ|x] + E[ǫ|x]2

= var[ǫ|x] + E[ŷ− x|x]2

= var[ǫ|x] + (E[ŷ|x]− x)2

= var[ǫ|x] + bŷ(x)2, (6.4)

where bŷ(x) is the bias of the decoded output, ŷ, as a function of x. The concept of

bias is defined and discussed in Section 6.7, but for now we simply comment that the

above equation shows that the conditional MSE distortion is the sum of the conditional

variance of the error and the square of the bias. This illustrates that the distortion is

strongly dependent on both the variance of the error and the bias.

The MSE distortion is then defined as the average value of D(x) over all x, that is,

MSE = E[ǫ2]

= E[D(x)]

=
N

∑
n=0

∫ ∞

x=−∞
P(x, y)(x− ŷn)2dx

=
∫ x=∞

x=−∞
P(x)

(

N

∑
n=0

P(n|x)(x− ŷn)2

)

dx. (6.5)
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Thus, using this definition, provided the decoding and the transition probabilities are

known, the MSE distortion can be calculated numerically.

Also, the MSE can be expressed as

MSE =
∫

x
P(x)D(x)dx

=
∫

x
P(x)

(

var[ǫ|x] + E[ǫ|x]2
)

dx

= E[var[ǫ|x]] + E[bŷ(x)2]. (6.6)

We will call the first term in Eqn. (6.6) the average error variance and the second term the

mean square bias.

The expression given by Eqn. (6.5) can also be simplified to give

MSE = E[ǫ2]

= E[ŷ2]− 2E[xŷ] + E[x2], (6.7)

where E[ŷ2] is the mean square value of the decoded output, ŷ, E[x2] is the mean square

value of the input, x, and E[xŷ] is the correlation between x and ŷ. In the SSR model,

since the input signal has a mean of zero, the mean square value of x is also its variance.

Without exception, the decoded output mean will also always be zero in this Chapter

and therefore the mean square value of the decoded output is also always the variance

of the decoded output. In contrast, the encoded output signal for SSR has a non-zero

mean—which is shown in Section D.2.1 of Appendix 6 to be N/2—and therefore has a

variance

var[y] = E[y2]− N2/4. (6.8)

Output signal-to-quantisation-noise ratio

The lossy source coding and quantisation literature often defines an output signal-

to-noise ratio measure as the ratio of the input signal power to the MSE distortion—

or quantisation noise—power (Proakis and Manolakis 1996, Gray and Neuhoff 1998,

Lathi 1998). Since we are only analysing signals that are stationary random variables

with zero means, the input signal’s power is simply its mean square value. Thus, the

output SQNR is

SQNR =
E[x2]

MSE
=

E[x2]

E[(x− ŷ)2]
. (6.9)

Note that it is conventional to express SNR measures in terms of decibels (dB), which

for the SQNR is 10 log10 (SQNR).
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Correlation coefficient

The correlation coefficient between two random variables, x and ŷ is defined as

ρxŷ =
cov[xŷ]

√

var[x]var[ŷ]
, (6.10)

where cov[xŷ] = E[xŷ]−E[x]E[ŷ] is the covariance between x and ŷ. Since, here, E[x] =

0 and E[ŷ] = 0,

ρxŷ =
E[xŷ]

√

E[x2]E[ŷ2]
. (6.11)

Correlation coefficient is a measure of the linearity between two random variables.

It is equal to unity if an exact linear relationship can be found (Yates and Goodman

2005). It is zero if the two random variables are independent. It will be shown that

simple relationships exist between the correlation coefficient and SQNR for optimal

linear and nonlinear decoding, and that therefore the correlation coefficient and SQNR

are equivalent measures for such decoding schemes.

6.1.3 Chapter Structure

Having introduced the concept of decoding a quantised signal, and measures of the

performance of such decodings, we are now ready to discuss in detail their application

to the SSR model. However, firstly in Section 6.2, we will use this theory to discuss

noise removal via averaging for analog signals. This is for later comparison with the

performance of the SSR effect—which can be seen as an averaging of N single bit digi-

tal signals—for noise removal.

Next, Sections 6.3 and 6.4 consider linear decoding, while Section 6.5 considers nonlin-

ear decoding. It is shown in Section 6.6 that although nonlinear decoding can provide

a smaller MSE, linear decoding is simpler to specify and calculate.

Section 6.7 shows how the output of the decoded SSR model can be considered as an

estimate of the input, x, and how the performance of its decoding can be understood

using estimation theory. The main result is to derive an expression for the Fisher infor-

mation of the SSR model, and to use the Fisher information to derive theoretical lower

bounds on the MSE performance of the system. Section 6.7 also demonstrates how the

performance of the decoded SSR model depends strongly both on bias and variance.

Finally, Section 6.8 discusses an approach proposed in Stocks (2001a) to measuring the

SSR model’s output in terms of an SNR measure that is different to the SQNR.
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Some results relevant to this chapter are given in more detail in Appendix D.

6.2 Averaging Without Thresholding

It is well known that averaging N independently noisy versions of a signal reduces the

noise by a factor of 1/
√

N. We begin by proving this result.

Suppose x is a random signal consisting of a sequence of samples drawn from some

continuously valued probability distribution with PDF P(x), zero mean and variance

σ2
x . Suppose i = 1, .., N and ηi is a set of uncorrelated random signals drawn from a

distribution with PDF R(η), zero mean, and variance σ2
η . Let yi = x + ηi be the sum of

the signal and the i-th noise signal. Then the error between yi and x is ǫi = yi − x = ηi,

and the MSE distortion between the raw signal, x, and the noisy signal is the noise

variance, D(x) = σ2
η ∀ x.

Suppose now that the N independently noisy signals are averaged so that

y(x) =
1

N

N

∑
i=1

yi

=
1

N

N

∑
i=1

(x + ηi)

= x +
1

N

N

∑
i=1

ηi. (6.12)

The error between y(x) and x has a mean of zero and is given by

ǫ(x) = y(x)− x =
1

N

N

∑
i=1

ηi ∀ x. (6.13)

The mean square error for a given x is then

D(x) = E[ǫ(x)2] =
1

N2
E





(

N

∑
i=1

ηi

)2


 . (6.14)
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Since each noise signal is uncorrelated with all other noise signals, Eqn. (6.14) simplifies

to

D(x) =
1

N2
E

[

N

∑
i=1

η2
i

]

=
1

N2

N

∑
i=1

E[η2]

=
1

N2
Nσ2

η

=
σ2

η

N
∀ x. (6.15)

Thus, the conditional MSE distortion is reduced by a factor of N, and is constant for all

values of x. Hence, the MSE distortion is also the conditional mean square distortion,

and is independent of the signal variance. This fact also means that the signal, x, need

not be a random signal at all, but can be a deterministic signal of any form. Note that

each yi is an iid random variable, with a mean of x, and variance σ2
η .

The square root of the MSE distortion is often referred to as the root-mean-square (rms)

error. Thus, the well known result of a 1√
N

reduction in noise due to averaging refers

to using the RMS error as the noise measure.

In terms of SNR, the SNR after averaging is

SNR =
σ2

x

MSE
=

N

σ2
, (6.16)

where σ2 = σ2
η/σ2

x is the reciprocal of the SNR of a single noisy input signal, yi. Thus,

the SNR after averaging is N times the SNR of a single noisy version of the signal, yi.

In Section 6.8 we will compare this result with measures of the output SNR in the SSR

model.

One can envisage situations where thresholding first before averaging may be advan-

tageous, or indeed the only possible way of averaging, most particularly, in digital

systems. In particular, the advantage of thresholding first is that it provides compres-

sion to a discrete number of possible values.

We now proceed to discussing specific decoding methods for quantisation schemes.
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6.3 Linear Decoding Theory

Consider linear decoding of a quantiser’s encoding stage output, y ∈ [0, N]. Such a

decoding operation can be written as

ŷ = ay + b, y ∈ 0, .., N, (6.17)

where a and b are constants for all values of y. Such linear decoding will give a set of

outputs that are evenly spaced. We label the n–th value of ŷ as ŷn.

Assume in general that y is a non-deterministic function of an input signal, x and that

E[y] = N/2. If we impose the condition that the mean of the decoded output, ŷ, is

also zero, then this requires that E[ŷ] = aE[y] + b = 0. Therefore setting a = −2b/N

is sufficient to provide a zero-meaned decoding. Changing notation by letting c = −b

gives

ŷ =
2c

N
y− c, y ∈ 0, .., N. (6.18)

Thus, the mean square value of ŷ is also its variance, since the mean is zero.

Conditional linear MSE distortion

As well as the overall MSE distortion, we will also be interested in the conditional mo-

ments of the decoding and the conditional MSE distortion for a given value of x; each

value of x has its own average distortion.

Unlike the overall output, the conditional mean of ŷ given x is, in general, non-zero,

since

E[ŷ|x] =
2c

N
E[y|x]− c. (6.19)

Consequently, the conditional variance of ŷ will not equal the conditional mean square

value of ŷ for a given x.

The conditional mean square value of the decoding is

E[ŷ2|x] =
4c2

N2
E[y2|x]− 4c2

N
E[y|x] + c2, (6.20)

and the conditional variance is

var[ŷ|x] =
4c2

N2

(

E[y2|x]− E[y|x]2
)

=
4c2

N2
var[y|x]. (6.21)
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Eqns. (6.20) and (6.21) show that the conditional variance of the decoded output is

proportional to the conditional variance of the ‘un-decoded’ output, while, since y and

ŷ have different means, the mean square value is not.

It is straightforward to show that the variance of the error, given x, is equal to the

variance of ŷ given x, so that

var[ǫ|x] = var[ŷ|x] =
4c2

N2
var[y|x]. (6.22)

The conditional MSE distortion is

D(x) = var[ŷ|x] + E[ŷ− x|x]2

= var[ŷ|x] + E[ŷ|x]2 − 2xE[y|x] + x2

= E[ŷ2|x]− 2xE[ŷ|x] + x2. (6.23)

Alternatively,

D(x) = E[(ŷ− x)2|x]

= E[ŷ2|x]− 2xE[ŷ|x] + x2. (6.24)

Substituting Eqns. (6.19) and (6.20) into Eqn. (6.23) and simplifying gives

D(x) =
4c2

N2
E[y2|x]− 4c

N
E[y|x](x + c) + (x + c)2. (6.25)

Linear mean square error distortion

The average MSE distortion is the expected value of the conditional distortion,

MSE = E[D(x)]

=
∫

x
P(x)D(x)dx

= E[(ŷ− x)2]

= E[ŷ2]− 2E[xŷ] + E[x2], (6.26)

as described by Eqn. (6.7) in Section 6.1.2. Substituting Eqn. (6.18) into Eqn. (6.26) and

simplifying gives

MSE =
4c2

N2
E[y2]− 4c

N
E[xy] + E[x2]− c2. (6.27)

Page 196



Chapter 6 Suprathreshold Stochastic Resonance: Decoding

Correlation coefficient

Consider the linear decoding of Eqn. (6.17). It is straightforward to show that the

correlation coefficient between x and ŷ is identical for any a and b in this equation.

Hence, to find an expression for the correlation coefficient, it is sufficient to set a =

1 and b = 0, and obtain the correlation coefficient between x and the ‘un-decoded’

output y, which is

ρxŷ = ρxy =
E[xy]− E[x]E[y]
√

var[x]var[y]
. (6.28)

Since E[x] = 0 and E[y] = N/2,

ρxŷ = ρxy =
E[xy]

√

E[x2]
(

E[y2]− N2

4

)

. (6.29)

Due to its invariance to linear decoding, the correlation coefficient is not a relevant

measure when comparing different specific linear decoding schemes. However be-

cause of this fact, it does provide a means of measuring the effectiveness of the best

possible linear decoding. It will also prove useful as a means of comparing the effec-

tiveness of a nonlinear decoding when compared to a linear decoding.

Having now defined a linear decoding scheme, and derived general expressions for the

MSE, SQNR and correlation coefficient, the next three subsections give three different

possible ways for specifying the value of c in Eqn. (6.18).

6.3.1 Constant Decoding

If either the signal variance or the noise variance are unknown, decoding that is inde-

pendent of either is necessary. Since the aim is to minimise the MSE distortion, a naive

decoding choice is one that has the same range of possible values of x as the input

signal so that,

min ŷ = min x and max ŷ = max x. (6.30)

However, for signal distributions that have infinite support, such as the Gaussian dis-

tribution, it is obvious that there should be no reconstruction point at ±∞. Hence, one

solution for such a source is to set the minimum and maximum reconstruction points

to a set number of standard deviations.

Page 197



6.3 Linear Decoding Theory

6.3.2 Matched Moments Linear Decoding

The previous subsection considers a simple method of decoding for the event that

the signal variance is unknown. In this and the following subsection, we consider

decoding that depends on knowledge of the variance of the input signal, and the linear

correlation coefficient between the input and output. The aim is to find the linear

decoding scheme that provides the minimum MSE distortion.

Assume the decoding is linear, as given by Eqn. (6.17). Under the hypothesis that the

output moments should be equal to the input moments, a naive approach is to find a

and b in Eqn. (6.17) such that E[ŷ] = E[x] and E[ŷ2] = E[x2]. For the distributions we

are considering, E[x] = 0, and E[y] = N/2. This immediately imposes b = −aN/2. We

then have

E[ŷ2] = a2

(

E[y2]− N2

4

)

= E[x2]. (6.31)

This gives

a =

√

E[x2]

E[y2]− N2

4

=

√

E[x2]

var[y]
. (6.32)

Consequently, the decoded output signal is

ŷ =

√

E[x2]

var[y]

(

y− N

2

)

. (6.33)

With reference to Eqn. (6.18),

c =
N

2

√

E[x2]

var[y]
, (6.34)

and substituting Eqn. (6.34) into Eqn. (6.27) gives

MSE = 2

(

E[x2]−
√

E[x2]E[xy]
√

var[y]

)

= 2E[x2]

(

1− E[xy]
√

E[x2]var[y]

)

= 2E[x2](1− ρxy). (6.35)

Hence, the MSE of this decoding scheme can be simply expressed in terms of the mean

square value of the input signal, and the correlation coefficient of a linear decoding
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scheme. Furthermore, rearranging Eqn. (6.35) gives an expression for the SQNR that is

independent of E[x2] as

SQNR =
1

2(1− ρxy)
. (6.36)

6.3.3 Wiener Optimal Linear Decoding

What is the optimal linear decoding scheme? The only unknown in Eqn. (6.18) is c. The

optimal value of c can be found by differentiating Eqn. (6.27) with respect to c, setting

the result to zero, and solving for c, the result being

c =
NE[xy]

2var[y]
. (6.37)

Such decoding is known as Wiener decoding, and is the optimal linear decoding sch-

eme for the MSE distortion (Yates and Goodman 2005). Note that with this decoding,

it is straightforward to show that

E[ŷ2] = E[xŷ] =
E[xy]2

var[y]
. (6.38)

Substituting Eqn. (6.37) into Eqn. (6.27) and simplifying gives

MSE = E[x2]− E[xy]2

var[y]

= E[x2]− E[ŷ2]. (6.39)

Thus, with this decoding, the MSE distortion is independent of the correlation between

x and y. We have also that

MSE = E[x2]

(

1− E[xy]2

E[x2]var[y]

)

= E[x2](1− ρ2
xy). (6.40)

Eqn. (6.40) can be found in Yates and Goodman (2005). Just as with matched-moments

linear decoding, the MSE distortion given by Eqn. (6.40) is entirely dependent on the

correlation coefficient and the mean square value of the input. It is also straightforward

to show that with this decoding the correlation between the encoded output, y, and the

error, ǫ, is zero, that is, E[ǫy] = 0 (Yates and Goodman 2005).

Subtracting Eqn. (6.40) from Eqn. (6.35) gives the difference between the MSE distor-

tions of matched-moments decoding and Wiener decoding as

2E[x2](1− ρxy)− E[x2](1− ρ2
xy) = E[x2](ρxy − 1)2

> 0. (6.41)
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This shows that the MSE distortion obtained by Wiener decoding is always smaller

than that obtained with matched-moments decoding. Since Eqn. (6.40) was derived

to give the smallest possible linear MSE distortion, Inequality (6.41) simply acts as

verification of this fact.

The SQNR for Wiener decoding can be obtained from rearrangement of Eqn. (6.40) as

SQNR =
1

1− ρ2
xy

. (6.42)

In decibels, this can be written as

10 log10(SQNR) = −10 log10(1− ρ2
xy). (6.43)

6.4 Linear decoding for SSR

Section 6.3 does not say anything specific about the SSR model; it only discusses the

MSE, SQNR and correlation coefficient between the signals x and ŷ. We assumed the

decoded signal, ŷ, is given by the linear transform of Eqn. (6.18), where y is a non-

deterministic function of x, with a mean of N/2 and that x has a mean of zero and a

PDF that is an even function of x.

Recall we also assume in this chapter that the input of the SSR model has a zero-

meaned and even PDF, P(x). Section D.2.1 in Appendix D gives a proof that for the

SSR model, and such an input signal, that E[y] = N/2. Thus, the equations derived in

Section 6.3 apply to the SSR model. The remainder of this section simplifies the equa-

tions of Section 6.3 for the SSR model, and then considers some specific cases of signal

and noise distributions.

6.4.1 Decoding Measures for SSR

MSE distortion

Expressions for the mean of y given x and the mean square value of y given x, for the

SSR model, are given in Section D.1 of Appendix D in terms of P1|x, by Eqns. (D.3)

and (D.6). Substituting these into Eqn. (6.25) gives the conditional MSE distortion for

SSR in terms of P1|x as

D(x) = 4c2P1|x(1− P1|x)
(

1− N

N

)

− 4cP1|xx + (x + c)2. (6.44)
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An expression for the correlation between x and y, for the SSR model, is given in

Section D.3.3 of Appendix D in terms of P1|x, by Eqn. (D.25). Substituting this, and

Eqn. (D.17) into Eqn. (6.27) gives the MSE distortion for SSR as

MSE =
4c2(N − 1)

N
E[P2

1|x]− 4cE[xP1|x] + E[x2]− c2(N − 2)

N
. (6.45)

Thus, from Eqn. (6.45), the MSE distortion of a linear decoding of the SSR model can

be obtained for any c, provided E[P2
1|x] and E[xP1|x] are known.

Recall the change of probability measure transformation used in Chapters 4 and 5,

τ = FR(x) = P1|x, where FR(·) is the Cumulative Distribution Function (CDF) of the

noise. Using this same change of measure, the quantity E[P2
1|x] can be recognised as the

mean square value of the PDF, Q(τ), that is, E[τ2].

SQNR

Using the definition given by Eqn. (6.9), the SQNR for a linear decoding of the SSR

model is

SQNR =
E[x2]

4c2(N−1)
N E[P2

1|x]− 4cE[xP1|x] + E[x2]− c2(N−2)
N

. (6.46)

Correlation coefficient

Substituting Eqns. (D.17) and (D.25) into Eqn. (6.29), and recalling E[P1|x] = 0.5, gives

the correlation coefficient for SSR and a linear decoding as

ρxŷ = ρxy =

√
NE[xP1|x]

√

E[x2]
(

(N − 1)E[P2
1|x]−

(N−2)
4

)

. (6.47)

So as with the MSE distortion, the correlation coefficient can be calculated given knowl-

edge of E[P2
1|x] and E[xP1|x].

Having now obtained expressions for the MSE distortion, SQNR and correlation coef-

ficient for the SSR model with a linear decoding, it is time to examine these measures

for specific signal and noise distributions. We find that exact closed-form analytical

expressions are available in certain cases. In other cases, numerical evaluation of the

distortion, SQNR or correlation coefficient is required.
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6.4.2 Specific Signal and Noise Distributions

In this subsection we derive closed form analytical expressions for E[P2
1|x] and E[xP1|x]

for the cases of Gaussian signal and noise, Uniform signal and noise and Laplacian

signal and noise. Using these expressions, formulas for the linear decoding correlation

coefficient are derived. No such exact expressions can be found for logistic signal and

noise, but results obtained using numerical integration are obtained for this distribu-

tion. This section does not explicitly state expressions for the MSE distortion or SQNR,

but such analytical expressions can easily be found by use of Eqns. (6.45) or (6.46) and

the equations stated in this section, once a value of c is specified. Specifying c is left for

Sections 6.4.3, 6.4.4 and 6.4.5.

Gaussian signal and noise

For Gaussian signal and noise, the mean square value of P1|x can be derived as follows.

E[P2
1|x] =

∫ ∞

−∞
P2

1|xP(x)dx

=
∫ ∞

−∞

(

1

2
+

1

2
erf

(

x√
2ση

))2

P(x)dx

=
∫ ∞

−∞





1

4
+

1

2
erf

(

x√
2ση

)

+
1

4
erf

(

x√
2ση

)2


 P(x)dx

=
1

4

∫ ∞

−∞
P(x)dx +

1

2

∫ ∞

−∞
erf

(

x√
2ση

)

P(x)dx +
1

4

∫ ∞

−∞
erf2

(

x√
2ση

)

P(x)dx

=
1

4
+ 0 +

1

4

∫ ∞

−∞
erf2

(

x√
2ση

)

P(x)dx. (6.48)

The second term above is zero, since P(x) is even and erf(x) is odd. We make use of

the following result proven in Section D.4 of Appendix D,

∫ x=∞

x=−∞
exp (−a2x2)erf2(x)dx =

2

a
√

π
arctan

(

1

a
√

a2 + 2

)

, (6.49)
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which gives

E[P2
1|x] =

1

4
+

1

4
√

2πσ2
x

∫ ∞

−∞
erf2

(

x√
2ση

)

exp

(

− x2

2σ2
x

)

dx

=
1

4
+

σ

4
√

π

∫ ∞

−∞
erf2(τ) exp(−σ2τ2)dτ

=
1

4
+

1

2π
arctan

(

1

σ
√

σ2 + 2

)

=
1

4
+

1

2π
arcsin

(

1

σ2 + 1

)

. (6.50)

The conversion from arctan to arcsin holds provided σ > 0, which it always does.

Hence, E[P2
1|x] is a function of the parameter σ. It is shown in Section D.3.1 of Ap-

pendix D that the correlation between the inputs to any two devices—that is, the cor-

relation between x + ηi and x + ηj—in the SSR model is ρi = 1
σ2+1

. Therefore

E[P2
1|x] =

1

4
+

1

2π
arcsin (ρi) . (6.51)

Note that substituting Eqn. (6.51) into Eqn. (D.13) gives the variance of the output of

the SSR model encoding as

var[y] =
N(N − 1)

2π
arcsin (ρi) +

N

4
. (6.52)

For a decoding given by c = N, so that ŷ can take values between −N and N, with a

mean of zero, we have

var[ŷ] = E[ŷ2] = N + N(N − 1)
2

π
arcsin (ρi) . (6.53)

Eqn. (6.53) is precisely the same as an equation derived in Remley (1966) for the output

mean square signal power for Gaussian signal and Gaussian noise in a Digital Multi-

beam Steering (DIMUS) sonar array—see also Section 4.2.5 in Chapter 4. This result

shows that the DIMUS sonar array model is equivalent to the decoded SSR model.

However, the results presented in this chapter are far more general, as nowhere in

the DIMUS literature is the output of the DIMUS array considered to be a quantised

approximation to a random input signal, nor is the output response considered as a

function of varying input noise.

Note that Remley (1966) derives Eqn. (6.53) in a different manner to that given here,

by making use of a result known as Van Vleck’s relation12 (Price 1958, Van Vleck and

12In Remley (1966), Van Vleck’s relation is referred to as “Van Fleck’s” relation, even though the paper

referenced actually uses the correct spelling of “Van Vleck”—see Van Vleck and Middleton (1966).
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Middleton 1966). Van Vleck’s result is a formula for the normalised autocorrelation,

ρ2, of “clipped” Gaussian noise—that is, a one bit quantisation of the noise—in terms

of the normalised autocorrelation of the unclipped noise, ρ1,

ρ2(τ) =
2

π
arcsin (ρ1(τ)). (6.54)

When applied to the multi-threshold DIMUS sonar array, with Gaussian signal and

noise, ρ1 is the correlation coefficient between the inputs to any two of the thresholds,

that is, the correlation coefficient between x + ηi and x + ηj, where ηi and ηj are the

independent Gaussian noise samples on two thresholds. At the output, ρ2 is the corre-

lation coefficient between the binary variables, 2yi− 1 and 2yj− 1. The possible values

of these variables are −1 and 1.

Section D.3.2 in Appendix D derives the correlation coefficient between any two thres-

holds’ outputs in the SSR model as Eqn. (D.20). Substituting Eqn. (6.51) into Eqn. (D.20)

gives

ρo = 4E[P2
1|x]− 1

=
2

π
arcsin (ρi), (6.55)

which is exactly Van Vleck’s result, thus indicating how Remley (1966) derived Eqn.

(6.53).

We also have

E[xP1|x] =
∫ ∞

−∞
xP(x)P1|xdx

=
∫ ∞

−∞
xP(x)

(

∫ x

−∞
R(η)dη

)

dx

=
∫ ∞

−∞
R(η)

(

∫ ∞

η
xP(x)dx

)

dη

=
∫ ∞

−∞
R(η)

(

∫ ∞

η

x√
2πσx

exp

(

− x2

2σ2
x

)

dx

)

dη

=
σx√
2π

∫ ∞

−∞
R(η) exp

(

− η2

2σ2
x

)

dη

=
σx√
2π

∫ ∞

−∞

1√
2πση

exp

(

− η2

2σ2
η

)

exp

(

− η2

2σ2
x

)

dη

=
1

2πσ

∫ ∞

−∞
exp

(

−η2

2

(

1 + σ2

σ2
η

))

dη, (6.56)
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since σ = ση/σx. The final integrand is a Gaussian PDF, with variance σ2
η/(1 + σ2).

Hence the integral from −∞ to +∞ is unity times the normalising factor,

E[xP1|x] =
1

2πσ

√

√

√

√2π

(

σ2
η

1 + σ2

)

=
σx

√

2π(1 + σ2)
, (6.57)

therefore

E[xP1|x] =
σx√
2π

√
ρi. (6.58)

Interestingly, this expression is a function not just of σ but also σx. However, referring

to the correlation coefficient, as given by Eqn. (6.47), since E[x2] = σ2
x for a Gaussian

signal, σx will be cancelled out of Eqn. (6.47), and therefore the correlation coefficient

is a function only of σ. Upon substitution of Eqns. (6.50) and (6.57) into Eqn. (6.47) and

simplification,

ρxy =

√
N

√
σ2 + 1

√

(N − 1) arcsin
(

1
σ2+1

)

+ π
2

=

√

Nρi
√

(N − 1) arcsin (ρi) + π
2

=

√

N sin (ρo)
√

(N − 1)ρo + 1
. (6.59)

However, referring to the MSE distortion given by Eqn. (6.45), σx will not necessarily

be eradicated from the MSE distortion. In fact, we will see later in this section that in

general, the MSE will be a function of the mean square value of the signal.

Uniform signal and noise

For uniform signal and noise, it is necessary to derive expressions for E[P2
1|x] and

E[xP1|x] separately for the cases of σ ≤ 1 and σ ≥ 1. The two expressions will be

equal at σ = 1.

For σ ≤ 1,

E[P2
1|x] =

∫ ∞

−∞
P2

1|xP(x)dx

=
1

σx

∫ ση/2

−ση/2

(

1

2
+

x

ση

)2

dx +
1

σx

∫ σx/2

ση/2
dx

=
1

2
− σ

6
, (6.60)
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and

E[xP1|x] =
∫ ∞

−∞
xP(x)P1|xdx

=
∫ ση/2

−ση/2
x

(

1

2
+

x

ση

)

1

σx
dx +

∫ σx/2

ση/2

x

σx
dx

=
σx

24

(

3− σ2
)

. (6.61)

For σ ≥ 1

E[P2
1|x] =

∫ ∞

−∞
P2

1|xP(x)dx

=
1

σx

∫ σx/2

−σx/2

(

1

2
+

x

ση

)2

dx

=
1

4
+

1

12σ2
, (6.62)

and

E[xP1|x] =
∫ ∞

−∞
xP(x)P1|xdx

=
1

σx

∫ σx/2

−σx/2
x

(

1

2
+

x

ση

)

dx

=
σx

12σ
. (6.63)

Thus, the correlation coefficient for uniform signal and noise is

ρx,y =







√
N(3−σ2)

2
√

σ(2−2N)+3N
(σ ≤ 1),

√
N√

3σ2+N−1
(σ ≥ 1),

(6.64)

which again is only dependent on the ratio σ.

Laplacian signal and noise

For Laplacian signal and noise, the mean square value of P1|x can be derived as

E[P2
1|x] =

σ2 + 3σ + 4

4(σ + 1)(σ + 2)
. (6.65)

Substituting Eqn. (6.65) into Eqn. (D.20) gives the correlation coefficient between the

output of any two thresholds as

ρo =
2

(σ + 1)(σ + 2)
. (6.66)
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The expected value of xP1|x can be derived as

E[xP1|x] =
σx(2σ + 1)

2
√

2(σ + 1)2
. (6.67)

Substitution of Eqns. (6.65) and (6.67) into Eqn. (6.47) gives the linear decoding corre-

lation coefficient for Laplacian signal and noise as

ρxy =

√
N(2σ + 1)

√

(σ + 1)(σ + 2)√
2(σ + 1)2

√

2N + σ(σ + 3)

=

√
N(2σ + 1)

√
ρo(σ + 1)2

√

2N + σ(σ + 3)
. (6.68)

Illustrations

Fig. 6.1 shows the correlation coefficient between the output of any two threshold de-

vices, ρo, the quantity, E[P2
1|x] and the quantity, E[xP1|x] for each of four cases of mat-

ched signal and noise distributions. The Gaussian, uniform and Laplacian cases were

plotted from the exact formulas derived in this section, while the logistic case was

calculated by numerical integration. Fig. 6.1(a) also shows the correlation coefficient

between the inputs of any two comparators, ρi, which is the same for all distributions.

All quantities are decreasing functions of σ. Note from Fig. 6.1(a) how ρi is always

greater than ρo, which shows that the one bit quantisation that results from threshold-

ing decreases the correlation between the signals at any two devices. Fig. 6.1(b) shows

that at σ = 1, E[P2
1|x]—and consequently, ρo—is identical in all cases.

Fig. 6.2 shows the linear correlation coefficient for the Gaussian, uniform, Laplacian

and logistic cases. Except for the logistic case, the correlation coefficient was calculated

from the exact formulas specified in this section. The logistic case was calculated by

numerical integration of E[P2
1|x] and E[xP1|x]. It is clear in all cases that the correlation

coefficient has a maximum for a nonzero value of σ. The optimal value of σ increases

with increasing N. For the Gaussian, Laplacian and logistic cases, the maximum value

of the correlation coefficient occurs for σ > 1 for sufficiently large N, while for the

uniform case, the optimal value of σ appears to get closer and closer to unity as N

increases. The results shown in Fig. 6.2 illustrate that stochastic resonance occurs in

the linear decoding correlation coefficient for the SSR model.

To compare the linear correlation coefficient for different distributions, Fig. 6.3 shows

ρxy for the four different matched signal and noise distributions for N = 127. The

uniform case gives the largest correlation coefficient, however the same qualitative

behaviour can be seen in each case.
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Figure 6.1. Quantities for linear decoding. This figure shows the correlation coefficient between

the output of any two threshold devices, ρo, the quantity, E[P2
1|x] and the quantity,

E[xP1|x] for four cases of matched signal and noise distributions. The Gaussian, uniform

and Laplacian cases were calculated from the exact formulas, and the logistic case was

calculated by numerical integration. Note that Fig. 6.1(a) also shows the correlation

coefficient between the inputs of any two comparators, ρi. All quantities are decreasing

functions of σ. Note how ρi is always greater than ρo, which shows that thresholding

decreases the correlation between the signals at any two devices. At σ = 1, E[P2
1|x]—and

consequently, ρo—is identical in all cases.
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Figure 6.2. Linear decoding correlation coefficient. Plot of the linear decoding correlation coef-

ficient, ρxy, against increasing σ for four different matched signal and noise distributions

and various values of N. Apart from the logistic case, for which ρxy was calculated only

numerically, each plot was calculated from the exact formulas derived in this section,

and also validated numerically. Notice how the correlation coefficient increases with

increasing N, and has a maximum for a nonzero value of σ. The optimal value of σ

also increases with increasing N, and except for the uniform case, becomes larger than

unity. In the uniform case, the optimal value of σ gets closer to unity with increasing

N.
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Figure 6.3. Linear decoding correlation coefficient for N = 127. This plot shows the linear

decoding correlation coefficient, ρxy, for N = 127 and four matched signal and noise

distributions. The uniform case gives the largest correlation coefficient, however each

case shows the same qualitative behaviour.

6.4.3 Constant Decoding

This section examines the case of sub-optimal constant decoding for the cases of uni-

form signal and noise, and Gaussian signal and noise. Such a decoding remains con-

stant for all σ and a given signal variance.

Uniform signal and noise

Without loss of generality, we set the support of the uniformly distributed signal to be

between ±σx/2. Thus, we set c = σx/2, so that the decoded output varies between

±σx/2, as does the input signal. Substitution of Eqns. (6.60), (6.61), (6.62) and (6.63)

into Eqn. (6.45) gives the MSE distortion as

MSE =







σ2
x

(

σ2+1
12 −

σ(N−1)
6N

)

(σ ≤ 1),

σ2
x

(

σ2(3+N)−2Nσ+N−1
12Nσ2

)

(σ ≥ 1).
(6.69)

From Eqn. (6.69), for a given non-zero value of σx, the MSE distortion for σ ≤ 1 is a

quadratic function of σ and has a minimum of

MSEo =
σ2

x(2N − 1)

12N2
, (6.70)

at a minimising σ of σo = (N − 1)/N. It is clear from Eqn. (6.70) that the MSE will

decrease with increasing N.

Page 210



Chapter 6 Suprathreshold Stochastic Resonance: Decoding

For σ ≥ 1, it is straightforward to show that the MSE of Eqn. (6.69) is strictly increasing.

Hence, the MSE is minimised for a non-zero value of σ, just as Chapter 4 showed that

the mutual information is maximised for a non-zero value of σ. Here, σo is independent

of the size of the signal variance, however the minimum distortion is a function of σ2
x ,

and therefore the signal variance.

An alternative constant decoding is one that sets the maximum and minimum recon-

struction points slightly smaller than the maximum and minimum possible signal val-

ues. Such a decoding provides the same reconstruction points that are optimal for an

optimally quantised uniform source, when no input noise is present. This situation

will be discussed in more detail in Chapter 8, but for now we simply let c = σx N
2(N+1)

,

and derive the MSE distortion for this decoding as

MSE =







c2
(

3N−2σ(N−1)
3N

)

+ cσx

(

σ2−3
6

)

+ σ2
x

12 σ ≤ 1

4c2(N−1+3σ2)−4cNσxσ+σ2σ2
x N

12Nσ2 σ ≥ 1.
(6.71)

This has a minimum at σo = 2(N − 1)c/(Nσx) = (N − 1)/(N + 1), which gives a

minimum MSE distortion at this value of

MSEo =
σ2

x

12(N + 1)2

(

2N2 − N + 1

N + 1

)

. (6.72)

Again, the MSE is minimised for a nonzero value of σ, while the MSE will get smaller

with increasing N.

Fig. 6.4 shows the MSE distortion for the two constant decoding schemes given by

Eqns. (6.69) and (6.71), with σx = 1. It is clear that the second decoding gives a smaller

MSE, although as N increases, the difference between the MSE distortion for the two

decoding schemes becomes smaller. It is also clear from this figure that the optimal

value of σ gets close to unity as N increases, while the MSE distortion becomes closer

to zero at this value of σ, as the theory predicted.

Gaussian signal and noise

Choosing an appropriate value of c is more problematical for signals with infinite sup-

port PDFs, such as a Gaussian signal. One possible method is to select c such that

the maximum and minimum output values are equal to a certain number of standard

deviations of the input signal. Hence, let c = kσx, where k is the number of standard

deviations desired. Substitution of Eqns. (6.58) and (6.51) into Eqn. (6.45) gives

MSE = σ2
x

(

k2

N
+

2(N − 1)

πN
arcsin (ρi)−

2
√

2k√
π

√
ρi + 1

)

. (6.73)
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(a) MSE of Eqn. (6.69)
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(b) MSE of Eqn. (6.71)
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Figure 6.4. Constant decoding MSE distortion for uniform signal and noise. This figure shows

the MSE distortion for uniform signal and noise, and the two constant decoding schemes

given by Eqns. (6.69) and (6.71), with σx = 1. The optimal value of σ is nonzero, and

thus SR occurs, for N > 1, as expected. As N increases, the MSE distortion at the

optimal σ gets closer to zero, and the optimal value of σ gets closer to unity. Fig. 6.4(c)

shows that the absolute difference between the MSE of each decoding becomes smaller

as N increases. Note that if σx 6= 1, then the actual values of the reconstruction points

scale in proportion. This is also the case for all similar plots in this chapter.

How to choose k? One might desire the maximum and minimum values of the output

to be about those of the input. In this case, the temptation is to set k to 3 for example.

However, the variance of the output will not in general be the same as that of the input.

For example, for small σ the most probable output states will be those close to 0 or N.

Hence, if the output is decoded with c = 3σx, the output will very often be near ±3σx,

whereas the input is not often near that value. If k is to remain fixed for all σ, then

the best solution appears to be to find the value of k which minimises the distortion as

a function of σ, and then using that value of k find the value of σ that minimises the

distortion, and then use that value of k for all σ. The end result will be a function of N.

However, as we will see shortly, this procedure is very close to a method for finding

the optimal linear decoding scheme as a function of σ. So instead, we only point out

that, as with the uniform case, the behaviour of the MSE distortion as σ varies for a

fixed k will strongly depend on the actual value of k. Due to this fact, we concen-

trate on decoding schemes that are not constant for all σ, as described in the next two

subsections.
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6.4.4 Matched Moments Linear Decoding

The previous subsection only considers decoding schemes that have reproduction poi-

nts that are constant for all σ. Section 6.3.2 derives an expression for a linear decoding

that ensures the first two moments of the decoded output match the first two moments

of the input distribution. This decoding is a function of σ, and the value of c is given

by Eqn. (6.34). The MSE distortion is a function of the linear correlation coefficient,

as given by Eqn. (6.35). Given these expressions, and the expressions for E[P2
1|x] and

E[xP1|x] derived earlier for matched Gaussian, uniform and Laplacian signal and noise,

the MSE distortion and the decoding, ŷ(n), can be calculated exactly. For the logistic

case, the MSE distortion and ŷ(n) can be calculated numerically.
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(c) Laplacian signal & noise
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(d) Logistic signal & noise

Figure 6.5. MSE distortion for matched moments decoding. This figure shows plots of the

MSE distortion against increasing σ for various values of N using matched moments

linear MSE decoding, with σx = 1. The optimal value of σ is nonzero, and thus SR

occurs, as expected. As N increases, the MSE distortion at the optimal σ gets closer to

zero, and the optimal value of σ increases, other than for the uniform case, to a value

larger than unity.
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Fig. 6.5 shows the MSE distortion for matched-moments decoding for each of the four

matched signal and noise distributions considered in this chapter, with σx = 1. Note

that for the uniform case, the MSE distortion is far smaller than for the other cases.

This is due to the fact that the variance of a uniform signal that has support between

±σx/2 is var[x] = σ2
x /12, whereas the variance for the other distributions is σ2

x .

Fig. 6.6 shows for each case and N = 15 the actual values of the decoded output, ŷ(n),

as a function of σ, with σx = 1. Again, the maximum and minimum values of ŷ(n) are

much smaller for the uniform case, for the same reasons as the MSE distortion. It can

be seen that the reconstruction points are evenly spaced for any given value of σ.

6.4.5 Wiener Optimal Linear Decoding

Section 6.3.2 derives an expression that minimises the MSE distortion for a linear de-

coding. This decoding is a function of σ, and the value of c is derived in Eqn. (6.37).

As shown by Eqn. (6.40), the MSE distortion is a function of the linear correlation co-

efficient. As with matched-moments decoding, given these expressions, and the ex-

pressions for E[P2
1|x] and E[xP1|x] derived earlier for matched Gaussian, uniform and

Laplacian signal and noise, the MSE distortion and the decoding, ŷ(n), can be cal-

culated exactly. For the logistic case, the MSE distortion and ŷ(n) can be calculated

numerically.

Fig. 6.7 shows the optimal linear MSE distortion for each of the four matched signal

and noise distributions considered in this chapter and σx = 1. Fig. 6.8 shows for each

case and N = 15 the actual values of the decoded output, ŷ(n), as a function of σ. It

can be seen that the reconstruction points are evenly spaced for any given value of σ.

As shown by Inequality (6.41), Wiener decoding always gives a smaller MSE distor-

tion than matched moments decoding. Furthermore, Wiener decoding was derived as

the decoding that gives the minimum MSE distortion of all linear decoding schemes.

However, as mentioned earlier, it is possible to obtain smaller MSE distortions by using

nonlinear decoding schemes, that is, reconstruction points that are not a linear function

of n, and are therefore not evenly spaced. This is the focus of the next section.
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(d) Logistic signal & noise

Figure 6.6. Reconstruction points for matched moments linear decoding, N = 15. Plot of

the reconstruction points, ŷ(n), against increasing σ, for N = 15 and σx = 1, using

matched moments linear MSE decoding. The qualitative behaviour is the same for

each distribution; the difference between the maximum and minimum reconstruction

points increases with increasing σ. Note that if σx 6= 1, then the actual values of the

reconstruction points scale in proportion. This is also the case for all similar plots in

this chapter.
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(a) Gaussian signal & noise
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(c) Laplacian signal & noise
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(d) Logistic signal & noise

Figure 6.7. MSE distortion for optimal linear (Wiener) decoding. Plot of the MSE distortion

against increasing σ for various values of N and σx = 1, using the optimal linear, or

Wiener, MSE decoding. The optimal value of σ is nonzero, and thus SR occurs, as

expected. As N increases, the MSE distortion at the optimal σ gets closer to zero, and

the optimal value of σ increases, other than for the uniform case, to a value larger than

unity.
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Figure 6.8. Reconstruction points for optimal linear (Wiener) decoding, N = 15. Plot of

the reconstruction points against increasing σ for N = 15 and σx = 1, using the

optimal linear, or Wiener MSE decoding. The qualitative behaviour is the same for

each distribution; the difference between the maximum and minimum reconstruction

points increases with increasing σ.
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6.5 Nonlinear Decoding Schemes

Unlike the linear decoding schemes of Sections 6.3 and 6.4, the use of a nonlinear de-

coding scheme produces a reconstruction of the input signal with reconstruction points

that are not equally spaced. We will see that such a nonlinear scheme can provide a

smaller MSE distortion than any linear scheme.

This section provides the theory behind three commonly used methods of using non-

linear decoding to estimate a signal from a nondeterministic measurement of it. The

applicability of these methods depend on whether knowledge of various probability

distributions is available. One of the probability distributions required is the backward

conditional probability distribution, and we firstly define this distribution, before consid-

ering each method, and their application to the decoding of the SSR model.

Backward conditional probabilities

Recall that the key distribution for calculating the mutual information or MSE distor-

tion is the transition probabilities, P(n|x) where n ∈ 0, .., N. This section will also

use the Backward Conditional Probability Distribution (BCPD), P(x|n). The BCPD is also

known as the a posteriori distribution. The following formula gives the relationship

between this distribution and the input and output distributions,

P(x) =
N

∑
n=0

P(x|n)Py(n). (6.74)

In general, the only means available for calculating the BCPD is to use Eqns. (4.3)

and (4.4) from Section 4.3 in Chapter 4, after firstly calculating the transition proba-

bilities. That is

P(x|n) =
P(x, y)

Py(n)
=

P(x)P(n|x)

Py(n)
(6.75)

=
P(x)P(n|x)

∫ ∞

−∞
P(n|x)P(x)dx

. (6.76)

6.5.1 MAP Decoding

The Maximum A Posteriori (MAP) criteria (Yates and Goodman 2005) is often used in

estimation applications. Although it does not necessarily provide the optimal estima-

tion, it can be convenient to use and often provides MSE distortions close to optimal.
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The MAP criteria states that an estimate x, given observation y = n, should be chosen

so that the estimate is

ŷn = arg max
x

P(x|n). (6.77)

Given that the a posteriori distribution, P(x|n), is given by Eqn. (6.76), this criteria can

be simplified to

ŷn = arg max
x

P(x)P(n|x), (6.78)

that is, the MAP estimator, given observation y = n is the value of x that maximises

the joint probability density function of x and y for y = n.

For SSR, P(n|x) is given by the binomial formula as in Eqn. (4.9), repeated here as

P(n|x) =

(

N

n

)

Pn
1|x(1− P1|x)

N−n n = 0, .., N. (6.79)

Finding the value of x that maximises the joint distribution can be achieved by differ-

entiating P(x, y) = P(n|x)P(x) with respect to x and setting the result to zero. The

derivative of P(n|x) with respect to x is given by Eqn. (B.1) in Appendix B. Applying

this formula leads to the following criteria for a stationary point of the joint density

function, P(y, x), with respect to x,

d

dx
(P(x)P(n|x)) =P′(x)P(n|x)+

P(x)P(n|x)

(

n− NP1|x
P1|x(1− P1|x)

)

R(x) = 0, n = 0, .., N. (6.80)

For P(x) and R(x) with infinite support, P(n|x) cannot be zero and hence, Eqn. (6.80)

reduces to

P′(x) + P(x)

(

n− NP1|x
P1|x(1− P1|x)

)

R(x) = 0, n = 0, .., N. (6.81)

In general there is no closed form solution to Eqn. (6.81), although it is possible to

simplify it for a specified P(x) and solve numerically.

However, in practice, the simplest way to find the MAP decoding for SSR with given

signal and noise distributions, is to numerically calculate P(x, y) = P(x)P(n|x), and

find the value of x for which P(x, y) is a maximum for each n. This value of x is then

the MAP decoding for SSR for each n. The result of this procedure for varying σ and

N is shown in Fig. 6.9, which shows the MSE distortion, and Fig. 6.10, which shows

the reconstruction points for N = 15 for the cases of Gaussian, Laplacian and logistic
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signal and noise with σx = 1. The uniform case is not considered, as there is not always

a unique maximum of the joint distribution.

Note that for the Laplacian case and N = 1, in Fig. 6.9(b), the MSE distortion saturates

at unity for σ ≥ 1. This is due to a general property of the MSE distortion, that a

decoding can always be chosen such that MSE = E[x2], which in this case is unity. The

decoding that achieves this is to set ŷn = E[x] ∀ n; when σ ≥ 1, the MAP criteria sets

the decoding of both output states to be zero, so that the output is always zero. Hence,

the MSE distortion is identical to the mean square value of the input signal. This is

the only case we will see where this happens, but note that for σ sufficiently large, this

situation will happen regardless of N and the signal and noise distribution.
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(c) Logistic signal & noise

Figure 6.9. MSE distortion for maximum a posteriori decoding. Plot of the MSE distortion

against increasing noise intensity, σ, for various values of array size, N, and signal

standard deviation set to σx = 1, using the maximum a posteriori decoding. Note that

for the Laplacian case and N = 1, the MSE distortion saturates at unity for σ ≥ 1,

since the MAP criteria sets both output reproduction points to the signal mean of zero,

and thus the decoded output is always zero, meaning the MSE distortion is the mean

square value of the input, i.e. unity.

6.5.2 Maximum Likelihood Decoding

In contrast with the MAP criteria, the Maximum Likelihood (ML) estimator (Yates and

Goodman 2005) does not directly use the a priori distribution of the signal to be esti-

mated, that is, P(x). The ML estimator for x given observation y = n is given by

ŷn = arg max
x

P(n|x), (6.82)

that is, the ML estimator, given observation y = n is the value of x that maximises the

probability mass function of y given x.
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(c) Logistic signal & noise

Figure 6.10. Reconstruction points for maximum a posteriori decoding, N = 15. Plot of the

reconstruction points against increasing noise intensity, σ, for N = 15, and the signal

standard deviation set to σx = 1, using the maximum a posteriori decoding.

As with the MAP estimator, the ML estimator cannot be shown to minimise the MSE

distortion, but in practice often provides a fairly good approximation to it.

The values of the ML reconstruction points for SSR can be obtained by differentiating

the transition probabilities, P(n|x), with respect to x and setting the result to zero. The

result, as given in Appendix B by Eqn. (B.1), is

n− NP1|x
P1|x(1− P1|x)

= 0, n = 0, .., N. (6.83)

This reduces to x = F−1
R (n/N), and therefore the ML reconstruction points are

ŷn = F−1
R

( n

N

)

, n = 0, .., N. (6.84)

For n = N and n = 0, the transition probabilities are maximised at±∞. Hence ŷN = ∞

and ŷ0 = −∞. Clearly this is not satisfactory, since for small σ, the largest output

probabilities are Py(0) and Py(N). There is no entirely satisfactory way around this

problem, although one possibility is to define a decoding which approximates the ML

decoding for large N,

ŷn = F−1
R

(

n + 1

N + 2

)

, n = 0, .., N. (6.85)

Although this method does not give the ML reconstruction points, as N gets larger, the

reconstruction points get closer and closer to the ML points.

A numerical approach could also provide an approximation to the ML solution. For

example, if the reproduction points of Eqn. (6.84) for 1 ≤ N ≤ N − 1 are used, finite

points for n = 0 and n = N can be found by assuming ŷ0 = −ŷN and then varying
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ŷN from ŷN−1 towards infinity and calculating the MSE distortion for each value of ŷN.

The value of ŷN that provides the minimum distortion is then used. However, this will

turn out to be the optimal reproduction point for n = 0 and n = N, as discussed in

the following subsection. Thus, due to these difficulties, we do not present results for a

ML decoding in this chapter. However, Chapter 7, which discusses decoding for large

N will show that in certain circumstances, the optimal nonlinear decoding approaches

the ML decoding for large N.

6.5.3 Minimum Mean Square Error Distortion Decoding

We label the signal that results from an optimal MSE decoding as x̂. As shown in Sec-

tion D.5 of Appendix D, the decoding that gives the minimum possible MSE distortion

is the decoding that consist of values

x̂n = Ex[x|n] =
∫

x
xP(x|n)dx =

1

Py(n)

∫

x
xP(n|x)P(x)dx, n = 0, .., N. (6.86)

Like the MAP and ML decoding schemes, and unlike the linear decoding schemes

considered earlier, this decoding varies for each value of the encoding, y. Since this

is the theoretical best MSE distortion decoding, we call the resultant distortion the

Minimum Mean Square Error (MMSE). Section D.5 of Appendix D also shows that with

this decoding, E[xx̂] = E[x̂2] and that therefore by inspecting Eqn. (6.7), the MMSE is

given by

MMSE = E[x2]− E[x̂2
n]

= E[x2]−
N

∑
n=0

E[x|n]2Py(n)

= E[x2]−
N

∑
n=0

1

Py(n)

(

∫

x
xP(n|x)P(x)dx

)2

. (6.87)

Good references that discuss such a decoding include Gershenfeld (1999) and Yates

and Goodman (2005). Given the initial motivation of SSR as a model for a population

of neurons, note also that MMSE decoding has also previously been used in computa-

tional neuroscience research, for example, Bethge et al. (2002). Just as we pointed out

for the case of the optimal linear decoding, the encoded output, y, is uncorrelated with

the error, ǫ = x− x̂ for MMSE decoding. This is proven in Section D.5 of Appendix D.
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Section D.5 of Appendix D also shows that E[x̂] = 0. Hence, the correlation coefficient

between the decoded output signal, x̂, and the input signal, x, is

ρx,x̂ =
E[xx̂]− E[x]E[x̂]
√

var[x]var[x̂]

=
E[xx̂]

√

E[x2]E[x̂2]

=

√

E[x̂2]

E[x2]
. (6.88)

Rearranging Eqn. (6.88) shows that the MMSE can be written in terms of the correlation

coefficient as

MMSE = E[x2]
(

1− ρ2
x,x̂

)

. (6.89)

Therefore, as with the optimal linear decoding scheme, given by Wiener decoding, the

MMSE distortion can be written in terms of the mean square value of the input signal,

and the correlation coefficient between the input signal and the decoded output signal.

The difference between Eqns. (6.89) and (6.40) is that Eqn. (6.40) gives the MSE in terms

of the correlation coefficient for linear decoding, and Eqn. (6.89) gives the MSE in terms

of the correlation coefficient for optimal nonlinear decoding.

Furthermore, as with optimal linear decoding, the SQNR for MMSE decoding can be

written in terms of the correlation coefficient as

SQNR =
1

1− ρ2
xx̂

. (6.90)

Fig. 6.11 shows the MMSE distortion for various N and increasing σ, and Fig. 6.12

shows the reconstruction points against increasing σ for N = 15, for the cases of Gaus-

sian, Laplacian and logistic signal and noise, and σx = 1. The case of uniform signal

and noise will be considered shortly. As N increases, the MMSE distortion at the op-

timal σ gets closer to zero, and the optimal value of σ increases, to a value larger than

unity. However, for increasing σ ≥ 1, the rate of decrease of the MMSE is quite slow,

and gets slower for increasing N.

If the reconstruction points shown in Fig. 6.12 are compared with those of the MAP

decoding shown in Fig. 6.10, it can be seen that the points are almost identical, apart

from the largest and smallest ones for any given σ, which correspond to n = 0 and

n = N.
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(c) Logistic signal & noise

Figure 6.11. MSE distortion for MMSE decoding. Plot of the MSE distortion against increasing

σ for various values of N using MMSE decoding and σx = 1. The optimal value of

σ is nonzero, and thus SR occurs, as expected. As N increases, the MSE distortion

at the optimal σ gets closer to zero, and the optimal value of σ increases, to a value

larger than unity. For increasing σ ≥ 1, the rate of decreases of the MMSE is quite

slow, and gets slower for increasing N.
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(c) Logistic signal & noise

Figure 6.12. Reconstruction points for MMSE decoding, N = 15. Plot of the reconstruction

points against increasing σ for various values of N using MMSE decoding and σx = 1.

When compared with the reconstruction points obtained with the MAP decoding shown

in Fig. 6.10, it can be seen that the points are almost identical, apart from the largest

and smallest ones for any given σ, which correspond to n = 0 and n = N.
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Fig. 6.13 shows the optimal correlation coefficient given by Eqn. (6.88) for various N,

against increasing σ, for Gaussian, Laplacian and logistic signal and noise. As N in-

creases, the correlation coefficient gets quite close to unity, especially for σ ≥ 1. As with

the MMSE distortion, the rate of decrease of the correlation coefficient as σ increases

past unity is quite slow, and gets slower with increasing N. A comparison with the

correlation coefficient for a linear decoding is left for the next subsection. Firstly, how-

ever we derive an exact result for MMSE decoding reconstruction points and MMSE

distortion for uniform signal and noise, and σ ≤ 1.
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Figure 6.13. Correlation coefficient for MMSE decoding. Plot of MMSE decoding correlation

coefficient against increasing σ for various values of N. As N increases, the correlation

coefficient gets quite close to unity, especially for σ ≥ 1. As with the MMSE, the rate

of decrease of the correlation coefficient as σ increases past unity is quite slow, and

gets slower with increasing N.

Exact MMSE decoding for uniform signal and noise

We now derive exact expressions for the MMSE distortion and reconstruction points

for uniform signal and noise, and σ ≤ 1. As discussed in Chapter 4, the output proba-

bility mass function, in this case, for N > 1, is

Py(n) =
σ

N + 1
, n = 1, .., N − 1 (6.91)

and

Py(0) = Py(N) = σ

(

1

N + 1
− 1

2

)

+
1

2
=

1

σx
F−1

R

(

1

N + 1

)

+
1

2
. (6.92)

Note that if N = 1 then Py(0) = Py(N) = 0.5.

The optimal reproduction points, x̂n, are given by Eqn. (6.86). We define for conve-

nience An =
∫

x xP(n|x)P(x)dx, n = 0, .., N. Using Eqn. (4.9) from Chapter 4, and
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Eqn. (B.14) from Appendix B, integration of the RHS of Eqn. (6.86) gives

An =
σx

2
σ2

(

2n− N

N2 + 3N + 2

)

, n = 1, .., N − 1, N > 1 (6.93)

AN =
∫

x
xP(N|x)P(x)dx =

σx

8

(

1− σ2

(

N2 − N + 2

N2 + 3N + 2

))

, (6.94)

and

A0 =
∫

x
xP(0|x)P(x)dx = −σx

8

(

1− σ2

(

N2 − N + 2

N2 + 3N + 2

))

, (6.95)

This gives

x̂n =
σx

2
σ

(

2n− N

N + 2

)

=
ση

2

(

2n− N

N + 2

)

, n = 1, .., N − 1, N > 1 (6.96)

and

x̂N = −x̂0 =
σx

4





1− σ2
(

N2−N+2
N2+3N+2

)

1− σ
(

N−1
N+1

)



 . (6.97)

So for all n except n = 0 and n = N, the optimal decoding can be stated independently

of either the signal variance or the noise variance, but not both. However, the ratio

x̂/σx is a function of only σ, so the optimal reconstruction points scale proportionally

to σx.

Rearranging Eqn. (6.96) gives

x̂n = ση

(

n + 1

N + 2
− 1

2

)

= F−1
R

(

n + 1

N + 2

)

, n = 1, .., N − 1, N > 1. (6.98)

Thus, except for the cases of y = 0 and y = N, the optimal decoding is a linear decod-

ing, as given by Eqn. (6.18) with c =
Nση

2(N+2)
.

Note that when σ = 1, Eqn. (6.97) reduces to

x̂N = −x̂0 =
σx

2

(

N

N + 2

)

= F−1
R

(

N + 1

N + 2

)

. (6.99)

Therefore, when σ = 1, x̂n = F−1
R

(

n+1
N+2

)

for all n, and MMSE decoding is a linear

decoding, as given by Eqn. (6.18) with c =
Nση

2(N+2)
. Thus, Wiener linear decoding must

give the same MSE performance as MMSE decoding at σ = 1.
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From Eqn. (6.87), for N > 1 the MMSE distortion is

MMSE =
σ2

x

12
− E[x̂2]

=
σ2

x

12
− 2Py(N)x̂2

N −
N−1

∑
n=1

Py(n)x̂2
n

=
σ2

x

12
− 2AN x̂N −

N−1

∑
n=1

An x̂n

=
σ2

x

12
− 2AN x̂N −

N−1

∑
n=1

σx

2
σ2

(

2n− N

N2 + 3N + 2

)

σx

2
σ

(

2n− N

N + 2

)

=
σ2

x

12
− 2AN x̂N −

σ2
x σ3

4

1

(N + 1)(N + 2)2

N−1

∑
n=1

(2n− N)2

=
σ2

x

12
− 2AN x̂N −

σ2
x σ3

12

N(N − 1)(N − 2)

(N + 1)(N + 2)2

=
σ2

x

12






1−

3
4

(

1− σ2
(

N2−N+2
N2+3N+2

))2

1− σ
(

N−1
N+1

) − σ3 N(N − 1)(N − 2)

(N + 1)(N + 2)2






. (6.100)

Fig. 6.14 shows for uniform signal and noise the MMSE distortion given by Eqn. (6.100),

the corresponding MMSE correlation coefficient, and the values of the optimal MMSE

reconstruction points given by Eqns. (6.96) and (6.97), with E[x2] = 1/12. Fig. 6.14 also

shows these quantities calculates by numerical integration, to verify the exact results

for σ ≤ 1, and to show the continuation to σ > 1.
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Figure 6.14. MMSE decoding for uniform signal and noise. Plot of the MMSE distortion,

correlation coefficient, and reconstruction points for N = 15, for uniform signal and

noise with σx = 1. The circles show the values calculated from the exact expressions

given for σ ≤ 1 in this Section, and the lines show numerical values. The optimal

value of σ is nonzero, and gets closer to unity as N increases.
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6.6 Decoding Analysis

The purpose of this section is to compare the performance of all the different decoding

schemes considered in this Chapter. Firstly, we will compare the MSE distortion for

matched-moments and Wiener linear decoding schemes, and the MAP and MMSE

nonlinear decoding schemes, for the case of N = 127 and Gaussian, Laplacian, and

logistic signal and noise. For the uniform case, we will compare the MSE distortion

of matched-moments and Wiener linear decoding, and MMSE nonlinear decoding for

N = 127. In all cases we plot for σx = 1. We will also compare the linear correlation

coefficient with the nonlinear correlation coefficient obtained with MMSE decoding.

Secondly, we briefly look at the average transfer function of the decoded SSR model, for

N = 7 and Gaussian signal and noise.

6.6.1 Distortion Comparison

Fig. 6.15 shows the MSE distortion plotted against increasing σ, for the four decoding

schemes for the cases of Gaussian, Laplacian and logistic signal and noise. Firstly,

as expected, Wiener linear decoding gives a smaller MSE distortion for all σ than

matched-moments decoding. The difference between the MSE distortion for these two

decoding schemes is expressed by Eqn. (6.41). Secondly, the optimal MSE distortion,

obtained by MMSE decoding, is clearly verified as giving a smaller MSE distortion

than the other decoding schemes.

Thirdly, MAP decoding can be seen to have quite poor distortion performance for small

σ. However, for σ greater than about 0.1− 0.2, the MAP decoding MSE distortion is

smaller than the MSE distortion for the linear decoding schemes and, although not

visible in Fig. 6.15, actually gets closer and closer to the MMSE distortion as σ increases.

This verifies the known empirical fact that, although it is not provable, MAP decoding

often provides a MSE distortion quite close to optimal.

Fig. 6.16 shows the linear and MMSE nonlinear correlation coefficients plotted against

increasing σ. Clearly, the nonlinear correlation coefficient is always greater than the

linear correlation coefficient. Interestingly, the difference between the two coefficients

gets quite small for σ > 2 for the Gaussian case. The gap between each is far larger for

the Laplacian and logistic cases.
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Figure 6.15. Comparison of MSE distortion for various decoding schemes, N = 127. Plot

of the MSE distortion against increasing σ for all four considered decoding schemes,

for N = 127 with σx = 1. This figure verifies that Wiener decoding is superior to

matched-moments decoding, and that MMSE decoding is superior to all decoding

schemes. It is also apparent that the MAP decoding is quite poor for small σ, but for

larger σ has a performance very close to that of the optimal MMSE decoding. There

are no remarkable differences between each of the signal and noise pairs.

Fig. 6.17 compares the MSE distortion and correlation coefficient for uniform signal

and noise and N = 127. Again, it is clear that MMSE decoding is optimal, and Wiener

decoding is better than matched-moments decoding. However, as predicted in Sec-

tion 6.5.3, for σ = 1, the performance of Wiener decoding and MMSE decoding is

identical, since at this point, MMSE decoding is a linear function of n.

Recall the definition of SQNR given by Eqn. (6.9). Figs. 6.18(a)-6.18(c) show the SQNR

plotted in dB against increasing σ for N = 127. As we would expect, the SQNR is

maximised for the same value of σ that minimises the MSE distortion.

It is also possible to define an input SNR measure for the SSR model. If the input signal

variance is σ2
x and the noise signal variance is σ2

η , then the input SNR in decibels is

SNRi = 10 log10

(

σ2
x

σ2
η

)

= −20 log10 (σ) dB. (6.101)

Figs. 6.18(d)-6.18(f) show the output SQNR in dB plotted against the input SNR in dB.

Since the MSE distortion is minimised for σ near unity, this corresponds to an input

SNR around 0 dB. This is clearly illustrated in these subfigures.
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Figure 6.16. Comparison of correlation coefficients for N = 127. Comparison of the linear cor-

relation coefficient with the MMSE decoding correlation coefficient, against increasing

σ, for N = 127. This figure verifies that the correlation coefficient is larger for the

nonlinear MMSE decoding than it is for any linear decoding, for all σ.
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Figure 6.17. Decoding comparison for uniform signal and noise, N = 127. Plot of the MSE

distortion and correlation coefficient against increasing σ for uniform signal and noise

and N = 127. This figure verifies that Wiener decoding is superior to matched-

moments decoding, and that MMSE decoding is superior to Wiener decoding for all

σ. However, it can be seen that for σ = 1, the MMSE and Wiener decoding schemes

have the same performance.
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Figure 6.18. SQNR for each decoding for N = 127. Plots of the SQNR in dB against increasing

σ and the SQNR against increasing input SNR in dB for all four considered decoding

schemes, for N = 127. As is obviously the case from its definition, the SQNR is

maximised for the same value of σ that minimises the MSE distortion, which when

expressed as the input SNR is near 0 dB.
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6.6.2 Transfer Functions

Recall that in Section 4.5.1 of Chapter 4 that we plot the average transfer function of the

SSR model’s encoding, y, which is the expected value of y given x. We now plot the

average transfer function after decoding of the SSR model.

Fig. 6.19(a) shows the average transfer function for Wiener linear decoding, with N = 7,

for various values of noise standard deviation, ση, and Gaussian noise. Fig. 6.19(b)

shows the average transfer function for MMSE nonlinear decoding. Also shown for

comparison, with thick black lines, is the optimal deterministic transfer function for

a 3-bit quantisation of a Gaussian source. This plot was obtained using the Lloyd

Method I algorithm—see Section 8.5 in Chapter 8 for more details. Notice that the

average transfer function of each decoding scheme can be seen to be almost identical,

however, the maximum and minimum values of the average output are smaller in

magnitude than for the optimal noiseless quantiser.

Fig. 6.19(c) shows the variance corresponding to each value of ση as a function of x, for

Wiener decoding, and Fig. 6.19(d) shows the variance for MMSE decoding. This vari-

ance can be seen to be smaller for more values of x for MMSE decoding, particularly

for values of x close to the signal mean.

This section and the previous two sections examined and compared various decoding

schemes and the corresponding MSE distortions and correlation coefficients for SSR.

The optimal decoding scheme was discussed, and verified to provide a smaller MSE

distortion than any other decoding scheme. The next section investigates relationships

between this optimal decoding scheme, and various ideas from estimation theory, in-

cluding Fisher information, and the concept of bias.
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Figure 6.19. Decoding transfer functions and variance. Fig. 6.19(a) shows the average transfer

function for Wiener linear decoding, with N = 7, for various values of noise standard

deviation, ση, and Gaussian noise. Fig. 6.19(b) shows the average transfer function

for MMSE nonlinear decoding. Also shown for comparison with thick black lines is the

optimal deterministic transfer function for a 3-bit quantisation of a Gaussian source.

Fig. 6.19(c) shows the variance corresponding to each value of ση as a function of x,

for Wiener decoding, and Fig. 6.19(d) shows the variance for MMSE decoding. The

average transfer function of each decoding scheme can be seen to be almost identical,

however, the variance can be seen to be smaller for more values of x, particularly for

values of x close to the signal mean.
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6.7 An Estimation Perspective

This section examines the encoding and decoding of an input signal in the SSR model

from the point of view of estimation theory. Before proceeding to some results, we

firstly introduce the concepts of estimation, bias, Fisher information, the Cramer-Rao bound

and the information bound, and then show how they apply to the SSR model. The main

result obtained is a method for calculating a lower bound on the MSE distortion for

any given decoding of the SSR model.

6.7.1 Definitions

Estimators

Suppose one can make a measurement, z, of some scalar parameter, θ. If there is some

random or systematic error in the measurement, then z is a point estimate of the param-

eter, θ (Lehmann and Casella 1998). The error of any given measurement is ǫ = z− θ.

Bias of an estimator

The bias, bz(θ), of an estimator, z, for a parameter, θ, is the expected value of the error,

ǫ, of the estimator. Suppose z is discretely valued, and has a probability mass function

for a given θ of Pz(z|θ). Then the bias is

bz(θ) = E[ǫ|θ]

= E[z|θ]− θ

= ∑
z

zPz(z|θ)− θ. (6.102)

An unbiased estimator is an estimator for which the bias is zero, that is E[z|θ] = θ (Cover

and Thomas 1991).

If the parameter, θ, is also a continuous random variable, with a PDF given by Pθ(θ),

then the mean square value of the bias is

E[b2
z(θ)] =

∫

θ
b2

z(θ)Pθ(θ)dθ. (6.103)

Fisher information

Consider a random variable Z that estimates a parameter θ. Let P(Z = z|θ) be the

conditional probability density function of the random variable Z given measurement
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θ. The Fisher information is defined as the variance of the gradient of the log-likelihood

function with respect to z (Cover and Thomas 1991). The gradient of the log-likelihood

function is often called the score function,

U(Z, θ) =
d ln P(Z = z|θ)

dθ
. (6.104)

and hence the Fisher information is

J(θ) = var[U(Z, θ)] = var

[

d ln P(Z = z|θ)

dθ

]

. (6.105)

Thus the Fisher information is a function of the parameter, θ. From this definition,

it is possible to derive an expression for the Fisher information in terms of a second

derivative with respect to θ as

J(θ) = E

[

−d2 ln P(Z = z|θ)

d2θ

]

. (6.106)

Cramer-Rao bound

Fisher information can be related to the variance of an estimator by the Cramer-Rao

bound (Cover and Thomas 1991). This bound holds for an unbiased estimator but is

easily generalised to biased estimators, as discussed below. The Cramer-Rao bound

states that the reciprocal of the Fisher information is a lower bound on the variance of

the error of an unbiased estimator and thus gives the smallest possible variance on an

unbiased estimator for θ. Note however that this smallest possible bound may not be

achievable. The Cramer-Rao bound for an unbiased estimator is given by

var[ǫ|θ] ≥ 1

J(θ)
. (6.107)

Section D.7 of Appendix D gives a proof of the Cramer-Rao bound.

Efficient estimatiors

An unbiased estimator is said to be efficient if it meets the Cramer-Rao bound with

equality.

Information bound for a biased estimator

A result analogous to the Cramer-Rao bound holds for a biased estimator (Cover and

Thomas 1991, Lehmann and Casella 1998). A lower bound on the variance of the error
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of a biased estimator, z, for the parameter, θ, can be expressed in terms of the expected

value of the estimate given θ and the Fisher information of θ as

var[ǫ|θ] ≥

(

d
dθ E[z|θ]

)2

J(θ)
. (6.108)

This generalisation of the Cramer-Rao bound is sometimes known as the information

bound or information inequality (Lehmann and Casella 1998). Section D.7 of Appendix D

gives a proof of the information bound.

Noting that var[z|θ] = var[z|θ]− var[θ|θ] = var[z− θ|θ] = var[ǫ|θ], Inequality (6.108)

is equivalent to stating

var[z|θ] ≥

(

d
dθ E[z|θ]

)2

J(θ)
. (6.109)

The information bound can be rewritten in terms of the MSE distortion for a given θ as

E[ǫ2|θ] ≥

(

d
dθ E[z|θ]

)2

J(θ)
+ E[ǫ|θ]2

=
(1 + dbz(θ)

dθ )2

J(θ)
+ b2

z(θ). (6.110)

This version of the information bound is a function of both the bias and the Fisher

information. As with Eqn. (6.4), the information bound states how a lower bound for

the MSE distortion is a tradeoff between the mean square bias, and—via the Fisher

information term—a term related to the conditional error variance, regardless of the

actual decoding. Note that setting bz(θ) = 0 reduces Inequality (6.110) to the Cramer-

Rao bound, and thus the Cramer-Rao bound is a specific case of the more general

information bound.

6.7.2 Application to the SSR model

We now apply the above theory to describing signal encoding and decoding in the SSR

model.

Bias for the SSR model

Let the output of the SSR model, y, be an estimate for the input. Recalling that E[y|x] =

NP1|x, the bias is then

by(x) = E[ǫ(x)|x] = E[y|x]− x =
N

∑
n=0

nP(n|x)− x = NP1|x − x. (6.111)
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Thus, the SSR encoding, y, can be described as a biased estimator for the input signal,

x.

The expected value of the bias, taken over all possible values of the parameter, x, is

E[by(x)] = E[y]− E[x] = N/2. The mean square value of the bias is

E[b2
y(x)] =

∫

x
P(x)b2

y(x)dx =
∫

x
(E[y|x]− x)2P(x)dx. (6.112)

Fisher information for the SSR model

Again, we consider the output of the SSR model, y ∈ 0, .., N, to be an estimate for the

input, x. The score is then the random variable

U(x, y) =
d

dx
ln (P(n|x)), n = 0, .., N, (6.113)

which is a function of both x and y, and is simply the gradient with respect to x of the

log-likelihood function for each value of y. It is straightforward to show that the mean

over all y of the score for a particular value of x is zero. Therefore the variance of the

score for a particular value of x is the mean square value with respect to n. This defines

the Fisher information for the SSR encoding,

J(x) = E[U(x, y)2] =
N

∑
n=0

P(n|x)U(x, n)2 =
N

∑
n=0

P(n|x)

(

d

dx
ln (P(n|x))

)2

. (6.114)

It is also straightforward to show that the Fisher information can be written as

J(x) = E

[

−d2 ln (P(n|x))

dx2

]

. (6.115)

Simplification of Eqn. (6.114) gives

J(x) =
N

∑
n=0

(

dP(n|x)
dx

)2

P(n|x)
. (6.116)

Section D.6 of Appendix D gives two derivations for the Fisher information of the SSR

model in terms of P1|x, the result being

J(x) =

(

dP1|x
dx

)2
N

P1|x(1− P1|x)
. (6.117)

This is in agreement with the formula derived for the Fisher information in Hoch et al.

(2003a) and Hoch et al. (2003b), as discussed in Section 5.4.5 of Chapter 5.
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Eqn. (6.117) can be simplified by recalling that for θ = 0, and the noise PDF even about

a mean of zero that P1|x = FR(x). Hence

(

dP1|x
dx

)2

= R(x)2, (6.118)

and the Fisher information is

J(x) =
NR(x)2

P1|x(1− P1|x)
. (6.119)

Thus, the Fisher information increases linearly with N. The increase in information

with N makes sense since, from the estimation point of view, N corresponds to the

number of times a noisy measurement is taken of the same parameter x. With more

measurements, more information about the parameter is obtained.

6.7.3 SSR Encoding

Since the output of the SSR model, y, is a biased estimator for the input, x, the relevant

inequality giving a bound on the variance of the error of y as an estimator is the infor-

mation bound rather than the Cramer-Rao bound. Recalling that E[y|x] = NP1|x, we

have from Inequality (6.108)

var[ǫ|x] = var[y|x] ≥ N2

(

dP1|x
dx

)2

J(x)
= N2 R(x)2

J(x)
. (6.120)

Substituting for the Fisher information given by Eqn. (6.119) we have

var[y|x] ≥ N2R(x)2
P1|x(1− P1|x)

NR(x)2

= NP1|x(1− P1|x)

= var[y|x], (6.121)

where the last step follows by recalling the fact that P(n|x) is given by Eqn. (6.79) and

the variance of such a binomial distribution is NP1|x(1− P1|x). Thus, the SSR model

provides an estimate for x with a conditional MSE distortion equal to its minimum

possible MSE distortion, given its bias. Thus, the SSR model meets the information

bound with equality, and although the definition of efficient applies only to unbiased

estimators, the SSR encoding, y, can be said to be an efficient biased estimator. Discussion

of such terminology, and relevant theoretical background can be found in Lehmann

and Casella (1998).
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Despite the above result, we know that decoding the SSR model by assigning repro-

duction points to its output results in a smaller conditional MSE distortion for a given

x than the raw conditional variance of y. This fact is accounted for once it is noted that

for a decoded output, the expected value of y given x in Inequality (6.120) needs to

be replaced by the expected value of the decoding, ŷ, given x. Assuming the decoded

output is still a biased estimator, the bound on the conditional MSE distortion is

E[ǫ2|x] ≥

(

d
dx E[ŷ|x]

)2

J(x)
+ E[ǫ|x]2

=

(

d
dx E[ŷ|x]

)2

J(x)
+ (E[ŷ|x]− x)2 . (6.122)

Note that the Fisher information is independent of the decoding. This can be seen by

inspecting its definition, from which it is clear that it is only dependant on the transi-

tion probabilities, P(n|x). Thus, from Inequality (6.122), the bound on the conditional

MSE distortion is entirely dependent on E[ŷ|x]. The next two subsections consider the

information bound for both linear and nonlinear decoding of the SSR model.

6.7.4 SSR Linear Decoding

Bias of linear decoding

Recall that a zero mean linear decoding of the SSR model output can be written as in

Eqn. (6.18). The bias of this estimate is bŷ(x) = E[ŷ|x]− x = 2c
N E[y|x]− c− x. Thus,

recalling that E[y|x] = NP1|x, the bias can be written as

bŷ(x) = 2cP1|x − c− x. (6.123)

This is clearly non-zero in general and hence ŷ is a biased estimator, unless P1|x =

x/2c + 0.5, that is P1|x is linear with x. This can occur for the case of uniform signal

and noise, since for θ = 0,

P1|x =















0 for x < ση/2,

x/ση + 1/2 for − ση/2 ≤ x ≤ ση/2,

1 for x > ση/2.

(6.124)

In this situation, ŷ is an unbiased estimator for all x when c = ση/2 and x is in the

range [−ση/2, ση/2], so that σx ≤ ση. For other noise distributions, the bias may be
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close to zero for many values of x. For example, for Gaussian noise P1|x is given by the

complimentary error function, which is known to be is approximately linear for values

of x near its mean. In general, however, we assume that ŷ will be biased, since the

information bound holds whether an estimator is biased or unbiased.

Information bound for linear decoding

We now show that if a linearly decoded output is taken as an estimate for x, then the

estimate is an efficient biased estimator, that is, the estimate gives a MSE distortion that

meets the information bound with equality.

Differentiating the bias given by Eqn. (6.123) with respect to x and adding one gives

1 + b
′
ŷ(x) = 2c

d

dx
P1|x = 2cR(x). (6.125)

Substituting Eqn. (6.125) into Inequality (6.110) gives

E[ǫ2|x] ≥ 4c2R(x)2

J(x)
+ 4c2P2

1|x − 4cP1|x(c + x) + (c + x)2. (6.126)

Substituting Eqn. (6.119) into Inequality (6.126) gives

E[ǫ2|x] ≥
4c2P1|x(1− P1|x)

N
+ 4c2P2

1|x − 4cP1|x(c + x) + (c + x)2

= 4c2P1|x(1− P1|x)
(

1− N

N

)

− 4cP1|xx + (c + x)2. (6.127)

The final expression is exactly that previously derived for the conditional MSE distor-

tion in Eqn. (6.44). Hence, a linearly decoded output of the SSR model, ŷ, gives an

average conditional MSE distortion that is equal to the theoretical limit given by the

information bound.

6.7.5 SSR Nonlinear Decoding

For nonlinear decoding no such result demonstrating biased efficiency, as in the linear

case, can be found. However, the bound given by Inequality (6.122), can be used to

verify numerical calculations of the MSE distortion as follows. Firstly, notice that for

any given decoding, ŷ, Inequality (6.122) becomes

E[ǫ2|x] ≥

(

d
dx E[ŷ|x]

)2

J(x)
+ (E[ŷ|x]− x)2 . (6.128)
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Now

d

dx
(E[ŷ|x]) =

N

∑
n=0

ŷn
d

dx
(P(n|x))

=
R(x)

P1|x(1− P1|x)

N

∑
n=0

ŷnP(n|x)(n− NP1|x). (6.129)

Therefore

(

d
dx (E[ŷ|x])

)2

J(x)
=

(

∑
N
n=0 ŷnP(n|x)(n− NP1|x)

)2

NP1|x(1− P1|x)

=

(

∑
N
n=0 ŷnP(n|x)(n− E[y|x])

)2

NP1|x(1− P1|x)

=
(cov[ŷy|x])2

var[y|x]

= ρŷy|xvar[ŷ|x]. (6.130)

For example, if ŷ = y then the RHS of Eqn. (6.130) becomes simply the variance of y

given x, and we have the case of the information bound being met with equality, as in

Eqn. (6.121). Furthermore, for a linear decoding, the correlation coefficient between y

and ŷ will be unity, and we have the same result as the previous subsection, that the

information bound is met with equality. Note that Eqn. (6.130) implies that

var[ǫ|x] ≥ ρŷy|xvar[ŷ|x]. (6.131)

Since var[ŷ|x] = var[ǫ|x], this inequality now states ρŷy|x ≤ 1, which is a demonstration

of the validity of our arguments, since the correlation coefficient is always smaller than

unity. Furthermore, the bound is only met with equality if ρŷy|x = 1.

Average Information Bound

The main point of this Section is to obtain an expression suitable for numerical calcula-

tion of a lower bound on the MSE distortion, and comparing this to the known MMSE

distortion.

Taking the expected value of Inequality (6.128) with respect to the input PDF, P(x),

gives a bound on the MSE distortion, in terms of two terms, the first term being the

expected value of Eqn. (6.130) and the second being the mean square value of the bias.

Since we know that the best possible decoding is MMSE decoding, with reconstruction
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points given by x̂n = E[x|n], we will use x̂ as the decoding in the RHS of Inequal-

ity (6.128). Carrying this out gives

MSE ≥ E







(

∑
N
n=0 x̂nP(n|x)(n− NP1|x)

)2

NP1|x(1− P1|x)






+ E[bx̂(x)2]

=
∫

x
P(x)







(

∑
N
n=0 x̂nP(n|x)(n− NP1|x)

)2

NP1|x(1− P1|x)






dx +

∫

x
P(x)bx̂(x)2dx. (6.132)

The expression on the RHS of Inequality (6.132) is a lower bound on the MSE distor-

tion. It is a quantity smaller than, or equal to, the MMSE distortion that results from

the optimal nonlinear decoding. Note that it has two components, one which we will

refer to as the average error variance component, and the other being the mean square

bias. We will call this expression the Average Information Bound (AIB) and denote it as

AIB = E







(

∑
N
n=0 x̂nP(n|x)(n− NP1|x)

)2

NP1|x(1− P1|x)






+ E[bx̂(x)2]. (6.133)

The AIB is plotted from numerical calculations in Fig. 6.20 for the cases of matched

Gaussian, Laplacian and logistic signal and noise. When compared with the MMSE

distortion as shown in Fig. 6.11, the MMSE distortion looks to be very close to the AIB.

To verify this, Fig. 6.21 shows the percentage difference between the MMSE distortion

and the AIB. Although the percentage difference is quite small—always less than eight

percent—it is clear that the AIB is always smaller than the MMSE distortion, as ex-

pected. Notice that for N = 1, the difference between the MMSE distortion and the

AIB is constant for all σ and appears to be very nearly zero.

Fig. 6.21 also shows that as N increases, the peak percentage difference increases with

N, however the rate of increase appears to slow for larger N. For larger σ, the percent-

age difference is increasing with N for small N, but is decreasing with N for large N.

These observations indicate that for sufficiently large N, the MMSE distortion might

converge towards the AIB for all σ.

Note that the difference between the MMSE distortion and the AIB is solely due to

the difference between the average error variance term—that is, the Fisher information

term in the information bound—and the actual average error variance, since the mean

square bias term is identical for both the MMSE distortion and the AIB.
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(c) Logistic signal & noise

Figure 6.20. Average information bound. This figures shows plots of the average information

bound against increasing σ for various values of N, and the cases of matched Gaussian,

Laplacian and logistic signal and noise. When compared with the MMSE distortion as

shown in Fig. 6.11, the MMSE distortion is very close to the AIB.
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(c) Logistic signal & noise

Figure 6.21. Percentage difference between MMSE distortion and average information

bound. This figure shows plots of the percentage difference between the MMSE

distortion, and the average information bound against increasing σ, for various values

of N. As N increases, the peak percentage difference increases with N, however the

rate of increase appears to slow as N gets larger. For larger σ, the percentage differ-

ence is increasing with N for small N, but is decreasing with N for large N. These

observations indicate that for sufficiently large N, the MMSE might converge towards

the AIB for all σ.
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Tradeoff between error variance and bias

To illustrate the effects of the two different components of Eqn. (6.133), the mean square

bias is plotted in Fig. 6.22, and the average error variance in Fig. 6.23. The mean square

bias can be seen to decrease with increasing N for all σ. It also decreases with increasing

σ for small σ, but reaches a minimum value before increasing again as σ increases.

For large N, the increase in the mean square bias with increasing σ greater than the

minimising σ, is very slow. By contrast, apart from very small values of N, the average

error variance decreases with increasing N but increases with increasing σ.

This behaviour is somewhat analogous to the mutual information for the SSR model, as

discussed in Chapter 4. There, we saw that the mutual information has a maximum for

nonzero noise, but consists of two components—the output entropy, and the average

conditional output entropy. We saw that the average conditional output entropy al-

ways increases with increasing σ, but the output entropy increases for small σ, reaches

a maximum value at σ = 1, and then decreases again with increasing σ. Thus, the opti-

mal value of σ for the mutual information occurs when the slope of the output entropy

with respect to σ equals the slope of the average conditional output entropy, thus in-

dicating a tradeoff between output entropy and conditional output entropy. Here we

have the minimising value of σ for the AIB being given when the slope of the average

error variance with respect to σ is equal to the negative of the slope of the mean square

bias. This, again, illustrates that the optimal MSE distortion is obtained for σ that gives

the best tradeoff between a small error variance and a small bias.

Also of interest is the fact that the mean square bias seems to get very small for large

N and σ larger than unity. This might indicate that for sufficiently large N, the mean

square bias is negligible with respect to the average error variance, and the AIB be-

comes a function of only the average error variance. We will return such large N be-

haviour of the MSE distortion in Chapter 7.

We now consider in detail previously proposed output SNR measures for the SSR

model.
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(c) Logistic signal & noise

Figure 6.22. Mean square bias term. Plot of the mean square bias against increasing σ for various

values of N. The mean square bias can be seen to decreases with increasing N, for all

σ, and have a minimum value at some value of σ near unity. As N increases, the rate

of increase of the mean square bias for σ larger than the minimising σ is very slow.
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(b) Laplacian signal & noise
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(c) Logistic signal & noise

Figure 6.23. Average error variance term. Plot of the average error variance term, against

increasing σ for various values of N. Apart from very small values of N, the average

error variance decreases with increasing N, but increases with σ.
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6.8 Output Signal-to-Noise Ratio

Previously in this chapter, we have measured the performance of the SSR stochastic

quantiser by the SQNR measure. Although SQNR is commonly used in quantisation

theory, we saw in Chapter 3 that other SNR measures are often used in the SR litera-

ture, since often the output is not a quantisation of the input, nor is the input signal a

sequence of samples drawn from a stationary probability distribution.

However, a constant problem in using SNR to measure a nonlinear system’s output

performance, is the question of how to separate the output signal from output noise.

In linear systems, where the signal and noise are uncorrelated, noise power can be

easily separated from signal power due to both signals being amplified or attenuated

by the same ratio, so that the output signal and noise power sums to the total power.

Furthermore, the output noise power can be measured as the power of the output

when no signal is present at the input.

As we saw in Section 3.4 of Chapter 3, in nonlinear systems the separation of noise

from signal at the output of a nonlinear system is not so straightforward, as the input

signal can interact with the input noise to yield extra output noise that is not present

in the absence of a signal. In other words, if the signal and noise are correlated, then

their powers do not necessarily sum.

One solution to this problem is to suitably define the noise component of the output

power, and then let the signal component be the total output power less the noise

power. Alternatively, the signal component of the output power might be defined, and

the noise power is the total power less the signal power. If this approach is taken, then

the signal and noise powers sum, as carried out in Section 3.4 of Chapter 3. However,

if the input signal and output noise are correlated, then does such a definition of an

output signal really relate well to the actual input signal?

An approach which avoids this problem is that taken with the SQNR measure, which

defines the output signal power as the input signal power. The output noise power is

considered to be the power of the error signal, that is, the variance of the error. Note

that with these definitions, the output signal power and output noise power do not add

up to the total output signal power, since the signal, x, and the error, ǫ, are correlated

for a given value of x.

The remainder of this section discusses this question of how to separate signal and

noise in a nonlinear system, and argues that previous approaches taken for the SSR
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model—or equivalent systems—are inferior to the SQNR measure, as they do not take

into account the correlation between output noise and input signal, and the associated

fact that a small variance in the output for a given input can also result in a large mean

error—that is, bias—for that input, and conversely, a small mean error may have a

large variance.

6.8.1 SNR in the DIMUS model

Recall that the Digital Multibeam Steering (DIMUS) sonar array is very similar to the

SSR model. One approach in the literature to measuring the SNR at the output of a

DIMUS array relies on a method for separating signal and noise where the noise is

considered to be the output response in the absence of a signal.

Recall that Eqn. (6.53) is identical to the expression obtained in Remley (1966) for the

output power, PT, of the DIMUS sonar array for a Gaussian signal and Gaussian noise.

The output of the DIMUS array is equivalent to linearly decoding the SSR model with

c = N. For the output noise power, Remley (1966) uses the output variance when no

signal is present. For the SSR model, this is equivalent to letting σ = ∞, and therefore

ρi = 0 in Eqn. (6.53), and the output noise power, PN = N. The output signal power is

taken to be PS = PT − PN

With these definitions, the output SNR is

SNR =
PT − PN

PN
=

2(N − 1)

π
arcsin

(

1

σ2 + 1

)

, (6.134)

which—by realising that Remley (1966)’s input SNR variable, Rin, is the input SNR,

1/σ2—is identical to Eqn. (19) for the SNR in Remley (1966).

Note that Eqn. (6.134) is strictly decreasing with increasing σ, and therefore SR does

not occur in this SNR measure. Furthermore, when σ = 0, that is, in the absence of

input noise, the SNR attains its maximum value of N − 1. This does not make a lot

of sense, as just as with the SSR model, at σ = 0 the output can only have two states.

For DIMUS these are ±N, with equal probability, and hence the total output power

is large. This SNR measure does not take into account the fact that the noise power

at σ = ∞ is significantly different from that of small values of σ, due to the need to

consider the output noise to be correlated with the input signal, and this correlation

varying as a function of σ.
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Remley (1966) however, also points out that the case of most interest for DIMUS is

when N is large, and Rin is small, i.e. σ is large. For sufficiently large σ, we have

SNR ≃ 2(N − 1)

π(σ2 + 1)
. (6.135)

As noted by Remley (1966), if N is also large, and σ2 ≫ 1, SNR0 ≃ 2N
πσ2 .

6.8.2 Stocks’ SNR Measure for SSR

The final section of Stocks (2001a) considers SSR from an SNR point of view for the

first time. The method of output signal and noise separation relies on defining the

signal component of the overall output for every possible value of the input and can

be described in the following manner. It does not define a decoding for the output, but

simply considers the SNR of the encoded output, y.

For a given value of the input signal, x, the corresponding output is the random vari-

able, w = y|x. Stocks (2001a) notes that the ensemble average of w is E[w] = E[y|x],

which can be considered to be the signal component of the output for the given input

value, x. This conditional ensemble average has an uncertainty, or noise, that can be

described by the variance of w, that is, var[w] = var[y|x].

Now, for the SSR model, the conditional variance of the output is var[y|x] = NP1|x(1−
P1|x). Stocks (2001a) takes this to be the noise power for a given x, and hence the average

noise power can be defined as the expected value of the conditional noise power, that

is E[var[y|x]] = N
2 − NE[P2

1|x]. Note that since var[y|x] = var[ǫ|x], we have already

come across this term in this chapter, and labelled it as the average error variance.

Recall from Eqn. (6.6) that the average error variance is only one component of the

MSE distortion, the other component being the mean square bias.

Thus, Stocks (2001a) defines the average error variance as being the output noise power,

Np, and the total output power as the variance of the output, y, which is var[y] =

N(N − 1)E[P2
1|x] −

N(N−2)
4 . The difference between this total output power, and the

noise power is considered to be the output signal power, Sp.

Thus, with these definitions, the average output noise power for the undecoded SSR

model is

Np = E[var[y|x]] =
N

2
− NE[P2

1|x], (6.136)
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and the average output signal power is

Sp = var[y]− E[var[y|x]] = N2

(

E[P2
1|x]−

1

4

)

=
N2ρo

4
, (6.137)

where ρo is the correlation coefficient between the output of any two threshold devices,

as given by Eqn. (D.20) in Appendix D.

Hence, the output SNR is

SNRo =
Sp

Np
=

N2
(

E[P2
1|x]− 1

4

)

N
2 − NE[P2

1|x]
=

N(4E[P2
1|x]− 1)

2− 4E[P2
1|x]

=
0.5Nρo

1− 2E[P2
1|x]

. (6.138)

As shown in Stocks (2001a), unlike for the mutual information—or, as seen in this

Chapter, the SQNR—the SNR measure of Eqn. (6.138) monotonically decreases with σ

and hence no SR effect is seen in this measure. The signal power, Sp, also decreases

monotonically with increasing σ if θ = 0, since, as we saw earlier, ρo decreases with

increasing σ. Stocks (2001a) notes that the reason for this is that, in the noiseless case,

the output is deterministic, and hence has zero noise power with these definitions. This

implies an infinite output SNR for zero noise. For non-zero noise that is still small, the

output is still nearly always in states 0 and N, and therefore has little variance for a

given x, and thus very little noise power, and a very high output SNR. As the input

noise increases, the average output noise power also increases and therefore the output

SNR decreases.

It is clear that this definition of SNR is deficient for this situation. Although the ideal

situation is for the output to have no variance given the input, the ideal situation is

also for the bias to be zero, that is, E[w] = E[y|x] = x. This is clearly not the case

when the average conditional variance is minimised, which occurs at σ = 0. Defining

the signal power in this manner ignores the fact that the ideal estimator of the input is

one that finds the best tradeoff between bias and variance as illustrated by Eqns. (6.4)

and (6.110).

Another problem with this approach is the assumption that the average output noise

power and the average output signal power should sum to the total output power. The

reason that the output signal and noise power does not sum to the total power is that

the input signal and the output noise are correlated.

These problems have also been recognised by Martorell et al. (2005), who attempt to

overcome them by modifying the noise power definition of Stocks (2001a) to take into
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account the error between the expected value of the output and some “desired func-

tion,” as well as the variance. An example given by Martorell et al. (2005) for a “desired

function, ” q(x), is q(x) = x, so that the error considered is E[y|x]− x, which we recog-

nise as being the bias for a given x. Thus, if the output is decoded so that it has a mean

of zero, the modified noise power formula given by Martorell et al. (2005) is exactly the

MSE distortion discussed in this chapter. However, the signal power of Martorell et al.

(2005) is not modified from that used in Stocks (2001a), and the resultant SNR measure

is neither that of Stocks (2001a), nor the SQNR. The SNR measure of Martorell et al.

(2005) could perhaps be modified to allow the output signal power to be the same as

the input signal power, and therefore be equivalent to the SQNR in the case where

the desired function is x. Therefore, if the desired function is not x—for example if

a nonzero bias is considered ideal—the SNR measure of Martorell et al. (2005) would

then be a generalisation of the SQNR.

One final note, is that for Gaussian signal and noise we have E[P2
1|x] given by Eqn. (6.50)

and therefore the SNR is

SNRo =
N arcsin (ρi)

(

π
2 − arcsin (ρi)

) =
N arcsin (ρi)

arccos (ρi)
. (6.139)

For sufficiently large σ, the SNR measure can be approximated by

SNRo ≃
2N

π(σ2 + 1)− 2
. (6.140)

Thus, Eqn. (6.140) is very similar to the DIMUS SNR formula for large σ, given by

Eqn. (6.135). In fact, for large N and σ ≫ 1, they are identical. This fact indicates

that both the DIMUS SNR formula, and the formula from Stocks (2001a) may be valid

for sufficiently large σ and N. We conjecture that under these conditions, the output

noise becomes almost uncorrelated with the input signal, and therefore the total output

power is the sum of the average output noise power, and the average output signal

power.

Furthermore, recall from Eqn. (6.16) that if a continuously valued noisy signal is aver-

aged over N iid realisations, where the noise has variance σ2
η , then the SNR is N/σ2

η .

Thus, the scaling of this SNR with N and noise intensity is the same as the scaling in

the DIMUS SNR of Eqn. (6.135) and Stock’s SNR of Eqn. (6.140). This indicates that for

large N and σ, the SSR model’s output behaves like a continuously valued signal.
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6.8.3 Gammaitoni’s Dithering Formula

As briefly mentioned in Chapter 2, a similar situation occurs in Gammaitoni (1995a),

which proposes a measure of comparing the average output of a quantiser with a linear

response. In Gammaitoni (1995a), the ideal output response is considered to be a linear

transformation of the input signal. Hence, a measure of the quantisers performance is

given by

DG =

√

∫ 1

0
(E[y|x]− x)2 dx, (6.141)

where a smaller DG means a better performance.

Eqn. (6.141) assumes all values of the input signal should be uniformly weighted. Gen-

eralising Eqn. (6.141) to the case considered throughout this chapter of signals being a

random sequence of samples drawn from the distribution with PDF, P(x), gives

DG =

√

∫

x
(E[y|x]− x)2 P(x)dx, (6.142)

which, from Eqn. (6.112) means that D2
G is the mean square bias, E[by(x)2].

Thus, the formula given in Gammaitoni (1995a) measures only the mean square bias

in a quantiser, and ignores the average conditional error variance. This is the opposite

to the SNR measure proposed in Stocks (2001a), which ignores the bias, and measures

only the average conditional error variance. The MSE distortion—or equivalently, the

SQNR measure—used by engineers to measure a quantiser’s performance, which takes

the variance and bias into account, gives a more complete picture of a quantiser’s per-

formance.

6.9 Chapter Summary

The initial section of this chapter, Section 6.1, introduces the concept of decoding the

SSR model, first introduced in Chapter 4. It defines an error between the input signal

and the decoded output, as well as introducing appropriate measures of the average

performance of that error, including the mean square error distortion, signal to quan-

tisation noise ratio, and correlation coefficient.

Section 6.2 shows how the signal-to-noise ratio of a signal can be reduced by averaging

N independently noisy realisations of that signal.
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Sections 6.3 through 6.6 then examine linear and nonlinear decoding schemes. Lin-

ear decoding schemes are ones for which the spacing between reconstruction points

is constant for all points. Nonlinear ones are not necessary constantly spaced. Stan-

dard theory is introduced to show that both optimal—in the sense of minimum mean

square error distortion—linear and optimal nonlinear decoding schemes exist, and can

be calculated for the SSR model. Such calculations always show that the mean square

error distortion is minimised for some nonzero value of σ for the SSR model. Compar-

isons are made between each decoding, which verify that the optimal decoding is the

nonlinear MMSE decoding.

Section 6.7 considers the SSR decoding from the point of view of estimation theory, and

using the biased-estimate generalisation of the Cramer-Rao bound, finds an expression

for a lower bound on the achievable mean square error distortion.

Finally, Section 6.8 discusses an SNR measure defined in Stocks (2001a), as well as a

measure of a quantiser’s performance defined in Gammaitoni (1995a), and argues that

both these measures do not take into account both of the error variance, and the bias,

which are both necessary components of the standard mean square error distortion

measure.

6.9.1 Original Contributions for Chapter 6

This chapter included the following original contributions:

• The application of the concept of decoding to the SSR model, in order to provide

a signal that approximates, or reconstructs, the input signal. Such a reconstruc-

tion can be measured with the mean square error distortion—as conventionally is

the case for quantisers—as well as the correlation coefficient, and signal to quan-

tisation noise ratio.

• Analytical derivations of expressions for the mean square error distortion, sig-

nal to quantisation noise ratio, and correlation coefficient for linear decoding

schemes of the SSR model, in terms of the function P1|x.

• Analytical derivations of expressions for the correlation coefficient for a linear

decoding of the SSR model in terms of N and σ for the specific cases of Gaussian

signal and noise, uniform signal and noise, and Laplacian signal and noise.
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• Plots for the MSE distortion in the case of matched-moments and Wiener linear

decoding schemes, and MAP and MMSE nonlinear decoding schemes, and the

associated reconstruction points, and verification that MMSE decoding is the op-

timal decoding.

• Analytical derivation of an expression for the MMSE distortion and optimal re-

construction points for the SSR model for the case of uniform signal and noise

and noise intensity, σ ≤ 1.

• The application of the Cramer-Rao and information bounds to find a new lower

bound, named here as the average information bound, on the MSE distortion for

decoding of the SSR model. It is shown that a linear decoding for the SSR model

is a biased efficient estimator, and that MMSE decoding is biased but does not

meet the average information bound with equality. Analysis of the average in-

formation bound confirms that the value of noise intensity, σ, which minimises

the MSE distortion means finding the best tradeoff between average error vari-

ance and mean square bias. This tradeoff is analogous to the tradeoff between

output entropy and average conditional output entropy required to maximise

the mutual information.

• Arguments that the SNR measure developed for the DIMUS sonar array in Rem-

ley (1966) is not valid for small σ, as it ignores the fact that the output noise will

be correlated with the input signal, and varies with σ.

• Arguments are given that (i) the SNR measure used in Stocks (2001a) decreases

monotonically with σ, because the definition of noise power used does not take

bias into account, and therefore is incomplete; (ii) the measure used to describe

quantisation given in Gammaitoni (1995a) is also incomplete, because it only

takes into account mean square bias, and not error variance. The MSE distortion

and SQNR, as used by engineers in quantisation theory, do take both of these

factors into account.

6.9.2 Further Work

Possible future work and open questions arising from this chapter might include:

• Application of mean square error distortion decoding to one sided signal and

noise distributions, such as the Rayleigh, or exponential distributions.
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• Application of mean square error distortion decoding to mixed signal and noise

distributions, for example, a uniform signal subject to Gaussian noise.

• Consideration of distortion measures other than the mean square error distortion,

such as the absolute error distortion.

This concludes Chapter 6, which studies the array of threshold devices in which SSR

occurs as a quantisation model, and discusses various output decoding schemes.

Chapter 7 now examines decoding schemes and the MSE distortion for the SSR model

under the assumption of a large number of threshold devices.
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Chapter 7

Suprathreshold Stochastic
Resonance: Large N

Decoding

T
HE aim of this Chapter is to find asymptotic large N approxima-

tions to the mean square error distortion for the suprathreshold

stochastic resonance model. In particular, we are interested in how

the distortion varies with noise intensity and how it scales with the num-

ber of threshold devices. That is, does the distortion become asymptotically

small for large N?
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7.1 Introduction

Chapter 6 develops the idea of treating the SSR model as a lossy source coding or

quantisation model. We saw that such a treatment requires specification of reproduc-

tion points corresponding to each of the N + 1 discrete output states. Once specified,

an approximate reconstruction of the input signal can be made from a decoding, and

the average error between this approximation and the original signal subsequently

measured by the Mean Square Error (MSE) distortion. We also saw in Chapter 5 that

asymptotic approximations to the output probability mass function, Py(n), output en-

tropy, average conditional output entropy, and mutual information can be found if the

number of threshold devices, N, in the SSR model is allowed to become very large.

The aim of this Chapter is to again allow N to become very large, and develop asymp-

totic approximations to the MSE distortion for the cases of optimal linear and optimal

nonlinear decodings of the SSR model.

7.1.1 Chapter Structure

This Chapter has three main Sections. We begin in Section 7.2 by letting N become large

in the formulas derived in Chapter 6, and analysing the result. Next, Section 7.3 takes

the same approach from the estimation theory perspective. Finally, we give a brief

discussion in Section 7.4 on the concept of stochastic resonance without tuning, based on

the results obtained in this Chapter. Here, tuning refers to ‘tuning to the optimal noise

intensity’, that is, finding the optimal noise level. The term is used in an analogy with

frequency resonance, where tuning to the right frequency gives the resonant response.

7.2 Mean Square Error Distortion for Large N

Recall that Chapter 6 considers two different classes of decoding, and their application

to the SSR model, namely linear decoding, and nonlinear decoding. Linear decoding

refers to the situation where all reproduction points are linearly spaced, so that the de-

coding can be written in the form ŷ = ay + b, where a and b are constants for given

signal and noise distributions, but may vary with the ratio of noise standard deviation

to signal standard deviation, σ. Nonlinear decoding refers to the situation where the

decoded output of the SSR model varies nonlinearly for each possible value of y. We
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saw that the optimal linear decoding is known as the Wiener decoding, and the opti-

mal nonlinear decoding, which we refer to as Minimum Mean Square Error (MMSE)

distortion decoding, has reproduction points given by x̂n = E[x|y = n], n = 0, .., N.

This section examines the large N asymptotic behaviour of both Wiener and MMSE

distortion decoding for the SSR model. As in previous Chapters, we assume the signal

PDF, P(x), and the noise PDF, R(η), are even functions with zero means and that the

threshold values are all θ = 0.

7.2.1 Wiener Linear Decoding

For zero-mean input signals and a linear decoding of the form ŷ = ay + b, we impose

the condition that E[ŷ] = 0. Then b = −aE[y], and as discussed in Chapter 6, the

optimal value of a is given by a = E[xy]
var[y]

. Since for SSR we have E[y] = N/2, this

means that the optimal linear reconstruction points are

ŷ(n) =
E[xy]

var[y]

(

y− N

2

)

, (7.1)

and the Wiener MSE distortion can be expressed in terms of the linear correlation co-

efficient, ρxy, as

MSE = E[x2](1− ρ2
xy). (7.2)

Recall also that the correlation coefficient is identical for all possible linear decodings.

In addition, for SSR, when the signal and noise PDFs are both even valued functions

about a mean of zero, the correlation coefficient can be expressed in terms of the prob-

ability that any given threshold device is ‘on’, P1|x, as

ρxŷ = ρxy =

√
NE[xP1|x]

√

E[x2]
(

(N − 1)E[P2
1|x]−

(N−2)
4

)

. (7.3)

Letting N approach infinity in Eqn. (7.3) gives the large N correlation coefficient as

lim
N→∞

ρxy =
E[xP1|x]

√

E[x2]
(

E[P2
1|x]− 1

4

)

=
2E[xP1|x]
√

E[x2]ρo

, (7.4)
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where ρo is the correlation coefficient between the outputs of any two threshold devices

in the SSR model, as given by Eqn. (D.20) in Appendix D. By substitution of Eqn. (7.4)

into Eqn. (7.2), the large N Wiener linear decoding MSE distortion is

lim
N→∞

MSE = E[x2]−
4E[xP1|x]2

ρo
. (7.5)

Note that the large N limits given by Eqns. (7.4) and (7.5) are independent of N. Hence,

as N increases, the correlation coefficient and MSE distortion get closer and closer to

these expressions. This means that the MSE distortion does not necessarily approach

zero for large N.

We now present exact results for the large N correlation coefficient and MSE distortion

for specific matched signal and noise distributions. These expressions are found by

letting N approach infinity in the corresponding equations stated in Chapter 6.

Gaussian signal and noise

For Gaussian signal and noise and large N, the linear decoding correlation coefficient

is, from Eqn. (6.59),

lim
N→∞

ρxy =
1

√

(σ2 + 1) arcsin
(

1
σ2+1

)

=

√

ρi

arcsin (ρi)
, (7.6)

where σ = ση/σx is the ratio of noise standard deviation to signal standard deviation,

and ρi is the correlation coefficient between the inputs to any two devices in the SSR

model, as defined in Eqn. (D.19) in Appendix 6. Using Eqns. (7.2) and (7.6) we also

have the Wiener decoding MSE distortion as

lim
N→∞

MSE = E[x2]

(

1− ρi

arcsin (ρi)

)

. (7.7)

For large σ we have ρi → sin (ρi), and therefore the correlation coefficient is strictly

increasing with σ for large N, and asymptotically approaches unity for large σ, while

the MSE distortion is strictly decreasing with σ, and asymptotically approaches zero

for large σ.
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Uniform signal and noise

For uniform signal and noise and large N, the linear decoding correlation coefficient

is, from Eqn. (6.64),

lim
N→∞

ρx,y =







3−σ2

2
√

3−2σ
(σ ≤ 1),

1 (σ ≥ 1),
(7.8)

and the Wiener decoding MSE distortion is therefore

lim
N→∞

MSE =







E[x2]
(

(σ−1)3(σ+3)
8σ−12

)

(σ ≤ 1),

0 (σ ≥ 1).
(7.9)

Thus, for uniform signal and noise, and infinite N, the correlation coefficient is exactly

unity and the MSE distortion is exactly zero for σ ≥ 1.

Laplacian signal and noise

For Laplacian signal and noise and large N, the linear decoding correlation coefficient

is, from Eqn. (6.68),

lim
N→∞

ρxy =
(2σ + 1)

√

(σ + 1)(σ + 2)

2(σ + 1)2
, (7.10)

and the Wiener decoding MSE distortion is therefore

lim
N→∞

MSE = E[x2]

(

3σ + 2

4(σ + 1)3

)

. (7.11)

For large σ, the linear decoding correlation coefficient asymptotically approaches unity,

and the Wiener MSE distortion asymptotically approaches zero.

Logistic signal and noise

As discussed in Chapter 6, we do not have an exact expression for the correlation co-

efficient or Wiener MSE distortion for logistic signal and noise. However, since the

quantities E[xP1|x] and ρo can be calculated numerically, the large N correlation coeffi-

cient and Wiener MSE distortion can be found numerically using Eqns. (7.4) and (7.5).

We now graphically illustrate the behaviour of the above formulas and briefly discuss

their main features.
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Results

Fig. 7.1 shows the large N Wiener decoding MSE distortion and linear correlation co-

efficient for the four different matched signal and noise situations considered. It is

clear that in all cases the MSE distortion is strictly decreasing with increasing σ and

the correlation coefficient is strictly increasing towards unity with increasing σ. This

behaviour is discussed further in Section 7.4.

We now consider the case of optimal MMSE distortion decoding.
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Figure 7.1. MSE distortion and correlation coefficient for Wiener decoding and large N.

Fig. 7.1(a) shows the large N Wiener decoding MSE distortion and Fig. 7.1(b) shows

the large N linear correlation coefficient, for the cases of matched Gaussian, uniform,

Laplacian and logistic signal and noise. For small noise intensity, σ, the MSE distortion

is clearly nonzero. However, as σ increases, the MSE distortion decreases asymptotically

towards zero. Likewise, the correlation coefficient approaches unity for increasing σ.

7.2.2 MMSE Optimal Decoding

As discussed in Chapter 6, and as shown in Section D.5 of Appendix D, the reproduc-

tion points that give the minimum possible MSE distortion are

x̂n = E[x|n] =
∫

x
xP(x|n)dx =

1

Py(n)

∫

x
xP(n|x)P(x)dx, n = 0, .., N. (7.12)

Page 260



Chapter 7 Suprathreshold Stochastic Resonance: Large N Decoding

The MSE distortion that results from this decoding is

MMSE = E[x2]− E[x̂2
n]

= E[x2]−
N

∑
n=0

E[x|n]2Py(n)

= E[x2]−
N

∑
n=0

1

Py(n)

(

∫

x
xP(n|x)P(x)dx

)2

. (7.13)

Convergence to maximum likelihood decoding

Recall from Chapter 5 that for matched signal and noise distributions, and PDFs that

are even functions about a mean of zero, the following large N approximation holds,

Py(n) ≃ Q( n
N )

N
, n = 0, .., N. (7.14)

As derived in Chapter 4, Q(τ) is a PDF defined with support τ ∈ [0, 1], and for θ = 0

and P(x) and R(η) even, and the support of P contained in the support of R, is given

by

Q(τ) =
P(x)

R(x)

∣

∣

∣

x=F−1
R (τ)

, (7.15)

where F−1
R (·) is the Inverse Cumulative Distribution Function (ICDF) of the noise. For

finite N, Eqn. (7.14) becomes an approximation, and is most accurate near σ = 1, and

exact at σ = 1. We also saw in Chapter 5 that

P(ȳ) =
Q( ȳ

N )

N
, ȳ ∈ [0, 1], (7.16)

is the exact PDF of the continuously valued random variable, ȳ(x), describing the ex-

pected value of the SSR encoding, y, given the input, x.

We also used in Chapter 5 a large N approximation to the transition probabilities,

which from Eqns. (5.53) and (5.54), can be written as

P(n|x) ≃
δ
(

P1|x −
(

n
N

)

)

N
. (7.17)

Substituting Eqns. (7.17) and (7.14) into Eqn. (7.12) gives

x̂n ≃
1

Q( n
N )

∫

x
xδ
(

P1|x −
( n

N

))

P(x)dx, n = 0, .., N. (7.18)
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Making a change of variable to τ = P1|x = FR(x) in Eqn. (7.18) gives a large N approx-

imation of x̂n as

x̂n ≃
1

Q
(

n
N

)

∫ τ=1

τ=0
F−1

R (τ)δ
(

τ −
( n

N

))

Q(τ)dτ

=
1

Q
(

n
N

)F−1
R

( n

N

)

Q
( n

N

)

= F−1
R

( n

N

)

n = 0, .., N. (7.19)

Recall from Chapter 6 that this is exactly the maximum likelihood decoding, and that

therefore the MMSE decoding converges with large N to the maximum likelihood de-

coding. This result is well known in estimation theory; the maximum likelihood esti-

mate achieves minimum variance as the number of samples approaches infinity (Leh-

mann and Casella 1998). Thus, the main result here is that the MMSE distortion recon-

struction points converge to the maximum likelihood points, for large N.

However, unlike the optimal linear Wiener reconstruction points, which depend on σx,

the maximum likelihood decoding reconstruction points are completely independent

of the signal PDF. This is an indication that the result above may not always be accu-

rate. However, provided that R(η) has infinite support, we might expect that it is only

the reconstruction points corresponding to n near 0 and N that are significantly differ-

ent from the maximum likelihood points, and that should depend on the variance of

the signal distribution. We now find evidence for this assertion.

Large N MMSE

Substituting the maximum likelihood decoding reconstruction points into Eqn. (7.13)

gives the MMSE distortion for large N as

MMSE ≃ E[x2]−
N

∑
n=0

Py(n)F−1
R

( n

N

)2
. (7.20)

Substituting Eqn. (7.14) into Eqn. (7.20) gives

MMSE ≃ E[x2]− 1

N

N

∑
n=0

Q
( n

N

)

F−1
R

( n

N

)2
. (7.21)

Suppose we replace the summation in Eqn. (7.21) by an integral as

MMSE ≃ E[x2]− 1

N

∫ N

n=0
Q
( n

N

)

F−1
R

( n

N

)2
dn. (7.22)
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With a change of variable from n to s = n
N , Eqn. (7.22) becomes a limiting expression,

lim
N→∞

MMSE ≃ E[x2]−
∫ s=1

s=0
Q(s)F−1

R (s)2ds. (7.23)

With a further change of variable from s to x = F−1
R (s), we have

lim
N→∞

MMSE ≃ E[x2]−
∫ x=∞

x=−∞
P(x)x2dx

= 0. (7.24)

Thus, provided the summation in Eqn. (7.21) can be approximated by the integral, the

MMSE approaches zero for large N. Note that we would expect the integral to more

closely approximate the summation as N increases.

As stated in Section C.2 of Appendix C, a more accurate approximation of a summa-

tion by an integral is given by the Euler-Maclaurin summation formula (Spiegel and

Liu 1999). This formula has remainder terms, which are significant if the 0–th and N–

th terms are significant. For SSR, since Py(0) and Py(N) are significant for σ ≤ 0, it

is difficult to justify the approximation given in Eqn. (7.22). Hence, we do not expect

Eqn. (7.24) to hold for σ ≤ 1. This confirms our previous discussion regarding the max-

imum likelihood reconstruction points not being dependent on the signal distribution.

In order to further investigate this, we now examine letting N become large in our

known exact results for MMSE decoding for uniform signal and noise.

Exact result for uniform signal and noise

Recall that Chapter 6 presents exact analytical expressions for the MMSE distortion

decoding reproduction points, and the MMSE distortion for uniform signal and noise

and σ ≤ 1. From Eqn. (6.96), the reproduction points for large N are

x̂(n) ≃ ση

2

(

2
( n

N

)

− 1
)

, n = 1, .., N, (7.25)

and from Eqn. (6.97), limN→∞ x̂(N) = −x̂(0) = σx
4 (1 + σ). From Eqn. (6.100), the

MMSE distortion reduces to

lim
N→∞

MMSE =
σ2

x

48
(1− σ)3. (7.26)

Thus, for large N, the MMSE distortion is strictly decreasing for σ ≤ 1, and is zero

at σ = 1. We saw for a linear decoding that the MSE distortion for large N is exactly
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zero for σ ≥ 1 for infinite N, since it scales with 1/N. The result of Eqn. (7.26) therefore

means that no decoding scheme can make the MSE distortion asymptotically approach

zero for σ < 1 for uniform signal and noise.

From Table 4.1 in Chapter 4, the ICDF of the noise is given by F−1
R (w) =

ση

2 (2w− 1).

Therefore, for n = 1, .., N − 1 the MMSE reproduction points, for large N, given by

Eqn. (7.25) are exactly the maximum likelihood reproduction points given by F−1
R

(

n
N

)

.

However, for n = 0 and n = N, the MMSE and maximum likelihood reproduction poi-

nts do not coincide, apart from at σ = 1. This fact illustrates why the MMSE decoding

is said to asymptotically converge to the maximum likelihood decoding, since it only

converges in the event of an infinite number of observations. In such a situation, the

0–th and N-th reproduction values become insignificant, and can be ignored in calcu-

lations of the MSE distortion, regardless of the probability of the 0-th and N-th state

occurring, provided σ 6= 0.

We now consider the large N distortion performance of the SSR model from the point

of view of estimation theory.

7.3 Large N Estimation Perspective

Recall that Chapter 6 discusses decoding of the SSR model from the point of view of es-

timation theory. This discussion includes the introduction of the definitions of bias and

Fisher information, and their application to the concept of the Cramer-Rao bound, which

gives a lower bound on the MSE distortion for an unbiased estimator, and the infor-

mation bound, which gives a lower bound on the MSE distortion of biased estimators.

Furthermore, Chapter 6 uses such estimation theory to show that the MSE distortion

performance of the SSR model depends strongly on the tradeoff between bias and error

variance. This section extends this discussion to the case of a large number of thres-

hold devices in the SSR model, which is equivalent to the case of a large number of

independently noisy observations of a parameter in estimation theory. We begin by in-

troducing some estimation terminology that applies in such large N situations, before

illustrating the asymptotic behaviour of the SSR model from this perspective.
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7.3.1 Asymptotic Large N Theory

Suppose one can make a measurement, z, of some parameter, θ. If there is some ran-

dom or systematic error in the measurement, then the error of any given measurement

is ǫ(z) = z− θ.

Asymptotically unbiased estimators

An estimator is called asymptotically unbiased if in the limit of an infinite number of

observations, the estimate becomes unbiased, that is

lim
N→∞

E[ǫ(z)|θ] = 0. (7.27)

Consistent estimators

An estimator is called consistent if its MSE distortion approaches zero in the limit of an

infinite number of observations, that is

lim
N→∞

E[ǫ2(z)|θ] = D(θ) = 0, (7.28)

where D(·) is our notation for the conditional MSE distortion.

Mean asymptotic square error

Suppose for large N, an estimator is asymptotically unbiased. Then since the bias is

zero, the mean square bias is also zero, and the derivative of E[z|θ] is unity. Thus, from

Eqn. (6.110) in Chapter 6, the MSE distortion for a given θ is lower bounded by the

Cramer-Rao bound, rather than the information bound, so that

D(θ) = var[ǫ(z)|θ] ≥ 1

J(θ)
. (7.29)

When averaged over all possible values of θ, the result is a lower bound on the MSE

distortion as

MSE ≥ E

[

1

J(θ)

]

=
∫

θ
P(θ)

1

J(θ)
dθ. (7.30)

Asymptotic efficiency

If the Cramer-Rao bound is met with equality, then the estimator, z, is said to be effi-

cient. If efficiency is met asymptotically with increasing N, then the estimator is said to
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be asymptotically efficient. When this occurs for all θ, the lower bound on the MSE dis-

tortion given by Inequality (7.30) becomes an equality, which we call the Mean Asymp-

totic Square Error (MASE), that is,

MASE = E

[

1

J(θ)

]

=
∫

θ
P(θ)

1

J(θ)
dθ, (7.31)

which is simply the expected value of the reciprocal of the Fisher information. Note

that such a quantity is discussed by Bethge et al. (2002) and Bethge (2003), in the context

of neural population coding.

For situations where the asymptotic behaviour of an estimator’s bias or efficiency is

unknown, Eqn. (7.31) can still be useful, as it provides a lower bound on the MSE

distortion when only the Fisher information is known, without the need for specifying

a decoding.

7.3.2 Application to SSR

When using the SSR output encoding, y, as an estimate for the input, x, it does not

make sense to consider asymptotic unbiasedness or consistency, as E[y|x] ranges be-

tween 0 and N, whereas we assume that the signal mean is zero. However, once the

output is decoded, it is possible that asymptotic unbiasedness and consistency can oc-

cur. The purpose of this Section is to examine this possibility.

The Fisher information for SSR is given in Chapter 5 by Eqn. (5.69). Assuming that for

large N there exists an asymptotically unbiased and efficient estimator, the MASE is

then

MASE =
1

N

∫

x
P(x)

P1|x(1− P1|x)

R2(x)
dx. (7.32)

If the integral in Eqn. (7.32) does not diverge, then the MASE exists and decreases

with 1
N , and we have a consistent estimator for all x. However, it is possible that

the integral diverges. For example, in the case of Logistic signal and noise, we have

R(x) = P1|x(1− P1|x)/bη and therefore the MASE can be written as

MASE =
bη

N

∫

x

P(x)

R(x)
dx, (7.33)

which diverges for σ ≤ 1.

In the event that the MASE diverges, then it is likely that an asymptotically unbiased

and efficient estimator does not exist. The remainder of this section examines firstly
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the question of whether an asymptotically unbiased estimator exists for the SSR model,

and secondly the question of efficiency.

Linear decoding

We have already seen that for a linear decoding, as N approaches infinity and σ ap-

proaches infinity, the MSE distortion approaches zero. Therefore, under these condi-

tions, the Wiener linear decoding is a consistent estimator.

The large N Wiener decoding reconstruction points are given by

ŷ(n) ≃ c
(

2
( n

N

)

− 1
)

, (7.34)

where c = 2E[xP1|x]/ρo.

We have also, by taking the conditional expectation of Eqn. (7.1), that

E[ŷ|x] = c
(

2P1|x − 1
)

. (7.35)

Therefore, the bias is asymptotically zero for a linear decoding, iff

c
(

2P1|x − 1
)

− x = 0. (7.36)

This condition means that P1|x = x
2c + 1

2 , which holds for the case of uniform noise

when ση = 2c. However, in general, the bias for a linear decoding is not asymptotically

equal to zero for all x in the SSR model.

Nonlinear decoding

Rearranging the large N reconstruction points of Eqn. (7.19) gives y(n) = NP1|x=x̂n
.

Since the average transfer function of the SSR model is ȳ(x) = E[y|x] = NP1|x, then

this implies that for large N the bias of the MMSE decoding asymptotically approaches

zero for all x. This is in agreement with the known result that the maximum likelihood

decoding is asymptotically unbiased (Lehmann and Casella 1998).

Consequently,

lim
N→∞

E[x̂|x] =
N

∑
n=0

F−1
R

( n

N

)

P(n|x) = x. (7.37)

Since these arguments indicate that the large N bias is asymptotically zero for the max-

imum likelihood decoding, then how is it possible for the MASE to diverge, when we

Page 267



7.4 Discussion on Stochastic Resonance Without Tuning

know from Chapter 6 that the MMSE distortion is smaller than the Wiener MSE distor-

tion, for which large N expressions were presented in Section 7.2.1? The answer to this

problem is related to the fact that for σ < 1, the most probable output states of the SSR

model are states 0 and N. Recall also from Chapter 5 that the average transfer function

PDF, Q(τ), is infinite at zero and unity.

The maximum likelihood reconstruction points that correspond to these states are

F−1
R (0) and F−1

R (1), which for noise PDFs with infinite support are at ±∞. With such

large values, if Py(0) and Py(N) do not approach zero, then the MSE distortion will be

very large. This appears to be the case when the MASE diverges.

Also note that for the MMSE reconstruction points at n = 0 and n = N to be equal

to ±∞, N truly needs to be infinite. If it is not, then there is some large error between

the MMSE points and the maximum likelihood points, and if Py(0) and Py(N) are not

small, a significant difference between the MSE distortion obtained with the MMSE

reconstruction points, and maximum likelihood reconstruction points will occur.

These issues mean that no meaningful analytical or numerical results can be obtained

for the MASE for small σ, say σ < 1, and that no efficient unbiased estimator exists

under these conditions. The best we can do is numerically calculate the MMSE recon-

struction points and MMSE distortion for specific signal and noise distributions for

as large an N as is practicable. Such results show the same qualitative behaviour as

Fig. 7.1.

7.4 Discussion on Stochastic Resonance Without Tuning

We have seen that for large N the correlation coefficient increases with increasing σ and

approaches unity as σ approaches infinity. Likewise, the MSE distortion decreases with

increasing σ towards zero. Thus, there is a broadening of the system response, meaning

near optimal performance occurs for a broad range of noise intensities. Furthermore,

other than the case of uniform signal and noise, for infinite N the optimal noise inten-

sity is at infinity, a strongly counterintuitive notion, even given an understanding of

stochastic resonance. However, such a result has previously been published under the

title of stochastic resonance without tuning (Collins et al. 1995).

The model examined in Collins et al. (1995) is quite similar to the SSR model, in that

the outputs of N independently noisy individual neuron models are summed to give
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an overall system output in response to aperiodic stimuli. By contrast to SSR however,

Collins’ stimuli are always subthreshold. Collins et al. (1995) use the correlation coeffi-

cient to show that SR occurs in this system, and emphasise the fact that as the number

of elements, N, increases, that the peak of the correlation coefficient with noise inten-

sity broadens, in the same manner as the results presented here. Note that the interpre-

tations of Collins et al. (1995) have been criticised or explained in terms of well-known

statistical results in several papers (Noest 1995, Petracchi 2000, Greenwood et al. 2003).

The general theme is that the reported result should come as no surprise to those fa-

miliar with the averaging of independently noisy data. As is shown in Chapter 6, if a

signal is averaged without thresholding, the MSE distortion is reduced by a factor of
1
N . This means that regardless of the original SNR, the SNR of the averaged signal can

be made arbitrarily small by increasing N. This is essentially the same result as that

given in Collins et al. (1995), and here for large N and σ.

The difference between SSR and noise reduction by averaging, is that quantisation of

the noisy input signal is performed in the SSR model, and this adds a component to

the error between an input signal and the resultant output approximation. For suffi-

ciently large noise, the quantisation loss can be overcome by averaging. However for

small noise intensities, there is no decoding scheme that can overcome the mismatch

of SSR quantisation. To explain this further, we saw in Chapter 5 that for small noise,

the most probable output states are states close to zero and N. By contrast, for signals

with infinite support PDFs, the most likely values are close to the mean. The results

presented here indicate that even infinite N is not sufficient to overcome this mismatch

between the shape of the output probability mass function, and the input PDF. By con-

trast as the noise intensity increases, this mismatch lessens, and at the optimum value

of noise, the MSE distortion can be asymptotically reduced to zero by increasing N.

However, for large σ, using large values of N is also very inefficient, because nearly

all values of the SSR model’s output, y, become highly improbable, other than those

close to y = N/2. This has some analogies with rate-distortion theory (Berger and

Gibson 1998). Information theorists understand that decreasing the average distortion

in a quantisation scheme can be achieved by increasing the rate—here, rate can be inter-

preted to mean the number of output states, N. We will further discuss rate-distortion

theory in Chapter 9.
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7.5 Chapter Summary

Section 7.1 briefly introduces the aims of this Chapter, which are to examine the large

N performance of the SSR model from the point of view of signal quantisation and

reconstruction. Hence, we re-examine the results presented in Chapter 6, with the goal

of finding large N limiting expressions.

Section 7.2 then presents large N asymptotic expressions for the Wiener decoding—

that is, optimal linear decoding—reconstruction points, MSE distortion and correlation

coefficient. Exact analytical formulas for these expressions are found in terms of σ for

the cases of matched Gaussian, uniform and Laplacian signal and noise. Section 7.2

then goes on to consider MMSE nonlinear decoding, and finds an approximation that

states that the large N reconstruction points are the maximum likelihood reconstruc-

tion points, and points out that with these points, an expression for the large N MMSE

distortion is available. Verification of this result is given for the case of uniform signal

and noise, and σ ≤ 1, for which we have an exact expression for the large N recon-

struction points. It is however, also pointed out that such an approximation breaks

down for SSR and small σ, due to the approximation being more inaccurate for large

and small n, since large and small n are also the most probable states.

Section 7.3 introduces large N asymptotic estimation theory, including the ideas of

asymptotic unbiasedness and consistent estimators, before presenting an expression

giving a lower bound in terms of Fisher information for the MSE distortion of an

asymptotically unbiased estimator. The Fisher information for the SSR model is then

shown to be such that the integral component of this lower bound does not always

converge, meaning that asymptotically small MSE distortions are not achievable for

small σ in the SSR model, even for infinite N.

Finally, Section 7.4 discusses the results presented in Section 7.2 which show that the

optimal noise intensity appears to be infinite for infinite N, and why this result is some-

what misleading.

7.5.1 Original Contributions for Chapter 7

This chapter included the following original contributions on the large N decoding of

the SSR model:
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• Derivation of large N expressions for the optimal linear mean square error dis-

tortion, reconstruction points and linear correlation coefficient.

• Discussion of the MMSE distortion for large N, and the mean asymptotic square

error, and how these expressions cannot be made asymptotically small for small

noise intensities in the SSR model, even for infinite N.

• Discussion of the fact that for large N, the correlation coefficient and MSE distor-

tion appear to be optimised for infinite noise intensity.

7.5.2 Further Work

Possible future work and open questions arising from this chapter might include:

• More rigorous analysis and justification of results showing that the MSE distor-

tion cannot be made arbitrarily small for small noise intensities.

This concludes Chapter 7, which studies the decoding of the SSR model for large N.

Chapter 8 introduces a new variation to the SSR model, by allowing the threshold

values in each device in the model to vary independently.
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Chapter 8

Optimal Stochastic
Quantisation

A
S described and illustrated in Chapters 4 to 7, a form of stoch-

astic resonance called suprathreshold stochastic resonance can

occur in a model system where more than one identical thres-

hold device receives the same signal, but is subject to independent additive

noise. In this Chapter we relax the constraint in this model that each thres-

hold must have the same value, and aim to find the set of threshold val-

ues that either maximises the mutual information, or minimises the mean

square error distortion, for a range of noise intensities. Such a task is a

stochastic optimal quantisation problem. For sufficiently large noise, we

find that the optimal quantisation is achieved when all thresholds have the

same value. In other words, the suprathreshold stochastic resonance model

provides an optimal quantisation for small input signal-to-noise ratios.

Page 273



8.1 Introduction

8.1 Introduction

The previous four chapters consider a form of stochastic resonance, known as Suprath-

reshold Stochastic Resonance (SSR), which occurs in an array of identical noisy thres-

hold devices. The noise at the input to each threshold device is independent and addi-

tive, and this causes a randomisation of effective threshold values, so that all thresholds

have unique, but random, effective values. Chapter 4 discusses and extends Stocks’ re-

sult (Stocks 2000a) that the mutual information between the SSR model’s input and

output signals is maximised for some non-zero value of noise intensity. Chapter 6 con-

siders how to reconstruct an approximation of the input signal by decoding the SSR

model’s output signal. It is shown that the Mean Square Error (MSE) distortion be-

tween the original signal and the reconstruction is minimised for some nonzero value

of noise. Chapters 5 and 7 examine the large N behaviour of the mutual information

and MSE distortion, and show that stochastic resonant behaviour persists for large N,

and can be described by asymptotic formulas.

In this chapter, the constraint in the SSR model that all thresholds are identical is dis-

carded, and we examine how to set the threshold values to optimise the performance

of the resultant array of threshold devices for a range of noise intensities. Other than

this modification, all other conditions are identical to the SSR model. The motivation

for this modification is that—in the absence of noise—it is straightforward to show

that setting all thresholds in such a model to identical values, as is the case for the SSR

model, is not an optimal situation. To illustrate this, as discussed in Section 8.4, the

maximum mutual information—obtained with distributed fixed threshold values—in

the absence of noise is log2 (N + 1) bits per sample. In contrast, for SSR, we saw in

Chapter 5 that the maximum mutual information is of the order of 0.5 log2 (N).

Given that in the SSR case the mutual information is only 1 bit per sample in the ab-

sence of noise, it is clear that for small noise SSR is very far from optimal. The unre-

solved question is whether the SSR situation of all-identical thresholds is optimal for

any range of noise intensities. The obvious way to address this question is to attempt to

find the optimal thresholds as the noise intensity increases from zero. This is the focus

of this chapter, and can be described as an optimal stochastic quantisation problem.

This Chapter contains original work on such optimal stochastic quantisation problems

that has been published, in part, in the open literature (McDonnell et al. 2002c, Mc-

Donnell and Abbott 2004a, McDonnell et al. 2005c, McDonnell et al. 2005d, McDon-

nell et al. 2005b, McDonnell et al. 2006).
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8.1.1 Optimal Quantisation Literature Review

Deterministic optimal quantisation

Theoretical results on optimal quantisation tend to focus on the conventional situation

where quantisation is performed by fixed deterministic thresholds, and dithering is not

considered. A comprehensive reference for such results is the textbook, Gersho and

Gray (1992). Such research has usually been published in the electronic engineering

literature, either in the field of information theory or communications theory.

Optimal stochastic quantisation

There have been very few previous studies on the problem of optimal quantisation in

the presence of independent threshold noise. There has been a large amount of prior re-

search into dithering13, however without considering how to optimise the thresholds.

Other studies into noisy quantisation either do not consider input signal-to-noise ratios

that are as large as those required for SSR occur, do not consider optimal quantisation

in the presence of independent threshold noise or do not consider optimal quantisation

as the input signal-to-noise ratio decreases from very large to very small values. For

completeness, listed below are some references that, while at first glance might con-

sider stochastic quantisation in the same manner as we do here, are actually about

different topics:

• The existing work perhaps most closely related to this Chapter considers the top-

ics of “random reference” correlation (Castanie et al. 1974) and “random refer-

ence quantizing” (Castanie 1979, Castanie 1984). In particular, in Castanie (1979)

and Castanie (1984), the “transition points”—that is, threshold values—in a quan-

tisation operation are independent random variables. However, unlike here, it is

also assumed that the set of threshold values remains unique and ordered. In

our notation, this means that the random variables corresponding to the i–th

and (i + 1)–th threshold values are such that θi + ηi < θi+1 + ηi+1 ∀ i. We do

13Note that unlike the SSR effect, or what we refer to as “stochastic quantisation,” conventional dither-

ing involves adding random or pseudo-random noise signals to an input signal prior to quantisation—

whereas for SSR, the noise is independent for each threshold. Furthermore, as discussed in Section 2.3.3 of

Chapter 2, dither signals are usually assumed to have a small dynamic range when compared to the in-

put signal. All thresholds in a quantiser are subjected to the same dither signal, rather than independent

noise.
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not impose such restrictions here, and therefore there is no ordering of thres-

hold values. Furthermore, no result presented in Castanie et al. (1974), Castanie

(1979) and Castanie (1984) considers a quantiser’s performance as a function of

the threshold noise intensity.

• The “stochastic quantization” and “randomized quantisation” referred to in Ber-

ndt and Jentschel (2001) and Berndt and Jentschel (2002) does not refer to the case

of independently randomised thresholds.

• The term “random quantization” used in Bucklew (1981) and Zador (1982) refers

to random reconstruction points, rather than random thresholds, while the term

“randomized quantizer” in Zamir and Feder (1992) refers to conventional dither-

ing.

• There is a large body of research that considers noisy source coding, where a

noisy signal needs to be compressed or coded, for example, Ayanoğlu (1990).

However generally, the noise is considered to be added to the signal prior to

arriving at a quantiser. This has the effect of making all thresholds the same

random variable, rather than being independent random variables, just as with

dithering.

• The term “randomized quantizers” is also used in the context of statistical signal

detection theory, but refers to a random choice between a number of deterministic

quantisers (Tsitsiklis 1993, Blum 1995, Warren and Willett 1999).

Stochastic resonance, dithering and quantisation

In the SR literature, quantisation by a multithreshold system has only really been con-

sidered in the context of dithering (Gammaitoni 1995b, Wannamaker et al. 2000a), and

not from the point of view of optimising the threshold values. Furthermore, the work

on multithreshold systems contained in Gammaitoni (1995b) restricts the input signal

to be entirely subthreshold, which in the language of quantization theory means that

the input signal is always smaller than the quantiser bin-size. The noise signal is also

not independent for each threshold. We point out that if an attempt had been made to

optimise the threshold values in Gammaitoni (1995b), then the signal would no longer

be subthreshold, and SR would not occur, due to the lack of noise independence.

By contrast, quantisation by a single threshold has been discussed in many papers, as

pointed out elsewhere in this thesis, for example Bulsara and Zador (1996).
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However, the extension of the SSR model to an optimal quantisation problem is briefly

explored, for the first time, in Stocks (2000b). This paper firstly discusses optimal quan-

tisation in the absence of noise, and points out that an exact solution to the optimal

noiseless thresholds exists for maximum mutual information. It also comments on the

fact that it seems there have been no previous studies on optimal quantisation when

all thresholds are subject to internal noise. Stocks (2000b) does not attempt to solve this

problem by finding the optimal thresholds in the presence of noise, but does plot the

mutual information for a range of σ, i.e. the ratio of noise standard deviation to signal

standard deviation, and various N, when the thresholds are set to maximise the mutual

information in the absence of noise. These results show that the mutual information

decreases monotonically with increasing σ, and hence SR does not occur. However,

they also show that for sufficiently large σ, that the mutual information obtained with

the SSR situation of all thresholds equal to the signal mean is greater than the mutual

information obtained with the optimal noiseless thresholds. For small σ, SSR is very

far from optimal.

Similar approaches examining independently noisy and distributed thresholds, as an

extension of the SSR model were subsequently undertaken in McDonnell et al. (2002a)

and also Rousseau and Chapeau-Blondeau (2005), without attempting to find the opti-

mal thresholds values.

A very interesting observation made in Stocks (2000b) is that although better perfor-

mance than SSR in the absence of noise—or very small noise—is obtained by a quan-

tiser with optimal thresholds, the SSR situation may be more robust to non-stationary

signal distributions, since if the signal distribution changes, the optimal noiseless thres-

holds will change.

Later, Stocks (2001b) analyses the simple case of N = 3 and Gaussian signal and noise,

by finding the optimal thresholds for a range of values of σ. Stocks (2001b) states the

assumption that by symmetry, one would expect that one of three threshold values

would be zero, say θ2 = 0, and that θ1 = −θ3. With these assumptions, maximising the

mutual information depends only on a single variable, that is, θ1. The mutual informa-

tion can be calculated for various values of θ1 to find the optimal value. Stocks (2001b)

does not plot the optimal value of θ1 against σ, but does plot the mutual information

corresponding to the optimal θ1, which decreases monotonically with σ.
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Neither Stocks (2000b) nor Stocks (2001b) discuss how the mutual information is cal-

culated for the case of non-identical threshold values, however as is discussed in Sec-

tion 8.2.3, numerical calculations are reasonably straightforward, especially for small

N such as N = 3.

Thus, the sparse nature of previous work on optimal quantisation in the presence of

independent threshold noise demonstrates thst the area is wide open for study, and

this Chapter now comprehensively investigates this problem.

8.1.2 Chapter Structure

Section 8.2 describes the stochastic quantisation model, and the differences between

this model and the SSR model. It also mathematically describes the optimal stochastic

quantisation problem as an unconstrained optimisation problem. Of particular impor-

tance is the outline of a method for recursively generating the transition probabilities

for arbitrary thresholds and signal and noise distributions. Section 8.3 then describes

relevant solution methods for optimisation problems like that discussed in Section 8.2.

Next, Sections 8.4 and 8.5 present the results of finding the optimal threshold values

for various numbers of threshold devices, signal and noise distributions, and the two

different objectives of maximising the mutual information, and minimising the MSE

distortion. Section 8.6 then discusses the results of Sections 8.4 and 8.5 and explains

some of the key features of these results. Section 8.7 briefly examines how the optimal-

ity of SSR depends on N. The chapter is then summarised in the concluding section.

8.2 Optimal Quantisation Model

A schematic model of the system we examine in this Chapter is given by Fig. 4.1 in

Chapter 4. Note that when we use this model in the SSR configuration, we set all

thresholds to the same value, θ. Fig. 4.1 can be seen to be more general than SSR, since

it explicitly shows that each threshold device may have different threshold values, la-

belled θ1, .., θN.

As with the SSR model, the system consists of N threshold devices, which all receive

the same signal, x. This signal is a sequence of iid samples drawn from a continuously

valued distribution with Probability Density Function (PDF), P(x). The i–th threshold

device is subject to continuously valued iid additive noise, ηi, (i = 1, .., N) with PDF
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R(η). Each noise signal is also independent of the input signal. The output from each

comparator, yi, is unity if the input signal plus the noise, ηi is greater than the threshold,

θi, of that device and zero otherwise. The outputs from each threshold, yi, are summed

to give the overall output signal, y. Hence, y is a discrete signal which can have integer

values between 0 and N.

Unlike Chapter 4, we need to label the output of each of the i threshold devices inde-

pendently in terms of the i–th threshold value, for a given x, as

yi(x) =

{

1 if x + ηi ≥ θi,

0 otherwise.
(8.1)

The overall output of the array is still y(x) = ∑
N
i=1 yi(x), which can be expressed in

terms of the signum (sign) function as

y(x) =
1

2

N

∑
i=1

sign[x + ηi − θi] +
N

2
. (8.2)

As is the case in Chapter 4, the joint input-output PDF can be written as

P(x, y) = P(y = n|x)P(x) (8.3)

= P(x|y = n)Py(n), (8.4)

where P(y = n|x) are the transition probabilities, and Py(n) is the output probability

mass function, which can be written as

Py(n) =
∫ ∞

−∞
P(y = n|x)P(x)dx, n = 0, .., N. (8.5)

We will always assume knowledge of P(x), and from this point forward abbreviate our

notation for the transition probabilities to P(y = n|x) = P(n|x). Furthermore, in this

Chapter the PDFs studied, i.e. P(x) and R(x), are always even functions about a mean

of zero.

Recall from Table 4.1 in Chapter 4 that for the distributions considered, the variance of

the signal is a function of σx and the variance of the noise is a function of ση. It was

shown in Chapter 4 that for such distributions, when θ = 0, the mutual information

is always a function of the ratio σ = ση/σx. In this chapter we will again parame-

terise the noise intensity with this same inverse signal-to-noise ratio, σ. However, we

also briefly pointed out in Chapter 4 that if θ 6=0, the mutual information will also be a

function of θ/σx as well as σ and θ independently. We might therefore expect that for
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arbitrary thresholds, the mutual information will also depend on these factors. This

makes sense, as σx is generally a measure of the ‘width’ of the PDF P(x). Therefore,

if both ση and σ are fixed, then σx must change. If this happens, then we would in-

tuitively expect the optimal thresholds to also vary with θi/σx. Thus, we arbitrarily

set σx = 1 in the remainder of this Chapter. Therefore, results plotted against σ are

equivalent to results plotted against ση, and results given for optimal thresholds and

optimal reconstruction points can be taken to be optimal values of θi/σx and x̂n/σx.

To allow for non-identical thresholds, we generalise the notation used in Stocks (2000a)

by letting P1|x,i be the probability of device i being ‘on’—that is, the probability that the

sum of the input signal and noise exceeds the threshold value, θi—given the input

signal x. Then

P1|x,i =
∫ ∞

θi−x
R(η)dη = 1− FR(θi − x) i = 1, .., N, (8.6)

where FR(·) is the Cumulative Distribution Function (CDF) of the noise. Since we

assume R(η) is an even function of η then

P1|x,i = FR(x− θi). (8.7)

Given a noise density, R(η), and threshold value, θi, P1|x,i can be calculated exactly for

any value of x from Eqn. (8.7).

8.2.1 Moment Generating Function

The Moment Generating Function (MGF) of a random variable, X, is defined (Yates and

Goodman 2005) as

φX(s) = E[exp (Xs)], (8.8)

where s is real-valued. The main use of the MGF is to derive the moments of a random

variable, since it can be shown that the p–th moment of X is

E[Xp] =
dpφX(s)

dsp

∣

∣

∣

s=0
. (8.9)

Now consider the conditional output of the array of threshold devices,

y(x) =
N

∑
i=1

yi(x). (8.10)
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Each yi(x) in the summation are independent random variables. It can be shown in

such a situation that the MGF of y(x) is the product of the MGFs of each yi(x) (Yates

and Goodman 2005) and hence,

φy(s) =
N

∏
i=1

φyi
(x). (8.11)

However, we also have the probability mass function of y given x as P(n|x). Therefore,

from Eqn. (8.8),

φy(s) = E[exp (ys)]

=
N

∑
n=0

P(n|x) exp (ns). (8.12)

We also have for each individual yi(x) that

φyi
(s) = (1− P1|x,i) exp (0s) + P1|x,i exp (1s)

= 1− P1|x,i + P1|x,i exp (s). (8.13)

Substituting Eqn. (8.13) into Eqn. (8.11) and equating with Eqn. (8.12) gives a relation-

ship between the set of {P(n|x)} and the set of {P1|x,i} as

φy(s) =
N

∏
i=1

(1− P1|x,i + P1|x,i exp (s)) =
N

∑
n=0

P(n|x) exp (ns), (8.14)

which holds for arbitrary threshold values.

Note that instead of defining the MGF in terms of exp (s), it is sometimes defined in

terms of z−1, where z = exp (−s). Using this approach, P(n|x) can be described as the

coefficient of z−n in the power series expansion of ∏
N
i=1

[

1− P1|x,i + z−1P1|x,i

]

. That is,

N

∏
i=1

[

1− P1|x,i + z−1P1|x,i

]

=
N

∑
n=0

P(n|x)z−n. (8.15)

8.2.2 Conditional Output Moments

Since each yi(x) is independent, the expected value of y given x is the sum of the

expected values of each yi given x,

E[y|x] =
N

∑
i=1

P1|x,i. (8.16)
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For the special case of SSR, each P1|x,i = P1|x and E[y|x] = NP1|x, which agrees with

the result for SSR given in Chapter 6.

Similarly, an expression for the variance of y given x can be derived as the sum of the N

individual variances. This fact is due to the random variable y given x being the sum

of the N individual threshold outputs, yi, each of which is an independent random

variable for a given x (Yates and Goodman 2005). Thus, the covariance between yi and

yj, i 6=j is zero and

var[y|x] =
N

∑
i=1

P1|x,i(1− P1|x,i). (8.17)

We saw in Chapter 6 that the variance of y given x for a binomial distribution is

NP1|x(1− P1|x), which also precisely agrees with Eqn. (8.17) for the SSR case.

These results for the conditional mean and variance can be easily verified from the

expression for the MGF of Eqn. (8.14) and the relation of Eqn. (8.9).

8.2.3 Transition Probabilities

Recall from Chapter 4 that the transition probabilities for the SSR model are given by

the binomial distribution, as in Eqn. (4.9). Although the previous Section derives a

formula for the MGF of the conditional output distribution, this formula is not useful

for specifying the distribution itself for arbitrary thresholds. However, it is possible to

find P(n|x) numerically.

This requires making use of the probability that any given threshold device is ‘on,’

given x. Assuming P1|x,i has been calculated for desired values of x, a convenient way

of numerically calculating the probabilities P(n|x) for a given number of threshold

devices, N, is as follows.

Let Tk
j (x) denote the probability that j of the thresholds 1, . . . , k are ‘on’, given x. Then

T1
0 (x) = 1− P1|x,1 and T1

1 (x) = P1|x,1 and we have a set of recursive formulas,

Tk+1
0 (x) = (1− P1|x,k+1)Tk

0 (x),

Tk+1
j (x) = P1|x,k+1Tk

j−1(x) + (1− P1|x,k+1)Tk
j (x) j = 1, .., k,

Tk+1
k+1 (x) = P1|x,k+1Tk

k (x). (8.18)
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The recursion ends when k + 1 = N and we have P(n|x) given by TN
j (x) = TN

n (x). We

can rewrite Eqn. (8.18) in matrix form as

























Tk+1
0 (x)

Tk+1
1 (x)

Tk+1
2 (x)

...

Tk+1
k (x)

Tk+1
k+1 (x)

























=

























0 Tk
0 (x)

Tk
0 (x) Tk

1 (x)

Tk
1 (x) Tk

2 (x)
...

...

Tk
k−1(x) Tk

k (x)

Tk
k (x) 0

























[

P1|x,k+1

1− P1|x,k+1

]

. (8.19)

Thus, to derive the transition probabilities, P(n|x), for a given x and any arbitrary

threshold settings and noise PDF, it suffices to firstly calculate the set of P1|x,i from

Eqn. (8.6), and then to apply the recursive formula of Eqn. (8.19).

Note that this approach also works well in the special case of SSR where all thresholds

are zero. Although in this case P(n|x) can be calculated from the binomial formula, for

large N using the binomial formula directly requires calculations of very large num-

bers, since (N
n ) can be very large. Such large numbers cannot be accurately represented

in a computer. The alternative approach of using the recursive formulas of Eqn. (8.19)

has the benefit that P(n|x) can be found with excellent accuracy for very large values of

N, since no such large numbers need to be calculated. In fact, since each Tk
j represents

a probability, all numbers used in the calculation of each P(n|x) are numbers between

zero and unity.

The order of complexity of a software implementation of the recursive formula of

Eqn. (8.19) is O(N2), for any given x. Thus, if N is doubled, then the run time of

an implementation will be approximately quadrupled. More specifically, if P1|x,i and

1− P1|x,i are pre-computed, there will be 0.5N(N − 1) additions and (N + 2)(N − 1)

multiplications to find the transition probabilities.

Appendix B gives expressions for a number of probability distributions, and for each

of these gives expressions for P1|x obtained directly from Eqn. (8.6) for threshold value,

θ.

We are now ready to mathematically describe our optimal stochastic quantisation pro-

blem.
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8.2.4 Optimisation Problem Formulation

We denote a vector of threshold values, (θ1, θ2, .., θN) as θ. Note that for the purpose

of optimisation, the order of the values of the vector components is not important.

The aim is to find the vector of thresholds, θ
∗, that maximises some objective function,

f (σ, θ1, θ2, .., θN) = f (σ, θ), as the noise parameter, σ varies. The optimal value of the

objective function for a given σ is then f (σ, θ
∗). Such a problem can be formulated for

a given value of σ as the nonlinear—since the objective function will be nonlinear—

optimisation problem

Find: max
θ

f (σ, θ)

subject to: θ ∈ R
N. (8.20)

Such a problem can be solved by standard optimisation techniques, as will be de-

scribed in Section 8.3.

8.3 Optimisation Solution Algorithms

8.3.1 Unconstrained Multidimensional Optimisation

The optimisation problem of (8.20) simply describes an N dimensional unconstrained

function optimisation. The function f (σ, θ) is, as we will see, a nonlinear function

of θ. Solving such a problem is amenable to many standard techniques (Nocedal and

Wright 1999), most of which rely on calculations of the gradient of the objective function

with respect to the free variables, which in this case is the vector θ,

∇ f (σ, θ) =

(

d f

dθ1
,

d f

dθ1
, · · · ,

d f

dθN

)

. (8.21)

Extrema—maxima, minima or saddle points—occur when the gradient vector is equal

to 0.

Standard optimisation techniques usually start with some arbitrary initial solution, say

θ0, and then apply some method of finding a new solution, θ1, from θ0, that increases

the value of the objective function. This process is repeated in an iterative fashion, until

no further increase in the objective function can be found. Finding a new vector that

increases the value of the objective function is often achieved by finding the gradient

vector at a current solution, θk, and then performing a one dimensional search for the

maximum in the direction of the gradient.
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The method used to obtain the results presented in this Chapter is a method called

the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. This algorithm falls into the

sub-category of optimisation algorithms known as quasi-Newton methods (Press et al.

1992). The BFGS method was found to be superior in speed and convergence to other

similar methods such as the Fletcher-Reeves-Polak-Ribiere conjugate gradient method,

and the Powell conjugate gradient method. Further information on these algorithms

can be found in Nocedal and Wright (1999) or Press et al. (1992).

Note that although this is not relevant for an implementation of such an optimisation

procedure, changing the threshold vector will induce a new set of transition probabili-

ties, P(n|x), which will give a new value of the objective function. Thus, it is equivalent

to write the optimisation problem of (8.20) in terms of an optimisation over the N + 1

correlated functions of x that describe the transition probabilities. Such formulations

are often solved using the calculus of variations.

For example, our optimisation problem is similar to previous work on clustering and

neural coding problems solved using a combination of the calculus of variations and

a method known as deterministic annealing (Rose et al. 1990, Rose et al. 1992, Rose

1994, Rose 1998, Tishby et al. 1999, Dimitrov and Miller 2001, Dimitrov et al. 2003).

In particular, the formulation reached in Dimitrov and Miller (2001) can be expressed

in a fashion identical to Problem (8.20) with one exception. Here, we have structural

constraints on how the transition probabilities, P(n|x), are formed, since—as expressed

by Eqn. (8.19)—each P(n|x) is a function of the set of probabilities, P1|x,i. Due to this

difference, the solution method used in Dimitrov and Miller (2001) to find the optimal

conditional distribution, {P(n|x)}, cannot be used here, and instead we concentrate on

optimizing the only free variable, the vector of threshold values, θ.

8.3.2 Dealing with Local Optima

One of the major problems with standard deterministic optimisation methods such as

the BFGS method, is that they do not cope well when applied to objective functions that

possess more than one local minima or maxima. If the objective function is known to

be convex, this is not an issue. However, if it is not convex, then these standard meth-

ods will converge towards a local optimum, but give no guarantees about whether or

not this optimum is the global optimum. The local optimum found depends on the

initial solution used. Hence, one possibility for trying to find a good local optimum
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is to run a standard optimisation procedure many times, using many different initial

solutions, and then pick the solution found with the largest value—if the problem is a

maximisation—of the objective function.

Numerical experiments show that for the objective functions considered in this chap-

ter, there are many local maxima. In particular, it seems that the SSR situation of all

thresholds zero is always a local optimum. This means that the gradient of the mutual

information with respect to θ is always the zero vector, 0, at θ = 0.

However, we will see that there is a special structure to the local optima, which make

it theoretically possible to find all local optima. In particular, numerical experiments

indicate that there are at most two locally optimal solutions corresponding to each pos-

sible ordered clustering of N thresholds to unique values. For example, in the case of

N = 3, there are four locally optimal situations—1) the case of all thresholds equal to

the same value; 2) the case of all three threshold values unique; 3) the case of two thres-

holds being equal to the same positive value, and the third threshold being negative;

and 4) the case of one threshold being positive, and the other two thresholds being

equal to the same negative value. Note that the third and fourth cases are effectively

equivalent, as the optimal threshold values in the third case are the negative of the

optimal threshold values in the fourth case, and give the same function maximum.

Thus, in order to find the globally optimal solution, all possible ‘clusters’ of N thres-

holds can be trialed. The dimension of the optimisation problem in each case is the

number of unique threshold values. The locally optimal thresholds only change very

slightly for a small change in σ. Hence, for each possible local solution, once the op-

timal thresholds are found for a particular value of σ, these values can be used as the

initial values for a new value of σ a very small increment larger.

This procedure works well for the results presented in this Chapter where N is no

greater than five, however, the number of local optima increases combinatorially with

N, and it is not practical to consider all local optima for N any larger than 5. As

mentioned, one way of dealing with this is to simply try a number of random ini-

tial solutions, and pick the best. Another way is to employ random search optimisa-

tion algorithms such as simulated annealing (Kirkpatrick et al. 1983) or genetic algo-

rithms (Beasley et al. 1993). Unlike deterministic methods, such algorithms are known

to be able to ‘climb’ out of local optima, and provide a greater chance of finding a global

optimum. However, for the small N results presented in this Chapter, it was found that

the deterministic combination of the BFGS and initial solution methods outlined above
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is far superior to random search methods in runtime and for ensuring all local-optima

are tracked.

Having now described the solution methods we use, the next two Sections give results

for the optimal stochastic quantisation for maximum mutual information and mini-

mum MSE distortion.

8.4 Optimal Quantisation for Mutual Information

Recall from Chapter 4 that the mutual information between the input and output sig-

nals of the array of threshold devices in Fig. 4.1 is given by

I(x, y) = H(y)− H(y|x)

= −
N

∑
n=0

Py(n) log2 Py(n)−
(

−
∫ ∞

−∞
P(x)

N

∑
n=0

P(n|x) log2 P(n|x)dx

)

, (8.22)

where H(y) is the entropy of the output signal, and H(y|x) is the average conditional

output entropy. Given the procedure described in Section 8.2.3 for numerically cal-

culating the transition probabilities for any value of x, the mutual information can be

calculated for arbitrary thresholds and P(x) by numerical integration of Eqn. (8.22).

Note that this integration requires calculations of P(n|x) from Eqn. (8.19) for many

values of x.

Given the aim of maximising the mutual information, the optimisation problem is

Find: max
θ

I(x, y)

subject to: θ ∈ R
N. (8.23)

8.4.1 Absence of Noise

As pointed out in Stocks (2000b), an exact solution to Problem (8.23) can be found in

the absence of noise, that is, when σ = 0. In this case, the average conditional output

entropy, H(y|x), is zero, and therefore the mutual information is the output entropy,

H(y). Maximising the mutual information reduces to maximising the output entropy.

It is well known that for a discrete random variable this occurs when all states are

equally likely (Cover and Thomas 1991), and hence I(x, y) = log2 (N + 1). Thus, in
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the absence of noise, we require that the output probability mass function is

Py(n) =
1

N + 1
n = 0, .., N. (8.24)

If we let θn > θn−1, then—since there is no threshold noise—the output, y, is in state

n iff x ∈ [θn−1, θn]. This means that there is no ambiguity about what output state

corresponds to a given value of x, and that therefore P(n|x) = 1 ∀ x ∈ [θn−1, θn]. More

precisely, since Py(n) =
∫

x P(x)P(n|x)dx, this requires that

∫ θ1

−∞
P(x)dx =

1

N + 1
∫ θi+1

θi

P(x)dx =
1

N + 1
, i = 1, .., n− 1

and
∫ ∞

θN

P(x)dx =
1

N + 1
. (8.25)

This implies that

Fx(θi) =
i

N + 1
, i = 1, .., N, (8.26)

where Fx(·) is the CDF of the input signal, and that therefore

θi = F−1
x

(

i

N + 1

)

, i = 1, .., N, (8.27)

where F−1
x (·) is the Inverse Cumulative Distribution Function (ICDF) of the input sig-

nal.

Hence, a simple formula for the optimal thresholds for mutual information is available

in the absence of noise and shows that all N optimal thresholds are uniquely valued.

Optimal decoding for maximised I(x, y) in the absence of noise

If the thresholds are set to maximise the noiseless mutual information, then from Eqn.

(8.40) the Minimum Mean Square Error (MMSE) reconstruction points are given by

x̂0 = (N + 1)
∫ θ1

−∞
xP(x)dx,

x̂n = (N + 1)
∫ θn+1

θn

xP(x)dx n = 1, .., N − 1

x̂N = (N + 1)
∫ ∞

θN

xP(x)dx, (8.28)

since all output states are equally probable. Substituting Eqn. (8.27) into Eqn. (8.28)

gives the exact optimal MMSE reconstruction points for the thresholds that maximise

the noiseless information.
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We can simplify this substitution by making a change of variable. Let x = F−1
x ( τ

N+1).

Then τ = (N + 1)Fx(x) and dτ = (N + 1)P(x)dx. Carrying this out in Eqn. (8.28), and

using Eqn. (8.26) gives

x̂n =
∫ τ=n+1

τ=n
F−1

x

(

τ

N + 1

)

dτ n = 0, .., N. (8.29)

The integral in Eqn. (8.29) can be solved exactly in some cases. For example, for a

uniformly distributed signal we get

x̂n = σx

(

2n + 1

2N + 2
− 1

2

)

n = 0, .., N, (8.30)

and for a logistically distributed signal we get

x̂n =

√
3σx

π
((n + 1) ln(n + 1)− n ln(n) + (N − n) ln(N − n)−

(N + 1− n) ln(N + 1− n)) , n = 0, .., N. (8.31)

8.4.2 Results in the Presence of Noise

Results for N = 2, .., 5

We now present the results of solving Problem (8.23) for nonzero σ, and various mat-

ched signal and noise distributions. The optimal thresholds as found by the deter-

ministic algorithm explained in Section 8.3, are plotted for N = 2, 3, 4 and 5, and the

optimal reconstruction points for the thresholds of the N = 5 case. Discussion of these

results is left for Section 8.6.

Results for N = 15

Fig. 8.6 shows the optimal thresholds and mutual information for N = 15 and Gaus-

sian signal and noise. The same qualitative behaviour as for each N ≤ 5 case can be

seen. However, we cannot be completely sure that the thresholds shown provide the

globally optimal solution, as the number of local optima is now very large. However,

provided only near optimal thresholds are required, we can find an approximation to

the optimal thresholds for reasonably large N by applying the BFGS method for var-

ious initial conditions and can still be reasonably confident that the threshold values

shown provide values of the mutual information very close to the optimal solution.

The next Section looks at optimal quantisation for the objective of minimising the MSE

distortion.
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Figure 8.1. Optimal thresholds for mutual information, N = 2. Figs. 8.1(a), 8.1(b), 8.1(c)

and 8.1(d) show plots of the optimal thresholds for four different matched signal and

noise pairs against increasing noise intensity, σ. The optimal noiseless threshold values

calculated from Eqn. (8.27) are shown by large black dots. Fig. 8.1(e) shows the mutual

information obtained with these optimal threshold settings against increasing σ, as well

as the mutual information for SSR shown with dotted lines. Fig. 8.1(f) shows the

percentage difference between the mutual information obtained by optimally setting the

thresholds, and that for SSR, against increasing σ. For σ greater than some critical

value, σc, the SSR situation can be seen to be optimal.
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Figure 8.2. Optimal thresholds for mutual information, N = 3. Figs. 8.2(a), 8.2(b), 8.2(c)

and 8.2(d) show plots of the optimal thresholds for four different matched signal and

noise pairs against increasing noise intensity, σ. The optimal noiseless threshold values

calculated from Eqn. (8.27) are shown by large black dots. Fig. 8.2(e) shows the mutual

information obtained with these optimal threshold settings against increasing σ, as well

as the mutual information for SSR shown with dotted lines. Fig. 8.2(f) shows the

percentage difference between the mutual information obtained by optimally setting the

thresholds, and that for SSR, against increasing σ. For σ greater than some critical

value, σc, the SSR situation can be seen to be optimal.
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Figure 8.3. Optimal thresholds for mutual information, N = 4. Figs. 8.3(a), 8.3(b), 8.3(c)

and 8.3(d) show plots of the optimal thresholds for four different matched signal and

noise pairs against increasing noise intensity, σ. The optimal noiseless threshold values

calculated from Eqn. (8.27) are shown by large black dots. Fig. 8.3(e) shows the mutual

information obtained with these optimal threshold settings against increasing σ, as well

as the mutual information for SSR shown with dotted lines. Fig. 8.3(f) shows the

percentage difference between the mutual information obtained by optimally setting the

thresholds, and that for SSR, against increasing σ. For σ greater than some critical

value, σc, the SSR situation can be seen to be optimal.

Page 292



Chapter 8 Optimal Stochastic Quantisation

0 0.2 0.4 0.6 0.8 1 1.2
−1.5

−1

−0.5

0

0.5

1

1.5

O
pt

im
al

 T
hr

es
ho

ld
s

σ

θ
1

θ
2

θ
3

θ
4

θ
5

(a) Gaussian signal & noise

0 0.2 0.4 0.6 0.8 1 1.2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

O
pt

im
al

 T
hr

es
ho

ld
s

σ

θ
1

θ
2

θ
3

θ
4

θ
5

(b) Uniform signal & noise

0 0.2 0.4 0.6 0.8 1 1.2
−1.5

−1

−0.5

0

0.5

1

1.5

O
pt

im
al

 T
hr

es
ho

ld
s

σ

θ
1

θ
2

θ
3

θ
4

θ
5

(c) Laplacian signal & noise

0 0.2 0.4 0.6 0.8 1 1.2
−1.5

−1

−0.5

0

0.5

1

1.5

O
pt

im
al

 T
hr

es
ho

ld
s

σ

θ
1

θ
2

θ
3

θ
4

θ
5

(d) Logistic signal & noise

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

I(
x,

y)

σ

Gaussian
Uniform
Laplacian
Logistic

(e) Mutual Information

0 0.5 1 1.5
0

5

10

15

20

25

30

35

40

45

50

P
er

ce
nt

ag
e 

D
iff

er
en

ce

σ

Gaussian
Uniform
Laplacian
Logistic

(f) Percentage Difference

Figure 8.4. Optimal thresholds for mutual information, N = 5. Figs. 8.4(a), 8.4(b), 8.4(c)

and 8.4(d) show plots of the optimal thresholds for four different matched signal and

noise pairs against increasing noise intensity, σ. The optimal noiseless threshold values

calculated from Eqn. (8.27) are shown by large black dots. Fig. 8.4(e) shows the mutual

information obtained with these optimal threshold settings against increasing σ, as well

as the mutual information for SSR shown with dotted lines. Fig. 8.4(f) shows the

percentage difference between the mutual information obtained by optimally setting the

thresholds, and that for SSR, against increasing σ. For σ greater than some critical

value, σc, the SSR situation can be seen to be optimal.
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Figure 8.5. Optimal reconstruction points for mutual information, N = 5. Figs. 8.5(a),

8.5(b), 8.5(c) and 8.5(d) show plots of the optimal reconstruction points for four dif-

ferent matched signal and noise pairs against increasing noise intensity, σ. The optimal

noiseless reconstruction points calculated from Eqn. (8.29) are shown by large black

dots.
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Figure 8.6. Optimal thresholds for mutual information, Gaussian signal and noise, N = 15.

Fig. 8.6(a) shows the optimal thresholds for Gaussian signal and noise against increasing

noise intensity, σ. The optimal noiseless threshold values calculated from Eqn. (8.27) are

shown by large black dots. Fig. 8.6(b) shows the mutual information for the thresholds

shown in Fig. 8.6(a), as well as the mutual information obtained in the SSR case. As

with the N = 2, .., 5 cases, for σ greater than some critical value, σc, the SSR situation

can be seen to be optimal.
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8.5 Optimal Quantisation for MSE Distortion

8.5.1 Linear Decoding

Recall from Chapter 6 that for zero-mean input signals and a linear decoding of the

form ŷ = ay + b, that if the condition E[ŷ] = 0 is imposed, then b = −aE[y]. Note that

while for SSR the expected value of the output is E[y] = N/2, this will certainly not

necessarily be the case for arbitrary thresholds.

As discussed in Chapter 6, with such a linear decoding, the optimal value of a is given

by a = E[xy]
var[y]

, so that the optimal linear reconstruction points are

ŷ =
E[xy]

var[y]
(y− E[y]) . (8.32)

Such a decoding is the optimal linear decoding, and is known as the Wiener decoding.

The MSE distortion with such a decoding can be written in terms of the correlation

coefficient of a linear decoding, ρxy, as

MSE = E[x2](1− ρ2
xy), (8.33)

where the correlation coefficient can be expressed as

ρxy =
E[xy]

√

E[x2]var[y]
. (8.34)

Minimising the linear decoding MSE is equivalent to maximising the linear decoding

correlation coefficient. Since we also assume knowledge of the input signal PDF, and

therefore of its mean square value, E[x2], minimising the linear decoding MSE distor-

tion is equivalent to solving the optimisation problem,

Find: max
θ

E[xy]
√

var[y]

subject to: θ ∈ R
N. (8.35)

8.5.2 Nonlinear Decoding

Recall from Chapter 6 that the optimal MSE decoding is the nonlinear decoding given

by x̂n = E[x|n]. This decoding results in the minimum possible MSE distortion for

given transition probabilities, which is given by

MMSE = E[x2]− E[x̂2]. (8.36)
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Thus, since E[x2] is known, if the aim is to find the thresholds that minimise the MSE

distortion resulting from using the MMSE decoding, the optimisation problem is

Find: max
θ

E[x̂2]

subject to: θ ∈ R
N. (8.37)

8.5.3 Absence of Noise

Unlike maximising the mutual information, in general no simple formula exists for

the threshold values that minimise the MSE distortion in the absence of noise for an

arbitrary signal PDF. However, the optimal noiseless thresholds can be easily found

numerically for a given P(x), and the reconstruction points shown to all be unique.

In the absence of noise, assume all thresholds are unique, and that therefore a given

value of the output, y = n, can only be achieved by values of x that lie between consec-

utive thresholds, say θi−1 and θi. The optimal MMSE reconstruction points are given

by

x̂n = Ex[x|n] =
∫

x
xP(x|n)dx, (8.38)

and thus, since P(n|x) is unity for x ∈ [θn, θn+1], then

Py(0) =
∫ θ1

−∞
P(x)dx,

Py(n) =
∫ θn+1

θn

P(x)dx n = 1, .., N − 1

Py(N) =
∫ ∞

θN

P(x)dx, (8.39)

and

x̂0 =
1

Py(0)

∫ θ1

−∞
xP(x)dx,

x̂n =
1

Py(n)

∫ θn+1

θn

xP(x)dx n = 1, .., N − 1

x̂N =
1

Py(N)

∫ ∞

θN

xP(x)dx. (8.40)

Therefore, each MMSE reconstruction point is the centroid of the corresponding parti-

tion of the input PDF. The MMSE distortion is

MMSE = E[x2]−
N

∑
n=0

1

Py(n)

(

∫ θn+1

θn

xP(x)dx

)2

. (8.41)
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In the absence of noise, finding the optimal thresholds for the MMSE distortion can be

achieved by a simple iterative procedure known as the Lloyd Method I algorithm (Lloyd

1982), which is a commonly used technique for finding the optimal quantisation for a

given source PDF. A second algorithm known as the Lloyd Method II algorithm is also

called the Lloyd-Max algorithm, due its rediscovery by Max (1960)14. See also Gersho

and Gray (1992) and Gray and Neuhoff (1998) for more details. The Lloyd Method I

algorithm begins with an initial guess for the reconstruction points, and then finds the

optimal thresholds for those points, which for MSE distortion, and any given decoding,

can be shown to simply be the midpoints of the reconstruction points. Given these

new thresholds, a new set of reconstruction points are found from Eqn. (8.40), and the

new MMSE distortion from Eqn. (8.41). This new MMSE distortion can be shown to

smaller than the previous MMSE distortion. This iteration is repeated until the MMSE

distortion no longer decreases, at which point the optimal noiseless thresholds and

reconstruction points have been found.

The Lloyd method I algorithm can also be used for the case of finding the optimal

thresholds for a linear decoding. The only difference is that instead of calculating the

new optimal reconstruction points at each iteration from Eqn. (8.40), the optimal linear

reconstruction points are calculated from Eqn. (8.32), and the resulting MSE distortion

from Eqn. (8.33). The update of the optimal thresholds at each iteration remains as the

midpoint between the current reconstruction points.

8.5.4 Results in the Presence of Noise

We now present the results of solving Problems (8.35) and (8.37) for nonzero σ and

various matched signal and noise distributions. Due to the results having the same

qualitative behaviour of those found in the case of maximising the mutual informa-

tion, we present optimal thresholds only for the case of N = 5 for minimised linear

decoding MSE distortion, and N = 2 and N = 5 for minimised MMSE distortion, and

the optimal reconstruction points for N = 5 and MMSE distortion. Since the uniform

distribution has a different mean square value than the other distributions for the same

value of σ, we plot the SQNR rather than the MSE distortion.

14Note that both of Lloyd’s algorithms were first described in an unpublished Bell Laboratories

technical report in 1957 (Gersho and Gray 1992), and not published in the open literature until

1982 (Lloyd 1982).
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Figure 8.7. Optimal thresholds for linear decoding MSE distortion, N = 5. Figs. 8.7(a),

8.7(b), 8.7(c) and 8.7(d) show plots of the optimal thresholds for four different matched

signal and noise pairs against increasing increasing noise intensity, σ, and the objective

of minimised linear decoding MSE distortion. The optimal noiseless thresholds, as

calculated by the Lloyd Method I algorithm, are shown with large black dots. Fig. 8.7(e)

shows the SQNR obtained with these optimal threshold settings against increasing σ, as

well as the linear decoding SQNR for SSR, which is shown with dotted lines. Fig. 8.7(f)

shows the percentage difference between the MSE distortion obtained by optimally

setting the thresholds, and that for SSR, against increasing σ. For σ greater than some

critical value, σc, the SSR situation can be seen to be optimal.
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Figure 8.8. Optimal thresholds for MMSE distortion, N = 2. Figs. 8.8(a), 8.8(b), 8.8(c)

and 8.8(d) show plots of the optimal thresholds for four different matched signal and

noise pairs against increasing noise intensity, σ, and the objective of minimised MMSE

distortion. The optimal noiseless thresholds, as calculated by the Lloyd Method I al-

gorithm, are shown with large black dots. Fig. 8.8(e) shows the SQNR obtained with

these optimal threshold settings against increasing σ, as well as the SQNR for SSR,

which is shown with dotted lines. Fig. 8.8(f) shows the percentage difference between

the MMSE distortion obtained by optimally setting the thresholds, and that for SSR,

against increasing σ. For σ greater than some critical value, σc, the SSR situation can

be seen to be optimal.
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Figure 8.9. Optimal thresholds for MMSE distortion, N = 5. Figs. 8.9(a), 8.9(b), 8.9(c)

and 8.9(d) show plots of the optimal thresholds for four different matched signal and

noise pairs against increasing noise intensity, σ, and the objective of minimised MMSE

distortion. The optimal noiseless thresholds, as calculated by the Lloyd Method I al-

gorithm, are shown with large black dots. Fig. 8.9(e) shows the SQNR obtained with

these optimal threshold settings against increasing σ, as well as the SQNR for SSR,

which is shown with dotted lines. Fig. 8.9(f) shows the percentage difference between

the MMSE distortion obtained by optimally setting the thresholds, and that for SSR,

against increasing σ. For σ greater than some critical value, σc, the SSR situation can

be seen to be optimal.
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Figure 8.10. Optimal reconstruction points for minmised MMSE, N = 5. Figs. 8.10(a),

8.10(b), 8.10(c) and 8.10(d) show plots of the optimal reconstruction points for four

different matched signal and noise pairs against increasing noise intensity, σ. The

optimal noiseless reconstruction points, as calculated after applying the Lloyd Method

I algorithm from Eqn. (8.40) are shown with large black dots.
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8.6 Discussion of Results

8.6.1 Observations

Firstly, we see from the figures above that the mutual information, or MSE distortion,

obtained with the optimal thresholds is strictly monotonic with increasing σ. This

means that no SR effect is seen for optimised thresholds. For small σ, optimising the

thresholds gives a substantial increase in performance. However, as σ increases, the

difference between the SSR case and optimised thresholds decreases, until for suffi-

ciently large σ, SSR is optimal. While the fact that the performance decreases with

increasing σ means that there is no advantage to be gained by increasing the noise

level in such an optimised system, the fact that SSR is optimal for sufficiently large

noise intensity is still highly significant. Unlike a single threshold device, where the

optimal threshold value is always at the signal mean regardless of the noise level and

therefore SR can never occur, this result shows that when the noise is large, changing

the thresholds from a situation where SR can occur gains no advantage.

Secondly, inspection of all the figures showing optimal threshold values against σ in

the previous two Sections indicates several common features of the optimal threshold

configuration. Firstly, for very small noise, the optimal thresholds and reconstruction

points are consistent with the optimal noiseless values. There does not appear to be

a discontinuity in the optimal thresholds as the noise intensity increases from zero to

some small nonzero value.

The most striking feature is the fact that bifurcations are present. Consider firstly the

simplest case of maximised mutual information and N = 2. For each signal and noise

pair, for σ between zero and some critical value greater than zero, σc, the optimal place-

ment of the two thresholds are at ±A, where A > 0. However, for σ > σc, the optimal

thresholds both have the same value. Apart from the uniform case, this value is always

the signal mean of zero, which is simply the SSR situation. For the uniform case, we

see that for σ ∈ [σc, 1], we have the SSR situation. However for σ > 1, both thresholds

remain identical, but via a discontinuous bifurcation this identical value is no longer

zero.

The behaviour for small σ and large σ seen in the N = 2 case persists for larger N.

That is, for sufficiently small σ, the optimal threshold values are all unique, and for

sufficiently large σ—with the exception of the case of uniform signal and noise, N =
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5 and minimised linear decoding MSE distortion—the optimal threshold values are

identical for each threshold.

Most importantly, apart from the special situation of the uniform case, it is evident in

all cases that above a certain value of σ the SSR situation is optimal. That is, the optimal

quantisation for large noise is to set all thresholds to the signal mean.

For N > 2, we see that there are also regions of σ where some fraction of the optimal

thresholds tend to cluster to particular identical values. We will refer to the number of

thresholds with the same value as the size of a cluster, and the actual threshold value

of those thresholds as the value of a cluster.

This tendency of the optimal thresholds to form clusters at identical values leads to

regions of asymmetry about the x-axis, since if, for example, N = 5 and there are

two clusters of size three and two, then the value of the cluster of size two is larger

in magnitude than the value of the cluster of size three. Note that in such regions

of asymmetry, there are two globally optimal threshold vectors. The second global

solution is simply the negative of the set of thresholds in the first global solution, that

is, f (θ
∗) = f (−θ

∗). This result stems from the fact that both the signal and noise PDFs

are even functions.

We can also see that it is quite common for bifurcations to occur, so that the number

of clusters suddenly decreases with increasing σ. Sometimes a continuous bifurcation

occurs as more than one cluster converges to the same value, as σ increases, to form a

larger, merged, cluster. On other occasions a discontinuous bifurcation occurs, and two

clusters with completely different values merge to form a larger cluster with a value

somewhere between the two values of the two merging clusters. It does not appear

possible for the number of clusters to increase with increasing σ, other than, again, for

the case of uniform signal and noise, and minimised linear decoding MSE distortion.

However, further bifurcations can occur within a region of σ with k clusters, where the

order of the size of the clusters changes with respect to the values of those clusters.

For example, for Gaussian signal and noise and N = 5, Fig. 8.4(a) shows that there are

three distinct clusters at σ = 0.42, and three at σ = 0.45. However there is a bifurcation

between σ = 0.42 and σ = 0.43, since for σ = 0.42 the optimal solution is to have

clusters of size 2, 2, 1, in that order from smallest cluster values to largest, while for

σ = 0.43, the optimal solution is to have clusters of size 2, 1, 2.
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Fig. 8.11 further illustrates the behaviour of the clusters for this case, for six different

values of σ. Each sub-panel shows the size of each cluster on the y-axis, and the value

of each cluster on the x-axis. For noise greater than the final bifurcation point, we have

the SSR region occurring, that is, the optimal solution is for all thresholds to be equal

to the signal mean of zero.
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Figure 8.11. Optimal mutual information threshold clusters for various σ, N = 5. Panel plot

showing the number of thresholds in each cluster for various values of σ in the case of

Gaussian signal and noise and N = 5, and maximised mutual information.

The bifurcational structure is quite surprising, but appears to be fundamental to the

problem type, since the same qualitative behaviour occurs whether we are maximising

the mutual information, or minimising the MSE distortion. In Chapter 9, we will see

the same behaviour for constrained mutual information maximisation. We can also

see that the pattern is qualitatively the same for each signal and noise pair considered.

Furthermore, numerical experiments find very similar patterns appear for mixed sig-

nal and noise distributions, such as a uniform signal subject to Gaussian noise.

However, there are some anomalies that make it difficult to generalise too much. For

example consider the case of logistic signal and noise, and N = 3 shown in Fig. 8.2(d).

In this case, there is only one bifurcation, since at some value of σ between 0.68 and
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0.69, the optimal threshold solution changes from all three thresholds being unique, to

all three thresholds being zero, without an intermediate region with a cluster of size

two, and a cluster of size one. Furthermore, while in the Gaussian case of N = 5

there are five bifurcations, one of which occurs within a region of three clusters, in the

logistic case of N = 5, there are only three bifurcations, since there is no region where

there are four clusters.

A clue to the reason for the bifurcations comes from inspection of the plots of the op-

timal reconstruction points corresponding to the optimal thresholds. Despite the bi-

furcational structure in the optimal thresholds, in all cases but the uniform case, the

optimal reconstruction points appear to change very smoothly with σ. This indicates

that at values of σ where discontinuous bifurcations occur in the optimal thresholds,

that more than one local optimum gives the same optimal reconstruction points.

8.6.2 Mathematical Description of Optimal Thresholds

Quantiser point density function

We now mathematically describe the observations made above. For the purposes of

optimisation, the ordering of the optimal threshold vector, θ
∗, is not important. How-

ever, to simplify the mathematical description, we now introduce an ordered sequence

notation for the optimal thresholds. Specifically, we label the i-th optimal threshold

value as θ∗i , so that the sequence (θ∗i )N
i=1 is non-decreasing. As we saw in Eqn. (8.27),

in the absence of noise, it is straightforward to show for the goal of maximum mutual

information that each optimal threshold is given by θ∗i = F−1
x

(

i
N+1

)

.

We now introduce a concept used in the theoretical analysis of high resolution quan-

tisers in information theory—that of a quantiser point density function, λ(x), defined

over the same support variable as the source PDF, P(x) (Gray and Neuhoff 1998). The

point density function has the property that
∫

x λ(x)dx = 1, and usually is only used

in the context where the number of thresholds is very large. In this situation, the point

density function gives the density of thresholds across the support of the signal PDF.

For any given N, and some nonzero value of σ, we observe from the plots of optimal

thresholds that our empirically optimal threshold sequence, (θ∗i )N
i=1, can have at most

k(σ) unique values, where 1≤k≤N. When bifurcations occur as σ increases, k(σ) may

either decrease or—in the situation where the ordering of clusters change—remain con-

stant.
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We now denote v(j, σ) as the fraction of the total thresholds in the j-th cluster, at noise

intensity σ, where j ∈ {1, .., k(σ)}, so that ∑
k(σ)
j=1 v(j, σ)=1. Thus, v(j, σ) is the size of the

j-th cluster divided by N.

Denote the value of the j-th cluster as Θj, so that the size of the cluster at x = Θj is

Nv(j, σ). As with the ordered optimal threshold sequence, we can define an ordered

sequence of cluster values as (Θj)
k(σ)
j=1 . Unlike the optimal threshold sequence, this

sequence is strictly increasing.

We are now able to write a point density function as a function of σ to describe our

empirically optimal threshold configuration. This is

λ(x, σ) =
k(σ)

∑
j=1

v(j, σ)δ(x−Θj), (8.42)

where δ(·) is the delta function. We also note that
∫ a

x=−∞
λ(x, σ)dx is the fraction of

thresholds with values less than or equal to a, and that
∫ ∞

x=−∞
λ(x, σ)dx = 1.

For the special case of σ = 0 and maximised mutual information, we can use Eqn. (8.27)

to write the analytically optimal point density function as

λ(x, 0) =
N

∑
j=1

v(j, 0)δ(x−Θj) =
N

∑
i=1

1

N
δ

(

x− F−1
x

(

i

N + 1

))

. (8.43)

As an example for nonzero σ, consider the case of N = 5 and Gaussian signal and noise

shown for maximised mutual information and various σ in Fig. 8.11. The value of k

for each σ and the corresponding cluster sizes, Nv(j, σ), and the approximate cluster

values, (Θj)
k(σ)
j=1 , are shown in Table 8.1.

So far, we have point density functions consisting only of singularities. In high reso-

lution quantisation theory, point density functions are generally continuous functions,

analogous to PDFs. Due to the small N considered here, our point density functions

are analogous to discrete probability mass functions, rather than PDFs. Discussion of

the behaviour of this description of the optimal thresholds for large N is left for future

work.

Conditional output moments

Using the notation introduced above, we are able to rewrite our previous expressions

for the conditional mean and variance of the output encoding, y, for arbitrary thres-

holds.
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Table 8.1. Parameters for point density function, N = 5, Gaussian signal and noise, and

maximised mutual information.

σ k(σ) {Nv(j, σ)} (Θj)
k(σ)
j=1

0.3 5 {1, 1, 1, 1, 1} (−1.0410,−0.4164, 0.0, 0.4164, 1.0410)

0.39 4 {1, 1, 2, 1} (−0.8075,−0.5967, 0.2288, 0.9489)

0.42 3 {2, 2, 1} (−0.6783, 0.2549, 0.8770)

0.45 3 {1, 2, 1} (−0.6319, 0.0, 0.6319)

0.55 2 {3, 2} (−0.3592, 0.5513)

0.7 1 {5} (0.0)

From Eqn. (8.16), the expected value of y given x is

E[y|x] =
N

∑
i=1

P1|x,i = N
k

∑
j=1

vjP1|x,j = N
k

∑
j=1

vjFR(x−Θj). (8.44)

and from Eqn. (8.17), the variance of y given x is

var[y|x] =
N

∑
i=1

P1|x,i(1− P1|x,i) = N
k

∑
j=1

vjP1|x,j(1− P1|x,j)

= N
k

∑
j=1

vjFR(x−Θj)(1− FR(x−Θj)). (8.45)

We will use these results in Section 8.6.4.

8.6.3 Local Maxima

Partitions of integers

A partition of a positive integer is a way of writing that integer as a sum of smaller

positive integers. The order of the integers in the sum is not considered, and conven-

tionally a partition is written in the order of largest to smallest integers in the sum. For

example, there are 7 partitions of the integer 5. These are {5}, {4, 1}, {3, 2}, {3, 1, 1},
{2, 2, 1}, {2, 1, 1, 1}, and {1, 1, 1, 1, 1}. The theory of partitions of integers is a rich area

of number theory, and was of interest to such well known number theorists as Ramanu-

jan, Hardy and Littlewood (Andrews 1976). The number of partitions of the integer N

increases very rapidly with N.

If ordering is taken into account, then extra partitions are possible, namely {1, 3, 1},
{2, 1, 2}, and {1, 2, 1, 1}. The reverse of all the ten partitions listed are also feasible.

Hence, there are 20 possible ordered partitions of the integer 5.
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Description of local maxima

Explaining the presence of discontinuous bifurcations in the optimal threshold fig-

ures at first seems very difficult. However, most of the discontinuous bifurcations

are actually due to the presence of many locally optimal threshold configurations. In

fact, numerical experiments find that for every value of σ, there is at least one locally

optimal solution—that is a set of threshold values giving a gradient vector of zero—

corresponding to every possible partition of N. For each partition15, there are as many

locally optimal solutions as there are unique orderings of that partition. For small σ, all

of these local optima are unique. As σ increases, more and more of these local optima

bifurcate continuously to be equal to other local optima. For example, a local optimum

corresponding to k = 3 clusters, with {Nv(j, σ)} = {2, 2, 1} might have Θ2 and Θ3

converge to the same value with increasing σ. At the point of this convergence, a bi-

furcation occurs, and the local optimum becomes one consisting of k = 2 clusters, with

{Nv(j, σ)} = {2, 3}.

Again, the exception to this rule of thumb seems to be the uniform case, in which

bifurcations can occur discontinuously in locally optimal solutions.

To illustrate this effect, in the simplest possible case of N = 3, Fig. 8.12 shows the

optimal thresholds for all three locally optimal solutions for maximum mutual infor-

mation, for all four matched signal and noise cases. Notice that apart from the uniform

case when σ > 1, the SSR situation is always a local optimum. Fig. 8.13 shows the mu-

tual information achieved by each of the three locally optimal solutions. Notice that

for small σ, there is a significant difference between the mutual information in each

case. However, as σ increases, the difference between each case decreases.

Notice in Fig. 8.12 that both the {1, 1, 1} and {2, 1} cases change smoothly with in-

creasing σ until they both converge to the SSR case for sufficiently large noise. This

is in contrast to the globally optimal thresholds for Gaussian signal and noise shown

in Fig. 8.2(a), where there is a discontinuous bifurcation. This is due to the optimal

solution switching from being the {1, 1, 1} case to the {2, 1} case. Fig. 8.14 shows the

difference in mutual information between these two cases, in the region of σ where the

bifurcation occurs. It is clear that the difference between each case is very small, and

therefore the fact that the optimal thresholds correspond to the {2, 1} case rather than

15Here, however, due to considering only PDFs that are even functions, there will be some symmetry

such that we can ignore all partitions that are the reverse order, and in the example of the integer 5, we

only need consider 10 possible partitions.
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the {1, 1, 1} case is really only of academic interest. The more important fact is that,

for sufficiently large σ, having all thresholds identical is optimal—since this implies a

reduction in complexity for the specification of the optimal quantiser. This is because

only one threshold value is required, rather than N, which is the case for no noise.
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Figure 8.12. Locally optimal thresholds for maximum mutual information and N = 3. This

figure shows the three locally optimal solutions for N = 3 and maximised mutual

information. Apart from the uniform case when σ > 1, the SSR situation is always a

local optimum. For the uniform case when σ > 1, although SSR is no longer a local

optimum, the optimum is for all thresholds to have the same value.
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Figure 8.13. Locally optimal mutual information, N = 3. This figure shows the mutual infor-

mation for the three locally optimal solutions for N = 3. It is clear that for small

σ, all thresholds unique gives a much larger mutual information than the other cases.

However, for sufficiently large σ, the differences in mutual information become smaller

and smaller, until all three local solutions converge to the same solution corresponding

to SSR.
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Figure 8.14. Difference in mutual information between local optima. This plot shows the dif-

ference in mutual information between the locally optimal solutions with v = {1, 1, 1}
and v = {2, 1} for Gaussian signal and noise and N = 3. Clearly, v = {2, 1} is larger

than v = {1, 1, 1} only for σ ∈ [0.51, 0.57], and is only larger by an amount of the

order of 0.5×10−4 bits per sample, which is very small. However, this changeover

from v = {1, 1, 1} being optimal to v = {2, 1} being optimal, is the reason that a

discontinuous bifurcation appears in the globally optimal solution shown in Fig. 8.2(a).

For σ ≥ 0.57, the SSR situation is optimal, and both the v = {1, 1, 1} and v = {2, 1}
situation bifurcate at this point to the SSR case.
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8.6.4 An Estimation Perspective

Fisher information

Recall from Chapter 6 that the Fisher information for the SSR model can be calculated

and used in a formula giving a lower bound on the MSE distortion. This result can also

be applied to the arbitrary threshold model considered in this Chapter.

The output of the array of threshold devices, y, provides a biased estimate of the input,

x. Recall from Chapter 6 that the information bound states that

var[y|x] ≥

(

d
dx E[y|x]

)2

J(x)
, (8.46)

where J(x) is the Fisher information, which for arbitrary thresholds is given by

J(x) =
N

∑
n=0

(

dP(n|x)
dx

)2

P(n|x)
. (8.47)

Now, from Eqn. (8.16), we have for the arbitrary threshold model that

d

dx
E[y|x] =

N

∑
i=1

dP1|x,i

dx

=
N

∑
i=1

dFR(x− θi)

dx

=
N

∑
i=1

R(x− θi)

= N
k

∑
j=1

vjR(x−Θj). (8.48)

Substituting Eqns. (8.48) and (8.45) into Inequality (8.46) and rearranging gives an in-

equality for the Fisher information as

J(x) ≥

(

d
dx E[y|x]

)2

var[y|x]

=

(

∑
N
i=1 R(x− θi)

)2

∑
N
1=1 P1|x,i(1− P1|x,i)

=
N
(

∑
k
j=1 vjR(x−Θj)

)2

∑
k
j=1 vjP1|x,j(1− P1|x,j)

. (8.49)
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For the special case of SSR, we have k = 1, vk = 1 and Θj = 0, which when substi-

tuted into Inequality (8.49) gives a RHS that is exactly the Fisher information for SSR

expressed by Eqn. (6.119) in Section 6.7.2 of Chapter 6. The Fisher information for SSR

is derived from first principles in Section D.6 of Appendix D.

Thus, for SSR, Inequality (8.49) becomes an equality and, as discussed in Chapter 6,

the SSR Fisher information meets the information bound with equality, in the case of

no decoding. However, for arbitrary thresholds, a derivation of the Fisher information

from first principles using Eqn. (8.47) is not a trivial task—since we do not have an an-

alytic expression for P(n|x)—and therefore we do not know whether the information

bound is also met with equality in the general case.

However, the Fisher information for arbitrary thresholds and signal and noise distri-

butions can be calculated numerically from Eqn. (8.47), and compared with numerical

calculations of the RHS of Inequality (8.49). Experiments with such calculations indi-

cate that the bound does not hold exactly, apart from the SSR situation, but that, even

for small N, the bound has a maximum error when compared to the exact Fisher infor-

mation, in the order of one percent. It is possible this error is attributable to numerical

errors, and that the bound does hold with equality. In any case, we are able to state

J(x) ≃

(

∑
N
i=1 R(x− θi)

)2

∑
N
1=1 P1|x,i(1− P1|x,i)

=
N
(

∑
k
j=1 vjR(x−Θj)

)2

∑
k
j=1 vjP1|x,j(1− P1|x,j)

. (8.50)

Future work may be able to justify making Inequality (8.49) a strict equality under

certain conditions, using Brunel and Nadal (1998) as a starting reference.

Average Information Bound

From inspection of Eqn. (8.47), the Fisher information for x is unchanged if the output

y is decoded to ŷ, since J(x) depends only on P(n|x). However, the bias changes for

a decoding, as does the conditional variance. Thus, the information bound for the

decoding, ŷ, is

var[ŷ|x] ≥

(

d
dx E[ŷ|x]

)2

J(x)
. (8.51)
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Substituting Eqn. (8.50) into Inequality (8.51) gives

var[ŷ|x] ≥
∑

N
1=1 P1|x,i(1− P1|x,i)

(

d
dx E[ŷ|x]

)2

(

∑
N
i=1 R(x− θi)

)2

=

(

∑
N
1=1 P1|x,i(1− P1|x,i)

) (

∑
N
n=0 ŷn

d
dx P(n|x)

)2

(

∑
N
i=1 R(x− θi)

)2
. (8.52)

Thus, a lower bound on the conditional MSE distortion is

D(x) ≥

(

∑
N
1=1 P1|x,i(1− P1|x,i)

) (

∑
N
n=0 x̂n

d
dx P(n|x)

)2

(

∑
N
i=1 R(x− θi)

)2
+ bx̂(x)2, (8.53)

where the decoding is the optimal decoding, x̂n = E[x|n], and bx̂(x) = E[x̂|x]− x is the

bias of the decoding.

Multiplying the RHS of Inequality (8.53) by P(x) and then integrating over all x gives

the Average Information Bound (AIB) introduced in Chapter 6. The AIB is a lower

bound on the MMSE distortion, and is therefore

AIB =
∫

x
P(x)







(

∑
N
1=1 P1|x,i(1− P1|x,i)

) (

∑
N
n=0 x̂n

d
dx P(n|x)

)2

(

∑
N
i=1 R(x− θi)

)2






dx + E[bx̂(x)2],

(8.54)

where E[bx̂(x)2] is the mean square bias.

As carried out in Chapter 6, it is instructive to numerically calculate the average infor-

mation bound, and its two components, the mean square bias, and the average error

variance.

Fig. 8.15 shows the AIB, and its components, the mean square bias, and the average er-

ror variance, for the case of Gaussian signal and noise, and N = 3, for all three locally

optimal solutions when the thresholds are optimised to minimise the MMSE distor-

tion. Fig. 8.15(b) shows that the AIB is less than two percent different from the actual

optimal MMSE distortion in each case. As we saw earlier, it is clear that optimising

the thresholds results in a decrease in the MMSE distortion when compared to SSR.

Figs. 8.15(c) and 8.15(d) show that this decrease is a result of optimising the thresholds

to offset a small increase in the average conditional variance against a larger decrease

in the mean square bias. Thus, optimising the thresholds means optimising the trade-

off between bias and variance. The end result of this is a MMSE distortion and AIB

that are strictly increasing with increasing σ.
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Figure 8.15. Average Information Bound (AIB), Gaussian signal and noise, N = 3.

Fig. 8.15(a) shows the AIB of Eqn. (8.54) plotted against increasing σ for the three

different local optima. Fig. 8.15(b) shows that the percentage difference between the

AIB and the MMSE distortion for each local optimum is very small, indicating that

the AIB gives a bound that is very close to the actual MMSE distortion. Figs. 8.15(c)

and 8.15(d) show the two components of the AIB, the mean square bias, and the

average error variance. Notice how for small σ, the mean square bias for the optimal

threshold situation of {1, 1, 1} is far smaller than for SSR, while the average error

variance is a small amount larger. This illustrates how optimising the thresholds for

small σ optimises the tradeoff between bias and variance. For sufficiently large σ, the

optimal tradeoff is provided by the SSR situation.
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8.7 Locating the Final Bifurcation

We have seen that for sufficiently large σ, the SSR situation of all thresholds equal to

the signal mean becomes optimal. We have also seen that the largest value of σ, which

we will call, σb, for which SSR is not optimal increases with increasing N. It appears

also that in the region of σ just smaller than σb that there are two clusters. For even N,

these each have size N/2, and values Θ1 = −Θ2. If we assume that this will always

be the case, it becomes a straightforward task to numerically find the value of σb as a

function of increasing N. It only requires to set Θ1 = −Θ2 = ǫ, where ǫ is small, say

0.001, and for a given N to find the value of σ at which the SSR mutual information

or MMSE distortion changes from being smaller or larger than the mutual information

with two threshold clusters at ±ǫ.

The result of carrying this out is shown in Fig. 8.16 for mutual information, and Fig. 8.17

for MMSE distortion. The value of N, which we will refer to as Nb, plotted for each

value of σ, is the smallest even-valued N for which the mutual information or MMSE

distortion with Θ1 = −Θ2 = 0.001 gives better performance than the SSR situation.

Thus, for each value of σ, if N < Nb, then SSR is optimal.

It is clear that as σ increases, Nb also increases, and increases very rapidly near some

critical value of σ. It appears likely that for large N, Nb asymptotically converges to-

wards some fixed value, σ∗b . This means that for sufficiently large σ, that SSR is always

optimal, regardless of the size of N. The value of σ∗B does however, depend on the mea-

sure used, and the signal and noise distribution. Further results on such asymptotic

large N behaviour for arbitrary thresholds is left for future work.
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Figure 8.16. Final bifurcation point, mutual information. This figure shows the smallest even-

valued N for which the mutual information with Θ1 = −Θ2 = 0.001 gives better

performance than the SSR situation. Thus, the value of σ corresponding to each N

is the approximate final bifurcation point. Note that the Laplacian situation is only

plotted with N up to 84. This is due to numerical calculations using the Laplacian

PDF being less accurate than the Gaussian and logistic cases, due to the Laplacian

PDF having a non-differentiable point at x = 0.
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Figure 8.17. Final bifurcation point, MMSE distortion. This figure shows the smallest even

valued N for which the MMSE distortion with Θ1 = −Θ2 = 0.001 gives better

performance than the SSR situation. Thus, the value of σ corresponding to each N is

the approximate final bifurcation point.
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8.8 Chapter Summary

The introductory Section of this chapter discusses the SSR case of all thresholds be-

ing identical, and sets the context for removing this restriction. When this restriction

is removed, and all thresholds are free variables, it is of interest to optimally set the

threshold values. In the presence of independent threshold noise, such a problem is an

optimal stochastic quantisation problem. Section 8.1 therefore also briefly reviews the

literature on optimal quantisation and points out that the problem addressed in this

Chapter does not appear to have been previously studied.

Section 8.2 mathematically describes generalisation of the SSR model to arbitrary thres-

holds, outlines a method for recursively calculating the transition probabilities, and

mathematically formulates the optimal stochastic quantisation problem we aim to so-

lve. Section 8.3 then describes the solution method we use in solving these problems.

Results are presented in Sections 8.4 and 8.5, and discussed in Section 8.6. The key

features of our results are that in general, for sufficiently large σ, the SSR situation is

optimal, while for smaller σ, the optimal thresholds tend to cluster to identical values,

with the number of clusters decreasing with increasing σ. We also introduce notation

to describe these optimal thresholds, and briefly consider the information bound, and

an associated lower bound on the MSE distortion. As N increases, the value of σ at

which SSR becomes optimal also increases.

Finally, Section 8.7 shows that for sufficiently large σ, it appears that SSR is always

optimal, regardless of the magnitude of N.

8.8.1 Original Contributions for Chapter 8

This chapter included the following original contributions:

• A statement of a relationship between the set of {P1|x,i} and the transition proba-

bilities, via the moment generating function for the array of threshold devices.

• Derivation of a very general recursive formula, with O(N2) computational com-

plexity, that makes it straightforward to numerically calculate the transition prob-

abilities, P(n|x), for any given threshold values, and noise distribution.

• Mathematical formulation of the optimal stochastic quantisation problem, for the

array of threshold devices, in terms of the vector of optimal thresholds, θ.
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• Presentation of numerical solutions to the stochastic optimal quantisation prob-

lems of maximising the mutual information, and minimising the MSE distortion.

The optimal thresholds found are consistent with the optimal noiseless thres-

holds, in that for very small noise, the optimal thresholds are very close to the

optimal noiseless ones.

• Discovery and discussion of the unexpected bifurcation pattern in the optimal

stochastic quantisation results.

• Numerical validation that the SSR situation of all thresholds equal to the signal

mean is in fact optimal for sufficiently large noise intensity, for a range of signal

and noise distributions, and both the mutual information and MSE distortion

measures.

• Derivation of an approximation to the Fisher information for arbitrary thres-

holds, and its application to a calculation of a lower bound on the MSE distortion.

Optimally setting the thresholds is shown to be related to finding the optimal

tradeoff between the two components of this lower bound, the mean square bias,

and the average error variance.

• Numerical validation that SSR remains optimal for sufficiently large noise inten-

sity, even if N becomes very large.

8.8.2 Further Work

Possible future work and open questions arising from this chapter might include:

• Discussion of other signal and noise distributions than those considered here,

including mixed signal and noise distributions, deterministic signals, and distri-

butions with one-sided PDFs such as the Rayleigh distribution.

• Mathematical proofs of the fact that SSR is optimal for large N, and further math-

ematical analysis of the bifurcational structure.

• Extension of the optimal quantisation problems considered here with simple on-

off threshold device, to more realistic neural models, for example, the FitzHugh-

Nagumo neuron model.
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• Rigorous justification of the fact that Inequality (8.49) can be approximated as an

equality under certain conditions. A good starting point for this research ques-

tion is the material contained in Brunel and Nadal (1998).

This concludes Chapter 8, which studies the extension of the SSR model to a model

with arbitrary thresholds. Chapter 9 now examines a further extension of the SSR

model to incorporate constraints on energy and information.
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Chapter 9

SSR, Neural Coding, and
Performance Tradeoffs

E
NGINEERED systems usually require finding the right trade-

off between cost and performance. Communications systems are

no exception, and much theoretical work has been undertaken

to find the limits of achievable performance for the transmission of infor-

mation. For example, Shannon’s celebrated channel capacity formula and

coding theorems say that there is an upper limit on the average amount of

information that can be transmitted in a channel for error free communi-

cation. This limit can be increased if the power of the signal is increased,

or the bandwidth in the channel is increased. However, nothing comes for

free, and increasing either power or bandwidth can be expensive; hence

there is a tradeoff between cost and performance in such a communications

system—performance (measured by bit rates) can be increased by increas-

ing the cost (power or bandwidth). This chapter discusses several problems

related to the tradeoff between cost and performance in the SSR model. We

are interested both in the SSR model as a channel model, from an energy ef-

ficient neural coding point of view, as well as the lossy source coding model,

where there is a tradeoff between rate and distortion.
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9.1 Introduction

Chapter 8 introduces an extension to the Suprathreshold Stochastic Resonance (SSR)

model by allowing all thresholds to vary independently, instead of all having the same

value. This Chapter further extends the SSR model by introducing an energy con-

straint into the optimal stochastic quantisation problem. We also examine the tradeoff

between rate and distortion, when the SSR model is considered as a stochastic quan-

tiser.

Section 9.2 contains original work on the extension of the SSR model to energy con-

straints that has been published, in part, in McDonnell et al. (2004b). Section 9.3 con-

tains original work on the tradeoff between rate and distortion in the SSR model that

has been published, in part, in the open literature (McDonnell et al. 2005a, McDon-

nell et al. 2005c, McDonnell et al. 2005d).

Recall that the initial work on the SSR model (Stocks 2000a, Stocks and Mannella 2001)

was partly motivated by its relevance to neural coding. The constraint we consider in

this Chapter is also motivated by this fact. If, as discussed in Chapter 4, the issue is

that of information transmission, we can say that ideally the encoding of sensory in-

put by neurons should maximise the mutual information between input and output.

However, as with most systems, there is usually some cost associated with maximis-

ing a quantity. For neural systems, a cost function that has received recent attention

is that of energy efficiency. Hence, we consider the problem of maximising mutual in-

formation in the extended SSR model subject to a maximum energy constraint. Such a

problem is like the classic information theory problem of finding channel capacity sub-

ject to a power constraint on the source, except that we are free to optimise the channel

by changing the threshold values.

The second problem we discuss can also be related to the neural coding motivation for

the SSR model, but is also of relevance to lossy source coding. Recall how in Chapter 6

we discuss methods for decoding the SSR model’s output signal to obtain a new out-

put signal that approximately reconstructs the input signal. We use the Mean Square

Error (MSE) distortion as a measure for the performance of such a reconstruction, and

find that, for the SSR model, the distortion can be decreased by increasing the number

of threshold devices, N, and therefore the number of output states, which is N + 1.

Suppose we define the rate of a quantiser as the log of the number of output states,

log (N + 1). Then this result is a very simple illustration of rate-distortion theory (Berger

and Gibson 1998). In general, the distortion of a quantiser can be reduced by increasing
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the rate, or, conversely, the rate can be reduced by allowing the distortion to increase.

Hence, we consider for the SSR model, and its extension to the arbitrary threshold

model, the problem of minimising rate subject to a distortion constraint.

Before discussing these problems in more detail, we briefly state relevant results from

previous Chapters, and the theory of solving constrained optimisation problems using

the method of Lagrange multipliers.

9.1.1 Review of Relevant Material

The model we use is the array of threshold elements shown in Fig. 4.1. As in Chap-

ters 4–8, we assume that the input signal is a sequence of samples drawn from a contin-

uously valued probability distribution with Probability Density Function (PDF), P(x).

The output signal, y, is the sum of the individual outputs of each threshold device, and

is a discretely valued signal with N + 1 states between 0 and N.

As first introduced in Chapter 8, for arbitrary threshold values we let P1|x,i be the prob-

ability of threshold device i being ‘on,’ given signal value, x. Then, if the i–th threshold

value is θi, we have

P1|x,i =
∫ ∞

θi−x
R(η)dη = 1− FR(θi − x), (9.1)

where R(·) is the noise PDF, FR(·) is the noise Cumulative Distribution Function (CDF),

and i = 1, .., N.

As first discussed in Chapter 4, the mutual information between the input and output

signals in the model is given by

I(x, y) = −
N

∑
n=0

Py(n) log2 Py(n)−
(

−
∫ ∞

−∞
P(x)

N

∑
n=0

P(n|x) log2 P(n|x)dx

)

, (9.2)

where Py(n) =
∫ ∞

−∞
P(n|x)P(x)dx is the probability mass function of the output signal,

and P(n|x) are the transition probabilities giving the probability that the output is

in state y = n, given input value x. We saw in Chapter 4 that for SSR, the mutual

information is a function of the noise intensity, σ, that is, the ratio of noise standard

deviation to signal standard deviation.

For any arbitrary threshold value, θi, and noise PDF, P1|x,i can be calculated exactly for

any value of x from Eqn. (9.1). Assuming P1|x,i has been calculated for desired values
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of x, each P(n|x) can be calculated from the recursive formulation given in Chapter 8

by Eqn. (8.19).

As first discussed in Chapter 6, the optimal Mean Square Error (MSE) distortion de-

coding is the nonlinear decoding, x̂, with values given by x̂n = E[x|n], n = 0, .., N, and

an error signal given by

ǫ = x− x̂. (9.3)

This decoding results in the minimum possible MSE distortion for given transition

probabilities, which is given by

MMSE = E[ǫ2] = E[x2]− E[x̂2]. (9.4)

Like the mutual information, the MMSE depends on the transition probabilities, since

E[x̂2] =
N

∑
n=0

x̂2
nPy(n)

=
N

∑
n=0

E[x|n]2Py(n)

=
N

∑
n=0

(

∫

x
xP(x|n)dx

)2

Py(n)

=
N

∑
n=0

(∫

x xP(x)P(n|x)dx
)2

Py(n)
. (9.5)

We will also in this chapter use the expected value of the output signal, y, which is

E[y] =
N

∑
n=0

nPy(n)

=
N

∑
n=0

n
∫ ∞

−∞
P(n|x)P(x)dx

=
∫ ∞

−∞
P(x)

(

N

∑
n=0

nP(n|x)

)

dx

=
∫ ∞

−∞
P(x)E[y|x]dx. (9.6)

Substituting Eqn. (8.16) from Chapter 8 into Eqn. (9.6) gives

E[y] =
∫ ∞

−∞
P(x)

N

∑
i=1

P1|x,idx

=
N

∑
i=1

∫ ∞

−∞
P(x)P1|x,idx

=
N

∑
i=1

∫ ∞

−∞
P(x)FR(θi − x)dx, (9.7)
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which holds for arbitrary threshold values. As we saw in Chapters 4 and 6, for the

SSR case we have P(n|x) given by the binomial formula, as in Eqn. (4.9), and therefore

E[y|x] = NP1|x. For an even noise PDF, R(η), we also have E[y] = N/2.

9.1.2 Constrained Optimisation

Suppose we wish to fix the number of threshold devices, N, and for a given value of

noise intensity, σ, find the threshold settings that either:

1. maximise the mutual information, subject to a constraint that specifies that E[y]

is less than some value, A, or

2. minimise the mutual information, subject to a constraint that the MSE distortion

is less than some value, B.

Since I(x, y), E[y], and the MSE distortion are all functions of the transition probabil-

ities, P(n|x), it is possible to formulate such an optimisation as a variational problem,

where the aim is to find the optimal set of transition probabilities. This set will consist

of N + 1 functions of the continuous variable, x, that is, {P(n|x)}, n = 0, .., N. How-

ever, as we saw in Chapter 8, each P(n|x) depends entirely on the vector of thresholds,

θ, and we can therefore solve optimal quantisation problems by finding the optimal

N–dimensional vector, θ
∗. We are able to take the same approach for constrained opti-

misation problems, as we now discuss.

Suppose for any given noise intensity, σ, we label the quantity we wish to optimise as

f (θ), and the variable we wish to constrain as m(θ). Then the problem of maximising

the cost function, f (θ), subject to the constraint that m(θ) ≤ A, can be expressed as the

nonlinear optimisation problem,

Find: max
θ

f (θ),

subject to: m(θ) ≤ A, θ ∈ R
N. (9.8)

The method of Lagrange multipliers (Gershenfeld 1999) can be used to solve such con-

strained optimisation problems. Using the standard approach to this method, we begin

by incorporating the constraint, m(θ) ≤ A, in a new cost function, g(θ), as

Find: max
θ

g(θ) = f (θ)− λm(θ),

subject to: θ ∈ R
N, λ > 0. (9.9)
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It can be shown that solving Problem (9.8), for some constraint value A, is equivalent

to solving Problem (9.9), for some corresponding value of λ. The simplest way of

ensuring that the constraint is met is to begin with a guess for a value of λ, and then

solve Problem (9.9). If for this value of λ the constraint is not met, then the Lagrange

multiplier, λ, can be varied and Problem (9.9) solved with this new value. This process

can be repeated until λ is such that the constraint, m(θ) ≤ A, is satisfied.

As in Chapter 8, we will find that there are many local optima for our constrained op-

timisation problems. However, we can make use of the same techniques as described

in Chapter 8 to find the global optimum.

9.1.3 Chapter Structure

The remainder of this Chapter is separated into two main Sections. Section 9.2 consid-

ers neurally motivated energy constraint problems. Section 9.3 considers the problem

of rate-distortion tradeoff, which is conventionally part of the domain of lossy source

coding theory, but which is also applicable in neural coding situations.

9.2 Information Theory and Neural Coding

There is increasing interest in applying the techniques of electronic engineering and

signal processing to neuroscience research. This research field is known as computa-

tional neuroscience (Rieke et al. 1997, Eliasmith and Anderson 2003). The motivation for

such studies is obvious; the brain uses electrical signals—as well as chemical signals—

to propagate, store and process information, and must employ some sort of coding and

modulation mechanism as part of this process. The fields of information theory and

signal processing have many mature techniques for dealing with signal propagation

and coding, and these techniques can be employed to gain new insights into the ways

the brain encodes, propagates, stores and processes information.

Of particular relevance to this thesis is the fact that the brain is capable of performing

very well when required to obtain information via the senses in very noisy conditions.

Often, the signal-to-noise ratio (SNR) of the sensory neuron is orders of magnitude

lower than those usually encountered in electronic systems (Bialek et al. 1993). As

discussed in Chapter 2, many studies have shown that Stochastic Resonance (SR) can

occur in neurons, so that it appears possible that certain tasks required in the nervous
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system have evolved to be optimally adapted to operating in such noisy conditions,

or alternatively, have evolved to generate noise, to enable its neurons to perform opti-

mally (Longtin 1993, Douglass et al. 1993).

There is some debate in the literature regarding which measures are appropriate to

use to quantify information transmission in neural systems. Although some authors

argue against the use of mutual information (Johnson 2002), it has however been the

preferred measure in numerous papers (Levin and Miller 1996, Rieke et al. 1997, Borst

and Theunissen 1999, Stocks and Mannella 2001, Abarbanel and Rabinovich 2001). One

reason for this is that mutual information provides a measure that is independent of

any decoding. While lossy source coding theory tends to use mean square error to

measure distortion, it is debatable whether such a distortion measure is relevant for

describing the quality of information perception by the brain. Consider, for example,

a stochastically quantised signal; such a signal is a discrete random variable. A known

and invertible—that is, not stochastic or lossy—transformation of this signal will cause

changes in the MSE distortion, but not the mutual information. If the important feature

of a signal is its shape when considered after some known transformation, then it does

not make sense to consider MSE distortion, as the same information is available, even

if the distortion becomes huge.

However, given that mutual information has been previously used elsewhere in neu-

ral coding research, we also use it here to illustrate the main point, that is, to examine

how the optimal thresholds in the extended SSR model change when subject to energy

constraints. Hence, we now briefly comment on the existing literature on energy con-

strained neural coding, and define a measure of energy for the extended SSR model.

9.2.1 Energy Constraints

Many recent studies in the field of biophysics have shown that energy is an impor-

tant constraint in neural operation, and have investigated the role of this constraint in

neural information processing (Balasubramanian et al. 2001, Laughlin 2001, Wilke and

Eurich 2001, Bethge et al. 2002, Levy and Baxter 2002, Schreiber et al. 2002, Hoch et al.

2003b).

Recall that in the SSR model, and its extension to arbitrary thresholds, that when iid

additive noise is present at the input to each threshold element, the overall output

becomes a randomly quantised version of the input signal, which for the right level of
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noise is highly correlated with the input signal. In this Section, we view the extended

SSR model as a population of simple neuron models, and present an investigation of

the optimal noisy encoding of a random input signal, subject to constraints on the

available energy expenditure. Our model is extremely simplified when compared to

real neurons, or realistic models, however it does encapsulate the basic aspects of how

stochastic quantisation may occur in a population of neurons.

The only previous work on SSR of relevance to such a goal is work that imposes an en-

ergy constraint on the SSR model, and calculates the optimal input signal distribution

given that constraint (Hoch et al. 2003b).

Previously in this thesis, Chapter 8 deals with optimising the thresholds with no con-

straints. By contrast, here we look at two energy constrained problems. In the first

problem, we fix the input distribution and ‘neural population size,’ N, and aim to find

the threshold settings that maximise the mutual information, subject to a maximum

average output energy constraint. The second problem we tackle is, the perhaps more

biologically relevant problem, of minimising the population size, N—and therefore

the energy expenditure—given a minimum mutual information constraint and fixed

thresholds.

Before we discuss these problems, however, we firstly define our measures of energy

and energy efficiency, and discuss how these measures vary for the SSR model, where

all thresholds have the same value.

Average output energy

The simplest approach is to assume that the energy expended is the same constant

amount every time a neuron emits a ‘spike’. Therefore, minimising the average output

energy consumption requires minimisation of the mean output value, which for our

model is E[y], as given by Eqn. (9.6). Note that for arbitrary thresholds, the threshold

values control the output probabilities, Py(n). Therefore by ensuring some thresholds

are set high enough, larger values of y can be made less probable in order to reduce the

average output energy expended.

Information efficiency

Previously, Schreiber et al. (2002) makes use of an efficiency measure defined as the

ratio of mutual information to metabolic energy required in a neural coding. We use
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a similar metric, the ratio of mutual information to average output energy, which we

will call information efficiency and denote as

ξ =
I(x, y)

E[y]
. (9.10)

This quantity is a measure of bits per unit energy. Clearly this information efficiency

measure is increased if either the mutual information increases, or average output en-

ergy decreases. We will see that this measure is only useful if some constraint is placed

on either mutual information or energy, since the efficiency can be made near infi-

nite by ensuring that all thresholds are so large that the output of the model is almost

always zero. Hence, for practical purposes, maximising the information efficiency re-

quires either maximising the mutual information subject to a maximum output energy

constraint, or minimising the average output energy subject to a minimum mutual in-

formation constraint.

However, first we will consider the situation where all thresholds are not necessarily

zero, but are equal to the same value, θ. We compare how the mutual information

and average output energy varies with noise intensity, σ, and θ, as well as how the

mutual information varies for specified energy constraints. Examining the behavior of

the information efficiency given by Eqn. (9.10) for these situations will provide a useful

benchmark for our later constrained optimal quantisation problems.

9.2.2 All Thresholds Equal

If all thresholds are equal to the signal mean of zero, then the model is in the SSR

configuration, and if P(x) is an even function the average output energy is N/2. If

however, the value of all thresholds, θ, is changed to be nonzero, then both the mutual

information and average output energy will change. We will consider only the situa-

tion of a Gaussian signal and independent Gaussian noise, since we are able to state an

exact result for the output energy in this case

Exact output energy for Gaussian signal and noise

Consider the total probability that the i–th device is ‘on’. This is a function of that

threshold’s actual value, θi, which we can write as

f (θi) =
∫ ∞

−∞
P(x)P1|x,idx

= 1−
∫ ∞

−∞
P(x)FR(θi − x)dx. (9.11)
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For even noise distributions, Eqn. (9.11) can be written as

f (θi) =
∫ ∞

−∞
P(x)FR(x− θi)dx. (9.12)

However, for fully general R(·), taking the derivative of both sides of Eqn. (9.11) with

respect to θi gives
d f (θi)

dθi
= −

∫ ∞

−∞
P(x)R(θi − x)dx. (9.13)

Note that − d f (θi)
dθi

is the convolution of P(x) and R(x), which are both Gaussians. The

convolution of two Gaussians is another Gaussian (Rényi 1970) and we therefore have

d f (θi)

dθi
= −N (θi, σ2

x + σ2
η), (9.14)

where N (µ, s2) is a Gaussian PDF with mean µ and variance s2. Thus, we must have

f (θi) =
∫ −θi

−∞

1
√

2π(σ2
x + σ2

η)
exp

(

− τ2

2(σ2
x + σ2

η)

)

dτ

= 0.5 + 0.5erf





−θi
√

2(σ2
x + σ2

η)





= 0.5 + 0.5erf

(

−θi

σx

√

2(1 + σ2)

)

= 0.5− 0.5erf

(

θi

σx

√

ρ

2

)

, (9.15)

where ρ is the correlation coefficient between the input to any two different threshold

devices, as discussed in Appendix 6. Thus, f (θi) depends on both ση and σx, not just

their ratio, σ. However, for SSR we have θi = 0, and f (0) = 0.5, regardless of the actual

magnitudes of σx and ση.

Now, the expected value of y is

E[y] =
N

∑
i=1

f (θi)

=
N

2
− 1

2

N

∑
i=1

erf

(

θi

σx

√

2(1 + σ2)

)

. (9.16)

If all thresholds are equal to the same value, θ, then

E[y] =
N

2
− N

2
erf

(

θ

σx

√

2(1 + σ2)

)

, (9.17)
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and clearly, the average energy is a function of the ratio of θ to σx, as well as σ.

We are now able to present results showing how the mutual information and average

output energy vary with θ and σ.

Results

Fig. 9.1(a) shows numerical calculations of the mutual information against increasing

σ for a Gaussian signal with σx = 1, and Gaussian noise. We have N = 5, and con-

sider various threshold values. If the value of σx were to be changed, then the thres-

holds shown would need to be adjusted to keep θ/σx constant to give the same results.

Fig. 9.1(b) shows the average output energy for the same conditions, calculated from

the exact formula of Eqn. (9.17) and validated numerically. The information efficiency

is plotted in Fig. 9.1(c). As we expect—given the result in Stocks (2001a) that shows

that the optimal threshold value is equal to the signal mean—the mutual information

decreases for θ 6=0. However, as we might also expect, the average output energy is

greater than N/2 for θ < 0 and less than N/2 for θ > 0.

More importantly, Fig. 9.1(c) shows that the information efficiency increases with in-

creasing threshold values, and therefore with decreasing energy. Thus, if we wish to

maximise the information efficiency, this illustrates the requirement for placing a mini-

mum mutual information or maximum average output energy constraint for nontrivial

results.

Fig. 9.2 shows the mutual information, average output energy, and information effi-

ciency for various values of σ as a function of θ/σx. Of the four values of σ shown, at

θ = 0 the mutual information is greatest for σ = 0.25, as we know it should be, since

this is the SSR situation discussed in Chapter 4. However, for θ nonzero, the optimal

mutual information can occur for other values of σ, as also illustrated in Fig. 9.1(a).

At θ = 0, the average output energy is E[y] = N/2, as we know it always is for SSR.

Fig. 9.2(c) shows that for θ ≥ 0, the information efficiency is largest for σ = 0.25, and

for each value of σ increases with increasing θ/σx, as also shown in Fig. 9.1(c). For

θ < 0, the information efficiency is very small in comparison with θ > 0. This is due

to the mutual information decreasing with decreasing σ for θ < 0, while the average

energy continues to increase. Fig. 9.2(d) shows the variation in mutual information

with E[y]. For a given value of σ, the mutual information is maximised at N/2, and

decreases as the energy decreases from this value.
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Suppose we require that E[y] = A. Then rearranging Eqn. (9.17) gives

θ

σx
=
√

2(1 + σ2)erf−1

(

1− 2A

N

)

. (9.18)

Fig. 9.3 shows the mutual information and information efficiency for various fixed

values of E[y]. For each value of E[y], the corresponding value of θ was found from

Eqn. (9.18).

The main conclusion from these results is that the information efficiency can be made

arbitrarily large by decreasing the output energy. However, as the output energy de-

creases, the mutual information increases. Hence, for any value of σ, there is a tradeoff

between mutual information and energy. We now progress to considering two con-

strained optimal quantisation problems.
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Figure 9.1. Information efficiency as a function of σ, all thresholds equal. Fig. 9.1(a) shows the

result of numerically calculating the mutual information, I(x, y), as a function of noise

intensity, σ, for various threshold values and σx = 1. Note that since both the signal

and noise have even PDFs, the mutual information is the same for threshold values

with the same magnitude, but opposite sign. Hence, as can be seen in Fig. 9.1(a),

the mutual information is identical for θ = ±0.5. As the magnitude of the threshold

value increases, the mutual information decreases for all σ. However, the value of σ

at which the peak value of the mutual information occurs increases with increasing

σ. Fig. 9.1(b) shows the average output energy calculated from the exact formula of

Eqn. (9.17) and validated numerically. The average energy decreases with increasing σ.

The information efficiency is shown in Fig. 9.1(c), which indicates that the efficiency

increases with increasing σ, and therefore with increasing output energy.
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Figure 9.2. Information efficiency as a function of θ/σx, all thresholds equal. Fig. 9.2(a)

shows the mutual information, I(x, y), calculated numerically for four different values

of noise intensity, σ, as a function of θ/σx. Of the four values of σ shown, at θ = 0

the mutual information is greatest for σ = 0.25, as we know it should be, since this is

the SSR situation discussed in Chapter 4. However, for θ nonzero, the optimal mutual

information can occur for other values of σ, as also illustrated in Fig. 9.1(a). Fig. 9.2(b)

shows the average output energy calculated from the exact formula of Eqn. (9.17) and

validated numerically. At θ = 0, the average output energy is E[y] = N/2, as we know

it always does for SSR. Fig. 9.2(c) shows that for θ ≥ 0, the information efficiency is

largest for σ = 0.25, and for each value of σ increases with increasing θ/σx, as also

shown in Fig. 9.1(c). For θ < 0, the information efficiency is very small in comparison

with θ > 0. This is due to the mutual information decreasing with decreasing σ for

θ < 0, while the average energy continues to increase. Fig. 9.2(d) shows the variation

in mutual information with E[y]. For a given value of σ, the mutual information is

maximised at N/2, and decreases as the energy decreases from this value.
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Figure 9.3. Information efficiency for fixed energy. This figure shows numerical calculations of

the mutual information, I(x, y), and information efficiency, ξ, for four specified values of

output energy, as a function of noise intensity, σ. The threshold value, θ, that achieves

the specified value of the average output energy, E[y], is shown in Fig. 9.3(c), and was

calculated from the exact formula of Eqn. (9.18).
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9.2.3 Energy Constrained Optimal Quantisation

The first constrained problem we aim to solve is the problem of maximising the mutual

information subject to the constraint that the average output energy must be no larger

than some value, A. This can be expressed as

Find: max
θ

f (θ) = I(x, y),

subject to: m(θ) = E[y] ≤ A, θ ∈ R
N. (9.19)

If we now write this in terms of a Lagrange multiplier, λ, we have

Find: max
θ

g(θ) = I(x, y)− λE[y2],

subject to: θ ∈ R
N, λ ≥ 0. (9.20)

As in Chapter 8, we set σx = 1, and expect that the optimal thresholds will scale in

inverse proportion to σx.

The results of numerical solutions of Problem (9.20) for N = 5, Gaussian signal and

noise, and various values of A are shown in Figs. 9.4(a), and 9.4(b), which show the

mutual information and energy efficiency, for several values of A, and in Fig. 9.5, which

shows the optimal thresholds. The case of no constraint is also plotted for comparison.

Figs. 9.4(a), and 9.4(b) also show with thin solid lines the mutual information and en-

ergy efficiency obtained for each constraint if all thresholds are set to the same value, as

considered in Section 9.2.2. Note that the energy constraint is always met with equality,

since we find that mutual information always decreases if the energy is made smaller

than the constraint value. The value of λ that satisfies each constraint also varies with

σ. These values are shown for each energy constraint in Fig. 9.4(c).

Fig. 9.4(a) shows that as the maximum output energy decreases, the mutual informa-

tion also decreases, but only by a fraction of a bit per sample. From Fig. 9.4(b), the

information efficiency increases as the maximum output energy decreases. From this

result, it is clear that information efficiency can be substantially increased with only a

small decrease in mutual information.

Fig. 9.5 shows that as the maximum average energy constraint decreases, there is an

upward shift in the optimal thresholds. This shift increases with increasing σ. Thus,

the optimal threshold values are larger than the unconstrained optimal thresholds.

This is to be expected, since larger threshold values mean less threshold crossings,
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and therefore a lower average output energy. However, otherwise the same qualitative

behaviour as the corresponding unconstrained problem occurs. For sufficiently large

σ, the optimal solution is for all thresholds to have the same value. This value is ob-

tained by substituting the desired value of A into Eqn. (9.18) and solving for θ. For

small σ we have the same bifurcational behaviour in the optimal threshold diagram as

described in Chapter 8.
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Figure 9.4. Information efficiency for optimised thresholds. Fig. 9.4(a) shows with thick solid

lines the mutual information, I(x, y), against increasing noise intensity, σ, obtained

by numerically solving Problem (9.20) for three different values of the constraint on

the average output energy. It also shows with thin solid lines the mutual information

obtained for the same constraint when all thresholds have the same value. Fig. 9.4(b)

shows the corresponding energy efficiency, ξ, against σ. Fig. 9.4(c) shows the value of

the Lagrange parameter, λ, required to achieve each constraint as a function of σ.
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(d) A = 1.0

Figure 9.5. Optimal energy constrained thresholds. This figure shows the optimal threshold

values obtained when Problem (9.20) is solved for three different values of an energy

constraint, for the case of Gaussian signal and noise, and N = 5. Also shown are the

optimal thresholds for the corresponding unconstrained problem, as solved in Chapter 8.

As the maximum average energy constraint decreases, we see an upward shift in the

optimal thresholds. Thus, the optimal threshold values are larger than the unconstrained

optimal thresholds. This is to be expected, since larger threshold values mean less

threshold crossings, and therefore a lower average output energy. However, otherwise

the same qualitative behaviour as the unconstrained problem occurs. For sufficiently

large σ, the optimal solution is for all thresholds to have the same value.
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9.2.4 Fixed Thresholds and a Minimum Information Constraint

In a biological context, increasing the energy efficiency of information encoding by op-

timising threshold values may not be particularly realistic. To be useful to an organism,

a sensory system must convey a certain amount of information, Î, to the brain. Any

less than this and the sensory function is not useful. For example, to avoid becoming

prey, a herbivore must be able to distinguish a sound at, say, 100 m whereas 50 m may

not be sufficient. To develop such a sensory ability, the animal must use more neu-

rons, and therefore use more energy—in the form of generated spike trains, as well as

energy to grow them in the first place—to convey the information to the brain. For

maximum evolutionary advantage the animal must do this in the most energy effi-

cient manner—otherwise it may have to eat more than is feasible—so the problem that

evolution solves in the animal is not to fix N and maximise I(x, y), but fix I(x, y) and

minimise N (Stocks and Morse 2003). If the energy is an increasing function of N, then

this problem is equivalent to minimising the energy. This is slightly different to the

problem of maximising information subject to an energy constraint, although the most

efficient way of transmitting I(x, y) bits of information must be equivalent to finding

the value of energy E that gives rise to the optimal amount of information I(x, y).

Thus, for this problem we wish to fix the mutual information and threshold settings,

and find the population size, N, that minimises the energy for a range of σ. For the SSR

situation where all thresholds are equal to the signal mean, and P(x) and R(η) are zero

mean even functions, the average output energy is simply N/2 and hence increases

linearly with increasing N. Therefore the solution to this problem reduces to finding

the minimum N that satisfies I(x, y) ≥ B. Thus, this problem can be expressed as

Find: min N,

subject to: I(x, y) ≥ B, θ = 0, N ∈ Z
+. (9.21)

The result of solving Problem (9.21) for Gaussian signal and noise and three values

of I(x, y) is shown in Fig. 9.6, as a function of σ. It is clear that N is minimised for a

nonzero value of σ, which we might expect, given that we have the SSR situation.

9.2.5 Discussion and Further Work

In this Section we have formulated and solved two different problems of energy effi-

cient information transmission in the extended SSR model.
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Figure 9.6. Minimising N subject to an information constraint. This plot shows the result

of minimising N for three constraints on I(x, y), for Gaussian signal and noise, as a

function of σ. It is clear that N is minimised for a nonzero value of σ for each constraint.

For the problem of finding the threshold settings that maximise the information effi-

ciency for fixed N, our results clearly indicate that the information efficiency always

increases for decreasing average output energy and always decreases for increasing

mutual information. However, a fairly large information efficiency increase can occur

for only a small decrease in mutual information. We also show that the maximum

information efficiency for optimised thresholds is always strictly decreasing for in-

creasing noise intensity, σ, that is, no SR effect is seen. However, since populations

of real neurons are not known for having widely distributed thresholds, the informa-

tion efficiency results shown in Fig. 9.1(c) are the most biologically relevant. This figure

shows that the maximum information efficiency occurs for nonzero noise. This is due

to the same mechanism as SSR, where the noise acts to randomly distribute the effec-

tive threshold values.

We also briefly discuss the problem of minimising the number of ‘neurons’ required

to achieve a certain minimum mutual information. For the SSR model, the minimum

N occurs for nonzero σ. In contrast, we expect that if the same problem is solved for

arbitrary thresholds, that N will increase with increasing σ. However, we also expect

that for small σ, the optimal thresholds will be widely distributed, and for large σ, the

optimal thresholds will be the SSR situation of all thresholds equal to the signal mean.
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There is much further work to be completed on these problems, and the results pre-

sented are are intended to convey ‘proof of principle’ rather than a comprehensive

investigation. Future research might, for example, introduce energy constraints and

variable thresholds to Problem (9.21). Insight gained from the study of these highly

simplified neural population model problems may be of benefit to the understanding

of neural coding in the presence of noise in more realistic neuron models and real neu-

rons.

We now, in Section 9.3 consider the rate-distortion tradeoff issue in the SSR model and

its extension to arbitrary thresholds.

9.3 Rate-Distortion Tradeoff

From a quantiser design point of view, it is desirable to minimise both the rate, and the

distortion. Although the exact definitions of both rate and distortion can vary, in quan-

tisation, the term ‘rate’ loosely corresponds to the amount of compression obtained by

a quantiser, and hence rate-distortion theory falls into the category of lossy source cod-

ing or lossy compression theory. However, since rate and distortion are both dependent

on the same variables, they cannot both be simultaneously minimised, and there must

be a trade-off between rate and distortion. Thus, the rate-distortion problem is usu-

ally formulated as the problem of minimising the rate, subject to a specified constraint

that the distortion can be no larger than some fixed value, D. The minimum possible

rate that achieves distortion D for a given source distribution is known as the rate-

distortion function, denoted as R(D). In general, R(D) is a theoretical limit that cannot

be achieved in practice.

In such rate-distortion theory, rate is generally defined as the mutual information be-

tween the input and output of a quantiser. Therefore, if we consider the SSR model—

or its extension to arbitrary thresholds—from such a viewpoint, we must perform the

opposite task to that considered in Section 9.2, and minimise the mutual information

rather than maximise it. The reason that we can consider both goals without contra-

diction is that in Section 9.2 we seek to optimise information transmission—that is, we

addresses the question of “what is the largest amount of information, on average, that

can be transmitted in a channel, subject to some constraints?” By contrast, this Section
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address a compression problem, by aiming to answer the question “What is the small-

est amount of information required to represent a signal with, on average, a distortion

no larger than some value, D?”

Of particular relevance to this discussion is a simple formula known as the informa-

tion transmission inequality (Berger and Gibson 1998), which relates rate, distortion, and

channel capacity, C. This formula is

D ≥ R−1(C). (9.22)

Note that in this formula, channel capacity is the maximum mutual information for

a given channel, and the rate distortion function, R(D), is the minimum mutual in-

formation to achieve distortion D. This formula says that if one is trying to transmit

data from a source with rate-distortion function R(D), over a channel with capacity C,

the average distortion achieved will be greater than the inverse of the rate-distortion

function evaluated at C (Berger 1971).

Looked at another way, suppose a communications system designer is required to

transmit information through a channel with capacity C, and is aiming for fidelity,

or average distortion, D. Suppose also that the information source has a known rate-

distortion function, R(D). Then the designer knows immediately whether there is

any chance of achieving their requirements, because success will only be possible if

C ≥ R(D). This illustrates the utility of knowing the theoretical optimal rate-distortion

tradeoff, and why there are different reasons for both maximising, and minimising mu-

tual information. We now discuss in more detail the basic theory of the rate-distortion

function.

9.3.1 Rate-Distortion Theory

The optimal trade-off between rate and distortion is measured using the rate-distortion

function (Berger and Gibson 1998), often expressed as R(D), where R is the rate—

defined as the mutual information—and D is some arbitrary distortion measure, often

taken to be MSE distortion. The rate distortion function is defined as the solution to

the following constrained optimisation problem,

Find: min I(x, y),

subject to: Distortion ≤ D. (9.23)
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Thus, R(D) is defined as being the minimum possible rate to achieve distortion D.

This implies that in practice, the actual rate achieved in a quantiser will always be

I(x, y) ≥ R(D).

Exact R(D) for a Gaussian source

Shannon derived an exact analytic result for the rate distortion function for a Gaussian

source with variance σ2
x , and the MSE distortion measure (Berger and Gibson 1998,

Cover and Thomas 1991). This exact result states that

R(D) =







0.5 log2

(

σ2
x

D

)

0 ≤ D ≤ σ2
x ,

0 D ≥ σ2
x

(9.24)

and says that no quantisation scheme can achieve a distortion less than D with a rate

smaller than R(D), for a Gaussian source with variance σ2
x . In other words, a quan-

tisation scheme with rate R will provide a mean square distortion no smaller than D.

Thus, we have a lower bound for the mutual information for quantisation of a Gaus-

sian source as

I(x, y) ≥ 0.5 log2

(

σ2
x

D

)

. (9.25)

We briefly explain why R(D) is zero for D ≥ σ2
x . Consider the region D > σ2

x ; here,

distortion larger than σ2
x can be achieved without transmitting any information. For

a zero mean Gaussian signal, the critical distortion, D = σ2
x , is achievable by simply

always guessing that the input signal is always zero. In this case the MSE distortion

is simply the variance of the signal, σ2
x . For larger distortions, if we always guess that

the input is some nonzero value, say a, then the MSE distortion is σ2
x + a2. Therefore

for distortion D > σ2
x , guessing a =

√

(D− σ2
x) gives distortion D with a rate of zero.

However, in the region D < σ2
x , to achieve some distortion, D < σ2

x , it is necessary to

transmit some information, R(D) > 0.

The rate-distortion function can be inverted to obtain the distortion-rate function, D(R).

Carrying this out for a Gaussian source using Eqn. (9.24) gives

D(R) = σ2
x2−2R. (9.26)

Eqn. (9.26) says that no quantisation of a Gaussian source can achieve a distortion

smaller than D, if the rate is to be no larger than R.
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Eqn. (9.26) can be expressed as the signal-to-quantisation-noise ratio (SQNR),

SQNR =
σ2

x

D(R)
= 22R. (9.27)

Taking the base ten logarithm of both sides of Eqn. (9.26) and multiplying by 10 gives

10 log10 (D) = 10 log10 σ2
x − 20 log10 (2)R

≃ 20 log10 σx − 6.02R. (9.28)

Rearranging Eqn. (9.28) gives the maximum possible SQNR of a Gaussian source with

rate R in decibels as

10 log10

(

σ2
x

D

)

=
(

20 log10 (2)
)

R ≃ 6.02R dB. (9.29)

This corresponds with a well-known rule of thumb in quantiser design that states that

a one bit increase in rate gives about a 6 dB increase in SNR (Gray and Neuhoff 1998).

Furthermore, it shows that the maximum possible SQNR for a given R is proportional

to R.

R(D) for non-Gaussian source distributions

Exact expressions for R(D) like that given by Eqn. (9.24) are quite rare. For most source

distributions, numerical techniques are required to find the rate-distortion function,

and fortunately the Arimoto-Blahut algorithm can be used to achieve this (Blahut 1972,

Arimoto 1972).16

However, although analytical formulas for the exact rate-distortion function are dif-

ficult to find, much attention has been focused on finding upper or lower bounds to

R(D) for non-Gaussian sources. In particular, consider the following reasoning, where

y is the output of the encoding operation of a quantiser, x̂ is the MMSE distortion de-

coding of y, and ǫ = x− x̂ is the error signal,

I(x, y) = H(x)− H(x|y)

= H(x)− H(x|x̂)

= H(x)− H(x− x̂|x̂)

= H(x)− H(ǫ|x̂)

≥ H(x)− H(ǫ). (9.30)

16The Arimoto-Blahut algorithm can also be used to calculate channel capacity—see Chapter 4.
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The above steps hold since, first, the average conditional entropy of x given y is identi-

cal for a decoding of y. Secondly, the conditional entropy of ǫ given x̂ is the same as the

conditional entropy of x. Thirdly, the conditional entropy of ǫ is always smaller than

the unconditioned entropy (Cover and Thomas 1991).

Now, we also know that the entropy of a continuous random variable, v, with variance,

σ2
v , is maximised by the Gaussian distribution, and is given by

H(v) = 0.5 log2 (2πeσ2
v ). (9.31)

Therefore, since for optimal decoding the mean of the error is zero, then the variance

of the error signal, ǫ, is the MSE distortion, D, and from Inequality (9.30),

I(x, y) ≥ H(x)− 0.5 log2 (2πeD). (9.32)

Now, let

RL(D) = H(x)− 0.5 log2 (2πeD). (9.33)

It can be shown (Berger and Gibson 1998, Linder and Zamir 1999) that

I(x, y) ≥ R(D) ≥ RL(D). (9.34)

Eqn. (9.33) is therefore known as the Shannon lower bound for the rate-distortion func-

tion. It applies to any source PDF, P(x), and gives a lower bound on the rate-distortion

function.

For the specific case of a Gaussian source, we also have H(x) = 0.5 log2 (2πeσ2
x), and

therefore

RL(D) = 0.5 log2

(

σ2
x

D

)

. (9.35)

In fact, the reasoning given to arrive at this result forms the first part of the proof of

Eqn. (9.24) for a Gaussian source. The second part of the proof is to find a condition for

which the bound of Inequality (9.32) is achievable, and is given in Cover and Thomas

(1991). This also shows that RL(D) becomes tight with the actual R(D) as given by

Eqn. (9.24), so that RL(D) = R(D) for a Gaussian source.

For non-Gaussian sources, the Shannon lower bound will always be smaller than that

for a Gaussian source with the same variance as the non-Gaussian source. Eqn. (9.33)

can also be simplified to be written in a manner similar to Eqn. (9.35) using the concept

of entropy power. Consider a random variable with PDF P(x) and differential entropy,

H(x). The entropy power, Qo, of this random variable is defined as being the variance
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Table 9.1. Entropy and Shannon lower bound for various distributions.

Distribution P(x) Variance H(x) RL(D)

Gaussian 1√
2πσ2

x

exp
(

− x2

2σ2
x

)

σ2
x 0.5 log2 (2πeσ2

x) 0.5 log2

(

σ2
x

D

)

Uniform

{

1
σx

, x ∈ [− σx
2 , σx

2 ],

0, otherwise

σ2
x

12 log2 (σx) 0.5 log2

(

σ2
x

2πeD

)

Laplacian 1√
2σx

exp
(

−
√

2|x|
σx

)

σ2
x log2 (

√
2eσx) 0.5 log2

(

eσ2
x

πD

)

of a Gaussian random variable that has differential entropy equal to H(x) (Berger and

Gibson 1998). Since the differential entropy of a Gaussian distribution is given by

Eqn. (9.31), this means that

Qo =
22H(x)

2πe
, (9.36)

and therefore,

RL(D) = 0.5 log2

(

Qo

D

)

. (9.37)

We also have the SQNR in dB corresponding to RL(D) as

10 log10

(

E[x2]

D

)

= 10 log10

(

E[x2]

Qo

)

+ (20 log10 (2))RL(D). (9.38)

The entropy, and Shannon lower bound corresponding to three different distributions

are shown in Table 9.1. Note that there is no simple analytical expression available for

the entropy and Shannon lower bound of the logistic distribution for arbitrary vari-

ance, although these quantities can easily be calculated numerically.

R(D) and its relationship to correlation coefficient

Recall the formula in Chapter 6 that expresses the SQNR in terms of the correlation

coefficient between the input and decoded output of the SSR model, ρ, as

SQNR =
E[x2]

D
=

1

1− ρ2
. (9.39)

In terms of decibels this is

10 log10 (SQNR) = −10 log10 (1− ρ2). (9.40)

This formula holds both for optimal linear (Wiener) decoding, and for MMSE decod-

ing, although the correlation coefficient is smaller for MMSE decoding, for which we

achieve the largest possible correlation coefficient, ρxx̂. Substituting Eqn. (9.39) into
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Eqn. (9.35) then gives the rate-distortion function for a Gaussian source—which is also

the Shannon lower bound—in terms of the correlation coefficient as

R(D) = RL(D) = −0.5 log2

(

1− ρ2
xx̂

)

. (9.41)

Recall also that the correlation coefficient for any linear decoding is independent of the

actual decoding, and is the same as the correlation coefficient for no decoding. Hence,

for the SSR model we have, for a Gaussian source,

R(D) = RL(D) > −0.5 log2

(

1− ρ2
xy

)

. (9.42)

Bounds for the mutual information in terms of correlation coefficient, or coherence

function, are well known in the literature (Pinsker 1964, Nikitin and Stocks 2004).

We will now consider numerically the relationship between the Shannon lower bound,

and the actual mutual information for SSR and various signal and noise distributions.

9.3.2 Rate-Distortion Tradeoff for SSR

We aim to examine the operational rate-distortion performance of the SSR model, and

compare it to the theoretical Shannon lower bound for the sources given in Table 9.1,

as well as the numerically calculated Shannon lower bound for the logistic source.

Operational rate-distortion

Recall that Chapter 4 provides figures showing numerical calculations of the mutual

information in the SSR model as a function of noise intensity, σ, for various matched

signal and noise distributions. Chapter 6 provides similar figures for the MMSE distor-

tion. Therefore, plotting the value of I(x, y) against the corresponding value of MMSE

distortion for each value of σ gives provides a plot of the operational rate-distortion

tradeoff for each value of σ in the SSR model. The result of carrying this out for

0 ≤ σ ≤ 5 is shown in Figs. 9.7 and 9.8 for various values of N, and the cases of

matched Gaussian, Laplacian and logistic signal and noise. Fig. 9.7 shows the mutual

information plotted against the MMSE distortion while Fig. 9.8 shows the mutual in-

formation plotted against the output SQNR. In quantisation theory, it is quite often the

case that plots of rate against distortion are shown in terms of SQNR in dB, due to the

loglinear nature of the Shannon lower bound. In each figure, points on the curve for
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each value of N correspond to a particular value of σ. The thick black lines show the

theoretical Shannon lower bound, RL(D).

For each distribution, the curves for each value of N > 1 start at a rate of one bit

per sample, then increase with rate and decrease with MSE distortion, as σ increases.

The rate then reaches its maximum before the MMSE distortion reaches its minimum.

Then with continuing increasing σ, the curves reach the MMSE distortion minimum,

before curling back down towards the RL(D) curve. Note that this means that—except

for large σ—there are two values of σ for which the same distortion can occur, cor-

responding to two different rates. This is due to the SR behaviour seen in both the

mutual information and distortion. If the main goal of a quantiser is to operate with

minimum distortion, this observation indicates that the optimal value of input SNR to

use is the one which achieves the minimum distortion, rather than the maximum rate.

A further observation is the fact that for very large σ—that is, low input SNR—the SSR

operational rate-distortion is very close to the Shannon lower bound.
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Figure 9.7. Operational rate-distortion tradeoff for SSR. This figure shows plots of the mutual

information against MMSE distortion for three matched signal and noise distributions,

and a number of values of N. The thick black line shows the Shannon lower bound,

RL(D). Points on the curve for each value of N correspond to different values of

noise intensity, σ, where σ starts at zero at the indicated point. Note that there are in

general two values of mutual information that achieve the same MMSE distortion and

two values of MMSE distortion that achieve the same mutual information. This is due

to the SR behavior of the mutual information and MMSE distortion for increasing σ.

Comparison of I(x, y) with RL(D)

Fig. 9.9 shows (with thick lines) the mutual information for each distribution plotted

against increasing σ, as in Chapter 4. It also shows (with thin lines) the Shannon lower
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Figure 9.8. Operational rate-distortion tradeoff for SSR, in dB. This figure shows plots of the

mutual information against SQNR in dB for three matched signal and noise distributions,

and a number of values of N. The thick black line shows the Shannon lower bound,

RL(D), converted to dB. Points on the curve for each value of N correspond to different

values of noise intensity, σ, where σ starts at zero at the indicated point.

bound for each value of σ, where the distortion value used for each σ, say D(σ), is

the operational distortion, obtained with optimal MMSE distortion decoding. The dif-

ference between the two curves for each value of N is therefore the difference in rate

between the actual rate that achieves D(σ) and the Shannon lower bound for the rate

that achieves D(σ). As is also seen in Figs. 9.7 and 9.8, it is clear that for large σ, the

actual mutual information gets closer and closer to the Shannon lower bound.

Exact result for uniform signal and noise and σ ≤ 1

In Chapter 4, we stated an exact result for the SSR mutual information and σ ≤ 1, in

terms of N and σ. This result, given in Eqn. (4.58) is first derived in Stocks (2001c). In

Chapter 6 we derived a new result for the MMSE distortion under the same conditions,

as given by Eqn. (6.100). Therefore, we have enough information to calculate analytical

operational rate-distortion points in these circumstances. However, there is no simple

way to combine these two expressions to obtain an expression for the mutual informa-

tion in terms of MMSE distortion. The best we can do is calculate from each equation

the mutual information and distortion for a range of values of σ, and then plot the

resultant operational rate distortion curve, as shown for other distributions in Fig. 9.7.

Since we can also numerically calculate the rate and distortion for σ > 1, we will not

restrict our attention to the exact formulas, but plot in Fig. 9.10 the mutual information

against rate for 0 ≤ σ ≤ 5.
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Figure 9.9. Comparison of I(x, y) with RL(D) for SSR. This figure shows the operational mu-

tual information for SSR (thick lines), as well as the Shannon-lower bound (thin lines)

corresponding to the minimum achievable distortion for each value of σ. Clearly, the

actual mutual information is far larger than the lower bound for small σ, but gets closer

to the bound as σ increases.
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Figure 9.10. Rate-distortion tradeoff for uniform signal and noise. This figure shows the op-

erational rate-distortion tradeoff for SSR for uniform signal and noise and various N.

Fig. 9.10(a) shows the mutual information plotted against MMSE distortion, while

Fig. 9.10(b) shows the mutual information plotted against output SQNR. As with

Figs. 9.7 and 9.8, points on the curve for each value of N correspond to different

values of noise intensity, σ, where σ starts at zero at the indicated point, and the

thick black line shows the Shannon lower bound, RL(D). Fig. 9.10(c) shows both the

operational mutual information, I(x, y) (thick lines) and the Shannon lower bound,

RL(D), (thin lines) plotted against increasing noise intensity, σ.
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For uniform signal and noise and σ = 1, we saw in Chapter 6 that MMSE decoding

has linearly spaced reconstruction points and is therefore a linear decoding scheme.

This means that the optimal correlation coefficient is the linear correlation coefficient

of Eqn. (6.64) evaluated at σ = 1, which is

ρxy =

√

(

N

N + 2

)

. (9.43)

Substituting Eqn. (9.43) into Eqn. (9.39) gives

SQNR =
σ2

x

12D
=

N + 2

2
, (9.44)

and therefore
σ2

x

D
= 6(N + 2), (9.45)

and we have the Shannon lower bound on rate in terms of the minimum possible

distortion at σ = 1 as

RL(D) = 0.5 log2

(

3(N + 2)

πe

)

. (9.46)

We have also from Chapter 5 a large N approximation to the mutual information at

σ = 1 as

I(x, y) ≃ 0.5 log2

(

(N + 2)e

2π

)

. (9.47)

Therefore, for large N, and uniform signal and noise with σ = 1 we have

I(x, y)− RL(D) ≃ 0.5 log2

(

exp (2)

6

)

≃ 0.15. (9.48)

Thus, the mutual information for SSR is always at least approximately 0.15 bits per

sample larger than the Shannon lower bound. This difference is clearly visible in

Fig. 9.10(c).

9.3.3 Rate-Distortion Tradeoff for Optimised Thresholds

The operational rate-distortion trade-off for the case of optimised thresholds, N = 5

and Gaussian signal and noise—as discussed in Chapter 8—is shown in Figure 9.11.

Both the cases of maximised mutual information and minimised MMSE distortion are

shown, as well as the SSR case. This plot clearly shows that when the MMSE distortion

is minimised, the corresponding mutual information is smaller than that obtained by

maximising the mutual information. Conversely, maximising the mutual information
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results in a larger distortion. When the distortion is minimised, the resultant curve is

relatively close to the Shannon lower bound, R(D), but as we might expect, given the

SSR results shown previously, does not reach it. This plot also clearly illustrates that

the performance of SSR at best reaches about half the optimal mutual information, but

only about five times the minimum possible distortion.
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Figure 9.11. Operational rate-distortion tradeoff for arbitrary thresholds. This figure shows

the operational rate-distortion tradeoff for N = 5 and Gaussian signal and noise, for

optimised thresholds. Both the cases of maximised mutual information and minimum

MMSE distortion are shown, with the SSR case also plotted for comparison. Points

on the curve for each situation correspond to different values of noise intensity, σ,

where σ starts at zero at the indicated point. The thick solid line shows the Shannon

lower bound, RL(D). It is clear that optimising the thresholds provides a much larger

mutual information, and smaller MMSE distortion than is achievable with SSR.

9.4 Chapter Summary

The introductory Section of this Chapter briefly discusses the need for tradeoffs be-

tween performance and cost in the design of engineered systems. It also reviews the

theory from previous Chapters relevant to this Chapter, and discusses the Lagrange

multiplier method for constrained optimisation.

Section 9.2 introduces the problem of energy efficient information transfer to the SSR

model and its extension to arbitrary thresholds. We define measures of energy, and en-

ergy efficiency, and discuss how these measures vary with the threshold value, θ, and

noise intensity, σ, in the SSR model. We then formulate and solve a constrained exten-

sion to the optimal quantisation problem first discussed in Chapter 8, and show how
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the same qualitative behaviour occurs in the optimal thresholds, but with an increase

in the mean threshold value with increasing σ. For sufficiently large σ, the situation

of all thresholds equal to the same value is optimal. We also briefly discuss a related

problem of minimising the number of threshold devices required to achieve a certain

mutual information constraint in the SSR model.

Section 9.3 begins by a discussion of the tradeoff between rate and distortion in a quan-

tiser, and then formalising this discussion by stating relevant theory. We then exam-

ine the operational rate-distortion tradeoff in the SSR model, and compare the perfor-

mance achieved with known lower bounds. We find that for large σ, the operational

rate for a given distortion is relatively close to the Shannon lower bound, when com-

pared with small σ.

9.4.1 Original Contributions for Chapter 9

This chapter includes the following original contributions:

• The introduction of energy constraints to the SSR model and the arbitrary thres-

hold extension of the SSR model, and formulation of these constraints into con-

strained optimisation problems.

• Solutions of an energy constrained stochastic quantisation problem.

• Discussion of the operational rate-distortion tradeoff for the SSR model.

9.4.2 Further Work

Possible future work and open questions arising from this chapter might include:

• Incorporation of energy constraints into optimal stochastic quantisation of arrays

of more realistic neuron models, such as the FitzHugh-Nagumo model consid-

ered in Stocks and Mannella (2001).

• Consideration of arbitrary thresholds for the problem of minimising N for a given

minimum mutual information, or distortion constraint.

• Comparison of the operational rate-distortion tradeoff for the SSR model, and

optimally stochastic quantised model, with the operational tradeoff found in con-

ventional scalar quantisers. The conventional quantiser can be considered both
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with and without independent threshold noise, and with and without compand-

ing.

• Introduction of a constraint on output entropy for the optimal stochastic quan-

tisation model. Such a problem has often been considered in quantisation the-

ory (György and Linder 2000).

This concludes Chapter 9, which considers various tradeoffs between cost and perfor-

mance in the SSR model, and its extension to arbitrary thresholds. This completes the

major chapters of this thesis. The final Chapter makes some general conclusions, rec-

ommendations for future work, and summarises the major original contributions of

this thesis.

Page 355



Page 356



Chapter 10

Conclusions and Future
Directions

T
O conclude this thesis, we summarise the main results and con-

clusions, before briefly summarising the most promising areas for

future research.
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10.1 Thesis Summary

The following subsections summarise the original work contained in this thesis, by

listing the most significant contributions. A full list of original contributions is given

at the end of each Chapter.

10.1.1 Stochastic Resonance

Chapter 2 presents an original historical review and elucidation of the major epochs

in the history of Stochastic Resonance (SR) research, and discussion of the evolution of

the term ‘stochastic resonance’.

Chapter 2 also demonstrates qualitatively that SR can actually occur in a single thres-

hold device, where the threshold is set to the signal mean. Although SR cannot occur

in the conventional signal-to-noise ratio (SNR) measure in this situation, if ensemble

averaging is allowed, then the presence of an optimal noise level can decrease distor-

tion.

Chapter 3 contains an extended discussion and critique of the use of SNR measures

to quantify SR, the debate about SNR gains due to SR, and the relationship between

SNRs and information theory.

10.1.2 Suprathreshold Stochastic Resonance

Chapter 4 provides an up-to-date literature review of previous work on Suprathresh-

old Stochastic Resonance (SSR). It also gives numerical results showing SSR occurring

for a number of matched and mixed signal and noise distributions not previously con-

sidered. A generic change of probability measure in the equations used to determine

the mutual information through the SSR model is introduced. This change of probabil-

ity measure results in a Probability Density Function (PDF) that describes the average

transfer function of the SSR model. This PDF is derived for several specific cases,

for which it is proved that the mutual information is a function of the noise intensity

parameter, σ, rather than a function of both the noise variance, and signal variance

independently.

Chapter 5 both improves on previous results and derives several new large N approx-

imations to the mutual information, output entropy, average conditional output en-

tropy, output distribution, and channel capacity in the SSR model. An expression for a
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channel capacity achieving input PDF for any given noise PDF is found, which holds

under the conditions for which the large N mutual approximation formula holds. This

formula gives an upper bound for the achievable channel capacity for SSR.

10.1.3 Stochastic Quantisation with Identical Thresholds

Chapter 6 introduces and applies the concept of decoding to the SSR model, in order

to provide a signal that approximates, or reconstructs, the input signal. The noise in

such a reconstruction can be measured with the Mean Square Error (MSE) distortion,

or equivalently, the signal-to-quantisation-noise ratio. Plots are presented of the MSE

distortion and reconstruction points for a number of linear and nonlinear decoding

schemes applied to the SSR model, and it is shown that SR occurs in the MSE distortion

measure.

Chapter 6 also gives an analytical derivation of an expression for the Minimum Mean

Square Error (MMSE) distortion and optimal reconstruction points for the SSR model

for the case of uniform signal and noise, with noise intensities, σ ≤ 1.

The information bound is applied to find a lower bound, named here as the average in-

formation bound, on the MSE distortion for decoding of the SSR model. It is shown

that a linear decoding scheme for the SSR model is a biased efficient estimator, and

that MMSE decoding is biased and does not meet the average information bound with

equality. Analysis of the average information bound confirms that the value of noise

intensity, σ, which minimises the MSE distortion means finding the best tradeoff be-

tween average error variance and mean square bias. This tradeoff is analogous to the

tradeoff between output entropy and average conditional output entropy required to

maximise the mutual information.

Chapter 7 derives large N expressions for the optimal linear MSE distortion, recon-

struction points and linear correlation coefficient. It also demonstrates that the MSE

distortion cannot be made asymptotically small for small noise intensities in the SSR

model, even for infinite N.

10.1.4 Optimal Stochastic Quantisation

Chapter 8 extends the SSR model to allow all threshold devices to have arbitrary thres-

hold values. In order to calculate the transition probabilities for this extension, we
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derive a very general recursive formula, with O(N2) computational complexity, that

makes it straightforward to calculate the transition probabilities for any given noise

distribution, and threshold values.

We then mathematically formulate the problem of optimal stochastic quantisation of

the array of threshold devices, in terms of the vector of optimal thresholds, θ. The

solution to this problem resulted in the discovery of an unexpected bifurcation pattern

in the optimal threshold values, as the noise intensity increases. At the same time,

this solution numerically validates that the SSR situation of all thresholds equal to

the signal mean is in fact optimal for sufficiently large noise intensity, for a range of

signal and noise distributions, and both the mutual information and MSE distortion

measures. Furthermore, we validate that SSR remains optimal for sufficiently large

noise intensity, even if N becomes very large.

Also in Chapter 8, we derive an approximation to the Fisher information for arbitrary

thresholds, and apply this approximation to find a lower bound on the MSE distortion.

Optimally setting the thresholds was shown to be related to finding the optimal trade-

off between the two components of this lower bound, the mean square bias, and the

average error variance.

10.1.5 Stochastic Quantiser Performance Tradeoffs

In Chapter 9, we introduce energy constraints to the SSR model and the arbitrary thres-

hold extension of the SSR model, and formulate these constraints into constrained op-

timisation problems. Solutions of such an energy constrained stochastic quantisation

problem show similar bifurcations to the results of Chapter 8.

Chapter 9 also discusses for the first time, the operational rate-distortion tradeoff for

the SSR model.

10.2 Closing Remarks

Specific suggestions for further research that may be of interest are given at the end of

each Chapter. However, in general there are two directions in which there are many

challenges and potential for new results based on this research.

Firstly, for accomplished mathematicians, there is potential for many of the mathe-

matical results presented to be placed in a more rigorous and general mathematical

Page 360



Chapter 10 Conclusions and Future Directions

platform. Furthermore, many of the results given here were obtained by numerical

methods alone, and it is the author’s belief that the application of advanced mathe-

matical approaches will find analytical explanations or predictions in some cases. In

particular, it may be possible to further explain the complex bifurcation patterns plot-

ted in Chapters 8-9, and it may be possible to predict the location of the bifurcations.

Secondly, in the other direction, the challenge for engineers is to design circuits or

quantisation schemes based on the theoretical results contained in this thesis. Such

work may also require extensions to theory, such as consideration of non-ideal thres-

hold devices (Martorell et al. 2004). We already know that DIMUS sonar arrays made

use of stochastic quantisation in the 1960s. Furthermore, SSR has been proposed as a

means of improving cochlear implant encoding (Stocks et al. 2002). Given the current

trend towards arrays of small, low-power and low-cost networks of sensors (Prad-

han et al. 2002), it is feasible that a form of distributed quantisation that utilises ambient

noise will find new applications in the near future.
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Appendix A

Binary Channel
Calculations

A.1 Example 1: Asymmetric Binary Channel

This Section gives derivations required for the example given by Eqn. (3.6) in Sec-

tion 3.3.2 of Chapter 3. In particular, we derive the fact that I(s, x) = 1 bit per sample,

and also derive Eqn. (3.8) giving I(s, y).

Joint and conditional probability functions of s and y

The conditional probability function of y given s can be written as

p(y|s) = (1− 2y)s

(

t− 1

b
− 1

)

+ (1− y). (A.1)

The probability distribution of y can be found by observing that y = 0 when s = 0 or

when s = 1 and n < t− 1, and that y = 1 when s = 1 and n ≥ t− 1. Thus

P(y) = 0.5 + 0.5(1− 2y)

(

t− 1

b

)

. (A.2)

Now the joint distribution of y and s is p(s, y) = p(s)p(y|s). Therefore

p(s, y) = 0.5s

(

(1− 2y)

(

t− 1

b
− 1

))

+ 0.5(1− y). (A.3)

From this joint distribution, it is possible to calculate the probability of an error at the

output as Pe = p(s = 0, y = 1) + p(s = 1, y = 0) = t−1
2b .

Joint and conditional probability functions of s and x

When b < 1, x can never take on values between b and 1. When b ≥ 1, x can take on

any value between 0 and 1 + b. We restrict our attention to b < 1. Note that b has been
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defined such that t− 1 ≤ b < t, and that t > 1. Hence b > 0 always, and when b < 1

then t < 2. Therefore 0 < t− 1 < 1.

Since x = s + n, then p(x|s) = p(s + n|s) = pn(x− s). Hence

p(x|s) =

{

1
b s ≤ x ≤ b + s,

0 otherwise.
(A.4)

The joint probability density of s and x is given by p(s, x) = p(s)p(x|s). Hence

p(s, x) =

{

1
2b s ≤ x ≤ b + s,

0 otherwise.
(A.5)

The probability density function of x is given by

px(x) = ∑
s

p(x|s)p(s) =

{

1
2b 0 ≤ x ≤ b and 1 ≤ x ≤ b + 1,

0 otherwise.
(A.6)

Mutual information between s and x

The results in the previous two subsections allow us to write an expression for I(s, x).

Recall that b < 1. The entropy of x is then

H(x) = −
∫

px(x) log2 px(x)dy

= −
∫ b

0

1

2b
log2

1

2b
dx−

∫ b+1

1

1

2b
log2

1

2b
dx

= 1 + log2 b. (A.7)

This makes sense, as the entropy of a uniform distribution of width c is log2 c and the

entropy of s is 1. The entropy of y given s is

H(x|s) = −∑
s

∫

P(s, x) log2 P(x|s)dx

= −∑
s

∫ b+s

s

1

2b
log2

1

b
dx

= −
∫ b

0

1

2b
log2

1

b
dx +

∫ b+1

1

1

2b
log2

1

b
dx

= log2 b. (A.8)

This indicates that H(x|s) is simply the entropy of the noise, which should be expected,

since s is known, and both values of s are equally probable. Thus, the mutual informa-

tion between s and x is I(s, x) = H(x)− H(x|s) = 1 bit per sample.
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Mutual information between s and y

The entropy of y is

H(y) = −∑
y

py(y) log2 py(y)

= −∑
y

(

0.5 + 0.5(1− 2y)

(

t− 1

b

))

log2

(

0.5 + 0.5(1− 2y)

(

t− 1

b

))

. (A.9)

The entropy of y given s is

H(y|s) = −∑
s

∑
y

P(s, y) log2 P(y|s)

= −
(

t− 1

2b

)

log2

(

t− 1

b

)

−
(

b− t + 1

2b

)

log2

(

b− t + 1

b

)

. (A.10)

Recall that the probability of error is Pe = t−1
2b . Then

H(y) = −(0.5 + Pe) log2 (0.5 + Pe)− (0.5− Pe) log2 (0.5− Pe) (A.11)

and

H(y|s) =− Pe log2 2Pe − (0.5− Pe) log2 (1− 2Pe)

=− 0.5− Pe log2 Pe − (0.5− Pe) log2 (0.5− Pe). (A.12)

Eqns. (A.11) and (A.12) are in exact agreement with Eqns. (7) and (8) of Chapeau-

Blondeau (1997b) for this specific case. Therefore

I(s, y) =H(y)− H(y|s)
=0.5 + Pe log2 Pe − (0.5 + Pe) log2 (0.5 + Pe) bits per sample. (A.13)

A.2 Example 2: Chapeau-Blondeau’s Erasure Channel

This Section shows how we derive the formula for I(s, x) given by Eqn. (3.14) in Sec-

tion 3.3.3 of Chapter 3.

The PDF of x depends on the value of σn. When σn < 2, s is retrievable without error,

using a threshold at 0. In this case, the mutual information between s and x is the

entropy of the input signal, s. However, when σn ≥ 2, there exists a range of values

sv − σn/2 ≤ x ≤ −sv + σn/2 for which it is impossible to tell whether s is −sv or sv.
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Assume that p(±sv) = 0.5. Thus for σ < 2, the PDF of x is

px(x) = ∑
s

p(x|s)p(s)

=

{

1
2σb
−1− σn

2 ≤ x ≤ −1 + σn
2 and 1− σn

2 ≤ x ≤ 1 + σn
2 ,

0 otherwise.
(A.14)

For σn ≥ 2,

px(x) =















1
2σb
−1− σn

2 ≤ x < 1− σn
2 and − 1 + σn

2 < x ≤ 1 + σn
2 ,

1
σb

1− σn
2 ≤ x ≤ −1 + σn

2 ,

0 otherwise.

(A.15)

Using Eqns. (A.14) and (A.15) the entropy of x is

H(x) = −
∫

px(x) log2 Px(x)dx =

{

1 + log2 σn σn < 2,
2
σn

+ log2 σn σn ≥ 2.

Note that as σn becomes large, H(x) → log2 σn, which is the entropy of a uniform

distribution. As expected, this indicates that for very large noise x is very unlike the

original binary signal, which has an entropy of 1 bit per sample.

As for the binary asymmetric channel, the entropy of x given s is simply the entropy

of the uniform noise—see Section A.1. Thus H(x|s) = log2 σn. Hence, the mutual

information between s and x is

I(s, x) = H(x)− H(x|s) =

{

1 σn < 2,
2
σn

σn ≥ 2.
(A.16)
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Derivations for
Suprathreshold Stochastic

Resonance Encoding

B.1 Maximum Values and Modes of P(n|x)

This Section derives Eqns. (4.11) and (4.12), which give the values of the modes of

P(n|x) for SSR, in terms of the Inverse Cumulative Distribution Function (ICDF) of the

noise, and are stated in Section 4.3 of Chapter 4.

To begin, the derivative of the transition probabilities, P(n|x), can be expressed in

terms of P(n|x) as

dP(n|x)

dx
= P(n|x)

(

n− NP1|x
P1|x(1− P1|x)

)

dP1|x
dx

= P(n|x)

(

n− NP1|x
P1|x(1− P1|x)

)

Rη(x− θ) n = 0, .., N. (B.1)

Note that for n = 0 and n = N, P(0|x) = (1− P1|x)N and P(N|x) = PN
1|x.

Setting the derivative to zero in Eqn. (B.1) gives

P1|x =
n

N
n = 1, .., N − 1.

For n = 0, P(0|x) is maximised when P1|x = 0, which means at the minimum possible

value of x, and for n = N, P(N|x) is maximised when P1|x = 1, which means at the

maximum possible value of x.

Therefore, for all n, the maximum of P(n|x) occurs when

1− FR(θ − x) =
n

N
n = 0, .., N,
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B.2 A Proof of Equation (4.38)

which implies that

x = θ + F−1
R

(

1− n

N

)

n = 0, .., N, (B.2)

where F−1
R (·) is the ICDF of the noise. For even noise Probability Density Functions

(PDFs),

x = θ + F−1
R

( n

N

)

n = 0, .., N. (B.3)

Note that differentiating the natural logarithm of P(n|x)—that is, the log-likelihood

function—rather than P(n|x) by itself, gives the same result.

The value of x at which the maximum of P(n|x) occurs is known as the mode of P(n|x)

for each n. Note that if the noise distribution has a PDF with infinite support, then the

mode of P(0|x) and P(N|x) is at x = ±∞.

B.2 A Proof of Equation (4.38)

This section proves the identity given by Eqn. (4.38) in Section 4.3.2 of Chapter 4,

−
N

∑
n=0

log2

(

N

n

)

=
N

∑
n=1

(N + 1− 2n) log2 n. (B.4)

The proof is

LHS = −
N

∑
n=0

log2

(

N

n

)

=
N

∑
n=0

log2

n!(N − n)!

N!

=
N

∑
n=1

log2 n! +
N

∑
n=1

log2 (N − n)!−
N

∑
n=1

log2 N!

=
N

∑
n=1

n

∑
j=1

log2 j +
N

∑
n=1

N−n

∑
j=1

log2 j−
N

∑
n=1

N

∑
j=1

log2 j

=
N

∑
k=1

(N − k + 1) log2 k +
N

∑
k=1

(N − k) log2 k− N
N

∑
k=1

log2 k

=
N

∑
n=1

(N − 2n + 1) log2 n

= RHS.
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B.3 Distributions

This Section states the PDF, CDF and ICDF for each of seven different continuously

valued probability distributions. It also uses the CDF to state the probability that a

single threshold device is ‘on’, P1|x, for threshold value, θ, and uses the ICDF to state

the modes of P(n|x). Some of these distributions are used throughout this thesis, but

are first used in Section 4.3.3 in Chapter 4.

B.3.1 Gaussian Signal and Noise

If the input signal has a Gaussian distribution with zero mean and variance σ2
x , then

P(x) =
1

√

2πσ2
x

exp

(

− x2

2σ2
x

)

. (B.5)

If the independent noise in each device is Gaussian with zero mean and variance σ2
η ,

then

R(η) =
1

√

2πσ2
η

exp

(

− η2

2σ2
η

)

. (B.6)

The Cumulative Distribution Function (CDF) of the noise evaluated at η = z is

FR(z) = 0.5 + 0.5erf

(

z√
2ση

)

, (B.7)

where erf(·) is the error function (Spiegel and Liu 1999). Therefore,

P1|x = 0.5 + 0.5erf





x− θ
√

2σ2
η



 . (B.8)

The ICDF of the Gaussian noise is

F−1
R (w) =

√
2σηerf−1 (2w− 1) , (B.9)

where w ∈ [0, 1], and erf−1(·) is the inverse error function. From Eqn. (4.12), the values

of x at which the maximum of each P(n|x) occurs—that is, the mode of P(n|x), for

each n—are

x = θ +
√

2σηerf−1

(

2n

N
− 1

)

n = 1, .., N − 1. (B.10)

For n = 0 and n = N, the mode is at x = ∓∞ respectively.
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B.3.2 Uniform Signal and Noise

If the input signal, x is uniformly distributed between −σx/2 and σx/2, with zero

mean, then

P(x) =

{

1/σx for − σx/2 ≤ x ≤ σx/2,

0 otherwise.
(B.11)

If the independent noise η in each device is uniformly distributed between −ση/2 and

ση/2, with zero mean, then

R(η) =

{

1/ση for − ση/2 ≤ η ≤ ση/2,

0 otherwise.
(B.12)

The CDF of the noise evaluated at η = z is

FR(z) =















0 for z < −ση/2,

z/ση + 1/2 for −ση/2 ≤ z ≤ ση/2,

1 for z > ση/2.

(B.13)

Therefore

P1|x =















0 for x < θ − ση/2,

x/ση + 1/2− θ/ση for θ − ση/2 ≤ x ≤ θ + ση/2,

1 for x > θ + ση/2.

(B.14)

The ICDF of the uniform noise is

F−1
R (w) = ση(w− 0.5), (B.15)

where w ∈ [0, 1]. From Eqn. (4.12), the mode of each P(n|x) is

x = θ + ση

(

n

N
− 1

2

)

n = 0, .., N. (B.16)

B.3.3 Laplacian Signal and Noise

If the input signal x has a Laplacian distribution with zero mean and variance σ2
x then

P(x) =
1√
2σx

exp

(

−
√

2|x|
σx

)

. (B.17)

If the independent noise η in each device has a Laplacian distribution with zero mean,

and variance σ2
η then

R(η) =
1√
2ση

exp

(

−
√

2|η|
ση

)

. (B.18)
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The CDF of the noise evaluated at η = z is

FR(z) = 0.5

(

1 + sign(z)

(

1− exp

(

−
√

2|z|
ση

)))

, (B.19)

where sign(·) indicates the signum (sign) function. Therefore we have

P1|x = 0.5

(

1 + sign(x− θ)

(

1− exp

(

−
√

2|x− θ|
ση

)))

. (B.20)

It is clearer to write this as

P1|x =







0.5 exp
(

−
√

2θ
ση

)

exp
(√

2x
ση

)

for x ≤ θ,

1− 0.5 exp
(√

2θ
ση

)

exp
(

−
√

2x
ση

)

for x ≥ θ.
(B.21)

The ICDF of the Laplacian noise is

F−1
R (w) =







ση√
2

ln (2w) for w ∈ [0, 0.5],

− ση√
2

ln (2(1− w)) for w ∈ [0.5, 1].
(B.22)

From Eqn. (4.12), the mode of each P(n|x) is

x =







θ +
ση√

2
ln
(

2n
N

)

for 0 <
n
N ≤ 0.5,

θ − ση√
2

ln
(

2(1− n
N )
)

for 0.5 ≤ n
N < 1.

(B.23)

For n = 0 and n = N, the mode is at x = ∓∞ respectively.

B.3.4 Logistic Signal and Noise

If the input signal x has a logistic distribution with zero mean and variance σ2
x then

P(x) =
exp

(

− x
bx

)

bx

(

1 + exp
(

− x
bx

))2
, (B.24)

where σ2
x = π2b2

x
3 .

Note that this distribution can also be written in terms of the hyperbolic cosine function

as

P(x) =
1

4bx cosh2 ( x
2b )

. (B.25)
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If the independent noise η in each device has a logistic distribution with zero mean,

and variance σ2
η then

R(η) =
exp

(

− η
bη

)

bη

(

1 + exp
(

− η
bη

))2
. (B.26)

where σ2
η =

π2b2
η

3 .

The CDF of the noise evaluated at η = z is

FR(z) =
1

1 + exp
(

− z
bη

) . (B.27)

Note that the logistic CDF is the solution to the logistic equation, that is, the differential

equation
dFR(z)

dz
=

1

bη
FR(z)(1− FR(z)). (B.28)

Now

P1|x =
1

1 + exp
(

− (x−θ)
bη

) , (B.29)

and hence,
dP1|x

dx
=

1

bη
P1|x(1− P1|x). (B.30)

The ICDF of the logistic noise is

F−1
R (w) = −bη ln

(

1− w

w

)

, (B.31)

where w ∈ [0, 1]. From Eqn. (4.12), the mode of each P(n|x) is

x = θ +

√
3ση

π
ln

(

n

N − n

)

n = 1, .., N − 1. (B.32)

For n = 0 and n = N, the mode is at x = ∓∞ respectively.

B.3.5 Cauchy Signal and Noise

If the input signal x has a Cauchy (or Lorentzian) distribution with zero mean and

parameter λx > 0 then

P(x) =
λx

π

1

λ2
x + x2

. (B.33)
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Unlike the other distributions above, the Cauchy distribution has undefined moments,

and therefore is not characterised by its variance, but by the parameter λx, which is the

PDF’s Full Width at Half-Maximum (FWHM). The FWHM of a function is the distance

between points on its curve at which the function reaches half its maximum value.

If the independent noise η in each device has a Cauchy distribution with zero mean,

and FWHM λη then

R(η) =
λη

π

1

λ2
η + x2

. (B.34)

The CDF of the noise evaluated at η = z is

FR(z) =
1

2
+

1

π
arctan

(

z

λη

)

. (B.35)

Therefore we have

P1|x =
1

2
+

1

π
arctan

(

x− θ

λη

)

. (B.36)

The ICDF of the Cauchy noise is

F−1
R (w) = λη tan (π(w− 0.5)), (B.37)

where w ∈ [0, 1]. From Eqn. (4.12), the mode of each P(n|x) is

x = θ + λη tan
(

π
( n

N
− 0.5

))

n = 1, .., N − 1. (B.38)

For n = 0 and n = N, the mode is at x = ∓∞ respectively.

B.3.6 Exponential Signal and Noise

If the input signal x (≥ 0) has an exponential distribution with mean σx, then

P(x) =
1

σx
exp

(

− x

σx

)

. (B.39)

Unlike the previous distributions, the exponential distribution is not an even function,

or symmetric about its mean. It is only defined for values greater than or equal to zero.

If the independent noise η (≥ 0) in each device has an exponential distribution with

mean ση, then

R(η) =
1

ση
exp

(

− η

ση

)

. (B.40)

The CDF of the noise evaluated at η = z is

FR(z) = 1− exp
(

−z/ση

)

. (B.41)
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Therefore

P1|x =







exp
(

− (θ−x)
ση

)

for x < θ,

1 for x ≥ θ.

The ICDF of the exponential noise is

F−1
R (w) = ση ln

(

1

1− w

)

, (B.42)

where w ∈ [0, 1].

B.3.7 Rayleigh Signal and Noise

If the input signal x (≥ 0) has a Rayleigh distribution with mean σx

√
π/2, then

P(x) =
x

σ2
x

exp

(

− x2

2σ2
x

)

. (B.43)

Like the exponential distribution, the Rayleigh distribution is not an even function or

symmetric about its mean. It is only defined for values greater than or equal to zero.

If the independent noise η (≥ 0) in each device has a Rayleigh distribution with mean

ση

√
π/2, then

R(η) =
η

σ2
η

exp

(

− η2

2σ2
η

)

. (B.44)

The CDF of the noise evaluated at η = z is

FR(z) = 1− exp

(

− z2

2σ2
η

)

. (B.45)

Therefore

P1|x =











exp

(

− (θ−x)2

2σ2
η

)

for x < θ,

1 for x ≥ θ.

The ICDF of the exponential noise is

F−1
R (w) = ση

√

2 ln

(

1

1− w

)

, (B.46)

where w ∈ [0, 1].
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B.4 Proofs for Specific Cases that Q(τ) is a PDF

This Section provides a proof that Q(τ) is a PDF for two of the infinite support signal

and noise distributions given in Table 4.2 in Section 4.3.3 of Chapter 4. Since each Q(τ)

is nonnegative, for Q(τ) to be a PDF it is only necessary to show that
∫ τ=1

τ=0
Q(τ)dτ = 1.

B.4.1 Gaussian Signal and Noise

For Gaussian signal and noise, and σ 6= 1, the change of variable from τ to u =

erf−1(2τ − 1) is useful. The result is
∫ τ=1

τ=0
Q(τ)dτ =

∫ u=∞

u=−∞
σ exp

(

(1− σ2)u2
) 1√

π
exp (−u2)du

=
σ√
π

∫ u=∞

u=−∞
exp (−σ2u2)du

=
σ√
π

√

2π
1

2σ2

= 1.

Thus, given this result, Q(τ) is a PDF for σ 6= 1.

For the case of σ = 1, Q(τ) = 1 ∀ τ ∈ [0, 1], and is hence a PDF.

B.4.2 Laplacian Signal and Noise

For Laplacian signal and noise and σ 6= 1,
∫ τ=1

τ=0
Q(τ)dτ =

∫ τ=0.5

τ=0
σ(2τ)(σ−1)dτ +

∫ τ=1

τ=0.5
σ(2(1− τ))(σ−1)dτ

= σ2(σ−1)

(

∫ τ=0.5

τ=0
τ(σ−1)dτ +

∫ τ=1

τ=0.5
(1− τ)(σ−1)dτ

)

= σ2(σ−1)

(

[

1

σ
τσ

]0.5

0

+

[−1

σ
(1− τ)σ

]1

0.5

)

= σ2(σ−1)

(

1

σ
2−σ +

1

σ
2−σ

)

= 1.

Thus, given this result, Q(τ) is a PDF for σ 6= 1.

For the case of σ = 1, Q(τ) = 1 ∀ τ ∈ [0, 1], and is hence a PDF.

Page 375



B.5 Numerical Integration of the Mutual Information

B.5 Numerical Integration of the Mutual Information

This Section gives some details regarding calculating the mutual information between

the input and output of the SSR model, via numerical integration. This method is

required in Chapters 4, 8 and 9, and analogous methods are required for numerical

integration of other quantities elsewhere.

B.5.1 Integrating Over the Input’s Support

To obtain I(x, y) numerically, it is necessary to perform numerical integrations. The

simplest form of numerical integration is to approximate the signal PDF by a discrete

version, with resolution ∆x≪ 1/N, where N + 1 is the number of output states in the

SSR model. Hence, if in the case of a continuously valued PDF P(x) we have support

x ∈ [a, b], then discretisation with resolution ∆x gives discrete values x = a + i∆x, i =

0, 1, .., (b− a)/∆x. This simple method of numerical integration is easily justified for

calculating mutual information—see Cover and Thomas (1991).

Using this discretisation of P(x), the mutual information can be written as

I(x, y) = −
N

∑
n=0

Py(n) log2 Py(n)−
(

−∆x ∑
x

P(x)
N

∑
n=0

P(n|x) log2 P(n|x)

)

, (B.47)

where

Py(n) = ∆x ∑
x

P(n|x)P(x). (B.48)

Given these formulas, P(x) and P(n|x) need only be calculated for each specified value

of x.

For an input distribution with finite support, such as the uniform distribution, only

specification of the resolution is required. However for a distribution that has a PDF

with infinite support, such as the Gaussian distribution, it is necessary to restrict the

upper and lower bounds of the support of x to finite values. This is achieved in a

discretisation of P(x) by setting the maximum and minimum values of x to a multiple,

w, of the standard deviation, σx. Thus, x ∈ [−wσx, wσx] and P(x) is then discretised to

a resolution of ∆x.

This method of numerical integration has been found to be sufficient. Its accuracy has

been verified by calculating the mutual information by more sophisticated numerical

integration schemes, such as Simpson quadrature (Press et al. 1992).
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B.5.2 Numerical Integration Using Q(τ)

Instead of numerically integrating Eqn. (4.5) and the integral on the RHS of Eqn. (4.17)

between ±∞ (for signal densities with infinite support), the change of variables from

x to τ appears to allow a simpler integration of Eqn. (4.24) and the integral on the RHS

of Eqn. (4.23), between the limits of zero and unity.

Note that although Q(τ) is infinite at τ = 0 and τ = 1 for σ < 1, the integrand in both

integrals is zero at these limits, except for P∗(0) when τ = 0, and P∗(N) when τ =

1. Thus, other than these two cases, both integrals are easily obtainable by standard

numerical integration techniques. Using the law of total probability avoids the need

to deal with the singularity in the integrals of P∗(0) and P∗(N), since by the evenness

of the signal and noise densities, Py(0) = Py(N). Once P∗(n) has been calculated

for all other n, the corresponding Py(n)’s can be derived. Hence Py(0) = Py(N) =

0.5− 0.5 ∑
N−1
n=1 Py(n).

B.5.3 Comments on Numerical Integration

The main difficulty arising in numerical calculation of the mutual information arises

for larger N. Calculations of the output probabilities can require multiplying a small

number, P∗(n), by a very large number, (N
n ). For large N, (N

n ) gets very large, and

sufficient precision can soon be lost. Even if 32 bit floating point representation is

used, the final calculation of I(x, y) can be highly inaccurate. A way to circumvent

this problem is to avoid calculating the set of (N
n ) for a given N. This can be carried

out by calculating P(n|x) recursively, using the technique described in Section 8.2.3 of

Chapter 8.
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Derivations for large N
Suprathreshold Stochastic

Resonance

C.1 Proof of Eqn. (5.9)

This section proves the identity given by Eqn. (5.9) in Section 5.2.1 of Chapter 5.

−
N

∑
n=0

Py(n) log2

(

N

n

)

=− 1

N + 1

N

∑
n=0

log2

(

N

n

)

=
1

N + 1

N

∑
n=0

log2

n!(N − n)!

N!

=
1

N + 1

(

−
N

∑
n=0

log2 N! +
N

∑
n=0

log2 n! +
N

∑
n=0

log2 (N − n)!

)

=
1

N + 1

(

−(N + 1) log2 N! +
N

∑
n=0

n

∑
j=1

log2 j +
N

∑
n=0

N−n

∑
j=1

log2 j

)

= − log2 N!

+
1

N + 1

(

N

∑
k=1

(N − k + 1) log2 k +
N

∑
k=1

(N − k + 1) log2 k

)

= − log2 N! +
2

N + 1

(

N

∑
n=1

(N − n + 1) log2 n

)

= − log2 N! + 2
N

∑
n=1

log2 n− 2

N + 1

N

∑
n=1

n log2 n

= − log2 N! + 2 log2 N!− 2

N + 1

N

∑
n=1

n log2 n

= log2 N!− 2

N + 1

N

∑
n=1

n log2 n. (C.1)
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C.2 Derivation of Eqn. (5.13)

This section gives the derivation of Eqn. (5.13) in Section 5.2.1 of Chapter 5 that states

2

N + 1

N

∑
n=1

n log2 n ≃ N log2 (N + 1)− N(N + 2)

2 ln 2(N + 1)
+ O

(

log N

N

)

. (C.2)

The Euler-Maclaurin summation formula (Spiegel and Liu 1999) states that a summa-

tion over n terms can be replaced by an integral plus correction terms, as

N−1

∑
n=1

F(n) =
∫ N

n=0
F(n)dn− 0.5F(0)− 0.5F(N)

+
∞

∑
p=1

(−1)p−1 Bp

(2p)!

(

F(2p−1)(N)− F(2p−1)(0)
)

, (C.3)

where F(2p−1) indicates the (2p − 1)–th derivative of F, and Bp is the p–th Bernoulli

number (Spiegel and Liu 1999).

Noting that ∑
N
n=1 n log2 n = ∑

N−1
n=1 (n + 1) log2 (n + 1), then F(n) = (n + 1) log2 (n + 1),

F(0) = 0, and F(N) = (N + 1) log2 (N + 1). Denoting the remainder term of Eqn. (C.3)

involving derivatives of F(n) as R, then

N

∑
n=1

n log2 n =
N−1

∑
n=1

(n + 1) log2 (n + 1)

= −0.5F(0)− 0.5F(N) + R +
∫ n=N

n=0
(n + 1) log2 (n + 1)dn

= 0.5(N + 1)2 log2 (N + 1)− N(N + 2)

4 ln 2
− 0.5(N + 1) log2 (N + 1) + R.

(C.4)

Thus, the desired simplification for the second term in Eqn. (5.9) is

2

N + 1

N

∑
n=1

n log2 n = N log2 (N + 1)− N(N + 2)

2 ln 2(N + 1)
+

2R

N + 1
. (C.5)

This is an exact expression that holds for any N, and can be obtained by evaluating R.

In order to obtain a large N simplification we need to consider the behaviour of R for

large N.

Firstly note that for p = 1, F′(N)− F′(0) = log2 (N + 1) and for all p > 1,

F(2p−1)(N)− F(2p−1)(0) =
(2p− 3)!

ln 2

(

1− (N + 1)−2p+2
)

. (C.6)
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Substituting Eqn. (C.6) into the remainder term of Eqn. (C.3) and multiplying by 2
N+1

gives

2R

N + 1
=

1

6(N + 1)
log2 (N + 1)

+
∞

∑
p=2

(−1)p−1 Bp

ln 2(4p3 − 7p2 + 2p)

(

1

N + 1
− (N + 1)−2p+1

)

. (C.7)

Hence, the remainder term scales with
log N

N , which approaches zero for large N, and

our approximation to the second term in Eqn. (5.9), for large N, is

2

N + 1

N

∑
n=1

n log2 n ≃ N log2 (N + 1)− N(N + 2)

2 ln 2(N + 1)
+ O

(

log N

N

)

.

C.3 Proof that S(x) is a PDF

This section shows that the function, S(x), given by Eqn. (5.72) in Section (5.5.1) is a

probability density function (PDF).

As shown in Section D.6 of Appendix D, the Fisher information for the SSR model is

given by

J(x) =
NR(x)2

P1|x(1− P1|x)
. (C.8)

Consider the function,

S(x) =

√

J(x)

π
√

N
=

R(x)

π
√

P1|x(1− P1|x)
. (C.9)

Since R(x) is a PDF and P1|x =
∫ x
−∞

R(φ)dφ is the CDF of R evaluated at x, we have

dP1|x
dx

= R(x), (C.10)

and S(x) ≥ 0 ∀ x. Letting f (x) = P1|x, Eqn. (C.9) can be written as

S(x) =
f ′(x)

π
√

f (x)− f (x)2
. (C.11)
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Suppose R(x) has support x ∈ [−a, a]. Integrating S(x) over all x gives

∫ x=a

x=−a
S(x)dx =

∫ x=a

x=−a

f ′(x)

π
√

f (x)− f (x)2
dx

=
1

π

(

2 arcsin

(

√

f (x)

)

|x=a
x=−a

)

=
2

π

(

arcsin
(√

P1|x=a

)

− arcsin
(√

P1|x=−a

))

=
2

π
(arcsin(1)− arcsin(0))

= 1, (C.12)

and hence S(x) is a PDF with the same support as R(x).
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Derivations for
Suprathreshold Stochastic

Resonance Decoding

D.1 Conditional Output Moments

This section derives expressions for the first and second conditional output moments

of the SSR model, as well the conditional output variance. These expressions are used

throughout Chapter 6.

The m–th moment of the output given x is given by

E[ym|x] =
N

∑
n=0

nmP(n|x). (D.1)

Instead of using this definition directly, we will make use of the fact that all devices

have identical thresholds. Using Eqn. (4.2) from Chapter 4, the first conditional mo-

ment is given by

E[y|x] = E

[

1

2

N

∑
i=1

sign[x + ηi] +
N

2

∣

∣

∣
x

]

=
N

2
E[sign(x + η)|x] +

N

2
, (D.2)

where since all N additive noise components are iid, the subscripts in the ηis have been

removed. This leads to

E[y|x] =
N

2
(−(1− P1|x) + P1|x) +

N

2

= NP1|x. (D.3)
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The conditional variance is given by var[y2|x] = E[y2|x]− E[y|x]2. The second condi-

tional moment is

E[y2|x] = E





(

1

2

N

∑
i=1

sign(x + ηi) +
N

2

)2

| x





=
1

4
E





(

N

∑
i=1

sign(x + ηi)

)2

| x



+
N2

2
E[sign(x + η)|x] +

N2

4
. (D.4)

We also have

E





(

N

∑
i=1

sign(x + ηi)

)2

| x



 = NE[(sign(x + η))2 | x]+

N(N − 1)E[sign(x + ηj)sign(x + ηjk) | x] | ∀ j 6=k

= N + N(N − 1)(−2P1|x(1− P1|x) + (1− P1|x)
2 + P2

1|x)

= N + N(N − 1)(2P1|x − 1)2. (D.5)

Substituting Eqn. (D.5) into Eqn. (D.4) gives

E[y2|x] =
1

4

(

N + N(N − 1)(2P1|x − 1)2
)

+
N2

2
(2P1|x − 1) +

N2

4

= NP1|x(1− P1|x) + N2P2
1|x. (D.6)

Thus, using Eqns. (D.3) and (D.6) leaves the conditional variance as

var[y|x] = NP1|x(1− P1|x). (D.7)

The correctness of these derivations of the conditional mean and variance can be seen

by noting that the probability distribution of the output given the input is the binomial

distribution, as given by Eqn. (4.9). It is well known that the expected value of such

a binomially distributed variable is ∑
N
n=0 nP(n|x) = NP1|x, and that the variance is

∑
N
n=0 n2P(n|x)−

(

∑
N
n=0 nP(n|x)

)2
= NP1|x(1− P1|x) (Kreyszig 1988).

D.2 Output Moments

This section derives expressions for the mean and mean square value of the output of

the SSR model, as well the output variance. These expressions are used throughout

Chapter 6.
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The m–th moment of the output is given by

E[ym] = E[E[ym|x]] =
∫

x

N

∑
n=0

nmP(x, y)dx (D.8)

=
∫

x
P(x)

N

∑
n=0

nmP(n|x)dx (D.9)

=
N

∑
n=0

nmPy(n). (D.10)

If the output distribution is known, it is generally easier to apply Eqn. (D.10). However,

in the following sections it will most often be the case that using Eqn. (D.9) will be more

convenient. In particular, we have the conditional mean given by Eqn. (D.3) and the

conditional second moment given by Eqn. (D.6). Thus

E[y] = NE[P1|x], (D.11)

and

E[y2] = NE[P1|x] + N(N − 1)E[P2
1|x]. (D.12)

The output variance cannot be obtained by integration of Eqn. (D.7), but is easily ob-

tained by noting that var[y] = E[y2]− E[y]2 as

var[y] = N(N − 1)E[P2
1|x]− NE[P1|x](NE[P1|x]− 1). (D.13)

D.2.1 Even Signal and Noise PDFs, All Thresholds Zero

For zero-mean noise PDFs that are even functions, and for all threshold values equal to

zero, P1|x is given by Eqn. (4.8), i.e. P1|x = FR(x), where FR(·) is the CDF of the noise.

This can be written as

P1|x =
1

2
+
∫ η=x

η=0
R(η)dη. (D.14)

Therefore, the expected value of P1|x over the signal distribution is

E[P1|x] =
1

2
+ E

[

∫ η=x

η=0
R(η)dη

]

=
1

2
+
∫ x=∞

x=−∞

(

∫ η=x

η=0
R(η)dη

)

P(x)dx. (D.15)

Since R(η) is even,
∫ x

0 R(η)dη is odd with respect to x, and therefore the integral above

is zero, as P(x) is even. Thus, E[P1|x] = 0.5.
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Thus, Eqns. (D.11) and (D.12) can be simplified to

E[y] =
N

2
. (D.16)

and

E[y2] = N(N − 1)E[P2
1|x] +

N

2
. (D.17)

This means that the variance of y is

var[y] = N(N − 1)E[P2
1|x]−

N(N − 2)

4
. (D.18)

D.3 Correlation and Correlation Coefficient Expressions

This section derives expressions for the correlation coefficient at various stages of the

SSR model. These expressions are used throughout Chapter 6.

D.3.1 Input Correlation Coefficient at Any Two Thresholds

Although the noise at the input to any given threshold device in the SSR model is

uncorrelated with the noise at the input of any other device, due to the presence of

the same input signal on each device there is a correlation between the inputs of any

given pair of devices. This can be measured using the correlation coefficient, which for

zero-meaned inputs to any two comparators, i and j is given by

ρi =
cov[x + ηi, x + ηj]

√

var[x + ηi]var[x + ηj]

=
E[(x + ηi)(x + ηj)]
√

(var[x + η])2

=
E[x2]

√

(E[x2] + E[η2])2

=
σ2

x

σ2
x + σ2

η

=
1

1 + σ2
, (D.19)

where we have denoted the variance of the signal as σ2
x and the variance of the noise

as σ2
η and let σ2 = σ2

η/σ2
x . It is clear that the correlation coefficient is only unity in the

absence of noise, and decreases towards zero as the noise variance increases.
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D.3.2 Output Correlation Coefficient at Any Two Thresholds

As in Section D.3.1, which derives a formula for the correlation coefficient between the

inputs to any two threshold devices, we can derive an expression for the correlation

coefficient between the outputs of any pair of threshold devices, i and j. This is

ρo =
cov[yi, yj]

√

var[yi]var[yj]

=
E[yiyj]− E[yi]E[yj]
√

(var[yi])2

=
E[yiyj]− 1

4
1
4

=
E[P2

1|x]− 1
4

1
4

= 4E[P2
1|x]− 1. (D.20)

D.3.3 Input-Output Correlation

The output of any given threshold device is correlated with its input. This correlation

can be expressed as

E[xyi] =
1

∑
yi=0

∫ ∞

−∞
xyiP(x, yi)dx

=
∫ ∞

−∞
0x(1− P1|x)P(x) + 1xP1|xP(x)dx

=
∫ ∞

−∞
xP1|xP(x)dx

= E[xP1|x]. (D.21)

Assuming the input signal has a mean of zero and variance σ2
x , the correlation coeffi-

cient between x and yi is

ρxyi
=

E[xyi]

σx

√

var[y2
i ]

=
E[xP1|x]

σx

√

var[y2
i ]

. (D.22)
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The overall system output encoding, y, is also correlated with the input signal, x. The

input-output correlation is

E[xy] =
∫ ∞

−∞
xE[y|x]P(x)dx (D.23)

=
N

∑
n=0

nE[x|n]Py(n). (D.24)

The fact that the above two identities are equal can easily be shown by substituting

for the definition of expected value and the use of Bayes’ rule, before changing the

order of integration and summation. Substituting Eqn. (D.3) into Eqn. (D.23) gives

an expression for the input-output correlation in terms of the correlation between the

inputs to any two devices as

E[xy] =
∫ ∞

−∞
xNP1|xP(x)dx

= NE[xP1|x] (D.25)

= NE[xyi]. (D.26)

Hence, the overall input-output correlation is N times larger than the correlation be-

tween the input and output of a single device.

Assuming the input signal has a mean of zero and variance σ2
x , the correlation coeffi-

cient between x and y is

ρxy =
E[xy]

σx

√

var[y]

= N
E[xP1|x]

σx

√

E[y2]− E[y]2

= N
E[xP1|x]

σx

√

N(N − 1)E[P2
1|x]− N2E[P1|x]2 + NE[P1|x]

. (D.27)

To progress further requires knowledge of the noise PDF, R(η). Once this is specified,

P1|x can be derived, and therefore E[xP1|x] and the output moments.

D.4 A Proof of Prudnikov’s Integral

This section gives a proof of an integral used in Section 6.4.2 of Chapter 6 for the cal-

culation of the output variance for the SSR model for Gaussian signal and noise.
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The integral we prove here is listed in Prudnikov et al. (1986) as

f (a) =
∫ x=∞

x=−∞
exp (−a2x2)erf2(x)dx =

2

a
√

π
arctan

(

1

a
√

a2 + 2

)

. (D.28)

Observe that f (a) = f (−a), and that the arctan function is an odd function. Eqn. (D.28)

is expressed in terms of the arctan function so that the relationship holds for both pos-

itive and negative a. If we are only interested in the case of a > 0, the equation can be

expressed in terms of the arcsin function as

f (a) =
∫ x=∞

x=−∞
exp (−a2x2)erf2(x)dx =

2

a
√

π
arcsin

(

1

1 + a2

)

. (D.29)

The proof of this result follows. Firstly note that the integrand is an even function of x.

Hence,

f (a) = 2
∫ x=∞

x=0
exp (−a2x2)erf2(x)dx. (D.30)

Now,

∫ x=∞

x=0
exp (−a2x2)erf2(x)dx =

∫ x=∞

x=0
exp (−a2x2)

(

2√
π

∫ u=x

u=0
exp (−u2)du

)2

dx

=
4

π

∫ x=∞

x=0

∫ u=x

u=0

∫ v=x

v=0
exp (−(u2 + v2 + a2x2))dudvdx

(D.31)

Letting w = ax and performing a change of variable gives

f (a) =
8

aπ

∫ w=∞

w=0

∫ u=w/a

u=0

∫ v=w/a

v=0
exp (−(u2 + v2 + w2))dudvdw. (D.32)

We now convert this triple integral to polar coordinates with r∈[0, ∞), θ∈[0, 2π) and

φ∈[0, π]. This gives u = r cos θ sin φ, v = r sin θ sin φ and w = r cos φ, with the volume

element being dudvdw = r2 sin φdφdθdr. With this conversion we get u2 + v2 + w2 =

r2. Thus

f (a) =
8

aπ

∫

r

∫

θ

∫

φ
r2 exp (−r2) sin φdφdθdr. (D.33)

The limits of integration for θ and φ can be determined as follows. Firstly, since u and

v are integrated between 0 and w/a, this imposes the following inequalities

0 ≤ cos θ sin φ ≤ cos φ

a
,

0 ≤ sin θ sin φ ≤ cos φ

a
. (D.34)

Since φ is defined on [0, π], sin φ is always nonnegative. Therefore both cos θ ≥ 0 and

sin θ ≥ 0, which implies that θ ∈ [0, π/2]. Also, since a≥0, cos φ≥0 and therefore

φ ∈ [0, π/2].
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Thus, Inequalities (D.34) can be written as

0 ≤ tan φ ≤ 1

a cos θ
,

0 ≤ tan φ ≤ 1

a sin θ
. (D.35)

This can be restated as

φ ≤ φ1 = arctan

(

1

a cos θ

)

, θ ∈
[

0,
π

4

]

,

φ ≤ φ2 = arctan

(

1

a sin θ

)

, θ ∈
[π

4
,

π

2

]

. (D.36)

Furthermore, since in the original integral of Eqn. (D.32), w is integrated between 0 and

∞, and cos φ ≥ 0, r must be integrated over [0, ∞). Therefore

f (a) =
8

aπ

∫

θ

∫

φ
sin φ

∫ ∞

r=0
r2 exp (−r2)drdφdθ. (D.37)

The inner integral is simply
∫ r=∞

r=0 r2 exp (−r2)dr =
√

π/4. Thus

f (a) =
2

a
√

π

∫

θ

∫

φ
sin φdφdθ

=
2

a
√

π

(

∫ θ=π/4

θ=0

∫ φ=φ1

φ=0
sin φdφdθ +

∫ θ=π/2

θ=π/4

∫ φ=φ2

φ=0
sin φdφdθ

)

=
2

a
√

π

(

∫ θ=π/4

θ=0
[− cos φ]

φ1
0 dθ +

∫ θ=π/2

θ=π/4
[− cos φ]

φ2

0 dθ

)

=
2

a
√

π

(

∫ θ=π/4

θ=0
1− cos

(

arctan

(

1

a cos θ

))

dθ

+
∫ θ=π/2

θ=π/4
1− cos

(

arctan

(

1

a sin θ

))

dθ

)

=
2

a
√

π

(

π

2
− 2

∫ θ=π/4

θ=0
cos

(

arctan

(

1

a cos θ

))

dθ

)

=
2

a
√

π

(

π

2
− 2

∫ θ=π/4

θ=0

a cos θ√
1 + a2 cos2 θ

dθ

)

=
2

a
√

π

(

π

2
− 2

[

arcsin

(

a sin θ√
1 + a2

)]π/4

0

)

=
2

a
√

π

(

π

2
− 2 arcsin

(

a√
2
√

1 + a2

))

=
2

a
√

π

(

π

2
− 2 arcsin

(

1√
2

√

1− 1

1 + a2

))

. (D.38)
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Now, given the identity A = 2 arcsin
(

1√
2

√
1− cos A

)

, it can be seen that Eqn. (D.38)

can be written as

f (a) =
2

a
√

π

(

π

2
− arccos

(

1

1 + a2

))

=
2

a
√

π
arcsin

(

1

1 + a2

)

. (D.39)

This completes the proof.

D.5 Minimum Mean Square Error Distortion Decoding

This section proves the results stated in Section 6.5.3 of Chapter 6, regarding the mini-

mum possible MSE distortion.

D.5.1 MMSE Reconstruction Points and Distortion

The reconstruction points that provide the Minimum Mean Square Error (MMSE) dis-

tortion for a quantisation encoding, y, consisting of possible states, n = 0, .., N, are

x̂n = Ex[x|n] =
∫

x
xP(x|n)dx =

1

Py(n)

∫

x
xP(n|x)P(x)dx. (D.40)

A proof of this follows.

If x̂, with possible values given by {x̂0, .., x̂N}, is a decoding of a quantised version of

a signal, x, the mean square error distortion is

MSE = E[(x− x̂)2]

=
∫ ∞

x=−∞

N

∑
n=0

(x− x̂n)
2P(x, n)dx

= E[x2] +
N

∑
n=0

(x̂2
n − 2xx̂n)Py(n)P(x|n)dx

= E[x2] +
N

∑
n=0

Py(n)

(

x̂2
n

∫ ∞

x=−∞
P(x|n)dx− 2x̂n

∫ ∞

x=−∞
xP(x|n)dx

)

= E[x2] +
N

∑
n=0

Py(n)
(

x̂2
n − 2x̂nE[x|n]

)

. (D.41)

Notice that since we wish to find the set of x̂n that minimises the MSE distortion, and

since Py(n) is always positive, we can simply differentiate the term inside the summa-

tion in Eqn. (D.41) with respect to x̂n and set to zero. Also, the second derivative with
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respect to x̂n is equal to 2, which is always greater than zero. This gives x̂n = E[x|n] as

a minimum and we have completed the proof.

Note also that substituting for x̂n = E[x|n] in Eqn. (D.41) gives the minimum MSE

distortion as

MMSE = E[x2]− E[x̂2]. (D.42)

D.5.2 MMSE Decoded Output is Uncorrelated with the Error

We firstly show that E[xx̂] = E[x̂2]:

E[xx̂] = ∑
n

∫

x
xx̂P(x, n)dx

= ∑
n

∫

x
xx̂Py(n)P(x|n)dx

= ∑
n

Py(n)x̂
∫

x
xP(x|n)dx

= ∑
n

Py(n)x̂x̂

= E[x̂2]. (D.43)

Thus, if the optimal decoding, x̂, is used, the mean square error is

E[(x̂− x)2] = En[x̂2]− 2E[xx̂] + Ex[x
2]

= Ex[x
2]− En[x̂2], (D.44)

just as in Eqn. (D.42).

We also have,

E[x̂− x] = E[x̂]− 0

= ∑
n

Py(n)E[x|n]

= ∑
n

Py(n)
∫

x
xP(x|n)dx

=
∫

x
x ∑

n

Py(n)P(x|n)dx

=
∫

x
xP(x)dx

= E[x]

= 0. (D.45)

Page 392



Appendix D Derivations for Suprathreshold Stochastic Resonance Decoding

Thus, the mean of the decoded output is zero, the mean error is zero and therefore the

MMSE distortion is also the minimum error variance.

Furthermore, with the decoding, x̂, the encoded output, y, is uncorrelated with the

error, ǫ = x− x̂. The proof of this is

E[ǫy] = E[xy]− E[x̂y]

= ∑
n

∫

x
xnP(x, n)dx− E[x̂y]

= ∑
n

∫

x
xnPy(n)P(x|n)dx− E[x̂y]

= ∑
n

nPy(n)
∫

x
xP(x|n)dx− E[x̂y]

= ∑
n

nPy(n)E[x|n]− E[x̂y]

= ∑
n

nx̂nPy(n)− E[x̂y]

= E[x̂y]− E[x̂y]

= 0. (D.46)

D.5.3 Relationship of MMSE to Backwards Conditional Variance

We are also consider the mean square value of x given output state n. This gives an

idea of how variable x is, given that output state. This is

Ex[x
2|n] =

∫

x
x2P(x|n)dx =

1

Py(n)

∫

x
x2P(n|x)P(x)dx. (D.47)

Consider the variance of x given output state n. We call this the Backwards Conditional

Variance (BCV), which we label as

BCV(n) = varx[x|n] = Ex[x
2|n]− Ex[x|n]2 = Ex[x

2|n]− x̂2
n. (D.48)
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Note that the BCV is a function of n. If we take the expected value of the BCV over all

N we get

En[BCV(n)] = En

[

Ex[x
2|n]− x̂2

n

]

= ∑
n

Py(n)
∫

x
x2P(x|n)dx− E[x̂2

n]

=
∫

x
x2P(x)

(

∑
n

P(n|x)

)

dx− E[x̂2
n]

=
∫

x
x2P(x)1dx− E[x̂2

n]

= E[x2]− E[x̂2
n]. (D.49)

The RHS of Eqn. (D.49) is precisely the MMSE that is obtained using the estimator

x̂ = E[x|n]. So we make note of this by writing explicitly,

MMSE = En[BCV(n)] = Ex[x
2]− En[x̂2

n]. (D.50)

D.6 Fisher Information

This section provides two alternative derivations for the Fisher information in the SSR

model, an expression which is used in Section 5.4.5 of Chapter 5 and Section 6.7 of

Chapter 6.

D.6.1 First Derivation

Consider the individual output signal of each threshold device in the SSR model, yi ∈
{0, 1}, to be an estimator for the input, x. There are two output states, zero and one,

with conditional probability functions P(0|x) = 1− P1|x and P(1|x) = P1|x respectively.

Hence, from Eqn. (6.104), the score for each state is

V(0) =
1

(1− P1|x)
d(1− P1|x)

dx
, (D.51)

and

V(1) =
1

P1|x

dP1|x
dx

. (D.52)

Therefore, upon substituting into Eqn. (6.114) the Fisher information for each compara-

tor is

Ji(x) = (1− P1|x)
1

(1− P1|x)2

(

d(1− P1|x)
dx

)2

+ P1|x
1

P2
1|x

(

dP1|x
dx

)2

, (D.53)
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which simplifies to

Ji(x) =

(

dP1|x
dx

)2
1

P1|x(1− P1|x)
. (D.54)

The Fisher information for N iid samples is N times the individual information (Cover

and Thomas 1991). Therefore since in the SSR array of N threshold devices, the set of

N random variables yi are all conditionally iid given x, the overall Fisher information

is N times the formula given in Eqn. (D.54). Thus

J(x) =

(

dP1|x
dx

)2
N

P1|x(1− P1|x)
. (D.55)

This is in agreement with the formula derived for the Fisher information in Hoch et al.

(2003a) and Hoch et al. (2003b).

D.6.2 Second Derivation

This subsection gives a derivation of the Fisher information in the SSR model that does

not require using the fact that the overall Fisher information is the sum of the Fisher in-

formation in each individual threshold device. Recall that the transition probabilities,

P(n|x), are given by the binomial formula in terms of P1|x as

P(n|x) =

(

N

n

)

(P1|x)
n(1− P1|x)

N−n n = 0, .., N. (D.56)

Differentiation of P(n|x) with respect to x gives

dP(n|x)

dx
=

(NP1|x − n)
dP1|x

dx

P1|x(1− P1|x)
P(n|x). (D.57)

Substituting Eqn. (D.57) into Eqn. (6.116) gives

J(x) =

dP1|x
dx

2

P2
1|x(1− P1|x)2

N

∑
n=0

P(n|x)(NP1|x − n)2. (D.58)

Noting that ∑
N
n=0 nP(n|x) = NP1|x and ∑

N
n=0 n2P(n|x) = NP1|x(1 − P1|x) + N2P2

1|x
Eqn. (D.58) simplifies to

J(x) =

(

dP1|x
dx

)2
N

P1|x(1− P1|x)
. (D.59)

This result is in agreement with Eqn. (D.55).
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D.7 Proof of the Information and Cramer-Rao Bounds

This section gives proofs of the information bound, and the Cramer-Rao bound. These

bound are used in Section 6.7 of Chapter 6.

The Cramer-Rao bound can be easily proved using the Cauchy-Schwarz inequality,

which states that

(cov[U, y|x])2 ≤ var[U|x]var[y|x]. (D.60)

Here, we set U to be the score function—the gradient of the log-likelihood function—

which is

U(x, y) =
d

dx
ln P(n|x). (D.61)

To prove the Cramer-Rao bound, note firstly that the covariance of U and y can be

simplified using the fact that E[U|x] = 0 as

cov[U, y|x] = E [(U − E[U|x])(y− E[y|x])|x]

= E[U(y− E[y|x]|x)

= E[Uy|x]− E[y|x]E[U|x]

= E[Uy|x]

= E

[

y
d

dx
ln P(n|x)|x

]

= E

[

y
1

P(n|x)

d

dx
P(n|x)|x

]

=
N

∑
n=0

n
d

dx
P(n|x)

=
d

dx

N

∑
n=0

nP(n|x)

=
d

dx
E[y|x]. (D.62)

Noting that J(x) = var[U|x],

(

d

dx
E[y|x]

)2

≤ J(x)var[y|x]. (D.63)

Therefore

var[y|x] ≥

(

d
dx E[y|x]

)2

J(x)
. (D.64)
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This proves the information bound for a biased estimator. Replacing y with a decoding

ŷ in the above derivation gives

var[ŷ|x] ≥

(

d
dx E[ŷ|x]

)2

J(x)
. (D.65)

For an unbiased estimator, d
dx E[y|x] = d

dx x = 1 and

var[y|x] ≥ 1

J(x)
, (D.66)

which proves the Cramer-Rao bound for an unbiased estimator.
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GYÖRGY-A., AND LINDER-T. (2000). Optimal entropy-constrained scalar quantization of a uniform

source, IEEE Transactions on Information Theory, 46, pp. 2702–2711.
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AESR Array Enhanced Stochastic Resonance, 21

AIB Average Information Bound, 242
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BCPD Backward Conditional Probability Distribution, 218
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Corrigenda

Page 35: Replace all instances of P(X) with PX(X) and all instances of P(Y) with

PY(Y). Replace Eqn. (2.3) with

D(PX(X)||PY(Y)) =
∫

η
PX(η) log2

(

PX(η)

PY(η)

)

dη.

Page 36: Replace Eqn. (2.4) with

I(X, Y) =
∫

X

∫

Y
P(X, Y) log2

(

P(X, Y)

PX(X)PY(Y)

)

dXdY.

Page 49: In Eqn. (3.2), Po(ω0) is the output signal power at frequency ω0, Pi(ω0) is the

input signal power at frequency ω0, SN,i(ω0) is the power spectral density of the

noise at the input at frequency ω0, and SN,o(ω0) is the power spectral density of

the noise at the output at frequency ω0.

Page 51: In the first new sentence, the last phrase should read “...and the input SNR

has a linearly decreasing curve,” rather than “...and the input SNR has a linearly

increasing curve.”

Page 64: The final sentence of the second paragraph is incorrect, as linear response the-

ory holds for both periodic and aperiodic signals. Therefore, replace this sentence

with “This includes, for example, signals that are strong compared to additive

noise.”

Page 65: Replace Eqn. (3.15) with

Sxx( f ) =
∫ ∞

−∞
Rxx(τ) exp (−j2πτ f )dτ,

and replace Eqn. (3.16) with

Sxy( f ) =
∫ ∞

−∞
Rxy(τ) exp (−j2πτ f )dτ.

Page 299: In the caption of Fig. 8.7, delete the second “increasing” on the third line.

Page 399 At the end of the first reference, page numbers should read “pp. 423-430.”

Page 400: The final reference on this page should begin “BERGER-A. (ed.) (1980).
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